Publications

Export 39 results:
Sort by: Author [ Title  (Asc)] Type Year
Filters: Author is Alexey Lastovetsky  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
2
A
B
C
D
E
Nuriyev, E., "Efficient and accurate selection of optimal MPI collective algorithms using analytical performance modelling", School of Computer Science, Dublin, University College Dublin, pp. 130, 06/2021.  Download: thesis.pdf (2.21 MB)
Lastovetsky, A., and R. R. Manumachu, "Energy-Efficient Parallel Computing: Challenges to Scaling", Information, vol. 14, issue 4, pp. 1--29, 04/2023.  Download: information-14-00248.pdf (1.53 MB)
H
Lastovetsky, A., M. Fahad, H. Khaleghzadeh, S. Khokhriakov, R. Reddy, A. Shahid, L. Szustak, and R. Wyrzykowski, "How Pre-multicore Methods and Algorithms Perform in Multicore Era", High Performance Computing. ISC High Performance 2018. Lecture Notes in Computer Science, vol 11203, Frankfurt, Springer Nature, pp. 527-539, 24-26 June, 2018, 2019.  Download: nesus-isc-paper.pdf (574.34 KB)
I
Shahid, A., M. Fahad, R. Reddy, and A. Lastovetsky, "Improving the Accuracy of Energy Predictive Models for Multicore CPUs Using Additivity of Performance Monitoring Counters", 15th International Conference on Parallel Computing Technologies (PaCT-2019), Almaty, Kazakhstan, Lecture Notes in Computer Science 11657, Springer, pp. 51-66, 08/2019.  Download: PaCT2019.pdf (370.4 KB)
M
N
Nuriyev, E., and A. Lastovetsky, "A New Model-Based Approach to Performance Comparison of MPI Collective Algorithms", 16th International Conference on Parallel Computing Technologies (PaCT 2021), Kaliningrad, Russia, Lecture Notes in Computer Science 12942, Springer, pp. 11-25, 09/2021.  Download: Nuriyev-Lastovetsky2021_Chapter_ANewModel-BasedApproachToPerfo.pdf (623.78 KB)
Khaleghzadeh, H., R. R. Manumachu, and A. Lastovetsky, "A Novel Algorithm for Bi-objective Performance-Energy Optimization of Applications with Continuous Performance and Linear Energy Profiles on Heterogeneous HPC Platforms", 19th Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2021), Lisbon, Portugal, Lecture Notes in Computer Science, vol. 13098, Springer, pp. 166-178, 31/08/2021, 2022.  Download: Khaleghzadeh2022_Chapter_ANovelAlgorithmForBi-objective.pdf (1.07 MB)