
Received November 14, 2019, accepted December 8, 2019, date of publication December 16, 2019,
date of current version January 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2959905

A Hierarchical Data-Partitioning Algorithm for
Performance Optimization of Data-Parallel
Applications on Heterogeneous Multi-Accelerator
NUMA Nodes
HAMIDREZA KHALEGHZADEH , RAVI REDDY MANUMACHU , AND ALEXEY LASTOVETSKY
School of Computer Science, University College Dublin, Dublin 4, D04 V1W8 Ireland

Corresponding author: Hamidreza Khaleghzadeh (hamidreza.khaleghzadeh@ucd.ie)

This work was supported by the Science Foundation Ireland (SFI) under Grant 14/IA/2474.

ABSTRACT Modern HPC platforms are highly heterogeneous with tight integration of multicore CPUs
and accelerators (such as Graphics Processing Units, Intel Xeon Phis, or Field-Programmable Gate Arrays)
empowering them to address the twin critical concerns of performance and energy efficiency. Due to
this inherent characteristic, processing elements contend for shared on-chip resources such as Last Level
Cache (LLC), interconnect, etc. and shared nodal resources such as DRAM, PCI-E links, etc., resulting in
complexities such as resource contention, non-uniform memory access (NUMA), and accelerator-specific
limitations such as limited main memory thereby necessitating support for efficient out-of-card execution.
Due to these complexities, the performance profiles of data-parallel applications executing on these platforms
are not smooth and deviate significantly from the shapes that allowed state-of-the-art load-balancing
algorithms to find optimal solutions. In this paper, we propose a hierarchical two-level data partitioning
algorithmminimizing the parallel execution time of data-parallel applications on clusters of h identical nodes
where each node has c heterogeneous processors. This algorithm takes as input c discrete speed functions
of cardinality m corresponding to the c heterogeneous processors. It does not make any assumptions about
the shapes of these functions. Unlike load balancing algorithms, optimal solutions found by the algorithm
may not load-balance an application in terms of execution time. The proposed algorithm has low time
complexity of O(m2

× h+m3
× c3) unlike the state-of-the-art algorithm solving the same problem with the

complexity ofO(m3
×c3×h3). We also propose an extension of the algorithm for clusters of h non-identical

nodes where each node has c heterogeneous processors. We experimentally demonstrate the optimality
of our algorithm using two well-known and highly optimized multi-threaded data-parallel applications,
matrix-matrix multiplication and 2D fast Fourier transform, on a heterogeneous multi-accelerator NUMA
node containing an Intel multicore Haswell CPU, an Nvidia K40c GPU, and an Intel Xeon Phi co-processor
and a simulated homogeneous cluster of such nodes.

INDEX TERMS Heterogeneous platforms, multicore, Nvidia GPU, Intel Xeon Phi, workload partitioning,
performance, HPC, hierarchical.

I. INTRODUCTION
Modern HPC platforms have become highly heterogeneous
owing to the tight integration of multicore CPUs and accel-
erators (such as Graphics Processing Units (GPUs), Intel
Xeon Phis, or Field-Programmable Gate Arrays) empowering
them to address the twin critical concerns of performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

and energy efficiency. The Top500 list [1] contains about
138 systems with accelerators; NVIDIA’s Tesla P100 and
Tesla V100 account for about 100 systems. All the top
25 computers in the Green500 list [2] contain accelerators.

Optimization of data-parallel applications for performance
on such platforms faces several challenges due to the inherent
complexities introduced by the tight integration of the com-
pute devices. The complexities and the ensuing challenges
include the following:

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 7861

https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0003-0026-5423

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

• Severe resource contention for shared resources in
multicore CPUs such as Last Level Cache (LLC),
on-chip interconnect, DRAM controllers, and shared
nodal resources such as DRAM, and PCI-E links;

• Non-uniform Memory Access (NUMA) where the time
for memory access between a core and main memory
is not uniform and where main memory is distributed
between locality domains or groups called NUMA
nodes.

• The tight integration of accelerators with multicore
CPUs via PCI-E communication links contains inherent
limitations such as limited main memory of accelerators
and limited bandwidth of the PCI-E communication
links. These limitations pose formidable programming
challenges to execution of large problem sizes on these
accelerators thereby requiring support for efficient out-
of-card implementations. Out-of-card implementations
not only facilitate solving large workload sizes but also
broaden the space of workload distributions (solutions)
between the compute devices solving an input workload
size.
– Out-of-card executions, however, involve multiple

data transfers of data structures (that fit inside the
main memory of the accelerator) from the host CPU
to the accelerator and back via the PCI-E communi-
cation link. The execution times of the out-of-card
implementation is therefore impacted by the limited
bandwidth of the link.

– There is a lack of libraries providing interfaces that
allow programmers to write efficient out-of-card
implementations for their data-parallel kernels on
accelerators. There are exceptions such as Nvidia’s
CUBLAS-XT package [3], which provides a set of
basic linear algebra subroutines (BLAS) that utilize
multiple GPUs, and Matrix Algebra on GPU and
Multicore Architectures (MAGMA) [4], which pro-
vides out-of-card dense matrix factorizations. How-
ever, vendor out-of-card implementations (such
as [3]) are shown not to be the best in terms of
performance [5].

A visible manifestation of these complexities is a complex
functional relationship between performance and workload
size of multi-threaded data-parallel applications executing on
these platforms where the shape of the performance profiles
may be highly non-linear and non-smooth with drastic varia-
tions. To elucidate this relationship, we present two use cases.

Figure 1 illustrates the performance profiles of a
matrix-vector multiplication application executing the highly
optimized multi-threaded DGEMV routine in Intel math
kernel library (MKL) on twelve tightly integrated identical
Intel Xeon Phi coprocessor SE10/7120 accelerators. The
specification of the accelerator is shown in Table 1. The
application multiplies a dense matrix of size N × N with a
vector of size N and runs on all cores of each Intel Xeon Phi
co-processor. The figure shows the performance profiles of
the application for all the twelve accelerators. The profiles

FIGURE 1. Speeds of Intel MKL DGEMV application for twelve Intel Xeon
Phi SE10/7120 series coprocessors. Each function shows the speed of one
Intel Xeon Phi coprocessor where mic0 shows the speed function of the
first Xeon Phi and so on.

TABLE 1. Specification of the Intel Xeon Phi coprocessor
SE10/7120 series.

are built simultaneously to take into account resource con-
tention. The construction of the profiles is automated using
a strict experimental methodology (explained in Section IV)
to ensure that the performance variations are not noise. The
figure also shows the zoomed speed function between two
arbitrarily chosen points in the speed functions.

From the figure, we can observe the following:

• Although all the Xeon Phi co-processors are identical,
their speed functions (or performance profiles) demon-
strate different shapes with noteworthy variations. The
average of the variations is 7%. The variation is related
to the difference of speed between two subsequent
local minima (s1) and maxima (s2) and is defined as:
variation(%) = |s1−s2|

min(s1,s2)
× 100. Therefore, due to

the inherent nature of the platforms today, even in a
homogeneous environment, onemust use heterogeneous
workload distribution for optimal performance.

7862 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

TABLE 2. HCLServer: Specifications of the Intel Haswell multicore CPU,
Nvidia K40c, and Intel Xeon Phi 3120P.

• Due to the non-linear and non-smooth nature of the
shapes, state-of-the-art load balancing data partitioning
algorithms using such shapes as inputs to determine
workload distribution [6]–[8] may not return optimal
solutions.

• Using an average discrete speed function as input to
data partitioning algorithm may not be optimal [9]. The
model-based methods proposed in [9]–[11] cannot be
used since they consider all identical processors and take
a single speed function as an input.

In our second use case, we study the performance profiles
of a 2D fast Fourier transform (2D-FFT) application on a
multi-accelerator NUMA platform, HCLServer (the specifi-
cation is shown in the Table 2). HCLServer contains an Intel
Haswell multicore CPU consisting of 24 physical cores with
64 GB main memory and integrated with two accelerators,
Nvidia K40c GPU and Intel Xeon Phi 3120P. Each accelera-
tor is connected to a dedicated host core via a separate PCI-E
link.

The hybrid 2D-FFT application executing in HCLServer
is modelled by three abstract processors. A processing unit
made of one or a group of CPU cores executing one (gen-
erally speaking, multi-threaded) computational kernel of the
data-parallel application is modelled by an abstract proces-
sor [12]. To build the performance models of the abstract pro-
cessors, the performance of the processing units representing
these processors must be measured accurately. To ensure this,
the processing units are grouped by shared system resources.
Each group becomes an abstract processor. The performance
of processing units in a group is measured when all the pro-
cessing units in the group are executing a workload simulta-
neously, thereby taking into account the influence of resource
contention. We represent a performance model by a discrete
function of speed versus the problem size.

The first abstract processor contains 22 CPU cores exe-
cuting the multi-threaded CPU kernel. The second abstract
processor comprises the Nvidia K40c GPU along with its

FIGURE 2. Speed functions of heterogeneous 2D DFT application for the
multicore CPU, GPU, and Xeon Phi in the HCLServer. Also shown is the
zoomed speed function between two points 54562 and 61762.

dedicated host CPU core executing the GPU kernel. Finally,
the third abstract processor consists of Intel Xeon Phi 3120P
co-processor along with its dedicated host CPU core execut-
ing the Xeon Phi kernel. The dedicated host CPU core is
responsible for sending data from host to accelerator, ker-
nel invocations on the accelerator and then copying results
back from accelerator to host. Therefore, the pair consisting
of an accelerator and its dedicated host core executing one
accelerator kernel is modelled by an abstract processor. The
kernel executing on the accelerator uses all the cores of
the accelerator. The execution time of a kernel in the GPU
and Xeon Phi abstract processors includes the times of data
transfer between the accelerators and their host cores.

For the multicore CPU and Xeon Phi, Intel MKL FFT
package is used. For the Nvidia GPU, CUFFT package is
used. Unlike the matrix multiplication application, all com-
putations for FFT are in-core (or in-card for the accelerators).
Figure 2 shows the speed functions of abstract processors
along with their zoomed functions between two data points
54562 and 61762. The Intel MKL FFT kernel for the multi-
core CPU uses 44 threads executing on 22 out of 24 physical
cores.

From the figure, we can observe that Xeon Phi is markedly
slower than CPU and GPU. It is because the execution time of
communications between Xeon Phi and host CPU dominates
the execution time of computations performed by Xeon Phi.
However, GPU uses optimized data transfers by deploying
two data engines (for transfers from CPU host to GPU and

VOLUME 8, 2020 7863

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

from GPU to CPU host) and does not suffer from this prob-
lem. The maximum variations for CPU, GPU, and Xeon
Phi are almost 350%, 560% and 200%, respectively. The
maximum variations for Xeon Phi occur for problem sizes
in the range of [162, 8002].
Due to the non-linear and non-smooth nature of the shapes,

state-of-the-art load balancing data partitioning algorithms
(based on functional performancemodels (FPMs)) using such
shapes as inputs to determine workload distribution [6]–[8]
may not return optimal solutions. Also the new model-based
methods proposed in [9], [10] cannot be used for this case.

Khaleghzadeh et al. [13] address this shortcoming by
proposing a novel data-partitioning algorithm (Heteroge-
neous Performance OPTimization Algorithm (HPOPTA)),
which minimizes parallel execution time for the most general
shapes of performance profiles for data-parallel applications
executing on heterogeneous clusters of hybrid nodes. It has
a time complexity of O(m3

× p3), where m represents the
cardinality of the discrete performance/speed functions and p
is the number of available heterogeneous processors. Optimal
solutions found byHPOPTAmay not be balanced in terms of
execution time.

HPOPTA, however, has high theoretical and practical
complexity for large p. We propose a hierarchical two-level
data-partitioning algorithm, called HiPOPTA, to solve the
performance optimization problem on large clusters of iden-
tical heterogeneous multi-accelerator NUMA nodes. To be
specific, HiPOPTA determines workload distribution that
minimizes the parallel execution time of data-parallel appli-
cations on clusters of h identical nodes where each node
has c heterogeneous processors. It takes as input c discrete
speed functions corresponding to the c heterogeneous pro-
cessors. It does not make any assumptions about the shapes
of these functions. Unlike load balancing algorithms, optimal
solutions found by the algorithm may not load-balance an
application in terms of execution time. HiPOPTA has low
time complexity of O(m2

× h + m3
× c3) compared to

HPOPTA, which solves the same problem with complexity
O(m3

× c3 × h3).
We also propose an extension of HiPOPTA for a cluster

of heterogeneous multi-accelerator NUMA nodes where all
the nodes are non-identical. The non-identicality could be
not only due to the physical composition of the platform but
also due to performance differences or imbalances between
compute nodes arising, for example, from employment of
dynamic voltage and frequency scaling (DVFS) on one or
more nodes to satisfy either a power budget or thermal
envelope [14]–[16].

We experimentally analyse the optimality of HiPOPTA
using two multi-threaded data-parallel applications, matrix-
matrix multiplication (DGEMM) and 2D-FFT, on a hetero-
geneous multi-accelerator NUMA node containing an Intel
multicore Haswell CPU, an Nvidia K40c GPU, and an Intel
Xeon Phi co-processor and a simulated homogeneous cluster
of such nodes. We show that HiPOPTA determines better
solutions than load-balancing and FPM-based algorithms.

We also prove that HiPOPTAfinds optimal solutionswith less
computational complexity in comparison with HPOPTA.

The main contribution of our work is a hierarchical
two-level workload partitioning algorithm that minimizes the
parallel execution time of data-parallel applications executing
on clusters of heterogeneous multi-accelerator NUMA nodes
for two cases respectively where the nodes are identical and
non-identical.

The rest of the paper is organized as follows. Section II
contains the formulation of the hierarchical performance opti-
mization problem. Section III presents our hierarchical data
partitioning algorithm solving the problem. The experimental
results are explained in the section IV. Section V presents the
related work. Finally, we conclude the paper in section VI.

II. HETEROGENEOUS PERFORMANCE OPTIMIZATION
PROBLEM: FORMULATION
Consider a workload size n executing on a cluster of h
identical nodes. Suppose each node consists of c hetero-
geneous processors with discrete speed functions, S =
{s0(x), . . . , sc−1(x)} where si(x), i ∈ {0, 1, · · · , c− 1}, is the
speed function of the processorPi with a cardinality ofm. The
hierarchical heterogeneous performance optimization prob-
lem can be then formulated as follows:

HiPOPT(n, h, c, m, S, Xopt , topt): The problem is to find a
workload distribution,Xopt = {x00, x01, · · · , x0 c−1, x10, · · · ,
xh−1 c−1}, for the workload n executing on h × c heteroge-
neous processors so that the solution minimizes the parallel
computation time during the execution of n. xij ∈ Xopt
represents the optimal workload distribution allocated to the
j-th heterogeneous processor in the i-th node. The parameters
(n, h, c, m, S) are the inputs to the problem. The outputs
are the optimal workload distribution (Xopt), and the parallel
execution time of the optimal solution (topt). The problem for-
mulation, which is a integer non-linear programming (INLP)
problem, is shown below:

topt = min
X

h−1
max
i=0

c−1
max
j=0

xij
sj(xij)

,

Subject to:
h−1∑
i=0

c−1∑
j=0

xij = n

where h, c,m, n ∈ Z>0
xij ∈ Z≥0
sj(x) ∈ R>0 (1)

The objective function in Eq. 1 is a function of workload
distribution X , X = {x00, x01, · · · , xh−1 c−1}, for a given
workload n executing on the h×c processors. The inner-most
maximum term inside Eq. 1, maxc−1j=0 , finds the execution
time of the workload size for a node. The next maximum
term, maxh−1i=0 , represents the execution time of the cluster
of such identical nodes. Finally, Eq. 1 finds the distribution
minimizing the execution time of n on the whole cluster.
The number of active processors (processors that are assigned

7864 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

non-zero workload size) in the optimal solution (Xopt) may be
less than h× c.

III. HIPOPTA: HIERARCHICAL TWO-LEVEL DATA
PARTITIONING ALGORITHM SOLVING HIPOPT
The algorithm, HPOPTA [13], can be used to solve HiPOPT.
It requires c×h speed functions as input, where m represents
the cardinality of input speed functions, and p = h× c is the
number of heterogeneous processors. We informally describe
the algorithm using an example. The input to the algorithm
are discrete time functions, which are derived from discrete
speed functions. In the example, consider four heterogeneous
processors (p = 4), which are available for execution of
a workload of size n = 16. Figures 3 and 4 respectively
show the sample speed functions, S = {s0(x), · · · , s3(x)},
and the equivalent time functions, T = {t0(x), · · · , t3(x)},
of the processors (m = n = 16 in our example for simplicity).
The time functions are samples, which are representative of
real-life data-parallel applications.

FIGURE 3. Speed functions of a sample application executing on an
assumed parallel machine which consists of 4 processors.

FIGURE 4. The equivalent time functions for the sample speed functions
in Fig. 3.

The solution tree is constructed from the root, which is
the only node at level L0 of the tree. The value 16, which
labels the root node, represents the whole workload size to
be distributed between 4 processors {P0,P1,P2,P3}. Then,
17 workload sizes, including a zero workload size along
with all workload sizes existing in the time function (t0(x)),

are assigned to the processor P0 one by one. Although the
workload sizes can be given to the processor in any order,
we assign them in non-decreasing order of their execution
time by the processor. As shown in Figure 5, problem sizes
{0, 8, 3, 12, 9, 15, 10, 14, 1, 16, 13, 4, 2, 7, 5, 6, 11}, which
have been sorted in non-decreasing order of execution times,
are assigned to P0 one-by-one at level L0. Therefore, the root
node is expanded into 17 children. The value, which labels
an internal node at level L1 (the root’s child), represents the
remaining workload size to be distributed between proces-
sors {P1,P2,P3}. In its turn, each internal node at level L1
becomes a root of a sub-tree, which is a solution tree for dis-
tribution of the remaining workload between three processors
{P1,P2,P3}. Finally, a distribution minimizing the parallel
execution time will be returned as the optimal solution. In this
example, the workload distribution (8, 8, 0, 0), represented
by the red solution leaf and resulting in the execution time
of 1, will be returned as optimal.

To find the optimal workload distribution, an exhaustive
approach will examine all combinations and select a work-
load distribution with the minimum computation time of
parallel execution of the workload. Figure 5 shows the tree,
which contains all the combinations. Due to the lack of
space, we only show the tree partially. The complexity of the
exhaustive algorithm is exponential.

HPOPTA is a branch-and-bound algorithm solving
HiPOPT. It employs two key optimizations, memorization
and smart backtracking, and two bounding criteria, time
threshold and size threshold, to avoid examining all the
possible solutions and to avoid exploring all the paths in the
tree.

HPOPTA has time complexity of O(m3
× p3), which is

high for large p. To address this shortcoming, we present a
two-level hierarchical data partitioning algorithm, HiPOPTA,
solving HiPOPT with low complexity. It uses two building
blocks: a). POPTA [9]–[11], a model-based optimization
algorithm used to minimize the parallel execution time of
data-parallel applications executing on homogeneous clus-
ters, and b). HPOPTA [13].

Figure 6 shows the schema of HiPOPTA, which is struc-
tured as a two-level hierarchical algorithm. The inputs to
HiPOPTA are c performance profiles, representing the per-
formances of c heterogeneous processors inside each node.
The top-most level (inter-node workload distribution) uses

POPTA [10] to determine the workload distribution of the
input workload size, n, between h identical nodes. The
input to POPTA is the speed function of the whole node,
which is determined during the first step of the execution of
HiPOPTA. The output workload distribution is represented
by {n0, n1, · · · , nh−1} so that n =

∑h−1
i=0 ni. HPOPTA is then

invoked by all the nodes in parallel to find optimal workload
distribution for c heterogeneous processors inside each node
where {xi 0, xi 1, · · · , xi c−1} is the intra-node optimal work-
load distribution for the i-th node, ni =

∑c−1
j=0 xi j, i ∈ [0, h).

Consider a workload size of n executing on a given
cluster of h identical nodes where each node contains

VOLUME 8, 2020 7865

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

FIGURE 5. Applying naive approach to examine all combinations and select a workload distribution with the minimum computation time of parallel
execution of the workload.

FIGURE 6. HiPOPTA schema consisting of two levels for parallel workload
distribution on HPC clusters.

c heterogeneous processors. The main steps of HiPOPTA to
find the optimal workload distribution are:

• Building speed function of whole node using
HPOPTA: For each workload size in the speed function
of a heterogeneous processor, we invoke HPOPTA to
determine the optimal workload distribution solving the
given workload size and the c performance profiles of
the heterogeneous processors as inputs. We then execute
the heterogeneous application on a node of the cluster
using the HPOPTA workload distribution and measure
its parallel execution time. The resulting discrete speed
function consisting of data points obtained for all the
workload sizes characterizes the performance of the
node as a whole and represents its speed function. Since
all the nodes in the cluster are identical, their speed
functions will be the same, too.

• Inter-node workload distribution: We use the whole
speed function to distribute the workload n between the
nodes of the cluster. Because all nodes are identical,
we can use parallel POPTA [11] for finding the optimal

workload distribution between nodes. It has low com-
plexity of O(m2

× h) compared to HPOPTA solving the
same problem of complexity O(m3

× h3).
• Intra-node workload distribution: HPOPTA is then
applied inside each node to divide the assignedworkload
between the c heterogeneous processors of this node so
that the execution time is minimized. The intra-node
workload distributions can be determined by running
HPOPTA on the nodes of the cluster in parallel. In this
step, the c profiles determining the performance of het-
erogeneous processors are used as input to HPOPTA.

The hierarchical partitioning solution reduces the theoreti-
cal complexity for finding optimal distributions on large scale
clusters. To prove this, assume a cluster containing h identical
nodes where each node has c processors. The total number
of heterogeneous processors available during an application
execution is p = c × h. Let the cardinality of performance
functions be m.

We first calculate the time complexity of HiPOPTA. There
are h identical nodes and therefore parallel POPTA finds the
optimal inter-node distribution with the time complexity of
O(m2

×h). Optimal intra-nodeworkload distributions are then
found using parallel executions of HPOPTA on h nodes with
time complexity ofO(m3

×c3). Therefore, the total theoretical
complexity will be equal to O(m2

× h+ m3
× c3).

The theoretical complexity of the non-hierarchical parti-
tioning algorithm, HPOPTA, is equal to O(m3

× c3 × h3).
Therefore, HiPOPTA is O(m3

×c3×h3

m2×h+m3×c3
) times faster than the

non-hierarchical one. For h� c� m, speedup is O(h2).
HiPOPTA always returns an optimal distribution. Indeed,

according to [10], POPTA finds an optimal workload distri-
bution between identical compute nodes represented by their
speed function. Assuming that the speed function of a node
reflects the fastest speed of execution of any given work-
load, it will find a globally optimal distribution. However,

7866 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

by construction, the speed function of a node as a whole found
locally by HPOPTA does give the fastest possible speed of
execution for any workload given to the node.

Since there may be more than one optimal distribution,
distributions returned by HiPOPTA and HPOPTA may be
different. However, their execution times will always be the
same.

The cost of building the speed function for a node is
bounded by the cost of building the speed functions of the
abstract processors. In the experimental section, we present
our experimental methodology (since it is non-trivial) to con-
struct the speed functions of the abstract processors. The cost
of building the full speed functions of the abstract processors
can be expensive. To reduce the cost, one approach is to build
partial speed functions that are input to HiPOPTA to output
optimal workload distribution for the specific input speed
functions [7], [17].

A. EXTENSION OF HIPOPTA FOR A CLUSTER OF
NON-IDENTICAL NODES
In this section, we consider an extension of HiPOPTA,
called HiPOPTAX, for the case of a heterogeneous cluster
of multi-accelerator NUMA nodes where all the nodes are
non-identical. The non-identicality could be not only due to
the physical composition of the platform but also due to per-
formance differences or imbalances between compute nodes
arising, for example, from employment of dynamic voltage
and frequency scaling (DVFS) on one ormore nodes to satisfy
either a power budget or thermal envelope [14]–[16].

Consider a workload size of n executing on a given cluster
of h nodes where each node contains c heterogeneous pro-
cessors. The inputs to HiPOPTAX are h × c performance
profiles where c profiles per node represent the performances
of the c heterogeneous processors inside that node. The per-
formance profiles of the c processors for all the nodes can be
constructed in parallel.

The main steps to find the optimal workload distribution
are:
• Building speed functions of whole nodes using
HPOPTA: For each node, we build its speed function as
explained in the first step of the HiPOPTA. The h speed
functions corresponding to the h nodes are constructed
in parallel.

• Inter-node workload distribution: The h speed func-
tions are input to HPOPTA to determine the optimal
workload distribution of workload size n between the
nodes. The time complexity of this step is O(m3

× h3).
• Intra-node workload distribution: HPOPTA is then
applied inside each node to determine the optimal work-
load distribution of the assigned workload between the
c heterogeneous processors of this node. The intra-node
workload distributions for the nodes are determined
using parallel executions of HPOPTA. The time com-
plexity of this step is O(m3

× c3).
To summarize, unlike HiPOPTA, HiPOPTAX invokes

HPOPTA for finding both inter-node and intra-nodeworkload

distributions on a cluster of non-identical nodes. The total
theoretical complexity of HiPOPTAX is equal toO(m3

×h3+
m3
× c3). The theoretical complexity of the non-hierarchical

partitioning using just HPOPTA is equal to O(m3
× c3× h3).

Therefore, HiPOPTAX is O(m3
×c3×h3

m3×h3+m3×c3
) times faster than

the non-hierarchical one. For h� c, speedup is O(c3).
The optimality of HiPOPTAX follows on the similar lines

as HiPOPTA.

IV. EXPERIMENTAL RESULTS
We experimentally study the performance of HiPOPTA com-
pared with HPOPTA and load-balancing algorithms using
two well-known multi-threaded data-parallel applications,
matrix-matrix multiplication (DGEMM) and 2D fast Fourier
transform (2D-FFT).

The experiments are a combination of actualmeasurements
conducted on the HCLServer node and simulations for clus-
ters of identical HCLServer nodes. The HCLServer node
consists of one Intel Haswell CPU, one Nvidia K40c GPU
and one Intel Xeon Phi 3120P. Table 2 summarizes the spec-
ification of the node. The actual measurements conducted on
the HCLServer node includes the construction of the speed
functions of the three abstract processors and the execu-
tion times of the HiPOPTA algorithm. The clusters contain
8, 16, · · · , 256 HCLServer nodes (h ∈ {8, 16, · · · , 256}).
Since each node has three abstract processors (c = 3),
the total number of abstract processors (p = h × c)
ranges from 24 to 768. We do not consider the cost of
communications.

For the sake of brevity, we will use the term simulated clus-
ter to refer to simulations that are executed on a HCLServer
node but that take as input parameter, the number of iden-
tical HCLServer nodes that constitute a cluster. Our exper-
iments are a combination of actual measurements (speed
functions, speedups, etc) and such simulations conducted on
the HCLServer node.

A. MULTI-THREADED DATA-PARALLEL APPLICATIONS
The matrix-matrix multiplication application (DGEMM)
computes C = α × A × B + β × C , where A, B, and C
are respectively dense square matrices of size n2, and α and
β are constant floating-point numbers. The 2D fast Fourier
transform (2D-FFT) computes the Fourier transform of a
complex square matrix of size n2. Each application consists
of three different kernels, one for CPU, one for GPU, and one
for PHI abstract processors.

For the CPU, the DGEMM application invokes the
DGEMM routine provided in Intel MKL BLAS [18]. For the
GPU and the Intel Xeon Phi, the application employs two
packages, ZZGemmOOC and XeonPhiOOC, that perform
out-of-card matrix multiplication of large dense matrices
on them [5]. The ZZGemmOOC out-of-card package reuses
CUBLAS [19] for in-card DGEMM calls, and XeonPhiOOC
out-of-card package reuses Intel MKL BLAS [18] for in-card

VOLUME 8, 2020 7867

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

DGEMM calls. The Intel MKL and CUDA versions are
2017.0.2 and 7.5.

The 2D-FFT application invokes Intel MKL FFT [20] for
the multicore CPUs and the Xeon Phi, and CUFFT [21]
for the Nvidia GPU. All computations are performed
in-card.

B. SPEED/PERFORMANCE FUNCTIONS OF THE
APPLICATIONS
HiPOPTA requires as an input the speed function of every
single computational kernel executing in a hybrid parallel
application. Each function contains a set of data points where
each point represents the speed of the computational kernel
for a given problem size.

A hybrid data-parallel application, which consists of a
number of kernels (generally speaking, multi-threaded), runs
in parallel on different parts of a hybrid platform. Due to tight
integration and severe resource contention in heterogeneous
hybrid platforms, the load of one computational kernel in a
given hybrid application may significantly impact the per-
formance of others to the extent, preventing from the ability
to model the speed of each kernel in hybrid applications
individually. Henceforth, computational kernels cannot be
considered independent and their performance (execution
times) should not be measured separately. To address this
issue, in this work we restrict our study to such configurations
of hybrid applications, where individual kernels are coupled
loosely enough to allow us to build their individual speed
functions with the accuracy sufficient for successful appli-
cation of our optimization algorithm, HiPOPTA. To achieve
this, we only consider configurations where no more than
one CPU kernel or accelerator kernel is running on the cor-
responding device. Then, each group of cores executing an
individual kernel of the application is modelled as an abstract
processor [12] so that the executing platform is represented
as a set of heterogeneous abstract processors. Each abstract
processor solely constitutes the processing elements and
resourceswhich are involved in the execution of a given appli-
cation kernel on it. We make sure that the sharing of system
resources is maximized within groups of computational cores
representing the abstract processors and minimized between
the groups. This way, the contention and mutual dependence
between abstract processors are minimized.

HCLServer, therefore following the design principles,
is modelled by three loosely-coupled abstract processors
CPU , GPU and PHI . The first abstract processor comprises
22 (out of total 24) CPU cores executing the multi-threaded
CPU kernel. The second abstract processor contains the
Nvidia K40c GPU, its dedicated host CPU core executing
the GPU kernel along with the PCI-E link connecting the
host to the accelerator. Finally, the Intel Xeon Phi 3120P
coprocessor, its dedicated host CPU core executing the Xeon
Phi kernel along with its PCI-E link make the third abstract
processor. The dedicated host CPU core is responsible for
sending data from host to accelerator, kernel invocations
on the accelerator and then copying results back from the

FIGURE 7. Original and smoothed speed functions of the heterogeneous
hybrid DGEMM on HCLServer. The original functions are smoothed using
polynomial trend line in LibreOffice Calc.

accelerator to host. Therefore, the pair consisting of an accel-
erator and its dedicated host core executing one accelerator
kernel is modelled by an abstract processor. The kernel exe-
cuting on an accelerator uses all its cores. The execution time
of a kernel in the GPU and PHI abstract processors includes
the times of data transfer between the accelerators and their
host cores. Since there should be a one-to-one mapping
between the abstract processors and computational kernels,
any hybrid application executing on the server in parallel
should consist of three kernels, one kernel per computational
device.

To build the speed functions for the hybrid heterogeneous
DGEMM application, the same workload is simultaneously
executed on all the abstract processors (CPU, GPU, PHI)
of one HCLServer node, and the execution time of each
kernel is precisely measured as explained in the following
section. We calculate the speed of a workload of size n2 as
2×n3
t where t is execution time taken to multiply two n × n

square matrices. The profiles labelled as Original in Figure 7
represents the speed functions for the three processors for
data points {642, 1282, · · · , 448002}.
We smooth the original speed function using a polynomial

trend line in LibreOffice Calc. These smoothed profiles are
labelled as Smooth in Figure 7. The smoothed functions are
used as an input to the load-balancing algorithm based on
Functional Performance Models (FPMs).

For 2D-FFT, the speed of a workload of size n2 is cal-
culated as 2.5×n2×log2 n2

t where t is execution time taken
to compute 2D DFT of size n2. Figure 8 shows original
and smoothed speed functions of 2D-FFT for data points
{162, 322, · · · , 240002}.
The time to build the full speed functions of the abstract

processors can be expensive. This is because, for each data
point, statistical averaging is performed, which involves mul-
tiple runs of the application to determine the sample means
for the execution times. To reduce the cost, one approach
is to build partial speed functions [7], [17], which are input
to HiPOPTA to output optimal workload distribution for the
specific input speed functions.

7868 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

FIGURE 8. Original and smoothed speed functions of the heterogeneous
hybrid 2D-FFT on HCLServer. The original functions are smoothed using
polynomial trend line in LibreOffice Calc.

C. EXPERIMENTAL METHODOLOGY TO CONSTRUCT
SPEED FUNCTIONS
To make sure the experimental results are reliable, we follow
the methodology described below:
• The server is fully reserved and dedicated to these exper-
iments during their execution. We also ensure that there
are no drastic fluctuations in the load due to abnormal
events in the server by monitoring its load continuously
for a week using the tool sar. Insignificant variation
in the load was observed during this monitoring period
suggesting normal and clean behaviour of the server.

• Our hybrid application is executed simultaneously on all
the three abstract processors, CPU, GPU, and Xeon Phi.
To obtain a data point in the speed functions, the appli-
cation is repeatedly executed until the sample mean lies
in the 95% confidence interval and a precision of 0.1
(10%) has been achieved. For this purpose, Student’s
t-test is used assuming that the individual observations
are independent and their population follows the normal
distribution. We verify the validity of these assumptions
by plotting the distributions of observations.

• We set OMP_PLACES and OMP_PROC_BIND envi-
ronment variables to bind all the threads of a hybrid
application to CPU cores.

Consider the hybrid application, which is named app, con-
sisting of three sample kernels, Kernel_cpu, Kernel_gpu and
Kernel_phi, which are run in parallel. The goal is to measure
the execution time of the kernels in the application. To do this,
we instrument the application as shown in Algorithm 1. This
instrumented application returns the execution time of each
kernel of all the three kernels.

We instrument each kernel in the hybrid application (app)
by using the member function gettimeofday() of the Linux
library sys/time.h to measure its execution time separately.
As shown in Algorithm 1, the execution times are stored in
variables tecpu, tegpu and tephi and are returned at the end of
the application execution.

We keep running the application until the sample means of
the measured execution times of the application lie within a
given confidence interval, and a given precision is achieved.

Algorithm 1 Instrumentation of a Sample Application (App)
Consisting of Three Kernels, Executing on CPU, GPU and
PHI Simultaneously
1: #pragma parallel
2: Begin
3: tecpu1← gettimeofday()
4: Kernel_cpu()
5: tecpu2← gettimeofday()
6: End
7: Begin
8: tegpu1← gettimeofday()
9: Kernel_gpu()
10: tegpu2← gettimeofday()
11: End
12: Begin
13: tephi1← gettimeofday()
14: Kernel_phi()
15: tephi2← gettimeofday()
16: End
17: tecpu← tecpu2− tecpu1
18: tegpu← tegpu2− tegpu1
19: tephi← tephi2− tephi1
20: return (tecpu, tegpu, tephi)

For this, we employ a script, which is named MeanUs-
ingTtest. Algorithm 2 presents the pseudocode of this script.
It executes the application app repeatedly until one of the
following three conditions is satisfied:

1) The maximum number of repetitions (maxReps) has
been exceeded (Line 5).

2) The sample means of all devices (kernel execution
times) fall in the confidence interval (or the precision
of measurement eps has been achieved) (Lines 13-18).

3) The elapsed time of the repetitions of application exe-
cution has exceeded the maximum time allowed (maxT
in seconds) (Lines 20-22).

MeanUsingTtest returns the sample means of the execu-
tion times for each abstract processor (i.e. timecpu, timegpu,
timephi). The input parameters are minimum and maximum
number of repetitions, minReps and maxReps. These param-
eter values differ based on the problem size solved. For small
problem sizes (32 ≤ n ≤ 1024), these values are set to 10000
and 100000. For medium problem sizes (1024 < n ≤ 5120),
these values are set to 100 and 1000. For large problem sizes
(n > 5120), these values are set to 5 and 50. The values
of maxT , cl, and eps are set to 3600, 0.95, and 0.1. If the
precision of measurement is not achieved before the maxi-
mum number of repeats have been completed, we increase
the number of repetitions and also the maximum elapsed time
allowed. However, we observed that condition (2) is always
satisfied before the other two in our experiments.

Algorithm 3 shows the pseudocode of the helper func-
tions CalAccuracy, which is used by MeanUsingTtest.
It returns 1 if the sample mean of a given reading lies

VOLUME 8, 2020 7869

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

Algorithm 2 Script Determining the Mean of an Experimen-
tal Run Using Student’s t-Test
1: procedureMeanUsingTtest(app,minReps,maxReps,)

maxT , cl, eps, reps#, elapsedTime, timecpu,
timegpu, timephi

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0
The maximum number of repetitions, maxReps ∈ Z>0
The maximum time allowed for the application to run,
maxT ∈ R>0
The required confidence level, cl ∈ R>0
The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, reps# ∈
Z>0
The elapsed time, elapsedTime ∈ R>0
The mean execution times,
timecpu, timegpu, timephi ∈ R≥0

2: reps← 0; stop← 0; etime← 0
3: sumcpu← 0; sumgpu← 0
4: sumphi← 0
5: while (reps < maxReps) and (!stop) do
6: (tcpu[reps], tgpu[reps], tphi[reps])
7: ← Execute(app)
8: sumcpu+ = tcpu[reps]
9: sumgpu+ = tgpu[reps]
10: sumphi+ = tphi[reps]
11: if reps > minReps then
12: stopcpu←
13: CalAccuracy(cl, reps+ 1, tcpu, eps)
14: stopgpu←
15: CalAccuracy(cl, reps+ 1, tgpu, eps)
16: stopphi←
17: CalAccuracy(cl, reps+ 1, tphi, eps)
18: stop← stopcpu ∧ stopgpu ∧ stopphi
19: mT ← max{sumcpu, sumgpu, sumphi}
20: if mT > maxT then
21: stop← 1
22: end if
23: end if
24: reps← reps+ 1
25: end while
26: reps#← reps
27: elapsedTime← max{sumcpu, sumgpu, sumphi}
28: timecpu←

sumcpu
reps ; timegpu←

sumgpu
reps

29: timephi←
sumphi
reps

30: return (reps#, elapsedTime, timecpu, timegpu,
timephi)

31: end procedure

in the 95% confidence interval (cl) and a precision of 0.1
(eps = 10%) has been achieved. Otherwise, it returns 0.
If the precision of measurement is not achieved before

the maximum number of repeats have been completed,

Algorithm 3 Algorithm Calculating Accuracy
1: function CalAccuracy(cl, reps,Array, eps)
2: clOut ← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1))

× gsl_stats_sd(Array, 1, reps)
/ sqrt(reps)

3: if clOut × reps∑reps−1
i=0 Array[i]

< eps then

4: return 1
5: end if
6: return 0
7: end function

we increase the number of repetitions and also the maxi-
mum elapsed time allowed. However, we observed that con-
dition (2) is always satisfied before the other two in our
experiments.

To make sure that the experimental results are reliable,
we employ an experimental methodology containing the fol-
lowing main steps: 1). We make sure the platform is fully
reserved and dedicated to our experiments and is exhibiting
clean and normal behaviour by monitoring its load con-
tinuously for a week. 2) For each data point obtained (in
the graphs of speed functions, performance improvements),
the sample mean is used, which is calculated by executing the
application repeatedly until statistical confidence is achieved
(95% confidence interval, the precision of 0.025 (2.5%)).
Student’s t-test is used to determine the samplemean. The test
assumes that the individual observations are independent and
their population follows the normal distribution. We verify
the validity of these assumptions using Pearson’s chi-squared
test.

D. DATA PARTITIONING ON CLUSTERS OF
HETEROGENEOUS NODES USING HIPOPTA
For the first set of experiments, we study the optimality of
HiPOPTA by comparing its workload distributions with the
optimal solutions returned by HPOPTA.

The experimental data set for DGEMM includes workload
sizes ranging from (p3×64×100)

2 to (p×64×700)2 with step
size of 642, where p determines the total number of processors
in the simulated cluster. The experimental dataset for 2D-FFT
contains workload sizes ranging from (p3 × 16 × 100)2 to
(p× 16× 1500)2 with step size of 162.
HiPOPTA takes as input the three speed functions cor-

responding to the three abstract processors inside the
HCLServer node. The main steps of HiPOPTA for a cluster
of HCLServer nodes are below:

• Building speed function of whole HCLServer using
HPOPTA: For each workload size, we run the hetero-
geneous application on HCLServer using the HPOPTA
workload distribution and measure its parallel execution
time. The resulting speed function characterizes the per-
formance of HCLServer as a whole. Figures 9 and 10
respectively show the speed functions of DGEMM and
2D-FFT of whole HCLServer.

• Inter-node workload distribution: We use the whole
HCLServer speed function to distribute workload

7870 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

FIGURE 9. Speed functions of the DGEMM application for the whole
HCLServer.

FIGURE 10. Speed functions of the 2D-FFT application for the whole
HCLServer.

between the nodes of the simulated cluster using POPTA
[10], since it has low complexity than HPOPTA.

• Intra-node workload distribution: HPOPTA is then
applied inside each node to determine the optimal dis-
tribution of the assigned workload between CPU, GPU,
and Xeon Phi of this node. The intra-node workload
distributions can be determined by running HPOPTA on
the nodes of the cluster in parallel. One must invoke
HPOPTA for all the nodes since the workloads assigned
to the nodes could all be different.

To compare the workload distribution obtained using
HiPOPTA with HPOPTA, we use HPOPTA to obtain opti-
mal workload distributions between processors in clusters
of hybrid nodes. It takes as input, the speed function of
each abstract processor in the simulated cluster. Because all
nodes are identical, we use the speed functions for one node
HCLServer (the original profiles in Figures 7 and 8) for all
nodes in the simulated cluster. For example, for a simulated
cluster consisting of 8 nodes of HCLServer (h = 8), the num-
ber of input functions to HPOPTA is 24 (= h× c = 8× 3).
To evaluate the optimality of HiPOPTA, we compare the

parallel execution times of HiPOPTA solutions with those
obtained by applying plain HPOPTA with the experimental
data sets explained earlier. Although the workload distribu-
tions generated by HiPOPTA and HPOPTA are not identical
in a general case, the resulting execution times of the distribu-
tions returned by the two algorithms are the same. However,
as shown in tables 3 and 4, HiPOPTA outperforms HPOPTA

TABLE 3. Percentage speed-up of HiPOPTA over HPOPTA for DGEMM.

TABLE 4. Percentage speed-up of HiPOPTA over HPOPTA for 2D-FFT.

by O(h2) for the applications DGEMM and 2D-FFT. Each
table shows the percentage speed-up of HiPOPTA over
HPOPTA for workload sizes n2 × h. For instance, regarding
table 3, HiPOPTA is 6995% faster than HPOPTA to find the
optimal distribution for the workload size 742402 × 32 on a
cluster of 32 HCLServer nodes.

E. ANALYSING HIPOPTA OVER LOAD-BALANCING
ALGORITHMS
For the second set of our experiments, we compare the
performance improvement of the optimal solutions returned
by HiPOPTA over the state-of-the-art workload distribution
algorithms based on FPM [6]–[8] and the straightforward
load-balancing algorithm using the same experimental data
sets.

Since FPM algorithms suppose a smooth shape for speed
functions, we use the smoothed speed functions for DGEMM
and 2D-FFT applications as inputs. For comparison pur-
poses, we label FPM -based algorithms by smooth-FPM. The
straightforward load-balancing algorithm uses original func-
tions to take into consideration variations in the performance
profiles for finding load-balanced solutions. A load-balanced
solution is one with the minimum difference between the
execution times of processors. Like the optimal solutions
returned by HiPOPTA, the number of processors with a
non-zero workload (active processors) in load-balanced solu-
tionsmay be less than the total number of processors. Because
of its exponential time complexity, we compare HiPOPTA
with the straightforward load-balancing algorithm for only
one HCLServer node (h = 1).

The performance improvement (PIMP) of optimal solu-
tions found by HiPOPTA against smooth-FPM is calculated
as follows: PIMPFPM (%) = tsmooth−FPM−tHiPOPTA

tHiPOPTA
×100, where

tsmooth−FPM and tHiPOPTA respectively are the execution times
of solutions found by executing HiPOPTA using smoothed
and actual time functions. tsmooth−FPM is estimated as fol-
lows. First, the workload distribution for a given workload is
found by HiPOPTA using smoothed time functions as input.
Then, the execution time for this distribution is calculated
using the original, not smoothed, speed functions. Thus,
the smoothed speed functions are used for finding the FPM
workload distribution, and its execution time is then found
using the real time functions.

VOLUME 8, 2020 7871

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

FIGURE 11. Speed functions of the heterogeneous DGEMM executing on
on 8 HCLServer nodes. The application is executed for each problem size
n using two different workload distributions, HiPOPTA and FPM.

FIGURE 12. Speed functions of the DGEMM application for whole
HCLServer. The application is executed for each problem size using two
different workload distributions HiPOPTA and load-balancing on one
HCLServer node.

The percentage performance improvement (PIMP) of
HiPOPTA against load-balancing algorithm is calculated as
follows: PIMPbalance(%) = tbalance−tHiPOPTA

tHiPOPTA
× 100, where

tbalance is the execution times of solutions with minimum
difference between the execution times of processors, and
tHiPOPTA represents the execution time of solution found
using HiPOPTA.

1) HETEROGENEOUS HYBRID MATRIX-MATRIX
MULTIPLICATION
The minimum, average, and maximum performance
improvements of HiPOPTA over smooth-FPM on a cluster
of 8 HCLServer nodes are 0, 14, 261 percent respectively.
Figure 11 shows the speed of heterogeneous DGEMM on
HCLServer when executed using HiPOPTA in comparison
with FPM workload distribution on a simulated cluster of 8
nodes.

We use the aforementioned experimental data set to com-
pare HiPOPTA against the straightforward load-balancing
approach. On a single node, HiPOPTA gives the minimum,
average, and maximum performance improvements of 0, 5,
143 percent. Figure 12 shows the speed of heterogeneous
DGEMM on HCLServer when executed using HiPOPTA in
comparison with load-balanced workload distribution on one
HCLServer node.

FIGURE 13. Speed functions of the heterogeneous hybrid 2D-FFT running
on a cluster of 8 HCLServer nodes. The application is executed for each
problem size n using two different workload distributions HiPOPTA and
FPM.

FIGURE 14. Speed functions of the heterogeneous hybrid 2D-FFT for
whole HCLServer. The application is executed for each problem size using
two different workload distributions HiPOPTA and load-balancing on one
HCLServer node.

2) HETEROGENEOUS HYBRID 2D FAST FOURIER
TRANSFORM
HiPOPTA gives the minimum, average and maximum per-
formance improvements of 0, 43, 513 percent respectively
in comparison with smooth-FPM on 8 identical nodes of
HCLServer. Figure 13 compares the speed of heteroge-
neous FFT when executed using HiPOPTA with the speed
when the workload is distributed using FPM on a cluster
of 8 HCLServer nodes.

Figure 14 shows the speed of 2D-FFT on a single node of
HCLServer when executed using HiPOPTA in comparison
with the straightforward load-balancedworkload distribution.
HiPOPTA gives the minimum, average, and maximum per-
formance improvements of 0, 19, 331 percent.

3) DISCUSSION
We observed almost the same percentage of improvement for
different cluster sizes for both DGEMM and 2D-FFT. It can
be concluded that the performance improvement is indepen-
dent of p = h×c assuming the cost of communications is not
taken into account.

There is a strong correlation between the average perfor-
mance improvements and the average variations in speed
functions. Furthermore, the maximum performance improve-
ment over FPM cannot exceed the maximum variation in the

7872 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

speed functions. In our experiments, all nodes in simulated
clusters are identical and their speed functions consequently
will be identical. Thus, average and maximum performance
improvements of a simulated cluster consisting of identical
nodes are not related to the number of nodes but are related
to the shapes of speed functions which are identical for all
nodes.

For any workload size in the experimental data sets for
matrix multiplication and 2D-FFT applications, the execution
time of HiPOPTA is insignificant compared to the execution
time of the application.

V. RELATED WORK
We divide the related research into following categories:

• High performance heterogeneous computing platforms,
where each node contains multicore CPUs and multi-
ple types of accelerators (GPUs, Intel Xeon Phis, and
FPGAs). For the sake of brevity, we represent high
performance heterogeneous computing platforms by the
acronym, HPC2.

• Programming models and tools for HPC2 platforms.
• Applications and benchmark suites forHPC2 platforms.
• Load balancing and load imbalancing optimization algo-
rithms for HPC platforms.

• Finally, hierarchical approaches to reducing complexity.

A. HPC2 PLATFORMS
In this section, we survey research platforms, which con-
tain nodes composed of multicore CPUs and multiple types
of accelerators. Kelmelis et al. [22] built a desktop super-
computer composed of a CPU, GPU, and FPGA (Field-
Programmable Gate Array) as a cost-effective alternative
to building a cluster. They use it to reduce the simula-
tion times in the modelling of nanophotonic devices using
a compute and memory intensive electromagnetic solver.
Showerman et al. [23] describe a 16-node cluster, where each
node contains two dual-core AMD Opteron CPUs, four
NVIDIA Quadro FX 5600 GPU cards, and one Nallat-
ech H101-PCIX FPGA accelerator card. Three applications,
NAMD, WRF, and TRACF, were implemented for this plat-
form. NAMDandWRF used only CPUs andGPUs. However,
it is not clear if the CPUs also took part in computation.
TRACF is executed using either GPUs or FPGAs. No appli-
cation used all the different types of available accelerators.

Tsoi et al. [24] present a heterogeneous computer clus-
ter called Axel, which contains 16 nodes where each node
has an AMD Phenom Quad-Core CPU, an Nvidia Tesla
C1060 GPU, and a Xilinx Virtex-5 LX330 FPGA. They use
the map-reduce model to map an application to the various
computing devices in their platform. To demonstrate the use
of all the computing devices in their platform, they use an
N-body application. Kastl and Loimayr et al. [25] relate their
experiences with an implementation of cryptographic and
cryptanalytic algorithms on a cluster composed of multicore

CPUs, GPUs, and FPGAs. They do not use all the accelerators
together in their brute force algorithms.

Inta et al. [26] build a heterogeneous platform com-
posed of multicore CPUs, GPUs, and FPGAs with the
prime motivation of satisfying the insatiable computational
needs of astronomy applications using a low-cost platform
built from commodity-off-the-shelf components. Two appli-
cations, Monte Carlo Integration (for calculation of π) and
Normalized Cross-Correlation (sliding dot product) are used
to demonstrate how applications have been computationally
mapped to the different devices of the platform. They parti-
tion the application into parts where each part is executed on
the device, which is reportedly ideally matched for executing
the part. Danczul et al. [27] relate their experience building
a heterogeneous cluster of 16 nodes on which they imple-
ment a password bruteforcer for password-protected docu-
ments. Each node is equipped with an Nvidia GeForce GTX
680 device and a Xilinx ML605 FPGA development board.
The core computation of the password cracker algorithm is
the computation of the user key, which involves MD5 hashes
and RC4 encryptions. The hashes are performed on the GPU
and the encryptions are executed in the FPGA. That is the core
computations are divided into distinct algorithms andmapped
to the accelerators, which are best suited for executing these
algorithms. Wu et al. [28] build a heterogeneous computing
platform composed frommulticore CPUs, GPUs, and FPGAs
to understand how to map an application to the various archi-
tectures with an objective of maximizing energy efficiency.

B. PROGRAMMING MODELS AND TOOLS FOR HPC2

This section surveys programming models and tools for
HPC2 platforms. The main challenge in the heterogeneous
system for applications is portability and programmability.
There is not a common application written in one language
to execute it through all heterogeneous devices. This prob-
lem invokes creating special tools and models for executing
applications on the platform with multiple types of acceler-
ators (CPU-GPU-PHI or CPU-GPU-FPGA). In the present,
the most popular programming model for heterogeneous sys-
tems is provided by OpenCL library.

Krommydas et al. [29] evaluate the portability of OpenCL
to all devices such as CPU, GPU, APU, FPGA and the Xeon
Phi co-processor. Kreutzer et al. [30] propose a tool called
GHOST, which stands for General, Hybrid, and Optimized
Sparse Toolkit. This tool provides hybrid-parallel numerical
kernels, intelligent resource management, and truly heteroge-
neous parallelism for multicore CPUs, Nvidia GPUs, and the
Intel Xeon Phi (CPU-GPU-PHI) However, the data partition-
ing is static and is based on single-number performances of
devices. Deepika et al. [31] present a tool calledOpenCLGen.
OpenCLGen is a web-based software to automate OpenCL
program generation for Single Kernel on Single Device as
well as Multiple Kernels on Multiple Devices. The user pro-
vides the input of a kernel name, kernel code or file, the type
of target device and their number. The output contains source
code, binary, and header directories along with Makefile.

VOLUME 8, 2020 7873

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

The outputs are then executed on individual devices in their
heterogeneous cluster, which contains accelerators such as
NVIDIA TeslaM2050, NVIDIA K20, Vitrex5 FPGA card
mounted on the PCIe slots.

To the best of our knowledge, there are very few focused
research efforts, such as OmpSs [32], [33], proposing pro-
gramming models and tools for heterogeneous systems that
allow writing hybrid applications that utilize all the devices
(multicore CPUs and accelerators). Due to this, programmers
use a mix of tools such as MPI, OpenMP, CUDA, OpenCL,
etc to program hybrid applications. However, this gap affords
many opportunities for researchers to build new program-
ming models and tools for such hybrid platforms.

C. APPLICATIONS AND BENCHMARK SUITES FOR HPC2

OpenCL is a well-known framework that offers a common
programming model for heterogeneous computing devices.
As a result, many existing benchmarks (such as Rodinia [34])
were re-implemented in OpenCL, and some new ones (for
example, SHOC [35]) based on OpenCL are also released.
SHOC benchmark suite [35] is distinct from Rodinia in its
design. It is scalable to large clusters and a large number of
devices (for example, multiple GPUs). Therefore, in contrast
with Rodinia, it can be run on a large cluster to test multiple
GPUs in parallel. But similar to Rodinia, SHOC is also
designed especially for the systems containing GPUs and
multi-core processors, and therefore it is optimized to test the
performance and stability of such computing systems. Krom-
mydas et al. [36], have introduced OpenDwarfs: a benchmark
suite which is portable across multiple devices (parallel plat-
forms) including multi-core CPUs, discrete and integrated
GPUs (GPUs and APUs), the Intel Xeon Phi coprocessor
and even FPGAs. However, none of the OpenDwarfs’ bench-
marks supports partitioning, and so cannot be run across all
the devices simultaneously.

D. LOAD BALANCING AND LOAD IMBALANCING
ALGORITHMS
In this section, we will survey load balancing and load imbal-
ancing algorithms followed by hierarchical approaches to
reducing complexity.

Load-balancing algorithms developed over the years
for performance optimization on parallel platforms have
attempted to take into consideration the real-life behaviour
of applications executing on these platforms. This can be
discerned from the evolution of performance models for
computation used in these algorithms. The simplest models
used positive constant numbers and different notions such
as normalized processor speed, normalized cycle time, task
computation time, average execution time, etc. to characterize
the speed of an application [37]–[43]. The performance of
a processor in these works is assumed to have no depen-
dence on the size of the workload. Advanced load balancing
algorithms use FPMs, which are application-specific and
represent the speed of a processor by a continuous func-
tion of problem size but satisfying some assumptions on its

shape [44]–[46]. The FPMs capture accurately the real-life
behaviour of applications executing on nodes consisting of
uniprocessors (single-core CPUs).

Performance profiles of multi-threaded data-parallel appli-
cations executing on modern HPC platforms suffer from
drastic variations due to the complexities of resource con-
tention and NUMA inherent in these platforms. The shapes
of the profiles violate the assumptions of the FPM-based
algorithms proposed in [6]–[8], [47]–[52]. To deal with this
challenge, novel model-based algorithms [9]–[11] have been
proposed which find optimal workload distribution on homo-
geneous HPC platforms. The proposed approaches make no
assumptions about the shapes of performance profiles. They
imbalance the workload between processors to maximize
performance.

Khaleghzadeh et al. [13] explore in-depth the deterministic
and reproducible performance variations for hybrid applica-
tions executing on modern heterogeneous HPC platforms and
present a novel data-partitioning algorithm for performance
optimization. The proposed algorithm also imbalances the
workload between processors to maximize performance.

E. HIERARCHICAL APPROACHES
Baldwin et al. [53] propose hierarchical partitioning
algorithms for massive scientific data sets generated
by large-scale simulations. Clarke et al. [54] present
a two-level hierarchical algorithm to optimize parallel
matrix-matrix multiplication on a cluster of CPU+GPU
nodes. Dorronsoro et al. [55] present a hierarchical two-level
strategy to optimize parallel applications on multicore dis-
tributed systems to maximize the quality of service while
reducing energy consumption. The high level is between
distributed data centres and the lower level is within a data
centre. von Kistowski et al. [56] employ hierarchical load
distribution using four-levels (Hyperthreading units, CPU
cores, sockets, servers) to maximize the energy efficiency of
a multi-node heterogeneous platform.

VI. CONCLUSION
Modern high-performance computing platforms have
become highly heterogeneous due to tight integration of
multicore CPU processors and accelerators. This tight inte-
gration causes contention on shared resources such as Last
Level Cache (LLC), DRAM, PCI-E links, etc., resulting
in severe resource contention and Non-Uniform Memory
Access (NUMA). Moreover, the accelerators feature limited
main memory compared to the multicore CPU host and are
connected to it via limited bandwidth PCI-E links thereby
requiring support for efficient out-of-card execution. Due to
these complexities, the performance profiles of data-parallel
applications executing on these platforms are not smooth
and deviate significantly from the shapes that would allow
state-of-the-art load-balancing algorithms to find optimal
solutions.

State-of-the-art model-based data partitioning algo-
rithm [13] solves the performance optimization problem of

7874 VOLUME 8, 2020

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

data-parallel applications on heterogeneous HPC clusters
without making any assumptions about the shapes of these
functions. The algorithm, however, has high theoretical and
practical complexity.

In this work, we proposed a hierarchical two-level data
partitioning algorithm (HiPOPTA) minimizing the parallel
execution time of data-parallel applications on clusters het-
erogeneous multi-accelerator NUMA nodes. This algorithm
takes as input discrete speed functions corresponding to the
heterogeneous processors contained inside each node. It does
not make any assumptions about the shapes of these func-
tions. Unlike load balancing algorithms, optimal solutions
found by the algorithm may not load-balance an applica-
tion in terms of execution time. Our proposed algorithm has
lower time complexity compared to the state-of-the-art data
partitioning algorithm. We also proposed an extension of
HiPOPTA for a cluster of heterogeneous multi-accelerator
NUMA nodes where all the nodes are non-identical.

We experimentally demonstrated the optimality of our
algorithm using two well-known multi-threaded data-parallel
applications, matrix-matrix multiplication and 2D fast
Fourier transform, on a heterogeneous multi-accelerator
NUMA node containing an Intel multicore Haswell CPU,
an Nvidia K40c GPU, and an Intel Xeon Phi co-processor
and a simulated homogeneous cluster of such nodes. We also
showed that its practical complexity is low compared to the
state-of-the-art data partitioning algorithm.

REFERENCES
[1] Top500. (2018). TOP500 List for November 2018. [Online]. Available:

https://www.top500.org/lists/2018/11/
[2] Green500. (2018).Green500 List for November 2018. [Online]. Available:

https://www.top500.org/green500/lists/2018/11/
[3] CUBLAS-XT. (2016). CUBLAS-XT: Multi-GPU Version of CUBLAS

Library Supporting Out-of-Core Routines. [Online]. Available: https://
developer.nvidia.com/cublas

[4] S. Tomov, J. Dongarra, and M. Baboulin, ‘‘Towards dense linear algebra
for hybrid GPU accelerated manycore systems,’’ Parallel Comput., vol. 36,
nos. 5–6, pp. 232–240, Jun. 2010.

[5] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, ‘‘Out-of-
core implementation for accelerator kernels on heterogeneous clouds,’’
J. Supercomput., vol. 74, no. 2, pp. 551–568, 2018.

[6] A. Lastovetsky and R. Reddy, ‘‘Data distribution for dense factorization on
computers with memory heterogeneity,’’ Parallel Comput., vol. 33, no. 12,
pp. 757–779, Dec. 2007.

[7] D. Clarke, A. Lastovetsky, and V. Rychkov, ‘‘Dynamic load balancing
of parallel computational iterative routines on highly heterogeneous HPC
platforms,’’ Parallel Process. Lett., vol. 21, no. 2, pp. 195–217, 2011.

[8] D. Clarke, A. Lastovetsky, and V. Rychkov, ‘‘Column-based matrix par-
titioning for parallel matrix multiplication on heterogeneous processors
based on functional performance models,’’ in Proc. Euro-Par, Paral-
lel Process. Workshops Lecture Notes in Computer Science, vol. 7155.
Berlin, Germany: Springer-Verlag, 2012.

[9] A. Lastovetsky, L. Szustak, and R.Wyrzykowski, ‘‘Model-based optimiza-
tion of EULAG kernel on Intel Xeon Phi through load imbalancing,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 787–797, Mar. 2017.

[10] A. Lastovetsky and R. R. Manumachu, ‘‘New model-based methods and
algorithms for performance and energy optimization of data parallel appli-
cations on homogeneous multicore clusters,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 4, pp. 1119–1133, Apr. 2017.

[11] R. R. Manumachu and A. Lastovetsky, ‘‘Parallel data partitioning algo-
rithms for optimization of data-parallel applications on modern extreme-
scale multicore platforms for performance and energy,’’ IEEE Access,
vol. 6, pp. 69075–69106, 2018.

[12] Z. Zhong, V. Rychkov, andA. Lastovetsky, ‘‘Data partitioning onmulticore
and multi-GPU platforms using functional performance models,’’ IEEE
Trans. Comput., vol. 64, no. 9, pp. 2506–2518, Sep. 2015.

[13] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘A novel data-
partitioning algorithm for performance optimization of data-parallel appli-
cations on heterogeneous HPC platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 10, pp. 2176–2190, Oct. 2018.

[14] L. Yu, Z. Zhou, S. Wallace, M. E. Papka, and Z. Lan, ‘‘Quantitative
modeling of power performance tradeoffs on extreme scale systems,’’ J.
Parallel Distrib. Comput., vol. 84, pp. 1–14, Oct. 2015.

[15] N. Gholkar, F. Mueller, and B. Rountree, ‘‘Power tuning HPC jobs on
power-constrained systems,’’ in Proc. Int. Conf. Parallel Archit. Compi-
lation, 2016, pp. 179–191.

[16] B. Rountree, D. K. Lowenthal, S. Funk, V.W. Freeh, B. R. de Supinski, and
M. Schulz, ‘‘Bounding energy consumption in large-scale MPI programs,’’
in Proc. ACM/IEEE Conf. Supercomput. (SC), Nov. 2007, pp. 1–9.

[17] R. R. Manumachu and A. Lastovetsky, ‘‘Design of self-adaptable data
parallel applications on multicore clusters automatically optimized for
performance and energy through load distribution,’’Concurrency Comput.,
Pract. Exper., vol. 31, no. 4, 2019, Art. no. e4958.

[18] I. Corporation. (2018). Intel Math Kernel Library-Intel MKL BLAS.
[Online]. Available: https://software.intel.com/en-us/mkl/features/linear-
algebra

[19] Nvidia. (2017). CUDA Toolkit Documentation. [Online]. Available: http://
docs.nvidia.com/cuda/cublas/index.html#axzz4kRVc2o6B

[20] I. Corporation. (2018). Intel Math Kernel Library-Intel MKL FFT.
[Online]. Available: https://software.intel.com/en-us/mkl/features/fft

[21] Nvidia. (2018). Optimized FFT Routines for Nvidia Graphics Processors.
[Online]. Available: https://docs.nvidia.com/cuda/cufft/index.html

[22] E. J. Kelmelis, J. P. Durbano, J. R. Humphrey, F. E. Ortiz, and P. F. Curt,
‘‘Modeling and simulation of nanoscale devices with a desktop supercom-
puter,’’ Proc. SPIE, vol. 6328, Sep. 2006.

[23] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen,
R. Pennington, and W.-M. Hwu, ‘‘QP: A heterogeneous multi-accelerator
cluster,’’ in Proc. 10th LCI Int. Conf. High-Perform. Clustered Comput.,
2009.

[24] K. H. Tsoi and W. Luk, ‘‘Axel: A heterogeneous cluster with FPGAs and
GPUs,’’ in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, 2010, pp. 115–124.

[25] W. Kastl and T. Loimayr, ‘‘A parallel computing system with specialized
coprocessors for cryptanalytic algorithms,’’ in Proc. Sicherheit, 2010,
pp. 73–84.

[26] R. Inta, D. J. Bowman, and S. M. Scott, ‘‘The ‘Chimera’: An off-the-
shelf CPU/GPGPU/FPGA hybrid computing platform,’’ Int. J. Reconfig.
Comput., vol. 2012, nos. 1687–7195, p. 2, Jan. 2012.

[27] B. Danczul, J. Fuß, S. Gradinger, B. Greslehner, W. Kastl, and F. Wex,
‘‘Cuteforce analyzer: A distributed bruteforce attack on pdf encryp-
tion with gpus and fpgas,’’ in Proc. Int. Conf. Availability, Rel. Secur.,
Sep. 2013, pp. 720–725.

[28] Q. Wu, Y. Ha, A. Kumar, S. Luo, A. Li, and S. Mohamed, ‘‘A heteroge-
neous platform with GPU and FPGA for power efficient high performance
computing,’’ in Proc. 14th Int. Symp. Integr. Circuits (ISIC), Dec. 2014,
pp. 220–223.

[29] K. Krommydas, M. Owaida, C. D. Antonopoulos, N. Bellas, and
W. C. Feng, ‘‘On the portability of the OpenCL dwarfs on fixed and
reconfigurable parallel platforms,’’ in Proc. Int. Conf. Parallel Distrib.
Syst., Dec. 2013, pp. 432–433.

[30] M. Kreutzer, J. Thies, M. Röhrig-Zöllner, A. Pieper, F. Shahzad,
M. Galgon, A. Basermann, H. Fehske, G. Hager, and G. Wellein,
‘‘GHOST: Building blocks for high performance sparse linear algebra on
heterogeneous systems,’’ Int. J. Parallel Program., vol. 45, no. 5, pp. 1–27,
2016.

[31] H. V. Deepika, N. N. Mangala, and S. C. Babu, ‘‘Automatic program gen-
eration for heterogeneous architectures,’’ in Proc. Int. Conf. Adv. Comput.,
Commun. Inform. (ICACCI), Sep. 2016, pp. 102–109.

[32] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, ‘‘OmpSs: A proposal for programming heterogeneous multi-
core architectures,’’ Parallel Process. Lett., vol. 21, no. 2, pp. 173–193,
2011.

[33] BSC. (2019). The OmpSs Programming Model. [Online]. Available:
https://pm.bsc.es/ompss

[34] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous computing,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44–54.

VOLUME 8, 2020 7875

H. Khaleghzadeh et al.: Hierarchical Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications

[35] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, ‘‘The scalable heterogeneous computing
(SHOC) benchmark suite,’’ in Proc. 3rd Workshop General-Purpose Com-
put. Graph. Process. Units (GPGPU), 2010, pp. 63–74.

[36] K. Krommydas, W.-C. Feng, C. D. Antonopoulos, and N. Bellas, ‘‘Opend-
warfs: Characterization of dwarf-based benchmarks on fixed and reconfig-
urable architectures,’’ J. Signal Process. Syst., vol. 85, no. 3, pp. 373–392,
Dec. 2016.

[37] M. Cierniak, M. J. Zaki, and W. Li, ‘‘Compile-time scheduling algorithms
for a heterogeneous network of workstations,’’ Comput. J., vol. 40, no. 6,
pp. 356–372, 1997.

[38] O. Beaumont, V. Boudet, F. Rastello, andY. Robert, ‘‘Matrixmultiplication
on heterogeneous platforms,’’ IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 10, pp. 1033–1051, Oct. 2001.

[39] A. Kalinov and A. Lastovetsky, ‘‘Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,’’ J. Parallel Distrib. Comput., vol. 61, no. 4, pp. 520–535,
Apr. 2001.

[40] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, ‘‘A proposal
for a heterogeneous cluster ScaLAPACK (dense linear solvers),’’ IEEE
Trans. Comput., vol. 50, no. 10, pp. 1052–1070, Oct. 2001.

[41] A. Lastovetsky and R. Reddy, ‘‘A novel algorithm of optimal matrix
partitioning for parallel dense factorization on heterogeneous processors,’’
in Proc. Int. Conf. Parallel Comput. Technol. Berlin, Germany: Springer,
2007, pp. 261–275.

[42] M. Fatica, ‘‘Accelerating linpackwith CUDAon heterogenous clusters,’’ in
Proc. 2nd Workshop Gen. Purpose Process. Graph. Process. Units, 2009,
pp. 46–51.

[43] R. Wyrzykowski, L. Szustak, K. Rojek, and A. Tomas, ‘‘Towards effi-
cient decomposition and parallelization of MPDATA on hybrid CPU-GPU
cluster,’’ in Proc. Int. Conf. Large-Scale Sci. Comput. Berlin, Germany:
Springer, 2013, pp. 457–464.

[44] A. Lastovetsky and R. Reddy, ‘‘Data partitioning with a realistic perfor-
mance model of networks of heterogeneous computers,’’ in Proc. 18th Int.
Parallel Distrib. Process. Symp., Apr. 2004, p. 104.

[45] A. Lastovetsky and R. Reddy, ‘‘Data partitioning for multiprocessors with
memory heterogeneity and memory constraints,’’ Sci. Program., vol. 13,
no. 2, pp. 93–112, 2005.

[46] A. Lastovetsky and R. Reddy, ‘‘Data partitioning with a functional perfor-
mance model of heterogeneous processors,’’ Int. J. High Perform. Comput.
Appl., vol. 21, no. 1, pp. 76–90, 2007.

[47] A. Ilić, F. Pratas, P. Trancoso, and L. Sousa, ‘‘High-performance comput-
ing on heterogeneous systems: Database queries on CPU and GPU,’’ in
High Performance Scientific Computing with Special Emphasis on Current
Capabilities and Future Perspectives. Amsterdam, The Netherlands: IOS
Press, 2010, pp. 202–222.

[48] X. Liu, Z. Zhong, and K. Xu, ‘‘A hybrid solution method for CFD applica-
tions on GPU-accelerated hybrid HPC platforms,’’ Future Gener. Comput.
Syst., vol. 56, pp. 759–765, Mar. 2016.

[49] M. Radmanović, D. Gajić, and R. S. Stanković, ‘‘Efficient computation
of Galois field expressions on hybrid CPU-GPU platforms,’’ J. Multiple-
Valued Logic Soft Comput., vol. 26, nos. 3–5, pp. 417–438, 2016.

[50] A. Ilic and L. Sousa, ‘‘Simultaneous multi-level divisible load balancing
for heterogeneous desktop systems,’’ inProc. IEEE 10th Int. Symp. Parallel
Distrib. Process. Appl. (ISPA), Jul. 2012, pp. 683–690.

[51] J. Colaço, A. Matoga, A. Ilic, N. Roma, P. Tomás, and R. Chaves, ‘‘Trans-
parent application acceleration by intelligent scheduling of shared library
calls on heterogeneous systems,’’ inParallel Processing and AppliedMath-
ematics. Berlin, Germany: Springer, 2013, pp. 693–703.

[52] V. Cardellini, A. Fanfarillo, and S. Filippone, ‘‘Heterogeneous sparse
matrix computations on hybrid GPU/CPU platforms,’’ in Proc. PARCO,
2013, pp. 203–212.

[53] C. Baldwin, T. Eliassi-Rad, G. Abdulla, and T. Critchlow, ‘‘The evolution
of a hierarchical partitioning algorithm for large-scale scientific data: Three
steps of increasing complexity,’’ inProc. 15th Int. Conf. Sci. Stat. Database
Manage., Jul. 2003, pp. 225–228.

[54] D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa, ‘‘Hierarchical partitioning
algorithm for scientific computing on highly heterogeneous CPU + GPU
clusters,’’ in Euro-Par 2012 Parallel Processing, C. Kaklamanis, T. Pap-
atheodorou, and P. G. Spirakis, Eds. Berlin, Germany: Springer, 2012,
pp. 489–501.

[55] B. Dorronsoro, S. Nesmachnow, J. Taheri, A. Y. Zomaya, E.-G. Talbi,
and P. Bouvry, ‘‘A hierarchical approach for energy-efficient scheduling
of large workloads in multicore distributed systems,’’ Sustain. Comput.,
Inform. Syst., vol. 4, no. 4, pp. 252–261, 2014.

[56] J. von Kistowski, J. Beckett, K. Lange, H. Block, J. A. Arnold, and
S. Kounev, ‘‘Energy efficiency of hierarchical server load distribution
strategies,’’ in Proc. IEEE 23rd Int. Symp. Modeling, Anal., Simulation
Comput. Telecommun. Syst., Oct. 2015, pp. 75–84.

HAMIDREZA KHALEGHZADEH received the
B.Sc. and M.Sc. degrees in computer engineer-
ing (software) from University College Dublin,
in 2007 and 2011, respectively, and the Ph.D.
degree from the School of Computer Science,
University College Dublin, in 2019. He is cur-
rently a Postdoctoral Researcher with the Het-
erogeneous Computing Laboratory, School of
Computer Science, University College Dublin.
His research interests include performance and

energy consumption optimization in massively heterogeneous systems,
high-performance heterogeneous systems, energy efficiency, and paral-
lel/distributed computing.

RAVI REDDY MANUMACHU received the
B.Tech. degree from IIT Madras, in 1997 and
the Ph.D. degree from the School of Computer
Science, University College Dublin, in 2005. His
main research interests include high-performance
heterogeneous computing, distributed computing,
sparse matrix computations, and energy-efficient
computing.

ALEXEY LASTOVETSKY received the Ph.D.
degree from the Moscow Aviation Institute,
in 1986, and the Ph.D. degree from the Russian
Academy of Sciences, in 1997. He has published
over a hundred technical articles in refereed jour-
nals, edited books, and international conferences.
He has authored the monographs Parallel Com-
puting on Heterogeneous Networks (Wiley, 2003)
and High Performance Heterogeneous Computing
(Wiley, 2009). His main research interests include

algorithms, models, and programming tools for high-performance heteroge-
neous computing.

7876 VOLUME 8, 2020

