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ABSTRACT The performance of collective operations has been a critical issue since the advent of Message
Passing Interface (MPI). Many algorithms have been proposed for each MPI collective operation but none
of them proved optimal in all situations. Different algorithms demonstrate superior performance depending
on the platform, the message size, the number of processes, etc. MPI implementations perform the selection
of the collective algorithm empirically, executing a simple runtime decision function. While efficient, this
approach does not guarantee the optimal selection. As a more accurate but equally efficient alternative,
the use of analytical performance models of collective algorithms for the selection process was proposed
and studied. Unfortunately, the previous attempts in this direction have not been successful. We revisit
the analytical model-based approach and propose two innovations that significantly improve the selective
accuracy of analytical models: (1) We derive analytical models from the code implementing the algorithms
rather than from their high-level mathematical definitions. This results in more detailed and relevant models.
(2) We estimate model parameters separately for each collective algorithm and include the execution
of this algorithm in the corresponding communication experiment. We experimentally demonstrate the
accuracy and efficiency of our approach using Open MPI broadcast and gather algorithms and two different
Grid’5000 clusters and one supercomputer.

INDEX TERMS Message passing, collective communication algorithms, communication performance
modeling, MPI.

I. INTRODUCTION
The message passing interface (MPI) [1] is the de-facto
standard, which provides a reliable and portable environment
for developing high-performance parallel applications on
different platforms. Since the release of the first version of
MPI, it provides a flexible communication layer including
a mechanism for collective operations. MPI collective
operations are classified into the following categories [1]:
1)All-To-All (MPI_Allgather,MPI_Alltoall,MPI_Allreduce,
MPI_Barrier); 2) All-To-One (MPI_Gather, MPI_Reduce);
3) One-To-All (MPI_Bcast, MPI_Scatter); 4) Other
(MPI_Scan, MPI_Exscan).

Rabenseifner [2] shows that collective operations consume
more than eighty percent of the total execution time of a
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typical MPI application. Therefore, a significant amount of
research has been invested into optimisation of MPI col-
lectives. Those researches have resulted in a large number
of algorithms, each of which comes up optimal for spe-
cific message sizes, platforms, numbers of processes, and
so forth. Mainstream MPI libraries provide multiple col-
lective algorithms for each collective routine. For example,
MPICH [3] employs three broadcast algorithms to implement
MPI_Bcast. In Open MPI library [4], the broadcast routine
is built up with six different algorithms. However, none of
the algorithms is optimal in all situations. Thus, there is a
problem of selection of the optimal algorithm for each call of
a collective routine, which normally depends on the platform,
the number of processes, the message size and so forth.

There are two ways how this selection can be made in the
MPI program. The first one, MPI_T interface [1], is provided
by theMPI standard and allows theMPI programmer to select
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the collective algorithm explicitly from the list of available
algorithms for each collective call at run-time. It does not
solve the problem of optimal selection delegating its solution
to the programmer. The second one is transparent to the MPI
programmer and provided by MPI implementations. It uses
a simple decision function in each collective routine, which
is used to select the algorithm at runtime (see Listing 1). The
decision function is empirically derived from extensive test-
ing on the dedicated system. For example, for each collective
operation, both MPICH and Open MPI use a simple decision
routine selecting the algorithm based on the message size
and number of processes [5]–[7]. The main advantage of this
solution is its efficiency. The algorithm selection is very fast
and does not affect the performance of the program. Themain
disadvantage of the existing decision functions is that they do
not guarantee the optimal selection in all situations.

LISTING 1. Open MPI decision function for MPI_Bcast.

As an alternative approach, the use of analytical perfor-
mance models of collective algorithms for the selection pro-
cess has been proposed and studied. In the case of success,
the analytical performance modelling approach, being as effi-
cient as the existing decision functions approach, would guar-
antee the optimal selection in all situations. This approach

was first proposed in [8]. In this work, several point-to-point
communication models, such as Hockney [9], LogP [10],
LogGP [11], PLogP [12], are used to build analytical per-
formance models of collective algorithms. The analytical
performance models are then used in decision functions for
selection of the optimal algorithm. Unfortunately, the analyti-
cal performancemodels proposed in this work could not reach
the level of accuracy sufficient for selection of the optimal
algorithm.

In this paper, we revisit the model-based approach and
propose a number of innovations that significantly improve
the selective accuracy of analytical models to the extent that
allows them to be used for accurate selection of optimal
collective algorithms. Our analytical modelling approach is
based on the following two innovations. First, while pre-
vious attempts to build analytical performance models of
collective algorithms only take into account their high-level
mathematical definition, we derive our analytical models
from their high-level mathematical definition but also tak-
ing into account the properties of the algorithms, which
have a significant impact on their performance and can only
be extracted from the implementation code. For example,
a high-level model does not detail whether the point-to-point
communications used in the algorithm are blocking or non-
blocking, or whether they use the rendezvous or eager pro-
tocol. Therefore, when you derive an analytical performance
model, you have to assume such properties anyway, but dif-
ferent assumptions will lead to different performance models.
Our approach is not to assume these properties arbitrarily but
extract them from the implementation, making the informed
decision relevant for the implementation where the model
will be used. Another example is segmentation. Open MPI
collective algorithms widely use the message segmentation
technique, and if we do not take into account this property
in the derived performance models, they will reflect not the
actual algorithms but some other algorithms that are not
implemented in Open MPI.

Second, we propose to estimate the model parameters
separately for each collective algorithm and carefully design
the communication experiments for their estimation. More
specifically, we design a specific communication experiment
for each collective algorithm, so that the algorithm itself
would be involved in the execution of the experiment. More-
over, the execution time of this experimentmust be dominated
by the execution time of this collective algorithm. Then,
we conduct a number of experiments on the target platform
for a range of numbers of processors and message sizes and
accurately measure their execution times. From these exper-
iments, we derive a sufficiently large number of equations
with the model parameters as unknowns. Finally, we use a
solver to find the values of the model parameters.

We applied our approach to collective algorithms imple-
mented in Open MPI. As a result, we managed to build a
detailed analytical performance model for each collective
algorithm and successfully use the models for selection of
the optimal one. The accuracy of our solution has been
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validated on the Grid’5000 [13] platform and a Cray XC40
supercomputer [14].

The main contributions of this paper can be summarized as
follows:

• We propose and implement a new analytical per-
formance modelling approach for MPI collective
algorithms, which derives the models from the code
implementing the algorithms.

• We propose and implement a novel approach to estima-
tion of the parameters of analytical performance mod-
els of MPI collective algorithms, which estimates the
parameters separately for each algorithm and includes
the modelled collective algorithm in the communica-
tion experiment, which is used to estimate the model
parameters.

• We experimentally validate the proposed approach to
selection of optimal collective algorithms on two dif-
ferent clusters of the Grid’5000 platform and a Cray
XC40 supercomputer.

The rest of the paper is structured as follows. Section II
reviews the existing approaches to performance modelling
and algorithm selection problems. Section III describes our
approach to construction of analytical performance models
of MPI collective algorithms by deriving them from the MPI
implementation. Section IV presents our method to measure
analytical model parameters. Section V presents experimen-
tal validation of the proposed approach. Section VI discusses
limitations of the work and how they can be mitigated.
Section VII concludes the paper.

II. RELATED WORK
In order to select the optimal algorithm for a given collective
operation, we have to be able to accurately compare the
performance of the available algorithms. Analytical perfor-
mance models are one of the efficient ways to express and
compare the performance of collective algorithms. In this
section, we overview the state of the art in analytical perfor-
mance modelling and in measurement of model parameters.
We also overview the state of the art in methods apply-
ing machine-learning models to the problem of selection of
optimal MPI algorithms.

A. ANALYTICAL PERFORMANCE MODELS OF MPI
COLLECTIVE ALGORITHMS
All analytical models of collective algorithms use point-
to-point communication models as building blocks. The
most popular point-to-point communication models used in
collective models are the Hockney model [9], LogP [10],
LogGP [11], and PLogP [12]. In our work, we use the
Hockney model, which estimates the time T (m) of sending
a message of size m between two nodes as T (m) = α+β ·m,
where α and β are the message latency and the reciprocal
bandwidth respectively.

Thakur et al. [5] propose analytical performance models of
several collective algorithms forMPI_Allgather, MPI_Bcast,

MPI_Alltoall, MPI_Reduce_scatter, MPI_Reduce, and
MPI_Allreduce routines using the Hockney model. The
parameters of the models, α and β, are assumed to be
the same for all algorithms, message sizes and numbers of
processes. The authors find their models not accurate enough
for the task of selection of optimal collective algorithms.
They conclude that in order to improve the accuracy of their
analytical models, we have to assume that α and β depend
on the message size and the number of processes. They
do not propose models improved this way though. In our
work, we stick to the assumption of independence of model
parameters on the message size and the number of processes.
Instead, we improve the accuracy of our models by deriving
them from the implementation of the modelled algorithms.
In addition, we assume that α and β may depend on the
algorithm. Thus, our approach to improving the accuracy
of models of collective algorithms is to make them more
algorithm and implementation specific.

Chan et al. [15] build analytical performance models of
Minimum-spanning tree algorithms and Bucket algorithms
for MPI_Bcast, MPI_Reduce, MPI_Scatter, MPI_Gather,
MPI_Allgather, MPI_Reduce_scatter, MPI_Allreduce col-
lectives and later extend this work for multidimensional
mesh architecture in [16]. The proposed models are built
using high-level theoretical descriptions of the algorithms.
Therefore, the authors conclude that while the models can be
used for analysis of theoretical complexity of the algorithms,
they are not accurate enough for the task of estimation and
comparison of their practical performance.

An analytical performance model of a new reduction
algorithm is proposed for a non-power-of-two number of
processes by Rabenseifner et al. [17]. The model uses a
traditional high-level mathematical description of the algo-
rithm. The aim of the model is to understand and express the
complexity of the algorithm. Like in all previous models, its
level of abstraction is too high to reach the accuracy required
for comparison of the practical performance of the proposed
reduction algorithm with its counterparts.

A general analytical performance model for tree-based
broadcast algorithms with message segmentation has been
proposed by Patarasuk et al. [18]. Unlike traditional mod-
els, this model introduces a new parameter, Maximum nodal
degree of the tree. The purpose of this model is restricted
to theoretical comparison of different tree-based broadcast
algorithms. Accurate prediction of the execution time of the
broadcast algorithms and methods for measurement of the
model parameters, including the maximal nodal degree of the
tree, are out of the scope of their work.

Pjevsivac-Grbovic et al. [8] study selection of optimal
collective algorithms using analytical performance models
for barrier, broadcast, reduce and alltoall collective oper-
ations. Analytical performance models are built using the
Hockney, LogP/LogGP, and PLogP point-to-point commu-
nication models. Additionally, the splitted-binary broadcast
algorithm has been designed and analysed with different
performance models in this work. The models are built up
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with the traditional approach using high-level mathematical
definitions of the collective algorithms. In order to predict
the cost of a collective algorithm by analytical formula,
model parameters are measured using point-to-point commu-
nication experiments. After experimental validation of their
modelling approach, the authors conclude that the proposed
models are not accurate enough for selection of optimal
algorithms.

Lastovetsky et al. [19] propose a point-to-point communi-
cation model for heterogeneous clusters. The model assumes
that time to transmit a message between two nodes in a
heterogeneous cluster is composed of the network transmis-
sion delay, source and destination processing delays. The
analytical performancemodel of the binomial broadcast algo-
rithm is built up using this model taking into account the
impact of message passing protocols. While the predicted
execution time of the binomial broadcast algorithm was close
to the experimentally measured time, its use for comparison
of practical performance of broadcast algorithms has never
been studied.

Hofler et al. [20] propose a new algorithm using the hard-
ware multicast support that performs the MPI_Bcast oper-
ation in a constant time. Switch-based InfiniBand cluster
systems support hardware multicast operation. Analytical
performance modelling of that type of algorithms is out of
the scope of this paper.

B. MEASUREMENT OF MODEL PARAMETERS
One of the uses of analytical communication performance
models is for theoretical analysis of the complexity of collec-
tive algorithms. In such purely theoretical studies, the authors
do not pay much attention to methods of measurement of
model parameters. However, if a model is intended for accu-
rate prediction of the execution time of the communica-
tion algorithm on each particular platform, a well-defined
experimental measurement method of the model parameters
will be as important as the theoretical formulation of the
model. Different measurement methods may give signifi-
cantly different values of the model parameters and therefore
either degrade or improve the model’s prediction accuracy.

In general, a typical measurement method consists of
a well-defined set of communication experiments, each of
which is used to obtain an equation with model parameters
as unknowns on one side of the equation and the measured
execution time of the experiment on the other side. The full
system of such equations is then solved to find the values of
the model parameters for each particular platform. Existing
measurement methods predominantly consist of point-to-
point communication experiments, which are used to obtain
a system of linear equations. In this subsection, we overview
some notable works in this area.

Hockney [9] presents a measurement method to find the α
and β parameters of the Hockneymodel. The set of communi-
cation experiments consists of point-to-point round-trips. The
sender sends amessage of sizem to the receiver, which imme-
diately returns the message to the sender upon its receipt. The

time RTT (m) of this experiment is measured on the sender
side and estimated as RTT (m) = 2 · (α + m · β). These
round-trip communication experiments for a wide range of
message size m produce a system of linear equations with
α and β as unknowns. To find α and β from this system,
the linear least-squares regression is used.

Culler et al. [21] propose a method of measurement of
parameters of the LogPmodel, namely, L, the upper bound on
the latency, os, the overhead of processor involving sending a
message, or , the overhead of processor involving receiving
a message, and g, the gap between consecutive message
transmission. The measurement method relies on the Active
Messages (AM) protocol [22] and consists of the following
four communication experiments:

• In the first experiment, the sender issues a small number
of messages, Ns, consecutively without receiving any
reply. The time of this experiment is measured on the
sender side and estimated as Ts = Ns · os. Thus, from
this equation os can be found as os = Ts/Ns.

• In the second experiment, the sender issues a large
number of messages, Nl (Nl � Ns), consecutively.
Time to send a message increases due to arriving replies
during sending amessage.When the capacity limit of the
network is reached, the send request will eventually stall.
Thus, the time to send Nl messages in one direction can
be estimated as Tl = Nl ·g, and g is found from this linear
equation as g = Tl/Nl . The time of this experiment is
again measured on the sender side.

• The third experiment is designed to find or . The sender
issues Nl messages in one direction with

a
amount of

time between messages. The delay
a

is introduced in
order to make sure that the reply from the receiver has
reached the sender side and therefore the time to process
the reply by the sender can be accurately estimated as or .
The time of this experiment is measured on the sender
side and estimated as T ′ = Nl · (os +

a
+or ). Sincea

and os are known, or can be found from this linear
equation as or = T ′/Nl − os −

a
.

• The fourth experiment performs a round-trip of a single
message. The time of this experiment is measured on
the sender side and estimated as RTT = 2 · (os + L +
or ). From this linear equation, L can be found as L =
RTT/2− os − or .

Kielmann et al. [12] propose a method of measurement
of parameters of the PLogP (Parametrized LogP) model.
PLogP defines its model parameters, except for latency L,
as functions of message size. The method consists of the
following four communication experiments:

• The first experiment is designed to measure g(0). The
sender sends N consecutive zero-byte messages fol-
lowed by a single empty reply from the receiver.
Network saturation is achieved by increasing the number
of messages, N . It is assumed that when the network is
saturated, the time T to send a large number of zero-byte
messages can be estimated as T = N · g(0), and g can
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be found by solving this linear equation as g(0) = T/N .
The time of this experiment is measured on the sender
side.

• The second experiment is designed to measure os(m).
The sender starts the clock, sends a single message
of size m, and then stops the clock. The time of this
experiment is estimated as Ts(m) = os(m).

• The third experiment is designed to measure or (m). The
sender sends a zero-byte message to the receiver, waits
for

a
time (

a
> Ts(m)), starts the clock, receives

a message of size m and then stops the clock. The
receiver receives the zero-byte message from the sender
and sends back a message of size m. The time Tr (m)
measured on the sender side is estimated as Tr (m) =
or (m).

• The fourth experiment is designed to measure L and
g(m). It consists of two round-trips, with a zero-byte
message and a message of size m respectively. The time
of the first round-trip is estimated as RTT (0) = 2(L +
g(0)), and the time of the second round-trip is estimated
asRTT (m) = 2·L+g(0)+g(m). Both times aremeasured
on the sender side. L and g(m) are then found from this
system of two linear equations as L = RTT (0)/2− g(0)
and g(m) = RTT (m)− RTT (0)+ g(0).

Hoefler et al. [23] develop a method to measure parameters
of the LogGP model. LogGP extends the LogP model by
adding a G parameter, the gap per byte for long messages.
The building block of the method is a ping-ping round-trip,
where the sender sends N consecutive messages of size m
with delay d to the receiver, the receiver first receives all these
messages and then sends them back to the sender, which also
receives them all. The execution time of each communica-
tion experiment of the method, PRTT (N , d,m), depends on
parameters N , d and m of the experiment and measured on
the sender side (PRTT stands for Parametrized Round-Trip
Time). Three particular ping-ping round-trip experiments
are used to obtain equations involving the LogGP model
parameters as unknowns:

• The first experiment executes a round-trip of a single
message (N = 1) of size m without delay (d = 0). The
time of this experiment, PRTT (1, 0,m), is estimated as
PRTT (1, 0,m) = 2 · (os + L + or + (m− 1) · G).

• The second experiment executes a ping-ping round-trip
that issues N consecutive messages of size m with-
out delay (d = 0). The time of this experiment,
PRTT (N , 0,m), is estimated as PRTT (N , 0,m) =
PRTT (1, 0,m)+(N−1)·Gall , whereGall is a cumulative
hardware gap, estimated as Gall = G · (m− 1)+ g.

• The third experiment executes a ping-ping round-trip
that issues N consecutive messages of size m with delay
d > 0. The time of this experiment, PRTT (N , d,m),
is estimated as PRTT (N , d,m) = PRTT (1, 0,m) +
(N − 1) ·max {os + d,Gall}.

Now model parameters g, G, L, or and os are found as
follows:

• From equations obtained from the first and second
experiments, the linear equation G · (m − 1) + g =
PRTT (N ,0,m)−PRTT (1,0,m)

N−1 , involving two unknown param-
eters g andG, can be derived. By repeating these experi-
ments for a wide range of message sizem, a system ofm
linear equations with g and G as unknowns is produced.
To find g andG from this system, the linear least-squares
regression can be used.

• From the first experiment with m = 1, the equation
PRTT (1, 0, 1) = 2 · (os+L+ or ) can be derived, giving
L = PRTT (1, 0, 1)/2− (os + or ). However, the authors
argue that due to the overlap of processor overheads and
network latency, L should be more accurately estimated
as L = PRTT (1, 0, 1)/2.

• In order to measure or , the measurement method pro-
posed by Kielmann [12] is used.

• Finally, os is found from the linear equation os +
dG =

PRTT (N ,dG,m)−PRTT (1,0,m)
N−1 , which is derived

from the first and third experiments, as os =
PRTT (N ,dG,m)−PRTT (1,0,m)

N−1 − dG. Here, parameter d =
dG of the third experiment is determined empirically to
guarantee that dG > Gall .

Rico-Gallego et al. [31] propose a detailed method for
measurement of parameters of the τ -Lop model on a
multi-core cluster. τ -Lop assumes that the cost of transmis-
sion of a message of size m is estimated as T cp2p(m) =

oc(m) +
∑s−1

j=0 L
c
j (m, τj), where oc(m) is the overhead of

protocols and software stack, Lcj (m, τj) is the time to transfer
a message of size m through channel c at the j-th step of the
transmission, with τj contending transfers (Lcj (0, τj) = 0),
and s is the number of steps of the message transmission.
For each communication channel, sharedmemory or network,
experimental measurement of oc(m) is designed separately
using the following round-trip experiments:

• The first experiment executes a round-trip of a message
of size m under the Eager protocol for shared memory
and network. The time of the experiment is estimated
as RTT c(0) = 2 · (oc(m) +

∑s−1
j=0 L

c
j (0, 1)). For each

channel, oc(m) is found as oc(m) = RTT c(0)/2.
• The second experiment executes a round-trip of a mes-
sage of size m under the Rendezvous protocol for shared
memory and network. The time of the experiment is esti-
mated as Pingc(0) = oc(m)+

∑s−1
j=0 L

c
j (0, 1). Therefore,

oc(m) = Pingc(0).
• The third set of experiments exchange messages of size
m between processes using MPI_Sendrecv routine in
a ring shape. Process Pi sends a message to Pi+1 and
receives a message from Pi−1. Then,MPI_Wait is called
to complete both transmissions. L0 and L1 are esti-
mated by the execution of these experiments in different
channels respectively.

From this overview, we can conclude that the state-of-
the-art methods for measurement of parameters of commu-
nication performance models are all based on point-to-point
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communication experiments, which are used to derive a sys-
tem of equations involving model parameters as unknowns.
In this work, we propose to use collective communication
experiments in the measurement method in order to improve
the predictive accuracy of analytical models of collective
algorithms.

The only exception from this rule is a method for measure-
ment of parameters of the LMO heterogeneous communica-
tion model [32], [33]. LMO is a communication model of
heterogeneous cluster, and the total number of its param-
eters is significantly larger than the maximum number
of independent point-to-point communication experiments
that can be designed to derive a system of independent
linear equations with the model parameters as unknowns.
To address this problem and obtain the sufficient number
of independent linear equations involving model parame-
ters, the method additionally introduces simple collective
communication experiments, each using three processors and
consisting of a one-to-two communication operation (scatter)
followed by a two-to-one communication operation (gather).
The experiments are implemented using the MPIBlib library
[34]. This method however is not designed to improve the
accuracy of predictive analytical models of communication
algorithms.

C. SELECTION OF COLLECTIVE ALGORITHMS USING
MACHINE LEARNING ALGORITHMS
Machine learning (ML) techniques have also been tried to
solve the problem of selection of optimal MPI algorithms.

In [35], applicability of the quadtree encoding method to
this problem is studied. The goal of this work is to select the
best performing algorithm and segment size for a particular
collective on a particular platform. The approach is based on
the following steps. (1) Collective algorithms are executed on
a particular platform to collect detailed performance data. (2)
The decision map is built for the collective on a particular
platform by analyzing the performance data. It is assumed
that the decision map covers all message and communica-
tor sizes. (3) The quadtree is initialized using the decision
map. (4) The decision function source code is generated from
the initialised quadtree. For example, Linear tree, Binary
tree, Binomial tree, Split-Binary, and Chain tree broadcast
algorithms are profiled with a maximum of 50 processes. The
experimental results show that mean performance penalty
reaches 74% and 37% and maximum performance penalty
reaches 391% and 743% on different platforms respectively.
While the study shows some level of applicability of the
quadtree encoding algorithm to the problem, collection of
detailed profiling data of collectives for all message sizes and
communicator sizes is a very expensive procedure. Besides,
for some message sizes and communicator sizes the penalty
of the decision function is too high. Taking into account that
decision trees are considered weak learners [36], the decision
function will perform poorly on unseen data.

Applicability of the C4.5 algorithm to the MPI col-
lective selection problem is explored in [37]. The C4.5

algorithm [38] is a decision tree classifier, which is employed
to generate a decision function, based on a detailed profiling
data of MPI collectives. The same steps are followed to build
the decision tree using the C4.5 algorithm as in the quadtree
encoding method presented above. The same weaknesses are
shared by the decision trees built by the quadtree encoding
algorithm and by the C4.5 algorithm. While the accuracy of
the decision function built by the C4.5 classification algo-
rithm is higher than that of the decision function built by
quadtree encoding algorithm, still, the performance penalty
is higher than 50%.

Most recently Hunold et al. [39] studied the applicability
of six different ML algorithms for selection of optimal MPI
collective algorithms. The basic idea of their approach is to
create a regression model for every collective algorithm that
is available for a given collective operation, predicting the
execution time of the collective algorithm. The constructed
regression models are then used at run time to select the
algorithm that minimizes the execution time for unseen con-
figurations. TheML algorithms employed to build the regres-
sion models are Random Forests, Neural Networks, Linear
Regressions, XGBoost, K-nearest Neighbor, and generalized
additive models (GAM). The configuration is characterised
by the message size, the number of nodes, and the num-
ber of processes per node. The approach is evaluated using
MPI_Bcast, MPI_Allreduce and MPI_Alltoall collectives.
In the experimental evaluation, the number of nodes varies
between 4 and 36, and the number of processes per node
varies between 1 and 32. The experimental results show two
things. First, it is very expansive and difficult to build a regres-
sionmodel even for a relatively small cluster. There is no clear
guidance on how to do it to achieve better results. Second,
even the best regression models do not accurately predict
the fastest collective algorithm in most of the reported cases.
Moreover, in many cases the selected algorithm performs
worse than the default algorithm, that is, the one selected by
a simple native decision function.

To the best of the authors’ knowledge, the works outlined
in this subsection are the only research done in MPI collec-
tive algorithm selection using ML algorithms. The results
show that the selection of the optimal algorithm without
any information about the semantics of the algorithm yields
inaccurate results. While the ML-based methods treat a col-
lective algorithm as a black box, we derive its performance
model from the implementation code and estimate the model
parameters using statistical techniques. The limitations of the
application of the statistical techniques (AI/ML) to collective
performance modelling and selection problem can be found
in a detailed survey [40].

III. IMPLEMENTATION-AWARE ANALYTICAL MODELS OF
BROADCAST AND GATHER ALGORITHMS
In this work, we propose to derive analytical models of MPI
collective algorithms from their implementations rather than
from high-level mathematical definitions, and use the derived
models at runtime for selection of the optimal algorithms.
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TABLE 1. List of collective algorithms used in open MPI 3.1.

We present this approach by applying it to Open MPI and
its broadcast and gather collective algorithms. While the
algorithms are Open MPI specific, the proposed modelling
approach itself is general and can be applied to other MPI
implementations and collective algorithms. The complete
list of Open MPI 3.1 collective algorithms can be found in
TABLE 1. In this work, we cover in detail the broadcast and
gather algorithms.
As stated in Section I, we propose a new approach

to analytical performance modelling of collective algo-
rithms. While the traditional approach only takes into
account high-level mathematical definitions of the algo-
rithms, we derive our models from their implementation. This
way, our models take into account important details of their
execution having a significant impact on their performance.
In this section, we present our analytical modelling approach
by applying it to broadcast and gather collective algorithms
implemented in Open MPI. This approach could be similarly
applied to other collective algorithms as well as other MPI
implementations such as MPICH. Analytical models of the
broadcast and gather collective algorithms implemented in
Open MPI are derived in Sections III-A and III-B.

To model point-to-point communications, we use the
Hockney model, which estimates the time Tp2p(m) of sending
a message of size m between two processes as Tp2p(m) =
α + β · m, where α and β are the latency and the reciprocal
bandwidth respectively. For segmented collective algorithms,
we assume thatm = ns·ms, where ns andms are the number of
segments and the segment size respectively. We assume that
each algorithm involves P processes ranked from 0 to P− 1.
We deliberately pick Hockney, the simplest possible

model, despite it does not separate the contributions of CPUs
and network in the communication cost and therefore is less

accurate than LogP and its derivatives. Our intention in this
work is to investigate to which extent taking into account
the properties of collective algorithms, which can only be
extracted from the implementation, and learning the general
communication parameters of the models (such as Hockney’s
α and β, or L, o, g, and G for LogP/LogGP) separately
for each algorithm, will be able to improve the models of
the collective algorithms for the purpose of comparison of
their relative performance. This approach to improvement of
the models has never been investigated. At the same time,
the approach using different basic communication models,
such as Hockney, LogP, PLogP, to improve the selective
accuracy of the models of collective algorithms has been
thoroughly studied by Pjesivac-Grbovic et al. [24]. Their
work has shown that only the use of more accurate general
communication models does not help improve the selective
accuracy of analytical models of collective algorithms. There-
fore, in our work we contrast their approach with ours and
use the simplest possible general model but more relevant
implementation-aware definitions of the algorithms.
We fully realise the restrictions of Hockney, especially,

when it comes tomodelling the effects of network congestion.
In this work, however, we only consider one-process-
per-CPU configurations of MPI programs. With such config-
urations, we observed that the effects of network congestion
were not very significant on our experimental platforms,
and our models of collective algorithms worked very well.
At the same time, we found the network congestion to be
muchmore impactful whenwe use one-process-per-core con-
figurations, resulting in degradation of the selective accu-
racy of our Hockney-based models. Therefore, in order to
improve the predictive accuracy of our models for such
configurations, more accurate point-to-point communication
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FIGURE 1. Virtual topologies for collective algorithms.

models, including models from the LogP family, should be
considered.

A. BROADCAST ALGORITHMS
During the broadcast (MPI_Bcast), one process, called root,
sends the same data to all processes in the communicator.
At the end of the operation, the root buffer is copied to all
other processes. In this section, we build analytical perfor-
mance models of broadcast algorithms implemented in Open
MPI. All broadcast algorithms implemented in Open MPI,
except for the linear tree broadcast algorithm, are imple-
mented using message segmentation. The main purpose of
message segmentation is to enable higher bandwidth utiliza-
tion. If a segment size is smaller than eager limit then it avoids
the rendezvous protocol. Therefore, we only build analytical
models of broadcast algorithms with message segmentation
assuming the buffered mode of send operations. Models of
segmented broadcast algorithms employing the rendezvous
(synchronous) mode would have no practical application in
Open MPI as they assume a configuration with a segment
size being not small enough to avoid the rendezvous protocol,
which does not make much sense.

1) LINEAR (FLAT) TREE ALGORITHM
The algorithm employs a single level tree topology shown
in FIGURE 1a where the root node has P − 1 children.
In Open MPI, the linear broadcast algorithm is implemented
using blocking send and receive operations. The algorithm
transmits the whole message from root to the leaves without
message segmentation. Regardless of communication mode
(buffered or not), because of blocking communication, each
next send only starts after the previous one has been com-
pleted. Therefore, the execution time of the linear tree broad-
cast algorithm will be equal to the sum of execution times of
P− 1 send operations:

T blockinglinear_bcast (P,m) = (P− 1) · (α + m · β). (1)

In Open MPI, this linear tree algorithm is one of the six
algorithms available for implementation of the MPI_Bcast
routine. There is another linear tree broadcast algorithm,
which cannot be chosen to implement MPI_Bcast, but only
used as a building block in other tree-based broadcast algo-
rithms implementing MPI_Bcast, namely, in the binomial
tree, binary tree, k-chain tree, and chain tree broadcast
algorithms (see Algorithm 1 for more details). That linear

Algorithm 1 Tree-Based Segmented Broadcast Algorithm
if (rank == root) then
for i ∈ 0..ns − 1 do
for child ∈ list of children do
MPI_Isend(segment[i], child, . . . )

end for
MPI_Waitall(. . . )

end for
else if (intermediate nodes) then
for i ∈ 0..ns − 1 do
MPI_Irecv(segment[i])
MPI_Wait(. . . )
for child in list of children do
MPI_Isend(segment[i], child , . . . )

end for
MPI_Waitall(children)

end for
else if (leaf nodes) then
for i ∈ 0..ns − 1 do
MPI_Irecv(segment[i], . . . )
MPI_Wait(. . . )

end for
end if

tree algorithm is implemented using non-blocking send and
receive operations.

In this latter case, P − 1 non-blocking sends will run on
the root concurrently. Therefore, the execution time of the
linear broadcast algorithm using non-blocking point-to-point
communications and buffered mode, T nonblocklinear_bcast (P,m), can
be bounded as follows:

Tp2p(m) ≤ T nonblocklinear_bcast (P,m) ≤ (P− 1) · Tp2p(m). (2)

We will approximate T nonblocklinear_bcast (P,m) as

T nonblocklinear_bcast (P,m) = γ (P,m) · (α + m · β), (3)

where

γ (P,m) =
T nonblocklinear_bcast (P,m)

Tp2p(m)
. (4)

We will use this approximation when deriving analyt-
ical performance models of the remaining five broadcast
algorithms implemented in Open MPI. As we can see from
Algorithm 1, the non-blocking version of linear tree broadcast
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FIGURE 2. Execution stages of the binomial tree broadcast algorithm,
employing the non-blocking linear broadcast (P = 8, ns = 3). Nodes are
labelled by the process ranks. Each arrow represents transmission of a
segment. The number over the arrow gives the index of the broadcast
segment.

is used in these five algorithms for transmission of a single
message segment. In this paper, we assume the same fixed
segment size in all segmented algorithms. Therefore, in the
rest of the paper we define γ as a function of P only, γ (P).
From Formula 2, we can derive that T nonblocklinear_bcast (2,m) =
Tp2p(m) and, hence, γ (2) = 1.

2) BINOMIAL TREE ALGORITHM
In Open MPI, the algorithm employs balanced binomial
tree (FIGURE 1e). The binomial tree broadcast algorithm
is segmentation-based and implemented as a combination of
linear tree broadcast algorithms using non-blocking send and
receive operations.

FIGURE 2 shows the stages of execution of the bino-
mial tree broadcast algorithm. Each stage consists of par-
allel execution of a number of linear broadcast algorithms
using non-blocking communication. The linear broadcast
algorithms running in parallel have a different number of
children. Therefore, the execution time of each stage will be
equal to the execution time of the linear broadcast algorithm
with the maximum number of children. The execution time
of the whole binomial broadcast algorithm will be equal to
the sum of the execution times of these stages.

In Open MPI, the binomial tree broadcast algorithm
employs the balanced binomial tree virtual topology.
Therefore, the number of stages in the binomial broadcast
algorithm can be calculated as

Nsteps = blog2Pc + ns − 1. (5)

Thus, the time to complete the binomial tree broadcast
algorithm can be estimated as follows:

Tbinomial_bcast (P,m, ns)

=

blog2Pc+ns−1∑
i=1

max
1≤j≤min(blog2Pc,ns)

T nonblocklinear_bcast (Pij,
m
ns
), (6)

where Pij denotes the number of nodes in the j-th linear tree
of the i-th stage.

Using the property of the binomial tree and Formula 3,
we have

Tbinomial_bcast (P,m, ns)

= (ns · γ (dlog2 Pe + 1)
blog2 Pc−1∑

i=1

γ (dlog2 Pe−i+ 1)− 1) · (α +
m
ns
· β). (7)

3) CHAIN TREE ALGORITHM
Each internal node in the chain tree topology has one
child (Fig 1b). In Open MPI, the chain tree algorithm is
segmentation-based and implemented using non-blocking
point-to-point communication. While the height of the chain
tree equal to P − 1, the algorithm will be completed in
P + ns − 2 steps, each consisting of a varying number
of concurrent non-blocking point-to-point communications
(technically, Open MPI employs concurrent non-blocking
linear tree broadcast algorithms, but in this case each lin-
ear broadcast will be equivalent to a point-to-point commu-
nication). Therefore, the execution time of the chain tree
algorithm can be estimated as

Tchain_bcast (P,m, ns) = (P+ ns − 2) · (α +
m
ns
· β). (8)

4) SPLIT-BINARY TREE ALGORITHM
In OpenMPI, the split-binary tree algorithm is segmentation-
based and implemented using blocking point-to-point
communication. The algorithm consists of two phases –
forwarding and exchange. In the first phase, the message of
size m is split into two equal parts in the root, which are
then sent to the left and right subtrees respectively using
message segmentation. After completion of the first phase,
each node in the left subtree contains the first half of the
message and each node in the right subtree – the second
half of the message. Because of segmentation, each node will
receive ns

2 segments during the first phase.
As the balanced binary tree virtual topology is employed in

the split-binary tree algorithm, each node in the left subtree
will have a matching pair in the right subtree and vice versa.
In the second phase, each pair of matching nodes in the left
and right subtrees exchange their halves of the message. The
execution time of the split-binary tree broadcast will be equal
to the sum of the execution times of the first and the second
phases. As the height of the balanced binary tree is equal to
blog2 Pc, we have

Tsplit_binary_bcast (P,m, ns) = 2 · (blog2 Pc +
ns
2
− 1) ·

(α+
m
ns
· β)+(α+

m
2
· β) (9)

5) BINARY TREE ALGORITHM
In the binary tree virtual topology each internal process has
two children (FIGURE 1c). In Open MPI, the binary tree
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broadcast algorithm is segmentation-based and uses the bal-
anced binary tree topology (FIGURE 1c). The root broadcasts
each segment to its children using the non-blocking linear tree
broadcast algorithm. Upon receipt of the next segment, each
internal node acts similarly. As the binary tree used in this
algorithm is balanced, all the non-blocking linear broadcasts
will have the same execution time, namely,

T nonblocklinear_bcast (3,ms) = γ (3) · (α +
m
ms
· β).

As the height of the balanced binary tree is equal to
blog2 Pc, the algorithm will be completed in (blog2 Pc +
ns− 1) steps, each consisting of a varying number of concur-
rent non-blocking linear broadcasts, involving 3 processes.
Therefore,

Tbinary_bcast (P,m, ns) = γ (3) · (blog2 Pc + ns − 1) ·

(α +
m
ns
· β). (10)

6) K-CHAIN TREE ALGORITHM
In Open MPI, the K-chain tree algorithm is implemented
using non-blocking communication and message segmen-
tation. In the K-chain tree, the root node has K (K = 4)
children, while the internal nodes have a single child each
(FIGURE 1d). As the height of the tree is bP−1K c, the algo-
rithm takes bP−1K c + ns − 1 steps to complete. At each
step, a varying number of non-blocking linear tree broadcast
algorithms will be executed concurrently (one at the first step,
K at the last step, and up toK×(bP−1K c−1)+1 algorithms for
intermediate steps). Note, that while OpenMPI employs con-
current non-blocking linear tree broadcast algorithms, in this
case the most of the linear broadcasts will be equivalent to
non-blocking point-to-point communications.

The execution time of the K-chain tree algorithm will be
equal to the sum of the execution times of its steps. The
execution time of each step will be equal to the maximum
execution time of the concurrently executed linear broadcasts.
For the first ns steps, this maximum time will be the time of
the linear broadcast involving the root of the whole K-chain
tree, which is estimated as γ (K + 1) · (α + m

ns
· β) according

to Formula 3. For each of the remaining bP−1K c − 1 steps,
all concurrently executed linear broadcasts will be equivalent
to non-blocking point-to-point communications, the time of
which is α + m

ns
· β. Thus, the total execution time of the

K-chain tree algorithm will be estimated as

Tk_chain_bcast (P,m, ns)

= (b
P− 1
K
c + γ (K + 1) · ns − 1) · (α +

m
ns
· β). (11)

B. GATHER ALGORITHMS
MPI_Gather is a many-to-one MPI operation. MPI_Gather
takes data elements from all processes of the communicator
and gathers them in one single process which is called root.
In this section, we derive analytical formulas of the gather
algorithms implemented in Open MPI.

1) LINEAR WITHOUT SYNCHRONISATION
In the Open MPI implementation of the linear without syn-
chronisation gather algorithm, the root receives messages
from its P − 1 children using blocking receive operations.
Therefore, the execution time of this gather algorithm can be
estimated as the sum of the execution times of P−1 blocking
receive operations, that is,

Tlinear_gather (P,m) = (P− 1) · (α + m · β). (12)

2) LINEAR WITH SYNCHRONISATION
The Open MPI implementation of the linear with syn-
chronisation gather algorithm employs both blocking and
non-blocking communications. The messages gathered from
the children are all identically split into two equal parts. In
order to receive all these parts from its P−1 children, the root
executes a loop, at i-th iteration of which it receives both
halves of the message from the i-th child by performing the
following steps: 1) it first posts a non-blocking receive for
the first part; 2) then it sends a zero-byte message using a
blocking send, signalling the child to start sending the mes-
sage parts; 3) then the root posts a non-blocking receive for
the second half of the message; 4) finally, it blocks itself wait-
ing for the completion of the previously posted non-blocking
receives.

At the same time, upon receipt of a zero-byte signal mes-
sage from the root, each child will perform two successive
standard blocking sends for the first and the second parts
of its message. When the size of these parts, m

2 , is greater
than the eager limit, meager , than the standard blocking sends
will follow the rendezvous protocol, that is, will be equivalent
to synchronous sends. Otherwise, they will follow the eager
protocol, that is, will be equivalent to buffered sends. In the
first case, the execution of all point-to-point communications
will be serialized, and, therefore, the execution time of the
linear gather with synchronisation algorithm can be estimated
as the sum of the execution times of the employed point-
to-point communications:

Tlinear_gather_with_synch(P,m) = (P− 1) · (2 · (α +
m
2
· β))

= (P− 1) · (2 · α + m · β).

(13)

Otherwise, when m
2 ≤ meager , each child will send its

half-messages concurrently. Therefore, the execution time of
the linear gather with synchronisation algorithm in this case
can be estimated as

Tlinear_gather_with_synch(P,m) = (P− 1) · (α +
m
2
· β). (14)

3) BINOMIAL ALGORITHM
In Open MPI, the binomial gather algorithm employs the
in-order binomial tree virtual topology (FIGURE 1f). The
leaf nodes and internal nodes use the standard blocking
send to send the messages to their parents, which receive
the message using the blocking receive. The algorithm will
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FIGURE 3. Performance estimation of the binary and binomial tree broadcast algorithms by the traditional and proposed analytical models in
comparison with experimental curves. The experiments involve ninety processes (P = 90). (a) Estimation by the existing analytical models.
(b) Experimental performance curves. (c) Estimation by the proposed analytical models derived from the implementation codes.

be completed in blog2 Pc steps, each performing a set of
concurrent blocking receives.

At i-th step, the root will receive a message of size 2i−1 ·m
from its i-th child, combining the messages gathered by the
latter acting as the root of the i-th subtree during the previous
i − 1 steps (i = 1, . . . , blog2 Pc). Given this message size,
2i−1 · m, will be the largest communicated at the i-th step of
the algorithm, its execution time can be estimated as

Tbinomial_gahter (P,m) =
dlog2 Pe∑
i=1

(α + 2i−1 · m · β)

= dlog2 Pe · α + (P− 1) · m · β. (15)

C. COMPARISON OF THE PROPOSED ANALYTICAL
MODELS AGAINST THE STATE OF THE ART
In this section, we use the binomial and binary tree algo-
rithms as an example to illustrate that unlike the traditional
approaches, the approach based on the derivation of analytical
models of collective algorithms from their implementation
codes, yields models, which can be used for accurate pair-
wise comparison of the performance of collective algorithms
implementing the same collective operation.

Existing analytical modelling approaches [5], [24], [41]
estimate the execution time of the binary and binomial tree
broadcast algorithms as follows:

Tbinomial_bcast (P,m) = dlog2 Pe · (α + m · β),

Tbinary_bcast (P,m) = 2 · (dlog2(P+ 1)e − 1) · (α + m · β).

FIGURE 3 shows the performance of the binary tree and
binomial tree algorithms using: a) the estimation by the
existing analytical models; b) the experimental results on the
Grisou cluster of the Grid’5000 platform; c) the estimation
by the analytical models presented in Section III-A. It is
evident that while the existing models wrongly predict that
the binomial tree algorithm will outperform the binary tree
algorithm on the target platform, our models correctly predict
the relative performance of these algorithms.

IV. ESTIMATION OF MODEL PARAMETERS
A. INTRODUCTION TO THE ESTIMATION METHOD
In the most general case, the analytical model of an Open
MPI collective algorithm uses three platform parameters –
α, β, and γ (p). The traditional state-of-the-art approach to
estimation of α and β would be to find these parameters
from a number of point-to-point communication experiments.
Namely, the time of a round-trip of a message of size m,
RTT (m), is measured for a wide range of m. From these
experiments, a system of linear equations with α and β as
unknowns is derived. Then, linear regression is applied to find
α and β. The found values of α and β would be then used in
all analytical predictive formulas.

This approach yields a unique single pair of (α, β) for
each target platform. Unfortunately, with α and β found this
way, not all our analytical formulas will be accurate enough
to be used for accurate selection of the best performing
collective algorithm. Using non-linear regression does not
improve the situation as the function RTT (m) is typically
near linear. Therefore, we propose to estimate the model
parameters separately for each collective algorithm. More
specifically, we propose to design a specific communica-
tion experiment for each collective algorithm, so that the
algorithm itself would be involved in the execution of the
experiment. Moreover, the execution time of this experiment
must be dominated by the execution time of this collective
algorithm. Then, we conduct a number of experiments on the
target platform for a range of numbers of processors, p, and
message sizes, m. From those experiments, we can derive a
sufficiently large number of equations with α, β, and γ (p)
as unknowns, and then use an appropriate solver to find their
values.

Unfortunately, when applied straightforwardly, this
approach yields a system of non-linear equations like the
one shown in FIGURE 4. This nonlinearity makes the task
of estimation of the parameters mathematically very diffi-
cult, because we need to solve a large system of nonlinear
equations.
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FIGURE 4. A system of M non-linear equations with α, β, and γ (K + 1) as unknowns, derived from M
communication experiments, each consisting of the execution of the K-Chain tree broadcast
algorithm, broadcasting a message of size mi (i = 1, . . . ,M) from the root to the remaining P − 1
processes, followed by the linear gather algorithm without synchronisation, gathering messages of
size mgi (mgi < eager_limit ; mgi 6= ms) on the root. The execution times, Ti , of these experiments
are measured on the root. Given γ (K + 1) is evaluated separately, the system becomes a system of M
linear equations with α and β as unknowns.

Our approach to this problem is the following. As the
non-linearity is caused by the multiplicative terms involving
γ (p), we separate the estimation of γ (p) from the estimation
of α and β. Namely, we assume that γ (p) is algorithm-
independent and design a separate communication exper-
iment for its estimation. The values of γ (p) found from
this experiment are then used as known coefficients in the
algorithm-specific systems of equations for α and β. We
present this approach in Sections IV-B and IV-C.

B. ESTIMATION OF γ (p)
The model parameter γ (p) appears in the formula estimating
the execution time of the linear tree broadcast algorithm with
non-blocking communication, which is only used for broad-
casting of a segment in the tree-based segmented broadcast
algorithms. Thus, in the context of Open MPI, the linear tree
broadcast algorithm with non-blocking communication will
always broadcast a message of size ms to a relatively small
number of processes.

According to Formula 4,

γ (p) =
T nonblocklinear_bcast (p,ms)

Tp2p(ms)
=
T nonblocklinear_bcast (p,ms)

T nonblocklinear_bcast (2,ms)
.

Therefore, in order to estimate γ (p) for a given range of
the number of processes, p ∈ {2, . . . ,P}, we need a method
for estimation of T nonblocklinear_bcast (p,ms). We use the following
method:

• For each p ∈ {2, . . . ,P}, we measure on the root the
execution time T1(p,N ) of N successive calls to the
linear tree with non-blocking communication broadcast
routine separated by barriers. The routine broadcasts a
message of size ms.

• We estimate T nonblocklinear_bcast (p,ms) as T2(p) =
T1(p,N )

N .

The experimentally obtained discrete function T2(p)
T2(2)

is used
as a platform-specific but algorithm-independent estimation
of γ (p).
From our experiments, we observed that the discrete esti-

mation of γ (p) is near linear. Therefore, as an alternative for
platformswith very large numbers of processors, we can build
by linear regression a linear approximation of the discrete
function T2(p)

T2(2)
, obtained for a representative subset of the full

range of p, and use this linear approximation as an analytical
estimation of γ (p).

C. ESTIMATION OF ALGORITHM SPECIFIC α AND β

To estimate the model parameters α and β for a given col-
lective algorithm, we design a communication experiment,
which starts and finishes on the root (in order to accurately
measure its execution time using the root clock), and involves
the execution of the modelled collective algorithm so that the
total time of the experiment would be dominated by the time
of its execution.

For example, for all broadcast algorithms, the communi-
cation experiment consists of a broadcast of a message of
size m (where m is a multiple of segment size ms), using the
modelled broadcast algorithm, followed by a barrier, which
is then followed by a linear-without-synchronisation gather
algorithm, gathering messages of sizemg (mg < eager_limit;
mg 6= ms) on the root. Barriers are also called in the
beginning and in the end of the experiment, and the clock is
started on the root after the first barrier and stopped after the
last one. The execution time of this experiment on p nodes,
Tbcast_exp(p,m), can be estimated as follows:

Tbcast_exp(p,m)=Tbcast_alg(p,m)+Tlinear_gather (p,mg) (16)
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Using analytical formulas from Section III for Tbcast_alg
(p,m) and Tlinear_gather (p,mg), this experiment will yield one
linear equation with α and β as unknowns for each combi-
nation of p, m and mg. By repeating this experiment with
different p, m and mg, we obtain a system of linear equations
for α and β. Each equation in this system can be represented
in the canonical form, α + β × mi = Ti (i = 1, . . . ,M ).
Finally, we use the least-square regression to find α and β,
giving us the best linear approximation α + β × m of the
discrete function f (mi) = Ti (i = 1, . . . ,M ).
FIGURE 4 shows a system of linear equations built for the

K-Chain tree broadcast algorithm for our experimental plat-
form. To build this system, we used the same P nodes in all
experiments but varied the message sizes m ∈ {m1, . . . ,mM }
andmg ∈ {mg1 , . . . ,mgM }. WithM different pairs of message
sizes, we obtained a system of M equations. The number of
nodes, P, was approximately equal to the half of the total
number of nodes. We observed that the use of larger numbers
of nodes in the experiments will not change the estimation of
α and β.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents experimental evaluation of the proposed
approach to selection of optimal collective algorithms using
Open MPI broadcast and gather operations. In all experi-
ments. we use the default Open MPI configuration (without
any collective optimization tuning).

A. EXPERIMENT SETUP
For experiments, we use Open MPI 3.1 in default config-
uration running on a dedicated Grisou and Gros clusters
of the Nancy site of the Grid‘5000 infrastructure [13]. The
Grisou cluster consists of 51 nodes each with 2 Intel Xeon
E5-2630 v3 CPUs (8 cores/CPU), 128GB RAM, 2× 558GB
HDD, interconnected via 10Gbps Ethernet. The Gros clus-
ter consists of 124 nodes each with Intel Xeon Gold 5220
(18 cores/CPU), 96GB RAM, 894 GB SSD, interconnected
via 2 x 25Gb Ethernet.

To make sure that the experimental results are reliable,
we follow a detailed methodology: 1) We make sure that the
cluster is fully reserved and dedicated to our experiments.
2) For each data point in the execution time of collective
algorithms, the sample mean is used, which is calculated by
executing the application repeatedly until the sample mean
lies in the 95% confidence interval and a precision of 0.025
(2.5%) has been achieved. We also check that the individual
observations are independent and their population follows the
normal distribution. For this purpose, MPIBlib [34] is used.

In our communication experiments, MPI programs use the
one-process-per-CPU configuration, and the maximal total
number of processes is equal to 90 on Grisou and 124 on
Gros clusters. The message segment size, ms, for segmented
broadcast algorithms is set to 8KB and is the same in all
experiments. This segment size is commonly used for seg-
mented broadcast algorithms in Open MPI. Selection of
optimal segment size is out of the scope of this paper.

B. EXPERIMENTAL ESTIMATION OF MODEL PARAMETERS
First of all, we would like to stress again that we estimate
model parameters for each cluster separately.

Estimation of parameter γ (p) for our experimental plat-
forms follows the method presented in Section IV-B. With
the maximal number of processes equal to 90 (Grisou) and
124 (Gros), the maximal number of children in the linear
tree broadcast algorithm with non-blocking communication,
used in the segmented Open MPI broadcast algorithms, will
be equal to seven. Therefore, the number of processes in
our communication experiments ranges from 2 to 7 for both
clusters. By definition, γ (2) = 1. The estimated values of
γ (p) for p from 3 to 7 are given in TABLE 6.
After estimation of γ (p), we conduct communication

experiments to estimate algorithm-specific values of param-
eters α and β for six broadcast algorithms and three gather
algorithms following the method described in Section IV-C.
In these experiments we use 40 processes on Grisou and
124 on Gros. The message size, m, varies in the range from
8KB to 4MB in the broadcast experiments, and from 64KB
to 1MB in the gather experiments. We use 10 different sizes
for broadcast algorithms, {mi}10i=1, and 5 different sizes for
gather algorithms, {mi}5i=1, separated by a constant step in
the logarithmic scale, logmi−1 − logmi = const . Thus, for
each collective algorithm, we obtain a system of 10 linear
equations with α and β as unknowns. We use the Huber
regressor [42] to find their values from the system.
The values of parameters α and β obtained this way can be

found in TABLE 4 and TABLE 5. We can see that the values
of α and β do vary depending on the collective algorithm, and
the difference is more significant between algorithms imple-
menting different collective operations. The results support
our original hypothesis that the average execution time of
a point-to-point communication will very much depend on
the context of the use of the point-to-point communications
in the algorithm. Therefore, the estimated values of the α
and β capture more than just sheer network characteristics.
One interesting example is the Split-binary tree and Binary
tree broadcast algorithms. They both use the same virtual
topology, but the estimated time of a point-to-point communi-
cation, α+β×m, is smaller in the context of the Split-binary
one. This can be explained by a higher level of parallelism of
the Split-binary algorithm, where a significant part of point-
to-point communications is performed in parallel by a large
number of independent pairs of processes from the left and
right subtrees.

C. ACCURACY OF SELECTION OF OPTIMAL COLLECTIVE
ALGORITHMS USING THE CONSTRUCTED ANALYTICAL
PERFORMANCE MODELS
The constructed analytical performance models of the Open
MPI broadcast and gather collective algorithms are designed
for the use in the MPI_Bcast and MPI_Gather routines for
runtime selection of the optimal algorithm, depending on
the number of processes and the message size. While the
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FIGURE 5. Comparison of the selection accuracy of the Open MPI decision function and the proposed model-based method for
MPI_Bcast and MPI_Gather. (5a - 5f) and (5g - 5l) present performance of collectives on Grisou and Gros clusters, respectively.

efficiency of the selection procedure is evident from the low
complexity of the analytical formulas derived in Section III,
the experimental results on the accuracy are presented in this
section.

FIGURE 5 shows the results of our experiments for
MPI_Bcast and MPI_Gather. For both operations, we present
results of experiments with 50, 80 and 90 processes on
Grisou, and 80, 100 and 124 on Gros.

The message size, m, varies in the range from 8KB to
4MB in the broadcast experiments, and from 64KB to 1MB
in the gather experiments. The reason to start from 8KB for
MPI_Bcast is that in our experiments we use the same typical
segment size of 8KB for all segmented broadcast algorithms
employed in Open MPI. Therefore, the message sizes are
multiples of 8KB in the experiments. We do not present
results for smaller message sizes, where the communication
time is latency bound, as this requires the construction of
specific models, not including the β parameter.

We start from 64KB in theMPI_Gather experiments for the
following reason. In OpenMPI, the rendezvous point-to-point

communication protocol is used for messages sizes m ≥
eager_limit and the eager protocol for m < eager_limit .
The default value of eager_limit is 64KB. We use this default
value of 64K in our experimental validation. Unlike broad-
cast algorithms, Open MPI gather algorithms do not employ
message segmentation. This means that these algorithms will
use the eager protocol for message sizes less than 64K and
the rendezvous protocol for message sizes greater or equal to
64K. Therefore, in general, for each gather algorithmwe have
to build two models - one for the eager protocol and the other
for the rendezvous protocol. In our experimental validation,
due to a limited access to the experimental platforms, we only
build models for one protocol. We picked rendezvous-based
gather models for validation to balance the predominantly
eager-based broadcast models.
We use 10 different sizes for broadcast algorithms, {mi}10i=1,

and 5 different sizes for gather algorithms, {mi}5i=1, sepa-
rated by a constant step in the logarithmic scale, logmi−1 −
logmi = const . To obtain data points for graphs in
FIGURE 5, we use theMPIBlib routines [34], which measure
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TABLE 2. Comparison of the model-based and Open MPI selections with the best performing MPI_Bcast algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.

TABLE 3. Comparison of the model-based and Open MPI selections with the best performing MPI_Gather algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.

TABLE 4. Estimated values of α and β for the Grisou cluster and Open
MPI broadcast and gather algorithms.

the execution time of each MPI_Bcast / MPI_Gather as fol-
lows. They call MPI_Barrier, start a clock on the root, call
MPI_Bcast / MPI_Gather, call another MPI_Barrier, and stop
the clock. No other operations occur in between. This com-
munication experiment is repeated in a loop until the sample
mean lies in the 95% confidence interval and a precision
of 0.025 (2.5%) has been achieved, and the sample mean is
returned as the measured time.

The graphs show the execution time of the collective oper-
ation as a function of message size. Each data point on a blue
line shows the performance of the algorithm selected by the
Open MPI decision function for the given operation, number
of processes and message size. Each point on a red line shows

TABLE 5. Estimated values of α and β for the Gros cluster and Open MPI
broadcast and gather algorithms.

TABLE 6. Estimated values of γ (p) on Grisou and Gros clusters.

the performance of the algorithm selected by our decision
function, which uses the constructed analytical models. Each
point on a green line shows the performance of the best Open
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MPI algorithm for the given collective operation, number of
processes and message size.

TABLE 2 presents selections made for MPI_Bcast using
the proposed model-based runtime procedure and the Open
MPI decision function. For each message size m, the best
performing algorithm, the model-based selected algorithm,
and the Open MPI selected algorithm are given. For the latter
two, the performance degradation in percentages in compari-
son with the best performing algorithm is also given. We can
see that for the Grisou cluster, the model-based selection
either picks the best performing algorithm, or the algorithm,
the performance of which deviates from the best nomore than
3%. Given the accuracy of measurements, this means that
the model-based selection is practically always optimal as
the performance of the selected algorithm is indistinguishable
from the best performance. The Open MPI selection is near
optimal in 50% cases and causes significant, up to 160%,
degradation in the remaining cases. For the Gros cluster,
the model-based selection picks either the best performing
algorithm or the algorithm with near optimal performance,
no worse than 10% in comparison with the best performing
algorithm. At the same time, while near optimal in 40%
cases, the algorithms selected by the Open MPI demonstrate
catastrophic degradation (up to 7297%) in 50% cases.

TABLE 3 shows results for MPI_Gather. One can see that
the Open MPI selection significantly degrades the perfor-
mance of MPI_Gather for all message sizes and numbers
of processes (up to 190% on Grisou, and up to 2073% on
Gros), while our model-based selection always picks the best
performing algorithm.

The Open MPI decision functions select the algorithm
depending on the message size and the number of processes.
For example, the Open MPI broadcast decision function,
shown in Listing 1, selects the chain broadcast algorithm for
large message sizes. However, from TABLE 2 it is evident
that chain broadcast algorithm is not the best performing
algorithm for large message sizes on both clusters. From
the same table, one can see that the model-based selection
procedure accurately picks the best performing binomial tree
broadcast algorithm for 16KB and 32KB message sizes on
the Gros cluster, where Open MPI only selects the binomial
tree algorithm for broadcasting messages smaller than 2KB.

Finally, FIGURE 6 presents experimental results for
MPI_Bcast when the message size is fixed but the number
of processes is varying.

D. SHAHEEN II
While our experiments on Grid5000 clusters demonstrate
the accuracy and the efficiency of the approach, the size of
the clusters is relatively small. In this section, we demon-
strate that the approach works for larger platforms as well.
We present broadcast experiments for Shaheen II [14],
a supercomputer owned by King Abdullah University of Sci-
ence and Technology, Saudi Arabia. It consists of 6174 nodes
(197568 cores) each with 2 Intel Haswell CPUs (16 cores
per CPU, 2.3GHz), 128 GB of memory per node, Cray Aries

FIGURE 6. Comparison of the selection accuracy of the Open MPI
decision function and the proposed model-based method for MPI_Bcast
where message size is fixed and number of processes is varying. (6a) and
(6b) present performance of MPI_Bcast on Grisou and Gros clusters
respectively.

interconnect with Dragonfly topology. We could only use up
to 512 nodes in our experiments.

We experiment with MPI programs running one pro-
cess per CPU on 512 nodes. Thus, each program consists
of 1024 MPI processes. The message segment size, ms, for
segmented broadcast algorithms is set to 8KB. The estimated
values of parameters α and β can be found in TABLE 7.

FIGURE 7 shows the results of our experiments for
MPI_Bcast. While P is fixed to 1024, the message size, m,
varies from 8KB to 4MB. We use 10 different sizes,

TABLE 7. Estimated values of α and β for Shaheen II and open MPI
broadcast algorithms.
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FIGURE 7. Comparison of the selection accuracy of the Open MPI
decision function and the proposed model-based method for MPI_Bcast
on Shaheen II supercomputer.

TABLE 8. Comparison of the model-based and Open MPI selections with
the best performing MPI_Bcast algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.

m(KB) ∈ {8, 40, 152, 232, 328, 472, 648, 1032, 2088, 4840}.
The plot shows the execution time of the broadcast operation
as a function of the message size. Each data point on the
green line shows the performance of the algorithm selected
by the Open MPI decision function for the given number of
processes and message size. Each point on the red line shows
the performance of the algorithm selected by our decision
function, which uses the constructed analytical models. Each
point on the blue line shows the performance of the best
broadcast algorithm for MPI_Bcast.

TABLE 8 presents selections made for MPI_Bcast using
the proposed model-based runtime procedure and the Open
MPI decision function. For each message size m, the best
performing algorithm, the model-based selected algorithm,

and the Open MPI selected algorithm are given. For the
latter two, the performance degradation in percentages in
comparison with the best performing algorithm is also given.
We can see that the model-based selection picks the best
performing algorithm, or the algorithm, the performance of
which deviates from the best no more than 1%. Given the
accuracy of measurements, this means that the model-based
selection is practically always optimal as the performance
of the selected algorithm is indistinguishable from the best
performance. The OpenMPI selection is near optimal in 30%
cases and causes significant, up to 146%, degradation in the
remaining cases.

VI. DISCUSSION
In this section, we briefly discuss some limitations of the
presented work and their impact.

First, we assume that communication is congestion-
free. Network congestion is important for many distributed
memory applications. To capture the performance of the
collective algorithms with network congestion, the latter
should be modelled using additional parameter(s) in the
models. Network congestion was however negligible in
our experimental setups, using one-process-per-CPU con-
figurations of MPI programs. Currently, we are working
on modelling network congestion to accurately capture the
performance of collective algorithms in situations where
network congestion has a notable impact on their execution
time.

Second, our approach assumes that collectives are imple-
mented through calls to point-to-point communication oper-
ations. We do not consider MPI implementations that exploit
hardware collective support to perform certain collectives, for
example, multicast, in O(1).

Third, we assume that the segment size, ms, is fixed
and the same in all collective algorithms. This limitation
can be eased by making the segment size another deci-
sion variable with values from a small discreet set, say,
{8K , 16K , 32K , 64K , 128K }. For each collective algorithm,
we can build a separate model for each value of the segment
size and use the models at runtime to select the fastest combi-
nation of the algorithm and segment size for each collective
operation.

Fourth, we assume that the values of model parameters,
such as α and β, do not depend on the number of processes,
P, executing the algorithm. While this assumption did not
negatively affect the selective accuracy of the models in
our experimental setups, it may not be the case for larger
platforms, able to run tens of thousands ofMPI processes. For
such platforms, one possible solution could be to break the
total range of the number of processes into several segments
and find the values of model parameters separately for each
segment. There are other, more general possible solutions, but
in order to study any possible solution, a regular access to a
large-scale platform is needed. Unfortunately, the authors do
not have such an access.
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VII. CONCLUSION
In this paper, we proposed a novel model-based approach to
automatic selection of optimal algorithms for MPI collective
operations, which proved to be both efficient and accurate.
The novelty of the approach is two-fold. First, we proposed
to derive analytical models of collective algorithms from
the code of their implementation rather than from high-level
mathematical definitions. Second, we proposed to estimate
model parameters separately for each algorithm, using a com-
munication experiment, where the execution of the algorithm
itself dominates the execution time of the experiment.

We also developed this approach into a detailed method
and applied it to Open MPI 3.1 and its MPI_Bcast and
MPI_Gather operations. We experimentally validated this
method on two different clusters and one supercomputer
and demonstrated its accuracy and efficiency. These results
suggest that the proposed approach can be successful in the
solution of the problem of accurate and efficient runtime
selection of optimal algorithms forMPI collective operations.
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