
Received 21 February 2023, accepted 14 March 2023, date of publication 17 March 2023, date of current version 22 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3258684

Acceleration of Bi-Objective Optimization of
Data-Parallel Applications for Performance and
Energy on Heterogeneous Hybrid Platforms
RAVI REDDY MANUMACHU 1, (Member, IEEE), HAMIDREZA KHALEGHZADEH 2,
AND ALEXEY LASTOVETSKY 1, (Member, IEEE)
1School of Computer Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Ireland
2School of Computing, University of Portsmouth, PO1 2UP Portsmouth, U.K.

Corresponding author: Ravi Reddy Manumachu (ravi.manumachu@ucd.ie)

This work was supported in part by the Sustainable Energy Authority of Ireland (SEAI) under Grant 21/RDD/664, and in part by the
Science Foundation Ireland (SFI) through the SFI Frontiers for the Future Programme under Grant 20/FFP-P/8683.

ABSTRACT Accelerating the bi-objective optimization of applications for performance and energy is
crucial to achieving energy efficiency objectives and meeting quality-of-service requirements in modern
high-performance computing platforms and cloud computing infrastructures. In this work, we highlight the
crucial challenges to accelerate model-based methods proposed for the bi-objective optimization of data-
parallel applications for performance and energy that employ workload distribution between the executing
processors as the decision variable. Themethods solve unconstrained bi-objective optimization problems and
take input, the processors’ performance and energy profiles in the form of discrete functions of workload size,
and output Pareto-optimal solutions (workload distributions), minimizing the execution time and the total
energy consumption of computations during the parallel execution of the application. One of the challenges
is the fast computation of Pareto-optimal solutions. We then formulate the bi-objective optimization problem
of data-parallel applications for performance and energy through workload distribution on a cluster of
p identical hybrid nodes, each containing h heterogeneous processors. The state-of-the-art algorithm for
solving the problem is sequential and takes exorbitant execution times to find Pareto-optimal solutions for
even moderate numbers of processors. We propose two algorithms that address this shortcoming. The first
algorithm is an exact sequential algorithm that is more efficient and amenable to parallelization and achieves
a complexity reduction ofO(m× h) over the state-of-the-art sequential algorithm where m is the cardinality
of the input discrete execution time and dynamic energy functions. The second algorithm is a parallel
algorithm executed by q identical parallel processes that reduces the complexity of our proposed sequential
algorithm by O(q). It, therefore, achieves a complexity reduction of O(m× h× q) over the state-of-the-art
sequential algorithm. Finally, we experimentally analyze the practical efficacy of our proposed algorithms for
two data-parallel applications, matrix multiplication and fast Fourier transform, on a heterogeneous hybrid
node containing an Intel Haswell multicore CPU, an Nvidia k40c GPU, and an Nvidia P100 GPU and
simulations of clusters of such hybrid nodes. The experiments demonstrate that our proposed algorithms
provide tremendous speedups over state-of-the-art solutions.

INDEX TERMS High-performance heterogeneous computing, energy-efficient computing, bi-objective
optimization, performance optimization, energy optimization, data-parallel applications, workload
distribution.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

I. INTRODUCTION
Performance and energy are the two most important objec-
tives for optimization in modern high performance com-
puting (HPC) platforms, computational grids, data centers,

27226
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0002-3360-9440

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

and cloud computing infrastructures ([1], [2], [3], [4]).
Furthermore, achieving the energy efficiency objectives and
meeting the performance or response time quality-of-service
(QoS) requirements is crucial to the commercial viability of
data centers and cloud computing infrastructures. Therefore,
fast solution methods for system-level and application-level
bi-objective optimization for performance and energy are
vital to addressing energy efficiency, environmental and
commercial concerns in these computing settings.

We start with a brief review of system-level and
application-level solution methods for bi-objective opti-
mization on HPC platforms for performance and energy.
Then, we present the state-of-the-art application-level solu-
tion methods for bi-objective optimization of data-parallel
applications on modern HPC platforms for performance
and energy, employing workload distribution as a decision
variable. Finally, we summarize the challenges specific
to the acceleration of the state-of-the-art application-level
solution methods before presenting our solution addressing
the challenges.

System-level solution methods aim to optimize the per-
formance and energy of the environment executing the
applications [2], [5], [6], [7], [8], [9]. The methods employ
application-agnostic models and hardware parameters as
decision variables. Dynamic voltage and frequency scaling
(DVFS) is a dominant decision variable in this category.
The application-level solution methods [10], [11], [12],
[13], [14], [15] utilize application-level decision variables
and models. The decision variables include the number of
threads, number of processors, loop tile size, and workload
distribution.

We will now review the state-of-the-art application-
level solution methods for bi-objective optimization of
data-parallel applications on modern HPC platforms for
performance and energy, employing workload distribution
as a decision variable. First, briefly, some terminology on
energy consumption. The total energy consumption during
an application execution is the sum of dynamic and static
energy consumption. We define static energy consumption as
the energy consumed by the platform without the application
execution. Dynamic energy consumption is calculated by
subtracting this static energy consumption from the total
energy consumed by the platform during the application
execution.

Lastovetsky and Reddy [11] propose data partitioning
algorithms that solve single-objective optimization problems
of data-parallel applications for performance or dynamic
energy on homogeneous clusters of multicore CPUs. The
algorithms take as input application-specific performance and
dynamic energy profiles of the multicore CPU processor.
The profiles are discrete functions of workload size with no
shape assumptions that accurately and realistically account
for resource contention and non-uniform memory access
(NUMA) inherent in modern multicore CPU platforms.
The algorithms output performance-optimal and energy-
optimal workload distributions. Furthermore, Reddy and

Lastovetsky [12] propose an exact global optimization
algorithm to solve the bi-objective optimization problem of
data-parallel applications for performance and energy on
homogeneous clusters of multicore CPUs. The algorithm
takes discrete performance and dynamic energy functions
against workload size as input and outputs the globally
Pareto-optimal set of solutions.

The algorithms ([11], [12]) target homogeneous HPC
platforms and exhibit time complexity of O(m2

× p2)
where m is the cardinality of the discrete sets representing
the speed and energy functions, and p is the number of
available processors. However, the algorithms are sequential
and exhibit impractical runtime and memory costs for large
values of p (several hundred). To address this problem,
Manumachu and Lastovetsky [16] propose parallel versions
of the sequential data partitioning algorithms presented
in [11] that achieve a complexity reduction ofO(p). However,
the parallel algorithms return only the performance-optimal
and energy-optimal workload distributions.

Khaleghzadeh et al. [15] study the bi-objective optimiza-
tion problem of data-parallel applications for performance
and energy on heterogeneous processors. They propose a
solution method (HEPOPTA) comprising an efficient and
exact global optimization algorithm. The algorithm takes
input performance and dynamic energy profiles of the
processors as arbitrary discrete functions of workload size
and returns the Pareto-optimal solutions (generally, load
imbalanced). Furthermore, HEPOPTA employs a methodol-
ogy [17] that accurately models the energy consumption by a
hybrid data-parallel application executing on a heterogeneous
HPC platform containing different computing devices using
system-level powermeasurements provided by powermeters,
which is considered the ground-truth.

We now summarize the main steps in the application-level
method ([15]) to solve the bi-objective optimization problem
of data-parallel applications for performance and energy on
heterogeneous hybrid platforms.

The first step involvesmodelling a data-parallel application
executing on a heterogeneous hybrid platform. Such a hybrid
application consists of several kernels (generally speaking,
multithreaded) running in parallel on different computing
devices of the platform. Due to the inherent tight integration
and severe resource contention, the load of one computational
kernel in the application may significantly impact others’
performance to prevent the ability to model the perfor-
mance and energy consumption of each kernel in hybrid
applications individually [18]. Therefore, configurations of
the hybrid application with no more than one CPU kernel
or accelerator kernel running on the corresponding device
are only considered. Each group of cores executing an
individual kernel of the application is modelled as an abstract
processor to represent the executing platform as a set of
heterogeneous abstract processors. Such a grouping ensures
that the sharing of system resources is maximized within
groups of computational cores representing the abstract
processors and minimized between the groups. This way,

VOLUME 11, 2023 27227

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

TABLE 1. Specifications of the hybrid node containing an intel haswell
multicore CPU, an nvidia K40c, and an nvidia P100 PCI-E GPU.

the contention and mutual dependence between abstract
processors are minimized.

Therefore, a hybrid data-parallel application is represented
by a set of computational kernels executing on groups of
cores, which we term heterogeneous abstract processors.
For example, consider the hybrid node employed in our
experiments in this work and whose specification is shown in
Table 1. It consists of a dual-socket Intel Haswell multicore
CPU involving 24 physical cores with 64 GB main memory,
which hosts two accelerators, an Nvidia K40c GPU and an
Nvidia P100 GPU. So, we model a data-parallel application
executing on this node by three heterogeneous abstract
processors, CPU_1, GPU_1, and GPU_2. CPU_1 comprises
22 (out of a total of 24) CPU cores. GPU_1 symbolizes the
Nvidia K40c GPU and a host CPU core connected to this
GPU via a dedicated PCI-E link. The Nvidia P100 PCI-E
GPU and a host CPU core connected to this GPU via a
dedicated PCI-E link are denoted by GPU_2.

Second, the computational kernels’ performance and
dynamic energy profiles are built offline using a method-
ology based on processor clocks and system-level power
measurements provided by external power meters (ground-
truth method). In this work, when we say the performance
and dynamic energy profiles of the heterogeneous processors,
we mean the profiles of the three computational kernels
executing on the three heterogeneous abstract processors.

Finally, given the performance and dynamic energy
profiles, a data-partitioning algorithm solves the bi-objective
optimization problem to determine the Pareto-optimal solu-
tions (workload distributions), minimizing the execution time
and the total energy consumption of computations during the
parallel execution of the application.We term the bi-objective
optimization problem HEPOPT that we formulate in the
following section.

However, there are two issues with the application-level
solution method [15]. First, the data-partitioning algorithm is
sequential and takes exorbitant execution times for evenmod-
erate values of p. For example, consider its execution times

for HEPOPTA [15] solving the bi-objective optimization
problem for two scientific data-parallel applications, matrix
multiplication (DGEMM) and 2D fast Fourier transform
(2D-FFT), executed on a platform comprising two con-
nected heterogeneous multi-accelerator NUMA nodes. For
the DGEMM application, the data-partitioning algorithm’s
execution time ranges from 4 seconds to 6 hours for values
of p varying from 12 to 192. For the 2D-FFT application,
the execution time increases from 16 seconds to 16 hours for
values of p, going from 12 to 192.
Second, the procedure to construct the performance and

dynamic energy profiles employing system-level power
measurements provided by external power meters (ground-
truth method) is also sequential and expensive. The execution
times of constructing the discrete performance and dynamic
energy profiles comprising 210 and 256 workload sizes for
the two applications, DGEMM and 2D-FFT, are 8 hours and
14 hours, respectively. Finally, the dynamic energy profiles
are constructed offline using the ground-truth method.
Briefly, while the ground-truth method exhibits the highest
accuracy, it is also the most expensive [17]. In addition,
it cannot be employed in dynamic environments (HPC
platforms and data centers) containing nodes that are not
equipped with power meters.

Therefore, there are two crucial challenges to accelerating
the bi-objective optimization of data-parallel applications
for performance and energy on modern heterogeneous HPC
platforms: (a) Fast computation of Pareto-optimal solutions
optimizing the application for performance and energy, and
(b) Fast construction of performance and dynamic energy
profiles that are discrete functions of workload size by
employing an energy measurement method that caters to
environments where nodes are not equipped with power
meters.
In this work, we propose algorithms that address the first

challenge, the fast computation of Pareto-optimal solutions
optimizing the application for performance and energy. The
second challenge is an open problem. Therefore, we present
just an overview of the issues involved.

To construct the performance and dynamic energy profiles
of the heterogeneous processors (components), we need
accurate and reliable methods for component-level measure-
ment of the execution time and energy. Since all processing
units are equipped with sufficiently precise clocks, obtaining
accurate performance profiles is achievable (even in the
case of tightly coupled components). However, methods
for component-level measurement of energy consumption
present a real challenge.

There are three component-level energy measurement
approaches. The first approach employs system-level phys-
ical measurements using external power meters, which is
the most accurate but very expensive. In our experience,
obtaining a single experimental point with sufficient statis-
tical confidence can take hours and even days. Nevertheless,
the measurements obtained this way are considered ground
truth [19]. The second approach is to use on-chip power

27228 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

sensors such as Intel RAPL (Running Average Power Limit),
Intel Xeon Phi SMC (SystemManagement Controller), AMD
APM (Application Power Management), Nvidia NVML
(Nvidia Management Library). Unfortunately, while cheap
and efficient, on-chip power sensors have been found to be
inaccurate and poorly documented [19]. Furthermore, exten-
sive experiments with highly optimized scientific kernels
on several mainstream CPUs and accelerators have shown
that energy profiles constructed using state-of-the-art on-chip
power sensors are qualitatively inaccurate [19].

The third approach uses software energy predictive models
employing various measurable runtime performance-related
predictor variables. This approach is the only realistic
alternative to the ground-truth method. There has been
good progress in energy modelling for multicore CPUs
built on the selection of model variables that satisfy basic
laws of energy conservation [20]. For example, best models
employing performance monitoring counters (PMCs) and
utilization variables have 10-20% accuracy on popular
scientific kernels [21]. However, accelerators are poorly
instrumented for runtime energy modelling. As a result,
runtime modeling of energy consumption by components
running on accelerators needs to be developed more.

We first formulate the bi-objective optimization problem
(HEPOPT) of data-parallel applications for performance and
energy through workload distribution on a cluster of p
identical hybrid nodes, each containing h heterogeneous pro-
cessors. The inputs to HEPOPT are the workload size, n; the
number of identical nodes, p; the number of heterogeneous
processors in each node, h; the sets T and E containing
the discrete functions of execution time and dynamic energy
against the workload size for the h heterogeneous processors;
the static power consumption of a node,Ps. Finally, the output
is the Pareto-optimal solutions for performance and total
energy.

The problem formulation has some additional constraints.
First, the workload size is assumed to be multiple of a basic
computation unit that does not differ during the application
execution. For example, a basic computation unit in matrix
multiplication is a matrix update, a + b× c, where a, b, and
c are u× u matrices of fixed size u. Therefore, the workload
sizes are given in multiples of 2× u3, which is the number of
arithmetic operations in the basic computation unit. Second,
the discrete sets representing the execution time and dynamic
energy functions have cardinality m. The set of workload
sizes in the functions is {1, · · · ,m}. Therefore, the workload
size n has an upper bound, p× m× h.
The state-of-the-art sequential algorithm, HEPOPTA [15],

solves HEPOPT with time complexity of O(m3
× p3 × h3 ×

log2(m× p× h)) where m is the maximum cardinality of the
discrete sets representing the performance and energy profiles
of the h heterogeneous processors. However, HEPOPTA
can handle input discrete sets of different cardinalities,
and arbitrary sizes can separate the workload sizes in
the sets. Furthermore, the workload sizes can be positive
reals.

We propose a two-level hierarchical sequential algorithm
called HEPOPTADP that is more efficient and amenable to
parallelization. It uses the dynamic programming technique
and employs HEPOPTA as the fundamental building block
at the second level. The inputs to HEPOPTADP are the
workload size, n; the number of identical nodes, p; the
number of heterogeneous processors in each node, h;
the sets T and E containing the discrete execution time
and dynamic energy functions of the h heterogeneous
processors; the static power consumption of a node, Ps.
HEPOPTADP returns the Pareto-optimal solutions for per-
formance and total energy. Each solution, generally not load
balanced, is a workload distribution between the p × h
processors where the workloads in the distribution can be
different.

The time complexity of HEPOPTADP isO(n×p2×m×h×
log2(p×m×h)). Therefore, it achieves a complexity reduction
of O(m

2
×h2×p
n) over HEPOPTA. Therefore, the speedup is

constant for a constant amount of work per processor, n
p×h ,

keeping the other application input parameters (execution
time and dynamic energy functions) the same. The reduction
is due to the hierarchical design and memoization employed
in dynamic programming technique. Since the workload size
n has an upper bound, p × m × h, the lower bound on the
complexity reduction will be O(m× h).
We then propose a parallel version of HEPOPTADP called

PARHEPOPTA executed by q identical parallel processes and
time complexityO(n× p2

q ×m×h×log2(p×m×h)). Therefore,
it reduces the time complexity of HEPOPTADP by O(q) and
HEPOPTA byO(m

2
×h2×p×q

n)). Since n ≤ p×m×h, the lower
bound on the complexity reduction will be O(q × m × h).
Therefore, the speedup increases with q for a constant n

p×h
keeping the other application input parameters the same.

We developed two implementations of PARHEPOPTA.
The first implementation employs q MPI processes. The
second implementation uses hybrid parallelism and is
executed by q MPI processes, each employing t threads.
Experimentally, we find that the first implementation per-
forms better. Therefore, we describe this implementation
here. The implementation using hybrid parallelism is given
in the supplemental.

We study the practical efficacy of HEPOPTADP and
PARHEPOPTA for two data-parallel applications, matrix
multiplication (DGEMM) and fast Fourier transform
(2D-FFT), using the hybrid node (Table 1). The DGEMM
application computes the matrix product of two square
matrices of size N × N . The 2D-FFT application computes
the 2D discrete Fourier Transform of a complex signal matrix
of size N × N .

First, we present the speedups of PARHEPOPTA and
HEPOPTADP over HEPOPTA. Since we do not have their
GPU implementations, all three algorithms are executed on
the hybrid node employing only the Intel multicore CPU.
HEPOPTADP and HEPOPTA are serial algorithms exe-
cuted by one process. q processes execute PARHEPOPTA.
Experimentally, the best value of q on the experimental

VOLUME 11, 2023 27229

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

compute node is 24, equal to the total number of CPU
cores.

Our experiments show that the proposed algorithms
PARHEPOPTA and HEPOPTADP exhibit good speedups
over HEPOPTA. For example, for DGEMM application with
configuration (N = 70656, p = 256, h = 3,m = 211),
the speedup of HEPOPTADP over HEPOPTA is 4.6, and
the speedup of PARHEPOPTA over HEPOPTADP is 6.57.
On the other hand, for 2D-FFT application with (N =

96000, p = 256, h = 3,m = 256), the speedups are 2.12 and
10, respectively. Thus, the total speedups of PARHEPOPTA
over HEPOPTA are 30.25 and 21.05 for DGEMM and
2D-FFT, respectively.

Second, we provide examples of the usage of PARHEP-
OPTA. Finally, we present scenarios where PARHEPOPTA
can accelerate the development of energy-efficient parallel
applications and long-running simulations like numerical
weather prediction due to its tremendous speedups.

In summary, the main original contributions of this work
are:
• The formulation of the bi-objective optimization prob-
lem (HEPOPT) of data-parallel applications for perfor-
mance and energy on a cluster of p identical hybrid
nodes, each containing h heterogeneous processors;

• A model-based dynamic programming data partitioning
algorithm, HEPOPTADP, solving HEPOPT that is
more efficient and amenable to parallelization than
the state-of-the-art algorithm. HEPOPTADP takes input
discrete execution time and dynamic energy functions
of cardinality m with any arbitrary shape and returns the
Pareto front of load imbalanced solutions and best load
balanced solutions. It achieves a complexity reduction
over the state-of-the-art sequential algorithm that has the
lower bound of O(m× h);

• A parallel version of HEPOPTADP executed by
q identical parallel processes called PARHEPOPTA
solving HEPOPT. It reduces the time complexity
of HEPOPTADP by O(q). It achieves a complexity
reduction over the state-of-the-art sequential algorithm
that has the lower bound of O(m× h× q);

• Two novel algorithms, which HEPOPTADP and
PARHEPOPTA invoke. The first algorithm, PoP,
combines k input Pareto fronts, each containing n points
with a complexity of O(k × n). The second algorithm,
ConPar, determines the dominating Pareto front given
k input Pareto fronts, each containing n points with a
complexity of O(k × n× log2(k × n));

• Experiments on a heterogeneous hybrid node and sim-
ulations of clusters of such hybrid nodes demonstrating
that our proposed algorithms exhibit good speedups over
the state-of-the-art solutions.

The rest of the paper is organized as follows. Section II
contains the formulation of the bi-objective optimization
problem for performance and energy on heterogeneous
hybrid platforms. Our proposed sequential and parallel
algorithms, HEPOPTADP and PARHEPOPTA, are described

in Sections III and IV. Section V contains the experimental
results. Section VI presents the related work. Finally,
we conclude the paper in Section VII.

II. BI-OBJECTIVE OPTIMIZATION PROBLEM ON HYBRID
NODES FOR PERFORMANCE AND TOTAL ENERGY:
PROBLEM FORMULATION
This section formulates HEPOPT, the bi-objective optimiza-
tion problem for data-parallel applications for performance
and total energy on a heterogeneous platform of p identical
hybrid nodes, each containing h heterogeneous processors.
The problem employs workload distribution as the decision
variable.

Consider a workload size n executed using p identical
nodes, each containing h heterogeneous processors. Let the
sets, T = {t1(x), . . . , th(x)} and E = {e1(x), . . . , eh(x)},
contain the discrete execution time and dynamic energy
functions of the h heterogeneous processors. The function
ei(x) represents the amount of dynamic energy consumed by
Pi to execute the workload size x, and ti(x) is the execution
time of the workload size on this processor.

The workload size n is assumed to be multiple of a
basic computation unit that does not differ during the
application execution. The discrete sets representing the
execution time and dynamic energy functions are assumed to
have cardinalitym. The set of workload sizes in the functions
is {1, · · · ,m}. Therefore, the maximum workload size n that
can be solved is p× m× h.

HEPOPT is then formulated as follows:
HEPOPT(n, p, h,T ,E,Ps,D):

fT (D) =
p

max
i=1

h
max
j=1

tj(dij)

fE (D) =
p∑
i=1

(Ps ×
h

max
j=1

tj(dij)+
h∑
j=1

ej(dij))

minimize
D

(fT (D), fE (D))

subject to:
p∑
i=1

h∑
j=1

dij = n,

0 ≤ dij ≤ m, i ∈ {1, · · · , p}, j ∈ {1, · · · , h}
(1)

The two objective functions are fT (D) and fE (D). The
objective function fT (D) gives the parallel execution time
of the workload employing the workload distribution, D =
[dij]p×h, i = 1, 2, . . . , p, j = 1, 2, . . . , h. The objective
function fE (D) gives the total energy consumption during the
execution of the workload. We use T × E : Rk

≥0 × Rk
≥0 to

denote the objective space of this problem.
HEPOPT returns Pareto-optimal solutions (workload dis-

tributions), minimizing the two objective functions. Our
solution finds a set of triplets, P = {(fT (D), fE (D),D)}, such
that D is a Pareto-optimal decision vector and the projection
of P onto the objective space is the Pareto front.

27230 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

The state-of-the-art sequential algorithm, HEPOPTA [15],
solves HEPOPT with time complexity of O(m3

× p3 × h3 ×
log2(m × p × h)). We first propose an algorithm, HEP-
OPTADP employing the dynamic programming approach
to solve HEPOPT, which is more efficient and amenable
to parallelization. Then, we describe our parallel algorithm,
PARHEPOPTA, based on HEPOPTADP.

III. HEPOPTADP: DYNAMIC PROGRAMMING
BI-OBJECTIVE OPTIMIZATION ALGORITHM
We propose an algorithm HEPOPTADP employing the
dynamic programming approach to solve HEPOPT, which is
amenable to parallelization. HEPOPTADP is a two-level hier-
archical algorithm employing HEPOPTA as the fundamental
building block at the second level.

The state-of-the-art sequential algorithm, HEPOPTA [15],
solves HEPOPT with time complexity of O(m3

× p3 × h3 ×
log2(m × p × h)). HEPOPTA considers the cluster of p
identical nodes, each containing h processors, as a 1D array
of p × h heterogeneous processors. HEPOPTA is a branch-
and-bound algorithm that organizes workload distributions,
(x1, · · · , xp×h), efficiently as a tree while considering only
distributions that sum to n to determine the Pareto front.
For example, let us consider HEPOPTA solving aworkload

size n = 8 on p = 2 identical nodes containing
h = 2 processors each. The other inputs are two
discrete execution time and dynamic energy functions of
the heterogeneous abstract processors. Let us assume the
set of workload sizes in the functions is {1, · · · , 4}. First,
HEPOPTA converts the platform configuration (p, h) into
a 1D array of 4 heterogeneous processors (P0,P1,P2,P3)
with four corresponding discrete execution time and dynamic
energy discrete functions. Then it organizes the workload
distributions between the four processors as a tree containing
four levels. The first level contains allocations to processor
P0, the second level with allocations to processors P0 and
P1, and the last level contains the workload distribution for
all four processors. Therefore, the first level contains five
branches with workload size allocations {0, 1, 2, 3, 4} to P0.
The first branch is then extended to five other branches with
workload size allocations {0, 0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}}
to P0 and P1 and so on. Then, it applies constraints
to traverse only branches where the processor alloca-
tions sum to 8 and other optimizations to determine the
Pareto front. HEPOPTA is detailed in the supplemental,
Section III.
The inputs to HEPOPTADP are the workload size, n; the

number of identical nodes, p; the number of heterogeneous
processors in each node, h; the sets T and E containing the
discrete execution time and dynamic energy functions; the
static power consumption of a node, Ps.
The output of HEPOPTADP is a Pareto front represented

by a set of tuples, P = {(fE (D), fT (D),D)i}, i ∈ [1 . . K],
where D = [dij]p×h, i = 1, 2, . . . , p, j = 1, 2, . . . , h is
the optimal workload distribution, fE (D) is the total energy,
and fT (D) is the execution time corresponding to the optimal

workload distribution. The solutions in the set P are output
in increasing order of total energy.

HEPOPTADP has three core components: a). Recur-
rence relation, b). Tabular computation, and c). Traceback.
HEPOPTADP uses the recurrence relations to compute the
cells in the dynamic programming table, dpt , of size n × p,
as shown in Figure 1(a). The parameter h is not shown in the
figure since it is employed in the HEPOPTA invocations to
obtain the Pareto fronts for the red and orange cells.

HEPOPTADP divides the partitioning of workload size r
between c processors into the following sub-problems:
• Allocating i to one processor and the remaining r − i to
c− 1 processors.

• Allocating r to i processors, i = 1, . . . , c − 1.
Since dpt(r, c − 1) is composed of the solutions to
sub-problems, dpt(r, 1), . . . , dpt(r, c − 2), the only
sub-program required to be solved is allocating r to
c− 1 processors.

The recurrence relations are given below:

dpt(1, c) = HEPOPTA(1, h,T ,E,Ps), c = 1, . . . , p

dpt(r, 1) = HEPOPTA(r, h,T ,E,Ps),

r = 2, . . . ,min(n,m ∗ h)

dpt(r, 1) = 8, r = min(n,m ∗ h)+ 1, . . . , n

dpt(r, c) = ConPar(PoP(dpt(1, 1), dpt(r − 1, c− 1)), . . . ,

PoP(dpt(rmax, 1), dpt(r−rmax, c−1)),

dpt(r, c− 1)),

rmax = min(r − 1,m× h),

r = 2, . . . , n, c = 2, . . . , p (2)

The row and column dimensions are given by r and c.
The cell, dpt(r, c), r = 1, 2, . . . , n, c = 1, 2, . . . , p, contains
the Pareto front to solve the workload size r using c nodes.
We denote the Pareto front byPrc. At the end of the execution
of HEPOPTADP, the cell dpt(n, p) contains the Pareto front
to solve the workload size n using the p identical nodes.
The top three recurrence relations (base conditions)

represent the base initialization step, which computes the red
cells in the first row and orange cells in the first column,
as shown in Figure 1(b). The cell, dpt(1, c), c = 1, . . . , p,
contains the Pareto front to solve the workload size one using
c nodes. The workload distribution is trivial in this case, one
node gets the workload, and the rest get zero. Since each node
contains h heterogeneous processors, HEPOPTADP invokes
HEPOPTA to determine the Pareto front, P1c, to solve
the workload using the heterogeneous processors. The cell,
dpt(r, 1), r = 1, . . . ,m ∗ h, contains the Pareto front Pr1
to solve the workload size r using one node. HEPOPTADP
invokes HEPOPTA to determine the Pareto front solving
the workload using h heterogeneous processors. The cell,
dpt(r, 1), r = m ∗ h + 1, . . . , n, will contain a null Pareto
front since m ∗ h is the maximum workload size that can be
solved using h heterogeneous processors.

The fourth recurrence relation represents the computation
of the cells in an anti-diagonal, L = 3, . . . , n+ p− 1. The

VOLUME 11, 2023 27231

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

FIGURE 1. The data structures and the main steps in the execution of HEPOPTADP. (a). The dynamic programming table is of size n × p. The parameter h
is not shown since it is employed in the HEPOPTA invocations to obtain the Pareto fronts for the red and orange cells. The discrete functions of
execution time (T) and dynamic energy (E) are assumed to have cardinality m. The workload sizes in the functions and n are multiples of a basic
computation unit. Without any loss of generality, the set of workload sizes in the functions is assumed to be {1, · · · , m}. Therefore, the workload size n
has an upper bound, p × m × h. (b). The base initialization step (top three recurrence relations) computes the red and the orange cells. The red cells
contain the Pareto front obtained by invoking HEPOPTA(1, h, T , E, Ps), solving workload size one using h processors. The orange cells contain the Pareto
front output by HEPOPTA(r , h, T , E, Ps) solving workload size r using h processors. The dashed lines show the anti-diagonals, L = 1, . . . , n + p − 1.
(c). The Pareto fronts for the blue cells, {(4,2),(3,3),(2,4)}, in the anti-diagonal, L=5, are obtained using the Pareto fronts in the cells in the anti-diagonals
preceding L. There are no dependencies between computations of blue cells. (d). The routine PoP is used to combine two Pareto fronts. The computation
of the Pareto front for cell (7,5) involves a PoP invocation to combine the Pareto fronts in the orange and green cells (2,1) and (5,4). (e). The computation
of the Pareto front for the cell, dpt(r , c) = dpt(5, 4) = Prc = P54, will involve PoP invocations to combine the Pareto fronts in the cell pairs,
{(1, 1), (4, 3)}, . . . , {(4, 1), (1, 3)}. The routine ConPar determines the Pareto front in dpt(5, 4) = P54 from the input Pareto fronts,
{P1, . . . ,P4, Pr1, P53}. The cell, dpt(n, p), will contain the optimal solution to the optimization problem, HEPOPT.

size of an anti-diagonal L gives the number of cells
in it. All the cells in an anti-diagonal are computed
sequentially. The anti-diagonals L are visited serially in
the order 3, . . . , n + p − 1. The Pareto front for a table
cell in an anti-diagonal L depends only on the Pareto
fronts in the cells in the anti-diagonals preceding L as
shown in Figure 1(c). Consider the anti-diagonal, L=5.
It has five cells, {(5,1),(4,2),(3,3),(2,4),(1,5)}. The Pareto
fronts for the cells, {(5,1),(1,5)}, are computed in the base
initialization step. The values for the blue cells depend only
on the Pareto fronts in the green cells in the anti-diagonals
preceding L=5. For the cell (4,2), the possible workload
distributions for the workload size 4 are {(1, 1), (3, 1), (0, p−
2)}, {(2, 1), (2, 1), (0, p − 2)}, {(4, 1), (0, p − 1)}. The first

workload distribution allocates workload size one to one
node, three to one node, and zero to the rest. The second
workload distribution allocates workload size two to one
node, two to one node, and zero to the rest. Finally, the last
workload distribution allocates workload size four to one
node and zero to the rest. The computation of the Pareto front
for the cell (4,2) will involve two invocations of the Pareto
front combination routine, PoP. First, two Pareto fronts, P11
and P31, are combined using PoP to get a temporary Pareto
front, Ptmp1. Then, two Pareto fronts, P21 and P21, are
combined using PoP to get a temporary Pareto front, Ptmp2.
The routine ConPar builds the optimal Pareto front, P42, for
the cell (4,2), from the three input Pareto fronts, {Ptmp1,
Ptmp2, P41}.

27232 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

The routine PoP combining two or more Pareto fronts is
described in the supplemental. Figure 1(d) illustrates how
PoP combines two Pareto fronts to compute the Pareto
front for the cell, (7, 5). For the anti-diagonal L=6, there
are six cells, {(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)}. The cells
{(6,1),(1,6)} are computed in the base initialization step.
The Pareto fronts for the rest of the cells are determined as
described above by invoking the ConPar routine that takes
as input the Pareto fronts in the cells in the anti-diagonals
preceding L=6.
Figure 1(e) illustrates all the PoP invocations involved

in determining the Pareto front for the cell, (r, c). The last
recurrence relation illustrates how the Pareto front is com-
puted for this cell using the routine, ConPar. There are rmax
PoP invocations, PoP(P11,Pr−1 c−1), PoP(P21,Pr−2 c−1),. . . ,
PoP(Prmax 1,Pr−rmax c−1) resulting in rmax Pareto fronts.
These Pareto fronts, along with the Pareto front (Pr c−1), are
input to the ConPar invocation.

The last anti-diagonal visited, L = n + p − 1, contains
the cell, dpt(n, p). The Pareto front for this cell is determined
similarly using the ConPar routine. The ConPar invocations
take as inputs Pareto fronts resulting from rmax PoP invo-
cations, PoP(P11,Pn−1 p−1), . . . , PoP(Prmax 1,Pn−rmax p−1),
and the Pareto front, (Pn p−1). The cell dpt(n, p) contains the
output of HEPOPTADP, the Pareto front needed to solve the
workload size n using the p identical nodes.
HEPOPTADP provides not only the solution for (n, p) but

also for any (I , J),∀I = 1, . . . , n, J = 1, . . . , p, through its
dpt table. The time complexity of this algorithm isO(n×p2×
m×h× log2(p×m×h)). Therefore, it achieves a complexity
reduction of O(m

2
×h2×p
n) over HEPOPTA. Since n ≤ p ×

m × h, the lower bound on the reduction in complexity will
be O(m× h). The reduction is due to the hierarchical design
of HEPOPTADP and memoization in dynamic programming
technique. The correctness and time complexity proofs of
HEPOPTADP are given in the supplemental.

IV. PARHEPOPTA: PARALLEL DYNAMIC PROGRAMMING
BI-OBJECTIVE OPTIMIZATION ALGORITHM
We describe here the parallel version of HEPOPTADP
called PARHEPOPTA executed by q identical parallel MPI
processes.

The inputs to PARHEPOPTA are the workload size, n; the
number of identical nodes, p; the number of heterogeneous
processors in each node, h; the number of identical MPI
processes executing PARHEPOPTA, q; the sets T and E
containing the discrete execution time and dynamic energy
functions; the static power consumption of a node, Ps. All
the inputs and outputs are assumed to be available at process
0 only.

The output is a Pareto front represented by a set of
tuples, P = {(fE (D), fT (D),D)i}, i ∈ [1 . . K], where
D = [dij]p×h, i = 1, 2, . . . , p, j = 1, 2, . . . , h is the
optimal workload distribution, fE (D) is the total energy, and
fT (D) is the execution time corresponding to the optimal

Algorithm 1 Parallel Algorithm Solving the Bi-Objective
Optimization ofWorkload Size n for Performance and Energy
Employing q Parallel Processes
1: procedure PARHEPOPTA(n, p, h, q,T ,E,m,Ps,P)

Input:
Workload size, n
Number of identical nodes, p
Number of heterogeneous processors per node, h
Number of identical MPI processes executing PARHEP-
OPTA, q
Set of discrete execution time functions, T =

{t1(x), . . . , th(x)}
Set of discrete dynamic energy functions, E =

{e1(x), . . . , eh(x)}
The cardinality of the discrete sets, m
Static power consumption of a node, Ps

Output:
Pareto front, P = {(fE (D), fT (D),X)k}, k ∈ [1 . . K]

D = [dij]p×h, i ∈ [1 . . p], j ∈ [1 . . h]

2: iam← MPI_Comm_rank(MPI_COMM_WORLD)
3: if p = 1 and q = 1 then
4: return HEPOPTA(n, h,T ,E,Ps)
5: end if
6: for r ← 1, min(n,m∗h)

q do
7: w← r + iam ∗ min(n,m∗h)

q
8: dpt(w, 1)← HEPOPTA(w, h,T ,E,Ps)
9: end for
10: for r ← 1, (min(n,m ∗ h)) mod q do
11: if (iam = (r − 1)) then
12: w← r + q ∗ min(n,m∗h)

q
13: dpt(w, 1)← HEPOPTA(w, h,T ,E,Ps)
14: break
15: end if
16: end for
17: MPI_Allgatherv(dpt(∗, 1))
18: for L ← 3, n+ p− 1 do
19: dpt ← computeL(iam, n,m, p, h, q,L, dpt)
20: end for
21: if (iam = (q− 1)) then
22: MPI_Send(dpt(n, pq), . . . , 0, . . .)
23: end if
24: if (iam = 0) then
25: MPI_Recv(Pnp, . . . , q− 1, . . .)
26: end if
27: return Pnp
28: end procedure

workload distribution. The solutions in the set P are output
in increasing order of total energy.

The pseudocode of PARHEPOPTA is illustrated in the
Algorithm 1.

The dynamic programming table dpt of dimensions n× p
is partitioned vertically between q processes. We assume

VOLUME 11, 2023 27233

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

FIGURE 2. The main steps in the execution of PARHEPOPTA employing q processes (4, in this case) to determine the Pareto front solving the workload
size n = 12 using p = 9 identical nodes, each containing h heterogeneous processors. (a). The dynamic programming table’s columns (2, . . . , p) are
divided evenly between the q processes. (b). In the first main step, the Pareto fronts in the red cells, {(1,1),(2,1),. . . ,(m ∗ h,1)}, are computed in parallel
and replicated at all the q processes since they will be needed at all the main steps of PARHEPOPTA. (c). PARHEPOPTA then visits the anti-diagonals L
serially in the order 3, . . . , n + p − 1. For each anti-diagonal L, the Pareto fronts in its cells are computed in parallel by the q processes. There are no
dependencies between the cells in the anti-diagonal. (d). Consider the computations for the cell (6, 6) in the anti-diagonal L = n + 1 = 11. The cell
belongs to P3. To compute the Pareto front in this cell, P3 will need the Pareto fronts in the cells, {(1,1),. . . ,(6,1),(6,2),. . . ,(6,4),(1,5),. . . ,(6,5)}. P3 contains
locally the Pareto fronts in the cells, {(1,1),. . . ,(6,1)}. Note the cells in the first column {(1,1),. . . ,(6,1),. . . ,(m × h,1)} are replicated at all the processes.
P1 communicates the Pareto fronts in the cells, {(6,2),(6,3)}, to P3. P2 communicates the Pareto fronts in the cells, {(2,5),(3,5),(4,5),(5,5),(6,4),(6,5)}, to P3.
Then, P3 performs local computations involving PoP invocations and a ConPar invocation to compute the Pareto front for cell (6,6).

p is divisible by q for aiding exposition. The first column is
replicated at all the processes since its cell values are needed
at each step of PARHEPOPTA. The rest of the columns
(1, . . . , p−1) are distributed evenly between the q processes.
A vertical partitioning scheme is better for load balance

than a horizontal one, where the n rows are divided equally
between the q processes. Since the computation progresses
diagonally in the dpt table, horizontal partitioning results in
idling several processes and not doing anywork. For example,
q−1 processes (excluding process 0) will idle at the beginning
of the computation, and q − 1 processes (excluding process
q− 1) will idle at the end of the computation.
A process finds its rank, iam, on Line 2. Lines 3-5 cover the

simple case when only one process executes PARHEPOPTA,
q = 1, to solve the workload n using one node (p = 1)
with h heterogeneous processors. PARHEPOPTA invokes
HEPOPTA to obtain the Pareto front solving the workload
using h heterogeneous processors. Lines 6-16 execute the
base conditions (the top three recurrence relations). The
table cells, dpt(1, c), c = 1, . . . , p, store the Pareto
front, P11, to solve the workload size one using one
node.

The table cell, dpt(r, 1), r ∈ [2 . . m ∗ h], is filled with the
Pareto front,Pr1, to solve the workload size r using one node.
PARHEPOPTA invokes HEPOPTA to obtain this Pareto front
solving the workload r using h heterogeneous processors.
First, the Pareto fronts in the cells in the first column are
determined in parallel by the q processes. Then, the column is
replicated at all the processes using MPI_Allgatherv routine.

The core loop starts at Line 18. The loop variable,
L = 3, . . . , n + p − 1, represents the anti-diagonal. All
the cells in an anti-diagonal are computed using the routine,
computeL.

Algorithm 2 illustrates the routine, computeL. All the q
processes take part in this routine. Since the table cells in
an anti-diagonal L = 3, . . . , n + p − 1 depend only on the
cells in the anti-diagonals preceding L and have no inter-
dependencies, they can be computed in parallel. The anti-
diagonals are, however, visited sequentially, as shown in
Figure 2(c). The number of cells in an anti-diagonal, ncells,
is obtained using the routine, getncells (explained in the
supplemental). There can only be amaximum of p cells in any
anti-diagonal. The routine, getmyncells, returns myncells and
ncellspre, which are the number of cells in an anti-diagonal

27234 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

Algorithm 2 Routine Where the Processes Compute in
Parallel All the Cells in the Anti-Diagonal L
1: function computeL(iam, n,m, p, h, q,L, dpt)
2: ncells← getncells(L, n, p)
3: (myncells, ncellspre)← getmyncells(

iam, ncells,L, n, q, aggDptPart)
4: myP← aggDptPart[iam+ 1]− aggDptPart[iam]
5: sRow← (L < n)?(L − 1) : n
6: sCol ← (L ≤ n)?2 : (L−n+ 1)
7: lCol ← sCol + ncellsPre− 2− aggDptPart[iam]
8: if (iam ̸= 0) and (myncells! = 0)

and (lCol = 0) then
9: lRow← sRow−ncellsPre− 2

10: MPI_Recv(dptL(lRow), . . . , iam− 1, . . .)
11: end if
12: if (iam ̸= q− 1) and

(ncellsPre+ myncells < ncells) then
13: lRow← sRow− (ncellsPre+ myncells)− 2
14: lCol ← myP− 1
15: MPI_Send(dptL(lRow, lCol),

iam+ 1)
16: end if
17: for v← 1,myncells do
18: gRow← sRow−ncellsPre− v
19: gCol ← sCol + ncellsPre+ v
20: lRow← gRow− 2
21: lCol ← gCol − 2− aggDptPart[iam]
22: dpt(lRow, lCol)←
23: computecell(iam,m, gRow, gCol,

lRow, lCol, dptL, dpt)
24: end for
25: return dpt
26: end function

owned by the process iam and the number of cells that precede
the cells belonging to the process iam. Both getncells and
getmyncells are local routines.

Lines 7-16 in Algorithm 2 present the communications
in PARHEPOPTA illustrated in Figure 2(d). Only one cell
value is communicated between neighbouring processes iam
and iam + 1 in each iteration of L. If the process iam ̸=
0 is computing a cell in its first table column given by the
condition (lCol = 0), then it needs the values of the cells
in the column preceding it from the neighbouring process,
iam − 1. The buffer, dptL, stores these values with every
increment of L. The neighbouring cell value is stored at the
index, lRow. If the process iam ̸= (q−1) is not the last process
owning a cell in the anti-diagonal L given by the condition
((ncellspre+myncells) < ncells), then it sends the cell value,
dpt(lRow, lCol), to the neighbouring process, iam+ 1.

After completing the communications, the loop
(Lines 17-24) contains the core computations. The local
routine, computecell (Algorithm 3), computes the table cell
value dpt(lRow, lCol), which depends only on the cells,

Algorithm 3 Local Routine Computing dpt(r, c) in the Anti-
Diagonal L
1: function computecell(iam,m, gRow, gCol,

lRow, lCol, dptL, dpt)
2: for row← 1, gRow− 1 do
3: if (row > m) and (gCol = 2) then
4: break
5: end if
6: if (gRow− row) = 1 then
7: dpt(lRow, lCol)← PoP(dpt(row− 1, 0),

dpt(0, 0), dpt(lRow, lCol))
8: else
9: dpt(lRow, lCol)← PoP(dpt(row− 1, 0),

dptL(gRow− row− 1),
dpt(lRow, lCol))

10: end if
11: end for
12: if !((gRow > m) and (gCol = 2)) then
13: if !((lCol = 0) and (dptL ̸= φ)) then
14: dpttmp← dptL(gRow− 2)
15: else
16: dpttmp← dpt(row− 2, lCol − 1)
17: end if
18: dpt(lRow, lCol)← ConPar(dpttmp,

dpt(lRow, lCol))
19: end if
20: return dpt(lRow, lCol)
21: end function

{(row, 1), (gRow−row, lCol−1)},∀I ∈ [1 . . gRow−1] and
(lRow, lCol − 1), as shown in Figure 1(e).
Lines 2-11 in Algorithm 3 contain the invocation of

the PoP routine to combine the Pareto fronts in the
cells, (row, 1) and (gRow − row, lCol − 1), as shown in
Figure 2(c). Lines 12-19 invoke the ConPar routine to build
the Pareto front, dpt(lRow, lCol), from the input Pareto
fronts, {dpt(lRow, lCol − 1), dpt(lRow, lCol)}.

Finally, in Lines 16-21 of the main algorithm 1, process
q− 1 sends the cell value, dpt(n, pq), to process 0. It contains
the Pareto front,Pnp, having the optimal performance-energy
application configurations (workload distributions) to solve
the workload size n using the p identical nodes. Pnp is the
output of PARHEPOPTA.

PARHEPOPTA, through its dpt table, provides not only
the solution for (n, p) but also for any (I , J),∀I =

1, . . . , n, J = 1, . . . , p. It reduces the time complexity
of HEPOPTADP by O(q). Therefore, it offers a potential
speedup of O(m

2
×h2×p×q

n) over HEPOPTA. Since n ≤ p ×
m × h, the lower bound for the reduction in complexity is
m × h × q. The time and memory complexity proofs of
PARHEPOPTA are given in the supplemental.

In the supplemental, we present the implementation of
PARHEPOPTA employing hybrid parallelism employing q
identical parallel MPI processes (q ≤ p), each executing t
threads. There is no change in the theoretical time complexity

VOLUME 11, 2023 27235

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

between the hybrid and multi-process implementations.
However, we experimentally found that the multi-process
implementation performs better.

V. EXPERIMENTAL RESULTS AND DISCUSSION
This section first presents the experimental setup, the
heterogeneous hybrid node and the data-parallel applica-
tions employed in the experiments. Then it describes the
experimental methodology to construct the discrete execution
time and the ground-truth dynamic energy profiles based
on system-level physical power measurements using power
meters for the processors involved in executing the two
data-parallel applications. We then present the speedups of
PARHEPOPTA and HEPOPTADP over HEPOPTA. Finally,
we provide examples of usage of PARHEPOPTA and discuss
scenarios where PARHEPOPTA can accelerate the develop-
ment and runtime of energy-efficient parallel applications.

To ensure the reliability of our results, we follow a
statistical methodology where a sample average for a
response variable (energy, time, PMC, utilization variables)
is obtained from multiple experimental runs. The sample
average is calculated by executing the application repeatedly
until it lies in the 95% confidence interval and a precision
of 0.05 (5%) is achieved. For this purpose, Student’s t-test
is used, assuming that the individual observations are inde-
pendent and their population follows the normal distribution.
We verify the validity of these assumptions using Pearson’s
chi-squared test. The methodology is described in the
supplemental.

A. EXPERIMENTAL SETUP
The hybrid node used in our experiments is presented in the
Introduction section. It consists of a dual-socket Intel Haswell
multicore CPU containing 24 physical cores with 64 GB
main memory, which hosts two accelerators, an Nvidia K40c
GPU and an Nvidia P100 GPU (specifications in Table 1).
Each accelerator connects to a dedicated host core via a
separate PCI-E link. The static power consumption of the
node is 253 W (Ps).
The hybrid node has one WattsUp Pro power meter

between the wall A/C outlets and the node’s input power
sockets. The power meter captures the total power consump-
tion of the node. It has a data cable connected to one USB
port of the node. A Perl script collects the data from the power
meter using the serial USB interface. The execution of these
scripts is non-intrusive and consumes insignificant power.

The power meters are periodically calibrated using
an ANSI C12.20 revenue-grade power meter, Yokogawa
WT210. The maximum sampling speed of the power meters
is one sample every second. The accuracy specified in the data
sheets is±3%. The minimum measurable power is 0.5 watts.
The accuracy at 0.5 watts is ±0.3 watts.
We experiment with two popular and highly opti-

mized scientific applications employing matrix multiplica-
tion (DGEMM) and 2D fast Fourier transform (2D-FFT)
routines, respectively.

The DGEMM application computes C+ = A × B,
where A, B, and C are square matrices of size N × N .
The application employs Intel MKL DGEMM for the CPU
and ZZGEMMOOC out-of-card package [22] for Nvidia
GPUs. ZZGEMMOOC packages reuse CUBLAS and MKL
BLAS for in-card DGEMM calls. The Intel MKL and CUDA
versions are 2017.0.2 and 9.2.148. The workload size is equal
to 2× N 3.
The 2D-FFT application computes the 2D discrete Fourier

Transform of a complex signal matrix of size N × N . The
workload size is 5 × N 2

× log2 N . It employs Intel MKL
FFT routines for the CPU and CUFFT routines for Nvidia
GPUs. For workload sizes that cannot be factored into primes
less than or equal to 127, CUFFT gives failures. Therefore,
we employ out-of-card computations for these workload sizes
where the workload size is divided into small sizes that can
be solved on the GPU.

Only the Intel multicore CPU is employed for executing
PARHEPOPTA because we do not have an implementation
of PARHEPOPTA for Nvidia GPUs. The MPI used is Open
MPI version 4.0.1.

B. METHODOLOGY TO CONSTRUCT DISCRETE EXECUTION
TIME AND GROUND-TRUTH DYNAMIC ENERGY PROFILES
This section describes the methodology to construct the
discrete execution time and ground-truth dynamic energy
profiles for the processors executing the two data-parallel
applications.

The data-parallel application on the hybrid node is
modeled by three heterogeneous abstract processors, CPU_1,
GPU_1, and GPU_2. The details are presented in the
Introduction section. The execution time profiles of the
abstract processors are experimentally built separately using
an automated build procedure using three OpenMP threads
where one thread is mapped to one abstract processor. The
execution times of all the abstract processors executing
the same workload are measured simultaneously, thereby
considering the influence of resource contention. The execu-
tion time for abstract processors involving the accelerators
includes the time to transfer data between the host and the
accelerator. For example, the execution time and dynamic
energy of the execution of a workload on GPU_1 include the
time and energy to transfer data from the host multicore CPU
core to the accelerator and back and the computations on the
accelerator.

The ground-truth dynamic energy profiles of the abstract
processors are constructed using the additive approach [15].
In the additive approach, the dynamic energy profiles of
the three processors are constructed serially. The combined
profile where the individual dynamic energy consumptions
are totalled for each data point is then obtained. Then,
the dynamic energy profile employing all the processors in
parallel is built. The difference between the parallel and
combined dynamic energy profiles is observed. We find
that the average difference between parallel and combined
dynamic energy profiles is around 5% for both applications

27236 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

and within the statistical accuracy threshold set in our
experiments. Both the parallel and combined profiles also
follow the same pattern. Therefore, we conclude that the
processors in our experiments satisfy the additive hypothesis:
the abstract processors are loosely coupled and therefore do
not interfere with each other during the application. Thus, the
ground-truth dynamic energy profiles of the three processors
can be constructed serially or in parallel for our experimental
platform and applications.

Figures 3a and 3b show the execution time and
ground-truth dynamic energy profiles of the three processors
for the DGEMM application obtained using the ground-
truth method. The numbers of points (m) in the profiles
for DGEMM and 2D-FFT applications are 210 and 256,
respectively. Figures 3c and 3d display the execution time and
ground-truth dynamic energy profiles of the three processors
for the 2D-FFT application obtained using the ground-truth
method.

In the figures, all the processors solve the same workload
size for each data point in the discrete performance and
energy profiles. For a given workload, PARHEPOPTA takes
the discrete profiles as input and determines the optimal
workload distribution to solve the workload. The workload
distribution typically would contain different workload sizes
assigned to the processors, but they are still members of the
input discrete sets. The total execution time and energy of
parallel execution of the workload is calculated to be the
maximum of the execution times of the assigned workload
sizes and summation of their respective energies. We can call
them themodel execution time andmodel energy.We confirm
through exhaustive experimentation that the actual total
execution time and total energy of parallel execution of the
workload do not differ significantly from the model time and
model energy.

1) PRECAUTIONS TO PREVENT NOISE IN MEASURING
ENERGY CONSUMPTION
The server is fully reserved and dedicated to the experiments
during their execution.We also ensure that there are no drastic
fluctuations in the load due to abnormal events in the server
by monitoring its load continuously for a week using the tool,
sar. Insignificant variation in the load is observed during this
monitoring period suggesting normal and clean behaviour of
the server.

Several precautions are taken in computing energy mea-
surements to eliminate any potential interference of the
computing elements not part of the given abstract processor
running the application kernel. First, we group abstract
processors so that a given abstract processor constitutes
solely the computing elements involved in running a given
application kernel. The application kernel will, in this way,
only use the computing elements of the abstract processor
executing it and not use any other component for its
execution. Hence, the dynamic energy consumption will
solely reflect the work done by the computing elements

FIGURE 3. The execution time and ground-truth dynamic energy profiles
of the three processors for the DGEMM and 2D-FFT applications.

VOLUME 11, 2023 27237

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

of the given abstract processor executing the application
kernel.

Consider the DGEMM application kernel executing on the
abstract processor CPU_1 (comprised of CPU and DRAM).
TheHCLWattsUpAPI function gives the server’s total energy
consumption during an application’s execution. Energy
consumption includes the contribution from all components,
such as NIC, SSDs, and fans. Therefore, to rule out their
contribution to dynamic energy consumption, we ensure all
the components other than CPUs and DRAM are not used
during the execution of an application. In this way, the
dynamic energy consumption we obtain using HCLWattsUp
API reflects only the contribution of CPUs and DRAM. The
following steps are employed for this purpose:

• The disk consumption is monitored before and during
the application run and ensures no I/O is performed by
the application using tools such as sar and iotop.

• The workload used in the execution of an application
does not exceed the main memory, and swapping
(paging) does not occur.

• The application does not use the network by monitoring
using tools such as sar and atop.

• The application kernel’s CPU affinity mask is set using
SCHED API’s system call,
SCHED_SETAFFINITY(). To bind the DGEMM appli-
cation kernel, we set its CPU affinitymask to 11 physical
CPU cores of Socket 1 and 11 physical CPU cores of
Socket 2.

Fans are also a great contributor to energy consumption.
On our platform, fans are controlled in zones: a) zone 0: CPU
or System fans, b) zone 1: Peripheral zone fans. There are
four levels to control the speed of fans:

• Standard: BMC control of both fan zones, with the
CPU zone based on CPU temp (target speed 50%) and
Peripheral zone based on PCH temp (target speed 50%);

• Optimal: BMC control of the CPU zone (target
speed 30%), with Peripheral zone fixed at low speed
(fixed 30%);

• Heavy IO: BMC control of CPU zone (target speed
50%), Peripheral zone fixed at 75%;

• Full: all fans are running at 100%.

To rule out fans’ contribution to dynamic energy con-
sumption, we set the fans at full speed before launching the
experiments. When set at full speed, the fans run consistently
at ∼13400 rpm. In this way, fans consume the same amount
of power, which is included in the static power of the
server. Furthermore, we monitor the server’s temperatures
and the fans’ speeds with the help of Intelligent Platform
Management Interface (IPMI) sensors, both with and without
the application run. We find no significant differences in
temperature, and the speeds of fans are the same in both
scenarios.

Thus, we ensure that the dynamic energy consumption
measured reflects the contribution solely by the abstract
processor executing the given application kernel.

C. SPEEDUPS OF PARHEPOPTA AND HEPOPTADP OVER
HEPOPTA
This section compares the speedup of PARHEPOPTA and
HEPOPTADP over HEPOPTA. All three algorithms are
executed only on the Intel multicore CPU since we do not
have their implementations for Nvidia GPUs.

HEPOPTADP and HEPOPTA are executed by only one
process using one thread. PARHEPOPTA is executed by q
MPI processes.

For DGEMM, the workload size n input to the algorithms
is a multiple of the number of arithmetic operations in a basic
computation unit, a matrix update, a+ b× c, where a, b, and
c are u× u matrices of fixed size u. Therefore, the workload
size n is a multiple of 2 × u3. The value of u used in our
experiments is 1536. For 2D FFT, the workload size n is a
multiple of a basic computation unit, a 2D FFT of a signal
matrix of size v × v. The value of v used in our experiments
is 512.

The input discrete dynamic energy profiles to all
three algorithms are the ground-truth profiles constructed
offline. The numbers of points (m) in the profiles for
DGEMM and 2D-FFT applications are 210 and 256,
respectively. The optimal workload distributions determined
by all three algorithms contain workload sizes that are
members of the input set X . Finally, we verify that
the Pareto-optimal solutions returned by all algorithms
match.

The speedup of PARHEPOPTA over HEPOPTA is calcu-
lated using the formula, thepopta

tparhepopta
, where thepopta and tparhepopta

are the execution times of HEPOPTA and PARHEPOPTA
solving the same problem. The speedup of HEPOPTADP
over HEPOPTA is calculated using the formula, thepopta

thepoptadp
,

where thepopta and thepoptadp are the execution times of
HEPOPTA and HEPOPTADP solving the same problem.

The speedups for the DGEMM and 2D-FFT applications
are shown in Tables 2 and 3, respectively. The upper bound
on n that can be solved by the algorithms is equal to m ×
h× p. Therefore, the maximum n

p×h that can be solved is m,
which is 211 and 256 for DGEMM and 2D-FFT applications,
respectively.

This section compares the speedup of PARHEPOPTA
and HEPOPTADP over HEPOPTA. All three algorithms are
executed only on the Intel multicore CPU since we do not
have their implementations for Nvidia GPUs.

HEPOPTADP and HEPOPTA are executed by only
one process using one thread. q MPI processes execute
PARHEPOPTA.

For DGEMM, the workload size n input to the algorithms
is a multiple of the number of arithmetic operations in a basic
computation unit, a matrix update, a+ b× c, where a, b, and
c are u× u matrices of fixed size u. Therefore, the workload
size n is a multiple of 2 × u3. The value of u used in our
experiments is 1536. For 2D FFT, the workload size n is a
multiple of a basic computation unit, a 2D FFT of a signal
matrix of size v × v. The value of v used in our experiments
is 512.

27238 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

TABLE 2. Speedups of PARHEPOPTA and HEPOPTADP over HEPOPTA for
the DGEMM application. n is a multiple of a basic computation unit,
a matrix update of two 1536 × 1536 blocks. The other parameters are
h = 3, m = 211, Ps = 253. PARHEPOPTA is executed by 24 parallel
processes (one process per core of the multicore CPU).

TABLE 3. Speedup of PARHEPOPTA and HEPOPTADP over HEPOPTA for
the 2D-FFT application. n is a multiple of a basic computation unit, a 2D
FFT computation of 512 × 512 matrix. The other parameters are h = 3,
m = 256, and Ps = 253. PARHEPOPTA is executed by 24 parallel processes
(one process per core of the multicore CPU).

All three algorithms’ input discrete dynamic energy
profiles are the ground-truth profiles constructed offline.
The numbers of points (m) in the profiles for DGEMM
and 2D-FFT applications are 210 and 256, respectively.
Furthermore, the optimal workload distributions determined
by all three algorithms contain workload sizes that are
members of the input set X . Finally, we verify that the
Pareto-optimal solutions returned by all algorithms match.

The speedup of PARHEPOPTA over HEPOPTA is calcu-
lated using the formula, thepopta

tparhepopta
, where thepopta and tparhepopta

are the execution times of HEPOPTA and PARHEPOPTA
solving the same problem. The speedup of HEPOPTADP
over HEPOPTA is calculated using the formula, thepopta

thepoptadp
,

where thepopta and thepoptadp are the execution times of
HEPOPTA and HEPOPTADP solving the same problem.

The speedups for the DGEMM and 2D-FFT applications
are shown in Tables 2 and 3, respectively. The upper bound on
n that the algorithms can solve is equal tom×h×p. Therefore,
the maximum n

p×h that can be solved is m, 211 and 256 for
DGEMM and 2D-FFT applications, respectively.

The quantity, n
p×h , refers to the amount of work per proces-

sor or the granularity. The tables show that HEPOPTADP and
PARHEPOPTA provide constant speedups over HEPOPTA,
keeping the granularity constant, thereby confirming the
theoretical results. The speedups of PARHEPOPTA over
HEPOPTADP are about 7x and 10x for the two applications.
However, the ideal speedup of 24x is unlikely owing to
resource contention and (Non-uniform Memory Access)
NUMA effects.

Table 4 shows the increase in the speedup of PARHEPOPTA
over HEPOPTA as q is increased, keeping all the other
application parameters constant, thereby confirming the
theoretical result of O(q).

TABLE 4. Speedup of PARHEPOPTA over HEPOPTA for the DGEMM and
2D-FFT applications as q varies from 1 to 24 while keeping all the
application parameters constant.

D. APPLICATIONS OF PARHEPOPTA
We present examples of usage of PARHEPOPTA demonstrat-
ing how it can accelerate the development and runtime of
energy-efficient parallel applications.

1) USAGE OF PARHEPOPTA
For a given application, the user provides the application
configuration parameters, n, p, h, the number of MPI
processes (q) executing PARHEPOPTA, the discrete perfor-
mance and dynamic energy profiles (T ,E) of cardinality
m, the static energy consumption, Ps, and a criterion for
selecting a Pareto-optimal solution (workload distribution)
to be employed during the application execution. Some
example criteria are a). select the performance-optimal
solution, b). select the energy-optimal solution, and c). select
a solution whose performance degradation is not more than
5% and has the lowest total energy. During the application
execution, PARHEPOPTA is invoked using the parameters
(n, p, h, q,T ,E,m,Ps) to determine the Pareto front (P).
A Pareto-optimal solution is then selected from the Pareto
front using the user-specified criterion and employed for the
computations.

We illustrate two representative cases involving DGEMM
and 2D-FFT applications. Consider, for example, the
DGEMM application execution with input parameters N =
33792, n = 10240, p = 96, h = 3,m = 211, q = 24,Ps =
253, and the discrete performance and dynamic energy
profiles (Figures 3a and 3b built offline). Figure 4a shows
the Pareto front output by PARHEPOPTA. The execution
time of PARHEPOPTA using one hybrid node is 19 seconds.
Assuming all the 96 hybrid nodes are employed to execute
PARHEPOPTA, the estimated execution time is 0.2 seconds
due to potential O(p) speedup.

The endpoints of a Pareto front represent the optimal
solutions for single-objective optimization for performance
and energy. A steep slope close to the time-optimal endpoint
means that allowing a slight degradation in performance can
result in significant energy savings. Similarly, a steep slope
close to the energy-optimal endpoint means that significant
performance improvement is possible with a slight increase in
energy consumption. In this case, a performance degradation
of 0.34 seconds gives energy savings of 24918 J.

Due to the steepness of the Pareto front slope, the user
would specify criteria that explore points further from the
time-optimal endpoint down the Pareto front since the energy

VOLUME 11, 2023 27239

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

FIGURE 4. The Pareto fronts for the DGEMM and 2D-FFT applications output by PARHEPOPTA using the ground-truth dynamic energy profiles of
cardinality m. The matrix sizes employed in the applications is N × N . For DGEMM, the workload size, n, input to PARHEPOPTA is a multiple of a basic
computation unit, a matrix update of 1536 × 1536 matrices and is equal to 10240. For 2D FFT, the workload size, n, input to PARHEPOPTA is 24576. The
number of MPI processes (q) executing PARHEPOPTA is 24. The static power consumption Ps of the node is 253 W.

savings are pretty significant. Supposing the user specifies
the selection of the performance-optimal solution. Then the
workload distribution associated with the Pareto front point
(1.44 [s], 75985 [J]) is employed to compute the DGEMM
matrix multiplication. On the other hand, if the user wants a
solution whose performance degradation is not more than 5%
and has the lowest total energy, then the workload distribution
associated with the Pareto front point (1.50 [s], 71890 [J])
is used to compute the DGEMM matrix multiplication.
The selected point is the third point from the time-optimal
endpoint. Allowing 1% further performance degradation can
provide 5180 J energy savings due to the steepness of the
Pareto front slope.

Similarly, consider the 2D-FFT application execution with
input parameters, N = 60416, n = 24576, p = 128, h =
3,m = 256, q = 24,Ps = 253, and the discrete performance
and dynamic energy profiles (Figures 3c and 3d built offline).
Figure 4b shows the Pareto front output by PARHEPOPTA.
The execution time of PARHEPOPTA using one hybrid
node is 61 seconds. Assuming all the 128 hybrid nodes are
employed to execute PARHEPOPTA, the estimated execution
time is 0.47 seconds due to potential O(p) speedup.
The 2D-FFT Pareto front is less steep than the DGEMM

Pareto front and more or less horizontal. While allowing
a performance degradation of 0.34 seconds gives energy
savings of 24918 J for DGEMM, the energy savings for
the same performance degradation is 7286 J for 2D-FFT.
Therefore, the user-specific criteria for 2D-FFT will differ
from those for DGEMM.

Since the 2D-FFT slope is almost horizontal, the user
would specify criteria that focus on points closer to the
time-optimal endpoint since venturing further down the
Pareto front will not provide substantial energy savings.
Supposing the user wants a solution whose performance
degradation is not more than 8% and has the lowest total
energy. Then the workload distribution associated with the

Pareto front point (2.17 [s], 76794 [J]) is used to compute
the 2D fast Fourier transform. The selected point is the
fifth point from the time-optimal endpoint. Allowing 6%
further performance degradation can only yield 2685 J energy
savings.

2) ACCELERATION OF DEVELOPMENT AND RUNTIME OF
ENERGY-EFFICIENT APPLICATIONS
The development of an energy-efficient parallel application is
typically done on a small subset of nodes in a cluster before
the application is deployed in production. Therefore, the
critical building blocks of such applications, such as the data-
partitioning algorithm, must not slow down the development
effort.

Consider, for example, the development of DGEMM and
2D-FFT applications described previously using two test
configurations, (N = 33792, n = 10240, p = 96, h =
3,m = 211,Ps = 253) for DGEMM and (N =

60416, n = 24576, p = 128, h = 3,m = 256,Ps =
253) for 2D-FFT. The discrete performance and dynamic
energy profiles employed for DGEMM are shown in Fig-
ures 3a and 3b and for 2D-FFT in Figures 3c and 3d. For these
application configurations, the execution times of HEPOPTA
are 3077 seconds and 11616 seconds for DGEMM and
2D-FFT, respectively. Therefore, the long execution times of
HEPOPTAmake it unfit for developing such energy-efficient
parallel applications. However, the good speedups offered by
PARHEPOPTA render it practicable.

PARHEPOPTA is ideal for accelerating long-running
simulations like numerical weather prediction. For example,
consider the real-life scientific application, Multidimen-
sional Positive Definite Advection Transport Algorithm
(MPDATA), which is a core component of the EULAG
(Eulerian/semi-Lagrangian fluid solver) geophysical model
developed for numerical weather prediction [10]. The sim-
ulation runs for over 16000 time steps for a 2-day prediction

27240 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

where each time step takes 0.125 seconds on an Intel Xeon
Phi coprocessor. Therefore, the total simulation time is
2000 seconds.

The authors improve the performance of the simulation by
15% using a model-based data partitioning algorithm. In the
improved version, the simulation comprises initialization and
solution phases. In the initialization phase, the performance
profiles are built and input to the data partitioning algorithm,
which determines the performance-optimal heterogeneous
workload distribution. The solution phase employs the same
workload distribution to perform the simulation in all the
time steps. The initialization phase takes less than 20 time
steps. Since MPDATA computation in each time step is
similar to matrix multiplication, we consider accelerating
such simulations on a moderate-sized cluster of hybrid nodes,
for example, p = 96. Using HEPOPTA can be prohibitively
expensive in this case since its execution time of 3077
[s] exceeds the simulation time. However, the overhead of
PARHEPOPTA is less than two time steps, and its execution
time of 0.2 [s] is only 0.01% of the simulation time.

VI. RELATED WORK
We divide our related literature study into five categories:
a). System-level optimization methods, b). Application-level
optimization methods, c). Static and dynamic optimization
methods, d). Performance models of computation, and
e). Energy models of computation.

A. SYSTEM-LEVEL METHODS
System-level methods aim to optimize the performance
and energy of the environment where the applications are
executed. The methods employ application-agnostic models
and hardware parameters as decision variables. The dominant
decision variable in this category is Dynamic Voltage and
Frequency Scaling (DVFS). DVFS reduces the dynamic
power consumed by a processor by throttling its clock
frequency.

Freeh et al. [23] analyze the performance-energy trade-
offs of serial and parallel applications on a cluster of
DVFS-capable AMD nodes. The decision variable is the
DVFS frequency. Rountree et al. [24] propose a runtime
system that employs DVS during predicted slack periods to
achieve significant energy savings while incurring negligible
performance degradation. Lee and Zomaya [25] propose
energy-conscious scheduling heuristics that employ DVS for
bi-objective optimization of parallel applications on HPC
platforms.

Mezmaz et al. [1] propose a parallel genetic algorithm for
bi-objective optimization on cloud computing infrastructures
for performance and energy. The decision variable is the
supply voltage of the processor. Fard et al. [26] present a
four-objective case study comprising performance, economic
cost, energy consumption, and reliability for optimization
of scientific workflows in heterogeneous computing envi-
ronments. The decision variable is the task assignment or
mapping. Beloglazov et al. [27] propose heuristics that

consider twin objectives of energy efficiency and Quality of
Service (QoS) for provisioning data center resources. The
decision variables are the number of virtual machines and
clock frequencies.

Kessaci et al. [5] present a multi-objective genetic algo-
rithm that minimizes energy consumption, CO2 emissions
and maximizes the generated profit of a cloud computing
infrastructure. The decision variable is the arrival rate of
applications. Durillo et al. [6] propose a multi-objective
workflow scheduling algorithm for bi-objective optimization
on heterogeneous high-performance parallel and distributed
computing systems for performance and energy. They study
the impact of several decision variables: number of tasks,
number of machines, DVFS levels, static energy, and
types of tasks. Kolodziej et al. [2] propose multi-objective
genetic algorithms for bi-objective optimization on green
grid clusters and clouds for performance and energy. The
performance is modeled using the computation speed of a
processor. The decision variable is the DVFS level.

Solution methods can also be differentiated based on
whether they output a partial or a full Pareto front of
performance-energy optimal solutions. Some solution meth-
ods optimize HPC platforms for performance under an energy
budget or optimize for energy under an execution time
constraint [7], [8], [9]. They determine a partial Pareto front
by applying the power cap or an execution time constraint
and then select the best configuration to fulfil a user-specific
criterion. Some methods solve unconstrained bi-objective
optimization for performance and energy (with no time or
energy constraints) [5], [6], [2]. They build the full Pareto
front. Research works [28], [29], [30] are analytical studies
of bi-objective optimization for performance and energy.

B. APPLICATION-LEVEL METHODS
The second approach consists of solution methods that
optimize applications rather than the operating environment.
Themethods use application-level decision variables and pre-
dictive models for the performance and energy consumption
of applications. The dominant decision variables include the
number of threads, loop tile size, and workload distribution.
This approach is understudied compared to the mainstream
system-level approach.

Lastovetsky and Reddy [11] propose data partitioning
algorithms that solve single-objective optimization problems
of data-parallel applications for performance or energy
on homogeneous clusters of multicore CPUs. They take
as an input discrete performance and dynamic energy
functions with no shape assumptions that accurately and
realistically account for resource contention and NUMA
inherent in modern multicore CPU platforms. Reddy and
Lastovetsky [12] propose a solution method to solve the
bi-objective optimization problem of an application for
performance and energy on homogeneous clusters of modern
multicore CPUs. They demonstrate that the method gives a
diverse set of Pareto-optimal solutions and can be combined
with DVFS-based multi-objective optimization methods to

VOLUME 11, 2023 27241

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

give a better set of (Pareto-optimal) solutions. The methods
target homogeneous high-performance computing (HPC)
platforms.

Modern HPC platforms, cloud computing systems, and
data centers are highly heterogeneous, comprising nodes
where a multicore processor is tightly integrated with one
or more accelerators to address the twin critical concerns
of performance and energy efficiency. A crucial require-
ment to determine the energy-optimal configuration of a
parallel/hybrid application executing on such platforms is to
determine component-level dynamic energy profiles of the
application executing on multiple independent devices of the
platform. Fahad et al. [17] present the first methodology
to measure the component-level energy consumption of a
hybrid application on a heterogeneous computing platform
based on system-level power measurements using power
meters. Chakraborti et al. [13] consider the effect of hetero-
geneous workload distribution on bi-objective optimization
of data analytics applications by simulating heterogeneity on
homogeneous clusters. A linear function of workload size
represents the performance, and the energy is predicted using
historical data tables. Khaleghzadeh et al. [15] propose a
solution for solving the bi-objective optimization problem on
heterogeneous processors comprising two principal compo-
nents. The solution method employs the methodology [17] to
determine the fine-grained component-level decomposition
of an application’s energy consumption.

Architects of modern multicore processors follow a key
design goal called energy proportionality (EP) (Barroso
and Hölzle [31]), which means designing microprocessors
that consume energy proportional to the amount of work
performed. Khokhriakhov et al. [14] demonstrate that EP
does not hold for modern multicore processors using a
novel application-level bi-objective optimization method for
energy and performance on a single multicore processor.
They experiment with four popular and highly optimized
multithreaded data-parallel applications on four modern
multicore processors. They show that optimizing for per-
formance alone may result in a significant increase in
dynamic energy consumption, and optimizing for dynamic
energy alone – in considerable performance degradation.
Furthermore, their optimization method determined a good
number of Pareto-optimal solutions.

C. STATIC AND DYNAMIC OPTIMIZATION METHODS
Static optimization solution methods use a priori information
about the application and platform. We will focus mainly
on workload partitioning methods. The solution methods can
afford to construct full and comprehensive performance and
energy profiles offline, allowing them to explore a large
space of solutions. They are typically used in applications
where data locality is important because they do not require
data redistribution. The methods [32], [33], [34] solve
the single-objective optimization problem for performance
on heterogeneous platforms. The methods [11], [12], [15]

solve the bi-objective optimization problem for performance
and energy for homogeneous and heterogeneous platforms.
They take input performance and energy profiles that are
built offline. The energy profiles are constructed using the
system-level physical power measurements using external
power meters. However, the methods are not suitable for
two scenarios: a). Dynamic environments where the number
of available processors and their performance and energy
profiles can differ for different application runs, and b).
Environments with no provision for node-level physical
power measurements using external power meters, for
example, supercomputing facilities, computational grids, and
cloud computing infrastructures.

Dynamic optimization solution methods adapt at runtime
to dynamic changes in the environment. Runtime schedulers
such as KAAPI [35], StarPU [36], and DAGuE [37] schedule
an application described as a Direct Acyclic Graph (DAG)
or task graph onto parallel platforms. Task scheduling
and work-stealing algorithms [38], [39], [40], balance the
load by moving fine-grained tasks between processors
during the execution. Dynamic load balancers based on
graph partitioners are proposed by [41], [42] for adaptive
scientific computations where two objectives, interprocessor
communication and data migration costs, are considered.
Lastovetsky et al. [43] propose a data partitioning algorithm
for employment in self-adaptable applications due to its low
runtime cost. The methods above solve the single-objective
optimization problem for performance. Reddy et al. [44]
propose a dynamic data partitioning algorithm which solves
the bi-objective optimization problem for performance and
energy on homogeneous clusters of multicore CPUs. The
algorithm constructs partial performance and energy profiles
at runtime and assumes that the nodes are equipped with
power meters providing power measurements. Therefore, it is
unsuitable for employment in dynamic environments where
nodes lack power meters.

D. PERFORMANCE MODELS OF COMPUTATION
Performance models of computations can be classified into
analytical and non-analytical categories.

Analytical models use techniques such as linear regression,
analyzing patterns of computation and memory accesses,
and static code analysis to estimate performance for CPUs
and accelerators [45], [46]. In the non-analytical category,
the most simple model is a constant performance model
(CPM), where different notions such as normalized cycle
time, normalized processor speed, average execution time,
and task computation time. characterize the speed of an
application [47], [48]. In CPMs, no dependence is assumed
between the performance of a processor and the workload
size.

CPMs are too simplistic to accurately model the perfor-
mance of data-parallel applications executing on modern
heterogeneous platforms. The most advanced load balancing
algorithms employ functional performance models (FPMs)

27242 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

that are application-specific and represent the speed of
a processor by a continuous function of workload size
[34], [49]. The FPMs capture realistically and accurately
the real-life behaviour of applications executing on nodes
consisting of uniprocessors (single-core CPUs).

The complex nodal architecture of modern HPC systems,
consisting of tightly integrated processors with inherent
severe resource contention and NUMA, pose serious chal-
lenges to load balancing algorithms based on the FPMs.
These inherent traits result in significant variations (drops)
in the performance profiles of parallel applications executing
on these platforms, thereby violating the assumptions on
the shapes of the performance profiles considered by the
FPM-based load balancing algorithms. For example, in
[10], [11], [12], [15], the performance model of computations
is represented by a complex (non-smooth and non-linear)
function of workload size.

E. ENERGY MODELS OF COMPUTATION
A linear energy model based on the utilization of CPU,
disk, and network is proposed by Heath et al. [50]. A more
complex power model proposed in [51] employs utilization
metrics of CPU, disk, and network components and hardware
performance counters for memory as predictor variables.
Fan et al. [52] propose a simple linear model that correlates
the power consumption of a single-core processor with its
utilization. Bertran et al. [53] present a power model that
provides a per-component power breakdown of a multicore
CPU. Their model is based on activity factors obtained
from PMCs for various components in a multicore CPU.
Basmadjian et al. [54] construct a power model of a server
using the summation of power models of its components: the
processor (CPU), memory (RAM), fans, and disk (HDD).
Lastovetsky and Reddy [11] propose a model representing
a multicore CPU’s energy consumption by a non-linear
workload size function.

Hong and Kim [55] present an energy model for an Nvidia
GPU based on a PMC-based power prediction approach
similar to [56]. Nagasaka et al. [57] propose a PMC-based
statistical power consumption modelling technique for GPUs
that run CUDA applications. Song and Brooks [58] present
power and energy prediction models based on machine
learning algorithms such as backpropagation in artificial
neural networks (ANNs). Shao et al. [59] develop an
instruction-level energy consumption model for a Xeon Phi
processor.

Shahid et al. [20] propose a novel theory of energy
predictive models of computing and unify its practical
implications to increase the prediction accuracy of linear
energy predictive models in a consistency test. The test
contains a suite of properties that include determinism,
reproducibility, and additivity to select model variables
and constraints for model coefficients. By applying the
consistency test, the authors improve the average prediction
accuracy of state-of-the-art linear regression models from
31% to 18%. Shahid et al. [21] analyze the prediction

accuracy of models employing utilization variables only,
PMCs only, and a combination of both utilization variables
and PMCs, through the lens of the theory of energy predictive
models of computing for modern multicore CPU platforms.
They demonstrate that application-specific and platform-
level models using both utilization variables and PMCs
exhibit up to 3.6x and 2.6x better average prediction accuracy,
respectively, when compared with models employing utiliza-
tion variables only and highly additive PMCs only.

Khokhriakhov et al. [14] propose a qualitative linear
dynamic energy model employing CPU utilization and PMCs
to explain the discovered energy nonproportionality on their
multicore CPU platforms.

VII. CONCLUSION
Achieving energy efficiency objectives and satisfying
quality-of-service requirements related to response time are
critical concerns in modern high performance computing
platforms, computational grids, and cloud computing
infrastructures. Therefore, accelerating the bi-objective
optimization of applications for performance and energy on
such platforms is necessary to address these concerns.

In this work, we presented an overview of the model-based
methods proposed recently for bi-objective optimization
of data-parallel applications on modern HPC platforms
for performance and energy. The methods use workload
distribution as the decision variable. However, the methods
are sequential and exhibit exorbitant execution times for
even moderate input values of the number of available
processors. Based on our overview, we highlighted two
fundamental challenges to accelerating the methods: (a).
Fast computation of Pareto-optimal solutions optimizing
the application for performance and energy, and (b). Fast
construction of performance and energy profiles that are
discrete functions of workload size.

We then formulated the bi-objective optimization problem
of data-parallel applications for performance and energy on
a cluster of p identical hybrid nodes, each containing h
heterogeneous processors. The problem employs workload
distribution as the decision variable. We proposed two
algorithms solving the problem. They address the first
challenge, the fast computation of Pareto-optimal solutions.
The first algorithm is an exact sequential algorithm that is
more efficient and amenable to parallelization. It achieves
a complexity reduction over the state-of-the-art sequential
algorithm with the lower bound of O(m × h) where m is the
cardinality of the input discrete execution time and dynamic
energy functions. Furthermore, it returns the Pareto-optimal
set of workload distributions, minimizing the execution time
and the total energy consumption of computations during the
parallel execution of the application.

The second algorithm is a parallel algorithm executed by q
identical parallel processes that reduces the complexity of our
proposed sequential algorithm byO(q). It, therefore, achieves
a complexity reduction with the lower bound ofO(m×h×q)
over the state-of-the-art sequential algorithm.

VOLUME 11, 2023 27243

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

We experimentally studied the practical efficacy of our
algorithms for two data-parallel applications, matrix mul-
tiplication and fast Fourier transform, on a state-of-the-
art heterogeneous hybrid node containing an Intel Haswell
multicore CPU, an Nvidia k40c GPU, and an Nvidia
P100 GPU and simulations of clusters of such hybrid
nodes. The experiments demonstrated that our proposed
algorithms provide tremendous speedups over the state-of-
the-art sequential algorithm.

The software implementations of the algorithms proposed
in this paper can be downloaded from the URL [60].

REFERENCES
[1] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y. Zomaya,

and D. Tuyttens, ‘‘A parallel bi-objective hybrid metaheuristic for energy-
aware scheduling for cloud computing systems,’’ J. Parallel Distrib.
Comput., vol. 71, no. 11, pp. 1497–1508, 2011.

[2] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya, ‘‘Energy efficient
genetic-based schedulers in computational grids,’’ Concurrency Comput.,
Pract. Exper., vol. 27, no. 4, pp. 809–829, Mar. 2015.

[3] R. Lucas. (Feb. 2014). DOE Advanced Scientific Computing Advisory
Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges.
[Online]. Available: https://www.osti.gov/biblio/1222713

[4] F. D. Rossi, M. G. Xavier, C. A. F. De Rose, R. N. Calheiros, and
R. Buyya, ‘‘E-eco: Performance-aware energy-efficient cloud data center
orchestration,’’ J. Netw. Comput. Appl., vol. 78, pp. 83–96, Jan. 2017.

[5] Y. Kessaci, N. Melab, and E.-G. Talbi, ‘‘A Pareto-based metaheuristic
for scheduling HPC applications on a geographically distributed cloud
federation,’’ J. Cluster Comput., vol. 16, no. 3, pp. 451–468, Sep. 2013.

[6] J. J. Durillo, V. Nae, and R. Prodan, ‘‘Multi-objective energy-efficient
workflow scheduling using list-based heuristics,’’ Future Gener. Comput.
Syst., vol. 36, pp. 221–236, Jul. 2014.

[7] L. Yu, Z. Zhou, S. Wallace, M. E. Papka, and Z. Lan, ‘‘Quantitative
modeling of power performance tradeoffs on extreme scale systems,’’
J. Parallel Distrib. Comput., vol. 84, pp. 1–14, Oct. 2015.

[8] N. Gholkar, F. Mueller, and B. Rountree, ‘‘Power tuning HPC jobs on
power-constrained systems,’’ in Proc. Int. Conf. Parallel Architectures
Compilation, Sep. 2016, pp. 179–191.

[9] B. Rountree, D. K. Lowenthal, S. Funk, V.W. Freeh, B. R. de Supinski, and
M. Schulz, ‘‘Bounding energy consumption in large-scale MPI programs,’’
in Proc. ACM/IEEE Conf. Supercomputing, Nov. 2007, pp. 1–9.

[10] A. Lastovetsky, L. Szustak, and R.Wyrzykowski, ‘‘Model-based optimiza-
tion of EULAG kernel on Intel Xeon Phi through load imbalancing,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 787–797, Mar. 2017.

[11] A. Lastovetsky and R. R. Manumachu, ‘‘New model-based methods
and algorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 4, pp. 1119–1133, Apr. 2017.

[12] R. R. Manumachu and A. Lastovetsky, ‘‘Bi-objective optimization of data-
parallel applications on homogeneous multicore clusters for performance
and energy,’’ IEEE Trans. Comput., vol. 67, no. 2, pp. 160–177, Feb. 2018.

[13] A. Chakrabarti, S. Parthasarathy, and C. Stewart, ‘‘A Pareto framework for
data analytics on heterogeneous systems: Implications for green energy
usage and performance,’’ in Proc. 46th Int. Conf. Parallel Process. (ICPP),
Aug. 2017, pp. 533–542.

[14] S. Khokhriakov, R. R. Manumachu, and A. Lastovetsky, ‘‘Multicore
processor computing is not energy proportional: An opportunity for
bi-objective optimization for energy and performance,’’ Appl. Energy,
vol. 268, Jun. 2020, Art. no. 114957.

[15] H. Khaleghzadeh, M. Fahad, A. Shahid, R. R. Manumachu, and
A. Lastovetsky, ‘‘Bi-objective optimization of data-parallel applications
on heterogeneous HPC platforms for performance and energy through
workload distribution,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3,
pp. 543–560, Mar. 2021.

[16] R. R. Manumachu and A. Lastovetsky, ‘‘Parallel data partitioning
algorithms for optimization of data-parallel applications on modern
extreme-scale multicore platforms for performance and energy,’’ IEEE
Access, vol. 6, pp. 69075–69106, 2018.

[17] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, ‘‘Accurate
energy modelling of hybrid parallel applications on modern heterogeneous
computing platforms using system-level measurements,’’ IEEE Access,
vol. 8, pp. 93793–93829, 2020.

[18] Z. Zhong, V. Rychkov, andA. Lastovetsky, ‘‘Data partitioning onmulticore
and multi-GPU platforms using functional performance models,’’ IEEE
Trans. Comput., vol. 64, no. 9, pp. 2506–2518, Sep. 2015.

[19] M. Fahad, A. Shahid, R. Manumachu, and A. Lastovetsky, ‘‘A comparative
study of methods for measurement of energy of computing,’’ Sci. Found.
Ireland, vol. 12, p. 2204, Jan. 2019.

[20] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, ‘‘Energy
predictive models of computing: Theory, practical implications and
experimental analysis on multicore processors,’’ IEEE Access, vol. 9,
pp. 63149–63172, 2021.

[21] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, ‘‘Improving
the accuracy of energy predictivemodels for multicore CPUs by combining
utilization and performance events model variables,’’ J. Parallel Distrib.
Comput., vol. 151, pp. 38–51, May 2021.

[22] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, ‘‘Out-of-
core implementation for accelerator kernels on heterogeneous clouds,’’
J. Supercomput., vol. 74, no. 2, pp. 551–568, 2018.

[23] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, ‘‘Analyzing the energy-time trade-off in
high-performance computing applications,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 6, pp. 835–848, Jun. 2007.

[24] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, ‘‘Adagio: Making DVS practical for complex
HPC applications,’’ in Proc. 23rd Int. Conf. Supercomput., Jun. 2009,
pp. 460–469.

[25] Y. C. Lee and A. Y. Zomaya, ‘‘Energy conscious scheduling for distributed
computing systems under different operating conditions,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 8, pp. 1374–1381, Aug. 2011.

[26] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, ‘‘A
multi-objective approach for workflow scheduling in heterogeneous
environments,’’ in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput. (CCGRID), May 2012, pp. 300–309.

[27] A. Beloglazov, J. Abawajy, and R. Buyya, ‘‘Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,’’ Future Generat. Comput. Syst., vol. 28, no. 5, pp. 755–768,
2012.

[28] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz, ‘‘Perfect strong
scaling using no additional energy,’’ in Proc. IEEE 27th Int. Symp. Parallel
Distrib. Process., May 2013, pp. 649–660.

[29] M. Drozdowski, J. M. Marszałkowski, and J. Marszałkowski, ‘‘Energy
trade-offs analysis using equal-energy maps,’’ Future Gener. Comput.
Syst., vol. 36, pp. 311–321, Jul. 2014.

[30] J. M. Marszałkowski, M. Drozdowski, and J. Marszałkowski, ‘‘Time and
energy performance of parallel systems with hierarchical memory,’’ J. Grid
Comput., vol. 14, no. 1, pp. 153–170, Mar. 2016.

[31] L. A. Barroso and U. Hölzle, ‘‘The case for energy-proportional
computing,’’ Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[32] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, ‘‘An efficient, model-
based CPU-GPU heterogeneous FFT library,’’ in Proc. IEEE Int. Symp.
Parallel Distrib. Process., Apr. 2008, pp. 1–10.

[33] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu, ‘‘Adaptive
optimization for petascale heterogeneous CPU/GPU computing,’’ in Proc.
IEEE Int. Conf. Cluster Comput., Sep. 2010, pp. 19–28.

[34] A. Lastovetsky and R. Reddy, ‘‘Data partitioning with a functional
performance model of heterogeneous processors,’’ Int. J. High Perform.
Comput. Appl., vol. 21, no. 1, pp. 76–90, 2007.

[35] T. Gautier, X. Besseron, and L. Pigeon, ‘‘KAAPI: A thread schedul-
ing runtime system for data flow computations on cluster of multi-
processors,’’ in Proc. Int. Workshop Parallel Symbolic Comput., Jul. 2007,
pp. 15–23.

[36] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, ‘‘StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,’’ Concurrency Comput., Pract. Exper., vol. 23, no. 2,
pp. 187–198, Feb. 2011.

[37] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, ‘‘DAGuE: A generic distributed DAG engine for high
performance computing,’’ in Proc. IEEE Int. Symp. Parallel Distrib.
Process. Workshops Phd Forum, May 2011, pp. 1151–1158.

27244 VOLUME 11, 2023

R. R. Manumachu et al.: Acceleration of Bi-Objective Optimization of Data-Parallel Applications

[38] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, ‘‘Merge:
A programming model for heterogeneous multi-core systems,’’ in Proc.
13th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Mar. 2008, pp. 287–296.

[39] G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and R. A. van de
Geijn, ‘‘Solving dense linear systems on platforms with multiple hardware
accelerators,’’ ACM SIGPLAN Notices, vol. 44, no. 4, pp. 121–130,
Feb. 2009.

[40] C. Augonnet, S. Thibault, and R. Namyst, ‘‘Automatic calibration
of performance models on heterogeneous multicore architectures,’’ in
Proc. 3rd Workshop Highly Parallel Process. Chip (HPPC), Aug. 2009,
pp. 56–65.

[41] K. Schloegel, G. Karypis, and V. Kumar, ‘‘A unified algorithm for load-
balancing adaptive scientific simulations,’’ in Proc. ACM/IEEE SC Conf.
(SC), Nov. 2000, p. 59.

[42] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and
L. A. Riesen, ‘‘Hypergraph-based dynamic load balancing for adaptive
scientific computations,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp., Mar. 2007, pp. 1–11.

[43] D. Clarke, A. Lastovetsky, and V. Rychkov, ‘‘Dynamic load balancing
of parallel computational iterative routines on highly heterogeneous HPC
platforms,’’ Parallel Process. Lett., vol. 21, no. 2, pp. 195–217, 2011.

[44] R. Reddy Manumachu and A. L. Lastovetsky, ‘‘Design of self-adaptable
data parallel applications onmulticore clusters automatically optimized for
performance and energy through load distribution,’’Concurrency Comput.,
Pract. Exper., vol. 31, no. 4, Feb. 2019, Art. no. e4958.

[45] K.-H. Kim, K. Kim, and Q.-H. Park, ‘‘Performance analysis and
optimization of three-dimensional FDTD on GPU using roofline model,’’
Comput. Phys. Commun., vol. 182, no. 6, pp. 1201–1207, Jun. 2011.

[46] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, ‘‘Workload
partitioning for accelerating applications on heterogeneous platforms,’’
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2766–2780,
Sep. 2016.

[47] A. Kalinov and A. Lastovetsky, ‘‘Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,’’ J. Parallel Distrib. Comput., vol. 61, no. 4, pp. 520–535,
Apr. 2001.

[48] O. Beaumont, V. Boudet, F. Rastello, andY. Robert, ‘‘Matrixmultiplication
on heterogeneous platforms,’’ IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 10, pp. 1033–1051, Oct. 2001.

[49] A. Lastovetsky and R. Reddy, ‘‘Data partitioning for multiprocessors with
memory heterogeneity and memory constraints,’’ Sci. Program., vol. 13,
no. 2, pp. 93–112, 2005.

[50] T. Heath, B. Diniz, E. V. Carrera, W. Meira, and R. Bianchini, ‘‘Energy
conservation in heterogeneous server clusters,’’ in Proc. 10th ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., Jun. 2005, pp. 186–195.

[51] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, ‘‘Full-system
power analysis and modeling for server environments,’’ in Proc. Workshop
Modeling, Benchmarking, Simulation, 2006, pp. 70–77.

[52] X. Fan, W.-D. Weber, and L. A. Barroso, ‘‘Power provisioning for a
warehouse-sized computer,’’ in Proc. 34th Annu. Int. Symp. Comput.
Archit., Jun. 2007, pp. 13–23.

[53] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
‘‘Decomposable and responsive power models for multicore processors
using performance counters,’’ in Proc. 24th ACM Int. Conf. Supercomput.,
Jun. 2010, pp. 147–158.

[54] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani,
‘‘A methodology to predict the power consumption of servers in
data centres,’’ in Proc. 2nd Int. Conf. Energy-Efficient Comput. Netw.,
May 2011, pp. 1–10.

[55] S. Hong and H. Kim, ‘‘An integrated GPU power and performance model,’’
in Proc. 37th Annu. Int. Symp. Comput. Archit., Jun. 2010, pp. 280–289.

[56] C. Isci and M. Martonosi, ‘‘Runtime power monitoring in high-end
processors: Methodology and empirical data,’’ in Proc. 22nd Digit.
Avionics Syst. Conf., Dec. 2003, p. 93.

[57] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
‘‘Statistical power modeling of GPU kernels using performance counters,’’
in Proc. Int. Conf. Green Comput., Aug. 2010, pp. 115–122.

[58] S. Song, C. Su, B. Rountree, and K. W. Cameron, ‘‘A simplified
and accurate model of power-performance efficiency on emergent GPU
architectures,’’ in Proc. IEEE 27th Int. Symp. Parallel Distrib. Process.,
May 2013, pp. 673–686.

[59] Y. S. Shao and D. Brooks, ‘‘Energy characterization and instruction-level
energy model of Intel’s Xeon phi processor,’’ in Proc. Int. Symp. Low
Power Electron. Design (ISLPED), Sep. 2013, pp. 389–394.

[60] R. R. Manumachu and A. Lastovetsky. (2022). PAREPOPT: Dynamic
Performance-Energy Optimization of Data-Parallel Applications on
Hybrid Nodes Through Workload Distribution. [Online]. Available:
https://csgitlab.ucd.ie/manumachu/parepopt

RAVI REDDY MANUMACHU (Member, IEEE)
received the B.Tech. degree from IIT Madras,
in 1997, and the Ph.D. degree from the School
of Computer Science, University College Dublin,
in 2005. His main research interests include
high-performance heterogeneous computing and
energy-efficient computing.

HAMIDREZA KHALEGHZADEH received the
B.Sc. and M.Sc. degrees in computer engineering
(software) and the Ph.D. degree from the School
of Computer Science, University College Dublin,
in 2007, 2011, and 2019, respectively. He is cur-
rently a Lecturer with the School of Computing,
University of Portsmouth. His research interests
include performance and energy consumption
optimization in massively heterogeneous systems,
high-performance heterogeneous systems, energy
efficiency, and parallel/distributed computing.

ALEXEY LASTOVETSKY (Member, IEEE)
received the Ph.D. degree from the Moscow
Aviation Institute, in 1986, and the D.Sc. degree
from the Russian Academy of Sciences, in 1997.
He is currently an Associate Professor with the
School of Computer Science, University College
Dublin (UCD). At UCD, he is also the founding
Director of the Heterogeneous Computing Labora-
tory. He has authored the monographs of Parallel
Computing on Heterogeneous Networks (Wiley,

2003) and High Performance Heterogeneous Computing (Wiley, 2009). His
main research interests include high-performance heterogeneous computing
and energy-efficient computing.

VOLUME 11, 2023 27245

