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Abstract. Many classical methods and algorithms developed when single-
core CPUs dominated the parallel computing landscape, are still widely
used in the changed multicore world. Two prominent examples are load
balancing, which has been one of the main techniques for minimization
of the computation time of parallel applications since the beginning of
parallel computing, and model-based power/energy measurement tech-
niques using performance events. In this paper, we show that in the
multicore era, load balancing is no longer synonymous to optimization
and present recent methods and algorithms for optimization of paral-
lel applications for performance and energy on modern HPC platforms,
which do not rely on load balancing and often return imbalanced but
optimal solutions.
We also show that some fundamental assumptions about performance
events, which have to be true for the model-based power/energy measure-
ment tools to be accurate, are increasingly difficult to satisfy as the num-
ber of CPU cores increases. Therefore, energy-aware computing methods
relying on these tools will be increasingly difficult to verify.
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1 Introduction

Multicore CPUs and accelerators have become the standard building blocks of
computing systems at all levels from supercomputers to mobile and embedded
devices. At the same time, fundamentals of the dominant methods and algo-
rithms currently used for performance and energy optimization of these systems
were developed in the time when single-core CPUs dominated the computing
landscape.

Two prominent examples are load balancing, which has been one of the
main techniques for minimization of the computation time of parallel applica-
tions since the beginning of parallel computing, and model-based power/energy
measurement techniques using performance events as model parameters. In this
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paper, we demonstrate that in the multicore era, load balancing is no longer
synonymous to optimization. We also outline recent methods and algorithms
for optimization of parallel applications for performance and energy on mod-
ern computing platforms, which do not rely on load balancing and often return
imbalanced but optimal solutions.

We also show that some fundamental assumptions about performance events,
which have to be true for the model-based power/energy measurement tools to
be accurate, are increasingly difficult to satisfy as the number of CPU cores
increases. Therefore, energy-aware computing methods relying on these tools
will be increasingly difficult to verify.

The paper is organized as follows. Section 2 explains limitations of load bal-
ancing for performance and energy optimization of applications on multicore-
based computing platforms. It also presents recent optimization methods and
algorithms, returning optimal but typically unbalanced solutions. Section 3 dis-
cusses the accuracy of the popular methods for power and energy measurements
of multicore processors in the light of recently discovered irregularities of some
fundamental building blocks of these methods. Section 4 concludes the paper.

2 How much performance and energy you can lose
through load balancing on multicore platforms

In this section, we formulate conditions that allow load balancing algorithms
to minimize the execution time and the energy consumption of parallel applica-
tions. We then show that while these conditions are satisfied for single-core based
platforms, they do not hold for multicore-based ones. We outline new workload
distribution algorithms that address this problem. We also demonstrate the ex-
tent of performance and energy losses due to the use of load-balanced but not
optimal application configurations.

2.1 When does load balancing work?

Load balancing algorithms can be classified as static or dynamic. Static algo-
rithms (for example, those based on data partitioning) [1–6] require a priori infor-
mation about the parallel application and platform. Dynamic algorithms (such
as task scheduling and work stealing) [7–9] balance the load by moving fine-
grained tasks between processors during the calculation. Dynamic algorithms
do not require a priori information about execution but may incur significant
communication overhead due to data migration.

The intuition behind the assumption that balancing the application improves
its performance is the following: a balanced application does not waste processor
cycles on waiting at points of synchronization and data exchange, maximizing
this way the utilization of the processors and minimizing the computation time.

Let us analyze this assumption following [10]. Consider an application, the
computational performance of which can be modeled by speed functions. Namely,
let p parallel processors be used to execute the application and si(x) be the
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speed of execution of the workload of size x by processor i. Here the speed
can be measured in floating point operations per second or any other fix-sized
computation units per unit time. The size of workload can be characterized by
the problem size (for example, the number of cells in the computational domain
or the matrix size) or just by the number of equal-sized computational units.
The speed si(x) is calculated as x

ti(x)
, where ti(x) is the execution time of the

workload of size x on processor i. Using these definitions, it was proved [10]
that in order to guarantee that the balanced configuration of the application
will execute the workload of size n faster than any unbalanced configuration,
the speed functions si(x) should satisfy the condition:

∀∆x > 0:
si(x)

x
≥ si(x+∆x)

x+∆x
(1)

Geometrically, it is illustrated in Figure 1. The angle α(x) between the
straight line, connecting the point (0, 0) and the point (x, s(x)) on the speed
curve, and the x-axis will be inversely proportional to the execution time of
the workload of size x by the processor. Indeed, the cotangent of this angle
is directly proportional to the ratio x

s(x) representing the execution time of the

workload x. Therefore, larger angles correspond to shorter execution times. Con-
dition 1 means that the increase of the workload, x, will never result in the de-
crease of the execution time, or equivalently in the increase of the angle α(x):
∀∆x > 0: α(x) ≥ α(x+∆x). Figure 1 illustrates the situation when load balanc-
ing will minimize the time of parallel execution of the application. For simplicity,
assume that all our p processors are identical, characterized by the speed func-
tion in Figure 1. Equal distribution of the total workload, w, allocating each
processor workload x = w

p , will result in the execution time characterized by

α(x). Any workload redistribution would lead to one of the processors executing
larger workload x + ∆x. As in general the parallel execution time is character-
ized by mini α(xi), where xi is the workload allocated to i-th processor, then
mini α(xi) ≤ α(x + ∆x) ≤ α(x). This means that the load-balanced equal dis-
tribution will minimize the parallel execution time of any workload.

x

s(x)
(x, s(x))

α(x)   

Speed

Workload(0,0)

Fig. 1. Speed function suitable for minimization of computation time through load
balancing. Angle α(x) represents the computation time: the greater the angle, the
shorter the computation time.

The main body of the load balancing algorithms designed for performance
optimization explicitly or implicitly assume that the speed of processor does not
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depend on the size of workload [1,2,11–14]. In other words, the speed functions
si(x) are assumed to be positive constants, in which case Condition 1 is trivially
satisfied. More advanced algorithms are based on functional performance models
(FPMs), which represent the speed of processor by a continuous function of the
problem size [15,16]. However, the shape of the function is not arbitrary but has
to satisfy the following assumption [4]: Along each of the problem size variables,
either the function is monotonically decreasing, or there exists point x such that

– On the interval [0, x], the function is
• monotonically increasing,
• concave, and
• any straight line coming through the origin of the coordinate system

intersects the graph of the function in no more than one point.
– On the interval [x,∞), the function is monotonically decreasing.

These restrictions on the shape of speed functions guarantee that the efficient
load balancing algorithms, proposed in [17–22], will always return a unique so-
lution, minimizing the computation time. At the same time, it is easy to show
that the restrictions imposed on FPMs will make them comfortably satisfy Con-
dition 1.

Thus, the state-of-the-art load balancing algorithms designed for optimiza-
tion of the computational performance of parallel applications assume that their
performance profiles satisfy Condition 1.

Adding energy to the picture, let Ei(x) be the energy consumed by processor
i during the execution of workload of size x. In the case of p identical processors
characterized by the same energy function E(x), the equal distribution of the

workload will always minimize the energy consumption if dE(x)
dx ≥ 0 and d2E(x)

dx2 ≥
0. If E(x) is linear, that is, d2E(x)

dx2 = 0, then any distribution of the workload
w will result in the same energy consumption, E(x1) + . . .+ E(xp) = (p− 1)×
E(0) +E(x1 + . . .+xp) = (p− 1)×E(0) +E(w). If E(x) is strictly convex, that

is, d2E(x)
dx2 > 0, then any uneven distribution will consume more energy than the

equal load-balanced one, which is evident from Figure 2.

2.2 When does load balancing not work?

The conditions on performance and energy profiles formulated in Section 2.1
are comfortably satisfied for single-core processors. We illustrate this using the
execution of the OpenBLAS DGEMM application on a single core of an Intel
Haswell server. Figures 3a and 3b respectively show the shapes of the experimen-
tally built speed and dynamic energy functions. The application multiplies two
square matrices of size n×n (problem size is equal to n2). In these experiments,
the numactl tool is used to bind the application to one core. The dynamic energy
consumptions are obtained using Watts Up Pro power meter.

However, if we run the same application on all 24 cores of the multicore CPU
of the Haswell server executing 24 threads, the picture will drastically change as
shown in Figure 4. The performance and energy profiles are no longer smooth
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Fig. 2. Convex energy function suitable for minimization of energy consumption
through equal distribution of the workload between identical processors. It is evident
that for any x, E(x) < E(x−∆x)+E(x+∆x)

2
, and hence, E(x) + E(x) < E(x − ∆x) +

E(x+∆x).

and deviate significantly from the shapes observed before. Even more spectacular
variations in speed and energy can be seen in Figure 5 for the FFTW application
[23] performing a 2D FFT of size n×n (the problem size being n2). The variations
in energy reach a maximum of 125%, and the average variation in speed is 60%.
It is important to note that these variations are not noise but an inherent trait of
applications executing on multicore servers with resource contention and NUMA.
It is evident that equal distribution of the workload between identical processors
with such performance and energy profiles will no longer guarantee minimization
of execution time or energy consumption. More generally, traditional methods
and algorithms used for optimization of performance and/or energy of parallel
applications will not work for modern multicore-based platforms.

2.3 New methods and algorithms for performance and energy
optimization on multicore-based platforms

The challenges for performance and energy optimization of parallel applica-
tions on multicore-based platforms explained in Section 2.2 have been addressed
over last 2 years in few publications. In [24], the problems of optimal workload
distribution between identical processors for performance and dynamic energy
consumptions were formulated and solved. Performance optimization problem
(POPT) was formulated as follows:

– Given a discrete speed/performance function s(x) of a processor
– Obtain partitioning, d = {x1, · · · , xp}, of workload of size n using p identical

processors so as to: minimize maxp
i=1( xi

s(xi)
) s.t

∑p
i=1 xi = n

An exact algorithm solving this problem, POPTA, of complexity O(m2×p2),
where m is the cardinality of the discrete speed function s(x), was proposed. The



6 Alexey Lastovetsky et al.

(a)

(b)

Fig. 3. (a). Speed function of OpenBLAS DGEMM application executed on a single
core on the Intel Haswell server. (b). Dynamic energy consumption of OpenBLAS
DGEMM application executed on a single core on the Intel Haswell server.

average and maximum performance improvements of POPTA over the equal
distribution solution were (13%, 71%) for DGEMM and (40%, 95%) for FFTW
on a cluster of Haswell workstations.

Energy optimization problem (EOPT) was formulated as follows:

– Given a discrete dynamic energy function e(x) of a processor
– Obtain partitioning, d = {x1, · · · , xp}, of workload of size n using p identical

processors so as to: minimize
∑p

i=1 e(xi) s.t
∑p

i=1 xi = n

An exact algorithm solving the energy optimization problem, EOPTA, of
complexity O(m2 × p2), where m is the cardinality of the discrete energy func-
tion e(x), was designed. The average and maximum energy improvements of
EOPTA over the equal distribution solution were (18%, 71%) for DGEMM and
(22%, 127%) for FFTW.
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(a)

(b)

Fig. 4. (a). Speed function of OpenBLAS DGEMM executing 24 threads on the Intel
Haswell server. (b). Function of dynamic energy consumption against problem size for
OpenBLAS DGEMM executing 24 threads on the Intel Haswell server.

It was observed that optimization for performance only also reduced the
energy consumption: (12%, 68%) for DGEMM and (22%, 55%) for FFTW. At the
same time, optimization for energy only significantly degraded the performance:
by 95-100% for both DGEMM and FFTW.

In order to better understand the interplay between optimization for perfor-
mance and energy, a bi-objective optimization problem was studied in [25]. It
was mathematically formulated as follows. Consider a workload of size n to be
executed using p available identical processors. The performance of a processor
executing a problem size x is given by s(x), and the dynamic energy consump-
tion of the execution of a problem size x by a processor is given by e(x). Then
the bi-objective optimization problem for minimization of execution time and
minimization of total dynamic energy of computations during the execution of
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(a)

(b)

Fig. 5. (a). Speed function of FFTW executing 24 threads on the Intel Haswell server.
(b). Function of dynamic energy consumption against problem size for FFTW executing
24 threads on the Intel Haswell server.

the workload is as follows:

BOPPE(n, p, s, e, q) :

minimize { q
max
i=1

xi
s(xi)

,

q∑
i=1

e(xi)}

Subject to x1 + x2 + ...+ xq = n

xi ≥ 0 i = 1, ..., q

xi ≤ n i = 1, ..., q

1 ≤ q ≤ p
where p, q, n, xi ∈ Z>0,

s(x), e(x) ∈ R>0
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(a)

(b)

Fig. 6. Globally Pareto-optimal set of solutions with maximum sizes determined by
ALEPH for OpenBLAS DGEMM and FFTW applications. Each curve shown as
nX pY represents results for data-parallel application workload size given by n (in
multiples of granularity) and number of available processors, p.

The output of a solution method solving BOPPE is a set of Pareto-optimal
solutions represented by workload distributions. It is important to note that the
optimal number of processors (q) that are selected in a Pareto-optimal solution
satisfies the constraint, 1 ≤ q ≤ p.

A global optimization algorithm solving BOPPE (ALEPH) of complexity
O(m2 × p2), where m is the cardinality of discrete functions s(x) and e(x), was
designed. Figure 6 demonstrates solutions returned by ALEPH for DGEMM and
FFTW for different problem sizes and numbers of processors. The interplay be-
tween single-objective optimizations for performance and energy can be visually
studied using POPTA and EOPTA trajectories in the objective space together
with the Pareto optimal front as shown in Figure 7. This visual model can serve
as a guidance for the choice of optimization method for performance and energy.

The next step was done in [26], where performance optimization on hetero-
geneous multicore processors was addressed. The following heterogeneous per-
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Fig. 7. Blue curve is the path of POPTA. Orange curve is the path of EOPTA. Green
curve is the Globally Pareto-optimal front determined by ALEPH.

formance optimization problem was studied. Consider a workload of size n exe-
cuted using p heterogeneous processors, whose speed functions are represented
by S = {s1(x), ..., sp(x)} where si(x), i ∈ {1, 2, · · · , p}, is a discrete speed func-
tion of cardinality m of processor Pi. Without loss of generality, one can assume
x ∈ {1, 2, · · · ,m}. The performance optimization problem can be then formu-
lated as follows:

HPOPT(n, p, m, S, dopt, topt): Finding a distribution, dopt = {w1, ..., wp},
of the workload of size n using p available heterogeneous processors so as to mini-
mize the computation time of parallel execution of the workload. The parameters
(n, p, m, S) are the inputs to the problem. The outputs are dopt, which is the
workload distribution, and topt, which is the optimal execution time. This prob-
lem can be formulated as an integer nonlinear programming problem (INLP):

topt = min
d

p
max
i=1

xi
si(xi)

(d = {x1, ..., xp})

Subject to: x1 + x2 + ...+ xp = n

0 ≤ xi ≤ m, i = 1, ..., p

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and

si(x) ∈ R>0

(2)

The objective function in the formulated minimization problem is a function
of workload distribution d, d = {x1, ..., xp}, of a given workload n between the p
processors. For each given d, it returns the time of its parallel execution, which
is calculated as the time taken by the longest running processor to execute its
workload. Any distribution that minimizes this function is considered optimal
as its execution time of workload n by the p processors cannot be improved. An
algorithm, HPOPTA, of complexity O(m3×p3), solving the HPOPT optimiza-
tion problem was proposed [26]. Its efficiency was demonstrated using DGEMM
and 2D–FFT on a heterogeneous cluster of hybrid servers, integrating Intel mul-
ticore Haswell CPUs, Nvidia GPUs, and Intel Xeon Phi co-processors. Significant
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average and multifold maximum speedups were achieved for both applications
against best load-balanced solutions.

3 PMC-based power and energy modelling in multicore
era

Efficient methods for performance optimization of parallel applications require
accurate measurements of the execution time at all levels of the application, from
individual threads to processes to the whole program, from data movements be-
tween memory levels to point-to-point and collective communications between
processes. Similarly, efficient methods for energy optimization also require accu-
rate measurements of the energy consumption at all levels of the parallel appli-
cation. The energy consumption of the whole application, running on a server or
a data center, can be accurately measured using power meters. Measuring the
energy consumption by application components at a thread level is a wide open
problem. At the same time, some approaches have been developed for power
and energy measurements at the level of processes running on individual pro-
cessors. The mainstream approach is to employ models predicting power/energy
consumption using performance monitoring counters (PMCs). The PMC-based
models are predominantly linear [27].

Modern hardware processors provide a large set of PMCs. Determination
of the best subset of PMCs for energy predictive modeling is a non-trivial task
given the fact that all the PMCs can not be determined using a single application
run. Several techniques have been devised to address this challenge. While some
techniques are based on statistical methodology, some use expert advice to pick
a subset (that may not necessarily be obtained in one application run) that, in
experts’ opinion, are significant contributors to energy consumption. While a
significant number of PMC-based models have been proposed [27], there is still
no model, the predictive accuracy of which would be sufficiently high. The best
verifiable average prediction error of average dynamic power by such models for
a Intel Haswell platform is in the range of 90-100% [27].

One of the causes of this inaccuracy has been recently discovered [28]. It was
found that many popular PMCs, widely used in predictive models, are not addi-
tive. The property of additivity is based on the simple and intuitive observation
that the energy consumed by a serial execution of two applications should be
equal to the sum of energies consumed by individual applications. This obser-
vations is just a manifestation of the fundamental energy conservation law, and
it was validated by extensive experimentation [28]. One consequence of this ob-
servation is that any PMC parameter in a linear power/energy predictive model
should be additive, that is, the value of this parameter for a serial execution
of two applications should be equal to the sum of its values for individual ap-
plications. The study found many popular PMCs non-additive, some reaching
up to 200% deviation from additivity. We conducted a simple experiment and
found that just by removing highly non-additive PMCs from the model, we can
significantly improve its predictive power. We also found that the number of
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non-additive PMCs increases with the increase of the number of cores used to
run applications, with very few non-additive PMCs in the case of single core.

4 Conclusion

In this paper, we have demonstrated that transition from single-core to multicore-
based platforms makes many traditional methods for performance and energy
optimization of parallel applications inefficient, and requires development of new
methods and algorithms.
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