
Received: 18 October 2019 Revised: 3 June 2020 Accepted: 4 June 2020

DOI: 10.1002/cpe.5928

S P E C I A L I S S U E P A P E R

A novel data partitioning algorithm for dynamic energy
optimization on heterogeneous high-performance
computing platforms

Hamidreza Khaleghzadeh Muhammad Fahad Ravi Reddy Manumachu

Alexey Lastovetsky

School of Computer Science, University

College Dublin, Belfield, Ireland

Correspondence

Hamidreza Khaleghzadeh, School of Computer

Science, University College Dublin, Belfield,

Dublin 4, Ireland.

Email: hamidreza.khaleghzadeh@ucd.ie

Funding information

Science Foundation Ireland, Grant/Award

Number: 14/IA/2474

Summary

Energy is one of the most important objectives for optimization on modern heteroge-

neous high-performance computing (HPC) platforms. The tight integration of multi-

core CPUs with accelerators such as graphical processing units (GPUs) and Xeon Phi

coprocessors in these platforms presents several challenges to the optimization of

multithreaded data-parallel applications for energy. In this work, the problem of opti-

mization of data-parallel applications on heterogeneous HPC platforms for dynamic

energy through workload distribution is formulated. We propose a workload parti-

tioning algorithm to solve this problem. It employs load-imbalancing technique to

determine the workload distribution minimizing the dynamic energy consumption

of the parallel execution of an application. The inputs to the algorithm are discrete

dynamic energy profiles of individual computing devices. The profiles are practically

constructed using an approach that accurately models the energy consumption by

execution of a hybrid scientific data-parallel application on a heterogeneous plat-

form containing different computing devices such as CPU, GPU, and Xeon Phi. The

proposed algorithm is experimentally analyzed using two multithreaded data-parallel

applications, matrix multiplication and 2D fast Fourier transform. The load-imbalanced

solutions provided by the algorithm achieve significant dynamic energy reductions for

the two applications (in average by 130% and 44%, respectively) compared with the

load-balanced solutions.

K E Y W O R D S

energy of computation, energy optimization, GPU, heterogeneous platforms, high-performance

computing, multicore CPU, Xeon Phi

1 INTRODUCTION

Energy consumption is one of the main challenges hindering high-performance computing (HPC) community from breaking the exascale barrier.1

Current HPC systems are already consuming megawatts of energy. For example, the world’s most powerful supercomputer as of 2018, Summit,

consumes around 10 MW of power (including the cooling power),2 and US Department of Energy aims to deploy an exascale supercomputer, capable

of performing exaflops (1018) in a power envelope of 20 to 30 MW.3 Because of such high power consumption, energy optimization has become a

first-class constraint at both hardware and software levels.

Concurrency Computat Pract Exper. 2020;e5928. wileyonlinelibrary.com/journal/cpe © 2020 John Wiley & Sons, Ltd. 1 of 18
https://doi.org/10.1002/cpe.5928

https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9460-3897

2 of 18 KHALEGHZADEH ET AL.

Energy optimization in HPC is studied chiefly in the context of biobjective optimization for performance and energy. State-of-the-art solu-

tion methods for the biobjective optimization problem can be broadly classified into system-level and application-level categories. System-level

solution methods aim to optimize performance and energy of the environment where the applications are executed. The methods employ

application-agnostic models and hardware parameters as decision variables. The dominant decision variable in this category is dynamic voltage and

frequency scaling. Majority of the works in this category optimize for performance with energy budget as a constraint. Application-level solutions

proposed in References 4-7 use application-level parameters as decision variables and application-level models for predicting the performance and

energy consumption of applications. The application-level parameters include the number of threads, number of processors, loop tile size, workload

distribution, and so on. Chakrabarti et al5 consider the effect of heterogeneous workload distribution on biobjective optimization of data analyt-

ics applications by simulating heterogeneity on homogeneous clusters. The performance is represented by a linear function of problem size and

the total energy is predicted using historical data tables. Research works6,7 demonstrate by executing real-life data-parallel applications on modern

multicore CPUs that the functional relationships between performance and workload distribution and between energy and workload distribution

have complex (nonlinear) properties. They target homogeneous HPC platforms.

Modern heterogeneous HPC platforms feature tight integration of multicore CPUs with accelerators such as graphics processing units (GPUs)

and Xeon Phi coprocessors to provide cutting-edge computational power and increased energy efficiency. This has resulted in inherent complexities

such as severe resource contention for shared on-chip resources [last level cache (LLC), interconnect] and nonuniform memory access (NUMA).

One visible manifestation of these complexities is a complex functional relationship between energy consumption and workload size of applications

executing on these platforms where the shape of energy profiles may be highly nonlinear and nonsmooth with drastic variations. This provides an

opportunity for application-level energy optimization through workload distribution as a decision variable.

Consider the dynamic energy profiles of multithreaded matrix-matrix multiplication (DGEMM) and 2D fast Fourier transform (2D-FFT) appli-

cations executed on two connected heterogeneous multiaccelerator NUMA nodes, HCLServer1 (Table 1) and HCLServer2 (Table 2). The multicore

CPU in HCLServer1 is integrated with one Nvidia K40c GPU and one Intel Xeon Phi 3120P. The multicore CPU in HCLServer2 is integrated with one

Nvidia P100 GPU. DGEMM computes the matrix product, C = 𝛼 × A × B + 𝛽 × C, where A, B, and C are, respectively, dense matrices of size m×n, n×n,

and m×n and 𝛼 and 𝛽 are constant floating-point numbers. 2D-FFT computes the Fourier transform of a complex matrix of size m×n. The structure of

the applications can be found in Reference 8 and the supplemental. The Intel MKL and Nvidia CUDA versions used on HCLServer1 are, respectively,

2017.0.2 and 7.5. The CUDA version 9.2.148 is installed on HCLServer2.

A data-parallel application executing on this heterogeneous platform, consists of a number of kernels (generally speaking, multithreaded), run-

ning in parallel on different computing devices of the platform. The proposed algorithm for solving the optimization problem for dynamic energy

requires individual dynamic energy profiles of all the kernels. Due to tight integration and severe resource contention in heterogeneous hybrid

platforms, the load of one computational kernel in a given hybrid application may significantly impact the performance of others to the extent of

preventing the ability to model the energy consumption of each kernel in hybrid applications individually. To address this issue, we restrict our study

in this work to such configurations of hybrid applications, where individual kernels are coupled loosely enough to allow us to build their individual

energy profiles with the accuracy sufficient for successful application of the proposed algorithm. To achieve this objective, we only consider con-

figurations where no more than one CPU kernel or accelerator kernel is running on the corresponding device. In order to apply our optimization

algorithm, each group of cores executing an individual kernel of the application is modeled as an abstract processor9 so that the executing platform

is represented as a set of abstract processors. Each abstract processor solely constitutes the processing elements and resources which are involved

TA B L E 1 HCLServer1: Specification of the Intel Haswell multicore CPU, Nvidia K40c and Intel Xeon Phi 3120P

Intel Haswell E5-2670V3 Nvidia K40c Intel Xeon Phi 3120P

Socket(s), Cores per socket 2, 12 No. of processor cores 2880 No. of processor cores 57

Main memory 64 GB Total board memory 12 GB Total main memory 6 GB

Idle Power (W) 60 Idle Power (W) 68 Idle Power (W) 91

TDP (W) 120 TDP (W) 245 TDP (W) 300

Intel Xeon Gold 6152 Nvidia P100 PCIe

Socket(s), Cores per socket 1, 22 No. of processor cores 3584

Main memory 96 GB Total board memory 12 GB

Idle Power (W) 60 Idle Power (W) 30

TDP (W) 140 TDP (W) 250

TA B L E 2 HCLServer2: Specifications of the Intel
Skylake multicore CPU and Nvidia P100 PCIe

KHALEGHZADEH ET AL. 3 of 18

in the execution of a given application kernel on it. We make sure that the sharing of system resources is maximized within groups of computational

cores representing the abstract processors and minimized between the groups. This way, the contention and mutual dependence between loosely

coupled abstract processors are minimized.

HCLServer1 is modeled by three abstract processors, CPU_1, GPU_1, and PHI_1, as shown in Figure 1. CPU_1 represents 22 (out of total 24)

CPU cores. GPU_1 involves the Nvidia K40c GPU and a host CPU core connected to this GPU via a dedicated PCI-E link. PHI_1 is made up of one

Intel Xeon Phi 3120P and its host CPU core connected via a dedicated PCI-E link. In the same manner, HCLServer2 is modeled by two abstract

processors, CPU_2 and GPU_2. Since there should be a one-to-one mapping between the abstract processors and computational kernels, any hybrid

application executing on the servers in parallel should consist of five kernels, one kernel per computational device. Each server is equipped with a

Watts Up Pro power meter to provide system-level physical power measurements.

The dynamic energy profiles for the two applications are shown in Figure 2. Each profile presents the dynamic energy consumption of a given

processor vs workload size executed on the processor. The dynamic energy consumptions are determined using the HCLWattsUp API,10 which gath-

ers the system-level physical power measurements from the power meter. Each data point in the profiles is obtained using Student’s t-test. The

application is run repeatedly until the sample mean of the measurement (execution time⧵dynamic energy) lies in the confidence interval (95%) and

a user-defined precision (10%) is achieved.

Consider the execution of DGEMM for the workload size 31360×10112 employing all the five abstract processors, {CPU_1, CPU_2, GPU_1,

GPU_2, PHI_1}. The solution determined by load-balanced algorithm is {2560, 2688, 5376, 20736, 0} and its dynamic energy consumption is 1003 J.

The optimal workload distribution is {0, 1216, 1344, 28800, 0} resulting in dynamic energy consumption of 475 J and thereby providing 52.6%

reduction in energy. Consider the execution of 2D-FFT for the workload size 10960×51200 (2D signal) employing all the five abstract processors.

The solution (workload distribution) determined by load-balanced algorithm is {1232, 7040, 1024, 1664, 0} and its dynamic energy consumption is

94 J. The load-balancing algorithm employs horizontal decomposition of the rows of the 2D signal. The optimal workload distribution is {0, 9072, 0,

F I G U R E 1 Block diagram of HCLServer1
containing three abstract processors

(A) DGEMM (B) 2D-FFT

F I G U R E 2 Dynamic energy functions of the abstract processors on HCLServer1 and HCLServer2. A, DGEMM and B, 2D-FFT. 2D-FFT, 2D fast
Fourier transform

4 of 18 KHALEGHZADEH ET AL.

1888, 0} resulting in dynamic energy consumption of 54 J and thereby providing 42.5% reduction in energy. These results motivate our work on a

novel data partitioning algorithm for minimization of dynamic energy.

In this work, we propose a novel workload partitioning algorithm, heterogeneous energy optimization algorithm (HEOPTA) that determines

optimal workload distribution minimizing the dynamic energy consumption of data-parallel applications executing on heterogeneous platforms for

the most general shapes of dynamic energy profiles of the participating processors. HEOPTA is a workload partitioning algorithm that takes as input

dynamic energy profiles of computations during the execution of a data-parallel application.

A significant challenge to the application of HEOPTA is the energy modeling of heterogeneous parallel applications running on hybrid platforms.

Consider a parallel application running on a CPU, a GPU and an Intel Xeon Phi. HEOPTA requires the dynamic energy profile of each computa-

tional kernel separately. To model the performance of a parallel application and build its speed functions, the execution time of any computational

kernel can be measured accurately using high precision processor clocks. There is, however, no such effective equivalent for measuring the energy

consumption.

There are three mainstream approaches to providing the energy consumption of an application: (a) System-level physical measurements using

external power meters, (b) Measurements using on-chip power sensors, and (c) Energy predictive models. The first approach using power meters is

known to be accurate at system-level11 but it does not provide a fine-grained decomposition of the energy consumption during the application run in

a hybrid platform. Now, an overview of the deficiencies with measurements using on-chip power sensors and energy predictive models is presented.

The energy measurement approach based on on-chip power sensors is now pervasively available in mainstream processors such as Intel and

AMD Multicore CPUs, Intel Xeon Phis, and Nvidia GPUs. There are vendor-specific libraries to obtain the power data from these sensors. For

example, running average power limit (RAPL)12 can be used to monitor power and control frequency (and voltage) of Intel CPUs. Intel system man-

agement controller chip13 and Nvidia NVIDIA management library (NVML)14 provide the power consumption by Intel Xeon Phi and Nvidia GPUs,

respectively. The accuracy of GPU on-chip sensors is reported in the NVML manual (±5%).14 However, in general, there is not much documentation

available on the accuracy of these vendor-specific libraries. Furthermore, there are many other issues related to power data obtained using on-chip

sensors. For the GPU and Xeon Phi on-chip sensors, there is no information about how a power reading is determined that would allow one to deter-

mine its accuracy. However, for the CPU on-chip sensors, RAPL uses voltage regulators (VR IMON) for CPU and DRAM. VR IMON is an analog circuit

within voltage regulator (VR), which keeps track of an estimate of the current.15 However, there are two main issues with these measurements. First,

how this estimate is determined. Second, the accuracy of the estimates is not reported in the vendor manual.

The third approach based on software energy predictive models emerged as a popular alternative to estimate energy consumption by an appli-

cation. While the models provide the fine-grain estimation of energy consumption during the execution of an application at relatively low cost

compared with the other approaches, there are research works highlighting their poor accuracy.16-19

We propose a practical methodology to determine this decomposition, which employs only system-level energy measurements using power

meters. The methodology allows us to build discrete dynamic energy functions of abstract processors with sufficient accuracy for the application of

HEOPTA.

The accuracy of our energy modeling methodology and the performance of HEOPTA are experimentally analyzed using two data-parallel appli-

cations, DGEMM and 2D-FFT, on a cluster of two heterogeneous nodes. We show that the load-imbalanced solutions provided by the algorithm

achieve significant dynamic energy reductions (on the average 130% and 44%) compared with the load-balanced solutions.

An effective approach to save energy in green computing clusters and big data centers is to switch idle nodes off or to put them in the sleep

mode.20-24 Both strategies reduce the base energy of idle nodes resulting in less total energy consumption of the platform. However, applying a

hybrid approach where each node consumes energy optimally during its computations and is switched off at other times can reduce the total energy

consumption of the whole platform more effectively. Therefore, apart from minimizing dynamic energy consumption, minimizing total energy con-

sumption is also an important objective. In this article, we experimentally examine if dynamic energy minimization using HEOPTA leads to minimizing

total energy consumption.

The main original contributions of this work are:

• We present the first study on dynamic energy optimization of data-parallel applications on heterogeneous processors through optimal workload

distribution.

• We propose a novel data partitioning algorithm that determines optimal workload distribution minimizing the dynamic energy consumption of

applications executing on heterogeneous platforms for the most general shapes of dynamic energy profiles of the participating processors. The

algorithm returns, generally speaking, nonbalanced solutions.

• We propose a methodology to determine the decomposition of dynamic energy consumption using system-level power measurements for

heterogeneous platforms with sufficient accuracy, and experimental validation of the methodology on two modern heterogeneous hybrid

servers.

• We experimentally demonstrate that performance optimization does not lead to dynamic energy optimization and also minimizing dynamic

energy does not result in minimizing total energy on modern heterogeneous platforms.

KHALEGHZADEH ET AL. 5 of 18

The article is organized as follows. Section 3 presents related work. Section 4 presents the formulation of the heterogeneous dynamic energy

optimization problem. Section 5 describes the data partitioning algorithm solving the problem. In Section 6, the device-level approach for dynamic

energy modeling is illustrated. Section 7 presents the experimental results. Finally, Section 9 concludes the article.

2 TERMINOLOGY

There are two types of energy consumptions, static energy, and dynamic energy. The total energy consumption is the sum of dynamic and static

energy consumptions. The static energy consumption is calculated by multiplying the idle power of the platform (without application execution)

with the execution time of the application. The dynamic energy consumption is calculated by subtracting this static energy consumption from the

total energy consumed by the platform during the application execution. That is, if PS is the static power consumption of the platform, ET is the

total energy consumption of the platform during the execution of an application, which takes TE seconds, then the dynamic energy ED is equal to

ED = ET − (PS × TE).

3 RELATED WORK

There are three popular approaches to measure energy in computing platforms: (a) Energy predictive (analytical) models, (b) measurements using

on-chip power sensors, and (c) system-level physical measurements using external power meters.

In this section, we present an overview of analytical and nonanalytical methods for power/energy modeling and energy optimization pro-

posed for multicore CPUs and accelerators. We then explain the rationale in using system-level power measurements using power meters, which is

considered to be the ground truth.

3.1 Analytical methods

Basmadjian et al25 construct a power model of a server using the summation of power models of its components: the processor (CPU), memory

(RAM), fans, and disk (HDD).

Rotem et al12 present a software-based power model RAPL in Intel Sandybridge. RAPL estimates the energy consumption of core and uncore

components based on some performance monitoring counters (PMCs) which are not disclosed. Lively et al26 present power-predictive mod-

els for hybrid applications (MPI/OpenMP) based on PMCs. They apply Spearman’s rank correlation and PCA to select appropriate performance

counters.

Rofouei et al27 estimate energy consumption on CPU-GPU systems using the multiplication of execution time with average power consumption

of a device. Therefore, ECPU = tCPU ×Pavg-CPU, and EGPU = tGPU × (Pavg-GPU +Pidle-CPU)+ Etransfer, where tCPU and tGPU, respectively, represent CPU and

GPU usages, Pavg-CPU and Pavg-GPU are the average power consumed by CPU and GPU, and Etransfer is the amount of energy consumed for data transfer

between CPU and GPU.

Multicore power, area, and timing (McPAT)28 is a framework modeling power, area, and timing for multicore and manycore processors. It consid-

ers most of the fundamental components in multicore processors such as cores, interconnects, shared caches, and memory controllers. Lim et al29

highlight that power consumption of a GPU can be represented as the summation of the power consumptions of all modeled components. They use

McPAT to estimate the power consumption of GPU components and adjust their model.

A component-level power consumption model is proposed in Reference 30. It analytically models the power consumption of 12 components in

GPUs, from ALU to memory units. The power consumption is then estimated as the sum of power consumptions of all these components along with

their access rates.

Nagasaka et al31 propose PMC-based statistical power consumption modelling technique for GPUs that run CUDA applications based on linear

regression and utilizes 13 PMCs

A power consumption model for GPUs is presented in Reference 32. It is based on linear regression tree and random forest methods. The model

collects 22 runtime characteristics including 18 types of operations and four architecture parameters.

Song et al33 present power and energy prediction models for GPUs which is based on machine learning algorithms such as back-propagation in

artificial neural networks.

Kestor et al34 present a system monitor interface between the OS and the user runtime that accounts for each core’s power consumption. The

proposed model considers the number of integer instructions, stalled cycles, LLC misses and the number of floating-point operations.

Choi et al35 proposed an arch-line model which is an energy-based analogue of the time-based roofline model presented in Reference 36.

The model visualizes energy and power consumptions based on algorithm-related parameters, including arithmetic and memory operations and

6 of 18 KHALEGHZADEH ET AL.

computation intensity of algorithm; as well as the machine characteristics, such as the time and energy costs per operation or per word of

communication.

Shao and Brooks37 develop an instruction-level energy consumption model for a Xeon Phi processor.

Jarus et al38 present system-wide energy consumption models for servers, which is based on the analysis of performance counters. They use

decision trees for finding an appropriate model for a given application.

Al-Khatib and Abdi39 presents an operand-value-based model to estimate the dynamic energy consumption of FPGAs.

Shahid et al40 propose a novel criterion called additivity to determine a subset of PMCs that can potentially be considered for reliable energy

predictive modelling for an Intel Haswell-E5-2670 CPU. This criterion is based on the experimental observation that the energy consumption of a

serial execution of two applications is the sum of energy consumptions observed for the individual execution of each application. They show that

lots of PMCs, used in energy predictive models, are not additive, and therefore, bring into question the reliability and reported prediction accuracy

of these models.

Chakrabarti et al5 propose a data partitioning scheme addressing the energy consumption optimization on heterogeneous clusters. They esti-

mate energy consumption using PVWATTS simulator. The proposed approach uses a linear programming formulation to solve the optimization

problem.

3.2 Nonanalytical methods

McCullough et al41 demonstrate that linear-based power modelling approaches show high prediction error in modern computing platforms because

of inherent complexities such as multiple cores, hidden device states, and large dynamic power components. They show power prediction errors

can reach as high as 150% and propose direct measurement as an alternative to analytical-based techniques to deal with the inherent complexities

arise by modern architectures.

O’Brien et al18 study proposed models for power and energy prediction on the highly heterogeneous and hierarchical node architectures in

modern HPC platforms. They come up with the idea that the inherent complexities, such as resource contention on LLC, NUMA, and dynamic power

management, make analytical-based approaches less-accurate enough to model performance and energy on modern HPC systems. Finally, they

conclude that direct measurement is the only accurate way to model the energy consumption of HPC platforms.

Lastovetsky and Manumachu6,42 propose a model-based energy optimization algorithm on tightly integrated multicore CPUs. Due to inherent

complexities (contentions on shared resources and NUMA), they highlighted that the shapes of energy profiles get so complicated that cannot be

modeled using linear techniques. They studied the real-life profiles of single and multithread applications and concluded as the number of threads

increases, the fluctuations in the energy profiles also increase. Due to the inherent complexities, they used direct energy measurement, rather than

analytical modelling techniques, to build real-life energy profiles of parallel applications.

Using on-chip power sensors is another popular approach to measure energy. Fahad et al43 present a comprehensive comparative study to

illustrate the shortcomings of this approach using two case studies. For the first case study, they use the dynamic energy profile of 2D (CUDA)

FFT on Nvidia Tesla P100 GPU for workload sizes ranging from 21504×25600 to 25600×25600 using a constant step size of 64. The dynamic

energy consumption by 2D FFT is measured with RAPL and NVML.14 They term them collectively as sensors. The energy measurements using sen-

sors are compared against HCLWattsUp API, which provides the system-level energy measurements using power meters. Figure 3A presents the

dynamic energy profiles of 2D FFT using HCLWattsUp and the on-chip sensors. The maximum and average errors of profiles given by the sensors

and HCLWattsUp are 176% and 73%, respectively.

For the second case study, consider the dynamic energy profile of 2D (MKL) FFT on Intel Xeon Gold 6152 (HCLServer2) for workload sizes

ranging from 6400×6400 to 29504×29504 using a constant step size of 64. The dynamic energy consumption by 2D FFT is measured with RAPL.

F I G U R E 3 Dynamic energy
functions of FFT on (i) Nvidia Tesla

P100 and (ii) Intel Xeon Gold 6152

KHALEGHZADEH ET AL. 7 of 18

The energy measurements using RAPL are compared against HCLWattsUp API. Figure 3B presents the dynamic energy profiles of 2D FFT using

HCLWattsUp and RAPL. The maximum and average errors of profiles given by the sensors and HCLWattsUp are 205% and 36%, respectively.

To summarize, in the single-core processors’ era, analytical approaches were able to precisely estimate the energy consumption of applica-

tions using a few architectural and program parameters. However, the tight integration of multicore CPUs with many-core accelerators incurs new

complexities, such as contentions on shared resources and NUMA. These complexities make the state-of-the-art energy measurements based on

on-chip sensors and energy predictive models suffer from poor accuracy. Therefore, an alternative is to use system-level energy measurements of

applications provided by power meters to model their energy consumptions.

In addition, apart from a few variation-aware algorithms which consider workload distribution as a decision variable for energy optimization

on homogeneous HPC platforms,6,42 all proposed methods assume a linear relationship between workload size and energy consumption. Neverthe-

less, regarding some aforementioned efforts,6,18,41,42 one can conclude that profiles on modern HPC platforms are highly nonlinear that makes the

relationship between workload size and energy consumption so complex, nonlinear and even non-convex. Therefore, workload distribution has now

become an important decision variable that cannot be ignored in solving the energy optimization problem on modern heterogeneous platforms.

4 FORMULATION OF HETEROGENEOUS DYNAMIC ENERGY OPTIMIZATION PROBLEM

Consider a workload size n executing on p abstract processors (multithreaded kernels). The dynamic energy consumption of each abstract processor

pi is modeled by a discrete dynamic energy function, ei(x), and contains m data points. ei(x) represents the dynamic energy consumption during the

execution of the workload size x. The set of dynamic energy functions of the p abstract processors is given by E = {e0(x), … , ep−1(x)}.

The heterogeneous dynamic energy optimization problem can be formulated as follows:

Heterogeneous dynamic energy optimization problem, HEOPT(n, p, m, E, Xopt, eopt): The problem is to find a distribution, Xopt = {x0, … , xp−1}, for

the workload n on p abstract processors that minimizes total dynamic energy consumption during parallel execution of n. The parameters (n, p, m,

E) are the inputs to the problem. The outputs are Xopt, which is the optimal solution (workload distribution), and eopt, which represents the dynamic

energy consumption of the optimal solution. The formulation below is an integer nonlinear programming problem.

eopt = min
X

p−1∑
i=0

ei(xi) Subject to
p−1∑
i=0

xi = n,

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and ei(x) ∈ R>0 (1)

The objective function in Equation (1) is a function of workload distribution X, X = {x0, … , xp−1}, for a given workload n executing on the p proces-

sors. The function returns the amount of dynamic energy which is consumed by running each given distribution X on processors {P0, … , Pp−1}. The

total dynamic energy consumption of X is calculated as the summation of all dynamic energies consumed by the p processors {P0, … , Pp−1} which

run X in parallel. The distribution with minimum dynamic energy consumption is returned as the optimal distribution. It should be noted that the

number of active processors (processors with nonzero workload sizes) in the optimal solution determined by HEOPTA (Xopt) might be less than p.

5 HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

In this section, we will introduce HEOPTA, a branch-and-bound algorithm solving HEOPT. It utilizes two bounding criteria, energy threshold and size

threshold, to find the optimal workload distribution in a polynomial complexity of O(m3 × p3).

Consider a workload n=12 executed using four heterogeneous processors (p=4). Figure 4A shows the discrete dynamic energy functions that

are input to EOPTA, E = {e0(x), … , e3(x)}, with a cardinality of 14 (m=14). Figure 4B shows the discrete dynamic energy functions which are stored

as arrays in nondecreasing order of energy consumption.

HEOPTA, as a branch-and-bound algorithm, gradually forms a rooted tree and explores branches of this tree, in depth-first order, to find optimal

workload distributions. Figure 5 shows the tree explored by HEOPTA which contains all the combinations for n=12 and p=4. Due to the lack of

space, the tree is shown partially.

HEOPTA starts tree exploration from the root at the level L0 of the tree. The root node is labeled by 12 which represents the whole workload

to be distributed between four processors {P0, P1, P2, P3}. Then, 15 (=m+1) problem sizes, including a zero problem size along with all problem

sizes in the dynamic energy function e0(x), are assigned to the processor P0 one at a time in depth-first order. The problem sizes are assigned in

nondecreasing order of their energy consumption. The value, which labels an internal node at level L1 (root’s children), determines the remaining

workload to be distributed between processors {P1, P2, P3}.

After assigning a problem size to P0 in the level L0, the algorithm proceeds to solve HEOPT in L1. Therefore, each child of the root in L0 is a root

of a subtree in the next level L1, which is a solution tree to solve HEOPT for the remaining workload between three processors {P1, P2, P3}. Each

8 of 18 KHALEGHZADEH ET AL.

(A) Sample dynamic energy functions (B) Functions stored in arrays

F I G U R E 4 A, Dynamic energy functions of a sample application executing on four heterogeneous processors. B, The same functions stored in
arrays

12

...9

...9(d)

...4

0
e=7

4
,3

9

0
e=16

9
,1
3

0,
0 5

,1 ...

0
,0 ...

12

5(d)

2

0
e=10

2
,2

0
e=5

Optimal

Solution

5

0
e=10

5
,6

0,
0 5

,1 3,4

9(c)

...7

0
e=18

7
,1
1

6

0
e=15

6
,9

4

0
e=6

4
,3

9

0
e=15

9
,1
3

0,
0

5,
1 3

,4 2,5

...

10(b)

...6

0
e=16

6
,9

8

0
e=16

8
,1
0

7

0
e=16

7
,1
1

5

0
e=8

5
,6

10

0
e=12

1
0
,1
1

0,0

5,
1

3
,4

2
,5 4,6

...

12(a)

...9 ø

0
e=17

9
,1
3

7

0
e=12

7
,1
1

12

0
e=16

1
2
,1
6

0,
0

5
,1 3

,4 ...

13,18

0,0 2,
1

3,2 7,4

0,0

3,3 ...

F I G U R E 5 Applying naive approach to examine all combinations and select a workload distribution with the minimum dynamic energy
consumption

edge, which connects the root and its child, is labeled by the problem size assigned to P0 and its energy consumption. Similarity, HEOPTA explores

branches in depth-first order until it reaches a leaf. Generally, in this tree, any leaf node labeled by 0 illustrates one of the possible solutions, where

its dynamic energy consumption, is calculated as the summation of the consumed energies labeling the edges in the path connecting the root and

the solution leaf. No-solution leaves are labeled by ⌀.

Before expanding each branch, the algorithm checks the branch against two upper estimated bounds, energy threshold and size threshold, and

it is discarded if cannot produce a better distribution. The energy threshold, represented by 𝜀, is initialized to the dynamic energy consumption of

load-equal distribution, allocating each processor the same workload of size n
p

(assuming n is divisible by p). HEOPTA will not examine data points

in the energy functions with the dynamic energy consumption greater than or equal to the energy threshold. In the example, 𝜀 will be initialized by

10 (
∑3

i=0 ei(12

4
) = (3 + 2 + 4 + 1) = 10). Therefore, data points with dynamic energy consumption less than 10 will only be considered, forming the

reduced search space.

The size threshold assigns each level of the tree a threshold, 𝜎i, i ∈ {0, … , p − 1}, which represents the maximum workload that can be executed

in parallel on processors {Pi, … , Pp−1} so that the dynamic energy consumption by every processor {Pi, … , Pp−1} is less than 𝜀. In this example, the

maximum workloads with the dynamic energy consumptions less than 𝜀=10 in the dynamic energy functions for processors P0, P1, P2, and P3 are 9,

7, 5, and 6, respectively. The size threshold vector,𝜎 contains four elements, 𝜎 = {𝜎0, 𝜎1, 𝜎2, 𝜎3}, where the size threshold for L3 (𝜎3) is equal to 6, 𝜎2 is

11 (= 𝜎3 + 5),𝜎1 is set to 18 (= 𝜎2 + 7), and finally𝜎0 would be 27 (= 𝜎1 + 9). Once𝜀changes, the size threshold array𝜎 is also updated using the new𝜀.

All subtrees, eliminated from the search space by applying the two bounding criteria, are highlighted in red in Figure 5. This key optimization

operation is called Cut. Apart from cutting useless branches in the tree, HEOPTA saves the solutions which are found during the tree exploration. As

an example, consider the solution {(0, 0), (2, 1), (5, 1), (5, 6)} with an energy consumption of 8. Each pair like (a, b) in the solution represents an allocated

KHALEGHZADEH ET AL. 9 of 18

workload size where a is the workload size and b determines the energy consumption for executing a. First, HEOPTA updates the energy threshold

to 8 (𝜀=8). The vector of size thresholds, 𝜎, is then updated to {21, 17, 0, 5}. The solution is also memorized, which includes saving the information

pertaining to all the levels of the tree except for the first and the last and the levels whose consumed energies go beyond 𝜀. Thus, the information

that is saved is level-specific. For L1, the memorized information includes the problem size assigned to P1, which is 2 and the total dynamic energy

consumption of the solution for processors {P1, P2, P3}, which is 8, The same is done for L2. The memorized information includes the problem size

assigned to P2, which is 5 along with the total dynamic energy consumption of the solution for processors {P2, P3}, which is equal to 7. Green nodes

in the tree highlight ones whose solutions are saved. This key operation is called Save. This allows HEOPTA to read the memory before exploring a

node and retrieves its solution (if it has already been saved). This key operation is called READMEMORY. The solution of the orange node in the tree

is retrieved from the memory.

In this example, the distribution {(0, 0), (7, 4), (5, 1), (0, 0)}, highlighted in blue, with the consumed dynamic energy of 5, represents the optimal

solution.

In summary, HEOPTA uses three key operations, Cut, Save, and READMEMORY, to find the optimal solutions. In supplemental available online,

we elucidate using an example how these key operations reduce the search space of solutions. The correctness and complexity proofs of HEOPTA

are presented in the supplemental available online.

5.1 Formal description of HEOPTA

Algorithm 1 shows the pseudocode of HEOPTA. It takes as inputs: the problem size, n, the number of heterogeneous processors, p, and an array

of p discrete dynamic energy functions, E = {E0, E1, … , Ep−1}. Ei represents the dynamic energy function of processor Pi and consists of m pairs

(xij, eij), j∈ [0, m) where xij is the jth problem size in the function, and eij represents the amount of dynamic energy consumed by Pi to run xij.

HEOPTA returns two outputs: the optimal workload distribution, Xopt, and its optimal dynamic energy consumption, eopt. It should be noted that

the number of processors selected by the algorithm (processors with nonzero workloads) in the optimal workload distribution may be less than p.

Algorithm 1. Algorithm Finding Optimal Workload Distribution of Size n for Minimizing Dynamic Energy Consumption

1: function HEOPTA(n, p, E,Xopt, eopt)

INPUT:

Problem size, n ∈ Z>0

Number of processors, p ∈ Z>0

Dynamic energy functions, E = {E0, ..., Ep−1},

Ei = {(xij, eij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, eij ∈ R>0}.

OUTPUT:

Optimal workload distribution, Xopt = {xopt[0], ..., xopt[p − 1]},

xopt[i] ∈ {
⋃m−1

j=0 xij ∪ {0}}, i ∈ [0, p).
Total dynamic energy consumption, eopt ∈ R>0

2: E ← E ∪ Sort↑(E)
3: xopt[i]← n

p
, ∀i ∈ [0, p − 1]

4: xopt[i]← xopt[i] + 1, ∀i ∈ [0, n%p)
5: 𝜀←

∑p−1
i=0 GETENG(Ei, xopt[i])

6: 𝜎← SIZETHRESHOLDCALC(p, E, 𝜀)

7: Mem[i][j]← ∅, ∀i ∈ [1, · · · , p − 2], j ∈ [0, · · · , n]
8: HEOPTA_KERNEL(n, p,0, E, 𝜀, 𝜎,0,Xcur,Mem,Xopt)

9: eopt ← 𝜀

10: return (Xopt, eopt)
11: end function

The algorithm first sorts each profile in nondecreasing order of dynamic energy consumption (Line 2). After that, the array Xopt and the energy

threshold 𝜀 are initialized to the load-equal distribution and its corresponding dynamic energy consumption, respectively (Lines 3-5). The vector of

size thresholds, 𝜎, is then determined using the function SIZETHRESHOLDCALC (Line 6).

In line 7, the data structure for saving solutions, matrix Mem, which consists of (p−2)× (n+1) elements, is initialized. It will save the solutions

found for processors {P1, … , Pp−2}. Next, HEOPTA invokes the recursive routine HEOPTA_KERNEL to find the optimal workload distribution.

10 of 18 KHALEGHZADEH ET AL.

Function GETENGEi, x (called in Line 5) returns the dynamic energy consumption of a problem size x running on Pi (The value is extracted from Ei).

It returns 0 when x equals 0. The pseudocodes of all functions, used in Algorithms 1 and 2, and the structure of Mem can be found in the supplemental

which is available online.

5.1.1 Recursive algorithm HEOPTA_Kernel

HEOPTA_KERNEL (Algorithm 2) is a recursive function, deploying the key three operations, Cut, Save and READMEMORY to solve HEOPT problem

efficiently. The variable c indicates the level of a node which is being processed in a solution tree. It is initialized to 0 in the first invocation of

HEOPTA_KERNEL, the next recursive invocation deals with L1 (ie, c=1), and so on. The vector Xopt = {xopt[0], … , xopt[p−1]} holds the best solu-

tion found so far where its dynamic energy consumption is in 𝜀. The array Xcur is used to hold problem sizes currently assigned to processors

Pi(i∈ [0, p−1]).

Algorithm 2. Algorithm of Recursive Kernel Invoked by Algorithm 1

1: function HEOPTA_KERNEL(n, p, c, E, 𝜀, 𝜎,Xcur,Mem,Xopt)

2: if CUT(n, 𝜎c) then

3: return

4: end if

5: if c = p − 1 then

6: if GETENG(Ec, n) < 𝜀 then

7: xcur[p − 1]← n

8: PROCESSSOLUTION(p, E, 𝜀, 𝜎,Xcur,Mem,−1,Xopt)

9: end if

10: return

11: end if

12: if c > 0 ∧ c ≤ p − 2 then

13: status ← READMEMORY(n, p, c, 𝜀, E,Xcur,Mem, idx)

14: if status = NOT_SOLUTION then

15: return

16: else if status = SOLUTION then

17: PROCESSSOLUTION(p, E, 𝜀, 𝜎,Xcur,Mem, c,Xopt)

18: return

19: end if

20: end if

21: idx ←−1, xc idx ← 0

22: while GETENG(Ec, xc idx) < 𝜀 do

23: xcur[c]← xc idx

24: if xc idx = n then

25: xcur[i]← 0, ∀i ∈ [c + 1, · · · , p − 1]
26: PROCESSSOLUTION(p, E, 𝜀, 𝜎,Xcur,Mem,−1,Xopt)

27: end if

28: if n > xc idx then

29: HEOPTA_KERNEL(n − xc idx, p, c + 1, E, 𝜀, 𝜎,Xcur,Mem,Xopt)

30: end if

31: if idx + 1 = m then

32: break

33: end if

34: idx ← idx + 1

35: end while

36: MAKEFINAL(Mem[c][n])
37: end function

KHALEGHZADEH ET AL. 11 of 18

The function CUT(n, 𝜎c), applying the key operation Cut, compares the workload n with the corresponding size threshold 𝜎c to decide whether

to expand the node or cut the subtree in level c (Lines 2-4).

Lines 5 to 11 process the solutions found in the last level Lp−1. Generally, once a solution is found, the routine PROCESSSOLUTION is invoked to

perform the following operations:

• If Xcur is better than the current best solution, Xopt, the energy threshold 𝜀 will be reduced to the dynamic energy consumption of Xcur, and Xopt

will be updated to Xcur.

• Should 𝜀 decrease, the size threshold vector 𝜎 is correspondingly updated.

• The operation Save is invoked to save Xcur in the memory.

Prior to expanding a node with a label of n at a given level c, the function READMEMORY is called to retrieve the solution for n on processors

{Pc, … , Pp−1}, provided it exists (Lines 12-20).

The optimal and intermediate solutions are stored in Mem. A memory cell which contains the optimal distribution is labeled Finalized. The vari-

able status determines the type of the retrieved solution. If there is no solution stored in a finalized cell or the total amount of dynamic energy

consumption for the retrieved solution is greater than or equal to 𝜀 (given by the status, NOT_SOLUTION), we return from HEOPTA_KERNEL. If

the stored solution in the Mem is the optimal one (given by the status, SOLUTION), the retrieved solution is used and the process returns from

HEOPTA_KERNEL. If none of the above cases occur, it means that the node has not already been examined, and the routine starts expanding the

current node by scanning the dynamic energy profile Ec from left to right.

The variable idx, ranging from −1 to m−1, determines indexes of data points in the sorted dynamic energy functions. Line 21 initializes idx

to −1 and xcidx to zero. Generally, xcidx determines the idxth problem size in profile Ec, in case idx is not −1.

The while loop (Lines 22-35) scans the dynamic energy profile Ec from left to right examining data points with dynamic energy consumption less

than the energy threshold 𝜀. The array Xcur = {xcur[0], … , xcur[p−1]} where xcur[i] ∈ {∪m−1
j=0

xij ∪ {0}}, i∈ [0, p), is used to store problem sizes currently

assigned to processors Pi. In each iteration, the data point idx is extracted from Ec, and its workload, which is xcidx, is stored in array Xcur (Line 23). If

this workload (xcidx) is equal to n, we found a solution. In this case, the solution is processed using PROCESSSOLUTION, otherwise, if xcidx is less than

n, HEOPTA_KERNEL is reinvoked to solve HEOPT for the remaining workload n−xcidx at the next level Lc+1 (Lines 24-30). If xcidx greater than n, this

data point is declined and the next one is processed.

Lines 31 to 34 check if the algorithm reaches the end of the function Ec. If this is the case, the while loop (Line 22-35) terminates, and the

corresponding memory cell is finalized (Line 36). Otherwise, idx is incremented moving to the next data point in the dynamic energy function Ec.

6 DEVICE-LEVEL DYNAMIC ENERGY DECOMPOSITION IN HETEROGENEOUS HYBRID
PLATFORMS

We describe our practical approach here to construct the discrete dynamic energy profiles of the abstract processors in a hybrid heterogeneous

server. The method is based purely on system-level power measurements. The approach comprises of two main steps. The first step is the identi-

fication or grouping of the computing elements satisfying properties that allow measurement of their energy consumptions to sufficient accuracy.

We call these groups as abstract processors. The second step is the construction of the dynamic energy models of the abstract processors where the

principal goal apart from minimizing the time taken for model construction is to maximize the accuracy of measurements.

6.1 Grouping of computing elements

Individual computing elements executing an application are grouped together in such a way that we can accurately measure the energy consumption

of the group. These groups are called abstract processors. We consider two properties essential to composing the groups:

• Completeness: An abstract processor must contain only those computing elements which execute the given application kernel.

• Loose coupling: Abstract processors do not interfere with each other during the application. That is, the dynamic energy consumption of one

abstract processor is not affected by the activities of other abstract processors.

Based on this grouping into abstract processors, we hypothesize that the total dynamic energy consumption during an application execution

will equal the sum of energies consumed by all the abstract processors. So, if ET is the total dynamic energy consumption of the system incorporating

p abstract processors {AP1, … , APp}, then ET =
∑p

i=1 ET(APi), where ET (APi) is the dynamic energy consumption of the abstract processor APi. We call

this our additive hypothesis.

12 of 18 KHALEGHZADEH ET AL.

Apart from computing elements, there are other resources such as network interface controller (NIC), solid state drive, fans, chipsets, and so on,

which are almost shared between all abstract processors and consume energy during application execution. To eliminate their potential contribution

in the dynamic energy consumption of a given abstract processor, the following precautions for energy measurements are taken into consideration:

• Since consuming a significant and variable amount of energy during application execution, fans are set at full speed before running the application

to eliminate their contribution. Thus, they run consistently at the same speed and consume the same amount of energy which is then considered

part of the static energy of the platform. This way, the dynamic energy consumption of a given abstract processor is not affected by fans.

• Disk utilization is monitored during the application run to ensure that the disk activity is negligible during the execution of our applications. It is

ensured that the problem size used in the execution of an application does not exceed the main memory, where swapping (paging) does not occur.

That is, problem sizes are bounded by main memory size.

• NIC is also monitored to make sure that the network is not used by the application. It should be mentioned that communications are out of the

scope of this work.

6.2 Energy models of abstract processors

We describe here the second main step of our approach, which is to build the dynamic energy models of the p abstract processors. We represent

the dynamic energy model of an abstract processor by a discrete function composed of a set of points of cardinality m. The total number of exper-

iments available to build the dynamic energy models is (2p −1)×m. Consider, for example, three abstract processors {A,B,C}. The experiments can

be classified into following categories: {(A), (B), (C), {(AB), (C)}, {(A), (BC)}, {(AC), (B)}, (ABC)}. The category {(AB), (C)} represents parallel execution

of application kernels on A and B followed by application kernel execution on C. For each workload size, the total dynamic energy consumption

is obtained from the system-level measurement for this combined execution of kernels. The categories {(AB), (C)} and {(BA), (C)} are considered

indistinguishable. There are m experiments in each category. The goal is to construct the dynamic energy models of the three abstract processors

{(A), (B), (C)} from the experimental points to sufficient accuracy. The number of experiments reduces to p×m by employing our additive hypothesis.

7 EXPERIMENTAL RESULTS

We employ two connected heterogeneous multiaccelerator NUMA nodes, HCLServer1 (Table 1) and HCLServer2 (Table 2). HCLServer1 is modeled

by three abstract processors, CPU_1, GPU_1 and PHI_1, as described earlier. HCLServer2 is modeled by two abstract processors, CPU_2 and GPU_2.

Two popular data-parallel applications, matrix-matrix multiplication (DGEMM) and 2D-FFT are used for our experimental analysis. A hybrid

data-parallel application executing on the servers in parallel consists of five kernels, one kernel per computational device. Figure 2 shows dis-

crete dynamic energy functions for the five abstract processors for DGEMM and 2D-FFT. For the DGEMM application, the workload sizes range

from 64×10112 to 28800×10112 with a step size of 64 for the first dimension m. For the 2D-FFT application, the workload sizes range from

1024×51200 to 10000×51200 with a step size of 16 for the first dimension m.

We use the member function gettimeofday() of the Linux library sys/time.h to measure the execution time of each kernel in our applica-

tions separately. For measuring dynamic energy consumption, each node is facilitated with one WattsUp Pro power meter which sits between

the wall A/C outlets and the input power sockets of the node. Each power meter captures the energy consumption of one node. HCLWattsUp

API10 is used to gather the readings from the meter to determine the dynamic energy consumption during the execution of an application using

two macros HCL_WATTSUP_START and HCL_WATTSUP_STOP. The first macro starts gathering power readings from the power meter, whereas the

HCL_WATTSUP_STOP stops gathering and return the total energy as a sum of these power readings. This approach is explained in detail in the supple-

mental available online. HCLWattsUp has no extra overhead and therefore does not influence the energy consumption of the application execution.

Fans are significant contributors to energy consumption. To rule out the contribution of fans in dynamic energy consumption, we set the fans at full

speed before executing an application so that the energy consumption due to fans is included only in the static energy consumption of the platform.

For each data point in the functions, the experiments are repeated until sample means of all the five kernels executing on the abstract processors

fall in the confidence interval of 95%, and precision of 0.1 (10%) is achieved.

7.1 Analyzing the accuracy of the additive approach

In this section, the accuracy of the additive approach is experimentally validated. We determine the dynamic energy consumption of application

kernels executing in parallel on their corresponding abstract processors, and term it as parallel dynamic energy profile for illustration purposes. We

KHALEGHZADEH ET AL. 13 of 18

(A)DGEMM (B)2D-FFT

F I G U R E 6 Parallel and Combined dynamic energy functions for, A, DGEMM and B, 2D-FFT applications on HCLServer1 and HCLServer2.

2D-FFT, 2D fast Fourier transform

TA B L E 3 Percentage difference of dynamic energy consumption of parallel

to combined for the DGEMM and 2D-FFT applications
Platform Min Max Average

(a) DGEMM

HCLServer01 0.026% 29.2% 6.38%

HCLServer02 0.012% 29.03% 3.8%

BOTH 0.004% 26.1% 5.9%

Platform Min Max Average

(b) DGEMM

HCLServer01 1.8% 18.4% 9.1%

HCLServer02 0.02% 28.8% 12.4%

BOTH 0.16% 24.7% 8.3%

Abbreviation: 2D-FFT, 2D fast Fourier transform.

determine the dynamic energy consumption of the same application kernels executing serially by keeping all other experiment settings the same. We

compute the sum value of the dynamic energy consumptions by these individual application kernels. This sum is termed the combined dynamic energy

profile for illustration purposes. The additive hypothesis holds if the percentage error between combined and parallel dynamic energy profiles is

within the user-specified accuracy.

Four profiles for HCLServer1 (one parallel and one for each of the three abstract processors), and three profiles for HCLServer2 (one parallel

and one for each of the two abstract processors) are built. Figure 6A, B show the dynamic energy functions for parallel and combined executions of

DGEMM and 2D-FFT applications on all the abstract processors.

Table 3A, B summarize the percentage difference of parallel to combined for the two applications. The percentage error between combined

and parallel dynamic energy profiles are measured as Error(%)= |(E(x)combined − E(x)parallel)|/E(x)parallel ×100, where E(x)parallel and E(x)combined repre-

sent the energy consumption by parallel and combined profiles for workload size x. We find the average percentage error of DGEMM combined

energy profile with parallel as 6.38% on HCLServer1, and 3.8% on HCLServer2. The average error of 2D-FFT on HCLServer1 is 9.1% and 12.4% on

HCLServer2.

7.2 Analyzing HEOPTA

HEOPTA is analyzed using two sets of experiments. For the first set, the dynamic energy consumption of solutions determined by HEOPTA is com-

pared against the dynamic energy of load-balanced solutions. Load-balanced solutions are workload distributions with equal execution times for

each abstract processor. The number of active processors in a solution (those assigned nonzero workload size) may be less than the total number

of available processors. The dynamic energy saving against load-balancing algorithm is obtained as follows: Energy_Savingbalance(%) =
ebalance−eheopta

eheopta
×

100, where ebalance and eheopta are the dynamic energy consumptions of solutions determined by load-balancing and HEOPTA algorithms.

14 of 18 KHALEGHZADEH ET AL.

For the second set, we examine the interplay between dynamic energy optimization and performance optimization using the workload distri-

bution determined by heterogeneous performance optimization algorithm (HPOPTA). HPOPTA44 is a model-based data partitioning algorithm that

minimizes the parallel execution time for the most general shapes of performance profiles for data-parallel applications executing on heterogeneous

clusters of hybrid nodes. In fact, HPOPTA finds workload distributions minimizing the execution time of parallel applications. Optimal solutions

found by HPOPTA may not be balanced in terms of execution time. The inputs to HPOPTA are discrete execution time (or performance) functions. The

energy saving of HEOPTA against HPOPTA is obtained as follows: Energy_Savinghpopta(%) =
ehpopta−eheopta

eheopta
× 100, where ehpopta represents the dynamic

energy consumption of the solution determined by HPOPTA. The goal of the second set of experiments is to find out if optimizing a data-parallel

application for performance also optimizes the application for dynamic energy. If it is not the case, then we have a biobjective optimization problem

for dynamic energy and performance to solve.

The experimental dataset for DGEMM contains the workload sizes, {64×10112, 128×10112, … , 57600×10112}. Figures 2A and 7A show

energy and performance functions of DGEMM for the five abstract processors. We need the speed functions to obtain ebalance and ehpopta. The min-

imum, average, and maximum reductions in the dynamic energy consumption of HEOPTA against load-balancing algorithm, Energy_Savingbalance,

are 0%, 130%, and 257%. Zero percentage improvement represents the same workload distribution is determined by HEOPTA and load-balancing

algorithm. These values for Energy_Savinghpopta are 0%, 145%, and 314%. Figure 8 compares HEOPTA against the dynamic energy consump-

tion of solutions determined by load-balancing and HPOPTA. According to these results, optimization for performance increases dynamic energy

consumption by an average of 145%.

The experimental dataset for 2D-FFT includes workload sizes, {1024×51200,1040×51200, … , 20000×51200}. Figures 2B and 7B show

energy and performance functions of DGEMM for the five abstract processors. The minimum, average, and maximum dynamic energy reduc-

tions of HEOPTA against load-balancing algorithm, Energy_Savingbalance, are 0%, 44%, and 105%. The minimum, average, and maximum of

Energy_SavingHPOPTA are 0%, 32%, and 77%. Figure 9 compares HEOPTA against the dynamic energy consumption of solutions determined by

load-balancing and HPOPTA. Therefore, optimization for performance increases dynamic energy consumption by an average of 32%.

(A) DGEMM (B)2D-FFT

F I G U R E 7 Performance functions for the five abstract processors on HCLServer1 and HCLServer2 for, A, DGEMM and B, 2D-FFT. 2D-FFT,
2D fast Fourier transform

(A) HEOPTA vs load-balancing (B)HEOPTA vs HPOPTA

F I G U R E 8 Dynamic energy consumption of DGEMM executed using HEOPTA in comparison with A, load-balanced solutions and B, HPOPTA.

HPOPTA, heterogeneous performance optimization algorithm

KHALEGHZADEH ET AL. 15 of 18

(A)HEOPTA vs load-balancing (B)HEOPTA vs HPOPTA

F I G U R E 9 Dynamic energy consumption of the 2D-FFT application executed using HEOPTA in comparison with A, load-balanced solutions
and B, HPOPTA. 2D-FFT, 2D fast Fourier transform; HPOPTA, heterogeneous performance optimization algorithm

HEOPTA is executed on a single core of a multicore CPU in our experimental testbed. For any workload size in the experimental datasets

for matrix multiplication and 2D-FFT applications, the algorithm has execution times less than 1 second. The amount of energy consumed by the

algorithm is negligible compared with the energy consumption of the applications.

7.3 Dynamic energy optimization vs total energy optimization

In this section, we analyse results of HEOPTA in terms of total energy minimization. Our experiments are conducted with DGEMM and 2D-FFT

applications and compare the total energy consumption of solutions returned by HEOPTA over minimum total energy consumption for any problem

size in the same experimental datasets employed earlier in Section 7. Total energy consumption of solutions returned by HEOPTA is calculated as

explained in Section 2. Since there is no algorithm to find the optimal workload distribution minimizing total energy consumption, we exhaustively

explore all possible distributions in the solution space to obtain optimal total energy. It should be mentioned that this algorithm has exponential time

complexity.

The percentage of total energy saving over HEOPTA solutions is calculated for the aforementioned datasets. Total energy saving is calculated as

follows: Total Energy Saving = teHEOPTA−teopt

teopt
× 100, where teHEOPTA is total energy consumption of the solution with optimal dynamic energy consump-

tion and teopt is the optimal total energy consumption obtained via exhaustive exploration of the solution space. The minimum, average and maximum

total energy savings for the DGEMM application are 0, 11% and 37%, respectively. These values for the 2D-FFT application are, respectively, 0, 29%

and 106%.

Figure 10A,B show the optimal total energy consumption over the total energy consumption of the distribution with minimum dynamic energy

consumption for DGEMM and 2D-FFT, respectively.

(A) DGEMM (B)2D-FFT

F I G U R E 10 Total energy profiles of A, DGEMM and B, 2D-FFT applications for two different workload distributions HEOPTA and optimal
solutions executing on HCLServer1 and HCLServer2. 2D-FFT, 2D fast Fourier transform; HPOPTA, heterogeneous performance optimization
algorithm

16 of 18 KHALEGHZADEH ET AL.

8 DISCUSSION

We experimentally validate our practical approach to construct the discrete dynamic energy profiles of the abstract processors in our heteroge-

neous servers. Since the servers are composed of CPUs and accelerators that are loosely coupled, we find that the discrete dynamic energy profiles

are accurate enough to be used as input to our workload partitioning algorithm, HEOPTA.

We show that HEOPTA provides considerable improvements in average and maximum dynamic energy consumptions in comparison with the

state-of-the-art load-balancing algorithm, which is based on smooth functional performance models of abstract processors and load-imbalancing

algorithm (HPOPTA), which takes as input nonsmooth and nonlinear performance profiles and optimizes the data-parallel application for perfor-

mance. Therefore, we conclude that performance optimization does not always lead to minimization of dynamic energy consumption.

We also experimentally demonstrate that minimization of dynamic energy does not always result in minimization of total energy consumption

during the execution of a data-parallel application.

The limitations of our method are that it does not take into account the energy consumptions of fans as well as the energy consumptions of

the network due to internode communications. We will extend our method to address the limitations. We will also explore the applicability of our

additive modelling approach for platforms where the constraint of loosely coupling for the compute devices is relaxed to some extent.

9 CONCLUSION

Modern heterogeneous HPC platforms feature tight integration of multicore CPUs with accelerators which resulted in inherent complexities such

as severe resource contention for shared on-chip resources and NUMA. These complexities result in a complex functional relationship between

energy consumption and workload size of applications executing on these platforms thereby providing an opportunity for application-level energy

optimization through workload distribution as a decision variable.

We proposed HEOPTA, a novel data partitioning algorithm that determines optimal workload distributions minimizing the dynamic energy

consumption of data-parallel applications running on heterogeneous HPC platforms. The optimality of solutions found by HEOPTA is analyzed using

two popular data-parallel applications, matrix-matrix multiplication and 2D-FFT. It was showed that the load-imbalanced solutions provided by the

algorithm achieve significant dynamic energy reductions compared with the load-balanced solutions. We also demonstrated that optimizing for

performance increases dynamic energy consumption by an average of 145% and 32% for both the applications. As future work, we will further study

the impact of dynamic energy optimization on performance and vice versa and will propose a biobjective optimization algorithm for performance

and dynamic energy to make a trade-off between these two objectives.

We also examined the impact of dynamic energy optimization on total energy consumption. It is experimentally demonstrated that solutions

minimizing dynamic energy consumption do not always optimize total energy consumption. In our future work, it is intended to propose an algorithm

finding optimal workload distribution minimizing total energy consumption with polynomial time complexity.

The software implementation for HEOPTA is available at Reference 45.

ACKNOWLEDGMENTS

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number

14/IA/2474.

ORCID

Hamidreza Khaleghzadeh https://orcid.org/0000-0003-4070-7468

Ravi Reddy Manumachu https://orcid.org/0000-0001-9181-3290

Alexey Lastovetsky https://orcid.org/0000-0001-9460-3897

REFERENCES

1. Hsu J. Three paths to exascale supercomputing. IEEE Spectrum. 2016;53(1):14-15.

2. Top500. Top500; 2018. https://www.top500.org/lists/2018/11/.

3. DOE. Preliminary conceptual design for an exascale computing initiative; 2014. https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/

20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf.

4. Lang J, Rünger G. An execution time and energy model for an energy-aware execution of a conjugate gradient method with CPU/GPU collaboration.

J Parall Distrib Comput. 2014;74(9):2884-2897.

5. Chakrabarti A, Parthasarathy S, Stewart C. A pareto framework for data analytics on heterogeneous systems: implications for green energy usage and

performance. Paper presented at: Proceedings of the 46th International Conference on Parallel Processing (ICPP); 2017:533-542; IEEE.

6. Lastovetsky A, Reddy R. New model-based methods and algorithms for performance and energy optimization of data parallel applications on homoge-

neous multicore clusters. IEEE Trans Parall Distrib Syst. 2017;28(4):1119-1133.

7. Manumachu RR, Lastovetsky A. Bi-objective optimization of data-parallel applications on homogeneous multicore clusters for performance and energy.

IEEE Trans Comput. 2018;67(2):160-177.

https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0001-9460-3897
https://www.top500.org/lists/2018/11/
https://science.energy.gov/%7E/media/ascr/ascac/pdf/meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf
https://science.energy.gov/%7E/media/ascr/ascac/pdf/meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf

KHALEGHZADEH ET AL. 17 of 18

8. Khaleghzadeh H, Zhong Z, Reddy R, Lastovetsky A. Out-of-core implementation for accelerator kernels on heterogeneous clouds. J Supercomput.

2018;74(2):551-568.

9. Zhong Z, Rychkov V, Lastovetsky A. Data partitioning on multicore and multi-GPU platforms using functional performance models. IEEE Trans Comput.

2015;64(9):2506-2518.

10. HCL HCLWattsUp: API for power and energy measurements using WattsUp Pro Meter; 2016. https://csgitlab.ucd.ie/ucd-hcl/hclwattsup.

11. Konstantakos V, Chatzigeorgiou A, Nikolaidis S, Laopoulos T. Energy consumption estimation in embedded systems. IEEE Trans Instrument Measur.

2008;57(4):797-804.

12. Rotem E, Naveh A, Ananthakrishnan A, Weissmann E, Rajwan D. Power-management architecture of the intel microarchitecture code-named sandy

bridge. IEEE Micro. 2012;32(2):20-27.

13. Intel Corporation, Intel® Xeon Phi™ Coprocessor System Software Developers Guide. Intel Corporation; 2014. https://software.intel.com/sites/default/files/

managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf.

14. Nvidia Nvidia management library: NVML reference manual; 2018.

15. Gough C, Steiner I, Saunders W. Energy Efficient Servers Blueprints for Data Center Optimization. Springer Nature; 2015.

16. Economou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-system power analysis and modeling for server environments. Paper presented at: Proceedings

of Workshop on Modeling, Benchmarking, and Simulation; 2006:70-77.

17. McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model-based power characteriza-

tion. Paper presented at: Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference. USENIX Association; 2011:12.

18. O’Brien K, Pietri I, Reddy R, Lastovetsky A, Sakellariou R. A survey of power and energy predictive models in HPC systems and applications. ACM Comput
Surv. 2017;50(3):37.

19. Shahid A, Fahad M, Reddy R, Lastovetsky A. Additivity: a selection criterion for performance events for reliable energy predictive modeling. Supercomput
Front Innov Int J. 2017;4(4):50-65.

20. Liu Y, Zhu H, Lu K, Wang X. Self-adaptive management of the sleep depths of idle nodes in large scale systems to balance between energy consump-

tion and response times. Paper presented at: Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science

(CloudCom); 2012:633-639; IEEE.

21. Benoit A, Lefèvre L, Orgerie AC, Rais I. Reducing the energy consumption of large-scale computing systems through combined shutdown policies with

multiple constraints. Int J High Perf Comput Appl. 2018;32(1):176-188.

22. Rossi FD, Xavier MG, De Rose CA, Calheiros RN, Buyya R. E-eco: Performance-aware energy-efficient cloud data center orchestration. J Netw Comput
Appl. 2017;78:83-96.

23. Chen K, Lenhardt J, Schiffmann W. Improving energy efficiency of web servers by using a load distribution algorithm and shutting down idle nodes. Paper

presented at: Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid); 2015:745-748; IEEE.

24. Rajamani K, Lefurgy C. On evaluating request-distribution schemes for saving energy in server clusters. Paper presented at: Proceedings of the 2003

IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2003; 2003:111-122; IEEE.

25. Basmadjian R, Ali N, Niedermeier F, Meer DH, Giuliani G. A methodology to predict the power consumption of servers in data centres. Paper presented

at: Proceedings of the 2nd International Conference on Energy-Efficient Computing and Networking; 2011; ACM.

26. Lively C, Wu X, Taylor V, et al. Power-aware predictive models of hybrid (MPI/OpenMP) scientific applications on multicore systems. Comput Sci-Res Dev.

2012;27(4):245-253.

27. Rofouei M, Stathopoulos T, Ryffel S, Kaiser W, Sarrafzadeh M. Energy-aware high performance computing with graphic processing units. Paper presented

at: Proceedings of the Workshop on Power Aware Computing and System; 2008.

28. Li S, Ahn JH, Strong RD, Brockman JB, Tullsen DM, Jouppi NP. McPAT: an integrated power, area, and timing modeling framework for multicore and

manycore architectures. Paper presented at: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture; 2009:469-480;

ACM.

29. Lim J, Lakshminarayana NB, Kim H, Song W, Yalamanchili S, Sung W. Power modeling for GPU architectures using McPAT. ACM Trans Des Automat Electron
Syst (TODAES). 2014;19(3):26.

30. Hong S, Kim H. An integrated GPU power and performance model. Paper presented at: Proceedings of the 38 of ACM SIGARCH Computer Architecture

News; 2010:280-289; ACM.

31. Nagasaka H, Maruyama N, Nukada A, Endo T, Matsuoka S. Statistical power modeling of GPU kernels using performance counters. Paper presented at:

Proceedings of the 2010 International IEEE Green Computing Conference; 2010:115-122.

32. Chen J, Li B, Zhang Y, Peng L, Peir JK. Statistical GPU power analysis using tree-based methods. Paper presented at: Proceedings of the 2011 International

Green Computing Conference and Workshops (IGCC); 2011:1-6; IEEE.

33. Song S, Su C, Rountree B, Cameron KW. A simplified and accurate model of power-performance efficiency on emergent GPU architectures. Paper pre-

sented at: Proceedings of the 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society; 2013:673-686.

34. Kestor G, Gioiosa R, Kerbyson DJ, Hoisie A. Enabling accurate power profiling of HPC applications on exascale systems. Paper presented at: Proceedings

of the 3rd International Workshop on Runtime and Operating Systems for Supercomputers; 2013:4; ACM.

35. Choi JW, Bedard D, Fowler R, Vuduc R. A roofline model of energy. Paper presented at: Proceedings of the 2013 IEEE 27th International Symposium on

Parallel & Distributed Processing (IPDPS); 2013:661-672; IEEE.

36. Williams S, Waterman A, Patterson D. Roofline: an insightful visual performance model for multicore architectures. Commun ACM. 2009;52(4):65-76.

37. Shao YS, Brooks D. Energy characterization and instruction-level energy model of Intel’s Xeon Phi processor. Paper presented at: Proceedings of the

2013 International Symposium on Low Power Electronics and Design; 2013; IEEE Press.

38. Jarus M, Oleksiak A, Piontek T, Węglarz J. Runtime power usage estimation of HPC servers for various classes of real-life applications. Future Generat
Comput Syst. 2014;36:299-310.

39. Al-Khatib Z, Abdi S. Operand-value-based modeling of dynamic energy consumption of soft processors in FPGA. Paper presented at: Proceedings of the

International Symposium on Applied Reconfigurable Computing; 2015:65-76; Springer.

40. Shahid A, Fahad M, Reddy R, Lastovetsky A. Additivity: a selection criterion for performance events for reliable energy predictive modeling. Supercomput
Front Innovat. 2017;4(4):50-65.

https://csgitlab.ucd.ie/ucd%2010hcl/hclwattsup
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf

18 of 18 KHALEGHZADEH ET AL.

41. McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model-based power characteriza-

tion. Paper presented at: Proceedings of the 20 of USENIX Annual Technical Conference; 2011.

42. Manumachu RR, Lastovetsky A. Parallel data partitioning algorithms for optimization of data-parallel applications on modern extreme-scale multicore

platforms for performance and energy. IEEE Access. 2018;6:69075-69106.

43. Fahad M, Shahid A, Manumachu RR, Lastovetsky A. A comparative study of methods for measurement of energy of computing. Energies.

2019;12(11):2204.

44. Khaleghzadeh H, Manumachu RR, Lastovetsky A. A novel data-partitioning algorithm for performance optimization of data-parallel applications on

heterogeneous HPC platforms. IEEE Trans Parall Distrib Syst. 2018;29(10):2176-2190.

45. Khaleghzadeh H, Reddy R, Lastovetsky A. HEOPTA: heterogeneous model-based data partitioning algorithm for optimization of data-parallel applica-

tions for dynamic energy; 2019. https://csgitlab.ucd.ie/HKhaleghzadeh/heopt.

How to cite this article: Khaleghzadeh H, Fahad M, Reddy Manumachu R, Lastovetsky A. A novel data partitioning algorithm for dynamic

energy optimization on heterogeneous high-performance computing platforms. Concurrency Computat Pract Exper. 2020;e5928.

https://doi.org/10.1002/cpe.5928

https://csgitlab.ucd.ie/HKhaleghzadeh/heopt
https://doi.org/10.1002/cpe.5928

