
Novel Data-Partitioning Algorithms for Performance
and Energy Optimization of Data-Parallel Applications

on Modern Heterogeneous HPC Platforms

Hamidreza Khaleghzadeh

UCD student number: 15209602

The thesis is submitted to University College Dublin
in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science and Informatics

Head of School: Professor Pádraig Cunningham

Research Supervisor: Assoc. Prof. Alexey Lastovetsky

March 2019

i

Acknowledgements

First and foremost, I would like to thank my supervisor Dr Alexey Lastovetsky

for accepting me to do my PhD into the Heterogeneous Computing Labora-

tory (HCL), and for his immense guidance kept me on the right path during my

study. I am greatly indebted to him for his valuable advice, and encourage-

ment.

I would like to extend my special gratitude to Dr Ravi Reddy Manumachu

for his guidance and encouragement through the duration of my study. To

all my colleagues in UCD’s Heterogeneous Computing Laboratory for fruitful

collaborations: Semen Khokhriakov, Ken O’Brien, Muhammad Fahad, Emin

Nuriyev, Arsalan Shahid and Tania Malik. Especial thanks to Elayne Ruane for

her help proofreading the thesis.

The last three years of my life have been truly rewarding for becoming a

member of the highly prestigious University College Dublin. From the UCD

School of Computer Science, thank you to Dr Pádraig Cunningham, head of

school, both Dr Michela Bertolotto and Dr Tahar Kechandi, my DSP members.

Thank you also to the school’s support staff: Lorraine McHugh, D’Arcey Jack-

son, Paul Martin and Tony O’Gara for their consistent helpfulness over the

years.

This research has emanated from research conducted with the financial

support of Science Foundation Ireland (SFI) under Grant Number 14/IA/2474.

I would like to thank SFI and University College Dublin for their financial sup-

port in the form of scholarship awards. I am also grateful to the financial sup-

port of COST Action IC0805 “Open European Network for High-Performance

Computing on Complex Environment” for the interesting schools and work-

shops held in University of Calabria (Italy), University College Dublin (Ireland)

and Rud̄er Bošković Institute (Croatia).

I would like to thank the many amazing friends I met in Ireland who made

ii

this journey full of pleasures. I also extend my appreciation to Mr David and Ms

Marie Redmond for their support, affection, and a home which they provided

me during my PhD education.

A heartfelt thanks to my parents and sister Homa. I am grateful for the

encouragement, support and love throughout my whole life.

Last but not least, I am thankful to God for all his blessings in my entire life.

iii

To my family.

iv

Abstract

Heterogeneity has turned into one of the most profound and challenging char-

acteristics of today’s HPC environments. Modern HPC platforms have become

highly heterogeneous owing to the tight integration of multicore CPUs and

accelerators (such as Graphics Processing Units, Intel Xeon Phis, or Field-

Programmable Gate Arrays) empowering them to maximize the dominant ob-

jectives of performance and energy efficiency. Designed for legacy homoge-

neous platforms, traditional parallel algorithms and tools will deliver a small

fraction of the potential performance and energy efficiency that we should ex-

pect from highly hybrid HPC platforms in the future.

Performance and energy are the two most dominant objectives for opti-

mization on modern heterogeneous HPC platforms such as supercomputers

and cloud computing infrastructures. Recent research on modern homoge-

neous multicore platforms demonstrates that the performance and energy pro-

files of data-parallel applications executing on such platforms exhibit drastic

variations due to inherent complexities in these platforms such as severe con-

tention for shared resources and Non-Uniform Memory Access (NUMA).

In this thesis, we present that these inherent characteristics and complex-

ities have posed serious challenges to modelling and optimization of data-

parallel applications on modern heterogeneous platforms for performance and

energy. We illustrate that the discrete functional relationships between perfor-

v

mance and workload size and between energy and workload size have non-

linear and non-convex shapes, which deviate significantly from the shapes and

assumptions that allowed state-of-the-art optimization algorithms to find opti-

mal solutions for performance and energy consumption. Thereby we demon-

strate that the workload distribution has become an important decision variable

that can no longer be ignored on modern heterogeneous HPC platforms.

We formulate the problem of optimization of data-parallel applications on

modern heterogeneous HPC platforms for performance and dynamic energy

and then propose two new model-based data partitioning algorithms, which

are named HPOPTA and HEOPTA. These algorithms respectively minimize

the execution time and the dynamic energy consumption of computations in

the parallel execution of applications. We also present two other algorithms,

HEPOPTA and HTPOPTA, for solving bi-objective optimization problems for

execution time and dynamic energy, and also execution time and total energy

on modern heterogeneous HPC platforms, respectively. All these algorithms

consider one decision variable, workload distribution. Unlike traditional ap-

proaches looking for load-balanced solutions, solutions returned by the algo-

rithms are, generally speaking, non-balanced.

In a typical hybrid node, the tight integration of accelerators with multicore

CPUs via PCI-E communication links contains inherent limitations such as lim-

ited main memory of accelerators and limited bandwidth of the PCI-E commu-

nication links. These limitations pose formidable programming challenges to

the execution of large workload sizes on these accelerators. In this research,

we describe an out-of-card library, which is called HCLOOC, containing inter-

faces that address these challenges. It employs optimal software pipelines to

overlap data transfers between host CPU and the accelerator and computa-

tions on the accelerator. It is designed using the fundamental building blocks,

vi

which are OpenCL command queues for FPGAs, Intel offload streams for Intel

Xeon Phis, and CUDA streams and events that allow concurrent utilization of

the copy and execution engines provided in Nvidia GPUs.

We experimentally analyse and demonstrate the optimality and efficiency

of the proposed algorithms and library using two well-known scientific data-

parallel applications, matrix multiplication and 2D fast Fourier transform, on a

cluster of two highly heterogeneous nodes. Each application invokes highly

optimized vendor specific kernels for CPUs and accelerators. The matrix mul-

tiplication application is implemented using HCLOOC, which allows the accel-

erators to run computations of any arbitrary workload size.
1

1This research has financially supported by Science Foundation Ireland (SFI) under Grant
Number 14/IA/2474.

vii

Contents

Acknowledgements ii

Abstract v

Contents viii

List of Figures xv

List of Tables xxiv

1 Introduction 1

1.1 Motivations of This Research 3

1.1.1 Shortcomings of State-of-the-art Load-balancing Algo-

rithms for Performance Optimization on Modern Hetero-

geneous Platforms . 4

1.1.2 Shortcomings of State-of-the-art Energy Optimization

Algorithms on Modern Heterogeneous Platforms 7

1.1.3 Necessity of Novel Bi-objective Optimization Algorithms

for Performance and Energy on Modern Heterogeneous

Platforms . 12

1.1.4 Challenges to Execution of Large Problem Sizes on Ac-

celerators . 14

viii

1.2 Contributions of This Research 15

1.3 Thesis Structure . 17

2 Background and Related Work 18

2.1 Heterogeneous HPC Platforms 18

2.2 Data Partitioning on HPC Platforms 21

2.2.1 Load-balancing in HPC platforms 23

2.3 Performance and Energy Models of HPC Platforms 25

2.3.1 Models for Performance 25

2.3.2 Models for Energy Consumption 32

2.4 Performance and Energy Bi-objective Optimization on HPC

Platforms . 39

2.4.1 System-level Methods 39

2.4.2 Application-level Methods 41

2.5 Summary . 45

2.6 Out-of-card Computation on Accelerators 48

2.6.1 Out-of-card Implementation of Accelerator Kernels . . . 48

2.6.2 Out-of-card Libraries for accelerator kernels 49

3 A Novel Data-Partitioning Algorithm for Performance Optimization

of Data-Parallel Applications on Heterogeneous HPC Platforms 51

3.1 Modelling Computational Performance of Hybrid Platforms . . . 53

3.2 Formulation of Performance Optimization Problem 58

3.3 HPOPTA: Algorithm Solving HPOPT 59

3.4 HPOPTA as a Load Imbalancing Algorithm 69

3.4.1 Problem Dimensions in HPOPTA 71

3.5 Formal Description of HPOPTA 71

3.5.1 Recursive Algorithm HPOPTA_Kernel 73

ix

3.5.2 Theoretical Analysis of HPOPTA 76

3.6 Experimental Analysis of HPOPTA 76

3.6.1 Experimental Platform and Applications 76

3.6.2 Data Partitioning on a Single-node Hybrid Server 77

3.6.3 Using HPOPTA for Data partitioning on Clusters of Het-

erogeneous Nodes . 86

3.6.4 Hierarchical Two-level Workload Distribution 88

3.7 Summary . 90

4 A Novel Model-based Algorithm for Dynamic Energy Consumption

Optimization of Data-Parallel Applications on Heterogeneous HPC

Platforms 92

4.1 Terminology . 94

4.2 Dynamic Energy Measurement in Heterogeneous Platforms . . 95

4.2.1 Energy Measurement in Computing Platforms 96

4.2.2 Dynamic Energy Measurement in Hybrid Heteroge-

neous Platforms . 97

4.3 Formulation of Heterogeneous Dynamic Energy Optimization

Problem . 102

4.4 HEOPTA: Algorithm Solving HEOPT Problem 103

4.5 Formal Description of HEOPTA 113

4.5.1 Recursive Algorithm HEOPTA_Kernel 114

4.6 Experimental Results of HEOPTA 117

4.6.1 Experimental Platform and Applications 117

4.6.2 Experimental Analysis 119

4.6.3 Observations . 125

4.7 Summary . 127

x

5 Bi-objective Optimization of Data-parallel Applications on Hetero-

geneous HPC Platforms for Performance and Energy Using Work-

load Partitioning 129

5.1 Formulation of Heterogeneous Dynamic Energy-Performance

Optimization Problem (HEPOPT) 131

5.2 HEPOPTA: Algorithm Finding Globally Pareto-optimal Solutions

for Dynamic Energy and Performance 132

5.3 Formal Description of HEPOPTA 138

5.3.1 Recursive Algorithm HEPOPTA_Kernel 139

5.4 HTPOPTA: Algorithm Finding Globally Pareto-optimal Solutions

for Total Energy and Performance 143

5.5 Formal Description of HTPOPTA 144

5.6 Experimental Results . 145

5.6.1 Analysis of HEPOPTA 150

5.6.2 Analysis of HTPOPTA 154

5.7 Summary . 157

6 Out-of-card Implementation for Accelerator Kernels on Heteroge-

neous Computing Platforms 159

6.1 Introduction to Out-of-card Computation for Accelerators 160

6.2 Out-of-card Library for Accelerator Kernels (HCLOOC) 163

6.2.1 Implementation for Dense Matrix Multiplication on a

GPU using HCLOOC 163

6.3 Experimental Results . 171

6.3.1 Evaluation Platform . 171

6.3.2 Performance of Out-of-card Implementations 171

6.4 Summary . 177

xi

7 Conclusion 179

Bibliography 182

Appendices 203

A Experimental Methodology 203

A.0.1 Methodology to Measure Execution Time and Energy

Consumption . 204

A.0.2 Methodology to Ensure Reliability of Experimental Results205

B HPOPTA Details 209

B.1 Comparison of Actual and Simulated Execution Times 209

B.2 Helper Routines Called in HPOPTA 211

B.2.1 Function GetTime . 211

B.2.2 Function SizeThresholdCalc 211

B.2.3 Function Cut . 212

B.2.4 Structure of matrix Mem 212

B.2.5 Function ReadMemory 213

B.2.6 Function ProcessSolution 214

B.2.7 Function Save . 216

B.2.8 Function Backtrack . 216

B.2.9 Function MakeFinal . 216

B.3 Correctness Proof of HPOPTA 217

B.4 Complexity of HPOPTA . 218

C HEOPTA Details 224

C.1 Helper Routines Called in HEOPTA 224

C.1.1 Function GetEng . 224

C.1.2 Function SizeThresholdCalc 225

xii

C.1.3 Function Cut . 225

C.1.4 Structure of matrix Mem 225

C.1.5 Function ReadMemory 226

C.1.6 Function ProcessSolution 226

C.1.7 Function Save . 227

C.1.8 Function MakeFinal . 227

C.2 Correctness Proof of HEOPTA 229

C.3 Complexity of HEOPTA . 229

D HEPOPTA Details 235

D.1 Helper Routines Called in HEPOPTA 235

D.1.1 Function ReadFunc . 235

D.1.2 Function SizeThresholdCalc 235

D.1.3 Function Cut . 236

D.1.4 Structure of matrix PMem in HEPOPT 237

D.1.5 Function ReadParetoMem 237

D.1.6 Function MakeParetoFinal 238

D.1.7 Function MergePartialParetoes 239

D.1.8 Function BuildParetoSols 240

D.2 Correctness Proof of HEPOPTA 242

D.3 Complexity of HEPOPTA . 243

E HTPOPTA Details 250

E.1 Definition of Pareto-optimal Solutions for Dynamic Energy and

Execution Time . 250

E.2 Pareto-front Solutions for Total Energy and Execution Time . . . 252

E.3 Complexity of HTPOPTA . 253

xiii

F Interfaces to Proposed Tools 255

F.1 Interface to HPOPTA . 255

F.2 Interface to HEOPTA . 258

F.3 Interface to HEPOPTA and HTPOPTA 260

G List of Abbreviations 265

G.1 Acronyms . 265

xiv

List of Figures

1.1 System share of accelerators in Top500 Supercomputers over

a period of ten years between 2009 and 2018. 3

1.2 Speed functions of heterogeneous 2D FFT application execut-

ing on a heterogeneous node including an Intel multicore CPU

and an Nvidia GPU. 6

1.3 Dynamic energy functions of heterogeneous 2D FFT application

executing on a heterogeneous node including an Intel multicore

CPU and an Nvidia GPU. 10

1.4 Pareto-front solutions of heterogeneous 2D FFT application for

a given problem size 11184×51200 running on a heterogeneous

platform including one Intel multicore CPU and an Nvidia GPU. 13

2.1 Decomposition of a matrix-vector multiplication into n partitions,

where n represents the number of rows in the matrix. Each cell

of the result vector y is calculated by one task [1]. 23

2.2 Functional performance models (FPM) of BLAS DGEMM on a

number of nodes from Grid’5000 Grenoble site [2]. 30

2.3 Speed function of FFTW running 24 threads to calculate Fast

Fourier Transpose of m × m square matrices on a multicore

processor Intel Haswell E5-2670. [3]. 32

xv

2.4 Dynamic energy profile against problem size for FFTW appli-

cation running 24 threads to compute Fast Fourier Transpose of

m×mmatrices on a multicore processor Intel Haswell E5-2670.

[3]. 39

3.1 Speed functions of heterogeneous 2D FFT application execut-

ing on a heterogeneous node including an Intel Haswell multi-

core CPU, one Nvidia K40c GPU and one Intel Xeon Phi 3120P. 52

3.2 Block diagram of HCLServer01 including an Intel Haswell multi-

core CPU, one Nvidia K40c GPU and one Intel Xeon Phi 3120P. 58

3.3 Speed functions of a sample application executing on an as-

sumed parallel machine which consists of 4 processors. 60

3.4 The equivalent time functions for the sample speed functions in

Figure 3.3. 60

3.5 Example: The sample time functions, shown in Figure 3.4,

which are stored in array data structures. Each array is sorted

in non-decreasing of execution time. 61

3.6 Applying naive approach to examine all combinations and select

a workload distribution with the minimum computation time of

parallel execution of the workload. 61

3.7 Example: Applying load-equal time threshold and removing

some data points from the search space. 64

3.8 Example: Applying size threshold which results in cutting some

subtrees, which do not give any solution, from the search tree. 65

3.9 Example: Backtracking to the ancestor of the node with maxi-

mum execution time, and cutting branches which do not result

in any solution better than the solution have found so far. 67

xvi

3.10 Example: Applying the updated time threshold and removing

more data points from the search space. 67

3.11 Example: Keeping on applying HPOPTA on the search space. . 68

3.12 Example: Finding the optimal solution and using Mem to find

solutions. 69

3.13 Original and smoothed speed functions of the heterogeneous

Matrix Multiplication on HCLServer01. MKL DGEMM is invoked

for CPU and Xeon Phi. For GPU, CUBLAS is used. The original

functions are smoothed using polynomial trend line in LibreOf-

fice Calc. 80

3.14 Speed functions of the heterogeneous Matrix Multiplication for

whole HCLServer01. The application is executed for each prob-

lem size n using two different workload distributions HPOPTA

and FPM. 81

3.15 Speed functions of the heterogeneous Matrix Multiplication for

whole HCLServer01. The application is executed for each prob-

lem size n using two different workload distributions HPOPTA

and load-balancing. 82

3.16 Original and smoothed speed functions of the heterogeneous

FFT application on HCLServer01. MKL FFT is invoked for CPU

and Xeon Phi. For GPU, CUFFT is used. The original functions

are smoothed using polynomial trend line in LibreOffice Calc. . 83

3.17 Speed functions of the heterogeneous FFT for whole

HCLServer01. The application is executed for each problem

size n using two different workload distributions HPOPTA and

FPM. 84

xvii

3.18 Speed functions of the heterogeneous FFT for whole

HCLServer01. The application is executed for each problem

size n using two different workload distributions HPOPTA and

load-balancing. 85

4.1 Block diagram of HCLServer01 including an Intel Haswell multi-

core CPU, one Nvidia K40c GPU and one Intel Xeon Phi 3120P

highlighting abstract processors for modelling dynamic energy

consumption. The server is equipped with a Watts Up Pro

power meter to measure energy consumption physically. 100

4.2 Dynamic energy functions of a sample application against prob-

lem size executing on an assumed parallel machine which con-

sists of 4 processors. 104

4.3 Example: The sample dynamic energy functions, shown in Fig-

ure 4.2, which are stored in array data structures. Each array is

sorted in non-decreasing order of dynamic energy consumption. 104

4.4 Applying naive approach to examine all combinations and se-

lect a workload distribution with the minimum dynamic energy

consumption of parallel execution for a workload size of 12 on 4

heterogeneous processors. 105

4.5 Example: Applying load-equal energy threshold and removing

some data points from the search space. 107

4.6 Example: Applying size threshold which results in cutting some

branches, which do not give any solution, from the search tree. 108

4.7 Example: Applying Cut and Save optimizations. 109

4.8 Example: Applying the updated energy threshold and removing

more data points from the search space. 110

4.9 Example: Applying Cut and Save optimizations. 111

xviii

4.10 Example: Keeping on expanding the search tree using HEOPTA. 111

4.11 Example: Termination of HEOPTA. 112

4.12 Dynamic energy functions of the heterogeneous Matrix Multipli-

cation application executing on HCLServer01 and HCLServer02. 121

4.13 Speed functions of the heterogeneous Matrix Multiplication ap-

plication executing on HCLServer01 and HCLServer02. 121

4.14 Parallel and Combined dynamic energy functions for the hetero-

geneous Matrix Multiplication application on HCLServer01 and

HCLServer02. 122

4.15 Dynamic energy consumption of the heterogeneous Matrix Mul-

tiplication application executed using HEOPTA in comparison

with load-balanced workload distribution on HCLServer01 and

HCLServer02. 122

4.16 Dynamic energy consumption of the heterogeneous Matrix Mul-

tiplication executed using HEOPTA in comparison with HPOPTA

workload distribution on HCLServer01 and HCLServer02. . . . 123

4.17 Dynamic energy functions of the heterogeneous 2D FFT appli-

cation executing on HCLServer01 and HCLServer02. 124

4.18 Dynamic energy functions of the heterogeneous 2D FFT appli-

cation executing on HCLServer01 and HCLServer02. In this

figure, the dynamic energy profile for Phi_1 is ignored. 124

4.19 Speed functions of the heterogeneous 2D FFT application exe-

cuting on HCLServer01 and HCLServer02. 125

4.20 Parallel and Combined dynamic energy functions for the hetero-

geneous 2D FFT application on HCLServer01 and HCLServer02.125

xix

4.21 Dynamic energy consumption of the heterogeneous 2D FFT

application executed using HEOPTA in comparison with

load-balanced workload distribution on HCLServer01 and

HCLServer02. 126

4.22 Dynamic energy consumption of the heterogeneous 2D FFT ap-

plication executed using HEOPTA in comparison with HPOPTA

workload distribution on HCLServer01 and HCLServer02. . . . 126

5.1 Sample dynamic energy and times functions sorted in non-

decreasing order of dynamic energy consumption. 133

5.2 The solution tree explored by the naive algorithm to find all dis-

tributions and its Pareto-optimal set for a workload n = 4 on four

processors. 133

5.3 Removing some data points from the search space by applying

the energy threshold ε. 136

5.4 Full and zoomed speed functions of the heterogeneous Ma-

trix Multiplication application executing on HCLServer01 and

HCLServer02. 149

5.5 Dynamic energy functions of heterogeneous Matrix Multiplica-

tion application executing on HCLServer01 and HCLServer02. . 149

5.6 Speed functions of the heterogeneous 2D FFT application exe-

cuting on HCLServer01 and HCLServer02. 150

5.7 Dynamic energy functions of the heterogeneous 2D FFT appli-

cation executing on HCLServer01 and HCLServer02. 150

5.8 Dynamic energy functions of the heterogeneous 2D FFT appli-

cation executing on HCLServer01 and HCLServer02. In this

figure, the dynamic energy profile for Phi_1 is ignored. 151

xx

5.9 Globally Pareto-front solutions for dynamic energy and execu-

tion time with the maximum cardinality determined by HEP-

OPTA for the heterogeneous Matrix Multiplication application. . 152

5.10 Globally Pareto-front solutions for dynamic energy and execu-

tion time with the maximum cardinality determined by HEP-

OPTA for the heterogeneous 2D FFT application. 152

5.11 Globally Pareto-front solutions for total energy and execution

time with the maximum cardinality determined by HTPOPTA for

the heterogeneous Matrix Multiplication application. 154

5.12 Globally Pareto-front solutions for total energy and execution

time with the maximum cardinality determined by HTPOPTA for

the heterogeneous 2D FFT application. Each curve represents

a problem size. 155

5.13 Total energy profiles of the heterogeneous Matrix Multiplication

application for two different workload distributions HTPOPTA

and HEOPTA executing on HCLServer01 and HCLServer02. . . 156

5.14 Total energy profiles of the heterogeneous 2D FFT application

for two different workload distributions HTPOPTA and HEOPTA

executing on HCLServer01 and HCLServer02. 157

6.1 Employing Partitioner module to decompose matrix A into 4

horizontal slices, matrix B into 2 vertical slices, and matrix C

into 8 (= 4× 2) blocks. 164

xxi

6.2 Pipeline structure in Stream Engine module for sample matri-

ces shown in Figure 6.1 on a GPU with dual copy engines and

one execution engine which supports concurrent data transfers

in two directions (represented by S() calls) and overlapping of

data transfers and kernel executions (represented as DGEMM).

Events, Rec(x) and Wait(x), are used for synchronization of

data transfers. 166

6.3 Comparison of vendor-optimized library CUBLAS-XT with

ZZGemmOOC on Nvidia K40c GPU. The green line separates

in-card computations from out-of-card ones. The dotted yel-

low line represents the theoretical peak double precision perfor-

mance of the GPU. 175

6.4 Speed function of XeonPhiOOC on Intel Xeon Phi 3120P. The

green line separates in-card computations from out-of-card

ones. The dotted red line represents the theoretical peak

double-precision performance. 175

6.5 Speed function of FPGAOOC on Xilinx Virtex 7 690T FPGA.

The green line separates in-card computations from out-of-card

ones. 176

6.6 Comparison of vendor-optimized library CUBLAS-XT with

ZZGemmOOC on Nvidia P100 PCIe GPU. The green line sep-

arates in-card computations from out-of-card ones. The dotted

yellow line represents the theoretical peak double precision per-

formance of the GPU. 176

B.1 Comparison of actual with simulated execution times for Matrix

Multiplication on HCLServer01. 210

xxii

B.2 Comparison of actual with simulated execution times for 2D FFT

on HCLServer01. 211

B.3 The execution of HPOPTA for a sample set of time functions

(p = 5), each contains 2 data points. The memorization tech-

nique is only considered to reduce the full search space of so-

lutions. The other optimizations, time threshold, size threshold,

and backtracking, are not applied. 220

C.1 The solution tree representing the execution of HEOPTA for a

sample set of energy functions (p = 5), each contains two data

points. The memorization technique is only considered to re-

duce the full search space of solutions. The other optimization,

cut, is not applied. 231

D.1 The HEPOPTA solution tree for executing a sample set of five

profiles (p = 5), each contains 2 data points. The memorization

technique is only considered to reduce the full search space of

solutions. 246

xxiii

List of Tables

2.1 Specifications of three clusters of the Grenoble site from

Grid’5000. All nodes are connected with InfiniBand 20G & 40G. 30

3.1 Specification of the Intel Haswell multicore CPU. 56

3.2 Specification of the Nvidia K40c GPU. 56

3.3 Specification of the Intel Xeon Phi 3120P. 57

4.1 HCLServer01: Specifications of the Intel Haswell multicore

CPU, Nvidia K40c, and Intel Xeon Phi 3120P. 117

4.2 HCLServer02: Specifications of the Intel Skylake multicore CPU

and Nvidia P100 PCIe. 118

4.3 Percentage difference of dynamic energy consumption of paral-

lel to combined for the heterogeneous Matrix Multiplication. . . 122

4.4 Percentage difference of dynamic energy consumption of paral-

lel to combined for the heterogeneous 2D FFT application. . . . 126

5.1 HCLServer01: Specifications of the Intel Haswell multicore

CPU, Nvidia K40c, and Intel Xeon Phi 3120P. 147

5.2 HCLServer02: Specifications of the Intel Skylake multicore CPU

and Nvidia P100 PCIe. 147

xxiv

5.3 Percentage improvement in performance when the dynamic en-

ergy consumption is increased by up to 5% over the optimal one

on HCLServer01 and HCLServer02. 153

5.4 Percentage reduction in dynamic energy consumption by 5%

degradation in performance over the optimal distribution on

HCLServer01 and HCLServer02. 153

5.5 Percentage improvements in total energy consumption by 5%

increase of total energy consumption over the optimal distribu-

tion on HCLServer01 and HCLServer02. 155

5.6 Percentage total energy saving when performance is degraded

by up to 5% over the optimal one on HCLServer01 and

HCLServer02. 156

6.1 List of Nvidia GPUs launched in 2018 with their main memory

capacities. 162

6.2 HCLServer01: Specifications of the Intel Haswell multicore

CPU, Nvidia K40c, Intel Xeon Phi 3120P, and Xilinx Virtex 7

690T FPGA. 172

6.3 HCLServer02: Specifications of the Intel Skylake multicore CPU

and Nvidia P100 PCIe. 173

xxv

Statement of Original Authorship

I hereby certify that the submitted work is my own work, was completed while

registered as a candidate for the degree stated on the Title Page, and I have

not obtained a degree elsewhere on the basis of the research presented in

this submitted work.

xxvi

Chapter 1

Introduction

Due to the superior performance per watt of accelerators, modern High Perfor-

mance Computing (HPC) platforms have become highly heterogeneous owing

to the tight integration of multicore CPUs and accelerators (such as Graphics

Processing Units, Intel Xeon Phis, or Field-Programmable Gate Arrays). Be-

cause of this inherent characteristic, processing elements contend for shared

on-chip resources, such as Last Level Cache (LLC), interconnect, etc., and

shared nodal resources, such as DRAM, Quick Path Interconnect (QPI), PCI-

E links, etc. The severe resource contention and also Non-Uniform Memory

Access (NUMA) have posed serious challenges to model and algorithm de-

velopers. Moreover, accelerators feature limited main memory compared to

the multicore CPU hosts and are connected to the hosts via limited bandwidth

PCI-E links thereby requiring support for efficient out-of-card execution.

Now, we study briefly the history of heterogeneous HPC platforms to dis-

cern how this most common architectural characteristic has emerged. For

more than three decades prior to mid-2000s, computer users came to expect

performance doubling every 18 months due to Moore’s law and Dennard scal-

ing [4, 5]. Both clock rate and power increased rapidly. This is the era of

homogeneous and heterogeneous clusters of single-core processors. How-

ever, by 2004, computer designers hit the power wall caused by problems

stemming from increasing power consumption and increasing power density

(amount of power dissipated per unit area, which represents the heat dissipa-

1

tion). The power problem was caused primarily by the breakdown of Dennard

scaling, a model whereby the power density of a transistor-based processor

of a unit area remains constant due to voltage and current scaling down with

the length of the transistor. Up until 2004, moving to a smaller transistor pro-

cess meant frequency could be increased for no increase in heat dissipation.

The breakdown of Dennard scaling meant frequency scaling was no longer

economical [6]. The chip fabrication industry turned to multicore CPU archi-

tectures to address this problem of increased power consumption and power

density. Frequency scaling was abandoned in favour of multiple processors

per chip [7].

Around 2001, general purpose computing on GPUs became practical with

the appearance of programmable shaders and floating point support. The

release of CUDA by Nvidia in 2007 and subsequent availability of high-quality

high-performance scientific libraries (CUBLAS, CUFFT, etc.) fuelled the exten-

sive use of GPUs by the scientific community, especially for matrix computa-

tions. In addition to enhanced programmability, their superior energy efficiency

(performance per watt or energy per flop) compared to multicore CPUs for cer-

tain class of HPC applications has been one of the prominent reasons behind

their rapid adoption by the HPC community. Intel entered the accelerator mar-

ket by launching their Xeon Phi coprocessors based on its Many Integrated

Core (MIC) architecture in 2013. Its key selling point compared to program-

ming on GPUs is the re-usability of existing parallel approaches (and reduced

portability concerns) due to its standard x86 programming model. Therefore,

because of their progressively improving programmability and better energy

efficiency, accelerators have become an integral part of HPC platforms ad-

dressing the twin critical concerns of performance and energy consumption.

Figure 1.1 summarizes the percentage of system share for accelerators

in Top500 Supercomputers [8] over a period of ten years between 2009 and

2018. According to the graph, there is a strong upward trend in the preva-

lence of accelerators during this time where the system share of accelerators

increased from 1.4% in 2009 to about 28% in 2018.

The current Top500 list [8] includes 126 systems with Intel/AMD multi-core

CPUs and Nvidia GPU accelerators and 31 systems with Intel Xeon Phi accel-

2

1.1. MOTIVATIONS OF THIS RESEARCH

Figure 1.1: System share of accelerators in Top500 Supercomputers over a
period of ten years between 2009 and 2018.

erators. Furthermore, there are four homogeneous clusters with hybrid nodes

consisting of Intel Xeon Phi and Nvidia accelerators.

1.1 Motivations of This Research

Performance and energy have become the two most dominant objectives for

optimization on modern heterogeneous HPC platforms such as supercomput-

ers and cloud computing infrastructures [9, 10].

Heterogeneity and tight integration have introduced daunting challenges

to the optimization of data-parallel applications for performance and energy

consumption on modern HPC platforms. To explain the motivations of this

research, we first elucidate unprecedented difficulties posed to performance

and energy optimization of modern heterogeneous HPC platforms. Then, the

necessity of a new model-based algorithm to address the bi-objective opti-

mization problem for performance and energy on heterogeneous platforms is

studied. Finally, we will explain how limited memory size on accelerators and

the limited bandwidth of PCI-E communication links affect the execution of

large problem sizes on these accelerators.

3

1.1. MOTIVATIONS OF THIS RESEARCH

1.1.1 Shortcomings of State-of-the-art Load-balancing Al-

gorithms for Performance Optimization on Modern

Heterogeneous Platforms

Prior to presenting use cases that elucidate challenges for performance opti-

mization on clusters of heterogeneous processors, we briefly study the evo-

lution of performance models and data partitioning algorithms that have at-

tempted to realistically capture the real-life behaviour of applications executing

on these platforms for performance maximization.

The simplest technique is Constant Performance Model (CPM) which char-

acterizes the speed of applications using positive constant numbers such as

normalized processor speed, normalized cycle time, task computation time,

average execution time, etc. [11, 12, 13]. The common aspect of these mod-

els is that the performance of a processor is assumed to have no dependence

on the size of the workload.

The most advanced load-balancing algorithms use Functional Perfor-

mance Model (FPM), which is application-specific. The FPMs represent the

speed of a processor by a continuous function of problem size while satisfying

some assumptions on its shape [14, 15]. The assumptions require them to

be smooth enough in order to guarantee that optimal solutions minimizing the

computation time are always load-balanced. The FPMs capture accurately

the real-life behaviour of applications executing on nodes consisting of uni-

processors (single-core CPUs).

However, modern HPC platforms have complex nodal architectures with

a highly hierarchical arrangement and tight integration of processors where

resource contention and NUMA are inherent. On such platforms, the perfor-

mance profiles of real-life scientific applications are not smooth and may de-

viate significantly from the shapes that allowed traditional and state-of-the-art

load-balancing algorithms to find optimal solutions.

Lastovetsky et al. [16] study the drastic deviations in the performance

profiles for a real-life scientific application, Multidimensional Positive Definite

Advection Transport Algorithm (MPDATA), in Xeon Phi co-processors. MP-

DATA is a core component of the Eulerian/semi-Lagrangian fluid solver (EU-

4

1.1. MOTIVATIONS OF THIS RESEARCH

LAG) geophysical model [17], which is an established computational model

developed for simulating thermo-fluid flows across a wide range of scales and

physical scenarios. The authors propose an optimization technique reusing

an advanced performance model of computation (FPM) but using novel load

distribution to minimize the computation time of the application. Lastovet-

sky et al. [3, 18] illustrate in depth these variations in performance and en-

ergy profiles of two widely known and highly optimized scientific routines,

OpenBLAS Double-precision General Matrix Multiplication (DGEMM) [19] and

FFTW [20], on a modern multicore Intel Haswell CPU platform. They ex-

plain the limitations of the FPM-based load-balancing algorithms proposed in

[21, 22, 23, 24, 25, 26, 27, 28, 29]. They propose novel model-based methods

and algorithms for minimization of time and dynamic energy of computations

for the most general performance and energy profiles of data parallel appli-

cations executing on homogeneous multicore clusters. Unlike load-balancing

algorithms, optimal solutions found by these algorithms may not load-balance

an application.

Nevertheless, the model-based methods, which have been proposed in

[16, 3, 18], cannot be used for performance optimization of data-parallel ap-

plications on HPC platforms with hybrid nodes since they are designed for

homogeneous clusters, i.e., cluster of identical processors.

We now present one motivational use case to elucidates the additional

challenges that arise in HPC platforms with heterogeneous nodes. We use a

hybrid NUMA platform which contains an Intel Haswell multicore CPU consist-

ing of 24 physical cores with 64 GB main memory and an Nvidia K40c GPU.

We study the performance profiles of a 2D Fast Fourier Transform (FFT)

application, computing the 2D-FFT ofM×51200 matrices. It executes a highly

optimized native kernel for CPU and the accelerator. The structure of the

application will be explained later in Chapter 3.

Figure 1.2 shows speed functions for the CPU and GPU. Each profile is a

discrete function of performance against the problem size. One can observe

significant fluctuations in the performance profile, which we call variations. The

variation is related to the difference of speed between two subsequent local

minima (s1) and maxima (s2), which is defined below:

5

1.1. MOTIVATIONS OF THIS RESEARCH

Figure 1.2: Speed functions of heterogeneous 2D FFT application executing
on a heterogeneous node including an Intel multicore CPU and an Nvidia GPU.

variation(%) =
|s1 − s2|

min(s1, s2)
× 100 (1.1)

To make sure that our experimental results are reliable, and it is not noise

that is the underlying cause behind these variations, the experiments for each

data point in speed functions are repeated until sample means for execution

times of all the two kernels running in parallel on the CPU and GPU fall in

the interval with the confidence level 95 percent, and a precision of 0.1 (10%)

is achieved. The statistical methodology is explained in detail in Appendix A.

Briefly, the methodology contains the following main steps: 1) We make sure

the platform is fully reserved and dedicated to our experiments and exhibits

clean behaviour by monitoring its load continuously for a week. 2) For each

data point in the speed functions of an application, the sample mean is used,

which is calculated by executing the application repeatedly until the sample

mean lies in the user-defined confidence interval, and the user-defined preci-

sion has been achieved. For this purpose, Student’s t-test is used assuming

that the individual observations are independent and their population follows

the normal distribution. We verify the validity of these assumptions by checking

the density plots of the observations.

From the figure, the maximum variations for CPU and GPU are almost 33%

and 20%, respectively. These shapes violate the assumptions on the shape

of FPMs. Therefore, current load-balancing data partitioning algorithms based

6

1.1. MOTIVATIONS OF THIS RESEARCH

on FPMs may not return optimal solutions.

The presented use case illustrates the dramatic variations observed in per-

formance profiles of highly optimized scientific applications executing on het-

erogeneous HPC platforms. These variations are not singular and will be-

come common because chip manufacturers are increasingly featuring tighter

integration of processor cores, memory, and interconnect in their products. It

is these variations that have now made the optimization problem for perfor-

mance on such platforms difficult to solve. Moreover, the state-of-the-art load-

balancing algorithms based on FPMs and even the model-based methods pro-

posed in [16, 3, 18] for modern multicores are not equipped to deal with such

cases where different processors exhibit different shapes of speed functions.

In Chapter 3, we will show more speed functions including lots of variations

and present a novel model-based data partitioning algorithms that employ a

load-imbalancing parallel computing method to address the new challenges.

1.1.2 Shortcomings of State-of-the-art Energy Optimization

Algorithms on Modern Heterogeneous Platforms

In this section, we first present the drastic changes observed in the shape

of energy profiles of real-life scientific data-parallel applications running on

heterogeneous HPC platforms compared to parallel platforms composed of

uniprocessors. Then, the challenges posed to solving energy optimization

problem by the new complexities in modern HPC platforms are highlighted

using this presentation.

In the era of single and dual-core processors, energy profiles of real-life sci-

entific applications were linear or smooth with minimal variations. Yang et al.

[30] take advantage of these simple and uncomplicated profiles and propose

an energy optimization algorithm by assuming that the energy consumption

with higher workload is larger than that with lower workload. In [3], the authors

experimentally illustrate that the shape of energy and performance profiles of

applications running on processors with one or a few cores is almost smooth.

They mathematically prove that balancing load for performance leads to en-

ergy optimization in such platforms. In general, principal features of popular

7

1.1. MOTIVATIONS OF THIS RESEARCH

algorithms, proposed for optimization of energy consumption on these sys-

tems, are:

• Employing analytical modelling to estimate the dynamic energy con-

sumption of applications [31, 32, 33, 30, 34, 35].

• Input parameters to these models (algorithms) are CPU/accelerator uti-

lization, memory utilization, number of active threads, cache miss rate,

bus traffic, CPU temperatures, etc. [32, 36, 37, 38, 39, 40, 41, 42, 43,

44]. Most of the existing methods do not consider application-level pa-

rameters for modelling.

• Apart from [3, 45, 18, 46], all methods assume a linear correlation be-

tween energy consumption and workload size and therefore do not con-

sider workload distribution as a decision variable. Although considering

variations, the aforementioned scientific efforts [3, 45, 18, 46] target ho-

mogeneous platforms for performance and energy optimization.

• Main decision variables in these methods are processor frequencies (ad-

justed using Dynamic Voltage and Frequency Scaling (DVFS)) and the

number of cores/threads [31, 32, 33, 47, 48, 49].

Increasing the number of cores in a single die and also tight integrating

of multi-core CPUs with many-core accelerators have incurred new complexi-

ties such as severe contention on shared resources (Last level caches (LLC),

main memory, PCI-E links, etc.) and NUMA. Like performance optimization,

these complexities lead to complicated nodal architectures, and henceforth,

introduce new challenges to the optimization of data-parallel applications on

these platforms for energy.

Lastovetsky and Reddy [3, 45, 18] examine energy profiles of parallel ap-

plications on homogeneous multicore CPUs. They demonstrate that energy

profiles on modern platforms are not smooth because of severe resource con-

tention, hierarchical arrangement and tight integration of processors. They

experimentally show a complex and non-linear relationship between workload

8

1.1. MOTIVATIONS OF THIS RESEARCH

size and dynamic energy consumption. They propose a model-based algo-

rithm for optimization of dynamic energy consumption for data parallel applica-

tions executing on homogeneous clusters of multicore CPUs. The key input to

the proposed algorithm is energy functions which model the real-life dynamic

energy consumption of applications against problem size. Due to designing

for homogeneous clusters, this algorithm cannot be used for minimizing the

dynamic energy consumption of data-parallel applications on heterogeneous

HPC platforms.

Heterogeneity and tight integration of multicore CPUs with accelerators

cause new additional difficulties in energy optimization on modern hybrid HPC

platforms. One visible manifestation of these complexities is a complex func-

tional relationship between energy consumption and workload size of appli-

cations executing on these platforms where the shape of energy profiles may

be highly non-linear and non-convex with drastic variations. We now elucidate

these challenges with one use case.

Figure 1.3 shows dynamic energy profiles for the 2D fast Fourier trans-

pose application running on the heterogeneous node which consists of an Intel

Haswell multicore CPU, including 24 physical cores with 64 GB main memory,

and an Nvidia K40c GPU. Each profile presents the dynamic energy consump-

tion of a given processor versus problem size, running on the processor. In this

experiment, The dynamic energy consumptions are measured using Watts Up

Pro power meter. We will elaborate how these fine-grained dynamic energy

profiles have been built via real measurement in Chapter 4.

From the energy function plot, one can observe:

• Energy variations for CPU and GPU are respectively around 90% and

60% for many workload sizes,

• Energy profiles of real-life scientific applications executing on modern

HPC platforms are not smooth and may significantly deviate from the

shapes observed on uni-processors,

• There is a complex correlation between dynamic energy consumption

and workload size where workload distribution has now become an im-

9

1.1. MOTIVATIONS OF THIS RESEARCH

Figure 1.3: Dynamic energy functions of heterogeneous 2D FFT application
executing on a heterogeneous node including an Intel multicore CPU and an
Nvidia GPU.

portant decision variable that should not be ignored in solving energy

optimization problem.

As explained earlier, except [3, 45, 18, 46] aiming to optimize performance

and dynamic energy on homogeneous platforms, all proposed methods do

not consider workload size as a parameter for energy modelling and even

as a decision variable for energy optimization. They consider a linear rela-

tionship between workload size and dynamic energy consumption. However,

regarding some scientific works [50, 51, 52, 3, 45] and the proposed use case,

one can conclude that profiles on modern HPC platforms may be complex,

which makes the relationship between workload size and dynamic energy con-

sumption non-linear and even non-convex. Therefore, models which ignore

workload size are not realistic and cannot reveal the exact behaviour of ap-

plications on modern heterogeneous platforms. Applying these approaches

consequently leads to sub-optimal solutions for dynamic energy optimization

problems.

The second challenge in energy optimization on modern hybrid HPC plat-

forms is how to measure and model dynamic energy on these environments.

While the execution time of every single computational kernel in a given hybrid

application can be measured accurately using high precision timers (proces-

sor clocks), there is no such effective equivalent for measuring the dynamic

10

1.1. MOTIVATIONS OF THIS RESEARCH

energy consumption. There are two dominant approaches to determine the

energy consumption of a given application kernel: a). hardware based such

as using on-chip power sensors or external power meters, b). software based

such as energy predictive models.

Due to tight integration and severe contention, software-based approaches

for modelling energy consumption on hybrid HPC platforms have been re-

ported to be inaccurate [53, 52, 54, 55]. A vast majority of existing optimiza-

tion algorithms for energy consumption rely on analytical modelling which have

poor accuracy and high prediction error.

On the other hand, physical approaches provide accurate measurements.

But they cannot determine intra-node energy consumption and fine-grained

decomposition of the energy consumption during the application execution in a

hybrid platform. Unlike homogeneous platforms, heterogeneous ones involve

a wide diversity of processors where each has its unique profile with different

dynamic energy consumption. That is, these approaches are not able to deter-

mine the amount of energy consumed by each kernel of a parallel application

separately.

To summarize, there exist two main challenges to solving energy optimiza-

tion problem on heterogeneous HPC platforms:

1. A model-based dynamic energy optimization algorithm which considers

workload distribution as a decision variable,

2. A practical approach to accurately determine the decomposition of dy-

namic energy consumption for each kernel running on heterogeneous

HPC platform using physical measurements.

Apart from dynamic energy consumption, the enormous total energy con-

sumption in data centres and big clusters is also a critical constraint. The

amount of static energy consumed by idle computers in clusters and clouds is

non-negligible [56]. To save total energy consumption, the idle computers in

clusters, clouds, web-servers and big data centers are switched off or put in

sleep mode [57, 58, 9, 59, 60]. Now, there is an open question: “Does dynamic

energy optimization always lead to total energy optimization?”. We are going

to study this issue in this thesis.

11

1.1. MOTIVATIONS OF THIS RESEARCH

1.1.3 Necessity of Novel Bi-objective Optimization Algo-

rithms for Performance and Energy on Modern Het-

erogeneous Platforms

In the previous sections, we studied the performance and dynamic energy

functions of a data-parallel application, 2D FFT, and explained that workload

distribution has now become an important decision variable that should be

taken into account in solving performance and also energy optimization prob-

lems on modern heterogeneous HPC platforms.

In this section, first, one use case is presented to highlight how perfor-

mance optimization can impact dynamic energy consumption and vice versa.

We then illustrate the challenges posed to solving bi-objective optimization

problem for performance and dynamic energy on heterogeneous HPC plat-

forms.

Figure 1.4 shows the globally optimal Pareto-front containing 16 solutions

for an input problem size n = 11184 × 51200 of the 2D FFT application, that

its performance and dynamic energy functions are presented in Figures 1.2

and 1.3, respectively. We have considered workload distribution as the only

decision variable. As shown in the figure, the workload distribution, which max-

imizes the performance, has an execution time of 1.29 seconds and a dynamic

energy consumption of 219 joules. The workload distribution, with the mini-

mal dynamic energy consumption of 151 joules, has an execution time of 1.72

seconds. From these results, one can conclude that optimizing for dynamic

energy consumption alone degrades performance by 33%, and optimizing for

performance alone increases dynamic energy consumption by 45%.

We can observe significant numbers of trade-off solutions for performance

and dynamic energy when workload distribution is considered as the decision

variable.

State-of-the-art solutions for bi-objective optimization problem for perfor-

mance and energy on heterogeneous platforms can be broadly classified

into system-level and application-level categories. System-level methods

[61, 62, 63, 10, 64, 47] aim to optimize performance and energy of the sys-

tem or the environment where the applications are executed. They employ

12

1.1. MOTIVATIONS OF THIS RESEARCH

Figure 1.4: Pareto-front solutions of heterogeneous 2D FFT application for
a given problem size 11184 × 51200 running on a heterogeneous platform
including one Intel multicore CPU and an Nvidia GPU.

application-agnostic models and hardware parameters as decision variables

where the dominant decision variable in this category is DVFS.

Application-level methods [65, 66, 67, 49, 68, 69, 70, 71, 72, 73, 50, 51]

use application-level parameters and models for predicting the performance

and the energy consumption of applications to solve bi-objective optimization

problem for performance and energy. The key decision variables are the num-

ber of threads and the number of processors. Along with decision variables,

several parameters, such as the cost of floating-point operations, cost of mem-

ory operations, latencies and bandwidths of the communication links, etc., are

considered, which impact the performance and energy consumption of the

applications but which have fixed values in the methods. These approaches

also consider workload size as an application parameter but assume a lin-

ear relationship between performance and workload size and between energy

consumption and workload size. Therefore, they do not consider workload

distribution as a decision variable.

Reddy et al. [45] study the Bi-objective Optimization Problem for Perfor-

mance and dynamic Energy (BOPPE) for data-parallel applications on ho-

mogeneous clusters of modern multicore CPUs. It employs only one deci-

sion variable, the workload distribution. They present an efficient and exact

global optimization algorithm called ALEPH that solves the BOPPE. It takes

as inputs, discrete functions of performance and dynamic energy consumption

13

1.1. MOTIVATIONS OF THIS RESEARCH

against problem size, and returns the globally Pareto-optimal set of solutions.

Extensions of the algorithm are proposed for employment in self-adaptable

applications where low runtime overhead and low memory footprint are crucial

[46]. It should be noted that the works in [45, 46] target homogeneous HPC

platforms.

In summary, regarding non-linear profiles for performance and dynamic

energy on heterogeneous HPC platforms and their complex relationship with

workload size, we need a model-based data partitioning algorithm to solve

BOPPE for data-parallel applications on these platforms. The algorithm should

take into consideration the variations in the discrete profiles. To address this

issue, in Chapter 5, we will propose a data partitioning algorithm which con-

siders load-imbalanced solutions that are totally ignored by load-balancing ap-

proaches.

1.1.4 Challenges to Execution of Large Problem Sizes on

Accelerators

Integration of multicore CPUs with accelerators poses challenges to execu-

tion of large workload sizes on these accelerators. These challenges, arising

from the limited main memory of accelerators and their tight integration with

multicore CPUs via PCI-E communication links, are listed below:

1. Limited main memory of accelerators: The size of main memory in

accelerators is small compared to that of the host multicore CPU con-

nected to it. Regarding the programming model for accelerators, all data,

required by any kernel, should be loaded into the accelerator memory

prior to any kernel invocation. Therefore, the maximum problem size

that can be solved by an accelerator is limited by its main memory size.

2. Limited bandwidth of the PCI-E communication link: Kernel exe-

cutions on accelerators usually entail multiple data transfers of data

structures from the host CPU to the accelerator and back. Accelera-

tors are connected to CPUs using PCI-E communication links. However,

14

1.2. CONTRIBUTIONS OF THIS RESEARCH

due to the limited bandwidth of the PCI-E communication link, this im-

pacts the execution times of applications. Accelerators such as GPUs

provide advanced hardware support to facilitate overlap of data trans-

fers between host and device and computations on the device. There-

fore, libraries aiming to provide efficient implementations for accelerators

must take into account the differences in hardware support for effective

communication-computation overlap to optimize their software pipelines

for kernel implementations.

3. Shortage of libraries supporting large workload sizes on accelera-

tors: There is an abysmal lack of libraries providing interfaces that allow

programmers to write implementations for their data-parallel kernels on

accelerators which are able to execute large workload sizes.

According to the aforementioned limitations, we need an efficient out-of-

card library which facilitates utilization of accelerators to solve big instances of

data-parallel applications.

Generally, in this thesis, out-of-card algorithms are referred to as methods

designed to process a workload which is too large to fit into an accelerator’s

main memory at one time. On the other hand, out-of-core computations use

disk storage in case the problem is too large to fit into a computer’s main

memory.

1.2 Contributions of This Research

To summarize, our main contributions in this thesis are:

1. Studying the realistic and accurate behaviour of data parallel applica-

tions on modern heterogeneous clusters of hybrid nodes and the chal-

lenges introduced to model and algorithm design because of resource

contention and NUMA for their performance and dynamic energy con-

sumption optimization. We will demonstrate that workload distribution

has now become an important decision variable that cannot be ignored

in solving the performance and energy optimization problems.

15

1.2. CONTRIBUTIONS OF THIS RESEARCH

2. An efficient data partitioning algorithm, which is named HPOPTA, for op-

timization of data-parallel applications on heterogeneous HPC platforms

for performance. We will demonstrate that optimal solutions found by

HPOPTA may not load-balance an application.

3. Demonstrating the efficiency of HPOPTA for large-scale simulated clus-

ters and introducing a hierarchical two-level workload distribution algo-

rithm using HPOPTA on a cluster of identical hybrid nodes.

4. A methodology to determine decomposition of dynamic energy con-

sumption using physical measurements for heterogeneous hybrid

servers with sufficient accuracy for energy optimization algorithms.

5. An efficient data partitioning algorithm, which is called HEOPTA, for op-

timization of data-parallel applications on heterogeneous HPC platforms

for dynamic energy.

6. A model-based data partitioning algorithm, which is called HEPOPTA,

for solving the bi-objective optimization problem for performance and

dynamic energy for data-parallel applications on heterogeneous HPC

platforms. We demonstrate that solutions provided by these algorithms

do significantly improve the performance and energy efficiency of ma-

trix multiplication and 2D fast Fourier transform in comparison with the

traditional load-balanced configurations of the applications.

7. A model-based data partitioning algorithm, which is called HTPOPTA, for

solving the bi-objective optimization problem for performance and total

energy for data-parallel applications on heterogeneous HPC platforms.

The efficiency of solutions found by HTPOPTA will be compared with

algorithms only consider load-balancing distributions.

8. A library, which is called HCLOOC, that allows programmers to write out-

of-card implementations of data-parallel kernels for accelerators such

as GPUs, Xeon Phis, and FPGAs. The library is developed to address

the challenges to validating the research in this thesis, arising from the

limited main memory of accelerators. The library involves:

16

1.3. THESIS STRUCTURE

• An efficient out-of-card implementation written using HCLOOC of

matrix multiplication for NVidia GPUs.

• An efficient out-of-card implementation written using HCLOOC of

matrix multiplication for Intel Xeon Phis.

• The very first out-of-card implementation of matrix multiplication for

Xilinx FPGAs.

1.3 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we review the evolution

of HPC machines, efforts on performance and energy modelling and optimiza-

tion for modern heterogeneous platforms, and the existing work to solve the bi-

objective optimization problem for performance and power/energy consump-

tion on HPC systems. We also describe the existing out-of-card implementa-

tions for accelerator kernels. In Chapter 3, we present a novel data partitioning

algorithm for performance optimization of data-parallel applications on hetero-

geneous HPC platforms and evaluate its efficiency and scalability on HPC

clusters. In Chapter 4, we present new methods for dynamic energy modelling

and optimization on heterogeneous HPC platforms, and then experimentally

evaluate their accuracy and efficiency. In Chapter 5, two model-based data

partitioning algorithm are proposed, one for solving bi-objective optimization

for execution time and dynamic energy, and the other optimizes two objec-

tives execution time and total energy. In Chapter 6, we will describe a pro-

gramming library enabling out-of-card implementation for accelerator kernels

on heterogeneous computing platforms, and then experimentally examine its

performance on two Nvidia GPUs, one Intel Xeon Phi and one Xilinx FPGA.

Finally, Chapter 7 concludes the thesis.

17

Chapter 2

Background and Related Work

In this chapter, first, the evolution of HPC machines is reviewed. Next,

we overview data partitioning techniques as well as state-of-the-art load-

balancing methods. After that, efforts on performance and energy mod-

elling for modern heterogeneous platforms are surveyed. Then, we will study

the existing approaches to achieve bi-objective optimization for performance

and power/energy consumption on modern HPC systems. Last, research

work presenting out-of-card implementations for accelerator kernels will be

overviewed.

2.1 Heterogeneous HPC Platforms

Multiple Instruction, Multiple Data (MIMD) parallel computers are referred to a

broad type of high-performance computing platforms. These machines consist

of a number of independent processing elements which enable the execution

of different instructions on different pieces of data. A processing element refers

to either a multicore CPU or an accelerator such as a Graphics Processing

Unit (GPU), an Intel Xeon Phi (Xeon Phi), a Field Programmable Gate Array

(FPGA), and etc. There are two classifications of MIMD machines: a). shared

memory, e.g. multicores and CPU-accelerator heterogeneous platforms, and

b). distributed memory, e.g. computational clusters. Shared memory sys-

tems take advantage of a common data space (memory) shared between

18

2.1. HETEROGENEOUS HPC PLATFORMS

all processing elements. However, each processing element has its own pri-

vate memory in distributed memory platforms which interacts with others using

message passing techniques. The time taken for access to the memory can be

identical for all processing elements, called Uniform Memory Access (UMA),

or for some processing elements is longer than others, referred to as NUMA.

Shared memory systems can be designed in both types UMA and NUMA, but

the memory access time in distributed platforms is NUMA.

Now, we are going to review the evolution of MIMD HPC platforms. For

more than three decades prior to mid-2000s, computer users came to expect

performance doubling every 18 month due to Moore’s law and Dennard scaling

[4, 5]. In that period of time, microprocessors, consisting of several single-core

CPUs, such as those in the Intel Pentium family and the AMD Opteron family,

brought swift performance increase and cost reduction in computer applica-

tions for more than two decades [74]. To keep pace with escalating perfor-

mance requirements for enterprise and parallel applications, processor manu-

facturers primarily responded by increasing the processor clock speed. How-

ever, increasing the clock speed leads to unprecedented energy consumption

and heat dissipation issues; and, by 2004, computer designers hit the power

wall caused by unprecedented problems stemming from increasing power con-

sumption and increasing power density (amount of power dissipated per unit

area, which represents the heat dissipation). The power problem was caused

primarily by the breakdown of Dennard scaling, a scaling model whereby the

power density of a transistor-based processor of a unit area remains constant

due to voltage and current scaling down with the length of the transistor. Up

until 2004, moving to a smaller transistor process meant frequency could be

increased for no increase in heat dissipation. The breakdown of Dennard scal-

ing meant frequency scaling was no longer economical [6]. The chip fabrica-

tion industry turned to multicore CPU architectures to address this problem

of increased power consumption and power density. Frequency scaling was

abandoned in favour of multiple processors per chip. In fact, excellent overall

processing performance was achieved by reducing clock speed while increas-

ing the number of processing units; and the consequent reduction in clock

speed can lead to lower heat output and greater efficiency [7].

19

2.1. HETEROGENEOUS HPC PLATFORMS

Apart from multicore processors, we witnessed the emergence of many-

core accelerators, such as GPUs and Intel Xeon Phis, which take advantage

of a great number of simple smaller cores. General purpose computing on

GPUs became practical with the appearance of programmable shaders and

floating point support circa 2001. The release of CUDA [75] by Nvidia in 2007

and subsequent availability of high-quality high-performance scientific libraries

(CUBLAS, CUFFT, etc.) fuelled the extensive use of GPUs by the scientific

communities, especially for matrix computations. In addition to enhanced pro-

grammability, their superior energy efficiency (performance per watt or energy

per flop) compared to multicore CPUs for certain class of HPC applications

has been one of the prominent reasons behind their rapid adoption by the

HPC community. Intel entered the accelerator market by launching their Xeon

Phi coprocessors based on its Many Integrated Core (MIC) architecture in

2013. Its key selling point compared to programming on GPUs is the reusabil-

ity of existing parallel approaches (and reduced portability concerns) due to its

standard x86 programming model. Therefore, because of their progressively

improving programmability and better energy efficiency, accelerators have be-

come an integral part of HPC platforms addressing the twin critical concerns of

performance and energy consumption. FPGA is now believed to be a serious

contender to these accelerators. However, its smooth adoption by the HPC

community has been hindered by its poor programmability.

To summarize, extreme-scale HPC computing systems today feature tight

integration of multicore CPU processors and accelerators (GPUs or Intel

Xeon Phis) empowering them to provide not just unprecedented computational

power but also to address the well established critical concerns of power and

energy efficiency. It is apparent that heterogeneity has become a common and

inseparable attribute of high-performance computing platforms. The current

Top500 list [8], which is a harbinger of extreme-scale platforms, contains 126

systems with Intel/AMD multicore CPUs and Nvidia GPU accelerators (Fer-

mi/Kepler/Pascal), and 31 platforms with Intel Xeon Phi accelerators. There

are 4 hybrid systems integrated with Nvidia and Intel Xeon Phi coprocessors.

This hybrid and highly heterogeneous nature of the systems is now widely

perceived to be a leading forerunner to achieving exascale objectives. It is

20

2.2. DATA PARTITIONING ON HPC PLATFORMS

envisaged that futuristic extreme-scale platforms will feature nodes that will

contain multiple types of accelerators and will utilize only a subset of these

that are best suited to execute specific classes of applications and to run dif-

ferent portions of a hybrid application.

Therefore, we believe that this paradigm shift towards hybrid architectures

is now becoming firmly entrenched and will be pervasive as we move towards

and into the exascale future.

2.2 Data Partitioning on HPC Platforms

Despite significant efforts to design and produce powerful HPC platforms, ex-

ploiting the parallelism capability of these machines depends on developing ef-

ficient parallel applications. To design and implement a parallel algorithm, we

need an algorithm model. An algorithm model determines a way of structuring

a parallel algorithm by selecting a decomposition and task mapping technique

and applying the appropriate strategy to minimize interactions [1]. Namely,

decomposition refers to splitting a problem into smaller sub-problems where

each will be assigned to a task to run in parallel. Mapping is a mechanism

expressing how tasks are assigned to different logical processing elements

for parallel execution. There are various ways to undertake task mapping.

But, a good mapping is one that meets the desirable objective(s). It should

be mentioned these objectives in this thesis are minimum execution time and

minimum energy consumption. There exist two algorithm models commonly

used to design parallel algorithms:

• Data parallel: In this model, the data is decomposed into some parti-

tions and each partition is given to a task.

• Task parallel: It relies on a graph called the task dependency graph

which expresses dependencies among tasks and reveals the interaction

pattern of tasks in a given parallel application. The graph is a Directed

Acyclic Graph (DAG) so that the nodes represent tasks, and the directed

edges determine dependencies amongst them.

21

2.2. DATA PARTITIONING ON HPC PLATFORMS

At the followings, we first explain different decomposition techniques and

then study task mapping approaches.

Decomposition is the only way to implement concurrency in HPC applica-

tions. The common problem decomposition techniques, as the first step in

designing a parallel application, are [1]:

• Recursive decomposition,

• Data decomposition,

• Exploratory decomposition,

• Speculative decomposition.

In this thesis, we concentrate on the powerful and commonly used ap-

proach, data decomposition, which suits the data parallel algorithm model. In

this decomposition model, the data on which the computations are performed

is partitioned, and this data partitioning is then used to induce a partitioning of

the computations into tasks. This approach decomposes workload into con-

tinuous partitions, which consequently enhances data locality on processing

elements. As an example, consider a dense matrix A with a size of n×n mul-

tiplying with a vector b. Figure 2.1 shows the decomposition of these dense

matrix-vector multiplication into n partitions. In this example, the computation

is divided among n tasks where the workload to calculate the i-th cell of the

result vector y involves the i-th row of A and whole b, which is given to one

task.

After decomposing computation into some tasks, we need to undertake a

mapping solution which assigns the tasks to processing elements so that its

parallel execution time and energy consumption are minimized. To achieve

this goal, we should alleviate the overheads of running parallel applications

on HPC platforms, which come from inter-process interactions and process

idle-time. The first metric is out of the scope of this thesis, and we focus

on process idle-time. Consider a parallel application where some processes

of which finish their computations while others are working on the problem.

In this case, some processors should wait idly before starting a new task.

22

2.2. DATA PARTITIONING ON HPC PLATFORMS

X =

Task#

1

2

3

.

.

.

.

.

n-1

n

A b y

Figure 2.1: Decomposition of a matrix-vector multiplication into n partitions,
where n represents the number of rows in the matrix. Each cell of the result
vector y is calculated by one task [1].

To address the process idle-time, one solution is to keep the load balanced

among processors. A balanced application does not waste processor cycles

in waiting at points of synchronization and data exchange. This maximizes

the utilization of processors which consequently decreases the execution time

and even the energy consumption of parallel applications. We will study the

state-of-the-art load-balancing techniques in Section 2.2.1

2.2.1 Load-balancing in HPC platforms

Generally, load-balancing algorithms are classified into several categories:

• Static,

• Dynamic,

• Centralized,

• Non-centralized,

• Task-queue,

• Predicting-the-future.

23

2.2. DATA PARTITIONING ON HPC PLATFORMS

The algorithm model, which represents the characteristics of tasks and the

interaction patterns among them, determines which category is suitable for

mapping.

Static algorithms, such as those based on data partitioning [76, 77, 78, 15,

79], use a priori information about the platform and parallel application such

as the knowledge of task sizes, the size of data associated with tasks, the

characteristics of inter-task interactions, and even the algorithm model. Since

relying on accurate performance models which predict the future execution of

applications, these approaches are also known as predicting-the-future. They

are especially appropriate for applications where data locality is important be-

cause they do not require data redistribution. Nevertheless, these algorithms

may not be suitable for non-dedicated platforms, where load changes over

time. In addition, these algorithms are not appropriate for parallel applica-

tions with non-deterministic task sizes that the execution time required by the

tasks varies significantly. Generally, finding an optimal static mapping is a

kind of NP-complete problem and cannot be solved in polynomial time. That

is why algorithms practically deploy some heuristics to find quite acceptable

sub-optimal solutions to the optimal static mapping problem.

Dynamic algorithms, such as work stealing and task scheduling [80, 81,

82, 83, 84], balance load by migration of fine-grained tasks between proces-

sors during their execution. These algorithms are suitable for applications with

dynamic task generations. They do not need any priori information about ex-

ecution but may impose large communication overhead due to data migration

especially in NUMA and distributed memory platforms. The cost of overhead

may also outweigh the advantages of dynamic mapping. Applying static parti-

tioning for the initial step can enhance dynamic algorithms due to its provably

near-optimal communication cost, bounded tiny load imbalance, and lesser

scheduling overhead [83, 85]. Dynamic algorithms based on graph partition-

ing approaches are proposed by [86, 87] for adaptive scientific computations

where two objectives, data migration costs and interprocessor communication,

are considered.

In non-centralised algorithms [88, 89], the load is migrated locally between

neighbouring processors, while in centralised ones [90, 91, 92], global load

24

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

information is deployed for finding appropriate load distribution. Although non-

centralised approaches converge slower, centralised ones typically incur rela-

tively higher overhead. The centralised algorithms can be further subdivided

into two groups: task-queue [91] and predicting-the-future [90, 92].

2.3 Performance and Energy Models of HPC Plat-

forms

Algorithms, for performance maximization and energy consumption minimiza-

tion, require performance and energy models of parallel applications to solve

data partitioning problems and perform task mappings. We will overview the

performance and energy models for HPC platforms in this section. The models

are classified in two main groups listed below:

1. Analytical-based models: A vast majority of these models are based

on linear or non-linear regression techniques and use operating system

reported data, microarchitectural parameters, code parameters, or Per-

formance Monitoring Counter (PMC) to estimate the performance and

energy consumption. PMCs are special purpose registers available in

modern computing architectures to store software and hardware activi-

ties counts.

2. Non-analytical-based models: These models take the real-life be-

haviour of applications running on HPC platforms to model their per-

formance and energy consumption. This type of modelling relies on the

direct measurement of the desired parameter.

2.3.1 Models for Performance

In this section, we survey analytical and non-analytical (real-life) approaches

for modelling and maximizing performance on multicore CPUs and accelera-

tors.

25

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

Analytical-based models

An empirical non-linear performance model for microprocessors is proposed

in [93]. It is highlighted that the cycle-accurate simulation to model perfor-

mance is very costly because simulators are too slow. That is why empirical

analytical-based modelling can be an alternative to the pure simulation-based

ones. They build a separate model for each program in SPEC CPU2000

benchmark suite. The model involves 9 architectural parameters which are

selected empirically using simulation techniques.

The Fast and Accurate Simulation Environment (FASE) [94] is a trace-

driven framework designed to facilitate performance prediction and system

design by finding the ideal configuration for a specific set of applications. It is

suitable for MPI-based C and Fortran HPC applications running on clusters of

CPUs. FASE characterizes the behaviour of an application to obtain the ac-

curate representations of its execution. The collected data are communication

information, computation information, memory accesses and disk I/O. The col-

lected data is fed into the simulation environment to predict performance and

explore the various system configurations.

Roofline model facilitates an insightful visual performance estimation for

multicores [95] and accelerators [96, 97]. This model takes into consideration

floating-point performance, operational intensity, and memory performance to

estimate an upper bound on feasible performance in terms of piece-wise linear

models. This model can be used to enhance performance via adjusting the

operational intensity of applications.

Baghsorkhi et al. [98] predict the performance of general-purpose applica-

tions running on GPU architectures based on an analytical model. The exe-

cution time of GPU kernels is estimated based on non-linear regression and

analysing workflow graphs. A workflow graph represents an abstract interpre-

tation of a GPU kernel which is used to estimate the maximum parallelism can

be achieved without violating local resource usage in GPUs. The model can

be used by auto-tuning compilers or by programmers to find bottlenecks in

their codes.

Zhang and Owens [99] present an instruction-level performance model

26

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

which estimates the execution time of applications running on Nvidia GeForce

200-series GPUs. It provides detailed quantitative performance information on

three main architecture components in GPUs including the instruction pipeline,

shared memory access and global memory access. The proposed method is

suitable for the bottleneck detection and the performance analysis of GPU

programs. Programmers and architects can take advantages of this model to

predict the benefits of potential program optimizations and architectural im-

provements.

A performance modelling framework for heterogeneous platforms, includ-

ing GPUs and FPGAs, is proposed in [100]. It is based on the patterns of com-

putation and memory accesses that occur within an application. The model es-

timates the performance of an application and its benefit from a device based

on machine and application characteristics. A benchmark suite is used to

recognize the machine characteristics, and data footprints of an application

express its characteristics. The footprint reveals the application’s computing

pattern.

Shen et al. [101] proposed an analytical-based workload partitioning ap-

proach for heterogeneous platforms, consisting of multicore CPUs and GPUs.

The workload partitioning problem is analytically modelled using the equa-

tion WG

WC
= PG

PC
× 1

1+(O/WG)×(PG)/Q
, where WG and WC are respectively work-

load sizes of GPU and CPU, PG and PC respectively represent the processing

throughputs of GPU and CPU, O is data-transfer size, and Q represents data-

transfer bandwidth. WG = β ×W and WC = (1 − β) ×W , where β repre-

sents the fraction of workload assigned to the GPU, and W is total workload

size. The workload partitioning is predicted by solving the workload partition-

ing model to determine β.

In [102], a fine-grained workload partitioning framework, called FinePar, is

proposed. They use the linear regression technique to predict the performance

of OpenCL applications running on CPUs and GPUs. The performance of

CPUs and GPUs are modelled using the linear equation performance = C1×
AW + C2 × VW + C3 × logNW + C4 × logSW + C5, where the average

workload for a work-item (AW), the variance of the distribution of non-zero

elements across the rows (VW), the number of work-items in the computation

27

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

domain (NW) and the size of the whole workload (SW) are input parameters.

Rosales et al. [103] predict the execution time of applications, running on

Intel processors, as a non-linear formulation, execution_time = Wcpu

Rcpu
+ Wbw

Rbw
,

where Wcpu is the amount of work the application requires from CPU, Wbw

is the amount of work the application requires from memory, Rcpu represents

the floating point processing rate, and Rbw determines the memory bandwidth.

The application is executed on a machine with different processor speeds and

bandwidths then its Wcpu and Rbw are analytically predicted for target ma-

chines.

PyPassT [104] is an analysis based modelling framework. It models ex-

ecution time and resource utilization for HPC platforms, including CPUs and

accelerators. It statically analyses an application source code, written in C with

OpenACC directives, to capture its runtime behaviour. The application is then

run on a simulated target HPC architecture to analysis its performance. The

simulated machine analytically models computation time and memory cost.

Because of static analysis of code, the tool cannot capture runtime decisions,

such as the number of iterations of a loop or a branching probability.

Ding et al. [105] introduce a linear performance model to obtain the scaling

performance behaviours and the potential performance bottlenecks. The exe-

cution time of an parallel MPI application, consisting of n kernels, can be es-

timated using the equation execution_time =
∑n

i=1(T_compi +BF_memi ×
T_memi)+BF_comm×T_comm+T_others, where T_comp is total compu-

tation time, BF_mem is non-overlapping part for loading data from local mem-

ory, T_mem represents total memory time, BF_comm expresses the ratio

of non-overlapped communication time, T_comm is average communication

time, and T_others represents the time taken by initialization and finalization.

Non-analytical-based models

Over the past years, load-balancing algorithms, aiming performance optimiza-

tion on parallel platforms, have tried to take into consideration the real-life be-

haviour of applications executing on these platforms. This can be perceived

by looking at the evolution of performance models for computation used in

28

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

these algorithms. The most straightforward model used is Constant Perfor-

mance Model (CPM). In this model, each processor in an HPC platform is

represented by a positive constant number such as normalized cycle time, nor-

malized processor speed, average execution time, task computation time, etc.

to characterize the speed of an application [106, 11, 12, 13, 107, 108, 109]. A

common feature of these approaches is that they do not assume any depen-

dency between the performance of a processor and the size of the workload,

running on it.

Due to the advances in hardware technology and the emergence of mod-

ern heterogeneous platforms, the performance of processing elements be-

came so complicated which completely deviates from the conditions assumed

by the CMP-based model. In fact, the CMP-based model is too simplistic to

accurately enough estimates the performance of modern heterogeneous plat-

forms. As an alternative, the most advanced load-balancing algorithms use

Functional Performance Models (FPMs), which are application-specific and

represent the speed of a processor by a continuous function of problem size

[14, 110, 15]. These FPMs capture precisely the real-life behaviour of applica-

tions executing on nodes consisting of uniprocessors (single-core CPUs), and

it is supposed that the shape of the function is so smooth that satisfies one of

the following assumptions:

1. Along each of the problem size variables, the function is monotonically

decreasing,

2. There exists point x such that

• On the interval [0, x], the function is

– concave,

– monotonically increasing, and

– any straight line coming through the origin of the coordinate

system intersects the graph of the function in no more than

one point.

• On the interval [x,∞), the function is monotonically decreasing

29

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

Table 2.1: Specifications of three clusters of the Grenoble site from Grid’5000.
All nodes are connected with InfiniBand 20G & 40G.

Cluster Processor Cores Memory GPU

Adonis 1-10 2.27 Xeon E5520 8 24GB Tesla T10
Adonis 11-12 2.4GHz Xeon E5620 8 24GB Tesla C2050
Edel 2.27GHz Xeon E5520 8 24GB -
Genepi 2.5GHz Xeon E5420 QC 8 8GB -

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

S
p
e
e
d
 (

G
F

L
O

P
S

)

Problem Size wi (b × b blocks updated)

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

Figure 2.2: Functional performance models (FPM) of BLAS DGEMM on a
number of nodes from Grid’5000 Grenoble site [2].

Figure 2.2 represents speed functions of blocked BLAS DGEMM on

three different clusters, Adonis, Genepi and Edel, of the Grenoble site from

Grid’5000 [2]. In this experiment, the result matrix C is partitioned into b × b
blocks, and problem sizes, wi, are in number of b× b blocks. All nodes have 8

CPU cores, and 12 of them also involve Nvidia Tesla GPUs in Adonis cluster.

Table 2.1 shows the specifications of these three clusters.

The shapes of performance profiles are smooth with no significant varia-

tion. The speed functions drop rapidly where the workload is not fitting into the

available main memory of the processors, and therefore paging is required.

Due to the complex nodal architecture of modern HPC systems, with tightly

integrated processors, severe resource contention, NUMA, and highly hierar-

chical design, the performance profiles of parallel applications executing on

these platforms involve lots of variations and violate the conditions assumed

by the proposed FPM-based algorithms proposed in [21, 22, 23, 24, 25, 26,

27, 28, 29]. In this case, applying the state-of-the-art load-balancing algo-

30

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

rithms returns sub-optimal and even non-optimal workload distributions. To

deal with this challenge, novel model-based algorithms have been proposed

which are able to find optimal workload distribution on state-of-the-art homoge-

neous systems where the proposed approaches make no assumptions about

the shapes of performance profiles.

Lastovetsky et al. [16] propose an optimization algorithm based on an

advanced performance model of computation (FPM) by using novel load dis-

tribution to minimize the computation time. First, they experimentally build the

performance profiles of the application for a wide range of problem sizes sep-

arated by a minimum granularity. They then employ this function and its con-

nected visual picture to distribute workloads unevenly between homogeneous

groups of cores of an Xeon Phi co-processor, consequently load-imbalancing

the application, to achieve performance optimization. This is the first effort that

the load-imbalancing technique is applied for the workload partitioning of a par-

allel application and minimizing the computation time of its parallel execution.

It should be mentioned that they propose no general partitioning algorithm in

this work. Lastovetsky et al. [3, 18] focus on the importance of workload dis-

tribution as a decision variable and propose such general model-based meth-

ods and algorithms for minimization of not only the time but also the energy

of computations for the most general performance and energy profiles of data

parallel applications executing on homogeneous multicore clusters. Figure 2.3

presents the speed function of FFTW executing on a homogeneous multicore

server. The server includes an Intel Haswell E5-2670 v3 @ 2.30 GHz, con-

sisting of 24 identical cores, and 64 GB of RAM. This application invokes 24

parallel threads to perform Fast Fourier Transpose on square matrices of size

m ×m. The complex nodal architecture has incurred drastic variations in the

performance profiles of the application. They formulate the performance and

energy optimization problems and present efficient algorithms of complexity

O(m2 × p2) solving these problems where m is the cardinality of the discrete

sets representing the speed/energy functions and p is the number of available

processors. The memory complexity of the algorithms is O(n × p2). Unlike

load-balancing algorithms, optimal solutions found by these algorithms may

not load-balance an application.

31

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

Figure 2.3: Speed function of FFTW running 24 threads to calculate Fast
Fourier Transpose of m × m square matrices on a multicore processor Intel
Haswell E5-2670. [3].

Apart from [16, 3, 18], which have explored in-depth the deterministic and

reproducible performance variations for bound applications, Zhang et al. [111]

also report significant non-deterministic variations for applications that are not

bound to the cores of the executing multicore platform.

2.3.2 Models for Energy Consumption

In this section, we overview analytical and non-analytical (real-life) methods for

modelling and optimizing power/energy for multicore CPUs and accelerators.

These methods generally model the energy consumption of an application in

two ways:

• Explicit: In the explicit approach, energy consumption is modelled di-

rectly with no reference to power.

• Power-based: These approaches construct power and performance

models of applications. Since Energy = Execution_Time × Power,

the energy consumption of applications can be calculated by using their

power and performance models.

32

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

Analytical-based models

In this section, we first review efforts have been done to analytically model

power/energy consumption on multicore CPUs. Then, the purposed models

for HPC platforms including CPUs and accelerators will be surveyed.

SimplePower [112] and Wattch [113] are two fine-grained and cycle-

accurate simulators which analytically estimates energy consumption and

power dissipation of microprocessors. The components considered in mod-

elling are: ALU and the other modules in a pipelined instruction set architec-

ture, including memory and bus system.

IBM’s PowerTimer [114] provides detailed component-level power con-

sumption based on empirical techniques. To estimate the power consumption

of an architectural unit, it measures the power consumption of the same unit

on a real platform and then scales it according to variations in size and design.

Fan et al. [32] present a model estimating the power consumption of

servers. This model expresses a linear relation between CPU utilization

and power consumption. It also supports CPU DVFS technique. Another

component-level and linear-based approach is proposed in [36] which models

the energy consumption of CPUs using five contributors: bus traffic, cache

misses, CPU temperatures, environment temperatures and bandwidths for

disk read and write.

Lively et al. [37] present power-predictive models for hybrid applications

(MPI/OpenMP) based on PMCs. They rank each performance counter using

Spearman’s rank correlation and then eliminate any counter below a given

threshold. They then calculate the Principal Component Analysis (PCA) of

the remaining performance counters and select ones with the highest PCA

coefficients. After employing this elaborate statistical methodology, 40 PMCs

remain for modelling.

Now, we overview power/energy model for HPC platforms. Rofouei et al.

[38] estimate energy consumption on CPU-GPU systems using the multiplica-

tion of execution time with average power consumption of a device. Therefore,

ECPU = tCPU × Pavg−CPU , and EGPU = tGPU × (Pavg−GPU + Pidle−CPU) +

Etransfer, where tCPU and tGPU respectively represent CPU and GPU usages,

33

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

Pavg−CPU and Pavg−GPU are the average power consumed by CPU and GPU,

and Etransfer is the amount of energy consumed for data transfer between

CPU and GPU.

Multicore Power, Area, and Timing (McPAT) [115] is a framework modelling

power, area, and timing for multicore and manycore processors. It considers

most of the fundamental components in multicore processors such as cores,

interconnects, shared caches and memory controllers. Later, Zhao et al. [35]

use the framework to obtain the power breakdown of different components in

AMD and Nvidia GPUs. Lim et al. [116] highlight that power consumption of a

GPU can be represented as the summation of the power consumptions of all

modelled components. They use McPAT to estimate the power consumption

of GPU components and adjust their model.

A component-level power consumption model is proposed in [39]. It analyt-

ically models the power consumption of 12 components in GPUs, from ALU to

memory units. The power consumption is then estimated as the sum of power

consumptions of all these components along with their access rates.

Nagasaka et al. [40] aim to estimate the power consumption of CUDA

kernels running on GPUs. The model is based on linear regression and utilizes

13 PMCs counting computational and memory utilization.

A power consumption model for GPUs is presented in [117]. It is based

on linear regression tree and random forest methods. The random forest

method is used to select the parameters that are the dominant contributors

to the power consumption. The model collects 22 runtime characteristics in-

cluding 18 types of operations and 4 architecture parameters.

A power consumption model is presented in [41] which use the trickle-down

effect of events in the processors. In this technique, a subset of performance-

related events within a microprocessor is used to model power consumption

outside of the microprocessor. The model uses local performance-related

events within a microprocessor to iteratively model the power consumptions

of six sub-systems: microprocessor, chipset, memory, I/O, disk and GPU.

AMG (Activity-based Model for GPUs) [42] is a power consump-

tion model for GPUs. The power is model using the equation

Total power_consumption = Idle Power + Runtime Power. Idle Power

34

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

represents the power consumed by a GPU when it is turned on but no ker-

nel is running, and Runtime Power is calculated as Runtime Power =∑e
i=1(NSM×Pu,i×Uu,i)+Bu,i×Uu,i. NSM is the number of components, such

as floating point, shared and global memories, Pu,i represents the power con-

sumption of an active component, e is the number of architectural component

types, Bu,i is the base power of a component and Uu,i represents utilization.

GPUSimPow [118] is an analytical-empirical power simulation framework

for general purpose computation on GPUs (GPGPUs). It is capable to pre-

cisely simulate the power consumption during the execution of GPGPU work-

loads, as well as, estimate multiple characteristics of a hypothetical GPU archi-

tecture such as chip area, gate leakage and peak dynamic power. Therefore,

this simulation enables hardware architects to evaluate design choices early

from a power perspective, and GPU programmers to optimize power consump-

tion from a software perspective. It models power as P = αCVdd∆V fclk +

VddIShort−circuit + VddIleakage, where the activity factor, α, represents the per-

centage of the circuit’s capacitance being charged during switching. The first

term is the dynamic power that is spent charging and discharging capacitive

loads when the circuit switches state. The second term of the equation is the

short-circuit power being consumed when both pull-up and pull-down networks

in a CMOS circuit are on for a short amount of time.

Song et al. [119] present a power model for kernels running on Nvidia

Fermi C2075 GPUs. They utilize 10 PMCs selected by applying the Pearson

correlation method. They model energy consumption as a product of average

power times execution time.

Kestor et al. [120] present a System Monitor Interface (SMI) between the

OS and the user runtime that accounts for each core’s power consumption. It is

based on a regression analysis of core activity. They select significant PMCs,

contributing to consumed power, using squared correlation coefficients. The

final model considers the number of integer instructions, stalled cycles, last

level cache misses and the number of floating point operations.

Choi et al. [43] proposed an arch-line model which is an energy-based

analogue of the time-based roofline model presented in [95]. The model vi-

sualizes energy and power consumptions based on algorithm-related param-

35

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

eters, including arithmetic and memory operations and computation intensity

of algorithm; as well as the machine characteristics, such as the time and en-

ergy costs per operation or per word of communication. They experimentally

evaluated the model on real CPU and GPU platforms.

Shao and Brooks [44] demonstrate an instruction-level energy model for

Intel Xeon Phi processors. It characterizes the energy consumption of each

instruction (EPI) by using PMCs. To estimate EPIs, memory behaviour, the

number of active cores and the number of active threads per core are taken

into account. Then, runtime performance counter statistics compute the break-

down of instruction. In the end, the total energy of the workload is calculated

by multiply the runtime instruction counts with the corresponding EPI.

Jarus et al. [121] present system-wide energy consumption models for

servers, which is based on the analysis of performance counters. They use

variants of linear regression to remove PMCs that do not improve the average

model prediction error. They classify HPC applications with similar character-

istics and then build application-specific models for them. They use decision

trees for finding an appropriate model for a given application.

Al-Khatib et al. [122] presents an operand-value-based model to esti-

mate the dynamic energy consumption of FPGAs. They characterize the

amount of energy consumed for the execution of an instruction, with zero

operands, which is called the base energy of the instruction. Then, the im-

pact of operands on the instruction energy variance is determined. The en-

ergy consumption of an instruction is calculated using Ei = Ebase(i, j) +

k(operand value property).EV (i), where Ebase(i, j) is the base energy of a

given instruction i following instruction j, EV (i) represents the maximum en-

ergy variance of instruction i, and k is a factor determining the fraction of the

maximum energy variance of instruction i given the operand values.

Shahid et al. [55] propose a novel criterion called additivity to determine

a subset of PMCs that can potentially be considered for reliable energy pre-

dictive modelling for an Intel Haswell-E5-2670 CPU. This criterion is based on

the experimental observation that the energy consumption of a serial execu-

tion of two applications is the sum of energy consumptions observed for the

individual execution of each application. They believe that a linear predictive

36

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

energy model is consistent if and only if its predictor variables are additive in

the sense that the vector of predictor variables for a serial execution of two ap-

plications is the sum of vectors for the individual execution of each application.

They show that lots of PMCs, used in energy predictive models, are not ad-

ditive, and therefore, bring into question the reliability and reported prediction

accuracy of these models.

Non-analytical-based models

In this section, we review works evaluating proposed methods for modelling

power/energy and efforts which use the direct measurement of power/energy.

Kamil et al. [123] study power measurements for a number of computa-

tional loads on the small and large scale HPC platforms. Power efficiency (the

ratio of performance per watt) is considered as a metric for comparison. It is

also highlighted that measuring power in HPC platforms is not straightforward

because more than one system shares the same metered circuit. They list

several different methods for measuring power usage which differ in the tools

used for measuring power consumption and in the places where valid mea-

surements can be collected. These methods are: (i) inline meters, (ii) clamp

meters, (iii) integrated meters, and (iv) power panels in power distribution units

(PDUs). They have concluded the power consumption of a large-scale system

can be accurately obtained from power measurements of smaller subsets of

the system. In addition, they mentioned that it is essential to measure power

consumption during running a suitable workload and predictor models based

on CPU power cannot be accurate.

Rivoire et al. [124] compare five power modelling techniques based on re-

source utilization over a variety of machines and benchmarks. Four out of five

models are based on OS-reported CPU and disk utilization. However, the fifth

model considers CPU PMCs as well as the OS-reported parameters. Accord-

ing to the empirical results, they highlight that the PMC-based approach will be

increasingly necessary for accurate power prediction. But, since PMCs used

in the model parameter set may not be the same across different processor

families (Intel, AMD), they put the generality and portability of the PMC-based

37

2.3. PERFORMANCE AND ENERGY MODELS OF HPC PLATFORMS

model under question.

McCullough et al. [53] demonstrate linear-based power modelling ap-

proaches shows high prediction error in modern computing platforms because

of inherent complexities such as multiple cores, hidden device states and large

dynamic power components. They show power prediction errors can reach

as high as 150 percent and propose direct measurement as an alternative

to analytical-based techniques to deal with the inherent complexities arise by

modern architectures.

O’Brien et al. [52] study proposed models for power and energy predic-

tion on the highly heterogeneous and hierarchical node architectures in mod-

ern HPC platforms. They come up with the idea that the inherent complexi-

ties, such as resource contention on Last Level Cache (LLC), NUMA and dy-

namic power management, make analytical-based approaches less-accurate

enough to model performance and energy on modern HPC systems. They

highlight the shortcomings of models to accurately and comprehensively es-

timate the power and energy consumptions by taking into account the hierar-

chical and heterogeneous nature of these tightly-integrated high performance

computing systems. Finally, they conclude that direct measurement is the only

accurate way to model the energy consumption of HPC platforms.

Lastovetsky and Reddy [3, 18] propose a model-based energy optimiza-

tion algorithm on tightly integrated multicore CPUs. Due to inherent complex-

ities (contentions on shared resources and NUMA), they highlighted that the

shapes of energy profiles get so complicated that cannot be modelled using

linear techniques. They studied the real-life profiles of single and multi-thread

applications and concluded as the number of threads increases, the fluctu-

ations in the energy profiles also increase. Figure 2.4 shows the dynamic

energy profile of FFTW application on a homogeneous multicore server in-

cluding an Intel Haswell E5-2670 v3 @ 2.30 GHz, involving 24 identical cores,

and a main memory size of 64 GB. This application runs 24 threads to compute

parallel Fast Fourier Transpose of m ×m square matrices. Due to the inher-

ent complexities, they used direct energy measurement, rather than analytical

modelling techniques, to build real-life energy profiles of parallel applications.

In this model, the dynamic energy consumption is represented by a non-linear

38

2.4. PERFORMANCE AND ENERGY BI-OBJECTIVE OPTIMIZATION ON
HPC PLATFORMS

Figure 2.4: Dynamic energy profile against problem size for FFTW application
running 24 threads to compute Fast Fourier Transpose of m ×m matrices on
a multicore processor Intel Haswell E5-2670. [3].

and non-convex function of problem size.

2.4 Performance and Energy Bi-objective Opti-

mization on HPC Platforms

In this section, we will highlight a number of state-of-the-art approaches to

achieve the bi-objective optimization for performance and energy consumption

on modern HPC platforms. The proposed methods are generally classified into

two broad categories: system-level and application-level.

2.4.1 System-level Methods

System-level methods target the optimization of several objectives of the sys-

tem or the environment on parallel platforms such as clouds computing in-

frastructures, data centres, etc. In this section, we will focus on works taking

into consideration the two leading objectives performance and energy con-

sumption. A substantial feature of these approaches is to deploy application-

oblivious and heuristic techniques to model these two objectives of applica-

tions. We will mention the parameters and decision variables which are used

in each model and the relationships between the objectives and decision vari-

39

2.4. PERFORMANCE AND ENERGY BI-OBJECTIVE OPTIMIZATION ON
HPC PLATFORMS

ables.

A parallel method to solve a bi-objective optimization problem for perfor-

mance and energy consumption in cloud computing infrastructures is pre-

sented in [61]. It deploys a genetic algorithm to find bi-objective solutions. The

parameters, input to the algorithm, are the task computation cost (w) and the

communication costs between two tasks. The supply voltage (V) of the pro-

cessor is the only decision variable. The consumed energy of computations is

modelled as a polynomial function of V 2 × w.

Mohammadi Fard et al. [62] propose a multi-objective case study for perfor-

mance, energy consumption, reliability and economic cost for scientific work-

flows executing on heterogeneous computing environments. It takes two pa-

rameters which are computation speeds of processors and the bandwidths of

communication links connecting a pair of processors. Mapping of tasks is con-

sidered as the decision variable. The energy consumption of computations is

estimated as the cube-root of clock frequency.

In [63], a heuristic-based approach is presented which address energy

efficiency and Quality of Service (QoS) optimization for resource management

in data centres. The decision variable set involves clock frequencies and the

number of VMs. The energy consumption is modelled as a linear function of

CPU utilization.

Kessaci et al. [10] propose a three-objective algorithm that reduces the

energy consumption, CO2 emissions and increases the generated profit of a

cloud computing infrastructure. The algorithm uses a genetic algorithm to find

optimal solutions. Input parameters comprise the number of processors used

in the execution of an application, the execution time of an application and the

deadline for completion of the application. The decision variable is the arrival

rate. The energy consumption is estimated as a product of execution time and

average power consumption, which is calculated as α× f 3 +β, where f is the

clock frequency.

A performance and energy optimization algorithm is presented in [64] for

applications executing on heterogeneous HPC systems. The impact of nine

different parameters on performance and energy consumption of machines

are considered. These parameters include the number of cores, the number

40

2.4. PERFORMANCE AND ENERGY BI-OBJECTIVE OPTIMIZATION ON
HPC PLATFORMS

of threads, DVFS levels, cache size and thermal design power (TDP). Decision

variable in this work is workflow scheduling.

Kolodziej et al. [47] propose a genetic algorithm considering twin objec-

tives of performance and energy consumption for applications executing in

green grid clusters and clouds. The performance is modelled as a function of

processor speed. DVFS level comprises the only decision variable of this al-

gorithm. Energy consumption is estimated using the equation γ×V 2× f × te,
where γ is a constant for a processor, V is the supply voltage, f is the clock

frequency, and te is the estimated completion time.

2.4.2 Application-level Methods

Application-level methods essentially aim to optimize applications for perfor-

mance and energy consumption. In addition, this type of methods relies on

application-level models for predicting the performance and energy consump-

tion of applications. In this section, we exclusively focus on three features of

each method: i). Type of optimization, ii). Parameters and decision variables

and iii). The relationship of two objectives performance and energy consump-

tion with the parameters and decision variables. In addition, this category of

methods can be further classified, based on the scope of optimization which

is targeted by application-level bi-objective algorithms, into: i). intra-node opti-

mization and ii). both intra-node and inter-node optimizations.

Intra-node Methods

An intra-node optimization method for clusters of DVFS-capable AMD nodes

is presented in [65]. There are three input parameters including: the ratio

of the application slowdown to the CPU slowdown, memory pressure, which

depends on memory operations retired and L2 cache misses, and slack, which

predicts communication bottlenecks.

Ahmad et al. [48] aim to minimize the makespan (job completion time)

and the energy consumption of computational-intensive scientific problems

through task scheduling onto homogeneous and heterogeneous multicore pro-

41

2.4. PERFORMANCE AND ENERGY BI-OBJECTIVE OPTIMIZATION ON
HPC PLATFORMS

cessors. Input parameters involve: computational cycles, DVFS levels, and the

architecture of core.

Choi et al. [125] prepose an bi-objective optimization algorithm based on

roofline models presented in [95] and [43] for performance and energy con-

sumption. They extend the roofline model for energy by considering three

more factors: memory hierarchy access costs, power caps and the measure-

ment of random memory access patterns.

Aba et al. [67] present an approximation algorithm to minimize both

makespan and the total energy consumption in parallel applications running on

a heterogeneous resources system. They use three parameters in this work:

the computation cost (w) of a task, the execution frequency of a processor

(f) and the communication cost between each pair of processing elements.

The decision variable is task scheduling. The makespan of a given task is

calculated as a function of w
f

, and its consumed power is estimated using the

equation w × f 2. They ignore all solutions that their energy consumptions

exceed a given constraint and then find the solution with minimum execution

time.

Inter-node and Intra-node Methods

Subramaniam et al. [49] deploy multi-variable regression techniques to

make a trade-off between performance and energy consumption of the high-

performance LINPACK (HPL) benchmark. In this work, several models are

presented where the final model contains four parameters: the problem size,

N , the block size, NB, the number of process rows and processors columns

in the process grid, P,Q. This approach gives a single solution in case the

problem size and number of processors are fixed. However, our algorithm, will

be proposed later in Chapter 5, gives a set of globally Pareto-optimal solu-

tions. Decision variables considered in this work are: the number of nodes,

the number of threads and DVFS levels.

Song et al. [68] aims to quantify energy consumption improvements in

data-intensive parallel applications running on homogeneous platforms using

an iso-energy-efficiency model. The energy improvement of parallel over se-

42

2.4. PERFORMANCE AND ENERGY BI-OBJECTIVE OPTIMIZATION ON
HPC PLATFORMS

quential application is studied using three decision variables: clock frequency,

level of parallelism, and problem size.

An optimization approach is presented in [69] studying energy savings at

the algorithm level. Using classical and Strassen matrix multiplication and the

direct n-body problem, they prove there is a region of perfect strong scaling

in energy. Thus, for a given problem size n, the energy consumption remains

constant as the number of processors p increases and the runtime decreases

in proportion to p. The performance is modelled as a linear function of the

costs of computations and communications. The energy consumption is esti-

mated using a linear function of costs for computations, communications, and

static power.

Inadomi et al. [50] experimentally study and analyse chip manufacturing

power variations and show how these variations lead to power and perfor-

mance inhomogeneity. They propose a variation-aware power budgeting al-

gorithm that improves performance under a power constraint. Inputs variables

are: a power constraint and a Power Variation Table (PVT), which is application

independent and constructed once per system. The table contains the man-

ufacturing variability on a given platform. The power variations of each target

application are modelled as a linear function of PVTs. The decision variable

is the CPU frequency which maximizes the application performance under a

given power constraint. It should be mentioned that our proposed variation-

aware approach deploys real profiles, to accurately model the performance

and energy consumption of applications and builds globally Pareto-front solu-

tions.

Gholkar et al. [51] present another variation-aware solution for

performance-power optimization on limited power budget platforms. The al-

gorithm takes as inputs: the maximum number of processors on a machine,

Nmax, the power budget of the machine, Pm c, and the number of processors

requested by a job, nreq. The decision variable is the CPU frequency and

the optimal number of processors for a job. They suppose that the power

consumption of the interconnect is zero, and DRAM power consumption is ig-

nored. However, we will propose a bi-objective variation-aware optimization

approach for performance and energy which uses real profiles to model the

43

2.4. PERFORMANCE AND ENERGY BI-OBJECTIVE OPTIMIZATION ON
HPC PLATFORMS

performance and energy consumption of parallel applications running on a

heterogeneous cluster and takes into account the energy consumptions of all

components in the platform.

The impact of memory hierarchies on the performance and energy con-

sumption of parallel applications is studied in [70]. Performance and energy

are modelled as two linear functions of data size. These functions are used

for maximizing performance and minimizing energy in parallel processing of

divisible loads. In this study, the number of processors is taken into account,

however, the other parameters are fixed.

Tarplee et al. [71] consider optimizing two conflicting objectives, the

makespan and total energy consumption of all nodes in an HPC platform. They

employ linear programming (LP) and divisible load theory (DLT) to compute

tight lower bounds on the makespan and energy of all tasks on a given plat-

form. Using this formulation, they then generate a set of Pareto-front solutions.

The decision variable is task mapping. The parameters used to formulate the

problem involve: the number of task types, the number of machines, ETC,

which is a matrix representing Estimated Time to Compute each task on each

machine, andAPC, another matrix involving the Average Power Consumption

of each task on each machine where generally obtained from historical data in

real environments.

Gabaldon et al. [72] introduce a multi-objective genetic algorithm to com-

promise between the makespan and energy consumption of parallel applica-

tions running on Federated Cluster environments. The decision variable is

task scheduling or mapping. The makespan is defined as the elapsed time

between the submission of the first job until the finalization of the last one.

The energy consumption is modelled using the equation, C × CT + I × IT
where C is the energy consumed by a node when it is computing, I when it

is idle, CT determines the computing time of the node and IT represents idle

time.

Chakrabarti et al. [73] propose a data partitioning scheme addressing the

execution time and dirty (non-renewable) energy consumption optimization on

heterogeneous clusters. They use progressive sampling and then deploy func-

tion fitting techniques to estimate execution time given the input data size.

44

2.5. SUMMARY

They estimate renewable energy availability using the PVWATTS simulator.

The obtained results from the simulator are combined with the predicted exe-

cution time to obtain the objective function of dirty energy consumption. The

decision variable is partition size distribution, however, the proposed approach

does not take into account the real-life behaviour of applications and also use

a linear programming formulation to solve the bi-objective optimization prob-

lem. In fact, the approach returns the optimal solution when the execution time

is approximately linearly related to the problem size and the variations in the

renewable energy availability are minimal so that the availability is close to the

mean energy supply. Henceforth, it is not a variation-aware solution.

Manumachu et al. [45, 46] experimentally study the performance and en-

ergy profiles of real-life data-parallel applications on state-of-the-art multicore

CPUs and demonstrate that there exists a complex (non-linear and even non-

convex) relationship between these two objectives and problem size. They

propose algorithms to solve performance-energy optimization problem for ap-

plications executing on homogeneous multicore platforms. The algorithms em-

ploy only one decision variable, the workload distribution. They takes as inputs

discrete functions of performance and dynamic energy consumption against

problem size and returns the globally Pareto-optimal set of solutions. These

approaches are applicable to solve the problem for homogeneous platforms

including identical processors. However, our algorithm, will be proposed in

Chapter 5, is able to solve the bi-objective optimization problem on modern

heterogeneous HPC platforms without any assumption on the shape of pro-

files (permanence and energy) and the number and type of processors.

2.5 Summary

In the previous sections, we reviewed efforts for performance and energy mod-

elling as well as the proposed bi-objective optimization methods for these two

metrics.

In the single-core processors era, analytical approaches were able to pre-

cisely estimate the performance and energy consumption of applications using

45

2.5. SUMMARY

a few architectural and program parameters. However, the tight integration of

multicore CPUs with many-core accelerators incurs new complexities, such as

contentions on shared resources and NUMA. These complexities make the

proposed analytical models less-accurate. In the following list, we enumerate

some of the reasons that make analytical-based approaches inappropriate for

modelling:

1. Unprecedented complexities, including resource contention and NUMA,

have made the performance and energy consumption profiles of parallel

applications running on modern HPC platforms too complicated. That is

why these analytical models have been reported to be inaccurate [53,

52, 54, 55].

2. Apart from a few variation-aware algorithms for performance and en-

ergy optimization on homogeneous HPC platforms [3, 45, 18, 46], all

proposed methods assume a linear relationship between workload size

and performance and between workload size and energy consump-

tion. Nevertheless, regarding some aforementioned efforts [24, 50, 51,

52, 3, 16, 111, 45, 18, 46], one can conclude that profiles on modern

HPC platforms are highly non-linear that makes the relationship between

workload size and performance and between workload size and energy

consumption so complex, non-linear and even non-convex. Therefore,

application-oblivious and eventually workload size-oblivious models can-

not reveal the exact real-life behaviour of applications on modern hetero-

geneous platforms. Using this type of algorithms, which ignore variations

in performance and energy profiles, consequently leads to sub-optimal

solutions for performance and energy optimization problems.

3. Some of these approaches rely on too many parameters which makes

them too sophisticated to understand and implement [93, 102, 105, 37,

39, 40, 117, 42, 118, 64].

4. Most analytical models use PMCs and OS-reported data (software

PMCs) to obtain input parameters. In addition, there are analytical ap-

proaches which depend on the analysis of applications’ source codes

46

2.5. SUMMARY

written in specific programming languages [94, 99, 102, 104, 40]. This

reliance on PMCs and specific programming language puts the portabil-

ity of the analytical models under question.

5. A few analytical models use simulators to estimate performance and en-

ergy. These models can be criticised for the following reasons:

(a) Simulators are not able to keep pace with the fast-changing hard-

ware architectures,

(b) They abstract the real hardware which results in losing accuracy,

(c) They are not portable, and cannot be used to model the perfor-

mance and energy consumption of any kind of application on any

desirable platform,

(d) Their modelling cost is very expensive due to the low speed of

cycle-accurate simulations especially when the workload size is

very large.

According to the aforementioned reasons, analytical-based methods for

performance and energy modelling on modern HPC platforms cannot be ac-

curate enough whereby solving optimization problems using these methods

may result in sub-optimal solutions. Therefore, we would like to summarize

that direct measurement is the only way to accurately model the performance

and energy consumption of modern HPC platforms as functions of problem

size. These functions consider both manufacturing and application variations.

We then aim to use these real-life functions as inputs to our proposed

model-based and variation-aware algorithms to solve performance, energy

and bi-objective optimization problems for data-parallel applications running

on clusters of heterogeneous platforms. These algorithms involve only one

decision variable, which is the workload distribution.

To the best of our knowledge, there is no model-based data-partitioning

approach for performance and energy optimization on modern heterogeneous

platforms which takes real-life behaviour and variations of applications into

account. Although a few research efforts [50, 51, 111] have taken into ac-

count variations, they model performance and energy analytically, rather than

47

2.6. OUT-OF-CARD COMPUTATION ON ACCELERATORS

real-life measurements, and ignore workload distribution as a decision vari-

able. Some research [14, 110, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29] has

considered both heterogeneity and real-life functions, but these approaches

are not variation-aware. As a result, applying them on modern HPC platforms

will lead to sub-optimal solutions. In spite of considering both variations and

real-life behaviour of applications, some previous works [3, 16, 45, 18, 46] are

only applicable to solve optimization problems on homogeneous platforms.

2.6 Out-of-card Computation on Accelerators

In this section, we first look at notable works that implement out-of-card kernels

for accelerators and then review open source and vendor developed out-of-

card libraries released for accelerators.

2.6.1 Out-of-card Implementation of Accelerator Kernels

Gu et al. [126] present an out-of-card implementation of FFT kernel for a

single GPU. The authors co-optimize both CPU-GPU data transfer via PCI-E

bus and on-GPU computation for 1D, 2D and 3D FFTs by using the Cooley-

Tukey decomposition framework. The framework is used for decomposing

a large-sized FFT into smaller sub-FFTs, which are then transferred to the

GPU in batches. A recursive kernel is proposed to compute on-card FFT.

To achieve high throughput on the CPU-GPU data channel, a blocked buffer

technique for 1D FFTs is developed. The effect of sub-array size on data

transfer performance is also studied in this paper. They find that PCI-E bus

bandwidth decreases when sub-array size decreases due to the consequent

increase in the number of cudaMemcpyAsync calls. To deal with small sub-

arrays and to increase the PCI-E bus bandwidth, continuous sub-arrays are

buffered and then transferred by using a single cudaMemcpyAsync call.

Mu et al. [127] introduce an out-of-card algorithm for LU decomposition.

The proposed approach is based on the left-looking factorization on GPU/CPU

platform where it uses both the host memory and the hard disk for out-of-card

computations.

48

2.6. OUT-OF-CARD COMPUTATION ON ACCELERATORS

In 2012, Zhong et al. [128, 129] propose an out-of-card implementation

for matrix multiplication routine (DGEMM) for Nvidia GPU. However, the im-

plementation places some constraints on the dimensions of the matrices that

are allowed in the matrix multiplication. In Chapter 6, we will remove these

constraints and apply additional optimizations to improve the performance of

our proposed out-of-card library.

An out-of-card dense matrix multiplication implementation for CPU-GPU

platforms similar to [128, 129] is presented in [130]. They perform matrix de-

composition according to peak bandwidth of PCI-E links and the bandwidth

required by an application.

Sabne et al. [131] present a computation splitting technique that auto-

matically adjusts the number of pipeline stages to improve the performance

of out-of-card implementations on multiple GPUs attached to the same host

CPU.

Shirahata et al. [132] present out-of-card techniques for large-scale graph

processing applications for heterogeneous GPU-based clusters.

Out-of-core implementations for large dense singular value decomposi-

tions (SVD) for CPU architectures are proposed in [133, 134] that use disk

storage in cases the problems are too large to fit into the main memory.

Yamazaki et al. [135] propose out-of-card algorithms to factorize a sym-

metric indefinite matrix for CPU and GPU architectures.

2.6.2 Out-of-card Libraries for accelerator kernels

In this section, we overview the released libraries supporting out-of-card com-

putations. The CUBLAS-XT library [136] provides a set of Basic Linear Al-

gebra Subprograms (BLAS) routines that utilize multiple GPUs connected to

the same motherboard. It uses CUDA streams [137] and events to efficiently

manage data transfers across PCI-Express bus and kernel invocations on the

GPUs. The routines in the library also support out-of-card operation where the

size of the matrices is limited only by the system memory size. However, we

show in this work that our out-of-card implementation of the DGEMM routine

out-performs that provided in CUBLAS-XT library.

49

2.6. OUT-OF-CARD COMPUTATION ON ACCELERATORS

SciGPU-GEMM [138] is a library of wrapper functions to help use the

GEMM routines from CUBLAS on GPUs with limited memory and no double

precision hardware.

HPL-CUDA [139] is a library for high-performance computing Linpack

benchmark for CUDA. It does not contain out-of-card implementation for

level-3 BLAS matrix multiplication routine.

MAGMA (Matrix Algebra on GPU and Multicore Architectures) [140, 141]

is a library providing out-of-card algorithms for dense LU, Cholesky and QR

factorizations for CPU-GPU platforms.

50

Chapter 3

A Novel Data-Partitioning

Algorithm for Performance

Optimization of Data-Parallel

Applications on Heterogeneous

HPC Platforms

Modern HPC platforms have become highly heterogeneous owing to the tight

integration of multicore CPUs and accelerators (such as GPUs, Xeon Phis, or

FPGAs) which empower them to maximize performance, as a dominant ob-

jective. Due to this inherent characteristic, processing elements contend for

shared on-chip resources, such as Last Level Cache (LLC), interconnect, etc.,

and shared nodal resources, such as DRAM, PCI-E links, etc. This severe re-

source contention and also Non-Uniform Memory Access (NUMA) have posed

serious challenges to model and algorithm developers.

As an example, Figure 3.1 presents the speed functions of 2D FFT appli-

cation on a hybrid node, including an Intel Haswell multicore CPU, one Nvidia

K40c GPU and one Intel Xeon Phi 3120P. Each accelerator is connected to

a dedicated host core via a separate PCI-E link. One can observe significant

fluctuations in the performance profile of the application.

51

2 2 2 2 2

Figure 3.1: Speed functions of heterogeneous 2D FFT application executing
on a heterogeneous node including an Intel Haswell multicore CPU, one Nvidia
K40c GPU and one Intel Xeon Phi 3120P.

As explained in Chapter 1, the most advanced load-balancing algorithms

use functional performance models (FPMs), which are application-specific and

represent the speed of a processor by a continuous function of problem size

with an almost smooth and convex shape [14, 110, 15]. However, perfor-

mance profiles of modern HPC systems involve lots of variations and violate

the conditions assumed by the proposed FPM-based algorithms proposed in

[21, 22, 23, 24, 25, 26, 27, 28, 29]. Therefore, load-balancing data partitioning

algorithms based on FPMs may not return optimal solutions.

To summarize, the complexities (resource contention, NUMA, accelerator-

specific limitations, etc.) have introduced new challenges to optimization of

data-parallel applications on these platforms for performance. Due to these

complexities, the performance profiles of data-parallel applications executing

on these platforms are not smooth and deviate significantly from the shapes

that allowed state-of-the-art load-balancing algorithms to find optimal solu-

tions.

In this chapter, we explain how to model the computational performance of

hybrid platforms, using abstract processors. Then, the problem for optimiza-

tion of data-parallel applications on modern heterogeneous HPC platforms for

performance is formulated. After that, we propose a novel model-based data

partitioning algorithm, which minimizes the execution time of computations in

the parallel execution of an application via load imbalancing. This algorithm

52

3.1. MODELLING COMPUTATIONAL PERFORMANCE OF HYBRID
PLATFORMS

takes as input the problem size n, a set of p discrete speed functions cor-

responding to p available heterogeneous processors and considers only one

decision variable, which is workload distribution. The algorithm requires in-

dividual performance profiles of all the processors and does not make any

assumption about the shapes of these functions. We prove the correctness of

the algorithm and its complexity to be O(m3 × p3), where m is the cardinality

of the input discrete speed functions.

We experimentally demonstrate the optimality and efficiency of our algo-

rithm using two data-parallel applications, matrix multiplication and fast Fourier

transform, on a heterogeneous cluster of nodes where each node contains an

Intel multicore Haswell CPU, an Nvidia K40c GPU and an Intel Xeon Phi co-

processor.

3.1 Modelling Computational Performance of Hy-

brid Platforms

In this section, we explain how to model the performance of heterogeneous

platforms in terms of a set of speed functions [15]. These functions are built

empirically and are application and platform specific. Therefore, models must

be built for each application on each unique processing element.

The performance of an application running on a processor is modelled us-

ing a discrete profile, which is named speed function. Each function contains

a set of data points where each point represents the computational speed of

the application (s(w)) for a given problem size w. The computational speed

of a given application on a processor is defined as the number of operations

executed by the processor divided by the application execution time, which is

represented by t(w). Since the computational complexity of an application is

a measure to estimate the useful work involved in processing the application,

we can obtain the number of operations using the computational complexity of

the application, which is represented by C(w). Therefore, the computational

speed of a given application is calculated as:

53

3.1. MODELLING COMPUTATIONAL PERFORMANCE OF HYBRID
PLATFORMS

s(w) =
C(w)

t(w)
(3.1)

Consider the matrix multiplication of two large dense square matrices as

an example. Suppose each matrix consists of n × n float elements. The

computational complexity of a straightforward algorithm to calculate the result

matrix is C(n) = O(n3). Therefore, the useful work (the number of operations)

to compute the result matrix involves around 2 × n3 floating point operations

(FLOP).

Apart from the number of operations, we need the application execution

time, t(w), to build each data point in the performance profiles. There are fine-

grained high precision timers in any computer which can be used to measure

the execution time of each application running on processors.

In the single-core era, all hardware resources are exclusively utilized by

one application. However, a heterogeneous data-parallel application, which

consists of a number of kernels (generally speaking, multithreaded), runs in

parallel on different parts of a hybrid platform. In general, due to tight integra-

tion and severe resource contention in heterogeneous platforms, the load of

one computational kernel in a given hybrid application may significantly impact

the performance of others to the extent, preventing from the ability to model

the speed of each kernel in hybrid applications individually. Henceforth, com-

putational kernels cannot be considered independent and their performance

(execution times) should not be measured separately.

To address this issue, in this work we restrict our study to such config-

urations of hybrid applications, where individual kernels are coupled loosely

enough to allow us to build their individual speed functions with the accuracy

sufficient for successful application of the optimization algorithms, proposed

later in this thesis. To achieve this, we only consider configurations where

no more than one CPU or accelerator kernel is running on the correspond-

ing device. Then, each group of cores executing an individual kernel of the

application is modelled as an abstract processor [142] so that the executing

platform is represented as a set of heterogeneous abstract processors. Each

abstract processor solely constitutes the processing elements and resources

54

3.1. MODELLING COMPUTATIONAL PERFORMANCE OF HYBRID
PLATFORMS

which are involved in the execution of a given application kernel on it. We

make sure that the sharing of system resources is maximized within groups of

computational cores representing the abstract processors and minimized be-

tween the groups. This way, the contention and mutual dependence between

abstract processors are minimized.

Since the abstract processors contain CPU cores that share some re-

sources such as main memory and QPI, they cannot be considered completely

independent. Therefore, the performance of these loosely-coupled abstract

processors must be measured simultaneously, thereby taking into account the

influence of resource contention. That is, the data points for a problem size

in the speed functions of an application are experimentally built so that the

same workload is simultaneously executed on all the abstract processors in

the platform.

Take a multi-accelerator NUMA node, which is named HCLServer01, as an

example. It contains an Intel Haswell multicore CPU consisting of 24 physical

cores with 64 GB main memory, whose specification is shown in Table 3.1.

In addition to the multicore CPU, the node integrates two accelerators, Nvidia

K40c GPU and Intel Xeon Phi 3120P, whose specifications are shown in Tables

3.2 and 3.3 respectively. Each accelerator is connected to a dedicated host

core via a separate PCI-E link.

Figure 3.2 represents the block diagram of HCLServer01 and its abstract

processors. The first abstract processor contains 22 (out of total 24) CPU

cores executing the multi-threaded CPU kernel. These cores are highlighted

in dark blue in the figure. The second abstract processor comprises the Nvidia

K40c GPU, its dedicated host CPU core executing the GPU kernel along with

the PCI-E link connecting the host to the accelerator. The abstract proces-

sor is highlighted in orange. And finally, the third abstract processor, which is

highlighted in red, consists of Intel Xeon Phi 3120P coprocessor, its dedicated

host CPU core executing the Xeon Phi kernel along with its PCI-E link. The

dedicated host CPU core is responsible for sending data from host to acceler-

ator, kernel invocations on the accelerator and then copying results back from

the accelerator to host. Therefore, the pair consisting of an accelerator and

its dedicated host core executing one accelerator kernel is modelled by an ab-

55

3.1. MODELLING COMPUTATIONAL PERFORMANCE OF HYBRID
PLATFORMS

Table 3.1: Specification of the Intel Haswell multicore CPU.

Technical Specifications Intel Haswell E5-2670V3
Thread(s) per core 2
No. of cores per socket 12
Socket(s) 2
NUMA node(s) 2
CPU MHz 1200.402
L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 30720 KB
NUMA node0 CPU(s) 0-11,24-35
NUMA node1 CPU(s) 12-23,36-47
Processor base frequency 2.30 GHz
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec
TDP 240 W
Idle Power 61 W

Table 3.2: Specification of the Nvidia K40c GPU.

Technical Specifications Nvidia K40c
No. of processor cores 2880
Base clock 745 MHz
Boost clock(s) 810 MHz, 875 MHz
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec
Memory I/O 384-bit GDDR5
Memory clock 3.0 GHz
TDP 235 W
Idle Power 16 W
Idle Power (Persistence mode) 68 W

stract processor. The kernel executing on an accelerator uses all its cores.

The execution time of a kernel in the GPU and Xeon Phi abstract processors

includes the times of data transfer between the accelerators and their host

cores. Since there should be a one-to-one mapping between the abstract pro-

56

3.1. MODELLING COMPUTATIONAL PERFORMANCE OF HYBRID
PLATFORMS

Table 3.3: Specification of the Intel Xeon Phi 3120P.

Technical Specifications Intel Xeon Phi 3120P
No. of processor cores 57
Base frequency 1.10 GHz
Total main memory 6 GB GDDR5
L2 cache size 28.5 MB
Memory bandwidth 240 GB/sec
Memory clock 3.0 GHz
TDP 300 W
Idle Power 91 W

cessors and computational kernels, any hybrid application executing on the

server in parallel should consist of three kernels, one kernel per computational

device.

As explained earlier, due to existing some shared resources between the

abstract processors, they are not independent, and the performance of these

abstract processors must be measured simultaneously. We explain how to

do this in our experimental methodology presented in Appendix A. It should

be noted that while speed functions are built where the data points for the

same problem size are obtained simultaneously, during the actual execution

of the data-parallel application using the workload distribution determined by

the proposed data partitioning algorithm, the problem sizes executed by the

abstract processors can be different. This is because different processors can

be allocated different problem sizes by our heterogeneous data partitioning

algorithm. However, since abstract processors are as loosely coupled as pos-

sible, the speeds of execution of these problem sizes simultaneously would not

differ significantly from those present in the speed functions; the marginal dif-

ferences do not imply significantly different execution times. We confirm this to

be the case through exhaustive experimentation; synopsis of this is presented

in Appendix B.

57

3.2. FORMULATION OF PERFORMANCE OPTIMIZATION PROBLEM

Figure 3.2: Block diagram of HCLServer01 including an Intel Haswell multi-
core CPU, one Nvidia K40c GPU and one Intel Xeon Phi 3120P.

3.2 Formulation of Performance Optimization

Problem

Consider a problem size n executed using p heterogeneous processors,

whose speed functions are represented by S = {s0(x), ..., sp−1(x)} where

si(x), i ∈ {0, 1, · · · , p−1}, is a discrete speed function of cardinality m of pro-

cessor Pi. The speed si(x) for a problem size x for processor i is calculated

as C(x)
ti(x)

, where C(x) represents the computational complexity for executing the

problem size, and ti(x) is the time of execution of the problem size. Without

loss of generality, we assume x ∈ {1, 2, · · · ,m}. The performance optimiza-

tion problem can be then formulated as follows:

Performance Optimization Problem, HPOPT (n, p, m, S, Xopt, topt): The

problem is to find a partitioning, Xopt = {x0, ..., xp−1}, of the problem size n

using p available heterogeneous processors so as to minimize the computa-

tion time of parallel execution of the workload. The parameters (n, p, m, S) are

the inputs to the problem. The outputs are Xopt, which is the workload distri-

bution, and topt, which is the optimal execution time. The optimal solution does

not necessarily balance the load between processors. We will explain this is-

sue in Section 3.4 This problem can be formulated as an Integer Non-Linear

Programming (INLP) problem as follows:

58

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

topt = min
X

p−1
max
i=0

C(xi)

si(xi)

Subject to x0 + x1 + ...+ xp−1 = n

0 ≤ xi ≤ m, i = 0, · · · , p− 1

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and

si(x) ∈ R>0

(3.2)

It should be noted that the execution time ti(x) for a problem size x for

processor i is calculated as ti(x) = C(x)
si(x)

, where C(x) determines the compu-

tational complexity of execution of the problem size, and si(x) is the speed of

execution of the problem size.

The objective function in the formulated optimization problem is a function

of workload distribution X, X = {x0, ..., xp−1}, of a given problem size n be-

tween the p processors. For each given X, it returns the time of its parallel

execution, which is calculated as the time taken by the longest running pro-

cessor to execute its workload. Any distribution that minimizes this function is

considered optimal as its execution time of the problem size n by the p proces-

sors cannot be improved. The number of active processor (processors with

a non-zero workload) may be less than p in the optimal workload distribution

Xopt.

3.3 HPOPTA: Algorithm Solving HPOPT

In this section, we present our algorithm, HPOPTA (Heterogeneous

Performance OPTimization Algorithm), that solves HPOPT using the branch-

and-bound solution method. The bounding criteria in this algorithm are time

threshold and size threshold, which will be explained later.

First, we informally describe the algorithm using an example. The input

to the algorithm is a set of discrete time functions, which are derived from

discrete speed functions. In the example, consider four heterogeneous pro-

cessors (p = 4), which are available for execution of a problem of size n = 16.

59

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

Figure 3.3: Speed functions of a sample application executing on an assumed
parallel machine which consists of 4 processors.

Figure 3.4: The equivalent time functions for the sample speed functions in
Figure 3.3.

Figures 3.3 and 3.4 respectively show the sample speed functions, S =

{s0(x), · · · , s3(x)}, and the equivalent time functions, T = {t0(x), · · · , t3(x)},
of the processors (m = 16 in our example). For the sake of simplesity, it is

supposed that si(x) = x, where i ∈ {0, 1, 2, 3}. It should be noted that these

time functions are samples, which are representative of real-life data-parallel

applications.

Figure 3.5 shows the discrete time functions, stored as arrays in non-

decreasing order of execution time.

To find the optimal workload distribution, a straightforward approach would

be to examine all combinations and select a workload distribution with the

minimum computation time of parallel execution of the workload. Figure 3.6

60

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

Figure 3.5: Example: The sample time functions, shown in Figure 3.4, which
are stored in array data structures. Each array is sorted in non-decreasing of
execution time.

16

...0
t=10

...8

...�0
t=1

Optimal
Solu-
tion

8

...7

0
t=7

7,7

8

0
t=9

8,9

0,
0 1,1 ...

0,0

8,1 9,3

...

16

...7

�...7

0
t=7

7,7

0,
0 ...

11,19

8

...5

0
t=4

5,3

1

0
t=6

1,6

7

0
t=7

7,7

8

0
t=9

8,9

0,0

1,
1

7,1 3,4

...

16

5

0
t=19

5,3

...15

0
t=15

15,15

16

0
t=20

16,20

0,0

1,
1 ...

11,19

0,0

8,
1

9,3
...

0,0 8,1 ... 16,10
...

Figure 3.6: Applying naive approach to examine all combinations and select a
workload distribution with the minimum computation time of parallel execution
of the workload.

shows the tree, which is constructed by such a naive algorithm and contains

all the combinations. Due to the lack of space, we only show the tree partially.

The solution tree is constructed from the root, which is the only node at

level L0 of the tree. The value 16, which labels the root node, represents

the whole workload to be distributed between 4 processors {P0, P1, P2, P3}.
Then, 17 problem sizes, including a zero problem size along with all prob-

lem sizes existing in the time function (t0(x)), are assigned to the proces-

sor P0 one by one. Although the problem sizes can be given to the pro-

61

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

cessor in any order, we assign them in a non-decreasing order of their

execution time by the processor. As shown in Figure 3.6, problem sizes

{0, 8, 3, 12, 9, 15, 10, 14, 1, 16, 13, 4, 2, 7, 5, 6, 11}, which have been sorted in

non-decreasing order of execution time, are assigned to P0 one-by-one at level

L0. Therefore, the root node is expanded into 17 children. The value, which

labels an internal node at level L1 (the root’s child), represents the remaining

workload to be distributed between processors {P1, P2, P3}.
In its turn, each internal node at level L1 becomes a root of a sub-tree,

which is a solution tree for distribution of the remaining workload between

three processors {P1, P2, P3}. Each edge connecting the root and its child is

labelled by the workload assigned to P0 and its execution time. For example,

the blue edge in Figure 3.6 is labelled by (8, 1), which indicates that a problem

of size 8 is given to P0 and it takes one time unit to execute this workload by P0.

The child node connected by this edge is labelled by 8, which is the remaining

workload (= 16− 8) to be distributed between processors {P1, P2, P3}.
In Figure 3.6, the leaf node at level L1 labelled by 0 represents a solution

leaf. In general, any leaf node labelled by 0 represents one of the possible

solutions, and the execution time of the corresponding solution is calculated as

the maximum of the execution times labelling the edges in the path connecting

the root and the solution leaf. For example, the execution time of the solution

represented by the leaf labelled by red 0, which is connected to the root by two

edges {(8, 1), (8, 1)}, will be equal to max{1, 1} = 1. The execution time of

the solution represented by the solution leaf at level L1 will be equal to 10 as it

is connected to the root by just one edge (16, 10).

The leaf node at level L2 labelled by � is a no-solution leaf. The path

connecting this node to the root consists of two edges {(8, 1), (9, 1)}. The

corresponding workload distribution results in no-solution because the sum of

the problem sizes assigned to P0 and P1 will be equal to 17 (= 8 + 9), which

would exceed the total workload of 16.

In this example, each internal node in the solution tree has either 17 chil-

dren (or m + 1 in general case) or just one child. The child is always a leaf.

There are two types of leaves: solution leaves, labelled by 0, and no-solution

leaves, labelled by �. Each internal node at level Li, labelled by a positive

62

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

number w, becomes a root of a solution tree for distribution of the workload w

between processors {Pi, · · · , Pp−1} and is therefore constructed recursively.

Finally, a distribution minimizing the parallel execution time will be returned

as the optimal solution. In this example, the workload distribution (8, 8, 0, 0),

represented by the red solution leaf and resulting in the execution time of 1,

will be returned as optimal.

It is apparent that the complexity of the presented straightforward algorithm

is exponential.

We propose an efficient recursive sequential algorithm, HPOPTA, of poly-

nomial complexity. HPOPTA deploys a number of optimizations to avoid ex-

amining all the possible solutions and therefore does not explore all the paths

in the tree.

The first step is to sort the discrete time functions, stored as arrays, in non-

decreasing order of execution time as shown in Figure 3.5. We then determine

the load-equal distribution and its parallel execution time, which is stored in

variable τ called the time threshold. The load-equal distribution is the distri-

bution where each processor is allocated the same workload of n
p

(assuming

n is divisible by p). HPOPTA will not examine solutions with execution times

greater than or equal to the time threshold. In the example, τ will be initialized

by 12 (max3
i=0 ti(

16
4

) = max{12, 6, 4, 4} = 12). Therefore, only data points with

execution times less than 12 will be considered and form the reduced search

space. These data points are shown in gray cells in Figure 3.7. During the

execution of HPOPTA, the time threshold τ will be updated every time a faster

solution is found representing thus the execution time of the currently fastest

solution.

HPOPTA then starts examining the solutions in the tree in the left-to-right

depth-first order as shown in Figure 3.8. First, processors P0 and P1 are allo-

cated zero problem size each, making the workload to be distributed between

processors P2 and P3 equal to 16. However, this workload exceeds the maxi-

mum workload, 15, that can be distributed between these two processors and

executed in parallel in less than τ = 12 time units. This maximum workload

is associated with level L2 of the solution tree and called the size threshold

of this level, σ2. In general, size threshold σi depends on the time threshold,

63

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

Figure 3.7: Example: Applying load-equal time threshold and removing some
data points from the search space.

τ , and is defined as the maximum workload that can be executed in paral-

lel by processors Pi, · · · , Pp−1 faster than in τ time units. The vector of size

thresholds σ = (σ0, σ1, σ2, σ3) can be determined using the time arrays and

the current time threshold as follows. The maximum workloads, the execution

time of which are less than τ = 12 in the time arrays for processors P0, P1,

P2, and P3, will be 16, 9, 7 and 8 respectively. Therefore, the size threshold

of the last level (L3) will be σ3 = 8. The size threshold of level L2 will be 15

(= 7+σ3 = 7+8). Similarly, the size thresholds σ1 and σ0 for levels L1 and L0

will be 24 (= 9+σ2 = 9+15) and 40 (= 16+σ1 = 16+24) respectively. Thus, in

Figure 3.8, the node labelled by 16 in L2 cannot lead to solutions, which would

be faster than the currently best (load-equal) solution with parallel execution

time τ = 12, and therefore this node will not be expanded. So, the red subtree

in Figure 3.8 is cut and not explored. We call this key optimization operation

Cut.

In general, as the algorithm progresses the vector of size thresholds, σ,

changes every time the time threshold, τ , decreases. To illustrate how σ

changes, we show its value before and after each discussed step of the al-

gorithm. As the Cut operation does not change τ , it also will not change σ, as

illustrated in Figure 3.8,

Following the left-to-right depth-first order, next node to examine will be

64

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

σbefore = {40, 24, 15, 8}
16

16

16 �

10
�

11
�

14
�

12
�

13
�

9
�

15
�

16
�

0,0

1,1 7,1 3,
44,4 2,7 5,8

6,9

0,0

0,0

σafter = {40, 24, 15, 8}

Figure 3.8: Example: Applying size threshold which results in cutting some
subtrees, which do not give any solution, from the search tree.

node 8 at level L2 as shown in Figure 3.9. Proceeding from this node, the

algorithm will generate and process solutions (leaves in the tree labelled by 0)

in the left-to-right order. For each generated solution, the following operations

will be performed:

• The time threshold τ is updated.

• If τ decreases, the data points in the time functions, whose time is

greater than or equal to the updated time threshold, are removed from

the search space, and the vector σ of size thresholds is updated.

• The solution is saved.

• Backtracking to an ancestor node of the solution is performed. We will

explain in detail later how this ancestor node is chosen.

As an example, consider the solution with distribution

{(0, 0), (8, 1), (3, 4), (5, 3)} and execution time 4 (see Figure 3.9). The

time threshold, τ , is updated to 4. Based on the new time threshold, the

number of data points to be examined in the time functions is reduced. This is

illustrated in the Figure 3.10, where one can see that fewer data points need

to be examined compared to Figure 3.7. The vector of size thresholds, σ, is

65

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

updated to {37, 22, 13, 6}. The solution is saved, which includes memorization

of the information pertaining to all the levels except for the first and the last.

Thus, the information that is memorized is level-specific. For L1, the saved

information includes the problem size assigned to P1, which is 8, the index

of the current element in the corresponding time function, which we call the

last examined index and which is equal to 0, and the parallel execution time of

the solution for processors {P1, P2, P3}, which is 4. Saving the last examined

index helps HPOPTA to resume the exploration of further points from where it

was interrupted by backtracking, which will explain later. The same is done for

L2. The saved information includes the problem size assigned to P2, which

is 3, the index of current element in the corresponding time function, which

is equal to 2, and the parallel execution time of the solution for processors

{P2, P3}, which is equal to 4. We call this key operation, Save.

As explained earlier, backtracking to an ancestor node is one of the op-

erations performed after each generated solution. Now, we describe how the

ancestor node is chosen for the backtracking. From the leaf pertaining to the

current solution, we traverse up the tree to the node with the maximum execu-

tion time. The parent of this node will be the backtracking target. For example,

again consider the solution with distribution {(0, 0), (8, 1), (3, 4), (5, 3)} and ex-

ecution time 4 in Figure 3.9. For this solution, the node with the maximum exe-

cution time will be at level L2 (the node labelled by 8). Therefore, the algorithm

will backtrack to its parent, node 16 at level L1, as indicated by a blue arc in

Figure 3.9. Performing this backtracking effectively means that the algorithm

will not generate and process the remaining solution leaves descending from

node 8 at level L2 which are highlighted in red in Figure 3.9.

The reason for this is that the children of the node 8 are examined in a non-

decreasing order of time taken by processor P2 to execute its workload in the

corresponding solutions. Therefore, no edge coming out of node 8 after the

edge (3, 4) can have a label with the execution time less than 4. This makes

further expansion of node 8 meaningless as no solution resulting from this

expansion will have execution time less than 4, which is necessary to improve

the currently best solution. Therefore, we backtrack to its ancestor, node 16 at

level L1. We will call this key operation Backtrack. After backtracking to node

66

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

σbefore = {40, 24, 15, 8}
16

16

8

...
t ≥
4

6

0
t=7

6,2

4

0
t=4

4,4

5

0
t=4

5,3

1

0
t=6

1,6

7

0
t=7

7,7

8

0
t=9

8,9

0,0

1,1 7,1 3,
4 4,4 2,7

...

...

0,0 8,1

0,0

σafter = {37, 22, 13, 6}

Figure 3.9: Example: Backtracking to the ancestor of the node with maximum
execution time, and cutting branches which do not result in any solution better
than the solution have found so far.

Figure 3.10: Example: Applying the updated time threshold and removing
more data points from the search space.

16, the solution saved for the workload 8 at level L2 becomes final because

the corresponding distribution of workload of size 8 between processors P2

and P3 is the optimal one.

After backtracking to node 16 at level L1, next node to examine will be node

7 at level L2. The expansion of this node results in two children as shown in

67

3.3. HPOPTA: ALGORITHM SOLVING HPOPT

σbefore = {37, 22, 13, 6}
16

16

...7

...6

0
t=3

6,2
7
�

0,0

1,
1 ...

8

5

0
t=4

5,3

1

0
t=6

1,6

7

0
t=7

7,7

8

0
t=9

8,9

0,0
1,

1 7,1 3,4

...

0,0
8,1 9,3

...

0,0

σafter = {33, 21, 13, 6}

Figure 3.11: Example: Keeping on applying HPOPTA on the search space.

Figure 3.11. Giving zero workload to P2 results in the workload of size 7 at

level L3, which exceeds the size threshold σ3 = 6 and therefore results in no-

solution. The second child yields a solution, which has the parallel execution

time of 3. The algorithm updates the time threshold, τ , making it 3. As the time

threshold decreased, the vector of size thresholds is updated to {33, 21, 13, 6}.
The solution then is saved. For L1, the memorized information includes the

problem size assigned to P1, which is 9, the last examined index which is equal

to 1, and the parallel execution time of the solution for processors {P1, P2, P3},
which is 3. For L2, the saved information includes the problem size assigned

to P2, which is 1, the index of the current element in the corresponding time

function, which is equal to 0, and the parallel execution time of the solution for

processors {P2, P3}, which is equal to 2. After this, HPOPTA backtracks to the

root.

HPOPTA proceeds in this manner from the root until it comes to node 8

at level L1 as illustrated in Figure 3.12. Here, as the optimal distribution of

the workload 8 between processors P2 and P3 has been already found and

saved, the best solution coming out of node 8 at level L2 will be just retrieved

from the memory. We call this key operation, ReadMemory. Since the parallel

execution time of the retrieved solution is equal to 4, which is greater than

the current time threshold τ = 2, this solution is ignored. The algorithm then

68

3.4. HPOPTA AS A LOAD IMBALANCING ALGORITHM

σbefore = {33, 21, 13, 6}
16

8

0
t=1

8
�

ReadMemory

0,0 8,1
...

0,0
8,1

σafter = {0, 0, 0, 0}

Figure 3.12: Example: Finding the optimal solution and using Mem to find
solutions.

moves to the next child, which results in the solution {(8, 1), (8, 1), (0, 0), (0, 0)}
with the parallel execution time of 1. For this solution, the time threshold, τ ,

is updated to 1. The corresponding reduction of the search space results in

the situation when no more data points in the time functions are left for further

examination. Therefore, the algorithm terminates.

The optimal execution time is given by the last value of the time threshold.

The optimal workload distribution is given by the workload distribution associ-

ated with this time threshold. So, there are four key operations in the algorithm,

which are a). Cut, b). Save, c). Backtrack, and d). ReadMemory.

In Section 3.5, we give a pseudocode of our algorithm, which uses these

key operations as the fundamental building blocks.

3.4 HPOPTA as a Load Imbalancing Algorithm

In this section, we explain what we mean by load-balancing and load-

imbalancing algorithms. HPOPTA is a load-imbalancing algorithm. Never-

theless, if the optimal workload distribution load balances the application, then

HPOPTA finds it.

We define a load-balancing algorithm as one that determines the workload

distribution where the problem sizes allocated to the processors are propor-

tional to their speeds. The intuition behind load balancing is that balancing the

69

3.4. HPOPTA AS A LOAD IMBALANCING ALGORITHM

application improves its performance in the following manner: a balanced ap-

plication does not waste processor cycles on waiting at points of synchroniza-

tion and data exchange, maximizing this way the utilization of the processors

and minimizing the computation time.

To find load balance distributions, a straightforward approach is to examine

all combinations and select a workload distribution with the minimum differ-

ence between the execution times of processors. However, the complexity of

this naive approach would be exponential. Lastovetsky et al. [16] studied and

presented a formal study of load-balancing algorithms to address this problem.

In this work, they show that in order to guarantee that the balanced configura-

tion of the application will execute the workload n faster than any unbalanced

configuration, the speed functions si(x), characterizing the performance pro-

files of the processors, should satisfy the condition:

∀∆x > 0 :
si(x)

x
≥ si(x+ ∆x)

x+ ∆x

As explained earlier, the speed si(x) is calculated as C(x)
ti(x)

. This condition

means that the increase of the workload, x, will never result in the decrease of

the execution time.

However, in this dissertation, we show that this condition is violated by

the performance profiles of the data-parallel applications executing on modern

HPC platforms.

HPOPTA is designed to deal with the shapes of performance profiles

where the condition is no longer satisfied. We call such an algorithm, load-

imbalancing algorithm, where it determines the optimal workload distribution

that minimizes the execution time of computations of a data-parallel application

but which does not load balance the application.

We illustrate using a trivial example. Consider a platform consisting of

four abstract processors (p = 4) with speed functions presented in Section

3.3. Let the workload to be solved be equal to 31 (n = 31). In this exam-

ple, load-balanced solution is {(2, 13), (11, 13), (9, 13), (9, 13)} and the load-

balanced execution time therefore is 13. However, the optimal solution found

by HPOPTA is {(9, 3), (9, 3), (7, 1), (6, 2)} with the optimal execution time of

70

3.5. FORMAL DESCRIPTION OF HPOPTA

3. It is obvious that the optimal solution does not balance the load between

processors.

3.4.1 Problem Dimensions in HPOPTA

It should be mentioned that HPOPTA is a 1D data-partitioning algorithm. How-

ever, HPOPTA can be directly applied to 2D or 3D problems where the dimen-

sionality can be reduced to 1D. Consider two examples. Our first example is

the execution of MPDATA on Intel multicore CPUs and Intel Xeon Phis [16].

The input data structure to MPDATA is a dense 3D object with dimensions

(m,n,l) and size m × n × l. The dimension l is fixed in real-life simulations.

From the experiments, it was observed that the speed of MPDATA varies very

little with n for constant m. Therefore, HPOPTA can be applied directly to

performance optimization of MPDATA where the parameter m is partitioned

between the processors. In our second example, we consider the applica-

tion of HPOPTA for optimization of 2D FFT for performance. A sequential 2D

FFT is computed using row-column or the separable method based on 1D

FFTs. Briefly, the row-column method consists of 1D FFTs on rows followed

by transpose matrix and then 1D FFTs on rows followed by restoration using

transpose matrix. The 1D FFT computation is optimized using direct applica-

tion of HPOPTA. In our future work, we will develop extensions to HPOPTA for

optimization of 2D and 3D applications for performance.

3.5 Formal Description of HPOPTA

In this section, we describe the pseudocode of HPOPTA, which is shown in

Algorithm 1. The inputs to HPOPTA are: the problem size, n, the num-

ber of heterogeneous processors, p, and a array of p time functions, T =

{T0, T1, · · · , Tp−1}. Ti represents the time function of processor Pi and con-

sists of m pairs (xij, tij), j ∈ [0,m), where xij is the j-th problem size in

the time function and tij is its execution time by processor Pi. The outputs

are the optimal workload distribution, Xopt, and the optimal parallel execution

71

3.5. FORMAL DESCRIPTION OF HPOPTA

time, topt. It should be noted that the number of processors selected by the

algorithm in the optimal workload distribution may be less than p.

The algorithm first sorts each time function in non-decreasing order of time

(Line 2). It then determines the load-equal distribution. The array, Xopt, and

the time threshold, τ , are initialized to the load-equal distribution and its cor-

responding execution time respectively (Lines 3-5). Then the vector of size

thresholds, σ, is determined using the function SizeThresholdCalc (Line 6).

In line 7, the memorization data structure, matrix Mem, consisting of

(p − 2) × (n + 1) elements, is initialized. It will save the found solutions

for processors {P1, · · · , Pp−2}. Then, HPOPTA invokes the recursive routine,

HPOPTA_Kernel, to find the optimal workload distribution.

Function GETTIME(T, x) (called in Line 5) returns the execution time of

problem size x in time function T . It returns 0 if x equals 0. It should be

mentioned that pseudocodes of all functions used in Algorithms 1 and 2 and

the structure of Mem are explained in Appendix B.

Algorithm 1 Algorithm Finding Optimal Workload Distribution of Size n for
Maximizing Performance
1: function HPOPTA(n, p, T,Xopt, topt)

INPUT:
Problem size, n ∈ Z>0

Number of processors, p ∈ Z>0

Time functions, T = {T0, ..., Tp−1},
Ti = {(xij , tij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, tij ∈ R>0}.
OUTPUT:
Optimal workload distribution, Xopt = {xopt[0], ..., xopt[p− 1]},
xopt[i] ∈ {

⋃m−1
j=0 xij ∪ {0}}, i ∈ [0, p).

Parallel execution time, topt ∈ R>0

2: T ← T ∪ Sort↑(T)
3: xopt[i]← n

p
, ∀i ∈ [0, p− 1]

4: xopt[i]← xopt[i] + 1, ∀i ∈ [0, n%p)

5: τ ←maxp−1
i=0 GETTIME(Ti, xopt[i])

6: σ← SIZETHRESHOLDCALC(p, T, τ)
7: Mem[i][j]← ∅, ∀i ∈ [1, · · · , p− 2], j ∈ [0, · · · , n]
8: HPOPTA_KERNEL(n, p, 0, T, τ, σ,NULL,Xcur,Mem,Xopt)
9: topt ← τ
10: return (Xopt, topt)
11: end function

72

3.5. FORMAL DESCRIPTION OF HPOPTA

3.5.1 Recursive Algorithm HPOPTA_Kernel

The recursive function, HPOPTA_Kernel (Algorithm 2), invokes the core op-

erations, Cut, Save, ReadMemory and Backtrack. The level of the tree

that is processed in this function is given by c. So, the first invocation of

HPOPTA_Kernel deals with L0, the next recursive invocation deals with L1

and so on. It is important to note that Xopt holds the best distribution found so

far. The arrayXcur = {xcur[0], xcur[1], · · · , xcur[p−1]} is used to store problem

sizes currently assigned to processors Pi(i ∈ [0, p− 1]).

Function Cut (given in Appendix B) compares the workload n with the cor-

responding size threshold σc to decide whether to expand the node or cut the

subtree at level c (Lines 2-4).

Lines 5-11 process the solutions found in the last level Lp−1. When a

solution, Xcur, is found, the routine ProcessSolution() is invoked to perform

the following operations :

• If Xcur is faster than the current best solution, Xopt, the time threshold τ

will be reduced to the time of Xcur and Xopt will be updated by Xcur.

• When τ decreases, the vector of size thresholds, σ, is correspondingly

updated.

• Xcur is memorized by invoking the operation Save.

• Using Xcur, the index of the level, bk, with the maximal execution time is

found. If there are more than one level with this time, the level, which is

closer to the root, is chosen.

Line 12 sets idx to −1. Variable idx, ranging from −1 to m− 1, is used to

store indexes of data points in the sorted time functions. If idx is equal to −1,

the problem size xi idx is set to the zero problem size (Lines 28-30), else xi idx
is the idx-th problem size in the time function Ti.

Before expanding a node at a given level c to generate distributions of

the workload of size n associated with this node, the function ReadMemory

is called to check if any solution distributing workload n between processors

{Pc, · · · , Pp−1}, is currently saved in Mem and retrieve it if this is the case

73

3.5. FORMAL DESCRIPTION OF HPOPTA

(Lines 13-27). The function also updates idx (Line 14) to determine the point

from where the examination of data points should be resumed.

A memory cell in Mem saves either optimal or intermediate solution. The

memory cell containing the optimal distribution is labelled Finalized. The inter-

mediate solution is a solution which may not be optimal. The variable status

determines the type of the retrieved solution. If no solution has been saved

for the node or the parallel execution time of the retrieved solution is greater

than or equal to τ (given by the status, NOT_SOLUTION), we return from

HPOPTA_Kernel. If the saved solution in the Mem is the optimal one (given

by the status, SOLUTION), the retrieved solution is used and we return from

HPOPTA_Kernel. However, if the retrieved solution is not Finalized (given by

the status, SOLUTION_RESUME), the function ProcessSolution is invoked to

process this solution (Line 21). Then the function Backtrack is invoked (Line

23) to determine whether the routine backtracks or resumes the process from

the data point (xc idx, GETTIME(Ti, xc idx)) where idx has been set by the func-

tion ReadMemory. If none of the above cases takes place, the routine resumes

from data point idx (Line 31).

The while loop (Lines 31-47) scans the time function Tc from left to right

examining the data points with execution times less than the time threshold, τ .

In each iteration, the data point idx is extracted from the time function Tc. Its

problem size xc idx is stored in array Xcur (Line 32). If this problem size (xc idx)

is equal to n, we found a solution. In this case, the solution is processed using

ProcessSolution(). Otherwise, if xc idx is less than n, HPOPTA_Kernel is re-

invoked to solve HPOPT for the remaining workload n−xc idx at the next level

Lc+1 (Lines 33-38). If xc idx greater than n, HPOPTA_Kernel drops this data

point and moves to the next one.

After data point xc idx is examined, the function Backtrack is called to de-

cide whether the algorithm backtracks or continues the examination at level Lc
(Line 40).

Lines 43-46 check if the algorithm reaches the end of the time function Tc.

If this is the case, the while loop (Line 31-47) terminates and the corresponding

memory cell is finalized (Line 48). Otherwise, idx is incremented moving to the

next data point in the time function Tc.

74

3.5. FORMAL DESCRIPTION OF HPOPTA

Algorithm 2 Algorithm of Recursive Kernel Invoked by Algorithm 1
1: function HPOPTA_KERNEL(n, p, c, T, τ, σ, bk,Xcur,Mem,Xopt)

2: if CUT(n, σc) then
3: return
4: end if
5: if c = p− 1 then
6: if GETTIME(Tc, n) < τ then
7: xcur[c]← n
8: PROCESSSOLUTION(p, T, τ, σ, bk,Xcur,Mem,−1, Xopt)
9: end if
10: return
11: end if
12: idx←−1
13: if c > 0 ∧ c ≤ p− 2 then
14: status← READMEMORY(n, p, c, τ, T,Xcur,Mem, idx)
15: if status = NOT_SOLUTION then
16: return
17: else if status = SOLUTION then
18: PROCESSSOLUTION(p, T, τ, σ, bk,Xcur,Mem, c,Xopt)
19: return
20: else if status = SOLUTION_RESUME then
21: PROCESSSOLUTION(p, T, τ, σ, bk,Xcur,Mem, c,Xopt)
22: tempT ime← GETTIME(Tc, xc idx)
23: if BACKTRACK(n, c, bk, idx, tempT ime, τ,Mem, TRUE) then
24: return
25: end if
26: end if
27: end if
28: if idx = −1 then
29: xc idx ← 0
30: end if
31: while GETTIME(Tc, xc idx) < τ do
32: xcur[c]← xc idx

33: if xc idx = n then
34: xcur[i]← 0, ∀i ∈ [c+ 1, · · · , p− 1]
35: PROCESSSOLUTION(p, T, τ, σ, bk,Xcur,Mem,−1, Xopt)
36: else if n > xc idx then
37: HPOPTA_KERNEL(n− xc idx, p, c+ 1, T, τ, σ, bk,Xcur,Mem,Xopt)
38: end if
39: tempT ime← GETTIME(Tc, xc idx)
40: if BACKTRACK(n, c, bk, idx, tempT ime, τ,Mem,FALSE) then
41: return
42: end if
43: if idx+ 1 = m then
44: break
45: end if
46: idx← idx+ 1
47: end while
48: MAKEFINAL(Mem[c][n])
49: end function

75

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

3.5.2 Theoretical Analysis of HPOPTA

Proposition. The algorithm HPOPTA always returns an optimal distribution

for a given workload n between p heterogeneous processors which minimizes

its parallel execution time.

Proposition. The time complexity of HPOPTA is O(m3× p3). The total mem-

ory used by the algorithm is O(p× (m+ n)).

The proofs of these two propositions can be found in Appendix B. We will

also explain the practical time complexity of HPOPTA is enormously less than

the theoretical one.

3.6 Experimental Analysis of HPOPTA

In this section, we experimentally examine the proposed algorithm, HPOPTA.

We also present speedup compared to solutions returned by state-of-the-art

workload distribution approaches, which are based on functional and constant

performance models, and also the straightforward load-balancing algorithm.

Two sets of experiments are conducted. The first set is carried out on a real

heterogeneous server, while the second is performed on simulated clusters of

heterogeneous nodes. Finally, we analyse a hierarchical two-level workload

distribution algorithm that uses HPOPTA and POPTA [3].

3.6.1 Experimental Platform and Applications

We perform our experiments on HCLServer01 containing an Intel Haswell mul-

ticore CPU, Nvidia K40c GPU, and Intel Xeon Phi 3120P, whose specifications

are given in Tables 3.1, 3.2 and 3.3, respectively.

We experiment with two widely known scientific data-parallel applications,

Matrix Multiplication and 2D discrete Fourier Transform. These applications

are configured for execution on HCLServer01. Each application consists of

three computational kernels running in parallel on three abstract processors of

the HCLServer01, which are named CPU, GPU, and Xeon Phi.

76

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

The Matrix Multiplication application (DGEMM) executes a highly optimized

native kernel for CPU and highly optimized out-of-card kernels for the accelera-

tors. The out-of-card kernels allow the GPU and Xeon Phi abstract processors

to execute tasks of arbitrary size, not just the ones that fully fit in the acceler-

ator memories. For the multicore CPU, Intel MKL DGEMM [143] is used. For

GPU, ZZGEMMOOC out-of-card package [144] is used that reuses CUBLAS

[145] for in-card DGEMM calls. For Xeon Phi, XeonPhiOOC out-of-card pack-

age [146] is used that reuses MKL BLAS [143] for in-card DGEMM calls. In

Chapter 6, we will introduce our library facilitating out-of-card computation on

accelerators and illustrate the structure of ZZGEMMOOC and XeonPhiOOC

out-of-card packages.

The 2D FFT application uses Intel MKL FFT [147] for the multicore CPU

and Xeon Phi. For the Nvidia GPU, CUFFT [148] is used. Unlike the Matrix

Multiplication application, all computations for FFT are in-card.

The Intel MKL and CUDA versions used are 2017.0.2 and 7.5, respectively.

Since the number of threads per core in Intel Haswell is equal to 2, the Intel

MKL DGEMM kernel for the multicore CPU uses 44 threads executing on 22

out of 24 physical cores.

3.6.2 Data Partitioning on a Single-node Hybrid Server

In this section, we examine our proposed algorithm on HCLServer01. For

each application, the input to HPOPTA are three time functions representing

the performance profiles of the CPU, GPU, and Xeon Phi abstract processors,

respectively.

As explained in Section 3.1, the time functions of an application are built

simultaneously on all abstract processors to take into account resource con-

tention. It should be mentioned that there is no specific reason for choosing

particular problem sizes in our time functions. HPOPTA can deal with any time

function represented by a discrete set of data points. However, if the consecu-

tive problem sizes are separated by a large step size, the shape of the speed

functions becomes smoother thereby disallowing any opportunity for optimiza-

tion.

77

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

We compare the speedup of HPOPTA over the state-of-the-art workload

distribution algorithms based on functional performance model (FPM), con-

stant performance model (CPM) [14, 110, 15] and the straightforward load-

balancing algorithm. As explained before, the state-of-the-art FPM-based al-

gorithms suppose a smooth and convex shape for speed functions. Therefore,

we build smooth speed functions from the actual ones and use them to obtain

FPM-based workload distributions. Just for comparison purposes, we will call

the FPM-based workload distribution approach, smooth-FPM algorithms.

The percentage speedup of HPOPTA against smooth-FPM algorithm is

calculated as follows: SpeedupFPM(%) = tsmooth−FPM−tHPOPTA

tHPOPTA
× 100, where

tsmooth−FPM and tHPOPTA respectively are the execution times of solutions

found by executing HPOPTA using smoothed and actual time functions.

tsmooth−FPM is estimated as follows. First, the workload distribution for a given

workload is found by executing HPOPTA using smoothed time functions as

input. Then, the execution time for this distribution is calculated using the orig-

inal, not smoothed, time functions. Thus, the smoothed time functions are

used for finding the FPM workload distribution, and its execution time is then

found using the real time functions.

The percentage speedup of HPOPTA against constant performance model

is calculated as follows: Speedupcpm(%) = tCPM−tHPOPTA

tHPOPTA
× 100, where tCPM

and tHPOPTA respectively are the execution times of solutions found by execut-

ing the CPM-based algorithm and HPOPTA using actual time functions. The

constant performance model (CPM) uses relative speeds of processors, which

are constant floating-point numbers. We use three CPMs for comparison and

these are determined from three different data points in speed functions of the

processors.

We also compare the speedup of HPOPTA over the straightforward load-

balancing algorithm. In this experiment, the actual functions are utilized to

take fluctuations in performance profiles into consideration for finding load-

balanced solutions. A load balance solution is one with the minimum dif-

ference between the execution times of processors. The number of pro-

cessors with a non-zero workload (active processors) in load-balanced so-

lutions may be less than the total number of processors. The percentage

78

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

speedup of HPOPTA against load-balancing algorithm is calculated as fol-

lows: Speedupbalance(%) = tbalance−tHPOPTA

tHPOPTA
× 100, where tbalance and tHPOPTA

respectively are the execution times of solutions with minimum difference be-

tween the execution times of processors, and HPOPTA is the execution time

of solution found using our proposed algorithm.

We now summarize the experimental results on HCLServer01 using two

data parallel applications Matrix Multiplication and FFT.

Matrix Multiplication

Heterogeneous Matrix Multiplication application uses three kernels to perform

computation on CPUs, GPUs and Xeon Phis. It is a data parallel application

enabling in-card and out-of-card matrix multiplication on CPU, GPU and Xeon

Phi.

The functions which are labelled as Original in Figure 3.13 show the speed

functions for the three processors (in Floating Point Operations Per Second

(FLOPS)). Each speed function of DGEMM (and its equivalent time function)

is represented by a discrete set of cardinality (m) equal to 700 data points with

problem sizes x = {642, 1282, · · · , 448002}. Out-of-card DGEMM invocations

are performed on GPU and Xeon Phi when workload exceeds the size of main

memory on the accelerators. For a problem size n2 in the speed function,

the speed is calculated as 2×n3

t
where t is execution time taken to multiply

two n × n square matrices. For GPU and Intel Xeon Phi, the execution time

includes the transfer of matrices from the host to the device and the results

from the device to the host.

To obtain smooth speed function from the actual speed function, we

smooth the actual speed function using a polynomial trend line in LibreOf-

fice Calc and construct its equivalent time function. Figures 3.13 shows the

original and smoothed speed functions of DGEMM.

From the figure, we can observe the following:

• Xeon Phi speed function is almost smooth between 642 to 137602. How-

ever, the variations increase for larger problem sizes (138242 and be-

yond) where DGEMM out-of-card computations are invoked. Unlike

79

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

2 2 2 2 2 2 2 2 2

Figure 3.13: Original and smoothed speed functions of the heterogeneous
Matrix Multiplication on HCLServer01. MKL DGEMM is invoked for CPU and
Xeon Phi. For GPU, CUBLAS is used. The original functions are smoothed
using polynomial trend line in LibreOffice Calc.

Xeon Phi, the variations decrease for CPU and GPU as problem size

increases. The maximum variations for CPU, GPU and Xeon Phi are

700%, 50% and 150%, respectively. The maximum variations for Xeon

Phi occur for problem sizes in the range [128002, 192002].

• The shapes violate the assumptions of FPMs. Therefore, load-balancing

data partitioning algorithms based on FPMs may not return optimal so-

lutions.

• The new model-based methods proposed in [16], [3] cannot be used

since they assume all the available processors to be identical and there-

fore take a single speed function as an input.

To determine the percentage improvements given by HPOPTA, we cre-

ate an experimental data set for DGEMM whose data points ranges from

(p
3
×64×100)2 to (p×64×700)2 with step size of 642. Since there are three ab-

stract processors in the HCLServer01, p is equal to 3 in this experiment. Figure

3.14 shows the speed of heterogeneous DGEMM on HCLServer01 when exe-

cuted using HPOPTA in comparison with FPM workload distribution. HPOPTA

gives the minimum, average, and maximum percentage of improvement of

0, 14, 261 percent respectively in comparison with FPM. Since tsmooth−FPM

equals tHPOPTA for some workloads, we have observed zero percentage of

80

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

2 2 2 2 2 2 2

Figure 3.14: Speed functions of the heterogeneous Matrix Multiplication for
whole HCLServer01. The application is executed for each problem size n
using two different workload distributions HPOPTA and FPM.

improvement for them. The maximum improvement belongs to the workload

67842 where the problem sizes for CPU, GPU and Xeon Phi found using orig-

inal functions (HPOPTA) are {1856, 4928, 0} and using the smooth functions

are {576, 4736, 1472}.
For CPM, we use the relative speeds of the processors based on the ex-

ecution of one problem size. We select three different problem sizes from the

speed functions for this purpose. One at the beginning, one in the middle, and

one in the end. These are 4736, 28672 and 44800 and therefore there are three

constant relative performance models, {0.34, 0.59, 0.07}, {0.27, 0.55, 0.18},
{0.27, 0.49, 0.24} where the first element in each set is relative speed of CPU,

the second is relative speed of GPU, and the last one represents the relative

speed of Xeon Phi. The average percentage improvements are respectively

122, 106, and 82 percent. Since the number of data points in speed functions is

limited, there are workload whose CPM workload distributions contain problem

sizes, which exceed the largest problem size in the speed functions. That is,

for these workload, CPM-based algorithm does not find any solution. There-

fore, we ignored these workload sizes to calculate the maximum and average

of Speedupcpm.

We use the aforementioned experimental data set to compare HPOPTA

workload distribution against the straightforward load-balancing approach.

Figure 3.15 shows the speed of heterogeneous DGEMM on HCLServer01

81

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

2 2 2 2 2 2 2

Figure 3.15: Speed functions of the heterogeneous Matrix Multiplication for
whole HCLServer01. The application is executed for each problem size n
using two different workload distributions HPOPTA and load-balancing.

when executed using HPOPTA in comparison with load-balanced workload

distribution. HPOPTA gives the minimum, average, and maximum percent-

age of improvement of 0, 5, 143 percent respectively in comparison with load-

balancing. Since tbalance equals tHPOPTA for some workloads, we have ob-

served zero percentage of improvement for them.

FFT

Heterogeneous FFT application uses three kernels to perform computation on

CPUs, GPUs, and Xeon Phis. It is a data parallel application enabling in-card

fast Fourier transform on the three abstract processors in HCLServer01.

The FFT speed functions are shown in the Figure 3.16 (the functions which

are labelled as Original). The discrete set for the FFT speed functions has

the cardinality 1090 and contains problem sizes, {162, 322, · · · , 240002}. For

a problem size n2 in the speed function, the speed is calculated as n2×log2 n
2

t

where t is execution time taken to compute 2D FFT of size n2. It does not in-

clude problem sizes, which cannot be factored into primes less than or equal to

127. For these problem sizes, CUFFT for GPU gives failures. Unlike DGEMM,

all the FFT invocations are performed in-card.

Figures 3.16 shows the original and smoothed speed functions of FFT. We

again apply polynomial trend line in LibreOffice Calc on actual speed function

82

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

2 2 2 2 2

Figure 3.16: Original and smoothed speed functions of the heterogeneous
FFT application on HCLServer01. MKL FFT is invoked for CPU and Xeon
Phi. For GPU, CUFFT is used. The original functions are smoothed using
polynomial trend line in LibreOffice Calc.

of FFT to obtain its smooth function.

From the figure, we can observe that Xeon Phi is markedly slower than

CPU and GPU. It is because the execution time of communications between

Xeon Phi and host CPU dominates the execution time of computations per-

formed by Xeon Phi. However, GPU uses optimized data transfers by deploy-

ing two data engines (for transfers from CPU host to GPU and from GPU to

CPU host) and does not suffer from this problem. The maximum variations

for CPU, GPU, and Xeon Phi are almost 350%, 560% and 200%, respectively.

The maximum variations for Xeon Phi occur for problem sizes in the range of

[162, 8002]. It can be seen again that the shapes violate the assumptions on

shape of FPMs. Therefore, load-balancing data partitioning algorithms based

on FPMs may not return optimal solutions. Also the new model-based meth-

ods proposed in [16], [3] cannot be used for this case.

To analyse FFT, the experimental data set includes data points ranging

from (p
3
× 16 × 100)2 to (p × 16 × 1500)2 with step size of 162 (p = 3 for

HCLServer01). Figure 3.17 compares the speed of heterogeneous FFT when

executed using HPOPTA with the speed when the workload is distributed us-

ing FPM. HPOPTA gives the minimum, average, and maximum percentage of

improvements of 0, 40, and 502 percent respectively in comparison with FPM.

The maximum improvement happens for the workload, 19202. The problem

83

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

2 2 2 2 2 2 2 2

Figure 3.17: Speed functions of the heterogeneous FFT for whole
HCLServer01. The application is executed for each problem size n using two
different workload distributions HPOPTA and FPM.

sizes given to CPU, GPU and Xeon Phi using original functions (HPOPTA) are

{464, 1456, 0} and using the smooth functions are {656, 1168, 96}.
Like DGEMM, to compare CPM-based algorithm with HPOPTA, we use

the relative speeds based on three different problem sizes, 4320, 13824,

and 24000, from the speed functions. These points result in three CPMs,

{0.18, 0.78, 0.04}, {0.69, 0.26, 0.05}, {0.60, 0.35, 0.05}. The average percent-

age improvements are 301, 164, and 129 percent respectively. Since the num-

ber of data points in speed functions is limited, there are workload whose CPM

workload distributions contain problem sizes, which exceed the largest prob-

lem size in the speed functions. In addition to out-of-range problem sizes,

there is no speed for problem sizes, which cannot be factored into primes less

than or equal to 127. This is due to failure of CUFFT calls for these prob-

lem sizes. That is, for these workload sizes, CPM-based algorithm does not

find any solution. Therefore, we ignored these workload sizes to calculate the

maximum and average of Speedupcpm.

We use the aforementioned experimental data set to compare HPOPTA

workload distribution against load-balancing approach. Figure 3.18 shows the

speed of heterogeneous FFT on HCLServer01 when executed using HPOPTA

in comparison with the straightforward load-balanced workload distribution.

HPOPTA gives the minimum, average, and maximum percentage of improve-

ment of 0, 19, 331 percent respectively in comparison with load-balancing.

84

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

2 2 2 2 2 2 2 2

Figure 3.18: Speed functions of the heterogeneous FFT for whole
HCLServer01. The application is executed for each problem size n using two
different workload distributions HPOPTA and load-balancing.

Discussion

We observed a tight correlation between the average variations in speed func-

tions and the average performance improvements. To study this correlation

further, we create speed bands for DGEMM and FFT speed functions as men-

tioned in [149]. By looking at DGEMM speed functions in Figures 3.13 and

3.16, it can be observed that there are maximum differences of 29% and 150%

approximately between lower and upper bands in DGEMM and FFT speed

functions. These differences confirm the achieved improvements where the

average SpeedupFPM of FFT is about four times greater than that of DGEMM.

The experimental results revealed that applying load-balancing data

partitioning algorithms, either considering variations (straightforward load-

balancing algorithm) or not (CPM and FPM), may not return optimal solutions

on modern hybrid platforms. This is because of complex shapes of perfor-

mance profiles on these systems.

We also observed that sometimes the number of processors in the optimal

solutions determined by HPOPTA is less than p. For instance, the optimal

solution for FFT for matrix size 1200× 1200 uses just one abstract processor,

GPU, meanwhile, for matrix size 19632 × 19632 the optimal distribution only

uses CPU and GPU.

85

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

3.6.3 Using HPOPTA for Data partitioning on Clusters of

Heterogeneous Nodes

In this section, we describe how HPOPTA can be used to optimally distribute

workload between processors in a cluster of heterogeneous nodes. We will

also present a hierarchical two-level workload distribution approach based on

HPOPTA and POPTA [3], which not only reduces the computational complexity

but also allows parallel computation for finding optimal workload distribution.

POPTA is an algorithm for performance optimization on homogeneous plat-

forms using functional performance models. We would like to mention that the

incorporation of the cost of communications is out of the scope of this disser-

tation.

To study the performance improvements given by HPOPTA at scale, we

simulated clusters consisting of 8, 16, · · · , 256 HCLServer01 nodes, where

each node has three abstract processors and therefore the total number

of heterogeneous abstract processors ranges from 24 to 768. We conduct

experiments that are a combination of actual measurements conducted on

HCLServer01 and simulations for clusters containing replicas of HCLServer01.

The actual measurements include the construction of time functions, which are

input to HPOPTA (refer Section 3.6.2). The simulations contain the execution

of HPOPTA to determine workload distributions, which allow us to calculate

the parallel execution times of computations in the data-parallel applications

and consequently the speedups demonstrated by HPOPTA.

HPOPTA requires as input, the time function of each abstract processor in

the simulated cluster. Since all nodes are identical, we build the time functions

for one node, HCLServer01, and then use them for all nodes in the simulated

cluster. For example, for a simulated cluster consisting of 8 HCLServer01

nodes, the input to HPOPTA will consist of 24 (3× 8) time functions.

We now examine HPOPTA on simulated clusters of heterogeneous nodes

using the same data parallel applications, Matrix Multiplication and FFT.

86

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

Matrix Multiplication

For each simulated cluster, we execute DGEMM using a test data set whose

data points ranges from (p
3
×64×100)2 to (p×64×700)2 with step size of 642.

The obtained results show that HPOPTA gives the minimum, average, and

maximum percentage improvements of 0, 14, and 261 percent respectively in

comparison with FPM.

We choose the same problem sizes 4736, 28672, and 44800 to obtain rela-

tive speeds for CPM workload distribution. The average percentage improve-

ments of HPOPTA over CPM are 122, 106, and 82 percent, respectively.

FFT

To analyse FFT, the experimental data set include data points ranging from

(p
3
× 16 × 100)2 to (p × 16 × 1500)2 with step size of 162. The obtained re-

sults show HPOPTA gives the minimum, average and maximum percentage

of improvement of 0, 43, 513 percent respectively in comparison with FPM.

We choose the same problem sizes 4320, 13824, and 24000 to obtain rel-

ative speeds for CPM workload distribution. The average percentage of im-

provement of HPOPTA over CPM are 301, 164 and 129 percent, respectively.

Discussion

We observed almost the same percentage of improvement for different cluster

sizes for both DGEMM and FFT. It can be concluded that the performance

improvement is independent of p assuming the cost of communications is not

taken into account.

There is a strong correlation between average performance improvements

and the average variations in speed functions. Furthermore, the maximum

performance improvement over FPM cannot exceed the maximum variation

in the speed functions. In our experiments, all nodes in simulated clusters

are identical and their speed functions consequently will be identical. Thus,

average and maximum performance improvements of a simulated cluster con-

sisting of identical nodes are not related to the number of nodes but related to

87

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

the shapes of speed functions which are identical for all nodes.

We would like to mention that the study and incorporation of communica-

tion costs is a significant body of work and is therefore out of scope of this

thesis. It is the focus of our current research.

In addition, the number of abstract processors in the optimal solution de-

termined by HPOPTA is often less than p. For example, in a cluster of eight

HCLServer01 nodes, the optimal solution for FFT for matrix size 304×304 uses

just one GPU while the other 23 abstract processors are given zero problem

size. For FFT for matrix size 25552 × 25552 the optimal workload distribution

uses 21 abstract processors leaving one CPU and two Xeon Phis unused.

3.6.4 Hierarchical Two-level Workload Distribution

In Section 3.6.3, we used HPOPTA for optimal workload distribution in a cluster

of identical hybrid nodes. As HPOPTA is oblivious of the regular structure of

the underlying platform, in order to find an optimal solution for a cluster of h

HCLServer01 nodes it had to analyse 3 × h time functions. In this section,

we present an hierarchical workload distribution algorithm, HiPOPTA, which

combines HPOPTA and POPTA [3] to find an optimal solution for a cluster of h

identical nodes only using c+ 1 time functions instead of c× h, where c is the

number of heterogeneous processors in one node.

HiPOPTA first distributes workload between identical nodes (Inter-node

workload distribution) using POPTA. The input to it is a whole speed function of

a node constructed using HPOPTA. The assigned problem size to each node

is then distributed between the processing elements of each node (Intra-node

workload distribution) using HPOPTA.

We explain the steps of HiPOPTA using a cluster of HCLServer01 nodes:

• Building speed function of whole HCLServer01 using HPOPTA: For

each workload, we run the heterogeneous application on HCLServer01

using the HPOPTA workload distribution and measure its parallel execu-

tion time. The resulting speed function characterizes the performance of

HCLServer01 as a whole. Since all the nodes in the simulated cluster

are identical, their speed functions will be the same, too. Figures 3.14

88

3.6. EXPERIMENTAL ANALYSIS OF HPOPTA

and 3.17 respectively show the speed functions of Matrix Multiplication

and 2D FFT of the whole HCLServer01. In Section 3.6.2, we have ex-

plained in detail how these speed functions are built for HCLServer01.

• Inter-node workload distribution: We use the whole HCLServer01

speed function to distribute workload between the nodes of the simu-

lated cluster. Since all nodes are identical, we can use POPTA [3] for

finding the optimal workload distribution between nodes.

• Intra-node workload distribution: HPOPTA is then applied inside each

node to divide the assigned workload between CPU, GPU, and Xeon

Phi of this node so that the execution time is minimized. The intra-node

workload distributions can be determined by running HPOPTA on the

nodes of the cluster in parallel.

To evaluate HiPOPTA, we repeat experiments conducted in Section 3.6.3

with the same experimental data sets. As expected, the resulting execution

times of the distributions returned by HiPOPTA are the same as the ones ob-

tained in the section 3.6.3 using plain HPOPTA.

The reason behind the use of two-level partitioning is the reduction in theo-

retical and practical complexities for finding optimal distributions on large scale

clusters. Assume a cluster involving h identical nodes where each node con-

sists of c processors. Therefore, the cluster totally comprises c×h processors

(p = c×h). Let cardinality of time functions be m where c >> m and h >> m.

We first calculate the time complexity of HiPOPTA. There are h identical nodes

and therefore POPTA finds the optimal inter-node distribution with the time

complexity of O(h2) [3]. Optimal intra-node workload distributions are then

found using parallel executions of HPOPTA on h nodes with time complexity of

O(c3). Therefore, the total theoretical complexity will be equal to O(h2 + c3).

The theoretical complexity of the non-hierarchical partitioning is O(p3), which

is equal to O(c3 × h3). Therefore, HiPOPTA is O(c
3×h3
h2+c3

) times faster than the

non-hierarchical one. In addition, the hierarchical workload distribution allows

parallel computations to find optimal distribution.

HiPOPTA always returns an optimal distribution. Indeed, according to

[3], POPTA finds an optimal workload distribution between identical compute

89

3.7. SUMMARY

nodes represented by their speed function. Assuming that the speed func-

tion of a node reflects the fastest speed of execution of any given workload,

it will find a globally optimal distribution. However, by construction, the speed

function of a node as a whole found locally by HPOPTA does give the fastest

possible speed of execution for any workload given to the node. Note that

since there may be more than one optimal distribution, distributions returned

by HiPOPTA and HPOPTA may be different. However, their execution times

will be always the same.

3.7 Summary

Modern high-performance computing platforms have become highly heteroge-

neous due to the tight integration of multicore CPU processors and acceler-

ators. This tight integration causes contention on shared resources such as

Last Level Cache (LLC), DRAM, PCI-E links, etc. Due to this serious con-

tention and NUMA, the performance profiles of data-parallel applications exe-

cuting on these heterogeneous platforms are not smooth and deviate greatly

from the shapes that supposed by state-of-the-art load-balancing algorithms

to find optimal solutions.

In this chapter, we formulated the problem of finding optimal distribution on

heterogeneous clusters of hybrid nodes and proposed a novel model-based

data partitioning algorithm to minimize the execution time for general perfor-

mance profiles of data-parallel applications executing on clusters of heteroge-

neous nodes. The inputs to the algorithm are the problem size, n, p discrete

time functions, which represent the performance profiles of p processors ex-

isting in the heterogeneous cluster. The time complexity of the proposed al-

gorithm is O(m3 × p3) where m and p respectively represent the maximum

cardinality of input time function and the number of heterogeneous proces-

sors. We studied the optimality of solutions found by the proposed algorithm

using two well-known data-parallel applications, matrix multiplication and two-

dimensional discrete fast Fourier transform. According to the experimental

results, the proposed algorithm demonstrated considerable improvements in

90

3.7. SUMMARY

average and maximum performance for the two applications in comparison

with state-of-the-art load-balancing algorithms.

The software implementation for HPOPTA is available at [150].

In our future work, we aim to design and implement parallel versions of

the algorithms to reduce the theoretical complexity and develop extensions to

HPOPTA for optimization of applications with 2D and 3D problem dimensions.

We would also extend the proposed algorithm to consider the cost of commu-

nications.

91

Chapter 4

A Novel Model-based Algorithm

for Dynamic Energy Consumption

Optimization of Data-Parallel

Applications on Heterogeneous

HPC Platforms

Energy Consumption is one of the main challenges hindering High-

Performance Computing community from breaking exascale barrier [151].

Current HPC systems are already consuming Megawatts of energy. For exam-

ple, the world’s most powerful supercomputer as of 2018, Summit, consumes

around 10 Megawatts of power (including the cooling power) [8], and US De-

partment Of Energy (DOE) aims to deploy an exascale supercomputer, capa-

ble of performing exa-FLOPS (1018) in a power envelope of 20-30 megawatts

[152]. Because of such high power consumption, future HPC systems are

highly likely to be power constrained.

As explained in Chapter 1, energy profiles of applications executing on uni-

processors are nicely linear or smooth [31, 30, 3, 18], where a vast majority of

algorithms solving energy optimization problem deploy analytical modelling to

estimate the energy consumption of applications and then adjust DVFS levels

92

and the number of cores/threads to achieve higher energy efficiency [31, 32,

33, 47, 48, 49]. These optimization algorithms consider a linear relationship

between workload size and energy consumption.

Emerging multi-core processors and also their tight integration with many-

core accelerators have incurred new complexities, such as resource con-

tention and NUMA, which lead to complicated nodal architectures. These

complexities pose new challenges to energy optimization:

• There is a complex relationship between workload size and energy con-

sumption of applications executing on modern heterogeneous platform-

ers where the shape of energy profiles may be non-linear and even non-

convex with variations,

• Analytical models, which ignore workload size to estimate energy con-

sumption, have been reported to be inaccurate where cannot reveal the

exact real-life behaviour of parallel applications on hybrid HPC platforms

[53, 52, 54, 55].

Therefore, workload distribution has now become an important decision

variable that cannot be ignored in solving the energy optimization problem.

Workload distribution has been already taken into account as the only decision

variable for dynamic energy optimization on homogeneous clusters [3, 18].

Nevertheless, to the best of our knowledge, there is no variation-aware ap-

proach considering workload partitioning as a decision variable for dynamic

energy optimization on heterogeneous HPC platforms.

In this section, we formulate the problem of optimization of data-parallel

applications on heterogeneous HPC platforms for dynamic energy through

workload distribution and propose a model-based data-partitioning algorithm,

which is named HEOPTA (Heterogeneous dynamic Energy OPTimization

Algorithm), to solve the problem. This algorithm minimizes the dynamic en-

ergy consumption of data-parallel applications, running on heterogeneous

platforms, for the most general shapes of dynamic energy profiles by deter-

mining optimal workload distributions.

Another significant challenge is energy modelling of heterogeneous par-

allel application running on hybrid platforms. Consider a parallel application

93

4.1. TERMINOLOGY

running on a CPU, a GPU and an Xeon Phi. HEOPTA requires the dynamic

energy profile of each computational kernel separately, which is referred to as

the fine-grained decomposition of the energy consumption in hybrid platforms.

The dynamic energy consumption modelling of heterogeneous HPC plat-

forms, including tightly integrated resources, in a granularity of component-

level is a challenging task. To address this challenge, we will propose an

additivity approach, based on the notion of loosely-coupled abstract proces-

sors, explained in Chapter 3, and system-level energy measurements. Using

this approach, we can build the individual discrete dynamic energy function

of each abstract processor within sufficient accuracy for the optimization algo-

rithm to improve the average energy efficiency. Although restricted by some

limitations (such as fitting workloads in the main memory to avoid paging on

disks), the proposed solution is a simple and practical methodology to ac-

curately enough determine the dynamic energy consumption of every single

computational kernel in parallel applications. The methodology is purely based

on physical measurements using external power meters.

We experimentally analyse the accuracy of our energy modelling method-

ology and the efficiency of HEOPTA using two data-parallel applications, ma-

trix multiplication and 2D fast Fourier transform, on a cluster of two heteroge-

neous nodes.

4.1 Terminology

We explain here different terms used in this thesis related to energy consump-

tion.

The power consumption of hardware components in a computing system

can be classified into: a). dynamic power, and b). static power. From an appli-

cation point of view, dynamic and static power consumption are defined as the

power consumed by the whole system with and without the given application

execution, respectively.

Two types of energy consumption can consequently be considered: a).

static energy, and b). dynamic energy. Static energy consumption is equal to

94

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

the energy consumed by the platform without the application execution. The

dynamic energy consumed by executing an application is calculated by sub-

tracting this static energy consumption from the total energy consumption of

the platform.

If PS represents the static power consumption of a platform, ET is the total

energy consumption of the platform during the execution of an application,

with an execution time of TE seconds, then the dynamic energy ED can be

determined as:

ED = ET − (PS × TE) (4.1)

4.2 Dynamic Energy Measurement in Heteroge-

neous Platforms

In this section, we explain how to model the dynamic energy consumption of

parallel applications using a set of discrete dynamic energy functions. Each

function consists of a set of data points where each point represents the appli-

cation dynamic energy consumption running on a processor for a given prob-

lem size. Like speed functions (Chapter 3), energy functions are application-

specific and built empirically.

Building energy functions in modern heterogeneous platforms requires ac-

curate measuring the dynamic energy consumption of each computational

kernel in a hybrid application. To address this challenge, we propose a new

methodology which provides a fine-grained decomposition of dynamic energy

consumption for parallel applications via physical measurements using exter-

nal power meters.

In following sections, we will explain approaches generally used to mea-

sure energy consumption in computing systems and then introduce our mea-

suring methodology for heterogeneous platforms using power meters.

95

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

4.2.1 Energy Measurement in Computing Platforms

There are two prevalent approaches to measure energy consumption during

an application execution:

1. Physical measurement: Measuring energy using external power me-

ters or on-chip power sensors,

2. Software measurement: Measuring energy using energy predictive

models.

Physical measurement is considered to be accurate at the node level, how-

ever, it can only provide the measurement at a node level, and therefore, lacks

the ability to provide the fine-grained energy consumption of an application

or intra-node power consumption details. Consider a heterogeneous server

which is facilitated with one power meter sitting between the wall A/C outlet

and the input power socket of the server. Although we can accurately mea-

sure the energy consumption of the whole node (CPU, accelerators, and the

other shared resources contributing in a computation) for executing a hybrid

application using the power meter, it cannot determine how much energy is

consumed by CPU and each accelerator individually.

Another way for physical measurement of energy is to utilize on-chip power

sensors. But not all components of a given system, contributing in the execu-

tion of an application, are equipped with power sensors. To illustrate this, con-

sider a hybrid application running in parallel on a hybrid node which includes

a CPU and some accelerators. Apart from processing elements, any other

components of the given platform, which involve in the application execution,

consume energy, but they do not have any power sensor. This way, we can-

not measure the amount of energy consumed by most of these components,

such as data banks of DRAM or the PCI-E links offloading application data

to and from host CPU cores to accelerators and etc. Therefore, using power

sensors cannot provide the amount of energy consumption in a fine-grained

granularity.

In summary, the straightforward use of physical measurement techniques

cannot provide the fine-grained energy consumptions on hybrid nodes.

96

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

Software measurement approaches, which rely on energy predictive mod-

els, can be considered as an alternative to physical measurements. Perfor-

mance Monitoring Counters (PMCs) are predominantly employed by a vast

majority of these energy predictive models to estimate the energy consumption

during an application execution. PMCs are special purpose registers available

in modern computing architectures to store software and hardware activities

counts. These approaches [153, 32, 154, 41, 155, 39, 119, 44, 122] typically

use linear regression of the performance events to model the energy consump-

tion of hardware components (such as CPU, DRAM, disks, fans etc.).

Although energy predictive models have got popular, their prediction accu-

racy has been put under criticism by some research works [153, 53, 55, 52].

For instance, McCullough et al. [53] showed that the power prediction error of

linear-based power modelling approaches can reach as high as 150 percent

in modern computing platforms, and that is why they propose direct measure-

ment as an alternative to model-based techniques to deal with the inherent

complexities caused by modern architectures.

To summarize, we can straightforwardly use neither existing physical nor

software approaches to measure the dynamic energy consumption of hybrid

nodes at fine-grained granularity within sufficient accuracy. In Section 4.2.2,

we will address this shortage by introducing a novel methodology to determine

the fine-grained dynamic energy consumptions of computational kernels, exe-

cuting in parallel on heterogeneous HPC platforms, within sufficient accuracy.

The proposed methodology is based on physical measurements using power

meters.

4.2.2 Dynamic Energy Measurement in Hybrid Heteroge-

neous Platforms

In Section 3.1, we explained how to measure the execution speed for each

kernel of parallel applications running on heterogeneous platforms.

While the execution time of each kernel in parallel applications can be mea-

sured accurately using high precision timers (processor clocks), there is no

such straightforward way to accurately measure the amount of dynamic en-

97

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

ergy consumed by each kernel in a hybrid application separately, as explained

in Section 4.2.1.

In this section, we, first, outline challenges to measuring energy consump-

tion in fine-grained granularity on heterogeneous platforms and then propose a

novel methodology to address this issue using physical energy measurements

within sufficient accuracy.

Modern HPC platforms have become highly heterogeneous, and this has

posed serious challenges to fine-grained energy measurement of hybrid par-

allel applications, which are listed below:

1. Heterogeneity: Heterogeneous platforms involve different types of pro-

cessing elements with different computational capabilities and energy

consumption. In addition, unlike homogeneous systems, there are differ-

ent computational kernels running on these processors and accelerators

in parallel. It implies that these computational kernels are consuming a

different amount of dynamic energy, and hence, their energy consump-

tion should be determined individually, for optimization purposes. How-

ever, as explained in Section 4.2.1, this heterogeneity has put real chal-

lenges to measuring the amount of energy consumed by each kernel in

finer granularity.

2. Integrity: Tight integration of CPUs with accelerators incurs some com-

plexities such as resource contention on shared resources and NUMA.

Therefore, it becomes difficult to measure the dynamic energy consump-

tion of a computational kernel without considering the impact of other

kernels that are running in parallel. Furthermore, unlike the single-core

processor’s era, these complexities have made analytical models inac-

curate to estimate the dynamic energy consumption of applications us-

ing a few architectural and program parameters [153, 53, 55, 52], as

explained in Section 4.2.1. Thus, employing these models may result in

sub-optimal solutions for energy optimization.

To the best of our knowledge, apart from the efforts of our research group in

Heterogeneous Computing Lab (HCL), no contemporary approach measures

98

https://hcl.ucd.ie/

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

the dynamic energy consumption of such a heterogeneous platform at fined-

grained granularity. Now, we elucidate the details of our methodology.

Abstract Processors in Fine-grained Dynamic Energy Measurement

To cope with these challenges, we reuse the notion of abstract processors

(Section 3.1) to sort processing resources, which contribute into an applica-

tion execution, into loosely-coupled groups in such a way that we are able to

measure their dynamic energy consumption with the accuracy which is suffi-

cient for successful application of the optimization algorithm, proposed later in

this chapter. An abstract processor contains only those computing elements

which execute a single application kernel.

Figure 4.1 highlights abstract processors for modelling dynamic energy

consumption on HCLServer01. The hybrid node consists of an Intel multicore

CPU connected to one Nvidia GPU and one Intel Xeon Phi, that their specifi-

cations have been explained in Chapter 3. The server has been equipped with

a Watts Up Pro power meter to measure the energy consumption of the whole

node physically.

In Section 3.1, we explained that this node can be classified into three

abstract processors, such as: CPU, GPU, and Xeon Phi. The CPU abstract

processor involves 22 CPU cores executing the multi-threaded CPU kernel

which is highlighted in dark blue. The GPU abstract processor containing

Nvidia K40c GPU along with its dedicated host CPU core executing the GPU

kernel and its PCI-E link which is highlighted in orange. The Xeon Phi ab-

stract processor consisting of Intel Xeon Phi 3120P coprocessor along with its

dedicated host CPU core executing the Xeon Phi kernel and its PCI-E link.

Apart from computing elements, there are other resources such as Net-

work Interface Card (NIC), Solid State Drive (SSD), fans, chipsets and etc.,

which are almost shared between all abstract processors and consume en-

ergy during an application execution. To eliminate their potential contribution

in the dynamic energy consumption of a given abstract processor, we take

several precautions in energy measurements, which are listed below:

• Since fans consume a significant and variable amount of energy during

99

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

Figure 4.1: Block diagram of HCLServer01 including an Intel Haswell multi-
core CPU, one Nvidia K40c GPU and one Intel Xeon Phi 3120P highlighting
abstract processors for modelling dynamic energy consumption. The server is
equipped with a Watts Up Pro power meter to measure energy consumption
physically.

an application execution, to eliminate their contribution, we set them at

full speed before running the application. Thus, they run consistently

at the same speed and consume the same amount of energy which is

then considered part of the static energy of the platform. This way, the

dynamic energy consumption of a given abstract processor does not rely

on fans.

• Disk utilization is monitored during the application run to ensure that it

does not use these components. We ensure that the problem size used

in the execution of an application does not exceed the main memory,

where swapping (paging) does not occur. That is, problem sizes are

bounded by main memory size.

• NIC is also monitored. We assure that network is not used by the ap-

plication. In should be mentioned that communication cost is out of the

scope of this research.

100

4.2. DYNAMIC ENERGY MEASUREMENT IN HETEROGENEOUS
PLATFORMS

Additivity in Fine-grained Dynamic Energy Measurement

We need the dynamic energy consumption of each abstract processor to build

dynamic energy functions of a hybrid application. However, as explained ear-

lier, there is no fine-grained approach measuring dynamic energy consumption

using physical measurements.

To address this issue, we classified hardware resources into some abstract

processors. Now, we are going to use the notion of additivity for measuring

the dynamic energy consumption of each abstract processor separately. The

additivity criterion is based on a simple and intuitive rule, which is defined as

“the amount of dynamic energy consumed by all application kernels running

the same workload n in parallel on given p abstract processors is equal to the

sum of dynamic energies consumed by these kernels when are separately

executed on the same abstract processors with the same workload n”.

For further illustration, consider a hybrid application executing a workload

n on HCLServer01. The application consists of three abstract processors,

CPU, GPU and Xeon Phi. Suppose ECGX(n) represents the dynamic en-

ergy consumed by the parallel running of these three abstract processors.

Then, we run each computational kernel separately, to execute the same work-

load, where their dynamic energy consumptions are respectively ECPU(n),

EGPU(n) and EPHI(n). Regarding the additivity notion, parallel dynamic en-

ergy consumption (ECGX(n)) and combined dynamic energy consumption

(ECPU(n) + EGPU(n) + EPHI(n)) should satisfy Eq. 4.2.

ECGX(n) = ECPU(n) + EGPU(n) + EPHI(n) (4.2)

Using additivity, we can build the energy model of a hybrid application run-

ning on HCLServer01 by building energy functions for the abstract processors

CPU, GPU and Xeon Phi separately.

In general, we need p×m experiments to build dynamic energy functions

of a hybrid application, within sufficient accuracy, executing on p abstract pro-

cessors where each discrete function consist of a set of points of cardinality

m.

In Section 4.6, we will explain how to practically build energy functions

101

4.3. FORMULATION OF HETEROGENEOUS DYNAMIC ENERGY
OPTIMIZATION PROBLEM

using Watts Up power meter and then experimentally validate the accuracy of

our methodology on two modern heterogeneous hybrid servers.

4.3 Formulation of Heterogeneous Dynamic En-

ergy Optimization Problem

Suppose there exists a problem of size n running on p heterogeneous proces-

sors, with discrete dynamic energy functions E = {e0(x), ..., ep−1(x)} where

ei(x), i ∈ {0, 1, · · · , p − 1}, is a discrete dynamic energy function of pro-

cessor Pi with a cardinality of m. Without loss of generality, we assume

x ∈ {1, 2, · · · ,m}. The heterogeneous dynamic energy optimization problem

can be formulated as follows:

Heterogeneous Dynamic Energy Optimization Problem, HEOPT (n, p,

m, E, Xopt, eopt): The problem is to find a workload distribution, Xopt =

{x0, ..., xp−1}, for the workload n running on p heterogeneous processors so

that the solution minimizes dynamic energy consumption for the parallel exe-

cution of n. The parameters (n, p, m, E) are the inputs to the problem. The

outputs are Xopt, which is the optimal solution (workload distribution), and eopt,

which represents the dynamic energy consumption of the optimal solution. Eq.

4.3 formulates the problem as an INLP problem.

eopt = min
X

p−1∑
i=0

ei(xi)

Subject to
p−1∑
i=0

xi = n,

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and

ei(x) ∈ R>0

(4.3)

The objective function in Eq. 4.3 is a function of workload distribution X,

X = {x0, ..., xp−1}, for a given workload n executing on the p processors. The

function returns the amount of dynamic energy which is consumed by running

102

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

each given distribution X on processors {P0, · · · , Pp−1}. The total dynamic

energy consumption of X is calculated as the summation of all dynamic en-

ergies consumed by the p processors {P0, · · · , Pp−1} which run X in parallel.

The distribution with minimum dynamic energy consumption is returned as the

optimal distribution. It should be noted that the number of active processors

(processors with non-zero workload sizes) in the optimal solution determined

by HEOPTA (Xopt) might be less than p.

4.4 HEOPTA: Algorithm Solving HEOPT Problem

In this section, we will introduce HEOPTA, an efficient branch-and-bound al-

gorithm solving the aforementioned dynamic energy optimization problem,

HEOPT. Before exploring the candidate solutions of a branch, the branch

is checked against two upper estimated bounds, energy threshold and size

threshold, and is discarded if it cannot result in a better solution than the best

one found so far.

First, the algorithm is informally explained using a simple example. Con-

sider a workload n = 12 executing on a given platform consisting of four het-

erogeneous processors (p = 4). Figure 4.2 shows the discrete dynamic en-

ergy functions, E = {e0(x), · · · , e3(x)}, with a cardinality of 14 (m = 14), as

inputs to HEOPTA. Figure 4.3 shows the discrete dynamic energy functions

which are stored as arrays in non-decreasing order of energy consumption.

To solve the HEOPT problem and find the optimal workload distribution, a

straightforward approach is to explore a full solution tree in order to build all

combinations and finally select a workload distribution that its dynamic energy

consumption is minimum. The tree explored by such a naive approach is

shown in Figure 4.4 which contains all the combinations for n = 12 and p = 4.

Due to the lack of space, the tree is shown partially.

The naive algorithm starts tree exploration from the root, which is the

only node at the level L0 of the tree. The root node is labelled by 12

which represents the whole workload to be distributed between 4 processors

{P0, P1, P2, P3}. Then, fifteen (= m+ 1) problem sizes, including a zero prob-

103

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

Figure 4.2: Dynamic energy functions of a sample application against problem
size executing on an assumed parallel machine which consists of 4 proces-
sors.

Figure 4.3: Example: The sample dynamic energy functions, shown in Figure
4.2, which are stored in array data structures. Each array is sorted in non-
decreasing order of dynamic energy consumption.

lem size along with all problem sizes in the dynamic energy function e0(x),

are assigned to the processor P0 one at a time. There is no assumption

on the order of giving problem sizes to the processor, but we assign them

in a non-decreasing order of their dynamic energy consumption. As shown

in Figure 4.4, problem sizes {0, 3, 4, 1, 9, 2, 7, 12, 5, 8, 10, 6, 14, 11, 13} are as-

signed to P0 one after another at level L0. Therefore, the root is expanded

into 15 children. The value, which labels an internal node at level L1 (root’s

children), determines the remaining workload to be distributed between pro-

104

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

12

...0
e=11

...9

...9

...4

0
e=7

4,3

9

0
e=16

9,13

0,
0 5,1 ...

0,
0 ...

12

5

...2

0
e=10

2,2

0
e=5

Optimal
Solu-
tion

5

0
e=10

5,6

0,0

5,
1 3,4

...

9

...7

0
e=18

7,11

6

0
e=15

6,9

4

0
e=6

4,3

9

0
e=15

9,13

0,0

5,
1 3,4 2,5

...

10

...6

0
e=16

6,9

8

0
e=16

8,10

7

0
e=16

7,11

5

0
e=8

5,6

10

0
e=12

10,11

0,0
5,1 3,

4

2,5 4,6
...

12

�...9

0
e=17

9,13

7

0
e=12

7,11

12

0
e=16

12,16

0,0

5,
1 3,4 ...

13,18

0,0 2,1
3,2 7,4

0,0
3,3 ... 12,11

...

Figure 4.4: Applying naive approach to examine all combinations and select a
workload distribution with the minimum dynamic energy consumption of paral-
lel execution for a workload size of 12 on 4 heterogeneous processors.

cessors {P1, P2, P3}.
Similarly, each child node of the root in the next level L1 turns into a root

of a sub-tree, which is a solution tree to solve HEOPT for the remaining work-

load between three processors {P1, P2, P3}. Each edge, which connects the

root and its child, is labelled by the problem size assigned to P0 and its dy-

namic energy consumption. For example, the blue edge in Figure 4.4, which

is labelled by (3, 3), illustrates that a workload of size 3 is given to P0 and it

consumes 3 energy unit to execute this workload by the processor. The child

node, connected by this edge, is labelled by 9, which is the remaining workload

(= 12− 3) to be distributed between processors {P1, P2, P3}.
In Figure 4.4, the leaf node at level L1 labelled by 0 represents a solution

leaf. Generally, any leaf node labelled by 0 illustrates one of the possible solu-

tions, where its dynamic energy consumption is calculated as the summation

of the consumed energies labelling the edges in the path connecting the root

and the solution leaf. For example, the dynamic energy consumption of the so-

lution represented by the solution leaf labelled by green 0, which is connected

to the root by three edges {(0, 0), (7, 4), (5, 1)}, will be equal to 0 + 4 + 1 = 5.

It should be mentioned that P0 and P3 are given a zero problem size in this

solution.

No-solution leaves are labelled by �. As an example, consider the no-

solution leaf at level L3. The path from this node to the root includes three

105

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

edges {(0, 0), (0, 0), (13, 18)}. The corresponding workload distribution leads

to no-solution because the sum of the workloads assigned to P0, P1 and P2

will be equal to 13, which exceeds the total workload of 12.

In the same manner, all internal nodes in the tree are explored from the

root to a leaf. The expansion of a node in the solution tree results in either

15 children (or m + 1 in general case) or just one child where, In the latter

case, the child is always a leaf. There are two types of leaves: solution leaves,

labelled by 0, and no-solution leaves, labelled by �. Each internal node at

level Li, labelled by a positive number w, becomes a root of a solution tree

for distribution of the workload w between processors {Pi, · · · , Pp−1} and is

therefore explored recursively.

Finally, a distribution minimizing the dynamic energy consumption will be

returned as the optimal solution. In this example, the workload distribution

{(0, 0), (7, 4), (5, 1), (0, 0)}, represented by the green Optimal Solution leaf

with the consumed dynamic energy of 5, is returned as the optimal solution.

Since the computational complexity of this naive algorithm is exponential,

we propose HEOPTA, an efficient recursive sequential algorithm, with a poly-

nomial complexity. The algorithm utilizes a number of optimizations to prevent

the examination of all nodes and consequently does not explore all the paths

in the tree.

HEOPTA starts the exploration process with sorting the discrete dynamic

energy functions in non-decreasing order of energy consumption as shown

in Figure 4.3. Next, it obtains the load-equal distribution for n = 12 as well

as its dynamic energy consumption, stored in the variable ε, which is named

energy threshold. The load-equal distribution allocates each processor the

same workload of size n
p

(assuming n is divisible by p). HEOPTA will not

examine data points with the dynamic energy consumption greater than or

equal to the energy threshold. In the example, ε will be initialized by 10

(
∑3

i=0 ei(
12
4

) = (3 + 2 + 4 + 1) = 10). Therefore, data points with dynamic

energy consumption less than 10 will only be considered, forming the reduced

search space. These data points are shown in grey cells in Figure 4.5. During

the execution of HEOPTA, the energy threshold ε will be updated every time a

solution with less dynamic energy consumption is found representing thus the

106

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

Figure 4.5: Example: Applying load-equal energy threshold and removing
some data points from the search space.

consumed energy of the currently most energy saving solution.

To shrink the search space further, HEOPTA assigns each level of the tree

a size threshold where the size threshold σi, i ∈ {0, . . . , p− 1}, represents the

maximum workload can be executed in parallel on processors {Pi, · · · , Pp−1}
so that the dynamic energy consumption by every processor {Pi, · · · , Pp−1} is

less than ε. In this example, the maximum workloads with the dynamic energy

consumptions less than ε = 10 in the dynamic energy functions for processors

P0, P1, P2, and P3 are 9, 7, 5 and 6 respectively. The size threshold vector, σ

contains four elements, σ = {σ0, σ1, σ2, σ3}, where the size threshold for L3

(σ3) is equal to 6, σ2 is 11 (= σ3 + 5), σ1 is set to 18 (= σ2 + 7), and finally σ0

would be 27 (= σ1 + 9). Once ε changes, the size threshold array σ is also

updated using the new ε.

HEOPTA then starts exploring the solution tree in the left-to-right depth-first

order as shown in Figure 4.4. First, zero problem size is given to processors P0

and P1, where the remaining workload to be distributed between processors

P2 and P3 is equal to 12. The node labelled by 12 in L2 exceeds its corre-

sponding size threshold σ2, which is equal to 11. Henceforth, it cannot lead

to any solution, which would be energy saver than the currently best (load-

equal) solution with total dynamic energy consumption ε, and the node is not

expanded. Therefore, the subtree highlighted in red in Figure 4.6 is cut and

not explored. We call this key optimization operation Cut.

107

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

σbefore = {27, 18, 11, 6}
12

12

12 �

11
�

8
�

10
�

9
�

7
�

12
�

0,0

5,1 3,
42,5 4,6

1,8

0,0

0,0

σafter = {27, 18, 11, 6}

Figure 4.6: Example: Applying size threshold which results in cutting some
branches, which do not give any solution, from the search tree.

To emphasize how σ changes during the HEOPTA execution, we show

its value before and after each discussed step of the algorithm. As the Cut

operation does not change ε, it also will not change σ, which is illustrated in

Figure 4.6.

In its turn in the left-to-right order, as shown in Figure 4.7, next node to

explore would be 10 at level L2. The expansion of this node generates one

solution (leaf in the tree labelled by 0). For the generated solution, the following

operations will be performed:

• The energy threshold ε is updated.

• If ε decreases, the data points in the dynamic energy functions, whose

dynamic energy is greater than or equal to the updated energy threshold,

are removed from the search space, and the vector σ of size thresholds

is updated.

• The solution is saved in the memory.

As an example, consider the solution {(0, 0), (2, 1), (5, 1), (5, 6)} with an

energy consumption of 8 (see Figure 4.7). The energy threshold, ε, is updated

to 8. Based on the new energy threshold, the number of data points to be

examined in the dynamic energy functions is reduced. This is illustrated in the

108

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

σbefore = {27, 18, 11, 6}
12

12

10

9
�

6
�

8
�

7
�

5

0
e=8

5,6

10
�

0,0

5,1 3,
4 2,5 4,6 1,8

...

0,0 2,1

0,0

σafter = {21, 17, 10, 5}

Figure 4.7: Example: Applying Cut and Save optimizations.

Figure 4.8, where fewer data points are required to be examined compared to

Figure 4.5. The vector of size thresholds, σ, is updated to {21, 17, 10, 5}. The

solution is memorized, which includes saving the information pertaining to all

the levels except for the first and the last and the levels whose consumed ener-

gies go beyond ε. Thus, the information that is saved is level-specific. For L1,

the memorized information includes the problem size assigned to P1, which

is 2 and the total dynamic energy consumption of the solution for processors

{P1, P2, P3}, which is 8, The same is done for L2. The memorized informa-

tion includes the problem size assigned to P2, which is 5 along with the total

dynamic energy consumption of the solution for processors {P2, P3}, which is

equal to 7. We call this key operation, Save. In the figure, red nodes have

been cut using the size threshold.

HEOPTA, progressing in the left-to-right depth-first order, examines next

node which is 9 at level L2 as shown in Figure 4.9.

The algorithm finds a new solution with dynamic energy consumption of 6

including edges {(0, 0), (3, 2), (5, 1), (4, 3)} (Figure 4.9). The energy thresh-

old, ε, is updated to 6. The vector of size thresholds, σ, is updated to

{20, 16, 9, 4}. For L1, the memorized information includes the problem size

assigned to P1, which is 3 and the total dynamic energy consumption of the

solution for processors {P1, P2, P3}, which is 6. For L2, the memorized in-

109

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

Figure 4.8: Example: Applying the updated energy threshold and removing
more data points from the search space.

formation includes the problem size assigned to P2, which is 5, and the total

dynamic energy consumption of the solution for processors {P2, P3}, which is

equal to 4. The nodes 9, 6 and 7 are cut by applying the size threshold.

After backtracking to the node 12 at level L1, next node to be examined is

the node 5 at level L2 (Figure 4.10). The expansion of this node results in three

solutions where the minimum one is {(0, 0), (7, 4), (5, 1), (0, 0)} with a dynamic

energy consumption of 5. The algorithm updates the energy threshold, ε, to 5.

As the energy threshold decreased, the vector of size thresholds is updated to

{19, 16, 9, 4}. The solution is then stored in the memory. For L1, the memo-

rized information includes the problem size assigned to P1, which is 7, and the

total dynamic energy consumption of the solution for processors {P1, P2, P3},
which is equal to 5. For L2, the memorized information includes the problem

size assigned to P2, which is 5, and the total dynamic energy consumption of

the solution for processors {P2, P3}, which is equal to 1.

The algorithm backtracks to L1. However, there is no further data point in

e1(x) to be examined (Updating ε has removed useless data points from the

search space). Thus, it again backtracks to L0. HEOPTA gives the problem

size 3 to P0 and 0 to P1, coming to the node 9 at level L2 as illustrated in Figure

4.11. Here, as the optimal distribution of the workload 9 between processors

P2 and P3 has been already found and memorized, the best solution coming

out of the node 9 at level L2 will be just retrieved from the memory. We call this

110

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

σbefore = {21, 17, 10, 5}
12

12

9

7
�

6
�

4

0
e=6

4,3

9
�

0,0

5,
1

3,4

2,5

...

...
3,2

0,0

σafter = {20, 16, 9, 4}

Figure 4.9: Example: Applying Cut and Save optimizations.

σbefore = {20, 16, 9, 4}
12

12

5

3

0
e=10

3,1

2

0
e=10

2,2

0
e=5

5
�

0,0

5,
1

3,4

2,5

...

...
7,4

0,0

σafter = {19, 16, 9, 4}

Figure 4.10: Example: Keeping on expanding the search tree using HEOPTA.

111

4.4. HEOPTA: ALGORITHM SOLVING HEOPT PROBLEM

σbefore = {19, 16, 9, 4}
12

9

......7

4

0
e=11

4,3
2

0
e=7

2,2

7
�

0,0

5,
1

3,4

9
�

Retrieve
Mem

0,0

2,
1

3,2

7,4
...

0,0 3,3

σafter = {19, 16, 9, 4}

Figure 4.11: Example: Termination of HEOPTA.

key operation, READMEMORY. The dynamic energy consumption of retrieved

solution using P2 and P3 equals 4. That is, the whole solution would have a

consumed energy of 7 (3 + 4) which is greater than current energy threshold

(ε = 5). Thus, this solution is ignored. The algorithm will examine the problem

sizes 2, 3 and 7 at level L1 which lead to no solution with dynamic energy

consumption less than 5 and then backs to the root. The reduction of the

search space, by updating ε, results in the situation where no more data points

in the dynamic energy functions are left for further exploration. Therefore, the

algorithm terminates.

The optimal dynamic energy consumption is given by the last value of the

energy threshold, which is 5 in this example. The optimal workload distribution

is given by the workload distribution associated with this energy threshold,

which is {(0, 0), (7, 4), (5, 1), (0, 0)} in this example. So, HEOPTA found the

optimal solution using the three key operations, which are a). Cut, b). Save,

and c). READMEMORY.

In the next section, we give a pseudocode of our algorithm, which uses

these key operations as the fundamental building blocks.

Like HPOPTA, a novel data-partitioning algorithm for performance opti-

mization on modern heterogeneous platforms (Chapter 3), the proposed al-

gorithm HEOPTA is based on the branch-and-bound solution technique. How-

ever, while HPOPTA solves min-max INLP single-objective optimization prob-

112

4.5. FORMAL DESCRIPTION OF HEOPTA

lems, HEOPTA deals with min-sum INLP ones. Therefore, the bounding crite-

ria and the memorized information are different in these algorithms.

4.5 Formal Description of HEOPTA

Algorithm 3 shows the pseudocode of HEOPTA. It takes as inputs: the prob-

lem size, n, the number of heterogeneous processors, p, and an array of p

discrete dynamic energy functions, E = {E0, E1, · · · , Ep−1}. Ei represents

the dynamic energy function of processor Pi and consists of m pairs (xij, eij),

j ∈ [0,m) where xij is the j-th problem size in the function, and eij represents

the amount of dynamic energy consumed by Pi to run xij . HEOPTA returns

two outputs: the optimal workload distribution, Xopt, and its optimal dynamic

energy consumption, eopt. It should be noted that the number of processors

selected by the algorithm (processors with non-zero workloads) in the optimal

workload distribution may be less than p.

The algorithm first sorts each profile in non-decreasing order of dynamic

energy consumption (Line 2). After that, the array Xopt and the energy thresh-

old ε are initialized to the load-equal distribution and its corresponding dynamic

energy consumption, respectively (Lines 3-5). The vector of size thresholds,

σ, is then determined using the function SIZETHRESHOLDCALC (Line 6).

In line 7, the data structure for saving solutions, matrix Mem, which con-

sists of (p− 2)× (n+ 1) elements, is initialized. It will save the solutions found

for processors {P1, · · · , Pp−2}. Next, HEOPTA invokes the recursive routine

HEOPTA_KERNEL to find the optimal workload distribution.

Function GETENG(Ei, x) (called in Line 5) returns the dynamic energy con-

sumption of a problem size x running on Pi (The value is extracted from Ei).

It returns 0 when x equals 0. It should be mentioned that pseudocodes of all

functions, used in Algorithms 3 and 4, and the structure of Mem can be found

in Appendix C.

HEOPTA is a one-dimensional data-partitioning algorithm. Nevertheless,

as explained in Chapter 3, it can be directly employed to 2D or 3D problems in

case the dimensionality can be reduced to 1D.

113

4.5. FORMAL DESCRIPTION OF HEOPTA

Algorithm 3 Algorithm Finding Optimal Workload Distribution of Size n for
Minimizing Dynamic Energy Consumption
1: function HEOPTA(n, p, E,Xopt, eopt)

INPUT:
Problem size, n ∈ Z>0

Number of processors, p ∈ Z>0

Dynamic energy functions, E = {E0, ..., Ep−1},
Ei = {(xij , eij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, eij ∈ R>0}.
OUTPUT:
Optimal workload distribution, Xopt = {xopt[0], ..., xopt[p− 1]},
xopt[i] ∈ {

⋃m−1
j=0 xij ∪ {0}}, i ∈ [0, p).

Total dynamic energy consumption, eopt ∈ R>0

2: E ← E ∪ Sort↑(E)
3: xopt[i]← n

p
, ∀i ∈ [0, p− 1]

4: xopt[i]← xopt[i] + 1, ∀i ∈ [0, n%p)

5: ε←
∑p−1

i=0 GETENG(Ei, xopt[i])
6: σ← SIZETHRESHOLDCALC(p,E, ε)
7: Mem[i][j]← ∅, ∀i ∈ [1, · · · , p− 2], j ∈ [0, · · · , n]
8: HEOPTA_KERNEL(n, p, 0, E, ε, σ, 0, Xcur,Mem,Xopt)
9: eopt ← ε
10: return (Xopt, eopt)
11: end function

The correctness proof of HEOPTA is presented in Appendix C. We also

prove that the computational complexity of HEOPTA is O(m3 × p3), and its

memory complexity is O((m + n) × p). Because of only considering the op-

eration Save to obtain the complexity of HEOPTA, its practical computational

cost is considerably less than the theoretical one, O(m3 × p3).

4.5.1 Recursive Algorithm HEOPTA_Kernel

HEOPTA_KERNEL (Algorithm 4) is a recursive function, deploying the key

three operations, Cut, Save and READMEMORY to solve HEOPT problem effi-

ciently. The variable c indicates the level of a node which is being processed in

a solution tree. It is initialized to 0 in the first invocation of HEOPTA_KERNEL,

and the next recursive invocation deals with L1 (i.e. c = 1) and so on. The

vector Xopt = {xopt[0], · · · , xopt[p − 1]} holds the best solution found so far

where its dynamic energy consumption is in ε. The array Xcur is used to hold

problem sizes currently assigned to processors Pi(i ∈ [0, p− 1]).

The function CUT(n, σc), applying the key operation Cut, compares the

workload n with the corresponding size threshold σc to decide whether to ex-

pand the node or cut the subtree in level c (Lines 2-4).

114

4.5. FORMAL DESCRIPTION OF HEOPTA

Lines 5-11 process the solutions found in the last level Lp−1. Generally,

once a solution is found, the routine PROCESSSOLUTION is invoked to perform

the following operations :

• If Xcur is energy saver than the current best solution, Xopt, the energy

threshold ε will be reduced to the dynamic energy consumption of Xcur,

and Xopt will be updated to Xcur.

• Should ε decreases, the size threshold vector σ is correspondingly up-

dated.

• The operation Save is invoked to save Xcur in the memory.

Prior to expanding a node with a label of n at a given level c, the func-

tion READMEMORY is called to retrieve the solution for n on processors

{Pc, · · · , Pp−1}, provided it exists (Lines 12-20).

The optimal and intermediate solutions are stored in Mem. A memory

cell which contains the optimal distribution is labelled Finalized. The variable

status determines the type of the retrieved solution. If there is no solution

stored in a finalized cell or the total amount of dynamic energy consumption

for the retrieved solution is greater than or equal to ε (given by the status,

NOT_SOLUTION), we return from HEOPTA_KERNEL. If the stored solution

in the Mem is the optimal one (given by the status, SOLUTION), the retrieved

solution is used and the process returns from HEOPTA_KERNEL. If none of

the above cases takes place, it means that the node has not already been

examined, and the routine starts expanding the current node by scanning the

dynamic energy profile Ec from left to right.

The variable idx, ranging from −1 to m − 1, determines indexes of data

points in the sorted dynamic energy functions. Line 21 initializes idx to−1 and

xc idx to zero. Generally, xc idx determines the idx-th problem size in profile Ec,

in case idx is not −1.

The while loop (Lines 22-35) scans the dynamic energy profile Ec from

left to right examining data points with dynamic energy consumption less than

the energy threshold ε. The array Xcur = {xcur[0], · · · , xcur[p − 1]} where

xcur[i] ∈ {
⋃m−1
j=0 xij ∪ {0}}, i ∈ [0, p), is used to store problem sizes currently

115

4.5. FORMAL DESCRIPTION OF HEOPTA

assigned to processors Pi. In each iteration, the data point idx is extracted

from Ec, and its workload, which is xc idx, is stored in array Xcur (Line 23).

If this workload (xc idx) is equal to n, we found a solution. In this case, the

solution is processed using PROCESSSOLUTION, otherwise, if xc idx is less

than n, HEOPTA_KERNEL is re-invoked to solve HEOPT for the remaining

workload n − xc idx at the next level Lc+1 (Lines 24-30). If xc idx greater than

n, this data point is declined and the next one is processed.

Lines 31-34 check if the algorithm reaches the end of the function Ec. If

this is the case, the while loop (Line 22-35) terminates, and the corresponding

memory cell is finalized (Line 36). Otherwise, idx is incremented moving to

the next data point in the dynamic energy function Ec.

Algorithm 4 Algorithm of Recursive Kernel Invoked by Algorithm 3
1: function HEOPTA_KERNEL(n, p, c, E, ε, σ,Xcur,Mem,Xopt)

2: if CUT(n, σc) then
3: return
4: end if
5: if c = p− 1 then
6: if GETENG(Ec, n) < ε then
7: xcur[p− 1]← n
8: PROCESSSOLUTION(p,E, ε, σ,Xcur,Mem,−1, Xopt)
9: end if
10: return
11: end if
12: if c > 0 ∧ c ≤ p− 2 then
13: status← READMEMORY(n, p, c, ε, E,Xcur,Mem, idx)
14: if status = NOT_SOLUTION then
15: return
16: else if status = SOLUTION then
17: PROCESSSOLUTION(p,E, ε, σ,Xcur,Mem, c,Xopt)
18: return
19: end if
20: end if
21: idx←−1, xc idx ← 0
22: while GETENG(Ec, xc idx) < ε do
23: xcur[c]← xc idx

24: if xc idx = n then
25: xcur[i]← 0, ∀i ∈ [c+ 1, · · · , p− 1]
26: PROCESSSOLUTION(p,E, ε, σ,Xcur,Mem,−1, Xopt)
27: end if
28: if n > xc idx then
29: HEOPTA_KERNEL(n− xc idx, p, c+ 1, E, ε, σ,Xcur,Mem,Xopt)
30: end if
31: if idx+ 1 = m then
32: break
33: end if
34: idx← idx+ 1
35: end while
36: MAKEFINAL(Mem[c][n])
37: end function

116

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Table 4.1: HCLServer01: Specifications of the Intel Haswell multicore CPU,
Nvidia K40c, and Intel Xeon Phi 3120P.

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

4.6 Experimental Results of HEOPTA

In this section, we examine the accuracy of the proposed additivity approach

for determining dynamic energy functions and present the experimental results

of the proposed algorithm for dynamic energy optimization, HEOPTA, using

two well-known data-parallel parallel applications, Matrix Multiplication and 2D

FFT.

4.6.1 Experimental Platform and Applications

We conduct all experiments on a cluster consisting of two nodes. The first het-

erogeneous node, HCLServer01, consists of an Intel Haswell multicore CPU

which is integrated with an Nvidia K40c GPU and an Intel Xeon Phi 3120P. The

specifications of this platform are given in Table 4.1. Another hybrid server,

HCLServer02, includes an Intel Skylake multicore CPU hosting one Nvidia

P100 PCIe GPU, and its specifications can be found in Table 4.2.

117

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Table 4.2: HCLServer02: Specifications of the Intel Skylake multicore CPU
and Nvidia P100 PCIe.

Intel Xeon Gold 6152
Socket(s) 1
Cores per socket 22
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Main memory 96 GB

NVIDIA P100 PCIe
No. of processor cores 3584
Total board memory 12 GB CoWoS HBM2
Memory bandwidth 549 GB/sec

We group the processing units of both the platforms into five loosely-

coupled abstract processors, as explained in Section 4.2.1. We name them

as CPU_1, GPU_1, Phi_1 abstract processors, on HCLServer01, and CPU_2

and GPU_2 abstract processors, on HCLServer02.

The accuracy of our additivity approach and the efficiency of HEOPTA are

elucidated using two widely known data-parallel applications, Matrix Multipli-

cation and 2D discrete Fourier Transform (2D FFT). The Matrix Multiplication

application (DGEMM) computes C = α×A×B + β ×C, where A, B, and C

are respectively dense matrices of sizem×n, n×n, andm×n and α and β are

constant floating-point numbers. The application 2D FFT computes the Fourier

transform of a complex matrix of sizem×n. These applications are configured

to run on the heterogeneous platforms HCLServer01 and HCLServer02. Each

application consists of three different kernels, one for CPU, one for GPU, and

one for Xeon Phi abstract processors.

For CPUs, the Matrix Multiplication application uses DGEMM routine pro-

vided in Intel MKL BLAS [143]. For GPUs and the Intel Xeon Phi, the applica-

tion employs two packages, ZZGemmOOC [144] and XeonPhiOOC [146], that

perform out-of-card matrix multiplication of large dense matrices on them. The

ZZGemmOOC out-of-card package reuses CUBLAS [145] for in-card DGEMM

calls, and XeonPhiOOC out-of-card package reuses MKL BLAS [143] for in-

card DGEMM calls. We will explain the structure of these out-of-card pack-

118

4.6. EXPERIMENTAL RESULTS OF HEOPTA

ages in Chapter 6. The Intel MKL and CUDA versions used on HCLServer01

are respectively 2017.0.2 and 7.5. The CUDA version 9.2.148 is installed on

HCLServer02.

The 2D FFT application invokes Intel MKL FFT [147] for multicore CPUs

and Xeon Phi, and CUFFT [148] is used for the Nvidia GPUs. All computations

for the application are in-card.

For measuring dynamic energy consumption, each node (HCLServer01

and HCLServer02) is facilitated with one WattsUp Pro power meter which

sits between the wall A/C outlets and the input power sockets of the node.

Each power meter captures the total power consumption of one node. We use

HCLWattsUp API [156], which gathers the readings from the power meters to

determine the average power and energy consumption during the execution of

an application for the whole node. HCLWATTSUP has no extra overhead and

therefore does not influence the energy consumption of the application kernel.

4.6.2 Experimental Analysis

In this section, we experimentally validate the accuracy of the additivity ap-

proach. The additivity methodology to build the discrete dynamic energy func-

tion of each abstract processor has been explained in Section 4.2.1. To verify if

additivity hypothesis is valid, we build four profiles for HCLServer01 (one par-

allel and one for each of the three abstract processors), and three profiles for

HCLServer02 (one parallel and one for each of the two abstract processors).

Our approach on how to instrument computational kernels in a hybrid applica-

tion and separately measure their execution times and dynamic energies will

be explained in detail in Appendix A.

Then, the proposed algorithm, HEOPTA, is examined by using two sets of

experiments. For the first set, we compare the dynamic energy consumption of

solutions determined by HEOPTA over load-balanced workload distributions.

Load-balanced solutions are referred to as workload distributions with almost

the equal execution time for each abstract processor. The number of active

processors in load-balanced distributions may be less than the total number

of processors. The percentage energy saving against load-balancing algo-

119

4.6. EXPERIMENTAL RESULTS OF HEOPTA

rithm is obtained as follows: Energy_Savingbalance(%) =
ebalance−eheopta

eheopta
× 100,

where ebalance and eheopta are respectively the dynamic energy consumptions

of distributions determined by load-balancing and HEOPTA algorithms.

For the second set of experiments, we examine the interplay between

dynamic energy optimization and performance optimization using HPOPTA

workload distribution. As explained in Chapter 3, HPOPTA is a novel data-

partitioning algorithm for performance optimization of data-parallel applica-

tions on heterogeneous HPC platforms. We build performance profiles of each

abstract processor for the Matrix Multiplication and 2D FFT applications, as

explained in Chapter 3, and then use HPOPTA to determine workload distribu-

tions minimising performance. The percentage energy saving of HEOPTA so-

lutions over HPOPTA ones is obtained as follows: Energy_Savinghpopta(%) =
ehpopta−eheopta

eheopta
× 100, where ehpopta represents the dynamic energy consump-

tions of distributions determined by HPOPTA algorithm.

Analysing using Matrix Multiplication

Figures 4.12 and 4.13 represent discrete dynamic energy and performance

functions of the Matrix Multiplication application for CPU_1, GPU_1, and

Phi_1, abstract processors in HCLServer01, and CPU_2 and GPU_2 abstract

processors of HCLServer02. We need the speed functions to obtain ehpopta.

In these functions the problem sizes range from 64× 10112 to 28800× 10112

with a step size of 64 for the first dimension m. It should be mentioned that

HEOPTA is capable to deal with any step size in discrete dynamic energy func-

tions. For each data point in the functions, the experiments are repeated until

sample means of all the five kernels running on the abstract processors fall in

the confidence interval of 95%, and a precision of 0.1 (10%) is achieved. As

shown in Figure 4.12, there is a marked drop in dynamic energy consumption

once out-of-card computation on the abstract processor Phi_1 starts.

Now, we examine the validity of the proposed additivity approach. Figure

4.14 shows the dynamic energy functions for parallel and combined execu-

tions of DGEMM running on all aforementioned abstract processors. Here,

combined refers to the sum of dynamic energy consumption of all abstract

120

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Figure 4.12: Dynamic energy functions of the heterogeneous Matrix Multipli-
cation application executing on HCLServer01 and HCLServer02.

Figure 4.13: Speed functions of the heterogeneous Matrix Multiplication appli-
cation executing on HCLServer01 and HCLServer02.

processors when running a given workload separately (i.e. one abstract pro-

cessor is performing computations).

Table 4.3 summarizes the percentage difference of parallel to combined for

the heterogeneous Matrix Multiplication application.

To elucidate the energy saving percentage given by HEOPTA, we create

an experimental data set {64× 10112, 128× 10112, · · · , 57600× 10112}. Fig-

ure 4.15 presents the dynamic energy consumption of the heterogeneous Ma-

trix Multiplication when is executed using HEOPTA in comparison with load-

balanced workload distribution. Minimum, average and maximum reduction in

the dynamic energy consumption of HEOPTA over load-balancing algorithm,

Energy_Savingbalance, are 0%, 130%, and 257%, respectively. Zero percent-

121

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Figure 4.14: Parallel and Combined dynamic energy functions for the hetero-
geneous Matrix Multiplication application on HCLServer01 and HCLServer02.

Table 4.3: Percentage difference of dynamic energy consumption of parallel to
combined for the heterogeneous Matrix Multiplication.

Platform Application Min Max Average
HCLServer01 DGEMM 0.026% 29.2% 6.38%
HCLServer02 DGEMM 0.012% 29.03% 3.8%
BOTH DGEMM 0.004% 26.1% 5.9%

Figure 4.15: Dynamic energy consumption of the heterogeneous Matrix
Multiplication application executed using HEOPTA in comparison with load-
balanced workload distribution on HCLServer01 and HCLServer02.

age improvement represents that the same workload distribution is determined

by HEOPTA and load-balancing algorithm.

Figure 4.16 compares HEOPTA over the dynamic energy consumption of

workload distributions determined by HPOPTA using the Matrix Multiplication

122

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Figure 4.16: Dynamic energy consumption of the heterogeneous Matrix Multi-
plication executed using HEOPTA in comparison with HPOPTA workload dis-
tribution on HCLServer01 and HCLServer02.

application. Minimum, average and maximum for Energy_SavingHPOPTA are

respectively 0%, 145%, and 314%. According to these results, performance

optimization increases dynamic energy consumption by an average of 145%.

Analysing using 2D FFT

In this section, we analyse the solutions returned by HEOPTA using our 2D

FFT application. Figures 4.17 and 4.19 present the dynamic energy and per-

formance functions of the five abstract processors. The abstract processor

Phi_1 consumes ten times more dynamic energy than the other processors.

To highlight complex shapes of dynamic energy functions, Figure 4.18 shows

the dynamic energy functions of the 2D FFT application excluding Phi_1. In

these functions, the problem sizes range from 1024× 51200 to 10000× 51200

with a step size of 16 for the first dimension m. It does not include problem

sizes, which cannot be factored into primes less than or equal to 127. For these

problem sizes, CUFFT gives failures for GPU. We follow the same methodol-

ogy as the matrix multiplication application to collect each data point in these

functions.

For validating the additivity approach, Figure 4.20 shows the parallel and

combined dynamic energy functions of the 2D FFT application, and Table 4.4

represents the statistics for percentage difference of parallel to combined.

123

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Figure 4.17: Dynamic energy functions of the heterogeneous 2D FFT applica-
tion executing on HCLServer01 and HCLServer02.

Figure 4.18: Dynamic energy functions of the heterogeneous 2D FFT applica-
tion executing on HCLServer01 and HCLServer02. In this figure, the dynamic
energy profile for Phi_1 is ignored.

The experimental data set to conduct our experiments with 2D FFT in-

clude data points {1024 × 51200, 1040 × 51200, · · · , 20000 × 51200}. Mini-

mum, average and maximum dynamic energy reduction of HEOPTA over load-

balancing algorithm, Energy_Savingbalance, are 0%, 44%, and 105%, respec-

tively. Figure 4.21 compares HEOPTA against the dynamic energy consump-

tion of load-balanced workload distributions for the 2D FFT application. The

minimum, average and maximum of Energy_SavingHPOPTA are respectively

0%, 32%, 77%. Figure 4.22 shows HEOPTA dynamic energy consumption

over HPOPTA. Regarding these results, one can conclude that performance

optimization or 2D FFT increases dynamic energy consumption by an average

124

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Figure 4.19: Speed functions of the heterogeneous 2D FFT application exe-
cuting on HCLServer01 and HCLServer02.

Figure 4.20: Parallel and Combined dynamic energy functions for the hetero-
geneous 2D FFT application on HCLServer01 and HCLServer02.

of 32%.

4.6.3 Observations

We find an average difference of 5.9% and 8.3% between parallel and com-

bined dynamic energy functions on both HCLServer01 and HCLServer02 for

DGEMM and FFT, respectively. One can observe that despite the percent-

age error, both parallel and combined profiles follow the same pattern for both

applications.

According to the experimental results, the proposed algorithm demon-

strates considerable improvements in average and maximum dynamic energy

125

4.6. EXPERIMENTAL RESULTS OF HEOPTA

Table 4.4: Percentage difference of dynamic energy consumption of parallel to
combined for the heterogeneous 2D FFT application.

Platform Application Min Max Average
HCLServer01 2D-FFT 1.8% 18.4% 9.1%
HCLServer02 2D-FFT 0.02% 28.8% 12.4%
BOTH 2D-FFT 0.16% 24.7% 8.3%

Figure 4.21: Dynamic energy consumption of the heterogeneous 2D FFT ap-
plication executed using HEOPTA in comparison with load-balanced workload
distribution on HCLServer01 and HCLServer02.

Figure 4.22: Dynamic energy consumption of the heterogeneous 2D FFT ap-
plication executed using HEOPTA in comparison with HPOPTA workload dis-
tribution on HCLServer01 and HCLServer02.

consumptions for the two applications in comparison with the load-balancing

and HPOPTA algorithms. In addition, in comparison with HEOPTA, perfor-

mance optimization using HPOPTA negatively influences dynamic energy con-

126

4.7. SUMMARY

sumption for both applications.

4.7 Summary

In this chapter, we explained that increasing the number of cores in a single

die and also tight integrating of multi-core CPUs with many-core accelerators

introduce new challenges to modelling and the optimization of data-parallel ap-

plications on these platforms for dynamic energy. We experimentally showed

that there is a complex correlation between dynamic energy consumption and

workload size where workload distribution has now become an important deci-

sion variable that should be taken into account in solving the energy optimiza-

tion problem.

The first fundamental challenge to dynamic energy optimization is to accu-

rately attribute the energy consumption of every single computational kernel in

hybrid scientific applications executing on heterogeneous HPC platforms. To

solve this problem, we proposed a novel solution methodology which is purely

based on physical measurements and does not rely on any performance mon-

itoring counter to build the dynamic energy profiles of computational kernels

(abstract processors) separately. This methodology, which is in the early stage

of development, facilitates modelling the dynamic energy consumption of data-

parallel applications in terms of some discrete dynamic energy profiles which

are functions of problem size.

We then formulated the problem of finding optimal distribution on hetero-

geneous HPC platforms and proposed a novel model-based data partitioning

algorithm to minimize the dynamic energy consumption for the most general

shapes of dynamic energy functions for parallel applications executing on het-

erogeneous HPC systems. The algorithm takes as input the workload size,

n, a set of p discrete dynamic energy functions, which represent the dynamic

energy consumption of p processors existing in the heterogeneous platform.

The time complexity of the proposed algorithm is O(m3 × p3) where m and p

respectively represent the maximum cardinality of input energy functions and

the number of heterogeneous processors.

127

4.7. SUMMARY

We studied the accuracy of the methodology and the optimality of solutions

found by the proposed algorithm using two well-known data-parallel applica-

tions, matrix multiplication and 2D FFT. Regarding the experimental results,

there is a great opportunity for application-level dynamic energy optimization

on modern heterogeneous platforms when workload distribution is only deci-

sion variable. We also observed that optimizing for execution time led to a con-

siderable increase in dynamic energy consumption. Thus, a bi-objective opti-

mization algorithm can facilitate making a trade-off between the performance

and the dynamic energy consumption of data-parallel applications executing

on modern heterogeneous platforms.

The software implementation for HEOPTA is available at [157].

128

Chapter 5

Bi-objective Optimization of

Data-parallel Applications on

Heterogeneous HPC Platforms for

Performance and Energy Using

Workload Partitioning

Performance and energy are the two most dominant objectives for optimization

on modern parallel platforms such as supercomputers and cloud computing

infrastructures.

Existing algorithms solving bi-objective optimization problems for perfor-

mance and energy on heterogeneous HPC platforms can be broadly classi-

fied into system-level [61, 62, 63, 10, 64, 47] and application-level [65, 66, 67,

49, 68, 69, 70, 71, 72, 73, 50, 51] categories. The dominant decision variable

in the first category is DVFS, and application-level methods use application-

level parameters such as the number of threads, the number of processors

and task mapping (scheduling) as key decision variables. These methods

take into account workload size as an application parameter but assume a

linear relationship between performance and workload size and between en-

ergy consumption and workload size, and therefore, do not consider workload

129

distribution as a decision variable.

As highlighted in Chapters 1, 3 and 4, due to new complexities such as

severe contention on shared resources and NUMA, workload distribution has

now turned into an important decision variable that should not be ignored in

solving performance and also energy optimization problems on modern het-

erogeneous HPC platforms. Furthermore, in Chapter 4, we experientially

demonstrated that performance optimization negatively impacts the dynamic

energy consumption of applications and vice versa. Therefore, it implies that

there are markedly trade-off solutions for performance and dynamic energy

when workload distribution is used as the decision variable.

In this chapter, we propose a novel model-based data partitioning algo-

rithm, HEPOPTA, solving bi-objective optimization problem for execution time

and dynamic energy (BOPPE), which has only one decision variable, workload

distribution. The inputs to HEPOPTA are the problem size, n, the number of

available heterogeneous processors, p, p discrete performance functions (one

for each processor), and p discrete dynamic energy functions (one for each

processor). It returns the globally Pareto-optimal solutions for performance

and dynamic energy with a time complexity of O(m3 × p3 × log2(m × p)),

where m represents the maximum cardinality of the discrete functions. Each

solution in the set is a distribution of workload n between the p heterogeneous

processors. These sets of solutions contain the load-balanced solution in very

few cases, and the rest of the solutions are load-imbalanced. To the best of our

knowledge, none of the traditional approaches to optimization for performance

and energy consider non-balanced solutions as optimal. In Appendix D, we

will elucidate that the practical time complexity of HEPOPTA is enormously

less than the proposed theoretical one.

We also present another algorithm, named HTPOPTA, which solves bi-

objective optimization problem for performance and total energy. The inputs

to this algorithm are the same as those for HEPOPTA and the base power of

the platform. HTPOPTA reuses HEPOPTA to determine the globally Pareto-

optimal solutions for performance and total energy, and its time complexity is

the same as HEPOPTA. In this chapter, We show that the workload distribution

that minimises the dynamic energy consumption will not necessarily minimise

130

5.1. FORMULATION OF HETEROGENEOUS DYNAMIC
ENERGY-PERFORMANCE OPTIMIZATION PROBLEM (HEPOPT)

the total energy consumption.

We experimentally analyse these algorithms using two data parallel appli-

cations, matrix multiplication and 2D fast Fourier transform on an HPC cluster

of two heterogeneous nodes. We will show that the proposed data partition-

ing algorithms determine a better Pareto-optimal front containing all the load-

imbalanced solutions that are totally ignored by load-balancing approaches.

Therefore, unlike approaches looking for load-balanced solutions, solutions

returned by the algorithms are, generally speaking, non-balanced.

5.1 Formulation of Heterogeneous Dynamic

Energy-Performance Optimization Problem

(HEPOPT)

Given a problem size n running on p heterogeneous processors so that

their dynamic energy and performance functions are represented by E =

{e0(x), ..., ep−1(x)} and T = {t0(x), ..., tp−1(x)} where ei(x) (ti(x)), i ∈
{0, 1, · · · , p − 1}, is a discrete dynamic energy (performance) function with

a maximum cardinality of m for processor Pi. The function ei(x) represents

the amount of dynamic energy consumed by Pi to execute the problem size x,

and ti(x) is the execution time of the problem size on this processor. Without

loss of generality, we assume x ∈ {1, 2, · · · ,m}.
The bi-objective optimization problem is to find a workload distribution min-

imizing the execution time and dynamic energy consumption of computations

during the parallel execution of the workload n using the p processors. The

problem is formulated as follows:

131

5.2. HEPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR DYNAMIC ENERGY AND PERFORMANCE

HEPOPT (n, p,m, T,E) : min
X

{ p−1
max
i=0

ti(xi),

p−1∑
i=0

ei(xi)}

Subject to:
p−1∑
i=0

xi = n

0 ≤ xi ≤ m, i = 0, · · · , p− 1

where p, n,m ∈ Z>0, xi ∈ Z≥0, ti(x), ei(x) ∈ R≥0

(5.1)

For each given workload distribution X = {x0, · · · , xp−1}, HEPOPT calcu-

lates the parallel execution time, which is the time taken by the longest running

processor to execute its workload, and the total dynamic energy consumption,

which is equal to the summation of dynamic energies consumed by the p pro-

cessors.

HEPOPT returns a set of Pareto-optimal solutions which determine the

workload distributions. Each solution in the set is a distribution of workload n

between the p heterogeneous processors, which, generally speaking, is not

balanced. One or more processors in an optimal solution can be allocated a

workload of size zero.

5.2 HEPOPTA: Algorithm Finding Globally

Pareto-optimal Solutions for Dynamic En-

ergy and Performance

In this section, we use a simple example to describe our pro-

posed branch-and-bound algorithm, HEPOPTA (Heterogeneous Energy-

Performance OPTimization Algorithm), solving the problem HEPOPT. To

shrink the search space, we define two bounding criteria, energy threshold

and size threshold, explained later in this section.

Suppose there are four heterogeneous processors (p = 4) executing a

132

5.2. HEPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR DYNAMIC ENERGY AND PERFORMANCE

Figure 5.1: Sample dynamic energy and times functions sorted in non-
decreasing order of dynamic energy consumption.

4

0
(6,5)1

0
(7,6)1

...

...

0,
0,

0

1,2,3

3

...1

...

...

3

...3

0
(9,5)

3,6,2

0,
0,

0 ...

0,
0,

0 2,1,6

...

2

1

0
(8,3)1

0
(4,3)

1,1,1

0,
0,

0

1,5,1

0 (f)
(2,6)2 (e)

...2

0
(8,3)

2,7,3

0,
0,

0 ...

0,
0,

0

2,
1,

6 1,2,3

4 (d)

0
(9,4)1

0
(11,2)1

0
(7,2)

1,1,1

0,
0,

0
1,5,1

3 (c)

0
(10,3)2

0
(14,3)

2,7,3

1

0
(7,3)

1,1,1

3

0
(8,3)

3,6,2

0,
0,

0

2,
4,

2

1,5,1

3,8,3

2 (b)

1

0
(7,6)

1,1,1

0
(5,6)2

0
(8,6)

2,7,3

0,
0,

0

2,4,2

1,5,1
4 (a)

1

0
(9,3)

1,1,1

...2

0
(11,3)

2,7,3

4

0
(8,6)

4,8,6

0,
0,

0
2,

4,
2 ...

3,8,3

0,0,0
2,1,6 1,2,3 3,6,2

4,9,4

0,0,0 2,1,2 1,3,5 3,5,6

4,6,5

Figure 5.2: The solution tree explored by the naive algorithm to find all distri-
butions and its Pareto-optimal set for a workload n = 4 on four processors.

given workload n = 4. The input to HEPOPTA is four discrete dynamic energy

functions, E = {e0(x), · · · , e3(x)}, as well as four discrete time functions,

T = {t0(x), · · · , t3(x)}, shown in Figure 5.1, with the cardinality of 4 (m = 4).

They are samples representative of dynamic energy and performance profiles

of real-life data-parallel applications. The functions are sorted by dynamic

energy in non-decreasing order.

To find the Pareto-optimal solutions for dynamic energy and performance,

a straightforward approach is to explore full solution tree and find all possible

workload distributions. Figure 5.2 shows the tree, which is constructed by such

a naive algorithm. Due to the lack of space, we only show the tree partially.

The tree consist of 4 levels {L0, L1, L2, L3} where all problem sizes given

to processor Pi are examined in level Li. Each node in Li, i ∈ {0, 1, 2, 3},

133

5.2. HEPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR DYNAMIC ENERGY AND PERFORMANCE

is labelled by a positive value representing the workload that is distributed

between processors {Pi, · · · , P3}. Each edge connecting a node at the level

Li to its ancestor is labelled by a triple (w, e, t) where w is the problem size

assigned to Pi, along with its dynamic energy consumption (e = ei(w)) and its

execution time (t = ti(w)).

The exploration process begins from the root to find all distributions for

the workload 4 between four processors {P0, P1, P2, P3}. Five problem sizes,

including all data points in the function e0(x) and a zero problem size, are as-

signed to the processor P0 one after another. Although there is no ordering

assumption, we examine the problem sizes in this example in non-decreasing

order of their dynamic energy consumption. Assigning the problem sizes

{0, 2, 1, 3, 4} to P0 expands the root into 5 children at L1 representing the

remaining workload to be distributed between processors {P1, P2, P3}. For

instance, the edge (2, 1, 2), highlighted in blue in Figure 5.2, indicates that a

problem size 2 with a dynamic energy consumption of 1 and an execution time

of 2 is given to P0, and its child is labelled by 2 which equals the remaining

size distributed at the level L1.

In the same manner, each node in levels {L1, L2, L3} are expanded to-

wards the leaves. Any leaf node, labelled by 0, illustrates a solution that its dy-

namic energy consumption is the summation of dynamic energy consumptions

and its execution time is the maximum execution times labelling the edges in

the path from the root to the leaf. For example, the blue path {(2, 1, 2), (2, 1, 6)}
in the tree highlights a solution distributing the workload 4 on two processors

P0 and P1 where its dynamic energy consumption is 2 (= 1 + 1), and its exe-

cution time equals 6 (= max{2, 6}). It is obvious that the other two processors

{P2, P3} are assigned a zero problem size.

Due to lack of space, we have not shown the branches that do not pro-

vide any solution. In a non-solution branch, the summation of problem sizes

labelling the edges from the root to its leaf is greater than 4.

In this example, each internal node in the solution tree has either 5 children

(or m+ 1 in general case) or just one child in which case the child is always a

leaf. There are two types of leaves: solution leaves, labelled by 0 along with its

dynamic energy consumption and execution time beneath it, and no-solution

134

5.2. HEPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR DYNAMIC ENERGY AND PERFORMANCE

leaves, eliminated from, and therefore, not shown in the tree. Each internal

node at level Li, labelled by a positive number w, becomes a root of a solution

tree for distribution of the workload w between processors {Pi, · · · , P3} and is

therefore constructed recursively.

Once a solution is found, the algorithm updates the Pareto-optimal

set. In the end, the globally Pareto-optimal set includes three members,

{(〈2, 6〉, {2, 2, 0, 0}), (〈4, 3〉, {2, 1, 0, 1}), (〈5, 2〉, {2, 0, 2, 0})}, where each ele-

ment, like (〈eng, eT ime〉, {x0, · · · , x3}), in the set determines the dynamic

energy consumption (eng) and the execution time (eT ime) of the workload

distribution {x0, · · · , x3}.
The naive algorithm has exponential complexity. We propose HEPOPTA

which is an efficient recursive algorithm to determine the globally Pareto-

optimal set of solutions for data-parallel applications executing on heteroge-

neous processors. It has polynomial computational complexity. The algorithm

shrinks the search space by utilizing three optimizations to avoid exploring

whole subtrees in the solution tree.

We will now explain how HEPOPTA efficiently solves the aforementioned

example. It scans dynamic energy functions, starting with e0(x), from left to

right in non-decreasing order of dynamic energy consumption. The first opti-

mization concerns the upper bound for dynamic energy consumption, which

we call it energy threshold represented by ε. It is the dynamic energy con-

sumption of the workload distribution which optimizes the execution time of

the workload 4 on the processors. We determine this optimal distribution by

using HPOPTA, an algorithm finding optimal workload distributions minimizing

the execution time (Chapter 3). We then initialize the variable ε to the dynamic

energy consumption of this distribution. Applying energy threshold enables

HEPOPTA to shrink search space by ignoring all data points with consumed

dynamic energies greater than ε. In the example, the optimal workload dis-

tribution, returned by HPOPTA, is Xtopt = {2, 0, 2, 0} with an execution time

(topt) of 2. Therefore, ε in this example is set to 5, which is the dynamic energy

consumption for the distribution (
∑p−1

i=0 ei(xtopt [i]) = 5). HEPOPTA, as shown

in Figure 5.3, ignores all data points whose dynamic energy consumptions are

greater than 5. We highlight in brown all nodes and branches eliminated from

135

5.2. HEPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR DYNAMIC ENERGY AND PERFORMANCE

Figure 5.3: Removing some data points from the search space by applying the
energy threshold ε.

the solution tree by deploying energy threshold in Figure 5.2. There may ex-

ist more than one workload distribution minimizing the execution time but with

different dynamic energy consumptions. It is obvious that the best solution is

the distribution which minimizes ε. Nevertheless, using a non-optimal ε does

not restrain HEPOPTA from obtaining the globally Pareto-optimal set.

To shrink the search space further, HEPOPTA assigns each level of the

tree a size threshold σi, i ∈ {0, . . . , p−1}. It represents the maximum workload

which can be executed in parallel on processors {Pi, · · · , Pp−1} so that the dy-

namic energy consumption of each processor in {Pi, · · · , Pp−1} is not greater

than ε. In this example, the size threshold vector σ contains four elements,

σ = {σ0, σ1, σ2, σ3} = {8, 5, 3, 1}. Before expanding each node, HEPOPTA

compares its workload with its corresponding size threshold. If the workload

exceeds the size threshold, the node is not expanded since it results in a so-

lution with a dynamic energy consumption greater than ε.

After calculating the energy threshold ε and the size threshold vector σ,

HEPOPTA explores the solution tree from its root in the left-to-right and depth-

first order. It, first, allocates zero problem sizes to P0 and P1 (Figure 5.2). The

remaining workload at the level L2 is 4 which is labelled by 4(a) in the tree.

Since the workload 4 is greater than the corresponding size threshold σ2, the

node is not expanded further and is cut. This optimization is called operation

Cut. We highlight in red all sub-trees eliminated from the search space using

the operation Cut.

Returning to the tree exploration, HEPOPTA examines the next node 2(b)

136

5.2. HEPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR DYNAMIC ENERGY AND PERFORMANCE

at the level L2. Expansion of this node results in two solutions partitioning

workload 2 on processors P2 and P3. HEPOPTA updates the Pareto-optimal

set for this node and saves the solution in memory called PMem.

HEPOPTA memorizes solutions for each node in levels {L1, · · · , Lp−2}.
The information stored for a node with a workload of w at a given level Li,

i ∈ {1, · · · , p − 2}, is a quintuple < eng, time, part, P#, key > where eng is

the dynamic energy consumption of the solution, time is its parallel execution

time on processors {Pi, · · · , Pp−1}, part is the problem size given to Pi, P#

is the number of active processors in the solution and finally, key, is set to the

dynamic energy consumption of a saved Pareto-optimal solution for workload

w − c at level Li+1. We call this Pareto-optimal solution at level Li+1 a par-

tial solution for the workload w. This partial solution may not exist for some

nodes, where in this case we represent it by ∅. Since dynamic energies are

unique in a Pareto-optimal set, we use key as a pointer to partial solutions. For

each solution leaf in levels {L1, · · · , Lp−2}, like 0(f) in Figure 5.2, HEPOPTA

memorizes a solution {< 0, 0, 0, 0, ∅ >}.
Thus, the information saved for the node 2(b) is a Pareto-optimal set in-

cluding two members, {< 4, 2, 2, 1, ∅ >,< 6, 1, 1, 2, ∅ >}. We call this key

operation, SavePareto. Green nodes in the solution tree highlight ones whose

Pareto-optimal sets are saved. After 2(b), the node 3(c) is examined. The

solution saved for this node is {< 5, 2, 2, 2, ∅ >}.
HEPOPTA then backtracks to the node 4(d) on L1 and builds its Pareto-

optimal set by merging Pareto-optimal sets saved for its children, 2(b) and

3(c). Consider the edge (2, 1, 6) connecting the node 4(d) to 2(b). Merging

this edge with the Pareto-optimal set which has been already saved for 2(b),

{< 4, 2, 2, 1, ∅ >,< 6, 1, 1, 2, ∅ >}, results in one Pareto-optimal solution for

the node 4(d) which is saved as the quintuple < 5, 6, 2, 2, 4 >. In this solution,

the last element , 4, which is highlighted in bold, points to its partial solution in

the node 2(b) at L2, which is {< 4, 2, 2, 1, ∅ >}. Merging the edge (1, 2, 3) with

the Pareto-optimal set for 3(c), {< 5, 2, 2, 2, ∅ >}, results in a new solution

{< 7, 3, 1, 3, 5 >}. Therefore, the Pareto-optimal set for the node 4(d) is {<
7, 3, 1, 3, 5 >,< 5, 6, 2, 2, 4 >}, which is saved in the memory.

After building and saving the Pareto-optimal set of the node 4(d), HEP-

137

5.3. FORMAL DESCRIPTION OF HEPOPTA

OPTA visits the node 2(e) at the level L2. This node has already been ex-

plored, and therefore, its Pareto-optimal set is retrieved from PMem. We call

this key operation, ReadParetoMem. The nodes whose solutions are retrieved

from the memory are highlighted in orange.

After visiting the other remaining nodes, HEPOPTA backtracks to the root

and builds the globally Pareto-optimal solutions for the workload 4 executing on

processors {P0, · · · , P3} using the Pareto-optimal sets saved for its children.

Then it terminates.

HEPOPTA deploys three key operations, including a). Cut, b). SavePareto,

and c). ReadParetoMem, to efficiently explore solution trees and build glob-

ally Pareto-optimal solutions optimizing for dynamic energy and performance.

We now describe the pseudocode of the proposed algorithm using these key

operations as the fundamental building blocks.

Similar to the two optimization algorithms HPOPTA and HEOPTA, pro-

posed in Chapters 3 and 4 respectively, HEPOPTA is a branch-and-bound

algorithm. However, it determines upper bounding criteria in a different way. In

addition, the key operation SavePareto saves partial Pareto-optimal solutions,

in comparison with the key operation Save in HPOPTA and HEOPTA, which

memorizes optimal workload distributions.

5.3 Formal Description of HEPOPTA

We present the pseudocode of HEPOPTA in Algorithm 5. The Inputs of the

algorithm are: the problem size, n, the number of heterogeneous processors,

p, an array of p dynamic energy profiles, E = {E0, E1, · · · , Ep−1} and p time

functions T = {T0, T1, · · · , Tp−1}, where Ei is the dynamic energy function,

and Ti represents the execution time of processor Pi, i ∈ {0, · · · , p−1}. Each

energy function comprises m pairs (xij, eij), j ∈ {0, 1, · · · ,m − 1}, so that

xij is the j-th problem size in the function and eij represents the amount of

dynamic energy consumed by running it on Pi. Each time function includes m

pairs (xij, tij), j ∈ {0, 1, · · · ,m− 1}, so that xij is the j-th problem size in the

function and tij represents its execution time on Pi. HEPOPTA returns ΨEP ,

138

5.3. FORMAL DESCRIPTION OF HEPOPTA

the globally Pareto-optimal solutions. It consists of a set where each element

of the set is a triple like (eng, time,X). The first field eng is the dynamic en-

ergy consumption of a Pareto-optimal solution, time represents its execution

time, and X = {x0, x1, · · · , xp−1} determines the workload distribution of the

solution. The solutions are sorted in increasing order of dynamic energy.

HEPOPTA starts by sorting energy and time functions in non-decreasing

order of dynamic energy consumption and execution time, respectively (Line

2). Both original and sorted functions are kept. Original functions are assumed

to be sorted by problem size. Then, HPOPTA is invoked to find the optimal

distribution minimizing the execution time of the workload n on p processors

(Line 3). This function returns the optimal execution time, topt, along with its

distribution, Xtopt . The energy threshold ε is initialised to the dynamic energy

consumption of the distribution Xtopt (Line 4). The function READFUNC(Ei, x)

returns the dynamic energy consumption of the problem size x executing on

the processor Pi. It returns 0 when x is equal to 0.

The size threshold array σ is initialised by using the function SIZETHRESH-

OLDCALC (Line 5). A 2D array PMem, with dimensions of (p− 2)× (n+ 1), is

defined to save Pareto-optimal solutions for processors {P1, · · · , Pp−2}, which

are found during the tree exploration (Line 6). Then, HEPOPTA_KERNEL is

invoked to explore the solution tree and determines the globally Pareto-optimal

set of solutions for dynamic energy and performance, returned in ΨEP .

Although HEPOPTA is a one-dimensional data-partitioning algorithm, it can

be directly used to solve problems with two or three dimensions through reduc-

ing the dimensionality to 1D. The detail has been explained in Chapter 3.

The pseudocodes of all functions as well as the structure of PMem are

described in Appendix D.

5.3.1 Recursive Algorithm HEPOPTA_Kernel

Algorithm 6 shows the pseudocode for HEPOPTA_Kernel. It efficiently ex-

plores the solution tree and recursively builds Pareto-optimal solutions from

tree leaves to the root. Pareto-optimal solutions for a given node at level Li,

i ∈ {0, 1, · · · , p − 2}, are built by merging all solutions stored for its children,

139

5.3. FORMAL DESCRIPTION OF HEPOPTA

Algorithm 5 Algorithm Finding Globally Pareto-optimal Solutions for Dynamic
Energy and Performance for a Workload n on p Heterogeneous Processors.
1: function HEPOPTA(n, p, E, T,ΨEP)

INPUT:
Problem size, n ∈ Z>0

Number of processors, p ∈ Z>0

Dynamic energy profiles, E = {E0, ..., Ep−1},
Ei = {(xij , eij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, eij ∈ R>0}.
Time functions, T = {T0, ..., Tp−1},
Ti = {(xij , tij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, tij ∈ R>0}.
OUTPUT:
Pareto-optimal solutions for dynamic energy and performance, ΨEP ,
ΨEP = {(engk, timek, Xk) | k ∈ [0, |ΨEP |)},
Xk = {xk[0], xk[1], · · · , xk[p− 1]},
xk[i] ∈ {

⋃m−1
j=0 xij ∪ {0}}, i ∈ [0, p).

2: E ← E ∪ Sort↑(E) , T ← T ∪ Sort↑(T)
3: (Xtopt , topt)← HPOPTA(n, p, T)

4: ε←
∑p−1

i=0 READFUNC(Ei, xtopt [i])
5: σ← SIZETHRESHOLDCALC(p,E, ε)
6: PMem[i][j]← ∅, ∀i ∈ {1, · · · , p− 2}, j ∈ {0, · · · , n}
7: HEPOPTA_KERNEL(n, p, 0, E, T, ε, σ,Xcur, PMem,ΨEP)
8: return ΨEP

9: end function

placed at level Li+1. HEPOPTA_Kernel uses three operations Cut, Save-

Pareto and ReadParetoMem, illustrated in Section 5.2, to reduce the search

space and achieve a polynomial computational complexity.

The variable c ∈ {0, · · · , p − 1} indicates the tree level that is processing

in the current recursion of HEPOPTA_Kernel. Prior to expanding a node at

the level Lc, HEPOPTA_Kernel determines whether its workload exceeds σc.

If it is the case then the node is not explored (Lines 2-4). Lines 5-10 process

solutions found at the last level Lp−1. If there exists a solution, the function

returns TRUE, otherwise FALSE.

Before exploring a node at a given level c, c ∈ {L1, · · · , Lp−2}, the function

READPARETOMEM is called to retrieve from PMem the solution set saved for

the current workload n on processors {Pc, · · · , Pp−1} (Lines 11-18). The vari-

able status determines the type of retrieved solutions. If no solution is already

stored for the node or the total dynamic energy consumption of all the retrieved

solutions is greater than or equal to ε (given by the status, NOT_SOLUTION),

HEPOPTA_Kernel returns FALSE and backtracks. If at least one of the so-

lutions, in the retrieved set, has a total dynamic energy consumption less than

ε (given by the status, SOLUTION), the function returns TRUE. If none of

140

5.3. FORMAL DESCRIPTION OF HEPOPTA

the above cases happen, the routine starts expanding the node by initializing

pointer idx to −1 and xc idx to 0 (Lines 19-35). The variable idx, ranging from

−1 to m − 1, determines indexes of data points in the functions, and xc idx

represents the problem size of idx-th data point in the functions.

The while loop (Lines 22-35) examines all data points with dynamic

energy consumption less than or equal to ε in the function Ec, sorted

in non-decreasing order of energy consumption. The array Xcur =

{xcur[0], · · · , xcur[p − 1]}, where xcur[i] ∈ {
⋃m−1
j=0 xij ∪ {0}}, stores problem

sizes currently assigned to processors Pi(i ∈ {0, 1, · · · , p − 1}). In each iter-

ation, the data point idx is extracted from Ec, and its problem size (xc idx) is

stored in array xcur[c] (Line 24). HEPOPTA_Kernel is recursively invoked to

find solutions for the remaining workload n− xc idx at the next level Lc+1 (Line

25). If there exists any solution for the workload, xc idx is added to partsV ec,

a list holding all problem sizes, given to Pc, which result in Pareto-optimal so-

lutions (Lines 26-29).

If idx reaches the end of the energy profile Ec, the while loop terminates

(Lines 31-33), otherwise, idx is incremented to examine the next data point in

the energy profile Ec.

After exploring all children of the current node, the function MERGEPAR-

TIALPARETOES is invoked to merge and store the Pareto-optimal solutions of

its children into a single Pareto-optimal set of solutions.

In the end, the corresponding memory cell storing the Pareto-optimal so-

lution for a node with a workload n at Lc (PMem[c][n]) is labelled Finalized

(Line 39). Finalizing a memory cell implies that this cell contains the final so-

lutions. HEPOPTA_Kernel returns TRUE provided that exploring the node,

processed in the current recursion, has led to a solution (Line 40).

141

5.3. FORMAL DESCRIPTION OF HEPOPTA

Algorithm 6 Recursive Kernel Invoked by Function HEPOPTA
1: function HEPOPTA_KERNEL(n, p, c, E, T, ε, σ,Xcur, PMem,ΨEP)

2: if CUT(n, σc) then
3: return FALSE
4: end if
5: if c = p− 1 ∧ READFUNC(Ec, n) ≤ ε then
6: xcur[c]← n
7: return TRUE
8: else
9: return FALSE
10: end if
11: if n 6= 0 ∧ c ≥ 1 ∧ c ≤ p− 2 then
12: status← READPARETOMEM(n, c, ε, PMem)
13: if status = NOT_SOLUTION then
14: return FALSE
15: else if status = SOLUTION then
16: return TRUE
17: end if
18: end if
19: idx←−1 ; xc idx ← 0
20: isSol← FALSE
21: partsV ec← ∅
22: while READFUNC(Ec, xc idx) ≤ ε do
23: if xc idx ≤ n then
24: xcur[c]← xc idx

25: outRes← HEPOPTA_KERNEL(n− xc idx, p, c+ 1, E, T, ε, σ,Xcur, PMem,ΨEP)
26: if outRes = TRUE then
27: isSol← TRUE
28: partsV ec← partsV ec ∪ xc idx

29: end if
30: end if
31: if n = 0 ∨ idx+ 1 = m then
32: break
33: end if
34: idx← idx+ 1
35: end while
36: if c ≥ 1 ∧ c ≤ p− 2 then
37: MERGEPARTIALPARETOES(n, p, c, E, T, partsV ec, PMem,ΨEP)
38: end if
39: MAKEPARETOFINAL(PMem[c][n])
40: return isSol
41: end function

142

5.4. HTPOPTA: ALGORITHM FINDING GLOBALLY PARETO-OPTIMAL
SOLUTIONS FOR TOTAL ENERGY AND PERFORMANCE

5.4 HTPOPTA: Algorithm Finding Globally

Pareto-optimal Solutions for Total Energy

and Performance

An effective approach to save energy in green computing clusters, big data

centres and web servers is to switch idle nodes off or to put them in the sleep

mode [57, 58, 9, 59, 60]. It reduces the base energy of idle nodes that eventu-

ally results in less total energy consumption of the platform. However, apply-

ing a hybrid approach which minimizes the total energy consumption of active

nodes and puts idle nodes in sleep mode or turns them off can reduce the

total energy consumption of the whole platform more effectively. For this, each

node consumes energy optimally during its computations and is switched off

at other times. As a result, the total energy consumption of the system can be

reduced significantly.

We will describe here the solution to the bi-objective optimization problem

of data parallel applications for total energy and performance, which we call

HTPOPT.

The problem is formulated as follows: Given a problem size n running

on p heterogeneous processors, whose dynamic energy and performance

functions are respectively represented by E = {e0(x), ..., ep−1(x)} and T =

{t0(x), ..., tp−1(x)}, and PS is the base power of the platform.

Eq. 5.2 formulates the bi-objective optimization problem to obtain workload

distributions minimizing execution time and total energy consumption during

the parallel execution of the workload n using the p processors.

143

5.5. FORMAL DESCRIPTION OF HTPOPTA

HTPOPT (n, p,m, T,E, PS) :

min
X

{ p−1
max
i=0

ti(xi), PS ×
p−1

max
i=0

ti(xi) +

p−1∑
i=0

ei(xi)}

Subject to:
p−1∑
i=0

xi = n

0 ≤ xi ≤ m, i = 0, · · · , p− 1

where p, n,m ∈ Z>0, xi ∈ Z≥0, ti(x), ei(x), PS ∈ R≥0

(5.2)

We prove that the solution to the problem HTPOPT is a subset of the

globally Pareto-optimal set of solutions for dynamic energy and execution time

determined by the algorithm HEPOPTA. The correctness proof is presented in

Appendix E.

We propose an algorithm called HTPOPTA (Heterogeneous Total energy-

Performance OPTimization Algorithm) solving HTPOPT.

5.5 Formal Description of HTPOPTA

The function HTPOPTA calculates globally Pareto-optimal solutions for to-

tal energy and performance using ΨEP . It takes as input the problem size,

n, the number of heterogeneous processors, p, an array of p dynamic en-

ergy functions, E = {E0, E1, · · · , Ep−1}, an array of p time functions T =

{T0, T1, · · · , Tp−1} and the base power of the platform, PS. HTPOPTA returns

the globally Pareto-optimal set for execution time and total energy which are

stored in ΨTP . It is a set of triples like (teng, time,X) where teng illustrates

the total energy consumption of a Pareto-optimal solution, time is its execution

time, and X = {x0, x1, · · · , xp−1} represents the workload distribution of the

solution.

HTPOPTA, first, calls HEPOPTA to find globally Pareto-optimal solutions

for dynamic energy and performance, ΨEP (Line 2). It then calculates the total

144

5.6. EXPERIMENTAL RESULTS

energy consumption of every solution in ΨEP (Line 4) and enquiries if there

exists a solution in ΨTP where its total energy consumption is equal to that of

the new solution but with less execution time or with the same execution times

but less active processors. If this is the case, the current solution in ΨTP is

updated by the new one (Lines 5-15). Otherwise, the new solution is added

into ΨTP (Line 17).

After inserting solutions, non-Pareto-optimal solutions are found (Lines 22-

28) to get eliminated from ΨTP (Line 29). Pareto-optimal solutions in ΨTP are

also sorted in the increasing order of total energy consumption and decreasing

order of execution time. It should be noted that solutions in ΨEP and ΨTP

are sorted in increasing order of energy consumption, and consequently in

decreasing order of execution time.

5.6 Experimental Results

In this section, we experimentally study the practical performance of HEP-

OPTA and HTPOPTA.

All the experiments are conducted on two heterogeneous hybrid servers,

HCLServer01 and HCLServer02. HCLServer01 consists of one Intel Haswell

CPU, one Nvidia K40c GPU and one Intel Xeon Phi 3120P, whose specifica-

tions can be found in Table 5.1. It involves three abstract processors CPU_1,

GPU_1 and Phi_1. HCLServer02 contains an Intel Skylake multicore CPU

and one Nvidia P100 PCIe GPU, whose specifications are explained in Ta-

ble 5.2. The abstract processors for this node are CPU_2 and GPU_2. We

earlier explained how to model a hybrid platform as a set of loosely-coupled

abstract processors in chapter 3.

We use two data-parallel applications, Matrix Multiplication and 2D discrete

Fourier transform. Each application utilizes highly optimized vendor specific

kernels for the CPUs and the accelerators. The Matrix Multiplication applica-

tion (DGEMM) uses Intel MKL DGEMM [143] for CPUs, ZZGEMMOOC out-

of-card package [144] for Nvidia GPUs and XeonPhiOOC out-of-card package

[146] for Intel Xeon Phis. ZZGEMMOOC and XeonPhiOOC packages respec-

145

5.6. EXPERIMENTAL RESULTS

Algorithm 7 Algorithm Finding Globally Pareto-optimal Solutions for Total En-
ergy and Performance using HEPOPTA
1: function HTPOPTA(n, p, E, T, PS ,ΨTP)

INPUT:
Problem size, n ∈ Z>0

Number of processors, p ∈ Z>0

Energy profiles, E = {E0, ..., Ep−1},
Ei = {(xij , eij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, eij ∈ R>0}.
Time functions, T = {T0, ..., Tp−1},
Ti = {(xij , tij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, tij ∈ R>0}.
Base power of the heterogeneous platform, PS ∈ R>0

OUTPUT:
Pareto-optimal solutions for total energy and performance, ΨTP ,
ΨTP = {(tengk, timek, Xk) | k ∈ [0, |ΨTP |)},
Xk = {xk[0], xk[1], · · · , xk[p− 1]},
xk[i] ∈ {

⋃m−1
j=0 xij ∪ {0}}, i ∈ [0, p).

2: HEPOPTA(n, p, E, T,ΨEP)
3: for all tup ∈ ΨEP do
4: te← tup.eng + PS × tup.time
5: tup′ ← {x | x ∈ ΨTP , x.eng = te}
6: if tup′ 6= ∅ then
7: if tup.time < tup′.time then
8: tup′ ← (te, tup.time, tup.X)
9: else if tup.time = tup′.time then
10: idletup ← {x|x ∈ tup.X, x = 0}
11: idletup′ ← {x|x ∈ tup′.X, x = 0}
12: if |idletup| < |idletup′ | then
13: tup′ ← (te, tup.time, tup.X)
14: end if
15: end if
16: else
17: ΨTP ← ΨTP ∪ (te, tup.time, tup.X)
18: end if
19: end for
20: minTime←∞
21: nPList← ∅
22: for all tup ∈ ΨTP do
23: if tup.time ≥ minTime then
24: nPList← nPList ∪ tup
25: else
26: minTime← tup.time
27: end if
28: end for
29: return (ΨTP − nPList)
30: end function

146

5.6. EXPERIMENTAL RESULTS

Table 5.1: HCLServer01: Specifications of the Intel Haswell multicore CPU,
Nvidia K40c, and Intel Xeon Phi 3120P.

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

Table 5.2: HCLServer02: Specifications of the Intel Skylake multicore CPU
and Nvidia P100 PCIe.

Intel Xeon Gold 6152
Socket(s) 1
Cores per socket 22
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Main memory 96 GB

NVIDIA P100 PCIe
No. of processor cores 3584
Total board memory 12 GB CoWoS HBM2
Memory bandwidth 549 GB/sec

147

5.6. EXPERIMENTAL RESULTS

tively reuse CUBLAS and MKL BLAS for in-card DGEMM calls. In Chapter 6,

we will explain that the out-of-card packages allow the accelerators to run com-

putations for any arbitrary size. In the 2D FFT application, Intel MKL FFT [147]

for CPUs and Xeon Phis, and CUFFT [148] for Nvidia GPUs are deployed.

Unlike the Matrix Multiplication application, all computations for the FFT appli-

cation are in-card. The Intel MKL and CUDA versions used on HCLServer01

are respectively 2017.0.2 and 7.5, and on HCLServer02 are 2017.0.2 and

9.2.148.

The Matrix Multiplication application computes C = α × A × B + β × C,

where A, B, and C are matrices of size m×n, n×n, and m×n, respectively

and α and β are constant floating-point numbers. Workloads range from 64×
10112 to 28800 × 10112 with a step size of 64 for the first dimension m. The

speed for the execution of a given problem size m×n is calculated as 2×m×n2

t

where t is execution time taken to compute the result matrix C.

Figures 5.4 and 5.5 show DGEMM speed and dynamic energy functions

of the five abstract processors. To highlight variations in performance profiles,

Figure 5.4 presents zoomed speed functions for CPU_1, GPU_1 and CPU_2,

where the width of variations reaches 22%. In addition, the zoomed figure

highlights that the speed of GPU_1 starts growing after a 10% drop in perfor-

mance. We can see the same variations in the Phi_1 profile as well.

The 2D FFT application computes 2D FFT of a complex signal matrix of

size m× n. Workloads range from 1024× 51200 to 10000× 51200 with a step

size 16 for the first dimension m. The experimental data set does not include

problem sizes which cannot be factored into primes less than or equal to 127.

For these problem sizes, CUFFT for GPU gives failures. The speed for the

execution of a given problem size m× n is calculated as m×n×log2(m×n)
t

where

t is execution time taken to compute 2D FFT of size m× n.

Figures 5.6 and 5.7 show the speed and dynamic energy functions of

CPU_1, GPU_1, Phi_1, CPU_2 and GPU_2 abstract processors. Phi_1

consumes ten times more dynamic energy than the other processors. Figure

5.8 excludes the dynamic energy function of Phi_1 to highlight variations in

the dynamic energy profiles of CPU_1, GPU_1, CPU_2 and GPU_2.

The performance and the dynamic energy functions are built separately

148

5.6. EXPERIMENTAL RESULTS

Figure 5.4: Full and zoomed speed functions of the heterogeneous Matrix
Multiplication application executing on HCLServer01 and HCLServer02.

Figure 5.5: Dynamic energy functions of heterogeneous Matrix Multiplication
application executing on HCLServer01 and HCLServer02.

experimentally, as explained in Chapters 3 and 4. To ensure the reliability of

the experimental results, we follow a detailed statistical methodology which

149

5.6. EXPERIMENTAL RESULTS

Figure 5.6: Speed functions of the heterogeneous 2D FFT application execut-
ing on HCLServer01 and HCLServer02.

Figure 5.7: Dynamic energy functions of the heterogeneous 2D FFT applica-
tion executing on HCLServer01 and HCLServer02.

we explain in Appendix A. Briefly, to obtain a data point for each function, the

software follows Student’s t-test method and executes the application repeat-

edly until the sample means of the measurement (execution time\dynamic en-

ergy\total energy) lies in user-defined confidence interval and a user-defined

precision is achieved. We set the confidence interval as 95% and the precision

as 10% for our experiments.

5.6.1 Analysis of HEPOPTA

We create an experimental data set for all experiments including all the

problem sizes in discrete functions for performance and dynamic energy.

150

5.6. EXPERIMENTAL RESULTS

Figure 5.8: Dynamic energy functions of the heterogeneous 2D FFT applica-
tion executing on HCLServer01 and HCLServer02. In this figure, the dynamic
energy profile for Phi_1 is ignored.

The experimental data set for DGEMM is {64 × 10112, 128 × 10112, 196 ×
10112, · · · , 57600×10112}, and for FFT is {1024×51200, 1040×51200, 1056×
51200, · · · , 20000× 51200}.

For the first set of our experiments, we determine the minimum, average

and maximum cardinality of globally Pareto-optimal sets determined by HEP-

OPTA. These values for the Matrix Multiplication application are (1, 55, 96),

and for the 2D FFT application, (1, 11, 33). If the cardinality of the globally

Pareto-optimal set for an input problem size is 1, the output workload distribu-

tion optimizes both performance and dynamic energy consumption. Globally

Pareto-optimal sets with the maximum cardinality for Matrix Multiplication and

FFT are shown in the Figures 5.9 and 5.10. In these figures, the blue point

above Pareto-optimal sets represents the execution time and dynamic energy

consumption of the load-balanced distribution.

We study improvements in performance and reductions in the dynamic en-

ergy consumption of optimal solutions determined by HEPOPTA in compar-

ison with load-balanced workload distribution for the second set of the ex-

periments. A load balance distribution is one with the minimum difference

between the execution times of processors. The number of active proces-

sors in load-balanced solutions may be less than the total number of proces-

sors (p = 5). The percentage of performance improvement is obtained using

Perf Improvement(%) = tbalance−topt
topt

× 100, where tbalance represents the

151

5.6. EXPERIMENTAL RESULTS

Figure 5.9: Globally Pareto-front solutions for dynamic energy and execution
time with the maximum cardinality determined by HEPOPTA for the heteroge-
neous Matrix Multiplication application.

Figure 5.10: Globally Pareto-front solutions for dynamic energy and execution
time with the maximum cardinality determined by HEPOPTA for the heteroge-
neous 2D FFT application.

execution time of the load balance distribution, and topt is the optimal execu-

tion time. For Matrix Multiplication, the average and maximum performance

improvements are 26% and 102% respectively, and for 2D FFT are respec-

tively 7% and 44%. The percentage of dynamic energy saving is calculated as

Energy Saving(%) = ebalance−eopt
eopt

× 100, where ebalance represent the dynamic

energy consumption of load balance distribution, and eopt is optimal dynamic

energy consumption. The average and maximum energy saving for are found

to be respectively 130% and 257% for the Matrix Multiplication application, and

44% and 105% for the 2D FFT.

152

5.6. EXPERIMENTAL RESULTS

Table 5.3: Percentage improvement in performance when the dynamic energy
consumption is increased by up to 5% over the optimal one on HCLServer01
and HCLServer02.

Application Average Max
DGEMM 5% 50%

FFT 19% 109%

Table 5.4: Percentage reduction in dynamic energy consumption by 5% degra-
dation in performance over the optimal distribution on HCLServer01 and
HCLServer02.

Application Average Max
DGEMM 18% 116%

FFT 6% 63%

Finally, we obtain to what extent performance can be improved when

the dynamic energy consumption is increased by up to 5% over the op-

timal one. The average and maximum performance gains will be re-

ported. The percentage of performance improvement is calculated using

Perf Improvement(%) =
teopt−t(eopt×1.05)

t(eopt×1.05)
× 100, where teopt and t(eopt×1.05) are

respectively the execution time of the energy-optimal endpoint and execution

time associated with 5% increase in energy consumption over the optimal.

Table 5.3 summarizes the average and maximum percentage of perfor-

mance improvement for the Matrix Multiplication and 2D FFT applications.

We also determine the average and maximum energy savings by 5%

degradation in performance over the optimal distribution. The dynamic en-

ergy saving is obtained using Energy Saving(%) =
etopt−e(topt×1.05)

e(topt×1.05)
× 100,

where etopt and e(topt×1.05) are respectively the dynamic energy consumption

of the performance-optimal endpoint in the Pareto-optimal front and the dy-

namic energy consumption associated with 5% degrade in performance over

the optimal.

The average and maximum percentage of dynamic energy saving for the

applications are shown in Table 5.4.

153

5.6. EXPERIMENTAL RESULTS

Figure 5.11: Globally Pareto-front solutions for total energy and execution time
with the maximum cardinality determined by HTPOPTA for the heterogeneous
Matrix Multiplication application.

5.6.2 Analysis of HTPOPTA

We use the same experimental data sets, as those employed for analysis of

HEPOPTA, to conduct our three sets of experiments for HTPOPTA.

First, the minimum, average and maximum cardinality of globally Pareto-

optimal sets for total energy and execution time is studied. These values for the

Matrix Multiplication application are (1, 15, 35), and for the 2D FFT application

are (1, 2, 8). The cardinalities are less than the corresponding values for the

globally Pareto-optimal sets for dynamic energy and execution time since the

Pareto-optimal set for total energy and execution time is a subset of Pareto-

optimal set for dynamic energy and execution time. Globally Pareto-optimal

sets of total energy consumption and execution time with the maximum cardi-

nality for Matrix Multiplication and FFT are shown in Figures 5.11 and 5.12. In

Figure 5.11, the point above the Pareto-optimal solutions represents the exe-

cution time and total energy consumption of load-balanced distribution. The

load-balanced solutions in Figure 5.12 have not been shown because of being

far away from the sets.

We then study the compromise between execution time and total energy

consumption. We calculate how much performance can be gained in case the

total energy consumption is increased by up to 5% over the optimal one. The

average and maximum percentage of performance speed-ups are illustrated

154

5.6. EXPERIMENTAL RESULTS

Figure 5.12: Globally Pareto-front solutions for total energy and execution time
with the maximum cardinality determined by HTPOPTA for the heterogeneous
2D FFT application. Each curve represents a problem size.

Table 5.5: Percentage improvements in total energy consumption by 5%
increase of total energy consumption over the optimal distribution on
HCLServer01 and HCLServer02.

Application Average Max
DGEMM 8% 17%

FFT 0.7% 9%

in Table 5.5. The percentage of performance improvement is obtained using

Perf Improvement(%) =
tteopt−t(teopt×1.05)

t(teopt×1.05)
× 100, where tteopt and t(teopt×1.05)

are respectively the execution time of the total energy-optimal endpoint and

execution time associated with 5% increase in total energy consumption over

the optimal.

We also determine the average and maximum total energy savings by

5% degradation in performance over the optimal. The energy saving is ob-

tained using TEnergy Saving(%) =
tetopt−te(topt×1.05)

te(topt×1.05)
× 100, where tetopt and

te(topt×1.05) are respectively the total energy consumption of the performance-

optimal endpoint in the Pareto-optimal front and the total energy consump-

tion associated with 5% degrade in performance over the optimal. Table 5.6

summarizes the experimental results for the Matrix Multiplication and 2D FFT

applications.

Using HEOPTA, one can find workload distributions minimizing dynamic

energy consumption. HTPOPTA provides workload distributions which min-

155

5.6. EXPERIMENTAL RESULTS

Table 5.6: Percentage total energy saving when performance is degraded by
up to 5% over the optimal one on HCLServer01 and HCLServer02.

Application Average Max
DGEMM 4% 13%

FFT 0.4% 6%

Figure 5.13: Total energy profiles of the heterogeneous Matrix Multiplication
application for two different workload distributions HTPOPTA and HEOPTA
executing on HCLServer01 and HCLServer02.

imize total energy consumption. To demonstrate that dynamic energy opti-

mization does not always result in minimizing total energy, we calculate the

percentage total energy saving over HEOPTA solutions for the aforementioned

data set. Total energy saving is calculated as follows: Total Energy Saving =
teHEOPTA−teopt

teopt
× 100, where teHEOPTA is total energy consumption of the so-

lution with optimal dynamic energy consumption and teopt is the optimal to-

tal energy consumption. The minimum, average and maximum total energy

savings for the DGEMM application are 0, 11% and 37%, respectively. Zero

percentage total energy saving represents that the same workload distribution

is determined by HTPOPTA and HEOPTA. Figure 5.13 shows the optimal to-

tal energy consumption of the Matrix Multiplication application over the total

energy consumption of the distribution with minimum dynamic energy con-

sumption.

The minimum, average and maximum total energy savings for the 2D FFT

application are respectively 0, 29% and 106%. Figure 5.14 compares 2D FFT

156

5.7. SUMMARY

Figure 5.14: Total energy profiles of the heterogeneous 2D FFT application
for two different workload distributions HTPOPTA and HEOPTA executing on
HCLServer01 and HCLServer02.

optimal total energy consumption over the total energy consumption of the

distribution with minimum dynamic energy consumption.

5.7 Summary

Performance and energy are now the most dominant objectives for optimiza-

tion on modern heterogeneous HPC platforms such as computational clus-

ters, supercomputers and cloud computing infrastructures. Recent research

efforts on modern multicore platforms demonstrate that the performance and

dynamic energy profiles of data-parallel applications executing on such plat-

forms exhibit drastic variations due to inherent complexities in these platforms

such as severe resource contention for shared resources (such as Last Level

Cache (LLC), interconnects, PCI-E links, etc.) and Non-Uniform Memory Ac-

cess (NUMA). Due to these variations, these works show that the discrete

functional relationships between performance and workload size and between

energy and workload size have non-linear and non-convex shapes thereby

demonstrating that the workload distribution has become an important deci-

sion variable that can no longer be ignored. There are algorithms solving

the problem of bi-objective optimization of data-parallel applications for perfor-

mance and dynamic energy on homogeneous HPC platforms (BOPPE) where

157

5.7. SUMMARY

use workload distribution as the sole decision variable.

We presented in this chapter algorithms to solve two bi-objective optimiza-

tion problems for performance and energy on heterogeneous HPC platforms.

The first optimization problem, HEPOPT, has two objectives, execution time

and dynamic energy, and one decision variable, the workload distribution. We

proposed a novel data partitioning algorithm called HEPOPTA solving HEP-

OPT. Its inputs include the problem size, n, the number of available hetero-

geneous processors, p, p discrete performance functions (one for each pro-

cessor) and p discrete dynamic energy functions (one for each processor).

HEPOPTA returns the globally Pareto-optimal solutions for performance and

dynamic energy within a polynomial complexity of O(m3 × p3 × log2(m× p)),
where m represents the cardinality of the discrete performance and dynamic

energy functions.

The decision variable of the second optimization problem, HTPOPT, is the

same, workload distribution, but the objectives are execution time and total

energy. It was proved that HEPOPTA can be reused to solve HTPOPT.

We experimentally analysed the scalability and efficiency of the algorithms

using two heterogeneous data-parallel applications, matrix multiplication and

two-dimensional discrete fast Fourier transform on a hybrid cluster of two het-

erogeneous nodes.

Regarding the experimental results, one can conclude that the glob-

ally Pareto-optimal front of solutions contains the best load-balanced solu-

tions. Our algorithms therefore determine better Pareto-optimal front of load-

imbalanced solutions that are totally ignored by load-balancing approaches.

We empirically demonstrated that dynamic energy optimization does not

always lead to the minimization of total energy consumption. The average and

maximum difference in total energy consumption between the dynamic-energy

optimal and total-energy optimal solutions is (11%,37%) for matrix multiplica-

tion, and (29%,106%) for 2D FFT.

The software implementations for HEPOPTA and HTPOPTA are available

at [158].

158

Chapter 6

Out-of-card Implementation for

Accelerator Kernels on

Heterogeneous Computing

Platforms

In this chapter, we focus on the implementation of a programming interface for

out-of-card kernels on heterogeneous HPC platforms. We describe a library,

which is called HCLOOC, containing interfaces that address inherent chal-

lenges, such as the limited main memory of accelerators and limited bandwidth

of the PCI-E communication links, connecting accelerators to host processors.

It employs optimal software pipelines to overlap data transfers between the

host CPU and accelerators with computations on the accelerators. It is de-

signed using the fundamental building blocks, which are OpenCL command

queues for FPGAs, Intel offload streams for Xeon Phis, and CUDA streams

and events that allow concurrent utilization of the copy and execution engines

provided in Nvidia GPUs.

Experimental results show that the proposed out-of-card implementation

achieves 85% of the peak double-precision floating performance of Nvidia

P100 PCIe GPU and a speedup of 6 times over the Nvidia’s out-of-card matrix

multiplication implementation (CUBLAS-XT). It will also be demonstrated that

159

6.1. INTRODUCTION TO OUT-OF-CARD COMPUTATION FOR
ACCELERATORS

our implementation exhibits 0% drop in performance when the problem size

exceeds the main memory of the GPU. We observe this 0% drop also for our

implementations for Intel Xeon Phi and Xilinx FPGA.

6.1 Introduction to Out-of-card Computation for

Accelerators

Extreme-scale high performance computing (HPC), big data platforms, and

clouds today feature hybrid nodes containing multicore CPU processors and

one or more accelerators such as GPUs, Intel Xeon Phis and FPGAs to facili-

tate execution of workloads that demand high energy efficiency.

Despite high performance and superior performance per watt, hardware

acceleration in HPC poses some prominent challenges on efficient utilization

of accelerators to solve big instances of data-parallel applications on hybrid

nodes. These challenges are summarized below:

1. Limited memory size of accelerators: Accelerators typically have

smaller main memory compared to that of the host multicore CPU con-

nected to it. Consider the Top500 list of supercomputers [8]. Both Sum-

mit and Sierra supercomputers, respectively ranked first and second, are

composed of IBM POWER9 multicore CPUs, which support 1024 GB per

socket, and Nvidia Volta GV100 accelerators, which provides only 16 GB

main memory. The forth-ranking Tianhe-2A supercomputer includes In-

tel Ivy bridge multicore CPUs, with 768 GB main memory per socket, and

Intel Xeon Phi 31S1P accelerator, which provides only 8 GB main mem-

ory. The AI Bridging Cloud Infrastructure (ABCI), currently holding the

seventh place in Top500 rating, employs Intel Xeon Gold CPUs, which

can support 768 GB main memory, and Nvidia Tesla V100 SXM2 accel-

erators, which support up to 16 GB of main memory. Table 6.1 shows

a list of Nvidia GPUs, launched in 2018, along with their main memory

sizes. It is apparent that the main memory capacity of accelerators is far

less than that of host CPUs. Since all data accessed by a given kernel

160

6.1. INTRODUCTION TO OUT-OF-CARD COMPUTATION FOR
ACCELERATORS

should be transferred into the accelerator prior to any kernel invocation,

the maximum problem size, which can be solved by an accelerator, is

consequently limited by its main memory capacity. Therefore, to execute

large problem sizes of an application using accelerators, it is required

that out-of-card implementations of the application are either available

or developed from scratch.

2. Limited bandwidth of the PCI-E communication link: Out-of-card ex-

ecutions usually entail multiple data transfers of data structures (that fit

inside the main memory of the accelerator) from the host CPU to the

accelerator and back. Accelerators are connected to CPUs using PCI-

E communication links. However, the limited bandwidth of these links

impacts the execution times of out-of-card implementations. In addi-

tion, accelerators such as GPUs provide advanced hardware support to

facilitate overlap of data transfers between host and device and compu-

tations on the device. For example, modern Nvidia GPUs (K40, K80,

P100, etc) provide three engines: two copy engines, one for host-to-

device transfers and another for device-to-host transfers, and a kernel

engine. Therefore, libraries aiming to provide efficient out-of-card imple-

mentations must utilize the vendor-supplied optimizations to overlap the

communications over PCI-E communication links with the computations

on accelerators.

3. Lack of efficient libraries for out-of-card computations: There is an

abysmal lack of libraries providing interfaces that allow programmers to

write efficient out-of-card implementations for their data-parallel kernels

on accelerators. There are exceptions (but very few) such as Nvidia’s

CUBLAS-XT package [136], which provides a set of BLAS routines that

utilize multiple GPUs and MAGMA [141], which provides out-of-card

dense LU, Cholesky and QR factorizations. Victream [159] is a directed

acyclic graph (DAG) computing framework for out-of-card computations

on multiple GPUs. However, from our experiments, it is observed that

vendor out-of-card implementations (such as CUBLAS-XT [136]) are not

the best in terms of performance.

161

6.1. INTRODUCTION TO OUT-OF-CARD COMPUTATION FOR
ACCELERATORS

Table 6.1: List of Nvidia GPUs launched in 2018 with their main memory ca-
pacities.

Model Memory Size
GeForce GT 1030 2 GB
GeForce GTX 1050 3 GB
GeForce GTX 1060 6 GB
GeForce RTX 2080 Ti 11 GB
Tesla T4 16 GB
TITAN V-CEO Edition 32 GB

In this chapter, we present a library (HCLOOC) that address these chal-

lenges and allows programmers to write efficient out-of-card implementations

of data-parallel kernels for mainstream accelerators such as GPUs, Xeon Phis

and FPGAs. The library is a wrapper that reuses the fundamental build-

ing blocks such as OpenCL command queues [160] for FPGAs, Intel offload

streams [161] for Intel Xeon Phis, and CUDA streams and events that allow

concurrent utilization of the copy and execution engines provided in Nvidia

GPUs [137], [162].

The library contains two principal components. The first component, Par-

titioner, partitions a workload into blocks where each block can fit into the

accelerator’s main memory. The second component, Stream Engine, uses a

configurable software pipeline to overlap data transfers from host CPU to the

accelerator and back and kernel invocations in the accelerator. This compo-

nent reuses the vendor-supplied optimization engines for the data transfers.

For example, for the out-of-card implementation of matrix multiplication that

we present in this section, the Stream Engine uses a five-stage pipeline.

Our proposed interface, HCLOOC, is evaluated by the implementation of

out-of-card matrix multiplications for Nvidia GPUs, Intel Xeon Phis and FPGAs.

We also demonstrate that it outperforms CUBLAS-XT, an out-of-card BLAS

package implemented by Nvidia.

162

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

6.2 Out-of-card Library for Accelerator Kernels

(HCLOOC)

In this section, we present our library, called HCLOOC, which allows program-

mers to write out-of-card implementations for their kernels on accelerators

such as GPUs, Xeon Phis and FPGAs. HCLOOC consists of two principal

components:

• Partitioner: It allows partitioning of input and output data structures into

partitions that fit into an accelerator’s main memory.

• Stream Engine: It uses a configurable software pipeline to overlap data

transfers from host CPU to the accelerator and back and invocations of

in-card kernels in the accelerator. It is a wrapper that utilizes the funda-

mental building blocks such as OpenCL command queues [160] for FP-

GAs, Intel offload streams [161] for Intel Xeon Phis, and CUDA streams

that allow concurrent utilization of the copy and execution engines pro-

vided in Nvidia GPUs [137], [162].

We consider a simple example, matrix multiplication, to illustrate our par-

titioner and the structure of software pipeline employed in HCLOOC. The

Stream Engine uses a five-stage pipeline for the out-of-card implementation

of matrix multiplication that we present in this section.

6.2.1 Implementation for Dense Matrix Multiplication on a

GPU using HCLOOC

In this section, we elucidate the core logic in the two components (Partitioner

and Stream Engine) by describing our out-of-card implementation of matrix

multiplication of large dense matrices on Nvidia GPUs.

The implementation computes C = α×A×B+β×C, where A, B, and C

are matrices of size M ×K, K×N , and M ×N , respectively and α and β are

constant floating-point numbers. If the workload size (M×K+K×N+M×N)

fits into the memory of GPU, all three matrices are transferred to the device,

163

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

Figure 6.1: Employing Partitioner module to decompose matrix A into 4 hor-
izontal slices, matrix B into 2 vertical slices, and matrix C into 8 (= 4 × 2)
blocks.

the kernel CUBLAS DGEMM [145] is then invoked to update matrix C, and

the resultant matrix C is returned to the host. But, when the workload size

exceeds the main memory of the accelerator, the data transfer of the matrices

will fail.

The first step in our out-of-card implementation is to partition the three

matrices A, B and C. Partitioner splits matrix A into h equal horizontal slices,

matrix B into v equal vertical slices, and matrix C into h× v equal rectangular

blocks ensuring that the data required for updating any two blocks of C in the

same column is small enough to fit in the accelerator’s memory.

For example, suppose M , N and K to be 4, 4 and 8 respectively, resulting

in the total workload size equal to 80 (4× 8 + 8× 4 + 4× 4) matrix elements.

Suppose the GPU’s main memory can only store 44 matrix elements. Then

Partitioner will be applied, and it will split matrix A into 4 horizontal slices,

matrix B into 2 vertical slices and consequently matrix C into eight 1×2 blocks

guaranteeing that the data required for updating of any two blocks of C in

the same column will fit in the memory of the accelerator. Figure 6.1 shows

the matrix decomposition. Although other decompositions are possible (for

example, partitioning A, B and C into 2, 4 and 8 sub-blocks respectively),

Partitioner will return the decomposition, which additionally optimizes the work

of the target software pipeline. In this particular case, the pipeline uses two

sets of buffers and two parallel streams, and in order to optimize the use of

the resources, Partitioner is instructed to select the decomposition with the

smallest possible v.

164

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

Stream Engine is then employed to execute the out-of-card implementa-

tion. CUDA streams and asynchronous communications are used to optimally

utilize concurrent access of copy and execution engines provided in Nvidia

GPUs thereby achieving optimal overlapping of communication with computa-

tion.

The columns of blocksC are computed one after the other. In each column,

the blocks are computed going from the top to the bottom. Each iteration

is associated with multiple transfers of the matrix blocks between the host

memory and device memory, which leads to a significant communication cost.

To reduce the communication overhead, HCLOOC overlaps data transfers and

kernel invocations. To achieve this, two sets of data buffers are allocated in the

GPU’s main memory. Each set is used for updating one block of C. While one

block of C is being updated, the required data for the second block of C is

transferred into the second set of buffers.

Stream Engine uses a five-stage software pipeline to execute the out-of-

card implementation. Figure 6.2 presents the pipeline structure for three ma-

trices A, B and C decomposed in the Figure 6.1. The stages of pipeline are

described as following:

• S(bi): Sending the i-th slice of matrix B (i.e. bi) from host to device.

• S(ai): Sending the i-th slice of matrix A (i.e. ai) from host to device.

• S(cij): Sending a rectangular block of matrix C (i.e. cij) from host to

device.

• DGEMM: Vendor-supplied optimized DGEMM (CUBLAS) invocation.

• R(cij): Sending the updated block cij of C back from device to host.

Since blocks on matrix C are updated in the column order, the first stage of

the pipeline (S(bi)) occurs every h step (h is the number of horizontal slices).

The stream, which updates cij , transfers horizontal slice ai, vertical slice bj (if

it has not already been transferred into the accelerator memory), and block

cij from host to the accelerator memory. After updating cij by invoking in-card

CUBLAS DGEMM, it is sent back to the host. In figure 6.2, it is supposed

165

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

Figure 6.2: Pipeline structure in Stream Engine module for sample matrices
shown in Figure 6.1 on a GPU with dual copy engines and one execution en-
gine which supports concurrent data transfers in two directions (represented
by S() calls) and overlapping of data transfers and kernel executions (repre-
sented as DGEMM). Events, Rec(x) and Wait(x), are used for synchroniza-
tion of data transfers.

that GPU is provided with dual copy engines, which supports concurrent data

transfers in two directions. Since creating a new stream has some overhead,

we exploit and reuse just two streams in a round robin order so that while one

stream is involved in doing computation, the other is transferring.

To make sure data stored in device buffers will not be overwritten until ker-

nel executions that operate on the data have completed, we create events for

each sub-matrix existing in A and C. As shown in figure 6.2, Rec(x) repre-

sents recording the event associated with a block x, and Wait(x) makes the

process wait for the event associated with the block x until it is recorded.

We have explained HCLOOC using dense matrix multiplication which is

one of level-3 BLAS routines. To implement out-of-card matrix-vector opera-

tions (level-2 BLAS routines) using HCLOOC, matrix A is partitioned. Vector b

is completely transferred to the device and stored from start to the completion

of the out-of-card operation. Vector c is also partitioned and updated during

the course of the out-of-card operation. In our future work, we will consider

triangular and banded matrices.

166

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

Stream Engine: Further Details

Stream Engine is responsible for transferring input data from host CPU to

GPU, invocations of in-card CUBLAS_DGEMM [145], an implementation of

BLAS on top of the Nvidia CUDA runtime, and transferring the resultant output

blocks back to the host.

Since out-of-card computation is associated with lots of data transfer be-

tween host CPU and the accelerator, we use two sets of buffers on the GPU

which include 5 buffers. Two out of 5 buffers, dA[0] and dA[1], store two slices

ofA, one buffer, dB, stores one slice ofB and the remaining two buffers, dC[0]

and dC[1], are used for sub-blocks of C. Employing two sets of buffers along

with two CUDA streams enables communication-computation overlapping on

the accelerator.

Algorithm 8 illustrates the work of Stream Engine for Nvidia GPUs. Inputs

to the module are matricesA,B and C, with sizes ofM×K,K×N andM×N
respectively, and h and v which are determined by Partitioner (section 6.2.1).

There exist two CUDA streams (Line 2). Operations issued into a stream are

executed in issue-order, while operations submitted to different streams can

be executed concurrently. Since the GPU supports concurrent copy and exe-

cution engines, the designed out-of-card matrix multiplication implementation

utilizes concurrent data transfers in both directions. For synchronization of

data communications, we create two sets of CUDA event arrays (Line 3).

At the beginning, slices a0, b0 and block c0,0 are transferred into device

buffers dA[0], dB and dC[0] (Lines 9-13). While dC[set], set = {0, 1}, is being

updated by in-card CUBLAS_DGEMM kernel (line 15), next sub-matrices of

A, C (Lines 17-22) and following sub-matrix of B (if it is applicable) (Lines

23-27) are asynchronously transferred to the device by the other stream. After

finishing its computation, the current stream records eventa to release buffer

dA (Line 16). Line 28 is responsible for sending the result back to the host.

Then, the current stream releases its dC (Line 29) to be reused by the other

stream. Finally, the last block, c(h−1)(j−1), is updated and sent back to the host

memory (Lines 31, 32).

The amount of communication that could be overlapped with the computa-

167

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

tion depends on the ratio of the communication time and the computation time.

If the CUBLAS_DGEMM execution dominates the total execution time, then,

the smaller the ratio, the more communication could be overlapped. However,

if the communication over the PCI-E bus dominates the total execution time,

the communication would always be a bottleneck.

Algorithm 8 Stream Engine using CUDA Streams and Events to Execute Out-
of-card DGEMM Implementation
1: function Stream Engine(A,B,C,M,N,K, h, v)
2: Stream stream[2]
3: Event eventa[h ∗ v], eventc[h ∗ v]
4: for j = 0; j < v; j + + do
5: for i = 0; i < h; i+ + do
6: idx← i+ j ∗ h
7: set← idx % 2 , set_← (idx+ 1) % 2

8: i_← (idx+ 1) % h , j_← idx+1
h

9: if idx = 0 then
10: MEMCPYASYNC(b0 → dB, stream[idx%2])
11: MEMCPYASYNC(a0 → dA[set], stream[idx%2])
12: MEMCPYASYNC(c0,0 → dC[set], stream[idx%2])
13: end if
14: if idx < (h ∗ v − 1) then
15: CUBLAS_DGEMM(dA[set], dB, dC[set], stream[idx%2])
16: EVENTRECORD(eventa[idx], stream[idx%2])
17: if idx > 0 then
18: STREAMWAITEVENT(stream[(idx+ 1)%2], eventa[idx− 1])
19: MEMCPYASYNC(ai_ → dA[set_], stream[(idx+ 1)%2])
20: STREAMWAITEVENT(stream[(idx+ 1)%2], eventc[idx− 1])
21: MEMCPYASYNC(ci_,j_ → dC[set_], stream[(idx+ 1)%4]))
22: end if
23: if i = (h− 1) ∧ j < (v − 1) then
24: STREAMWAITEVENT(stream[(idx+ 1)%2], eventa[idx])
25: STREAMWAITEVENT(stream[(idx+ 1)%2], eventa[idx− 1])
26: MEMCPYASYNC(bj+1 → dB, stream[(idx+ 1)%2]))
27: end if
28: MEMCPYASYNC(dC[set]→ ci,j , stream[idx%2])
29: EVENTRECORD(eventc[idx], stream[idx%2])
30: else
31: CUBLAS_DGEMM(dA[set], dB, dC[set], stream[idx%2])
32: MEMCPYASYNC(dC[set]→ ci,j , stream[idx%2])
33: end if
34: end for
35: end for
36: end function

We have elucidated the principal components of HCLOOC by implement-

ing out-of-card dense matrix multiplication for Nvidia GPUs. For out-of-card

implementations for Xeon Phis and FPGAs, Stream Engine uses Intel offload

streams (for Xeon Phis) and OpenCL command queues (for FPGAs). Compu-

tational kernels for Xeon Phis and FPGAs would be vendor-optimized BLAS

library routine DGEMM.

168

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

Partitioner : Further Details

Partitioner decomposes matrix A into h horizontal slices, ai (0 ≤ i ≤ h − 1),

B into v vertical slices, bj (0 ≤ j ≤ v − 1), and matrix C consequently into

h ∗ v blocks, ci,j . Partitioning of the matrices is performed such that certain

constraints and optimization criteria are satisfied:

• Each matrix is decomposed into sub-matrices of approximately the same

size. This ensures load balancing and maximum concurrency.

• GPU’s main memory is divided between 5 buffers organized into two

sets: dA[0] and dC[0] in one set, dA[1] and dC[1] in the other set. dB is

shared between the sets.

• The number of slices in matrix B should be as small as possible. There

is only one buffer on the accelerator for matrix B. Since the buffer is

shared between two streams, data transfer from CPU to GPU cannot be

overlapped with computation for matrix B slices, and this degrades the

communication-computation overlap in the pipeline structure. Therefore,

Partitioner decomposes matrices so to minimize the number of slices of

B.

• Minimizing the number of slices in B may result in too many slices in

A. We have experimentally found that the performance of HCLOOC

degrades when matrix A is partitioned into too many slices. To prevent

this, Partitioner minimizes the product: h× v.

Algorithm 9 shows the core logic of Partitioner in this specific case where

the inputs are matrix sizes, M , N and K, and the memory size of the acceler-

ator ismem_size. Outputs are h, v, heights and widths. heights is an array of

size h where heights[i] contains the number of rows in the i-th slice of matrix

A. Similarly, widths is an array of size v where widths[i] contains the number

of columns in the i-th slice of matrix B.

We know that the size of dA[set] is M
h
× K, dB is K × N

v
, and dC[set] is

M
h
× N

v
, where set = {0, 1}. Since all 5 buffers should fit into the accelerator

169

6.2. OUT-OF-CARD LIBRARY FOR ACCELERATOR KERNELS (HCLOOC)

memory, buffer sizes must satisfy the following equation (6.1).

2× M

h
×K +K × N

v
+ 2× M

h
× N

v
= mem_size (6.1)

From Eq. 6.1, we derive the following expression for v:

v =
2×M ×N +N ×K × h

mem_size× h− 2×M ×K
(6.2)

The valid values for h are {2, 3, · · · ,M}. Algorithm 9 initializes h to 2,

and v is then calculated using the formula 6.2 (Lines 3). Then the number of

horizontal slices is increased (htemp) until the best decomposition is achieved,

which minimizes the number of slices in matrix B (Lines 5-14). Finally, rows

of matrix A are distributed amongst h slices, and columns of matrix B are

distributed amongst v slices (Lines 18-21).

Algorithm 9 Decomposition of Matrices A, B, and C using the Partitioner
1: function PARTITIONER(M,N,K,mem_size)
2: h← 2
3: v← d 2×M×N+N×K×h

mem_size×h−2×M×K
e

4: htemp ← 3 , vtemp ←∞
5: while htemp ≤M ∧ (vtemp ≤ 0 ∨ vtemp > 1) do
6: vtemp ← d

2×M×N+N×K×htemp

mem_size×htemp−2×M×K
e

7: if vtemp > 0 then
8: if v ≤ 0 ∨ (vtemp < v ∧ h× v ≥ htemp × vtemp) then
9: h← htemp

10: v← vtemp

11: end if
12: end if
13: htemp ← htemp + 1
14: end while
15: if v ≤ 0 ∨ v > N then
16: There is no distribution to fit into the accelerator memory, exit.
17: end if
18: heights[i]← M

h
, i ∈ [0, h− 1]

19: widths[i]← N
v

, i ∈ [0, v − 1]

20: heights[i] + +, i ∈ [0,M%h)
21: widths[i] + +, i ∈ [0, N%v)
22: end function

170

6.3. EXPERIMENTAL RESULTS

6.3 Experimental Results

In this section, we demonstrate the performance of our out-of-card imple-

mentations of matrix multiplication for large dense matrices on GPUs, Xeon

Phis and FPGAs. For this purpose, three packages ZZGemmOOC [144],

XeonPhiOOC [146] and FPGAOOC [163] have been developed, which use

the interfaces defined as HCLOOC. We also study the speedup of ZZGem-

mOOC over Nvidia’s out-of-card BLAS package CUBLAS-XT [136].

6.3.1 Evaluation Platform

Our experiments are conducted on two heterogeneous servers, named

HCLServer01 and HCLServer02. The first system, HCLServer01, contains

an Intel Haswell multicore CPU hosting a Nvidia K40c GPU, an Intel Xeon

Phi 3120P co-processor and a Virtex 7 690T FPGA whose specifications are

shown in Table 6.2. While the host Haswell CPU contains 64 GB main memory,

Nvidia K40c GPU has only 12 GB, Intel Xeon Phi has only 6 GB, and Xilinx Vir-

tex 7 690T FPGA involves only 16 GB main memory. In this node, the Nvidia

GPU and Intel Xeon Phi communicate with the host CPU using low-bandwidth

PCI-E x16 links. The FPGA communicates using PCI-E x8 link. Another plat-

form, HCLServer02, includes an Intel Skylake multicore CPU with 96 GB main

memory which is integrated with one Nvidia P100 PCIe GPU, containing 12

GB main memory. The Nvidia GPU communicates using PCI-E x16 link. The

specification of HCLServer02 can be found in Table 6.3. Both Nvidia K40c and

P100 PCIe GPUs are provided with three engines including dual copy engines

and one kernel invocation engine.

6.3.2 Performance of Out-of-card Implementations

We have developed three packages based on HCLOOC library which perform

out-of-card matrix multiplication of large dense matrices on GPUs, Xeon Phis

and FPGAs. For GPU, ZZGemmOOC out-of-card package [144] is developed

that reuses CUBLAS for in-card DGEMM invocations. For Xeon Phi, Xeon-

PhiOOC out-of-card package [146] is developed that reuses MKL BLAS [143]

171

6.3. EXPERIMENTAL RESULTS

Table 6.2: HCLServer01: Specifications of the Intel Haswell multicore CPU,
Nvidia K40c, Intel Xeon Phi 3120P, and Xilinx Virtex 7 690T FPGA.

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

Xilinx Virtex 7 690T FPGA
Frequency 200 MHz
LUTs 693120
DSPs 3600
BRAM 53 MB
FFs 866,400
Total main memory 16 GB DDR3

172

6.3. EXPERIMENTAL RESULTS

Table 6.3: HCLServer02: Specifications of the Intel Skylake multicore CPU
and Nvidia P100 PCIe.

Intel Xeon Gold 6152
Socket(s) 1
Cores per socket 22
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Main memory 96 GB

Nvidia P100 PCIe
No. of processor cores 3584
Total board memory 12 GB CoWoS HBM2
Memory bandwidth 549 GB/sec

for in-card DGEMM invocations. For FPGA, FPGAOOC out-of-card package

[163] is designed that reuses a user-defined kernel for in-card invocations.

The user-defined kernel calculates matrix multiplication using the straightfor-

ward algorithm with three nested loops. The kernel is not fully optimized for

FPGA and just uses work item pipelining. All packages use the interface de-

fined by HCLOOC. However, they are different in terms of implementation

details. For instance, while Stream Engine in ZZGemmOOC package is im-

plemented using CUDA, XeonPhiOOC uses Intel offload streams, and FP-

GAOOC adapts OpenCL command queues. The Intel MKL and CUDA ver-

sions used on HCLServer01 are respectively 2017.0.2 and 7.5. The CUDA

version 9.2.148 is installed on HCLServer02.

To evaluate the efficiency of our out-of-card implementations, we measure

the execution speed of our packages. The speed of multiplication of two ma-

trices with sizes M ×K, K×N is calculated as 2×M×K×N
t

where t represents

the execution time, which includes the time taken for matrix multiplication and

data transfers from host to device and vice versa.

We show the speeds for ZZGemmOOC and XeonPhiOOC for problem

sizes in the set, {642,1282, · · · , 448002}. Since FPGAOOC is very slow for

all problem sizes, we evaluate this package for very small problem sizes. To

study the out-of-card computation on the FPGA, the memory size of FPGA is

manually set to 64 KB. Matrix sizes used for this implementation is the set,

173

6.3. EXPERIMENTAL RESULTS

{162, 322, · · · , 5122}. In these experiments, when workload size fits into the ac-

celerator memory, all three matrices are transferred to the device, and results

are calculated using in-card computations.

To obtain an experimental data point, the application is executed repeat-

edly until the sample mean lies in the 95% confidence interval and a precision

of 0.025 (2.5%) has been achieved. For this purpose, Student’s t-test is used

assuming that the individual observations are independent and their popula-

tion follows the normal distribution. We verify the validity of these assumptions

using Pearson’s chi-squared test. When we mention a single number such as

floating-point performance (in GFLOPS), it is assumed that we are referring to

the sample mean determined using the Student’s t-test.

Figure 6.3 compares the speed functions of ZZGEMOOC with CUBLAS-

XT on TESLA K40c GPU. In this figure, x-axis represents the size of square

matrices and y-axis represents speed in GFLOPS. It is apparent that ZZGem-

mOOC outperforms CUBLAS-XT for all work-sizes. The gap between ZZGem-

mOOC and CUBLAS-XT becomes wider as the matrix size grows. The peak

double-precision floating point performance of TESLA K40c is 1.43 TFLOPS.

The maximum double-precision floating point performance of ZZGemmOOC

is 1.17 TFLOPS, which constitutes 82 percent of the peak. ZZGemmOOC pro-

vides 1.5x speedup over CUBLAS-XT for small matrix sizes and achieves up

to 2.7x speedup for larger ones. The vertical green line in the figure separates

the results for in-card matrix multiplication and out-of-card matrix multiplica-

tion.

Figure 6.4 shows the speed function for XeonPhiOOC on Intel Xeon Phi

3120P. We could not find any good third-party implementation for perfor-

mance comparison. The green line in the figure separates the results for

in-card matrix multiplication and out-of-card matrix multiplication. The peak

double-precision floating point performance of Intel Xeon Phi 3120P is 1003

GFLOPS. Using XeonPhiOOC, the maximum double-precision floating point

performance is 725 GFLOPS, which constitutes 72 percent of the peak.

Figure 6.5 illustrates the speed function for matrix multiplication on Xilinx

Virtex 7 690T FPGA. The green line in the figure highlights the data point

where out-of-card computation starts. It is clear that FPGAOOC exhibits no

174

6.3. EXPERIMENTAL RESULTS

Figure 6.3: Comparison of vendor-optimized library CUBLAS-XT with ZZGem-
mOOC on Nvidia K40c GPU. The green line separates in-card computations
from out-of-card ones. The dotted yellow line represents the theoretical peak
double precision performance of the GPU.

Figure 6.4: Speed function of XeonPhiOOC on Intel Xeon Phi 3120P. The
green line separates in-card computations from out-of-card ones. The dotted
red line represents the theoretical peak double-precision performance.

drop in speed for out-of-card computations in comparison with in-card results.

There exists no third-party implementation that could be used for performance

comparison.

The speed functions of ZZGEMOOC is compared with CUBLAS-XT on

TESLA P100 PCIe GPU in Figure 6.6. Similar to the out-of-card matrix multi-

plication on TESLA K40c GPU, ZZGemmOOC outperforms CUBLAS-XT for

all workload sizes and the difference between our out-of-card library and

CUBLAS-XT becomes wider as the matrix size grows. The peak double-

175

6.3. EXPERIMENTAL RESULTS

Figure 6.5: Speed function of FPGAOOC on Xilinx Virtex 7 690T FPGA. The
green line separates in-card computations from out-of-card ones.

Figure 6.6: Comparison of vendor-optimized library CUBLAS-XT with ZZGem-
mOOC on Nvidia P100 PCIe GPU. The green line separates in-card computa-
tions from out-of-card ones. The dotted yellow line represents the theoretical
peak double precision performance of the GPU.

precision floating point performance of Nvidia P100 PCIe is 4.7 TFLOPS. The

maximum double-precision floating point performance of ZZGemmOOC is 4

TFLOPS, which constitutes 85% of the peak. ZZGemmOOC is 2 times faster

than CUBLAS-XT for small matrix sizes and achieves up to 6x speedup for

larger ones. The vertical green line in the figure separates the results for in-

card matrix multiplication and out-of-card one.

176

6.4. SUMMARY

6.4 Summary

HPC users are being enticed to employ the capability of high-performance

heterogeneous computing through the provision of hybrid nodes that contain

multicore CPUs hosting one or more widely used hardware accelerators such

as GPUs, PHIs, and FPGAs.

Hardware acceleration of scientific kernels in HPC poses prominent chal-

lenges arising from the limited main memory of accelerators and the tight in-

tegration of the accelerators with multicore CPUs via PCI-E communication

links. We proposed a library containing interfaces (HCLOOC) to cope with

the limitations that beset the execution of data parallel applications for large

problem sizes on mainstream accelerators. An optimal software pipeline is

adopted for communication-computation overlapping. It is designed using the

fundamental building blocks, which are OpenCL command queues for FPGAs,

Intel offload streams for Intel Xeon Phis, and CUDA streams that allow con-

current utilization of the copy and execution engines provided in Nvidia GPUs.

The library was evaluated using an out-of-card implementation of matrix

multiplication of large dense matrices on two hybrid platforms, including a

Nvidia K40c GPU, an Intel Xeon Phi 3120P, a Xilinx Virtex 7 690T FPGA

and a Nvidia P100 PCIe GPU. We achieved 85% of the peak double-precision

floating performance of Nvidia P100 PCIe GPU, and the ZZGemmOOC im-

plementation outperforms the Nvidia’s out-of-card matrix multiplication imple-

mentation (CUBLAS-XT) by more than 6x. Our experiments showed 0% per-

formance loss for workloads exceeding the memory capacity of accelerators

for GPU, Intel Xeon Phi and Xilinx FPGA.

The software implementations of HCLOOC presented in this chapter can

be downloaded from [144], [146] and [163] for Nvidia GPUs, Intel Xeon Phis

and FPGAs, respectively.

The library interface design contained creation of a uniform interface for the

fundamental building blocks, OpenCL command queues, Intel offload streams

and CUDA streams and events which have disparate interfaces. There is no

unifying interface, allowing programmers to write reusable out-of-card imple-

mentations of their kernels that can run efficiently on different mainstream ac-

177

6.4. SUMMARY

celerators. This turned out to be a considerably difficult task, which we aim to

present in our future work.

Intel has developed a new library for heterogeneous computing named

hStreams [164]. We plan to add support for this new library in HCLOOC to

replace Intel offloads entirely. We plan to add full support for level-3 BLAS ker-

nels and also triangular and banded matrices in our future work. Furthermore,

we plan to provide out-of-card factorizations (LU, QR, Cholesky) that use the

out-of-card matrix-matrix multiplication (DGEMM) as a fundamental building

block.

We will also look at developing extensions of HCLOOC for facilitating pro-

gramming out-of-card implementations of accelerator kernels for multi-GPU

platforms.

178

Chapter 7

Conclusion

Heterogeneity has become a common and inseparable characteristic of to-

day’s high-performance computing (HPC) platforms for achieving not just un-

precedented computational power but also to address the well established

critical concerns of energy efficiency. Now, the tight interoperation of accel-

erators, owing to their excellent performance per watt feature, into multicore

CPUs has turned into a mainstream attribute of powerful clusters and exascale

supercomputers. Nevertheless, heterogeneous computing systems present

unprecedented challenges not found in typical homogeneous platforms.

Increasing the level of heterogeneity and the number of processing ele-

ments in a single die incurs more severe contention on shared resources, such

as LLC, QPI, memory banks, interconnects, PCI-E links and etc., which leads

to more complex nodal architectures. In this thesis, we showed that these

complexities and NUMA have posed new challenges to the modelling and op-

timization of hybrid data-parallel applications executing on modern heteroge-

neous HPC platforms for performance and energy consumption. In Chapters

3 and 4, we experimentally analysed the real-life behaviour of some hybrid

applications and illustrated that there is a complex correlation between per-

formance and energy consumption of the applications and problem size. We

demonstrated that the speed and dynamic energy profiles of these applica-

tions may be non-linear and even non-convex, involving drastic variations, so

that these shapes of profiles completely deviate from the characteristics as-

179

sumed by state-of-the-art algorithms for solving performance and energy opti-

mization problems.

To address these challenges, we modelled the performance and dynamic

energy consumption of hybrid applications using a set of application-specific

discrete functions of problem size, which are built via direct measurements

of performance and dynamic energy consumption. Then, two novel variation-

aware data-partitioning algorithms HPOPTA and HEOPTA were proposed, in

Chapters 3 and 4, to solve performance and dynamic energy optimization

problems on modern heterogeneous platforms, respectively. The former algo-

rithm generally solves min-max INLP single-objective optimization problems

with discrete objectives as input. Unlike the state-of-the-art load-balancing ap-

proaches, it does not rely on load balancing and often return imbalanced but

optimal solutions. HEOPTA mainly deals with min-sum INLP single-objective

optimization problems where inputs are discrete objectives.

In order to obtain trade-off solutions between performance and dynamic

energy and also performance and total energy, we have presented two

other variation-aware data-partitioning algorithms HEPOPTA and HTPOPTA in

Chapter 5. The Pareto-optimal sets, determined by the algorithms, rarely con-

tain one load-balanced solution whereas the rest are load imbalanced. These

algorithms take real-life discrete speed and dynamic energy functions as in-

puts and consider only one decision variable, which is workload distribution

(data partitioning). HEPOPTA generally obtains globally Pareto-optimal fronts

for any min-max and min-sum bi-objective optimization problem where inputs

are discrete objectives.

In Chapter 6, we also proposed HCLOOC, a library allowing out-of-card

computation on Nvidia GPUs, Intel Xeon Phis and FPGAs, to address the

limitations which prevent computational kernels from running large workloads

on these accelerators.

We have published the motivation of this research in [165] and elucidated

why new algorithms are required for performance and energy optimization on

modern heterogeneous HPC platforms. The results presented in Chapters 3

and 6 have been published in [166] and [167], respectively. We also plan to

submit the results of Chapters 4 and 5 to IEEE Transactions on Computers or

180

IEEE Transactions on Parallel and Distributed Systems.

The potential future work, which could be relevant in the extension of this

thesis, includes:

1. Designing parallel versions of the algorithms to reduce their theoretical

computations complexities.

2. Developing extensions to the proposed algorithms for optimization of

data-parallel applications with 2D and 3D problem dimensions.

3. Considering the cost of inter-node communications for performance and

dynamic energy modelling.

4. Analysing our proposed algorithms on heterogeneous platforms involv-

ing build-in accelerators on a single chip, such as Accelerator Processing

Units (APUs) which include both the CPU and GPU inside a single chip.

5. Studying the efficiency of the algorithms on heterogeneous platforms in-

cluding non-mainstream accelerators, such as FPGAs, Neural Network

Processors (NNPs) and Digital Signal Processors (DSPs).

6. Partitioning the computational cores in an abstract processor into hetero-

geneous groups and enhancing its performance and energy consump-

tion via workload partitioning.

7. Extensions to HCLOOC for supporting hStreams [164], a new library for

heterogeneous computing introduced by Intel.

8. Full support for level-2 and level-3 BLAS kernels, with triangular and

banded matrices as inputs, and providing out-of-card factorizations

(LU, QR, Cholesky) that use the out-of-card matrix-matrix multiplication

(DGEMM) as a fundamental building block.

9. Extension of HCLOOC for facilitating programming out-of-card imple-

mentations of accelerator kernels for multi-GPU platforms.

181

Bibliography

[1] A. Grama, V. Kumar, A. Gupta, and G. Karypis, Introduction to parallel

computing. Pearson Education, 2003.

[2] D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa, “Hierarchical partitioning

algorithm for scientific computing on highly heterogeneous CPU+GPU

clusters,” in European Conference on Parallel Processing, pp. 489–501,

Springer, 2012.

[3] A. Lastovetsky and R. Reddy, “New model-based methods and algo-

rithms for performance and energy optimization of data parallel applica-

tions on homogeneous multicore clusters,” IEEE Transactions on Paral-

lel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, 2017.

[4] R. R. Schaller, “Moore’s law: past, present and future,” IEEE spectrum,

vol. 34, no. 6, pp. 52–59, 1997.

[5] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc, “Design of ion-implanted MOSFET’s with very small physical

dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–

268, 1974.

[6] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of

the coming dark silicon apocalypse,” in Design Automation Conference

(DAC), 2012 49th ACM/EDAC/IEEE, pp. 1131–1136, IEEE, 2012.

[7] J. Fruehe, “Multicore processor technology,” Reprinted from Dell Power

Solutions www. dell. com/powersolutions (Obtained from the Internet on

Mar. 23, 2012), pp. 67–72, 2005.

182

BIBLIOGRAPHY

[8] Top500, “Top500.” https://www.top500.org/lists/2018/11/, 2018.

[9] F. D. Rossi, M. G. Xavier, C. A. De Rose, R. N. Calheiros, and R. Buyya,

“E-eco: Performance-aware energy-efficient cloud data center orches-

tration,” Journal of Network and Computer Applications, vol. 78, pp. 83–

96, 2017.

[10] Y. Kessaci, N. Melab, and E.-G. Talbi, “A pareto-based metaheuristic

for scheduling HPC applications on a geographically distributed cloud

federation,” Cluster Computing, vol. 16, no. 3, pp. 451–468, 2013.

[11] M. Cierniak, M. J. Zaki, and W. Li, “Compile-time scheduling algorithms

for a heterogeneous network of workstations,” The Computer Journal,

vol. 40, no. 6, pp. 356–372, 1997.

[12] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix multipli-

cation on heterogeneous platforms,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 12, no. 10, pp. 1033–1051, 2001.

[13] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-

tations solving linear algebra problems on networks of heterogeneous

computers,” J. Parallel Distrib. Comput., vol. 61, Apr. 2001.

[14] A. L. Lastovetsky and R. Reddy, “Data partitioning with a realistic per-

formance model of networks of heterogeneous computers,” in Parallel

and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-

national, p. 104, IEEE, 2004.

[15] A. Lastovetsky and R. Reddy, “Data partitioning with a functional per-

formance model of heterogeneous processors,” International Journal of

High Performance Computing Applications, vol. 21, no. 1, pp. 76–90,

2007.

[16] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based opti-

mization of EULAG kernel on Intel Xeon Phi through load imbalancing,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 3,

pp. 787–797, 2017.

183

https://www.top500.org/lists/2018/11/

BIBLIOGRAPHY

[17] P. K. Smolarkiewicz and W. W. Grabowski, “The multidimensional pos-

itive definite advection transport algorithm: Nonoscillatory option,” J.

Comput. Phys., vol. 86, Feb. 1990.

[18] R. R. Manumachu and A. Lastovetsky, “Parallel data partitioning algo-

rithms for optimization of data-parallel applications on modern extreme-

scale multicore platforms for performance and energy,” IEEE Access,

vol. 6, pp. 69075–69106, 2018.

[19] OpenBLAS, “OpenBLAS: An optimized BLAS library.” http://www.

openblas.net/, 2016.

[20] FFTW, “FFTW: A fast, free c FFT library.” http://www.fftw.org/,

2016.

[21] A. Lastovetsky and R. Reddy, “Data distribution for dense factorization

on computers with memory heterogeneity,” Parallel Computing, vol. 33,

Dec. 2007.

[22] A. Ilić, F. Pratas, P. Trancoso, and L. Sousa, “High-performance comput-

ing on heterogeneous systems: Database queries on CPU and GPU,”

High Performance Scientific Computing with Special Emphasis on Cur-

rent Capabilities and Future Perspectives, pp. 202–222, 2010.

[23] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balancing of

parallel computational iterative routines on highly heterogeneous HPC

platforms,” Parallel Processing Letters, vol. 21, no. 02, pp. 195–217,

2011.

[24] D. Clarke, A. L. Lastovetsky, and V. Rychkov, “Column-based matrix par-

titioning for parallel matrix multiplication on heterogeneous processors

based on functional performance models,” in Euro-Par 2011: Parallel

Processing Workshops, vol. 7155 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, 2012.

184

http://www.openblas.net/
http://www.openblas.net/
http://www.fftw.org/

BIBLIOGRAPHY

[25] X. Liu, Z. Zhong, and K. Xu, “A hybrid solution method for CFD appli-

cations on GPU-accelerated hybrid HPC platforms,” Future Generation

Computer Systems, vol. 56, pp. 759–765, 2016.

[26] M. Radmanović, D. Gajić, and R. Stanković, “Efficient computation of

galois field expressions on hybrid CPU-GPU platforms.,” Journal of

Multiple-Valued Logic & Soft Computing, vol. 26, 2016.

[27] A. Ilic and L. Sousa, “Simultaneous multi-level divisible load balancing

for heterogeneous desktop systems,” in Parallel and Distributed Pro-

cessing with Applications (ISPA), 2012 IEEE 10th International Sym-

posium on, pp. 683–690, IEEE, 2012.

[28] J. Colaço, A. Matoga, A. Ilic, N. Roma, P. Tomás, and R. Chaves, “Trans-

parent application acceleration by intelligent scheduling of shared library

calls on heterogeneous systems,” in Parallel Processing and Applied

Mathematics, pp. 693–703, Springer, 2013.

[29] V. Cardellini, A. Fanfarillo, and S. Filippone, “Heterogeneous sparse ma-

trix computations on hybrid GPU/CPU platforms.,” in PARCO, pp. 203–

212, 2013.

[30] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approximation

scheme for energy-efficient scheduling of real-time tasks in heteroge-

neous multiprocessor systems,” in Design, Automation & Test in Europe

Conference & Exhibition, 2009. DATE’09., pp. 694–699, IEEE, 2009.

[31] J. Li and J. F. Martínez, “Power-performance considerations of parallel

computing on chip multiprocessors,” ACM Transactions on Architecture

and Code Optimization (TACO), vol. 2, no. 4, pp. 397–422, 2005.

[32] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a

warehouse-sized computer,” in ACM SIGARCH computer architecture

news, vol. 35, pp. 13–23, ACM, 2007.

[33] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-optimization power

management for chip multiprocessors,” in Proceedings of the 17th in-

185

BIBLIOGRAPHY

ternational conference on Parallel architectures and compilation tech-

niques, pp. 177–186, ACM, 2008.

[34] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-

performance tradeoffs in processor architecture and circuit design: a

marginal cost analysis,” ACM SIGARCH Computer Architecture News,

vol. 38, no. 3, pp. 26–36, 2010.

[35] J. Zhao, G. Sun, G. H. Loh, and Y. Xie, “Optimizing GPU energy effi-

ciency with 3D die-stacking graphics memory and reconfigurable mem-

ory interface,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 10, no. 4, p. 24, 2013.

[36] A. W. Lewis, S. Ghosh, and N.-F. Tzeng, “Run-time energy consump-

tion estimation based on workload in server systems.,” HotPower, vol. 8,

pp. 17–21, 2008.

[37] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y. Su, and

K. Cameron, “Power-aware predictive models of hybrid (mpi/openmp)

scientific applications on multicore systems,” Computer Science-

Research and Development, vol. 27, no. 4, pp. 245–253, 2012.

[38] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh,

“Energy-aware high performance computing with graphic processing

units,” in Workshop on power aware computing and system, 2008.

[39] S. Hong and H. Kim, “An integrated GPU power and performance

model,” in ACM SIGARCH Computer Architecture News, vol. 38,

pp. 280–289, ACM, 2010.

[40] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,

“Statistical power modeling of GPU kernels using performance coun-

ters,” in Green Computing Conference, 2010 International, pp. 115–122,

IEEE, 2010.

186

BIBLIOGRAPHY

[41] W. L. Bircher and L. K. John, “Complete system power estimation us-

ing processor performance events,” IEEE Transactions on Computers,

vol. 61, no. 4, pp. 563–577, 2012.

[42] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, and

G. D. Peterson, “Power aware computing on GPUs,” in Application Ac-

celerators in High Performance Computing (SAAHPC), 2012 Sympo-

sium on, pp. 64–73, IEEE, 2012.

[43] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of

energy,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pp. 661–672, IEEE, 2013.

[44] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level

energy model of Intel’s Xeon Phi processor,” in Low Power Electronics

and Design (ISLPED), 2013 IEEE International Symposium on, pp. 389–

394, IEEE, 2013.

[45] R. R. Manumachu and A. Lastovetsky, “Bi-objective optimization of

data-parallel applications on homogeneous multicore clusters for per-

formance and energy,” IEEE Transactions on Computers, vol. 67, no. 2,

pp. 160–177, 2018.

[46] R. Reddy Manumachu and A. L. Lastovetsky, “Design of self-adaptable

data parallel applications on multicore clusters automatically optimized

for performance and energy through load distribution,” Concurrency and

Computation: Practice and Experience, vol. 0, no. 0, p. e4958.

[47] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya, “Energy effi-

cient genetic-based schedulers in computational grids,” Concurrency

and Computation: Practice and Experience, vol. 27, no. 4, pp. 809–829,

2015.

[48] I. Ahmad, S. Ranka, and S. U. Khan, “Using game theory for scheduling

tasks on multi-core processors for simultaneous optimization of perfor-

mance and energy,” in Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pp. 1–6, IEEE, 2008.

187

BIBLIOGRAPHY

[49] B. Subramaniam and W.-c. Feng, “Statistical power and performance

modeling for optimizing the energy efficiency of scientific computing,” in

Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Com-

puting and Communications & Int’l Conference on Cyber, Physical and

Social Computing, pp. 139–146, IEEE Computer Society, 2010.

[50] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,

D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, et al., “Analyzing and

mitigating the impact of manufacturing variability in power-constrained

supercomputing,” in High Performance Computing, Networking, Storage

and Analysis, 2015 SC-International Conference for, pp. 1–12, IEEE,

2015.

[51] N. Gholkar, F. Mueller, and B. Rountree, “Power tuning HPC jobs on

power-constrained systems,” in Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation, pp. 179–191,

ACM, 2016.

[52] K. O’Brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, “A

survey of power and energy predictive models in HPC systems and ap-

plications,” ACM Computing Surveys (CSUR), vol. 50, no. 3, p. 37, 2017.

[53] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.

Snoeren, and R. K. Gupta, “Evaluating the effectiveness of model-based

power characterization,” in USENIX Annual Technical Conf, vol. 20,

2011.

[54] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E.

Nagel, “Power measurement techniques on standard compute nodes: A

quantitative comparison,” in Performance analysis of systems and soft-

ware (ISPASS), 2013 IEEE international symposium on, pp. 194–204,

IEEE, 2013.

[55] A. Shahid, M. Fahad, R. Reddy, and A. Lastovetsky, “Additivity: A selec-

tion criterion for performance events for reliable energy predictive model-

188

BIBLIOGRAPHY

ing,” Supercomputing Frontiers and Innovations, vol. 4, no. 4, pp. 50–65,

2017.

[56] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “A survey

and taxonomy of energy efficient resource management techniques in

platform as a service cloud,” in Handbook of Research on End-to-End

Cloud Computing Architecture Design, pp. 410–454, IGI Global, 2017.

[57] Y. Liu, H. Zhu, K. Lu, and X. Wang, “Self-adaptive management of the

sleep depths of idle nodes in large scale systems to balance between

energy consumption and response times,” in Cloud Computing Technol-

ogy and Science (CloudCom), 2012 IEEE 4th International Conference

on, pp. 633–639, IEEE, 2012.

[58] A. Benoit, L. Lefèvre, A.-C. Orgerie, and I. Raïs, “Reducing the en-

ergy consumption of large-scale computing systems through combined

shutdown policies with multiple constraints,” The International Journal of

High Performance Computing Applications, vol. 32, no. 1, pp. 176–188,

2018.

[59] K. Chen, J. Lenhardt, and W. Schiffmann, “Improving energy efficiency

of web servers by using a load distribution algorithm and shutting down

idle nodes,” in Cluster, Cloud and Grid Computing (CCGrid), 2015 15th

IEEE/ACM International Symposium on, pp. 745–748, IEEE, 2015.

[60] K. Rajamani and C. Lefurgy, “On evaluating request-distribution

schemes for saving energy in server clusters,” in Performance Analy-

sis of Systems and Software, 2003. ISPASS. 2003 IEEE International

Symposium on, pp. 111–122, IEEE, 2003.

[61] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y. Zomaya,

and D. Tuyttens, “A parallel bi-objective hybrid metaheuristic for energy-

aware scheduling for cloud computing systems,” Journal of Parallel and

Distributed Computing, vol. 71, no. 11, pp. 1497–1508, 2011.

189

BIBLIOGRAPHY

[62] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A multi-

objective approach for workflow scheduling in heterogeneous environ-

ments,” in Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, pp. 300–309, IEEE, 2012.

[63] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allo-

cation heuristics for efficient management of data centers for cloud com-

puting,” Future generation computer systems, vol. 28, no. 5, pp. 755–

768, 2012.

[64] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective energy-efficient

workflow scheduling using list-based heuristics,” Future Generation

Computer Systems, vol. 36, pp. 221–236, 2014.

[65] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.

Rountree, and M. E. Femal, “Analyzing the energy-time trade-off in high-

performance computing applications,” IEEE Transactions on Parallel &

Distributed Systems, no. 6, pp. 835–848, 2007.

[66] P. Balaprakash, A. Tiwari, and S. M. Wild, “Multi objective optimization

of HPC kernels for performance, power, and energy,” in International

Workshop on Performance Modeling, Benchmarking and Simulation of

High Performance Computer Systems, pp. 239–260, Springer, 2013.

[67] M. A. Aba, L. Zaourar, and A. Munier, “Approximation algorithm for

scheduling a chain of tasks on heterogeneous systems,” in European

Conference on Parallel Processing, pp. 353–365, Springer, 2017.

[68] S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron, “Iso-energy-

efficiency: An approach to power-constrained parallel computation,” in

Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE In-

ternational, pp. 128–139, IEEE, 2011.

[69] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz, “Perfect strong

scaling using no additional energy,” in Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on, pp. 649–660,

IEEE, 2013.

190

BIBLIOGRAPHY

[70] J. M. Marszałkowski, M. Drozdowski, and J. Marszałkowski, “Time and

energy performance of parallel systems with hierarchical memory,” Jour-

nal of Grid Computing, vol. 14, no. 1, pp. 153–170, 2016.

[71] K. M. Tarplee, R. Friese, A. A. Maciejewski, H. J. Siegel, and E. K.

Chong, “Energy and makespan tradeoffs in heterogeneous computing

systems using efficient linear programming techniques,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 27, no. 6, pp. 1633–1646,

2016.

[72] E. Gabaldon, J. L. Lerida, F. Guirado, and J. Planes, “Blacklist muti-

objective genetic algorithm for energy saving in heterogeneous environ-

ments,” The Journal of Supercomputing, vol. 73, no. 1, pp. 354–369,

2017.

[73] A. Chakrabarti, S. Parthasarathy, and C. Stewart, “A pareto framework

for data analytics on heterogeneous systems: Implications for green en-

ergy usage and performance,” in Parallel Processing (ICPP), 2017 46th

International Conference on, pp. 533–542, IEEE, 2017.

[74] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel proces-

sors: a hands-on approach. Morgan kaufmann, 2016.

[75] Nvidia, “CUDA zone.” https://developer.nvidia.com/cuda-zone,

2018.

[76] A. T. Chronopoulos, D. Grosu, A. M. Wissink, M. Benche, and J. Liu, “An

efficient 3D grid based scheduling for heterogeneous systems,” Journal

of Parallel and Distributed Computing, vol. 63, no. 9, pp. 827 – 837,

2003. Special Section on the Best Papers from the 2002 International

Parallel and Distributed Processing Symposium.

[77] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, “An efficient, model-

based CPU-GPU heterogeneous FFT library,” in Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on,

pp. 1–10, IEEE, 2008.

191

https://developer.nvidia.com/cuda-zone

BIBLIOGRAPHY

[78] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu, “Adaptive opti-

mization for petascale heterogeneous CPU/GPU computing,” in Clus-

ter Computing (CLUSTER), 2010 IEEE International Conference on,

pp. 19–28, IEEE, 2010.

[79] H. Khaleghzadeh, H. Deldari, R. Reddy, and A. Lastovetsky, “Hierarchi-

cal multicore thread mapping via estimation of remote communication,”

The Journal of Supercomputing, vol. 74, no. 3, pp. 1321–1340, 2018.

[80] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:

a programming model for heterogeneous multi-core systems,” in ACM

SIGOPS operating systems review, vol. 42, pp. 287–296, ACM, 2008.

[81] G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and R. A. van de

Geijn, “Solving dense linear systems on platforms with multiple hard-

ware accelerators,” SIGPLAN Not., vol. 44, pp. 121–130, Feb. 2009.

[82] C. Augonnet, S. Thibault, and R. Namyst, “Automatic calibration of

performance models on heterogeneous multicore architectures,” in 3rd

Workshop on Highly Parallel Processing on a Chip (HPPC 2009), Aug.

2009.

[83] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix com-

putations on heterogeneous multi-core and multi-GPU systems,” in Pro-

ceedings of the 26th ACM international conference on Supercomputing,

pp. 365–376, ACM, 2012.

[84] K. Kyriakopoulos, A. T. Chronopoulos, and L. Ni, “An optimal scheduling

scheme for tiling in distributed systems,” in Cluster Computing, 2007

IEEE International Conference on, pp. 267–274, IEEE, 2007.

[85] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for high-

performance, power-efficient heterogeneous many-core systems,” in

Computer Design (ICCD), 2013 IEEE 31st International Conference on,

pp. 54–61, IEEE, 2013.

192

BIBLIOGRAPHY

[86] K. Schloegel, G. Karypis, and V. Kumar, “A unified algorithm for

load-balancing adaptive scientific simulations,” in Supercomputing,

ACM/IEEE 2000 Conference, pp. 59–59, Nov 2000.

[87] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and

L. A. Riesen, “Hypergraph-based dynamic load balancing for adaptive

scientific computations,” in Parallel and Distributed Processing Sympo-

sium, 2007. IPDPS 2007. IEEE International, pp. 1–11, IEEE, 2007.

[88] G. Cybenko, “Dynamic load balancing for distributed memory multipro-

cessors,” J. Parallel Distrib. Comput., vol. 7, pp. 279–301, Oct. 1989.

[89] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Dynamic load balanc-

ing and efficient load estimators for asynchronous iterative algorithms,”

Parallel and Distributed Systems, IEEE Transactions on, vol. 16, no. 4,

pp. 289–299, 2005.

[90] A. Legrand, H. Renard, Y. Robert, and F. Vivien, “Mapping and load-

balancing iterative computations,” IEEE Trans. Parallel Distrib. Syst.,

vol. 15, June 2004.

[91] R. L. Cariño and I. Banicescu, “Dynamic load balancing with adaptive

factoring methods in scientific applications,” The Journal of Supercom-

puting, vol. 44, no. 1, pp. 41–63, 2008.

[92] J. A. Martínez, E. M. Garzón, A. Plaza, and I. García, “Automatic

tuning of iterative computation on heterogeneous multiprocessors with

ADITHE,” J. Supercomput., vol. 58, Nov. 2011.

[93] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive per-

formance model for superscalar processors,” in Proceedings of the

39th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 161–170, IEEE Computer Society, 2006.

[94] E. Grobelny, D. Bueno, I. Troxel, A. D. George, and J. S. Vetter, “FASE:

A framework for scalable performance prediction of HPC systems and

applications,” Simulation, vol. 83, no. 10, pp. 721–745, 2007.

193

BIBLIOGRAPHY

[95] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful

visual performance model for multicore architectures,” Communications

of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[96] K.-H. Kim, K. Kim, and Q.-H. Park, “Performance analysis and optimiza-

tion of three-dimensional FDTD on GPU using roofline model,” Com-

puter Physics Communications, vol. 182, no. 6, pp. 1201–1207, 2011.

[97] C. Nugteren and H. Corporaal, “The boat hull model: adapting the

roofline model to enable performance prediction for parallel computing,”

in ACM Sigplan Notices, vol. 47, pp. 291–292, ACM, 2012.

[98] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.

Hwu, “An adaptive performance modeling tool for GPU architectures,” in

ACM Sigplan Notices, vol. 45, pp. 105–114, ACM, 2010.

[99] Y. Zhang and J. D. Owens, “A quantitative performance analysis model

for GPU architectures,” in High Performance Computer Architecture

(HPCA), 2011 IEEE 17th International Symposium on, pp. 382–393,

IEEE, 2011.

[100] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and

S. Poole, “Modeling and predicting performance of high performance

computing applications on hardware accelerators,” The International

Journal of High Performance Computing Applications, vol. 27, no. 2,

pp. 89–108, 2013.

[101] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Workload

partitioning for accelerating applications on heterogeneous platforms,”

IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 9,

pp. 2766–2780, 2016.

[102] F. Zhang, B. Wu, J. Zhai, B. He, and W. Chen, “FinePar: Irregularity-

aware fine-grained workload partitioning on integrated architectures,” in

Proceedings of the 2017 International Symposium on Code Generation

and Optimization, pp. 27–38, IEEE Press, 2017.

194

BIBLIOGRAPHY

[103] C. Rosales, A. Gómez-Iglesias, S. Liu, F. Chen, L. Huang, H. Liu,

A. Lamas-Linares, and J. Cazes, “Performance prediction of HPC ap-

plications on Intel processors,” in Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2017 IEEE International, pp. 1325–

1332, IEEE, 2017.

[104] M. A. Obaida, J. Liu, G. Chennupati, N. Santhi, and S. Eidenbenz, “Par-

allel application performance prediction using analysis based models

and HPC simulations,” in Proceedings of the 2018 ACM SIGSIM Con-

ference on Principles of Advanced Discrete Simulation, pp. 49–59, ACM,

2018.

[105] N. Ding, S. Xu, Z. Song, B. Zhang, J. Li, and Z. Zheng, “Using hardware

counter-based performance model to diagnose scaling issues of HPC

applications,” Neural Computing and Applications, pp. 1–13, 2018.

[106] A. Lastovetsky and R. Reddy, “A novel algorithm of optimal matrix parti-

tioning for parallel dense factorization on heterogeneous processors,” in

International Conference on Parallel Computing Technologies, pp. 261–

275, Springer, 2007.

[107] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A pro-

posal for a heterogeneous cluster ScaLAPACK (dense linear solvers),”

IEEE Transactions on Computers, vol. 50, no. 10, pp. 1052–1070, 2001.

[108] M. Fatica, “Accelerating linpack with CUDA on heterogenous clusters,”

in Proceedings of 2nd Workshop on General Purpose Processing on

Graphics Processing Units, pp. 46–51, ACM, 2009.

[109] R. Wyrzykowski, L. Szustak, K. Rojek, and A. Tomas, “Towards efficient

decomposition and parallelization of mpdata on hybrid CPU-GPU clus-

ter,” in International Conference on Large-Scale Scientific Computing,

pp. 457–464, Springer, 2013.

[110] A. Lastovetsky and R. Reddy, “Data partitioning for multiprocessors with

memory heterogeneity and memory constraints,” Scientific Program-

ming, vol. 13, no. 2, pp. 93–112, 2005.

195

BIBLIOGRAPHY

[111] W. Zhang, X. Ji, B. Song, S. Yu, H. Chen, T. Li, P. C. Yew, and W. Zhao,

“VarCatcher: A framework for tackling performance variability of parallel

workloads on multi-core,” IEEE Transactions on Parallel and Distributed

Systems, vol. 28, pp. 1215–1228, April 2017.

[112] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,

“Energy-driven integrated hardware-software optimizations using Sim-

plePower,” ACM SIGARCH Computer Architecture News, vol. 28, no. 2,

pp. 95–106, 2000.

[113] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: A framework for

architectural-level power analysis and optimizations, vol. 28. ACM,

2000.

[114] D. Brooks, M. Martonosi, J.-D. Wellman, and P. Bose, “Power-

performance modeling and tradeoff analysis for a high end micropro-

cessor,” in International Workshop on Power-Aware Computer Systems,

pp. 126–136, Springer, 2000.

[115] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi, “McPAT: an integrated power, area, and timing modeling frame-

work for multicore and manycore architectures,” in Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 469–480, ACM, 2009.

[116] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and

W. Sung, “Power modeling for GPU architectures using McPAT,” ACM

Transactions on Design Automation of Electronic Systems (TODAES),

vol. 19, no. 3, p. 26, 2014.

[117] J. Chen, B. Li, Y. Zhang, L. Peng, and J.-k. Peir, “Statistical GPU power

analysis using tree-based methods,” in Green Computing Conference

and Workshops (IGCC), 2011 International, pp. 1–6, IEEE, 2011.

[118] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a

single chip causes massive power bills GPUSimPow: A GPGPU power

196

BIBLIOGRAPHY

simulator,” in Performance Analysis of Systems and Software (ISPASS),

2013 IEEE International Symposium on, pp. 97–106, IEEE, 2013.

[119] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and

accurate model of power-performance efficiency on emergent GPU ar-

chitectures,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE

27th International Symposium on, pp. 673–686, IEEE, 2013.

[120] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Enabling accu-

rate power profiling of HPC applications on exascale systems,” in Pro-

ceedings of the 3rd International Workshop on Runtime and Operating

Systems for Supercomputers, p. 4, ACM, 2013.

[121] M. Jarus, A. Oleksiak, T. Piontek, and J. Węglarz, “Runtime power

usage estimation of HPC servers for various classes of real-life appli-

cations,” Future Generation Computer Systems, vol. 36, pp. 299–310,

2014.

[122] Z. Al-Khatib and S. Abdi, “Operand-value-based modeling of dynamic

energy consumption of soft processors in FPGA,” in International Sym-

posium on Applied Reconfigurable Computing, pp. 65–76, Springer,

2015.

[123] S. Kamil, J. Shalf, and E. Strohmaier, “Power efficiency in high perfor-

mance computing,” in Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pp. 1–8, IEEE, 2008.

[124] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-

level full-system power models.,” HotPower, vol. 8, no. 2, pp. 32–39,

2008.

[125] J. Choi, M. Dukhan, X. Liu, and R. Vuduc, “Algorithmic time, energy, and

power on candidate HPC compute building blocks,” in Parallel and Dis-

tributed Processing Symposium, 2014 IEEE 28th International, pp. 447–

457, IEEE, 2014.

197

BIBLIOGRAPHY

[126] L. Gu, J. Siegel, and X. Li, “Using GPUs to compute large out-of-card

FFTs,” in Proceedings of the International Conference on Supercomput-

ing, ICS ’11, pp. 255–264, ACM, 2011.

[127] X. Mu, H.-X. Zhou, K. Chen, and W. Hong, “Higher order method of mo-

ments with a parallel out-of-core LU solver on GPU/CPU platform,” IEEE

Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5634–

5646, 2014.

[128] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on het-

erogeneous multicore and Multi-GPU systems using functional perfor-

mance models of Data-Parallel applications,” in 2012 IEEE International

Conference on Cluster Computing (Cluster 2012), pp. 191–199, 24-28

September 2012.

[129] Z. Zhong, Optimization of Data-Parallel Scientific Applications on Highly

Heterogeneous Modern HPC Platforms. PhD thesis, University College

Dublin, 2014.

[130] J. Wu and J. Jaja, “Achieving native GPU performance for out-of-card

large dense matrix multiplication,” Parallel Processing Letters, vol. 26,

no. 02, p. 1650007, 2016.

[131] A. Sabne, P. Sakdhnagool, and R. Eigenmann, “Scaling large-data com-

putations on multi-GPU accelerators,” in Proceedings of the 27th inter-

national ACM conference on International conference on supercomput-

ing, pp. 443–454, ACM, 2013.

[132] K. Shirahata, H. Sato, and S. Matsuoka, “Out-of-core GPU memory

management for mapreduce-based large-scale graph processing,” in

Cluster Computing (CLUSTER), 2014 IEEE International Conference

on, pp. 221–229, IEEE, 2014.

[133] K. Kabir, A. Haidar, S. Tomov, A. Bouteiller, and J. Dongarra, “A frame-

work for out of memory SVD algorithms,” in International Supercomput-

ing Conference, pp. 158–178, Springer, 2017.

198

BIBLIOGRAPHY

[134] A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of mem-

ory SVD solver for big data,” in High Performance Extreme Computing

Conference (HPEC), 2017 IEEE, pp. 1–7, IEEE, 2017.

[135] I. Yamazaki, S. Tomov, and J. Dongarra, “Non-GPU-resident symmet-

ric indefinite factorization,” Concurrency and Computation: Practice and

Experience, vol. 29, no. 5, p. e4012, 2017.

[136] CUBLAS-XT, “CUBLAS-XT: Multi-GPU version of CUBLAS library

supporting out-of-core routines.” https://developer.nvidia.com/

cublas, 2016.

[137] NVIDIA, “CUDA C Programming Guide.” https://docs.nvidia.com/

cuda/cuda-c-programming-guide/, 2016.

[138] R. Edgar, “SciGPU-GEMM.” https://github.com/YaohuiZeng/

scigpugemm, 2009.

[139] D. Martin, “High performance computing linpack benchmark for CUDA.”

https://github.com/avidday/hpl-cuda, 2010.

[140] S. Tomov, J. Dongarra, V. Volkov, and J. Demmel, “Magma library,” Univ.

of Tennessee and Univ. of California, Knoxville, TN, and Berkeley, CA,

2009.

[141] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear alge-

bra for hybrid GPU accelerated manycore systems,” Parallel Computing,

vol. 36, no. 5-6, pp. 232–240, 2010.

[142] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on mul-

ticore and multi-GPU platforms using functional performance models,”

Computers, IEEE Transactions on, vol. 64, no. 9, pp. 2506–2518, 2015.

[143] I. Corporation, “Intel Math Kernel Library-Intel MKL BLAS.” https://

software.intel.com/en-us/mkl/features/linear-algebra, 2018.

199

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://github.com/YaohuiZeng/scigpugemm
https://github.com/YaohuiZeng/scigpugemm
https://github.com/avidday/hpl-cuda
https://software.intel.com/en-us/mkl/features/linear-algebra
https://software.intel.com/en-us/mkl/features/linear-algebra

BIBLIOGRAPHY

[144] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “ZZGEM-

MOOC: A package for out-of-card DGEMM on GPU.” https://git.

ucd.ie/hcl/zzgemmooc.git, 2017.

[145] Nvidia, “CUDA toolkit documentation.” http://docs.nvidia.com/

cuda/cublas/index.html#axzz4kRVc2o6B, 2017.

[146] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Xeon-

PhiOOC: A package for out-of-card DGEMM on Xeon Phi.” https:

//git.ucd.ie/manumachu/xeonphiooc.git, 2017.

[147] I. Corporation, “Intel Math Kernel Library-Intel MKL FFT.” https://

software.intel.com/en-us/mkl/features/fft, 2018.

[148] Nvidia, “Optimized FFT routines for Nvidia graphics processors.” https:

//docs.nvidia.com/cuda/cufft/index.html, 2018.

[149] A. Lastovetsky, R. Reddy, and R. Higgins, “Building the functional per-

formance model of a processor,” in Proceedings of the 2006 ACM sym-

posium on Applied computing, pp. 746–753, ACM, 2006.

[150] H. Khaleghzadeh, R. Reddy, and A. Lastovetsky, “HPOPTA: Het-

erogeneous model-based data partitioning algorithm for optimization

of data-parallel applications for performance.” https://git.ucd.ie/

hkhaleghzadeh/hpopt.git, 2017.

[151] J. Hsu, “Three paths to exascale supercomputing,” IEEE Spectrum,

vol. 53, no. 1, pp. 14–15, 2016.

[152] DOE, “Preliminary conceptual design for an exascale computing ini-

tiative.” https://science.energy.gov/~/media/ascr/ascac/pdf/

meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf,

2014.

[153] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-

system power analysis and modeling for server environments,” Inter-

national Symposium on Computer Architecture-IEEE, 2006.

200

https://git.ucd.ie/hcl/zzgemmooc.git
https://git.ucd.ie/hcl/zzgemmooc.git
http://docs.nvidia.com/cuda/cublas/index.html#axzz4kRVc2o6B
http://docs.nvidia.com/cuda/cublas/index.html#axzz4kRVc2o6B
https://git.ucd.ie/manumachu/xeonphiooc.git
https://git.ucd.ie/manumachu/xeonphiooc.git
https://software.intel.com/en-us/mkl/features/fft
https://software.intel.com/en-us/mkl/features/fft
https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://git.ucd.ie/hkhaleghzadeh/hpopt.git
https://git.ucd.ie/hkhaleghzadeh/hpopt.git
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf

BIBLIOGRAPHY

[154] B. Goel, S. A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Ce-

sati, “Portable, scalable, per-core power estimation for intelligent re-

source management,” in International Conference on Green Computing,

pp. 135–146, IEEE, 2010.

[155] R. Basmadjian, N. Ali, F. Niedermeier, H. De Meer, and G. Giuliani,

“A methodology to predict the power consumption of servers in data

centres,” in Proceedings of the 2nd international conference on energy-

efficient computing and networking, pp. 1–10, ACM, 2011.

[156] HCL, “HCLWattsUp: API for power and energy measurements using

WattsUp Pro Meter.” http://git.ucd.ie/hcl/hclwattsup, 2016.

[157] H. Khaleghzadeh, R. Reddy, and A. Lastovetsky, “HEOPTA: Hetero-

geneous model-based data partitioning algorithm for optimization of

data-parallel applications for dynamic energy.” https://git.ucd.ie/

hkhaleghzadeh/heopt, 2018.

[158] H. Khaleghzadeh, R. Reddy, and A. Lastovetsky, “HEPOPTA: Heteroge-

neous model-based data partitioning algorithm for optimization of data-

parallel applications for dynamic energy and performance and for to-

tal energy and performance.” https://git.ucd.ie/hkhaleghzadeh/

hepopt, 2018.

[159] J. Suzuki, Y. Hayashi, M. Kan, S. Miyakawa, T. Takenaka, T. Araki, and

M. Kitsuregawa, “Victream: Computing framework for out-of-core pro-

cessing on multiple GPUs,” in Proceedings of the Fourth IEEE/ACM In-

ternational Conference on Big Data Computing, Applications and Tech-

nologies, pp. 179–188, ACM, 2017.

[160] Khronos OpenCL Registry, “OpenCL Command Queues.” https://

www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf, 2017.

[161] Intel, “Programming for Intel MIC architecture.” https://software.

intel.com/en-us/node/684368, 2017.

201

http://git.ucd.ie/hcl/hclwattsup
https://git.ucd.ie/hkhaleghzadeh/heopt
https://git.ucd.ie/hkhaleghzadeh/heopt
https://git.ucd.ie/hkhaleghzadeh/hepopt
https://git.ucd.ie/hkhaleghzadeh/hepopt
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://software.intel.com/en-us/node/684368
https://software.intel.com/en-us/node/684368

BIBLIOGRAPHY

[162] NVIDIA, “Tesla K40 GPU accelerator.” http:

//www.nvidia.com/content/PDF/kepler/

Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf,

2013.

[163] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky., “FP-

GAOOC: A package for out-of-card DGEMM on FPGA.” https://git.

ucd.ie/hcl/fpgagemm.git, 2017.

[164] C. J. Newburn, G. Bansal, M. Wood, L. Crivelli, J. Planas, A. Duran,

P. Souza, L. Borges, P. Luszczek, S. Tomov, et al., “Heterogeneous

streaming,” in 2016 IEEE International Parallel and Distributed Process-

ing Symposium Workshops (IPDPSW), pp. 611–620, IEEE, 2016.

[165] A. Lastovetsky, M. Fahad, H. Khaleghzadeh, S. Khokhriakov, R. Reddy,

A. Shahid, L. Szustak, and R. Wyrzykowski, “How pre-multicore meth-

ods and algorithms perform in multicore era,” in International Confer-

ence on High Performance Computing, pp. 527–539, Springer, 2018.

[166] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel data-

partitioning algorithm for performance optimization of data-parallel appli-

cations on heterogeneous HPC platforms,” IEEE Transactions on Paral-

lel and Distributed Systems, vol. 29, no. 10, pp. 2176–2190, 2018.

[167] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-of-core

implementation for accelerator kernels on heterogeneous clouds,” The

Journal of Supercomputing, vol. 74, no. 2, pp. 551–568, 2018.

202

http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
https://git.ucd.ie/hcl/fpgagemm.git
https://git.ucd.ie/hcl/fpgagemm.git

Appendix A

Experimental Methodology

To make sure the experimental results are reliable, we follow the methodology

described below:

• The server is fully reserved and dedicated to the experiments during

execution. We also ensure that there are no drastic fluctuations in the

load due to abnormal events in the server by monitoring its load continu-

ously for a week using the tool sar. Insignificant variation in the load was

observed during this monitoring period suggesting normal and clean be-

haviour of the server.

• A given hybrid application is executed simultaneously on all abstract pro-

cessors to obtain a data point in its speed or dynamic energy functions.

The application is repeatedly executed until the sample mean of mea-

surements lies in a user-defined confidence interval and a user-defined

precision is achieved. We set the confidence interval as 95% and the

precision as 0.1 (10%) for our experiments. For this purpose, Student’s

t-test is used assuming that the individual observations are independent

and their population follows the normal distribution. We verify the validity

of these assumptions by plotting the distributions of observations.

• We set OMP_PLACES and OMP_PROC_BIND environment variables

to bind all the threads of a hybrid application to CPU cores.

203

A.0.1 Methodology to Measure Execution Time and Energy

Consumption

Suppose there exists a hybrid application, which is named app, consisting of

three sample kernels, Kernel_cpu, Kernel_gpu and Kernel_phi, which run in

parallel. The goal is to measure the execution time and the dynamic energy

consumption of kernels in the application. To do this, we instrument the sample

application as shown in Algorithm 10. This instrumented application returns

the execution time of each kernel and the energy consumption of all the three

kernels.

Algorithm 10 Instrumentation of a sample application (app) consisting of three
kernels, running on CPU, GPU and PHI simultaneously.
1: HCL_WATTSUP_START()
2: #pragma parallel
3: Begin
4: tecpu1← gettimeofday()
5: KERNEL_CPU()
6: tecpu2← gettimeofday()
7: End
8: Begin
9: tegpu1← gettimeofday()
10: KERNEL_GPU()
11: tegpu2← gettimeofday()
12: End
13: Begin
14: tephi1← gettimeofday()
15: KERNEL_PHI()
16: tephi2← gettimeofday()
17: End
18: energyapp ← HCL_WATTSUP_STOP()
19: tecpu ← tecpu2− tecpu1
20: tegpu ← tegpu2− tegpu1
21: tephi ← tephi2− tephi1
22: return (tecpu, tegpu, tephi, energyapp)

Methodology to Measure Execution Time

We instrument each kernel in the hybrid application (app) by using the member

function gettimeofday() of the Linux library sys/time.h to measure its execution

time separately. As shown in Algorithm 10, the execution times are stored in

variables tecpu, tegpu and tephi and are returned at the end of the application

execution.

204

Methodology to Measure the Energy Consumption

We have two heterogeneous hybrid nodes. Each node is facilitated with one

WattsUp Pro power meter that sits between the wall A/C outlets and the input

power sockets of the node. These power meters capture the total power con-

sumption of the node. The power meters have data cables connected to one

USB port of the node. One Perl script collects the data from the power meter

using the serial USB interface. The execution of these scripts is non-intrusive

and consumes insignificant power.

The power meters are periodically calibrated using an ANSI C12.20

revenue-grade power meter, Yokogawa WT210. The maximum sampling

speed of the power meters is one sample every second. The accuracy speci-

fied in the data-sheets is ±3%. The minimum measurable power is 0.5 watts,

and the accuracy at 0.5 watts is ±0.3 watts.

We use HCLWattsUp API, which gathers the readings from the power me-

ters to determine the average power and energy consumption during the ex-

ecution of an application for the whole node. HCLWattsUp API [156] also

provides two macros: HCL_WATTSUP_START and HCL_WATTSUP_STOP.

The HCL_WATTSUP_START macro starts gathering power readings from

the power meter using the aforementioned Perl script, whereas the

HCL_WATTSUP_STOP stops gathering and return the total energy as a sum

of these power readings.

To measure the amount of dynamic energy consumed by the applica-

tion, we invoke HCL_WATTSUP_START (Line 1) and HCL_WATTSUP_STOP

(Line 18) macros as shown in Algorithm 10. The consumed energy is stored in

the variable energyapp and is returned at the end of the application execution.

A.0.2 Methodology to Ensure Reliability of Experimental

Results

As explained in Section A.0.1, each application is instrumented for measuring

its performance and energy consumption. The measured execution times and

consumed energy in each run of the application are stored in the variables

205

tecpu, tegpu, tephi, and energyapp respectively, which are returned when the

application execution finishes (Sample algorithm 10).

We keep running the application until the sample means of the measured

execution times and energy consumption of the application lie within a given

confidence interval, and a given precision is achieved. For this, we employ a

script, which is named MEANUSINGTTEST. Algorithm 11 presents the pseu-

docode of this script. It executes the application app repeatedly until one of

the following three conditions is satisfied:

1. The maximum number of repetitions (maxReps) has been exceeded

(Line 4).

2. The sample means of all devices (kernel execution times and the ap-

plication energy consumption) fall in the confidence interval cl, and the

precision of measurement eps has been achieved (Lines 11-15).

3. The elapsed time of the repetitions of application execution has ex-

ceeded the maximum time allowed (maxT in seconds) (Lines 16-18).

MEANUSINGTTEST returns the sample means of the execution times for

each abstract processor (i.e. timecpu, timegpu, timephi) and the energy con-

sumption of all kernels (i.e. energy). The input parameters are minimum and

maximum number of repetitions, minReps and maxReps. These parame-

ter values differ based on the problem size solved. For small problem sizes

(32 ≤ n ≤ 1024), these values are set to 10000 and 100000, respectively. For

medium problem sizes (1024 < n ≤ 5120), these values are set to 100 and

1000. For large problem sizes (n > 5120), these values are set to 5 and 50.

The values of maxT , cl, and eps are respectively set to 3600, 0.95, and 0.1. If

the precision of measurement is not achieved before the maximum number of

repeats have been completed, we increase the number of repetitions and also

the maximum elapsed time allowed. However, we observed that condition (2)

is always satisfied before the other two in our experiments.

Algorithm 12 shows the pseudocode of the helper functions CALACCU-

RACY, which is used by MEANUSINGTTEST. It returns 1 if the sample mean of

206

Algorithm 11 Script determining the mean of an experimental run using stu-
dent’s t-test.
1: procedure MEANUSINGTTEST(app,minReps,maxReps,maxT, cl, eps,

reps#, elapsedT ime, timecpu, timegpu, timephi, energy)
Input:

The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run, maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, reps# ∈ Z>0

The elapsed time, elapsedT ime ∈ R>0

The mean execution times, timecpu, timegpu, timephi ∈ R≥0

The mean consumed energy, energy ∈ R>0

2: reps← 0; stop← 0; etime← 0
3: sumcpu ← 0; sumgpu ← 0; sumphi ← 0; sumeng ← 0
4: while (reps < maxReps) and (!stop) do
5: (tcpu[reps], tgpu[reps], tphi[reps], eng[reps])← EXECUTE(app)
6: sumcpu+ = tcpu[reps]
7: sumgpu+ = tgpu[reps]
8: sumphi+ = tphi[reps]
9: sumeng+ = eng[reps]
10: if reps > minReps then
11: stopcpu ← CALACCURACY(cl, reps+ 1, tcpu, eps)
12: stopgpu ← CALACCURACY(cl, reps+ 1, tgpu, eps)
13: stopphi ← CALACCURACY(cl, reps+ 1, tphi, eps)
14: stopeng ← CALACCURACY(cl, reps+ 1, teng , eps)
15: stop← stopcpu ∧ stopgpu ∧ stopphi ∧ stopeng

16: if max{sumcpu, sumgpu, sumphi} > maxT then
17: stop← 1
18: end if
19: end if
20: reps← reps+ 1
21: end while
22: reps#← reps;
23: elapsedT ime← max{sumcpu, sumgpu, sumphi}
24: timecpu ←

sumcpu

reps
; timegpu ←

sumgpu

reps
; timephi ←

sumphi

reps

25: energy ← sumeng

reps

26: return (reps#, elapsedT ime, timecpu, timegpu, timephi, energy)
27: end procedure

207

a given reading lies in the 95% confidence interval (cl) and a precision of 0.1

(eps = 10%) has been achieved. Otherwise, it returns 0.

Algorithm 12 Algorithm Calculating Accuracy
1: function CALACCURACY(cl, reps,Array, eps)
2: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1)) × gsl_stats_sd(Array, 1, reps) / sqrt(reps)
3: if clOut× reps∑reps−1

i=0 Array[i]
< eps then

4: return 1
5: end if
6: return 0
7: end function

If the precision of measurement is not achieved before the maximum num-

ber of repeats have been completed, we increase the number of repetitions

and also the maximum elapsed time allowed. However, we observed that con-

dition (2) is always satisfied before the other two in our experiments.

208

Appendix B

HPOPTA Details

This appendix contains the supporting materials of Chapter 3, “A Novel Data-

Partitioning Algorithm for Performance Optimization of Data-Parallel Applica-

tions on Heterogeneous HPC Platforms”, which are listed below:

• Comparison of actual and simulated execution times.

• Description of the helper functions used in the algorithm, HPOPTA.

• Correctness and complexity proofs of HPOPTA.

B.1 Comparison of Actual and Simulated Execu-

tion Times

In Section 3.1, we presented the modelling of abstract processors and men-

tioned that the data points for the same problem size in speed functions are

obtained simultaneously. However, during the actual execution of the data-

parallel applications using the workload distribution determined by our data

partitioning algorithm, the problem sizes executed by the abstract processors

can be different. This is because different processors can be allocated differ-

ent problem sizes by the proposed data partitioning algorithm. Later in the

experimental analysis of HPOPTA, we evaluated our algorithm and extracted

the execution times from the performance profiles.

209

B.1. COMPARISON OF ACTUAL AND SIMULATED EXECUTION TIMES

Figure B.1: Comparison of actual with simulated execution times for Matrix
Multiplication on HCLServer01.

In this section, we experimentally show that the execution times of these

problem sizes simultaneously would not differ significantly from those present

in the speed functions. We experiment with Matrix Multiplication and 2D FFT,

configured for execution on HCLServer01 as explained in Chapter 3. We com-

pare the execution times of solutions returned by HPOPTA with actual execu-

tion times on HCLServer01. To obtain the actual results, a parallel applica-

tion is executed where each processor is allocated the problem size given by

HPOPTA, and its parallel execution time is measured using the experimental

methodology explained in Appendix A. Since HPOPTA considers all the pos-

sible combinations of workload distributions, even combinations where one or

more processors are allocated zero workloads, the number of processors used

in the experiment ranges from 1 to 3.

We create an experimental data set for Matrix Multiplication including the

data points {642, 1282, · · · , 800002}. Figure B.1 shows the execution times of

Matrix Multiplication executed by using HPOPTA (HPOPTA Actual T ime)

compared with the simulated results (HPOPTA Simulation T ime).

To analyse FFT, the experimental data set includes data points

{162, 322, · · · , 640002}. Figure B.2 compares actual with simulated execution

times for the application.

From the figures, one can see that the differences between simulated re-

sults and actual execution times are insignificant, and they both follow the

same trends.

210

B.2. HELPER ROUTINES CALLED IN HPOPTA

Figure B.2: Comparison of actual with simulated execution times for 2D FFT
on HCLServer01.

B.2 Helper Routines Called in HPOPTA

B.2.1 Function GetTime

The function GETTIME(Ti, w) returns the execution time of a given problem

size w from the time function Ti (Algorithm 13). It returns 0 when the input

problem size w is 0. If there is no match for w in the time function, GETTIME

returns −1. It uses time functions which are sorted by problem size, to find the

execution times in O(1).

Algorithm 13 Algorithm Finding the Execution Time of a Given Problem Size
1: function GETTIME(Ti, w)
2: if w = 0 then
3: return 0
4: end if
5: if @(w, tiw) ∈ Ti then
6: return −1
7: end if
8: return tiw
9: end function

B.2.2 Function SizeThresholdCalc

Algorithm 14 shows the pseudocode of the function SIZETHRESHOLDCALC

which calculates size threshold array σ. It, first, determines the size threshold

of the last level Lp−1 (i.e. σp−1), which is equal to the greatest workload in

211

B.2. HELPER ROUTINES CALLED IN HPOPTA

the time function Tp−1 with the execution time less than τ (Line 2). Then, it

calculates σi, i ∈ [0, p− 2] where σi is the summation of σi+1 with the greatest

workload in the time function Ti where its execution time is less than τ (Lines

3-5).

Algorithm 14 Algorithm Determining Size Thresholds
1: function SIZETHRESHOLDCALC(p, T, τ)
2: σp−1 ←maxm−1

j=0 {x(p−1) j | t(p−1) j < τ}
3: for all i = p− 2; i ≥ 0; i−− do
4: σi ← σi+1 + maxm−1

j=0 {xij | tij < τ}
5: end for
6: return σ
7: end function

B.2.3 Function Cut

The helper function CUT returns TRUE if the workload n is greater than the

input size threshold σ (Algorithm 15).

Algorithm 15 Algorithm Cutting Search Tree using the Size Threshold
1: function CUT(n, σ)
2: if n > σ then
3: return TRUE
4: end if
5: return FALSE
6: end function

B.2.4 Structure of matrix Mem

The two-dimensional array Mem is used to save solutions for nodes at the lev-

els {L1, · · · , Lp−2} in solution trees. Consider a solution X = {xi, · · · , xp−1}
on processors {Pi, · · · , Pp−1} for a given workload n =

∑p−1
j=i xj where

i ∈ [1, p). This solution is memorized in the memory cell Mem[i][n]. The

memory cell consists of a structure of three fields which are explained below:

• Mem[i][n].tmem: The parallel execution time of the solution X. It is ini-

tialized to the constant value _NE which means there is no saved solu-

tion for the workload n on processors {Pi, · · · , Pp−1}.

212

B.2. HELPER ROUTINES CALLED IN HPOPTA

• Mem[i][n].idxlast: The index of the last data point in the time function

Ti which has been examined yet. This field helps HPOPTA to resume

the examination of further points from where it was interrupted by the

operation Backtrack. In addition, idxlast is used to label a memory cell

as Finalized by setting idxlast to the constant value _FI. A finalized

memory cell contains an optimal solution.

• Mem[i][n].xmem: The problem size which is assigned to Pi by the solu-

tion X (i.e. xi).

B.2.5 Function ReadMemory

Algorithm 16 illustrates the function READMEMORY. This function retrieves a

saved solution for a given workload n, executing on processors {Pc, · · · , Pp−1}
where c ∈ [1, p − 1). The retrieved solution is stored in Xcur. READMEMORY,

first, reads Mem[c][n] to retrieve the parallel execution time of the workload

n on the processors {Pc, · · · , Pp−1} and the problem size given to Pc (Algo-

rithm 16, Line 2). According to the retrieved values of Mem[c][n].tmem and

Mem[c][n].idxlast, the following cases might happen:

• NOT_SOLUTION: This case happens when there is no saved solution

in Mem[c][n] (tmem is _NE), and the memory cell has been finalized

(Mem[c][n].idxlast is _FI). It means that there is no solution for n on

processors {Pc, · · · , Pp−1} (Lines 4-5).

• SOLUTION: This case occurs when there is a finalized solution for n on

processors {Pc, · · · , Pp−1}. In this case, Xcur = {xcur[0], · · · , xcur[c −
1], · · · , xcur[p − 1]} determines the retrieved solution from memory.

However, if the execution time of the saved solution is greater than τ

(tmem > τ) the saved solution is ignored, and NOT_SOLUTION is

returned (Lines 6-14).

• SOLUTION_RESUME: This case happens when there is a memorized

solution in Mem[c][n], but it is not finalized. The function READMEMORY

213

B.2. HELPER ROUTINES CALLED IN HPOPTA

retrieves the saved solution for n on processors {Pc, · · · , Pp−1} and in-

vokes PROCESSSOLUTION to process it. READMEMORY also sets idx

to the retrieved Mem[c][n].idxlast to make HPOPTA_Kernel resume the

examination of further points from the idxlast-th data point in the time

function Tc, rather than starting from the beginning (Lines 15-22).

• RESUME: This case occurs when there is no solution for the workload

n on processors {Pc, · · · , Pp−1}, and HPOPTA_Kernel will resume the

tree exploration form Mem[c][n].idxlast. (Lines 23-26).

Algorithm 16 Algorithm Retrieving Solution from Memory
1: function READMEMORY(n, p, c, τ, T,Xcur,Mem, idx)
2: 〈tmem, idxlast, xmem〉 ←Mem[c][n]
3: if idxlast = _FI then
4: if tmem = _NE then
5: return NOT_SOLUTION
6: else
7: if tmem < τ then
8: xcur[c]← xmem

9: xcur[i]←Mem[i][n−
∑i−1

j=c xcur[j]].xmem, ∀i ∈ [c+ 1, p− 2]

10: xcur[p− 1]← n−
∑p−2

i=c xcur[i]
11: return SOLUTION
12: end if
13: return NOT_SOLUTION
14: end if
15: else if idxlast 6= _FI then
16: if tmem 6= _NE ∧ tmem < τ ∧ xc idxlast

6= xmem then
17: xcur[c]← xmem

18: xcur[i]←Mem[i][n−
∑i−1

j=c xcur[j]].xmem, ∀i ∈ [c+ 1, p− 2]

19: xcur[p− 1]← n−
∑p−2

i=c xcur[i]
20: idx← idxlast
21: return SOLUTION_RESUME
22: end if
23: if idxlast 6= _NE then
24: idx← idxlast
25: return RESUME
26: end if
27: end if
28: return DUMMY
29: end function

B.2.6 Function ProcessSolution

The function PROCESSSOLUTION (Algorithm 17) is invoked once a solution is

found. The found solution is determined by Xcur = {xcur[0], · · · , xcur[p − 1]}.
The input parameter midx ∈ {1, 2, · · · , p − 2} determines some part of the

214

B.2. HELPER ROUTINES CALLED IN HPOPTA

solution, including problem sizes {xcur[midx], · · · , xcur[p−1]}, which has been

retrieved from Mem. To process a solution, the function first stores it in Mem

(Lines 5-14). It then updates three variables σ, τ and Xopt if the execution time

of the new solution is less than current τ (Lines 20-23). In the case of equal

execution times for solutions in Xcur and Xopt, Xopt is updated to the solution

with less active processors (processors with non-zero workloads) (Lines 24-

38).

Algorithm 17 Algorithm Processing the Found Solution
1: function PROCESSSOLUTION(p, T, τ, σ, bk,Xcur,Mem,midx, Xopt)
2: sumsize ← xcur[p− 1]
3: tmax ← GETTIME(Tp−1, xcur[p− 1])
4: idxmax ← p− 1
5: for i = p− 2, i ≥ 1, i−− do
6: if GETTIME(Ti, xcur[i]) ≥ tmax then
7: tmax ← GETTIME(Ti, xcur[i])
8: idxmax ← i
9: end if
10: sumsize ← sumsize + xcur[i]
11: if sumsize 6= 0 ∧ i < midx then
12: SAVE(i, sumsize, tmax, xcur[i],Mem)
13: end if
14: end for
15: if GETTIME(T0, xcur[0]) ≥ tmax then
16: tmax ← GETTIME(T0, xcur[0])
17: idxmax ← 0
18: end if
19: bk← idxmax

20: if τ > tmax then
21: τ ← tmax

22: Xopt ← Xcur

23: σ← SIZETHRESHOLDCALC(p, T, τ)
24: else if τ = tmax then
25: proccur ← 0
26: proclast ← 0
27: for i = 0, i < p, i+ + do
28: if xcur[i] 6= 0 then
29: proccur + +
30: end if
31: if xopt[i] 6= 0 then
32: proclast + +
33: end if
34: end for
35: if proccur < proclast then
36: Xopt ← Xcur

37: end if
38: end if
39: end function

215

B.2. HELPER ROUTINES CALLED IN HPOPTA

B.2.7 Function Save

Algorithm 18 illustrates the function SAVE which memorizes all solutions found

during the tree exploration. Consider a found solution for a given workload n

on processors {Pi, · · · , Pp−1} where i ∈ {1, 2, · · · , p − 2}. The input param-

eter tmax determines the parallel execution time of the solution, and x is the

problem size allocated to Pi. The function will update no memory cell if the

newly found distribution has a greater parallel execution time than that of the

saved one.

Algorithm 18 Algorithm Storing Solutions into Matrix Mem

1: function SAVE(i, n, tmax, x,Mem)
2: if Mem[i][n].tmem = _NE ∨Mem[i][n].tmem > tmax then
3: Mem[i][n]← 〈tmax,−, x〉
4: end if
5: end function

B.2.8 Function Backtrack

Algorithm 19 shows the pseudocode of BACKTRACK which is called by

HPOPTA_Kernel to make a decision if the recursive tree exploration process

backtracks from current node to its upper node at the level bk (i.e. Lbk) or

not. The function returns TRUE in the case of backtracking. In addition, this

function performs memory finalization and stores resuming points by setting

idxlast in the corresponding memory cells to _FI.

B.2.9 Function MakeFinal

Algorithm 20 illustrates the function MAKEFINAL which is responsible to finalize

a given memory cell mem. It sets mem.idxlast to the constant value _FI. The

finalized memory cell contains the optimal distribution.

216

B.3. CORRECTNESS PROOF OF HPOPTA

Algorithm 19 Algorithm Implementing Backtracking and Matrix Mem Cell Fi-
nalization
1: function BACKTRACK(n, c, bk, idx, tcur, τ,Mem, isMem)
2: if bk < c then
3: if isMem = TRUE then
4: return TRUE
5: end if
6: if tcur = τ then
7: Mem[c][n].idxlast ← _FI
8: else
9: Mem[c][n].idxlast ← idx
10: end if
11: return TRUE
12: else if bk = c then
13: bk← NULL
14: Mem[c][n].idxlast ← _FI
15: return TRUE
16: else
17: bk← NULL
18: return FALSE
19: end if
20: end function

Algorithm 20 Algorithm Finalizing a Matrix Mem Cell
1: function MAKEFINAL(mem)
2: mem.idxlast ← _FI
3: end function

B.3 Correctness Proof of HPOPTA

Proposition B.3.1. The algorithm HPOPTA always returns an optimal dis-

tribution for a given workload n between p heterogeneous processors which

minimizes its parallel execution time.

Proof. To find an optimal distribution for a workload n executing on pro-

cessors {P0, · · · , Pp−1} with minimum execution time, the straightforward ap-

proach is to expand the full search tree and examine all possible distributions.

This approach has, however, an exponential complexity. Rather than build-

ing all solutions, HPOPTA only builds and explores a small fraction of the full

search tree. To achieve this, it applies two specific operations, Cut and Back-

track, that remove subtrees of the full search tree without their construction

and exploration.

Therefore, the correctness of HPOPTA will be proved if we show that no

subtree removed by HPOPTA from consideration contains a solution, superior

to the one finally returned by HPOPTA. We will prove this below:

217

B.4. COMPLEXITY OF HPOPTA

Cut: Consider a given node at level Li which is labelled by n. Operation

Cut will remove the subtree, growing from the node, only if the workload n is

greater than the corresponding size threshold of this node, which is σi. Re-

member that σi represents the maximum workload size that can be executed

in parallel by processors {Pi, · · · , Pp−1} faster than τ time units, where τ is

the execution time of the fastest solution which is found so far. Therefore, the

parallel execution time of any solution in the removed subtree cannot be less

than τ and hence less than the time of the globally fastest solution.

Backtrack: This operation is only applied when HPOPTA finds a solution

like {x0, x1, · · · , xk, · · · , xp−1} such that maxp−1
i=0 ti(xi) = tk(xk) = τ . We know

two facts:

1. The parallel execution time of any solution involving a subtree with the

root node xk cannot be less than τ . Therefore, this subtree can be ig-

nored.

2. HPOPTA arranges nodes at every level of the search tree in non-

decreasing order of execution time. Therefore, all nodes at the level

Lk which are placed after the node xk will have execution times greater

than or equal to tk(xk). Therefore, expansion of these nodes cannot lead

to a solution which has an execution time less than τ .

From these facts, we can conclude that the construction and examination

of the subtrees, which would grow from the node xk and the following nodes

at level Lk of the search tree, will not result in a distribution with the execution

time less than τ and can be ignored by backtracking to the upper level Lk−1.

End of Proof.

B.4 Complexity of HPOPTA

Lemma B.4.1. The complexity of HPOPTA_Kernel is O(m3 × p3).

Proof. HPOPTA_Kernel is an optimal recursive algorithm for exploring so-

lution trees. Thus, its time complexity can be expressed in terms of the number

218

B.4. COMPLEXITY OF HPOPTA

of its recursive invocations. We formulate the number of recursive calls in each

level of the solution tree using a trivial example.

Consider a workload n executing on a platform consisting of 5 heteroge-

neous processors (p = 5). Suppose the time function of each processor con-

tains 2 data points (m = 2) where ti(x) = {(∆x, ti(∆x)), (2∆x, ti(2∆x))},
where ∆x ∈ N is the minimum granularity of problem sizes in time functions

and i ∈ {0, 1}. It should be mentioned that there is no assumption on the

value of ∆x, and it, therefore, can be used without loss of generality. For the

sake of simplicity, we assume that execution time increases with increasing in

problem size in time functions. That is, the data points in time functions are

visited in the increasing order of problem size. This assumption does not ap-

parently make the proof less general. However, it makes finding the formula

for complexity less difficult.

Figure B.3 shows the solution tree of this example. Since we are looking

for an upper bound for the time complexity of HPOPTA_Kernel, we consider n

greater than 8∆x, which is the maximum problem size subtracted from n in the

figure. For the sake of simplicity, only the operation Save is considered. Other

optimizations, Cut and Backtrack, are not applied. That is why the practical

time complexity of HPOPTA is enormously less than the theoretical one. In the

figure, nodes highlighted in red have already been expanded in the same level

and their solutions are retrieved from matrixMem instead of node expansions.

The number of recursive calls in each level of tree (nodes in black) can be

calculated as follows:

C#(L) =

L×m+ 1 0 ≤ L < p− 1

C#(p− 2)× (m+ 1) L = p− 1

where L represents the level number in the tree.

Therefore, C#(L) is equal to:

C#(L) =

L×m+ 1 0 ≤ L < p− 1

m2 × p− 2×m2 +m× p−m+ 1 L = p− 1

219

B.4. COMPLEXITY OF HPOPTA

n

n− 2∆x

n− 4∆x

n− 6∆x

n− 8∆x 0
n− 8∆x

n− 7∆x 0
n− 7∆x

n− 6∆x 0
n− 6∆x

0

∆x
2∆
x

n− 5∆x

n− 4∆x

0

∆x

2∆
x

n− 3∆x

n− 2∆x

0

∆x

2∆
x

n−∆x

n− 3∆x

n− 5∆x

n− 7∆x 0
n− 7∆x

n− 6∆x 0
n− 6∆x

n− 5∆x 0
n− 5∆x

0

∆x
2∆
x

n− 4∆x

n− 3∆x

0
∆x

2∆
x

n− 2∆x

n−∆x

0

∆x

2∆
x

n

n− 2∆x

n− 4∆x

n− 6∆x 0
n− 6∆x

n− 5∆x 0
n− 5∆x

n− 4∆x 0
n− 4∆x

0

∆x
2∆
x

n− 3∆x

n− 2∆x

0

∆x

2∆
x

n−∆x

n− 3∆x

n− 5∆x 0
n− 5∆x

n− 4∆x 0
n− 4∆x

n− 3∆x 0
n− 3∆x

0

∆x
2∆
x

n− 2∆x

n−∆x

0
∆x

2∆
x

n

n− 2∆x

n− 4∆x 0
n− 4∆x

n− 3∆x 0
n− 3∆x

n− 2∆x 0
n− 2∆x

0

∆x
2∆
x

n−∆x

n− 3∆x 0
n− 3∆x

n− 2∆x 0
n− 2∆x

n−∆x 0
n−∆x

0

∆x
2∆
x

n

n− 2∆x 0
n− 2∆x

n−∆x 0
n−∆x

n 0
n

0
∆x

2∆x

0

∆x

2∆
x

0

∆x

2∆
x

0

∆
x

2∆
x

Figure B.3: The execution of HPOPTA for a sample set of time functions
(p = 5), each contains 2 data points. The memorization technique is only
considered to reduce the full search space of solutions. The other optimiza-
tions, time threshold, size threshold, and backtracking, are not applied.

220

B.4. COMPLEXITY OF HPOPTA

That is, the total number of recursive calls for HPOPTA_Kernel is equal to∑p−1
L=0(C#(L)) which has order of O(m× p2 +m2 × p).
In addition, the number of nodes in each level that their solutions are re-

trieved from matrix Mem is equal to:

Memory#(L) = (C#(L− 1)− 1)×m

= (m2)× (L− 1),

1 ≤ L ≤ p− 2

To retrieve saved results from Mem, the function READMEMORY reads up

to p − 2 elements from Mem. That is, the complexity of READMEMORY is

O(p). We know HPOPTA_Kernel accesses matrix Mem for levels 1 to p − 2.

Therefore, the cost of all READMEMORY invocations to find solutions is equal

to
∑p−2

L=1(Memory#(L)×O(p)), which is equal to O(m2 × p3).

Furthermore, there are solutions which are found in the last level of the tree

(For instance level L4 in the Figure B.3). For these solutions, HPOPTA_Kernel

reads time function Tp−1(x) with the time complexity of O(1) to find the execu-

tion time of the given workload to Pp−1. The number of nodes in the level Lp−1

is equal to C#(p − 1) nodes. That is, the cost of finding solutions in the last

level of the tree is O(m2 × p).
Once a solution is found, PROCESSSOLUTION is invoked with a computa-

tional complexity of O(m × p). In the worst case, it is invoked for each leaf

of the tree, either after each call of READMEMORY or after finding a solution

in level Lp−1. Therefore, an upper bound for all PROCESSSOLUTION calls is

(C#(p− 1) +
∑p−2

L=1Memory#(L))×O(m× p) = O(m3 × p3).

The worst time complexity of HPOPTA_Kernel can therefore be summa-

rized as follows:

Complexity(HPOPTA_Kernel) =O(recursive calls of HPOPTA_Kernel)+

O(READMEMORY calls)+

O(finding solutions in Lp−1)+

O(PROCESSSOLUTION calls).

221

B.4. COMPLEXITY OF HPOPTA

which equals:

Complexity(HPOPTA_Kernel) =O(m× p2 +m2 × p)+

O(m2 × p3)+

O(m2 × p)+

O(m3 × p3)

= O(m3 × p3).

Proposition B.4.2. The complexity of HPOPTA is O(m3 × p3).

Proof. HPOPTA consists of following main steps:

• Sorting: There are p discrete time functions with a cardinality of m.

These functions can be sorted in the non-decreasing order of execution

time with a computational complexity of O(p×m× log2m).

• Finding load–equal distribution and initialization of time threshold:

This step has complexity O(p).

• Finding size thresholds: To find the size threshold of a given level Li,

i ∈ [0, p − 1], all data points, existing in ti(x), with execution times less

than or equal to τ should be examined. This process has a complexity of

O(m). Therefore, finding p size thresholds has a complexity ofO(p×m).

• Memory initialization: In this step, all (n + 1) × (p − 2) cells of Mem

are initialized with a complexity of O(n× p).

• Kernel invocation: According to the lemma B.4.1, the complexity of this

step is O(m3 × p3).

Therefore, one can conclude a computational complexity of HPOPTA is

equal to the summation of all these steps, which is O(m3 × p3). End of Proof.

Proposition B.4.3. The total memory used by the algorithm is O(p×(m+n)).

Proof. HPOPTA uses memory to store following items:

222

B.4. COMPLEXITY OF HPOPTA

• time functions: There exist p discrete time functions, with a cardinality

ofm. We store both size-sorted (sorted by problem size) and time-sorted

(sorted by execution time) functions. This requires 2 × p × m memory

cells.

• Xcur: This array stores the problem sizes assigned to each processor by

the current solution. That is, this is an array of size p cells.

• Xopt: This array stores the problems sizes assigned to each processor

by the optimal solution found so far. That is, this is an array of size p

cells.

• Mem: This is a matrix consisting of (p− 2)× (n+ 1) cells.

Thus, total memory cells used by HPOPTA is equal to 2×m× p+ 2× p+

(p− 2)× (n+ 1) u O(p× (m+ n)). End of Proof.

223

Appendix C

HEOPTA Details

In this chapter, we, first, explain the supporting materials of Chapter 4, “A

Novel Model-based Algorithm for Dynamic Energy Consumption Optimization

of Data-Parallel Applications on Heterogeneous HPC Platforms”. We then

prove the correctness and complexity of the proposed algorithm, HEOPTA.

C.1 Helper Routines Called in HEOPTA

C.1.1 Function GetEng

The function GETENG(Ei, w) returns the dynamic energy consumption of a

given problem size w from the energy function Ei (Algorithm 21). If there is no

data point in Ei with the problems size of w, the function returns −1. It returns

0 for zero problem sizes. This function uses dynamic energy functions which

are sorted by problem size. This facilitates finding output results in O(1).

Algorithm 21 Algorithm Extracting the Consumed Energy of a Given Problem
Size
1: function GETENG(Ei, w)
2: if w = 0 then
3: return 0
4: end if
5: if @(w, eiw) ∈ Ei then
6: return −1
7: end if
8: return eiw
9: end function

224

C.1. HELPER ROUTINES CALLED IN HEOPTA

C.1.2 Function SizeThresholdCalc

Algorithm 22 presents the pseudocode of SIZETHRESHOLDCALC which deter-

mines size threshold array σ. The function calculates the size threshold of

Lp−1 which is equal to the greatest workload in the energy function Ep−1 that

its dynamic energy consumption is less than ε (Line 2). It then calculates σi,

i ∈ {0, 1, , · · · , p − 2} which is the summation of σi+1 with the greatest work-

load in the function Ei where its dynamic energy consumption is less than ε

(Lines 3-5).

Algorithm 22 Algorithm Determining Size Thresholds
1: function SIZETHRESHOLDCALC(p,E, ε)
2: σp−1 ←maxm−1

j=0 {x(p−1) j | e(p−1) j < ε}
3: for all i = p− 2; i ≥ 0; i−− do
4: σi ← σi+1 + maxm−1

j=0 {xij | eij < ε}
5: end for
6: return σ
7: end function

C.1.3 Function Cut

The pseudocode of the function CUT is presented in Algorithm 23. It returns

TRUE if the workload n is greater than the input size threshold σ.

Algorithm 23 Algorithm Cutting Search Tree using the Size Threshold
1: function CUT(n, σ)
2: if n > σ then
3: return TRUE
4: end if
5: return FALSE
6: end function

C.1.4 Structure of matrix Mem

The two dimensional matrix Mem memorizes solutions for the nodes visited

at levels {L1, · · · , Lp−2} in solution trees. Consider a given distribution X =

{xi, · · · , xp−1} as a solution for a workload n on processors {Pi, · · · , Pp−1}
where i ∈ {1, 2, · · · , p − 1}. The solution is saved in Mem[i][n], which is a

memory cell consisting of two fields:

225

C.1. HELPER ROUTINES CALLED IN HEOPTA

• Mem[i][n].emem: The amount of dynamic energy consumption for the

parallel execution of X running on processor {Pi, · · · , Pp−1}. It is initial-

ized to the constant value _NE implying the node n in the solution tree

has not been explored, and therefore, there is no saved solution for it.

If expansion of node n at level Li ends in no solution, its corresponding

memory cell, Mem[i][n].emem, is set to _NS.

• Mem[i][n].xmem: The problem size is allocated to Pi by the distribution

X.

C.1.5 Function ReadMemory

Function READMEMORY retrieves the saved solution for a given workload n

on processors {Pc, · · · , Pp−1} where c ∈ {1, 2, · · · , p − 2} (Algorithm 24).

According to the retrieved value for Mem[c][n].emem, the following cases might

happen:

• NOT_SOLUTION: This case occurs when either emem is equal to _NS

(there is no solution for n on the processor {Pc, · · · , Pp−1}) or the dy-

namic energy consumption of the saved distribution (emem) is greater

than or equal to ε (Lines 7 and 11).

• SOLUTION: This case takes place if emem is not equal to _NE or _NS,

and its value is also less than ε (Lines 13-16).

Finally, the output array Xcur determines the retrieved solution.

C.1.6 Function ProcessSolution

Algorithm 25 presents the pseudocode of PROCESSSOLUTION. It is invoked

after finding any solution. First, it saves the solution, which is determined by

Xcur = {xcur[0], · · · , xcur[p − 1]}, in Mem (Lines 4-13). The input parame-

ter midx ∈ {1, 2, · · · , p − 2} determines some part of the solution, including

problem sizes {xcur[midx], · · · , xcur[p − 1]}, which has been read from Mem.

If the amount of dynamic energy which is consumed by the solution X is less

226

C.1. HELPER ROUTINES CALLED IN HEOPTA

Algorithm 24 Algorithm Retrieving Solution from Memory
1: function READMEMORY(n, p, c, ε, E,Xcur,Mem)
2: 〈emem, xmem〉 ←Mem[c][n]
3: if emem = _NE then
4: return DUMMY
5: end if
6: if emem = _NS then
7: return NOT_SOLUTION
8: end if
9: if emem 6= _NE then
10: if emem ≥ ε then
11: return NOT_SOLUTION
12: end if
13: xcur[c]← xmem

14: xcur[i]←Mem[i][n−
∑i−1

j=c xcur[j]].xmem, ∀i ∈ [c+ 1, p− 2]

15: xcur[p− 1]← n−
∑p−2

i=c xcur[i]
16: return SOLUTION
17: end if
18: end function

than current ε then Xopt, array σ and ε are updated (Lines 15-18). If dynamic

energy consumption for the current solution is equal to ε then Xopt will be

updated to the current solution if the number of idle processors in current so-

lution is greater than that of Xopt (Lines 19-33). It should be mentioned that

idle processors are those with zero workloads.

C.1.7 Function Save

Algorithm 26 illustrates the function SAVE which memorizes all found solutions.

Consider a solution for a given workload n on processors {Pi, · · · , Pp−1}, i ∈
{1, 2, · · · , p− 2}, with a dynamic energy consumption of sumeng. The solution

allocates a problem size x to Pi. The function will update no memory cell if the

newly found distribution has greater consumed energy than that of the saved

solution.

C.1.8 Function MakeFinal

Algorithm 27 shows the function MAKEFINAL which finalizes a given memory

cell mem. It sets mem.emem to the constant value _NS if it is equal to _NE.

The finalized memory cell contains the optimal distribution. Setting the emem
of a memory cell to _NS means that its corresponding node in the solution

227

C.1. HELPER ROUTINES CALLED IN HEOPTA

Algorithm 25 Algorithm Processing the Found Solution
1: function PROCESSSOLUTION(p,E, ε, σ,Xcur,Mem,midx, Xopt)
2: sumsize ← xcur[p− 1]
3: sumeng ← GETENG(Ep−1, xcur[p− 1])
4: for i = p− 2, i ≥ 1, i−− do
5: sumsize ← sumsize + xcur[i]
6: sumeng ← sumeng + GETENG(Ei, xcur[i])
7: if sumeng > ε then
8: return
9: end if
10: if sumsize 6= 0 ∧ i < midx then
11: SAVE(i, sumsize, sumeng , xcur[i],Mem)
12: end if
13: end for
14: sumeng ← sumeng +GETENG(E0, xcur[0])
15: if ε > sumeng then
16: ε← sumeng

17: Xopt ← Xcur

18: σ← SIZETHRESHOLDCALC(p,E, ε)
19: else if ε = sumeng then
20: proccur ← 0
21: proclast ← 0
22: for i = 0, i < p, i+ + do
23: if xcur[i] 6= 0 then
24: proccur + +
25: end if
26: if xopt[i] 6= 0 then
27: proclast + +
28: end if
29: end for
30: if proccur < proclast then
31: Xopt ← Xcur

32: end if
33: end if
34: end function

Algorithm 26 Algorithm Storing Solutions into Matrix Mem

1: function SAVE(i, n, sumeng , x,Mem)
2: if Mem[i][n].emem = _NE ∨Mem[i][n].emem > sumeng then
3: Mem[i][n]← 〈sumeng , x〉
4: end if
5: end function

228

C.2. CORRECTNESS PROOF OF HEOPTA

tree has been explored with no solution.

Algorithm 27 Algorithm Finalizing a Matrix Mem Cell
1: function MAKEFINAL(mem)
2: if mem.emem = _NE then
3: mem.emem ← _NS
4: end if
5: end function

C.2 Correctness Proof of HEOPTA

Proposition C.2.1. The algorithm HEOPTA always returns an optimal solu-

tion for a given workload n running on p heterogeneous processors which

minimizes its parallel dynamic energy consumption.

Proof. The algorithm HEOPTA is based on the naive approach, which

explores the full solution tree to build all possible distributions. However,

HEOPTA employs the specific operation Cut to just build a smaller fraction of

the full solution tree and reduce the computational complexity from exponen-

tial to polynomial time. Therefore, the correctness of HEOPTA will be proved

if we show that there exists no subtree which is cut by the operation Cut while

contains a solution superior to the one eventually returned by HEOPTA.

Consider a given node at level Li which is labelled by n. The operation

Cut will remove the subtree, growing from the node, only if the workload n is

greater than the size threshold of this node, which is σi. Remember that σi
represents the maximum workload can be executed in parallel on processors

{Pi, · · · , Pp−1} so that the dynamic energy consumption by every processor

{Pi, · · · , Pp−1} is less than ε. Therefore, the dynamic energy consumption of

any solution in the removed subtree cannot be less than ε, and hence, less

than that of the globally optimal solution which is returned by HEOPTA. End of

Proof.

C.3 Complexity of HEOPTA

Lemma C.3.1. The time complexity of HEOPTA_Kernel is O(m3 × p3).

229

C.3. COMPLEXITY OF HEOPTA

Proof. HEOPTA_KERNEL is an efficient recursive algorithm for solution

tree exploration. Thus, its computational complexity can be related in terms of

the number of recursive invocations. We use a trivial solution tree to formulate

the number of recursive calls in each level.

Given is a workload n running on 5 heterogeneous processors (p =

5). Suppose there are 5 discrete dynamic energy functions E =

{e0(x), · · · , ep−1(x)} with the cardinality of 2 (m = 2) where ei(x) =

{(∆x, ei(∆x)), (2∆x, ei(2∆x))}, i ∈ {0, 1}, and ∆x represents the min-

imum granularity of workload in the functions. It should be noted that

HEOPTA_KERNEL is capable of dealing with any granularity, therefore, this

assumption does not make the proof less general. For the sake of simplicity,

suppose the energy consumption increase as workload size increases in en-

ergy functions. This assumption does not make the proof less general. How-

ever, it eases finding the formula.

Figure C.1 illustrates the solution tree for finding the optimal distribution for

the workload size n on the 5 processors. We consider n greater than 8∆x,

the maximum problem size subtracted from n in this example. This assump-

tion ensures finding the upper bound for HEOPTA_KERNEL. Because of only

considering the operation SAVE to obtain the complexity of HEOPTA, its practi-

cal time complexity is considerably less than the theoretical one. In the Figure,

red nodes represent ones have been already expanded in the same level, and

their solutions are retrieved from the matrix Mem rather than node expansion.

Eq. C.1 formulates the number of recursion calls in each level of the solu-

tion tree explored by HEOPTA_KERNEL.

C#(L) =

L×m+ 1 0 ≤ L < p− 1

C#(p− 2)× (m+ 1) L = p− 1
(C.1)

where L represents the level number.

Eq. C.2 shows the expanded form of Eq. C.1.

230

C.3. COMPLEXITY OF HEOPTA

n

n− 2∆x

n− 4∆x

n− 6∆x

n− 8∆x 0
n− 8∆x

n− 7∆x 0
n− 7∆x

n− 6∆x 0
n− 6∆x

0

∆x
2∆
x

n− 5∆x

n− 4∆x

0

∆x

2∆
x

n− 3∆x

n− 2∆x

0

∆x

2∆
x

n−∆x

n− 3∆x

n− 5∆x

n− 7∆x 0
n− 7∆x

n− 6∆x 0
n− 6∆x

n− 5∆x 0
n− 5∆x

0

∆x
2∆
x

n− 4∆x

n− 3∆x

0
∆x

2∆
x

n− 2∆x

n−∆x

0

∆x

2∆
x

n

n− 2∆x

n− 4∆x

n− 6∆x 0
n− 6∆x

n− 5∆x 0
n− 5∆x

n− 4∆x 0
n− 4∆x

0

∆x
2∆
x

n− 3∆x

n− 2∆x

0

∆x

2∆
x

n−∆x

n− 3∆x

n− 5∆x 0
n− 5∆x

n− 4∆x 0
n− 4∆x

n− 3∆x 0
n− 3∆x

0

∆x
2∆
x

n− 2∆x

n−∆x

0
∆x

2∆
x

n

n− 2∆x

n− 4∆x 0
n− 4∆x

n− 3∆x 0
n− 3∆x

n− 2∆x 0
n− 2∆x

0

∆x
2∆
x

n−∆x

n− 3∆x 0
n− 3∆x

n− 2∆x 0
n− 2∆x

n−∆x 0
n−∆x

0

∆x
2∆
x

n

n− 2∆x 0
n− 2∆x

n−∆x 0
n−∆x

n 0
n

0
∆x

2∆x

0

∆x

2∆
x

0

∆x

2∆
x

0

∆
x

2∆
x

Figure C.1: The solution tree representing the execution of HEOPTA for a
sample set of energy functions (p = 5), each contains two data points. The
memorization technique is only considered to reduce the full search space of
solutions. The other optimization, cut, is not applied.

231

C.3. COMPLEXITY OF HEOPTA

C#(L) =

L×m+ 1 0 ≤ L < p− 1

m2 × p− 2×m2 +m× p−m+ 1 L = p− 1
(C.2)

That is, the total number of recursive calls is equal to
∑p−1

L=0(C#(L)) which

has complexity of O(m× p2 +m2 × p).
In addition, the number of nodes in each level that their solutions are re-

trieved from Mem is formulated in Eq. C.3.

Memory#(L) = (C#(L− 1)− 1)×m

= (m2)× (L− 1),

1 ≤ L ≤ p− 2

(C.3)

Eq. C.3 determines the number of nodes in each level that their solutions

retried form Mem (nodes highlighted in red in Figure C.1). Since solutions

found on levels 1 to p − 2 are memorized, total number of red nodes would

be
∑p−2

L=1Memory#(L) = O(m2 × p2). To retrieve a solution from Mem, the

function READMEMORY is invoked which reads up to p−2 elements fromMem.

That is, READMEMORY has a complexity ofO(p). Therefore, the computational

cost for finding solutions using Mem is equal to O(m2 × p3).

Apart from solutions which are found using Mem, there are other solutions

which are found in the last level of the tree (For instance level L4 in the Figure

C.1). For this type of solutions, HEOPTA_Kernel reads time function Tp−1(x)

with the time complexity of O(1) to obtain the dynamic energy consumption of

the given workload to Pp−1. The number of nodes in the level Lp−1 is equal to

C#(p − 1) nodes. That is, the cost of finding solutions in the last level of the

tree is O(m2 × p).
Once a solution is found, PROCESSSOLUTION is invoked with a complexity

of O(m × p). In the worst case, it is invoked when either a solution is found

using Mem (after each call of READMEMORY) or a solution is found in the a

leave. Therefore, the total complexity of all PROCESSSOLUTION calls is equal

to (C#(p− 1) +
∑p−2

L=1 Memory#(L))×O(m× p) = O(m3 × p3).

232

C.3. COMPLEXITY OF HEOPTA

The time complexity of HEOPTA_KERNEL can be calculated as follows:

Complexity(HEOPTA_KERNEL) =O(recursive calls of HEOPTA_KERNEL)+

O(ReadMemory cost)+

O(findng solutions in Lp−1)+

O(PROCESSSOLUTION calls).

which equals:

Complexity(HEOPTA_Kernel) =O(m× p2 +m2 × p)+

O(m2 × p3)+

O(m2 × p)+

O(m3 × p3)

= O(m3 × p3).

Proposition C.3.2. The computational complexity of HEOPTA is O(m3 × p3).

Proof. HEOPTA consists of following main steps:

• Sorting: There exist p discrete energy functions with cardinality of m.

The complexity to sort all of them in the non-decreasing order of con-

sumed energy is O(p×m× log2m).

• Finding load-equal distribution and initialization of energy thresh-

old: This step has complexity O(p).

• Finding size thresholds: To find size threshold for a given level Li, i ∈
[0, p − 1], all data points, existing in ei(x), with consumed energies less

than ε should be examined. This has complexity of O(m). Therefore,

finding p size thresholds has a complexity of O(p×m).

• Memory initialization: In this step, all (n + 1) × (p − 2) cells of Mem

are initialized with a complexity of O(n× p).

• Kernel invocation: According to the lemma C.3.1, the complexity of this

step is O(m3 × p3).

233

C.3. COMPLEXITY OF HEOPTA

Therefore, one can conclude that the time complexity of HEOPTA equals

the summation of all these complexities, which is equal to O(m3 × p3). End of

Proof.

Proposition C.3.3. The total memory used by the algorithm is O(p×(m+n)).

Proof. HEOPTA uses memory to store following information:

• energy functions: There are p discrete dynamic energy functions with

the cardinality of m. We stores both size-sorted (sorted by problem size)

and energy-sorted (sorted by dynamic energy consumption). Therefore,

2× p×m memory cells are required for storing these functions.

• Xcur: This array stores the problem sizes assigned to each processor by

the current solution. That is, this is an array of size p cells.

• Xopt: This array stores the problem sizes assigned to each processor by

the optimal solution found so far. That is, this is an array of size p cells.

• Mem: This is a matrix consisting of (p− 2)× (n+ 1) cells.

Thus, total memory cells used by HEOPTA is equal to m× p+ 2× p+ (p−
2)× (n+ 1) u O(p× (m+ n)). End of Proof.

234

Appendix D

HEPOPTA Details

In this appendix, the helper functions used in Chapter 5, “Bi-objective Opti-

mization of Data-parallel Applications on Heterogeneous HPC Platforms for

Performance and Energy Using Workload Partitioning”, will be explained, and

the correctness and complexity of the proposed algorithm, HEPOPTA, will be

proved.

D.1 Helper Routines Called in HEPOPTA

D.1.1 Function ReadFunc

The input parameters to the function READFUNC are F , which can be a

discrete time (ti, i ∈ {0, 1, · · · , p − 1}) or dynamic energy function (ei, i ∈
{0, 1, · · · , p − 1}), and a problem size w (Algorithm 28). The function returns

the execution time or the dynamic energy consumption of w from the function

F . It returns 0 for zero problem sizes and −1 when there is no match for w in

the function. This function uses functions sorted by problem size.

D.1.2 Function SizeThresholdCalc

The Algorithm 29 shows the pseudocode of the function SIZETHRESHOLD-

CALC which calculates the size threshold array, σ. First, It determines the size

threshold of Lp−1 by finding the greatest problem size in the energy function

235

D.1. HELPER ROUTINES CALLED IN HEPOPTA

Algorithm 28 Algorithm Reading the Execution Time or Energy Consumption
of a Given Problem Size
1: function READFUNC(F,w)
2: if w = 0 then
3: return 0
4: end if
5: if @(w, fiw) ∈ F then
6: return −1
7: end if
8: return fiw
9: end function

Ep−1 that its energy consumption is less than or equal to ε (Line 2). Then, it

calculates σi, i ∈ {0, 1, , · · · , p− 2} where σi is the summation of σi+1 with the

greatest work-size in energy function Ei that its consumed dynamic energy is

less than or equal to ε (Lines 3-5).

Algorithm 29 Algorithm Determining Size Thresholds
1: function SIZETHRESHOLDCALC(p,E, ε, σ)
2: σp−1 ←maxm−1

j=0 {x(p−1) j | e(p−1) j ≤ ε}
3: for all i = p− 2; i ≥ 0; i−− do
4: σi ← σi+1 + maxm−1

j=0 {xij | eij ≤ ε}
5: end for
6: return σ
7: end function

The function uses dynamic energy functions sorted in non-decreasing or-

der of dynamic energy consumption.

D.1.3 Function Cut

The function CUT returns TRUE if the input workload n is greater than the

input size threshold σ (Algorithm 30).

Algorithm 30 Algorithm Cutting Search Tree using the Size Threshold
1: function CUT(n, σ)
2: if n > σ then
3: return TRUE
4: end if
5: return FALSE
6: end function

236

D.1. HELPER ROUTINES CALLED IN HEPOPTA

D.1.4 Structure of matrix PMem in HEPOPT

We use PMem, a two-dimensional array, to memorize Pareto-front solu-

tions for dynamic energy and performance which have been found at levels

{L1, · · · , Lp−2} in solution trees. Consider a given memory cell PMem[i][n]

which saves a Pareto-optimal solution which is found for a given workload n on

processors {Pi, · · · , Pp−1}, i ∈ {1, 2, · · · , p−2}. The memory cell consists of a

set where each element in this set is a tuple like < eng, time, part, P#, key >,

storing one Pareto-optimal solution.

The field eng stores the dynamic energy consumption of the Pareto-optimal

solution on processors {Pi, · · · , Pp−1}, time is its parallel execution time on

the processors, part determines the problem size assigned to Pi by the so-

lution, P# represents the number of active processors in the solution, and

key is the dynamic energy consumption of a saved Pareto-optimal solution,

provided it exists, for a node at the level Li+1 labelled by n − part where this

Pareto-optimal solution is the partial solution for the node n. Since dynamic

energy consumptions are unique in Pareto-optimal sets, we use this parame-

ter for pointing to partial solutions. In fact, key operates as a pointer to partial

solutions.

Elements in Pareto-optimal sets are sorted in increasing order of dynamic

energy consumption. If there exists no Pareto-optimal solution for the workload

n on the level i, its corresponding memory cell, PMem[i][n], will contain one

tuple that its eng element is set to the constant value _NS (i.e. No_Solution).

D.1.5 Function ReadParetoMem

Algorithm 31 illustrates the function READPARETOMEM. Suppose we are going

to retrieve the saved solutions for a given workload n on Lc. First, PMem[c][n]

is read which involves the saved solutions for n (Line 31). If PMem[c][n] is

empty, that is this node has not been visited yet, and the function returns

DUMMY (Lines 3-5). In this case, HEPOPTA_Kernel will continue with ex-

panding this node.

Since solutions in memory cells are sorted in the increasing order of the

237

D.1. HELPER ROUTINES CALLED IN HEPOPTA

dynamic energy consumption, we consider the energy consumption of the first

element in each set as the best solution. According to the retrieved value for

eng, the following cases might happen:

• NOT_SOLUTION: This case occurs when eng is equal to _NS (there

is no solution for n on processor {Pc, · · · , Pp− 1}) or the consumed

dynamic energy of the saved solution is greater than ε (Lines 6 and 8).

• SOLUTION: This case occurs if the retrieved eng is less than or equal

to ε (Line 9).

Algorithm 31 Algorithm Retrieving Solution from Memory
1: function READPARETOMEM(n, c, ε,Mem)
2: pSet← PMem[c][n]
3: if |pSet| = 0 then
4: return DUMMY
5: end if
6: if pSet[0].eng = _NS ∨ pSet[0].eng > ε then
7: return NOT_SOLUTION
8: end if
9: return SOLUTION
10: end function

D.1.6 Function MakeParetoFinal

Algorithm 32 illustrates the function MAKEPARETOFINAL which finalizes the

input memory cell pmem. As explained in Chapter 5, each memory cell is

finalized when its corresponding node along with its all children in the tree are

completely explored. If a node is expanded for which there is no Pareto-optimal

solution, the node labelled as _NS by inserting a tuple with the constant value

_NS in field eng (Line 3). This means that there is no Pareto-front solution for

this node.

Algorithm 32 Algorithm Finalizing Memory Cells
1: function MAKEPARETOFINAL(pmem)
2: if |pmem| = 0 then
3: pSet← (_NS, 0, 0, 0, 0)
4: end if
5: end function

238

D.1. HELPER ROUTINES CALLED IN HEPOPTA

D.1.7 Function MergePartialParetoes

For every non-leaf node, HEPOPTA_Kernel invokes the function MERGEPAR-

TIALPARETOES to build its Pareto-optimal solutions, using the Pareto-optimal

sets of its children which are named partial solutions for the node. The

function then stores the new solutions in PMem. If there exist two work-

load distributions with equal dynamic energy consumption and execution time,

MERGEPARTIALPARETOES selects the solution with the minimum number of

active processors. The input variable c indicates a level in the tree, and

partsV ec is a list including all problem sizes allocated to Pc where results

in a solution. The algorithm starts with initializing pSet which points to a mem-

ory cell storing Pareto-optimal solutions for a workload n on Lc (Lines 2-6).

The set ΨEP will store final globally Pareto-optimal solutions for the root. The

first For loop iterates all problem sizes in partsV ec and builds new feasible

solutions by merging the problem sizes in partsV ec with their corresponding

partial Pareto-optimal solutions (Lines 7-63). In each iteration, for a given

problem size x, MERGEPARTIALPARETOES finds the partial Pareto-optimal so-

lutions (subPareto) in PMem (if 1 ≤ c < p− 2) or builds it (if c = p− 2) (Lines

8-16). The inner For loop scans all Pareto-optimal solutions in subPareto. It

merges the problem size x, given to Pc, with Pareto-solutions in subPareto for

processors {Pc+1, · · · , Pp−1} (Lines 19-62). For each merged solution, pSet is

examined to verify whether there exists a Pareto-optimal solution in the set. If

it is the case, pSet is updated, and all non-Pareto-optimal solutions are elimi-

nated. Therefore, for each newly merged solution (engx, timex, x, P#x, key),

the following situations may happen:

1. pSet is empty and the solution is inserted (Line 25).

2. There exists a solution in pSet that its eng is equal to engx. In this case

the saved solution is updated if either engx is less than eng or P#x is

less than P# (Lines 28-37).

3. The engx of the merged Pareto-optimal solution is greater than ones in

the pSet. The solution is inserted in case its execution time timex is less

than the last solution in pSet (Lines 37-43).

239

D.1. HELPER ROUTINES CALLED IN HEPOPTA

4. The engx of the merged Pareto-optimal solution is less than ones in the

pSet. The solution is inserted in pSet after eliminating all non-Pareto-

optimal solutions (Lines 43-49).

5. The engx of the merged solution is somewhere at the middle of pSet.

In this case, the solution is inserted in pSet, and all non-Pareto-optimal

solutions are removed (Lines 49-57).

It should be mentioned that the function lower_bound returns a pointer to

the first element in the pSet that its eng is greater than or equal to engx.

The algorithm prevents further iteration in pSet if the execution time of the

last-evaluated partial Pareto-optimal solution is less than or equal to the exe-

cution time of problem size x on Pc. In fact, the further scanning of the pSet will

not lead to a Pareto-optimal solution. This is because all Pareto-optimal solu-

tions are sorted in increasing order of dynamic energy consumption, that con-

sequently implies that the execution times are decreasing in each set. Thus,

all solutions built using the following elements in the pSet will have the same

execution time as the execution time of the workload x on Pc but with greater

energy consumption.

Finally, the function BUILDPARETOSOLS is called to obtain the workload

distribution for each solution in ΨEP (Lines 64-66).

D.1.8 Function BuildParetoSols

As explained in the section D.1.7, the set ΨEP holds final globally Pareto-

optimal solutions for dynamic energy and performance. Each element in ΨEP ,

which represents a Pareto-optimal solution, is a triple like (eng, time,X) where

eng determines the dynamic energy consumption of the solution, time is its

execution time, and X = {x0, x1, · · · , xp−1} represents the workload distribu-

tion of the solution. The function BUILDPARETOSOLS determines the problem

sizes given to the processors {P1, · · · , Pp−1} by any solution in PMem[0][0].

The algorithm 34 shows the pseudocode of BUILDPARETOSOLS. The func-

tion reads the problem sizes given to the processors {P1, · · · , Pp−1} from

240

D.1. HELPER ROUTINES CALLED IN HEPOPTA

Algorithm 33 Algorithm Merging Partial-Pareto Solutions
1: function MERGEPARTIALPARETOES(n, p, c, E, T, partsV ec, PMem,ΨEP)
2: if c = 0 then
3: pSet← PMem[0][0]
4: else
5: pSet← PMem[c][n]
6: end if
7: for all x ∈ partsV ec do
8: if c < p− 2 then
9: subPareto← PMem[c+ 1][n− x]
10: else
11: x′ ← n− x
12: P#x′ ← (x = 0 ? 0 : 1)
13: timex′ ← READFUNC(TP−1, x

′)
14: engx′ ← READFUNC(EP−1, x

′)
15: subPareto← (engx′ , timex′ , x

′, P#x′ ,−)
16: end if
17: timex ← READFUNC(Tc, x)
18: P#x ← (x = 0 ? 0 : 1)
19: for all tup ∈ subPareto do
20: engx ← tup.eng + READFUNC(Ec, x)
21: timex ←Max(tup.time, timex)
22: P#x ← P#x + P#tup

23: key ← tup.eng
24: if |pSet| = 0 then
25: pSet← (engx, timex, x, P#x, key)
26: else
27: tupl ← pSet.lower_bound(engx)
28: if tupl 6= pSet.end() ∧ tupl.eng = engx then
29: if tupl.time > timex then
30: tupl ← (engx, timex, x, P#x, key)
31: for all r ∈ pSet | r.eng > engx ∧ r.time ≥ timex do
32: pSet← pSet− r
33: end for
34: else if tupl.time = timex ∧ P#x < tupl.P# then
35: tupl ← (engx, timex, x, P#x, key)
36: end if
37: else if tupl = pSet.end() then
38: tupl ← tupl − 1
39: if tupl.time > timex then
40: pSet ∪ (engx, timex, x, P#x, key)
41: end if
42: else if tupl = pSet.begin() then
43: if timex ≤ tupl.time then
44: for all r ∈ pSet | r.eng > engx ∧ r.time ≥ timex do
45: pSet← pSet− r
46: end for
47: end if
48: pSet ∪ (engx, timex, x, P#x, key)
49: else
50: tupl ← tupl − 1
51: if tupl.time > timex then
52: pSet ∪ (engx, timex, x, P#x, key)
53: for all r ∈ pSet | r.eng > engx ∧ r.time ≥ timex do
54: pSet← pSet− r
55: end for
56: end if
57: end if
58: if tup.time ≤ timex then
59: break
60: end if
61: end if
62: end for
63: end for
64: if c = 0 then
65: BUILDPARETOSOLS(PMem,ΨEP)
66: end if
67: end function

241

D.2. CORRECTNESS PROOF OF HEPOPTA

PMem. It uses the field key in each saved solution to find the correspond-

ing partial solution and eventually the problem size give to Pi+1. Since energy

consumptions are unique in any set, there is only one tuple that its dynamic

energy consumption is equal to key in that set.

Algorithm 34 Algorithm Completing Workload Distribution for ΨEP

1: function BUILDPARETOSOLS(PMem,ΨEP)
2: for all tup ∈ PMem[0][0] do
3: sumSize← tup.part
4: X[0]← tup.part
5: keycur ← tup.key
6: for all i = 1; i ≤ p− 2; i++ do
7: tupsub ← {t ∈ PMem[i][n− sumSize] | t.eng = keycur}
8: X[i]← tupsub.part
9: sumSize← sumSize+ tupsub.part
10: keycur ← tupsub.key
11: end for
12: X[p− 1]← n− sumSize
13: ΨEP ← ΨEP ∪ (tup.eng, tup.time,X)
14: end for
15: end function

D.2 Correctness Proof of HEPOPTA

Proposition D.2.1. The algorithm HEPOPTA always returns globally Pareto-

optimal solutions.

Proof. To obtain globally Pareto-optimal solutions for the dynamic energy

and performance of a given workload n between p processors {P0, · · · , Pp−1},
we need all possible distributions for the workload. One approach is to employ

the naive algorithm exploring full tree of solutions and build the globally Pareto-

optimal set which suffers from exponential complexity. HEPOPTA enhances

the naive approach using the specific operation Cut to just explore a small

fraction of the full solution tree. Therefore, the correctness of HEPOPTA will

be proved if we show that there exists no subtree ignored by the operation Cut

while contains a Pareto-optimal solution.

Consider a given node which is labelled by n at a level Li, i ∈ {0, 1, . . . , p−
2} in a solution tree . The operation Cut removes the subtree growing from

a node in case the workload of this node exceeds its corresponding size

242

D.3. COMPLEXITY OF HEPOPTA

threshold. Suppose the workload distribution X = {x0, · · · , xp−1} is elim-

inated from the search space by using Cut operation. Regarding the defi-

nition of size thresholds, the dynamic energy consumption of this workload

(ED(X) =
∑p−1

i=0 Ei(xi)) is greater than ε (ε < ED(X)). It should be men-

tioned that the execution time of this solution (TE(X) = maxp−1
i=0 Ti(xi)) will be

greater than or equal with the optimal execution time for the workload n, topt
(topt ≤ TE(X)). As explained in the main manuscript, ε is set to the dynamic

energy consumption of the optimal distribution for execution time. Hence, there

is a distribution like X∗ = {x∗0 · · · , x∗p−1} where its execution time and dynamic

energy consumption are TE(X∗) = topt and ED(X∗) = ε, respectively. Thus,

we have ED(X∗) < ED(X) and TE(X∗) ≤ TE(X), and according to the def-

inition of Pareto-optimal sets, the solution X, which is removed by Cut, goes

after the solutions X∗ and cannot be a member of the Pareto-optimal set. End

of Proof.

D.3 Complexity of HEPOPTA

Lemma D.3.1. The maximum number of Pareto-optimal solutions for dynamic

energy and performance on a heterogeneous platform including p discrete

dynamic energy and p performance functions with a cardinality of m is equal

to m× p.

Proof. We know that the execution time of a Pareto-optimal solution with

the workload distribution X = {x0, x1, · · · , xp−1} is equal to the execution

time of an xi ∈ X where Ti(xi) = maxp−1
j=0 Tj(xj), so that Ti(xi) represents

the execution time of running xi on Pi. In other words, the execution time

of any distribution like X is equal to the execution time of one the problem

sizes in X (i.e. xi ∈ X) which has maximum execution time. Since we have

p time functions with a cardinality of m, there exist up to m × p data points

with different execution times. Therefore, one can conclude that the number of

solutions with different execution times cannot go beyond m× p.

On the other hand, regarding the definition of Pareto-optimality, we know

that values for energy and performance are unique in any Pareto-optimal set

243

D.3. COMPLEXITY OF HEPOPTA

where there is not two solutions in one set where either their dynamic energy

consumptions or their execution times are the same. Since there exist up to

m × p distinct execution time, the cardinality of the Pareto-optimal set cannot

exceed m× p. End of Proof.

Lemma D.3.2. The computational complexity of the function MERGEPARTIAL-

PARETOES for building Pareto-optimal solutions of a given node in a solution

tree for a heterogeneous platform including p discrete dynamic energy and p

performance functions with a cardinality of m is equal to O(m2× p× log2(m×
p)).

Proof. Consider a given node N at a level Lc of a solution tree. As ex-

plained in Chapter 5, the node has generally up to m + 1 children. Regarding

Lemma D.3.1, each child of N at Lc+1 has up to m× (p−c−1) Pareto-optimal

solutions. Consider ΨN , a data structure of the type map, storing the Pareto-

optimal solutions of the node N . We know that the cardinality of ΨN does not

exceedm×(p−c) Pareto-optimal solutions (Lemma D.3.1). To find the Pareto-

optimal solutions of the node N , there are totally (m+ 1)× (m× (p− c− 1))

merged solutions which should be examined one by one so that inserting a

merged solution in ΨN has a complexity of log2(m × (p − c)). Henceforth,

the cost of processing and inserting all merged solutions is (m + 1) × (m ×
(p − c − 1)) × log2(m × (p − c)) u O(m2 × p × log2(m × p)). There exist

around (m + 1) × (m × (p − c − 1)) −m × (p − c) non-Pareto-optimal solu-

tions which are being eliminated from ΨN during the processing of the merged

solutions. The elimination cost is totally O(m2 × p). Therefore, the computa-

tional cost of merging all solutions for a given node in a search tree is equal to

O(m2 × p× log2(m× p)). End of Proof

Lemma D.3.3. The computational complexity of HEPOPTA_Kernel is O(m3×
p3 × log2(m× p)).

Proof. HEPOPTA_Kernel is an enhanced recursive algorithm, and there-

fore, its computational complexity can be related in terms of the number of its

recursions. We will formulate the number of recursions using a trivial sample

tree.

244

D.3. COMPLEXITY OF HEPOPTA

Let’s consider a workload n running on 5 heterogeneous processors (p =

5). Suppose there exist five discrete performance, Ti(x), and five discrete

dynamic energy functions, Ei(x) with a cardinality of 2 (m = 2) where x =

{∆x, 2∆x} and i ∈ {0, 1, · · · , 4}. It should be noted that HEPOPTA_Kernel

is able to deal with any granularity for workload sizes and considering the fix

granularity size ∆x ∈ N does not make the proof less general. Without loss

of generality and for the sake of simplicity, we assume that execution time and

dynamic energy consumption increase when problem size increases.

Figure D.1 shows the solution tree for finding the Pareto-optimal solutions

for the workload n on the five processors. Let’s n be greater than 8∆x, the

maximum possible workload which is subtracted from n in this example. In the

figure, red nodes represent ones have been already expanded in the same

level, and their solutions are retrieved from PMem. For the sake of simplicity,

the operation Cut has not been employed. Thus, the practical time complexity

is enormously less than the theoretical one.

According to the sample tree, the number of recursions (the number of

nodes that their solutions do not retrieve form memory) in each level of solu-

tions tree explored can be obtained using the Eq. C.1.

C#(L) =

L×m+ 1 0 ≤ L < p− 1

C#(p− 2)× (m+ 1) L = p− 1
(D.1)

where L represents the level number.

The expanded form of Eq. C.1 is shown in Eq. C.2.

C#(L) =

L×m+ 1 0 ≤ L < p− 1

m2 × p− 2×m2 +m× p−m+ 1 L = p− 1
(D.2)

That is, the total number of recursive calls is equal to
∑p−1

L=0(C#(L)) which

is equal to O(m× p2 +m2 × p).
In addition, the number of nodes in each level that their results are retrieved

from PMem is formulated in Eq. D.3.

245

D.3. COMPLEXITY OF HEPOPTA

n

n− 2∆x

n− 4∆x

n− 6∆x

n− 8∆x 0
n− 8∆x

n− 7∆x 0
n− 7∆x

n− 6∆x 0
n− 6∆x

0

∆x
2∆
x

n− 5∆x

n− 4∆x

0

∆x

2∆
x

n− 3∆x

n− 2∆x

0

∆x

2∆
x

n−∆x

n− 3∆x

n− 5∆x

n− 7∆x 0
n− 7∆x

n− 6∆x 0
n− 6∆x

n− 5∆x 0
n− 5∆x

0

∆x
2∆
x

n− 4∆x

n− 3∆x

0
∆x

2∆
x

n− 2∆x

n−∆x

0

∆x

2∆
x

n

n− 2∆x

n− 4∆x

n− 6∆x 0
n− 6∆x

n− 5∆x 0
n− 5∆x

n− 4∆x 0
n− 4∆x

0

∆x
2∆
x

n− 3∆x

n− 2∆x

0

∆x

2∆
x

n−∆x

n− 3∆x

n− 5∆x 0
n− 5∆x

n− 4∆x 0
n− 4∆x

n− 3∆x 0
n− 3∆x

0

∆x
2∆
x

n− 2∆x

n−∆x

0
∆x

2∆
x

n

n− 2∆x

n− 4∆x 0
n− 4∆x

n− 3∆x 0
n− 3∆x

n− 2∆x 0
n− 2∆x

0

∆x
2∆
x

n−∆x

n− 3∆x 0
n− 3∆x

n− 2∆x 0
n− 2∆x

n−∆x 0
n−∆x

0

∆x
2∆
x

n

n− 2∆x 0
n− 2∆x

n−∆x 0
n−∆x

n 0
n

0
∆x

2∆x

0

∆x

2∆
x

0

∆x

2∆
x

0

∆
x

2∆
x

Figure D.1: The HEPOPTA solution tree for executing a sample set of five
profiles (p = 5), each contains 2 data points. The memorization technique is
only considered to reduce the full search space of solutions.

246

D.3. COMPLEXITY OF HEPOPTA

Memory#(L) = (C#(L− 1)− 1)×m

= (m2)× (L− 1), 1 ≤ L ≤ p− 2
(D.3)

Since PMem saves the solutions which are found on levels 1 to p − 2,

the total number of nodes that their solutions are saved (nodes in red in the

figure) is equal to
∑p−2

L=1Memory#(L) = O(m2 × p2). The complexity of

READPARETOMEM is O(1). Therefore, the computational cost for retrieving all

solutions from PMem is equal to O(m2 × p2).

The function MERGEPARTIALPARETOES is invoked after exploring all chil-

dren of any node (nodes in black in Figure D.1) in levels {L0, · · · , Lp−2}.
Regarding Lemma D.3.2 and Eq. D.1, the total cost of all MERGEPARTIAL-

PARETOES calls is equal to
∑p−2

L=0(L × m + 1) × (m2 × p × log2(m × p)) =

O(m3 × p3 × log2(m× p)).
The computational complexity of HEPOPTA_Kernel can be summarized

as follows:

Complexity(HEPOPTA_Kernel) =O(recursive calls of HEPOPTA_Kernel)+

O(PMem solutions)+

O(MERGEPARTIALPARETOES calls).

which equals:

Complexity(HEPOPTA_Kernel) =O(m× p2 +m2 × p)+

O(m2 × p2)+

O(m3 × p3 × log2(m× p))

= O(m3 × p3 × log2(m× p)).

Proposition D.3.4. The computational complexity of HEPOPTA is O(m3 ×
p3 × log2(m× p)).

Proof. HEPOPTA consists of following main steps:

247

D.3. COMPLEXITY OF HEPOPTA

• Sorting: There exist p discrete performance and p discrete dynamic

energy profiles with a cardinality of m. The complexity to sort all of them

is O(p×m× log2m).

• Initializing energy threshold ε: Obtaining energy threshold involves

two steps: (i) invoking HPOPTA with a complexity of O(m3 × p3) fol-

lowed by (ii) calculating the energy threshold ε with a complexity of O(p).

Therefore, the complexity of this step is equal to O(m3 × p3).

• Finding size thresholds: To find the size threshold a given level Li,

i ∈ [0, p − 1], all data points, existing in ei(x) with dynamic energy con-

sumptions greater than ε should be examined in a complexity of O(m).

Therefore, finding p size thresholds has a complexity of O(p×m).

• Memory initialization: In this step, all (n+ 1)× (p− 2) cells of PMem

are initialized with a complexity of O(n× p).

• Kernel invocation: According to Lemma D.3.3, the complexity of HEP-

OPTA_Kernel is O(m3 × p3 × log2(m× p)).

Thus, the computational complexity of HEPOPTA is equal to the summa-

tion of all these steps, which is equal to O(m3 × p3 × log2(m × p)). End of

Proof.

Proposition D.3.5. The total memory consumption of HEPOPTA isO(n×m×
p2).

Proof. HEPOPTA uses memory to store following information:

• energy functions: There are p discrete energy functions with cardinality

of m. We store both size-sorted (sorted by problem size) and energy-

sorted (sorted by the amount of dynamic energy consumption) functions.

These function are stored in 2× p×m.

• time functions: There are p discrete time functions with cardinality of

m. We store both size-sorted (sorted by problem size) and time-sorted

(sorted by execution time) functions. These function are stored in 2 ×
p×m.

248

D.3. COMPLEXITY OF HEPOPTA

• ΨEP : Regarding Lemma D.3.1, the maximum number of Pareto-optimal

solutions are m × p. Since the workload distribution of each solution,

including p elements, is stored in ΨEP , the maximum size of the set ΨEP

is O(m× p2).

• PMem: This is a matrix consisting of (p − 2) × (n + 1) cells. Each cell

stores up to m × p Pareto-optimal solutions (Lemma D.3.1). Therefore,

the memory usage of PMem is equal to O(n×m× p2).

• Memory consumption of HPOPTA: The memory usage of HPOPTA is

O(p× (m+ n)).

• Xcur: This is an array of p elements to store the problem sizes assigned

to each processor by the current solution.

• partsVec: This is a vector of size O(m) storing the problem sizes given

to a processor where results in a solution. There exists p− 1 partsVecs,

one per level. That it total consumed memory is equal to O(m× p).

Thus, an upper bound for the total memory usage of HEPOPTA is equal to

O(n×m× p2). End of Proof.

249

Appendix E

HTPOPTA Details

In this chapter, We will prove how to calculate globally Pareto-optimal solutions

for total energy and performance using globally Pareto-optimal solutions for

dynamic energy and performance. Then, the correctness and computational

complexity proofs of HTPOPTA will be explained.

E.1 Definition of Pareto-optimal Solutions for Dy-

namic Energy and Execution Time

Suppose there exists a given workload n executing on p processors us-

ing a workload distribution X∗ = {x∗0, x∗1, · · · , x∗p−1} where
∑p−1

i=0 x
∗
i = n,

ED(X∗) =
∑p−1

i=0 ei(x
∗
i) is the dynamic energy consumption of the distribution,

and TE(X∗) = maxp−1
i=0 ti(x

∗
i) represents its execution time.

Suppose S represents the feasible set of distributions. According to the

definition of Pareto-optimality, the distribution X∗ would be a Pareto-optimal

solution if its dynamic energy consumption (ED(X∗)) and execution time

(TE(X∗)) satisfy Eq. E.1. In this equation, X = {x0, x1, · · · , xp−1} ∈ S repre-

sents any workload distribution for n.

250

E.1. DEFINITION OF PARETO-OPTIMAL SOLUTIONS FOR DYNAMIC
ENERGY AND EXECUTION TIME

@X ∈ S | ED(X) ≤ ED(X∗) ∧ TE(X) < TE(X∗)

AND

@X ∈ S | TE(X) ≤ TE(X∗) ∧ ED(X) < ED(X∗)

(E.1)

Equation E.1 means that there does not exist any objective vector

(ED(X), TE(X)) for which all the objective vector values are less than Pareto-

optimal vector (ED(X∗), TE(x∗)). In fact, there is no other solution which dom-

inates X∗.

Lemma E.1.1. For each non-Pareto-optimal workload distribution X with the

objective vector (ED(X), TE(X)), there is at least one Pareto-optimal solu-

tion X∗ where either ED(X∗) ≤ ED(X) and TE(X∗) < TE(X) or TE(X∗) ≤
TE(X) and ED(X∗) < ED(X).

Proof. Regarding the Eq. E.1, for each non-Pareto-optimal solution

X exists at least one solution Y in the objective space where ED(Y) ≤
ED(X) ∧ TE(Y) < TE(X) or TE(Y) ≤ TE(X) ∧ ED(Y) < ED(X). The

point X is called dominant point. If the dominant point Y is a Pareto-optimal

solution, the correctness of the lemma is proven. But if not so, there exists

another dominant point so that dominates Y . The process of finding dominant

points can be recursively repeated. The recursion will eventually terminate be-

cause the two objectives execution time and dynamic energy consumption are

finite positive parameters and their values gradually decrease during this re-

cursive process. That is, the recursive process finally reaches a given solution

X∗ which cannot be dominated by any other solution. According to the defi-

nition of Pareto-optimal solutions, the solution X∗ should be a member of the

Pareto-optimal set for dynamic energy and execution time (ΨEP). Therefore,

the correctness of the lemma E.1.1 is proven. End of Proof.

251

E.2. PARETO-FRONT SOLUTIONS FOR TOTAL ENERGY AND
EXECUTION TIME

E.2 Pareto-front Solutions for Total Energy and

Execution Time

In this section, we will prove how to build Pareto-optimal solutions for total en-

ergy and execution time (ΨTP) by using Pareto-optimal solutions for dynamic

energy and execution time (ΨEP).

Proposition E.2.1. There is no workload distribution X such that X /∈ ΨEP

but X ∈ ΨTP .

Proof. Referring to Lemma E.1.1, if a solution X is not in ΨEP then there

exists a Pareto-optimal solution X∗ such that either ED(X∗) ≤ ED(X) and

TE(X∗) < TE(X) or TE(X∗) ≤ TE(X) and ED(X∗) < ED(X). Since total

energy is a function of dynamic energy and execution time, it can be deducted

that ET (X∗) < ET (X). Since TE(X∗) < TE(X) and either ET (X∗) < ET (X)

or ET (X∗) ≤ ET (X), the objective vector (ET (X∗), TE(X∗)) dominates

(ET (X), TE(X)). Therefore, it can be concluded that feasible solutions which

are not a remember of ΨEP cannot be a member of ΨTP . End of Proof.

Proposition E.2.2. If Xopt is a workload distribution minimising total energy

consumption, its corresponding objective vector, (ED(Xopt), TE(Xopt)), is nec-

essarily a member of Pareto-optimal set for dynamic energy and performance.

Proof. We categorize all points in the feasible set of distributions into two

distinct groups: (i) solutions existing in the Pareto-optimal set ΨEP , and (ii) so-

lutions are not Pareto-optimal. Regarding Lemma E.1.1, for each non-Pareto-

optimal solutionX, there is at least one solutionX∗ in Pareto-optimal set dom-

inating X. Since total energy is a function of dynamic energy and execution

time, it can be concluded that

∀x /∈ ΨEP ,∃X∗ ∈ ΨEP

where

ET (X∗) < ET (X)

252

E.3. COMPLEXITY OF HTPOPTA

That is, the solution which minimizes total energy must be a member of

Pareto-optimal set. End of Proof.

E.3 Complexity of HTPOPTA

Proposition E.3.1. The computational complexity of HTPOPTA is O(m3 ×
p3 × log2(m× p)).

Proof. To find globally Pareto-optimal solutions for total energy and per-

formance, HTPOPTA, first, invokes HEPOPTA for obtaining ΨEP , with a com-

plexity of O(m3 × p3 × log2(m× p)).
It then calculates the total energy consumption of each solution up to m×p

number of solutions in ΨEP and inserts the new solutions into ΨTP or updates

existing ones. ΨTP is defined as a data structure of the type map to store

Pareto-optimal solutions for total energy and performance. In the case of ex-

isting two solutions with equal total energy consumption and execution times,

the solution with less active processors (processors with non-zero workloads)

is chosen by HTPOPTA. Inserting a solution in ΨTP has a logarithmic compu-

tational complexity, and determining solutions with less active processors has

a complexity of O(p). Therefore, the cost of inserting and updating up to m×p
solutions in ΨTP is (m× p)× (log2(m× p) + p) u O(m× p2). In addition, the

computational complexity for eliminating all non-Pareto-optimal solutions from

ΨTP is O(m× p).
Therefore, the total computational cost to calculate ΨTP is equal toO(m3×

p3 × log2(m× p)). End of Proof.

Proposition E.3.2. The total memory consumption of HTPOPTA isO(n×m×
p2).

Proof. HTPOPTA uses memory to store following information:

• energy functions: There are p discrete energy functions with a car-

dinality of m. We store both size-sorted (sorted by problem size) and

energy-sorted (sorted by the amount of dynamic energy consumption)

functions. These function are stored in 2× p×m.

253

E.3. COMPLEXITY OF HTPOPTA

• time functions: There are p discrete time functions with a cardinality of

m. We store both size-sorted (sorted by problem size) and time-sorted

(sorted by execution time) functions. These function are stored in 2 ×
p×m.

• Required memory by HEPOPTA: As proved in Appendix D, the total

memory consumption of HEPOPTA is O(n×m× p2).

• ΨTP : As proved in Appendix D (Lemma D.3.1), the maximum number

of Pareto-optimal solutions is equal to m × p. Since the workload dis-

tribution of each solution, involving p elements, is stored in ΨTP , the

maximum size of ΨTP is O(m× p2).

Thus, total memory usage of HTPOPTA is equal to O(n×m× p2). End of

Proof.

254

Appendix F

Interfaces to Proposed Tools

In this chapter, we describe the interfaces to the routines provided by HPOPTA,

a tool for performance optimization, HEOPTA, a tool for dynamic energy op-

timization, and HEPOPTA, a tool for bi-objective optimization for dynamic en-

ergy and performance, and total energy and performance for modern hetero-

geneous HPC platforms.

F.1 Interface to HPOPTA

HCL_hpopta

The implementation of the HPOPTA algorithm for heterogeneous clusters.

The goal of the algorithm is to determine optimal workload distribution mini-

mizing the execution time of a computation in its parallel execution.

Synopsis:

int

HCL_hpopta(

const int verbosity,

const unsigned int n,

const unsigned int p,

const unsigned int* npoints,

const unsigned int* psizes,

255

F.1. INTERFACE TO HPOPTA

const double* etimes,

unsigned int* xOpt,

double* eOpt

);

Parameters:

• verbosity — Level of verbosity.

• n — The workload size.

• p — Number of processors.

• npoints — The number of points in each discrete time function in an

array of size p.

• psizes — A list of problem sizes in p discrete time functions. Values for

the first function are followed by those of the second one and so on.

• etimes — A list of execution times in p discrete time functions. Values

for the first function are followed by those of the second one and so on.

• xOpt — The optimal workload distribution output in an array of size p.

• eOpt — The optimal execution time.

Usage:

/*appname.cpp using the hcl_hpopta interface to find optimal

workload distribuion for performance.*/

#include <iostream>

#include "hcl_hpopta.h"

using namespace std;

int main(int argc, char** argv)

{

256

F.1. INTERFACE TO HPOPTA

unsigned int npoints[2] = {4,3};

unsigned int psizes[7] = {1,2,3,4,1,2,3};

double etimes[7] = {10,30,20,25,15,25,35};

unsigned int xOpt[2];

double eOpt;

int rc = hcl_hpopta(1,

4,

2,

npoints,

psizes,

etimes,

xOpt,

&eOpt

);

if (rc == 0)

{

return 0;

}

else

{

//Error has occured

return -1;

}

}

Compilation: Use the command below to compile an application named

appname.cpp:

$ g++ -I <path to hcl_hpopta.h> <appname.cpp> -L <path to

the library hpopt> -l hpopt

257

F.2. INTERFACE TO HEOPTA

Return values: 0 on success, −1 in case of failure.

F.2 Interface to HEOPTA

HCL_heopta

The implementation of the HEOPTA algorithm for heterogeneous clusters.

The goal of the algorithm is to determine optimal workload distribution minimiz-

ing the dynamic energy consumption of a computation in its parallel execution.

Synopsis:

int

HCL_heopta(

const int verbosity,

const unsigned int n,

const unsigned int p,

const unsigned int* npoints,

const unsigned int* psizes,

const double* energies,

unsigned int* xOpt,

double* eOpt

);

Parameters:

• verbosity — Level of verbosity.

• n — The workload size.

• p — Number of processors.

258

F.2. INTERFACE TO HEOPTA

• npoints — The number of points in each discrete energy function in an

array of size p.

• psizes — A list of problem sizes in p discrete energy functions. Values

for the first function are followed by those of the second one and so on.

• energies — A list of dynamic energy consumptions in p discrete energy

functions. Values for the first function are followed by those of the second

one and so on.

• xOpt — The optimal workload distribution output in an array of size p.

• eOpt — The optimal dynamic energy consumption.

Usage:

/*appname.cpp using the hcl_heopta interface to find optimal

workload distribuion for dynamic energy.*/

#include <iostream>

#include "hcl_heopta.h"

using namespace std;

int main(int argc, char** argv)

{

unsigned int npoints[2] = {4,3};

unsigned int psizes[7] = {1,2,3,4,1,2,3};

double energies[7] = {10,30,20,25,15,25,35};

unsigned int xOpt[2];

double eOpt;

int rc = hcl_heopta(1,

4,

2,

npoints,

psizes,

259

F.3. INTERFACE TO HEPOPTA AND HTPOPTA

energies,

xOpt,

&eOpt

);

if (rc == 0)

{

return 0;

}

else

{

//Error has occured

return -1;

}

}

Compilation: Use the command below to compile an application named

appname.cpp:

$ g++ -I <path to hcl_heopta.h> <appname.cpp> -L <path to

the library heopt> -L <path to the library hpopt> -l heopt

-l hpopt

Return values: 0 on success, −1 in case of failure.

F.3 Interface to HEPOPTA and HTPOPTA

HCL_hepopta

The implementation of the HEPOPTA and HTPOPTA for heterogeneous

clusters. The algorithm aims to find Pareto-optimal solutions for dynamic en-

260

F.3. INTERFACE TO HEPOPTA AND HTPOPTA

ergy and performance. It also calculates Pareto-optimal solutions for total en-

ergy and performance in case the input parameter bp, determining the amount

of base power, is set to a positive value.

Synopsis:

int

HCL_hepopta(

const int verbosity,

const unsigned int n,

const unsigned int p,

const double bp,

const unsigned int *npoints,

const unsigned int* psizes,

const double* etimes,

const double* energies,

unsigned int* nDEParetoSolutions,

double** DEparetoSols,

unsigned int* nTEParetoSolutions,

double** TEparetoSols

);

Parameters:

• verbosity — Level of verbosity.

• n — The workload size.

• p — Number of processors.

• bp — The amount of base power consumption of the platform. The

algorithm only calculates Pareto-optimal solutions for dynamic energy

and performance in case bp is set to 0.

• npoints — The number of points in each discrete energy function in an

array of size p.

261

F.3. INTERFACE TO HEPOPTA AND HTPOPTA

• psizes — A list of problem sizes in p discrete energy functions. Values

for the first function are followed by those of the second one and so on.

• etimes — A list of execution times in p discrete time functions. Values

for the first function are followed by those of the second one and so on.

• energies — A list of dynamic energy consumptions in p discrete energy

functions. Values for the first function are followed by those of the second

one and so on.

• nDEParetoSolutions — The number of Pareto-optimal solutions for per-

formance and dynamic energy.

• DEparetoSols — A list of Pareto-optimal solutions for performance and

dynamic energy including nDEParetoSolutions solutions.

• nTEParetoSolutions — The number of Pareto-optimal solutions for per-

formance and total energy.

• TEparetoSols — A list of Pareto-optimal solutions for performance and

total energy including nTEParetoSolutions solutions.

Usage:

/*appname.cpp using the hcl_hepopta interface to find Pareto

-optimal solutions for performance and dynamic energy and

performance and total energy.*/

#include <iostream>

#include "hcl_hepopta.h"

using namespace std;

int main(int argc, char** argv)

{

unsigned int npoints[2] = {4,3};

unsigned int psizes[7] = {1,2,3,4,1,2,3};

double etimes[7] = {10,30,20,25,15,25,35};

262

F.3. INTERFACE TO HEPOPTA AND HTPOPTA

double energies[7] = {10,30,20,25,15,25,35};

unsigned int nDEParetoSolutions;

double** DEparetoSols;

unsigned int nTEParetoSolutions;

double** TEparetoSols;

int rc = hcl_hepopta(1,

4,

2,

100,

npoints,

psizes,

etimes,

energies,

&nDEParetoSolutions,

DEparetoSols,

&nTEParetoSolutions,

TEparetoSols

);

if (rc == 0)

{

return 0;

}

else

{

//Error has occured

return -1;

}

}

Compilation: Use the command below to compile an application named

263

F.3. INTERFACE TO HEPOPTA AND HTPOPTA

appname.cpp:

$ g++ -I <path to hcl_hepopta.h> <appname.cpp> -L <path to

the library hepopt> -L <path to the library heopt> -L <path

to the library hpopt> -l hepopt -l heopt -l hpopt

Return values: 0 on success, −1 in case of failure.

264

Appendix G

List of Abbreviations

G.1 Acronyms

The following describes the significance of various acronyms and terms used

throughout this thesis. The page on which each one is defined or used is also

given.

Acronyms

BLAS Basic Linear Algebra Subprograms. 49, 161, 167

BOPPE Bi-objective Optimization Problem for Performance and dynamic En-

ergy. 13, 14, 130, 157

CPM Constant Performance Model. 4, 29, 78

DAG Directed Acyclic Graph. 21

DGEMM Double-precision General Matrix Multiplication. 5

DVFS Dynamic Voltage and Frequency Scaling. 8, 33, 129

EULAG Eulerian/semi-Lagrangian fluid solver. 4

265

Acronyms

FFT Fast Fourier Transform. 5, 51

FLOPS Floating Point Operations Per Second. 79, 92

FPGA Field Programmable Gate Array. 18, 20, 51, 159

FPM Functional Performance Model. 4, 78

GPU Graphics Processing Unit. 18, 51, 94, 159

HPC High Performance Computing. 1, 18, 92, 179

INLP Integer Non-Linear Programming. 58, 102, 112, 113, 180

LLC Last Level Cache. 1, 51, 179

MIC Many Integrated Core. 2

MIMD Multiple Instruction, Multiple Data. 18

MPDATA Multidimensional Positive Definite Advection Transport Algorithm. 4,

71

NIC Network Interface Card. 99

NUMA Non-Uniform Memory Access. 1, 19, 51, 179

PCA Principal Component Analysis. 33

PMC Performance Monitoring Counter. 25, 97

QPI Quick Path Interconnect. 1, 55, 179

SSD Solid State Drive. 99

UMA Uniform Memory Access. 19

Xeon Phi Intel Xeon Phi. 18, 51, 94, 159

266

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations of This Research
	Shortcomings of State-of-the-art Load-balancing Algorithms for Performance Optimization on Modern Heterogeneous Platforms
	Shortcomings of State-of-the-art Energy Optimization Algorithms on Modern Heterogeneous Platforms
	Necessity of Novel Bi-objective Optimization Algorithms for Performance and Energy on Modern Heterogeneous Platforms
	Challenges to Execution of Large Problem Sizes on Accelerators

	Contributions of This Research
	Thesis Structure

	Background and Related Work
	Heterogeneous HPC Platforms
	Data Partitioning on HPC Platforms
	Load-balancing in HPC platforms

	Performance and Energy Models of HPC Platforms
	Models for Performance
	Models for Energy Consumption

	Performance and Energy Bi-objective Optimization on HPC Platforms
	System-level Methods
	Application-level Methods

	Summary
	Out-of-card Computation on Accelerators
	Out-of-card Implementation of Accelerator Kernels
	Out-of-card Libraries for accelerator kernels

	A Novel Data-Partitioning Algorithm for Performance Optimization of Data-Parallel Applications on Heterogeneous HPC Platforms
	Modelling Computational Performance of Hybrid Platforms
	Formulation of Performance Optimization Problem
	HPOPTA: Algorithm Solving HPOPT
	HPOPTA as a Load Imbalancing Algorithm
	Problem Dimensions in HPOPTA

	Formal Description of HPOPTA
	Recursive Algorithm HPOPTA_Kernel
	Theoretical Analysis of HPOPTA

	Experimental Analysis of HPOPTA
	Experimental Platform and Applications
	Data Partitioning on a Single-node Hybrid Server
	Using HPOPTA for Data partitioning on Clusters of Heterogeneous Nodes
	Hierarchical Two-level Workload Distribution

	Summary

	A Novel Model-based Algorithm for Dynamic Energy Consumption Optimization of Data-Parallel Applications on Heterogeneous HPC Platforms
	Terminology
	Dynamic Energy Measurement in Heterogeneous Platforms
	Energy Measurement in Computing Platforms
	Dynamic Energy Measurement in Hybrid Heterogeneous Platforms

	Formulation of Heterogeneous Dynamic Energy Optimization Problem
	HEOPTA: Algorithm Solving HEOPT Problem
	Formal Description of HEOPTA
	Recursive Algorithm HEOPTA_Kernel

	Experimental Results of HEOPTA
	Experimental Platform and Applications
	Experimental Analysis
	Observations

	Summary

	Bi-objective Optimization of Data-parallel Applications on Heterogeneous HPC Platforms for Performance and Energy Using Workload Partitioning
	Formulation of Heterogeneous Dynamic Energy-Performance Optimization Problem (HEPOPT)
	HEPOPTA: Algorithm Finding Globally Pareto-optimal Solutions for Dynamic Energy and Performance
	Formal Description of HEPOPTA
	Recursive Algorithm HEPOPTA_Kernel

	HTPOPTA: Algorithm Finding Globally Pareto-optimal Solutions for Total Energy and Performance
	Formal Description of HTPOPTA
	Experimental Results
	Analysis of HEPOPTA
	Analysis of HTPOPTA

	Summary

	Out-of-card Implementation for Accelerator Kernels on Heterogeneous Computing Platforms
	Introduction to Out-of-card Computation for Accelerators
	Out-of-card Library for Accelerator Kernels (HCLOOC)
	Implementation for Dense Matrix Multiplication on a GPU using HCLOOC

	Experimental Results
	Evaluation Platform
	Performance of Out-of-card Implementations

	Summary

	Conclusion
	Bibliography
	Appendices
	Experimental Methodology
	Methodology to Measure Execution Time and Energy Consumption
	Methodology to Ensure Reliability of Experimental Results

	HPOPTA Details
	Comparison of Actual and Simulated Execution Times
	Helper Routines Called in HPOPTA
	Function GetTime
	Function SizeThresholdCalc
	Function Cut
	Structure of matrix Mem
	Function ReadMemory
	Function ProcessSolution
	Function Save
	Function Backtrack
	Function MakeFinal

	Correctness Proof of HPOPTA
	Complexity of HPOPTA

	HEOPTA Details
	Helper Routines Called in HEOPTA
	Function GetEng
	Function SizeThresholdCalc
	Function Cut
	Structure of matrix Mem
	Function ReadMemory
	Function ProcessSolution
	Function Save
	Function MakeFinal

	Correctness Proof of HEOPTA
	Complexity of HEOPTA

	HEPOPTA Details
	Helper Routines Called in HEPOPTA
	Function ReadFunc
	Function SizeThresholdCalc
	Function Cut
	Structure of matrix PMem in HEPOPT
	Function ReadParetoMem
	Function MakeParetoFinal
	Function MergePartialParetoes
	Function BuildParetoSols

	Correctness Proof of HEPOPTA
	Complexity of HEPOPTA

	HTPOPTA Details
	Definition of Pareto-optimal Solutions for Dynamic Energy and Execution Time
	Pareto-front Solutions for Total Energy and Execution Time
	Complexity of HTPOPTA

	Interfaces to Proposed Tools
	Interface to HPOPTA
	Interface to HEOPTA
	Interface to HEPOPTA and HTPOPTA

	List of Abbreviations
	Acronyms

