
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Accurate Energy Modelling of Hybrid
Parallel Applications on Modern
Heterogeneous Computing Platforms
using System-Level Measurements
MUHAMMAD FAHAD1, ARSALAN SHAHID1, RAVI REDDY MANUMACHU2, ALEXEY
LASTOVETSKY2
1School of Computer Science, University College Dublin (e-mail: {muhammad.fahad, arsalan.shahid}@ucdconnect.ie)
2School of Computer Science, University College Dublin (e-mail: {ravi.manumachu, alexey.lastovetsky}@ucd.ie)

Corresponding author: Muhammad Fahad (e-mail: muhammad.fahad@ucdconnect.ie).

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant
Number 14/IA/2474.

ABSTRACT Modern high-performance computing platforms, cloud computing systems, and data centers
are highly heterogeneous containing nodes where a multicore CPU is tightly integrated with accelerators.
An important challenge for energy optimization of hybrid parallel applications on such platforms is how
to accurately estimate the energy consumption of application components running on different compute
devices of the platform. In this work, we propose a method for accurate estimation of the application
component-level energy consumption employing system-level power measurements with power meters. We
experimentally validate the method on a cluster of two hybrid heterogeneous computing nodes using three
parallel applications – matrix-matrix multiplication, 2D fast Fourier transform and gene sequencing. The
experiments demonstrate a high estimation accuracy of the proposed method, with the average estimation
error ranging between 2% and 5%. The average error demonstrated by the state-of-the-art estimation
methods for the same experimental setup ranges from 15% to 75%, while the maximum reaches 178%.
We also show that the use of the state-of-the-art estimation methods instead of the proposed one in the
energy optimization loop leads to significant energy losses (up to 45% in our case).

INDEX TERMS energy modelling, energy optimization, power meters, on-chip power sensors, heteroge-
neous platforms, parallel applications, multicore CPU, GPU, Intel Xeon Phi, HPC

I. INTRODUCTION

High energy consumption by Information and Communica-
tions Technology (ICT) systems and devices is a serious con-
cern now because of its dire consequences on the economy
and environment. ICT systems and devices are already con-
suming about 2000 terawatt-hours (TWh) per year which is
about 10% of the global electricity demand [1]. With a share
of 200 TWh, data centers are a big contributor to this high
electricity consumption. Andrae and Edler [2] predict that
ICT could use up to 51% of global electricity in 2030, and it
could contribute up to 23% of globally released greenhouse
gas emission. Because of such high power consumption, fu-
ture HPC systems are highly likely to be power constrained.
For example, the Department of Energy (DOE) in the United

States aims to deploy an exascale supercomputer capable of
performing 1 million trillion (1018) floating-point operations
per second within a power envelope of 20-30 megawatts [3].

Several system-level and application-level solution meth-
ods have been proposed to reduce the energy consumption.
System-level solution methods include clock and power gat-
ing, dynamic voltage and frequency scaling (DVFS), dy-
namic power management (DPM), etc [4]–[6]. In contrast,
the application-level approach is comparatively understud-
ied. Application-level solution methods use application-level
models and application-level parameters such as number of
processors, number of threads, workload distribution, etc.,
as decision variables for energy optimization of applications
[7]–[9]. In this work, we will focus exclusively on the

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

application-level approach. Accurate measurement of energy
consumption during an application execution is pivotal to
application-level solution methods.

Modern high-performance computing (HPC) platforms,
cloud computing systems, and data centers are commonly
composed of heterogeneous nodes where a multicore CPU is
tightly integrated with one or more accelerators to address the
twin critical concerns of performance and energy efficiency.
A parallel application executing on such a hybrid node, con-
sists of multiple kernels (generally speaking, multi-threaded),
running in parallel on different computing devices of the
platform. We term these kernels as application components
for illustration purposes in this work.

An important challenge for energy optimization of hybrid
parallel applications on such platforms is how to accurately
estimate the energy consumption of its application compo-
nents executing in parallel on different compute devices of
the platform. We present the details of the issues involved
in addressing the challenge in section II. In a nutshell, a
naïve approach addressing this challenge has exponential
complexity. An efficient solution method must take into
account the inherent complexities in modern heterogeneous
platforms and employ an accurate measurement method for
energy consumption by an application.

There are three mainstream approaches for determining
the energy consumption by an application: a). System-level
physical measurements using external power meters, b).
Measurements using on-chip power sensors, and c). Energy
predictive models. System-level physical measurements us-
ing external power meters is considered the ground truth. A
comparative study of on-chip sensors and energy predictive
models against the ground truth is presented in the section III.
In brief, the two state-of-the-art approaches, on-chip sensors
and energy predictive models, suffer from poor accuracy and
high implementation complexity [10]. To summarize, there
exists no solution method to the best of our knowledge that
employs system-level power measurements using external
power meters to accurately determine the application com-
ponent level decomposition of the energy consumption of
an application executing on multiple independent computing
devices in a computer.

We propose a novel solution method called Additive
energy Modelling of Hybrid Applications (AnMoHA) to fill
the gap. It comprises of two main stages. In the first stage,
individual computing elements executing a given application
kernel are grouped in such a way that we can accurately
measure the energy consumption of the groups. The groups
are termed as abstract processors. In the second stage, the
discrete dynamic energy functions of the abstract processors
are constructed using an additive modelling approach. We
do not make any assumption about the shape of the energy
profiles of application kernels. They can be linear or non-
linear. Using this method, we address two challenges for
energy optimization of hybrid parallel applications running
on modern heterogeneous NUMA computing platforms:

1) Accurate modelling of the energy consumptions of

application components when executing a hybrid ap-
plication in parallel on multiple compute devices on a
computer.

2) Accurate modelling of the energy consumption of two
different applications executing in parallel on a dual-
socket multicore CPU platform.

We experimentally validate the method on a cluster of two
hybrid heterogeneous computing nodes using three parallel
applications – matrix-matrix multiplication, 2D fast Fourier
transform and a gene sequencing application for a diverse
range of problem sizes. The experiments demonstrate a high
estimation accuracy of the proposed method, with the esti-
mation error ranging between 2% and 5%. The average error
demonstrated by the state-of-the-art estimation methods for
the same experimental setup ranges from 15% to 75%, while
the maximum reaches 178%. The main contributions of this
work are:

• A novel methodology (AnMoHA) to determine the fine-
grained decomposition of the energy consumption by
a hybrid application executing in parallel on multiple
independent computing devices (CPU, GPU, Xeon Phi,
FPGA, etc) in a hybrid heterogeneous computing plat-
form within sufficient accuracy, and empirical validation
of the methodology on two modern heterogeneous hy-
brid servers.

• A comprehensive study to analyze the pragmatic aspects
of additive energy modeling: i). The trade-off between
the time to build the energy functions and their accuracy,
and ii). The trade-off between the number of indepen-
dent experiments to build the energy functions and their
accuracy.

• A comprehensive study to find the hardware topological
granularity limits of AnMoHA. We demonstrate how
the dynamic energy consumption can be attributed to
the individual application, using AnMoHA, when two
different applications are running in parallel on a dual-
socket multicore CPU platform. Furthermore, we find
that if an application is executed on some of the CPU
cores of a socket, then the base energy (or the idle
energy) of idle cores can contribute significantly to the
total energy consumption by the CPU, and can even
exceed the dynamic energy consumption by the active
CPU cores in some cases.

• A comparison of the accuracy of additive energy models
using state-of-the-art on-chip power sensors against the
additive energy models constructed with the ground
truth for two scientific hybrid applications (matrix-
matrix multiplication and 2D fast Fourier transform)
on a modern hybrid heterogeneous computing platform
containing an Intel multicore CPU, a Nvidia GPU, and
an Intel Xeon Phi.

• We show that significant energy is lost by employing the
energy models constructed by using energy measure-
ments provided by on-chip sensors for dynamic energy
optimization of an application.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

The rest of the paper is organized as follows. We present
the challenges to energy optimization of a hybrid parallel
application in section II. The comparative study of prediction
accuracy of the state-of-the art approaches to measure the
energy consumption is presented in the section III. Related
work follows in section IV. Our solution method, AnMoHA,
is explained in section V. The experimental validation of
AnMoHA is presented in section VI. We discuss the trade-
offs between the accuracy and time-space, and between the
accuracy and design-space of AnMoHA in sections VII and
VIII. We explore the hardware topological granularity and
the scalability of AnMoHA in section IX. Then, we study the
accuracy of additive energy modelling using on-chip sensors
against the ground truth, and dynamic energy optimization
with on-chip sensors and the ground truth in section X.
Finally, we conclude the paper in section XI.

II. CHALLENGES TO ENERGY OPTIMIZATION OF A
HYBRID PARALLEL APPLICATION
Modern high-performance computing (HPC) platforms,
cloud computing systems, and data centers are commonly
composed of nodes where a multicore CPU is tightly in-
tegrated with one or more accelerators such as graphi-
cal processing units (GPUs), Intel Xeon PHIs, and field-
programmable gate arrays (FPGAs) to address the twin crit-
ical concerns of performance and energy efficiency. A hy-
brid parallel application consists of application components
running in parallel on multiple compute devices of such a
heterogeneous hybrid node.

To optimize the application for dynamic energy consump-
tion, a naïve approach explores all possible workload distri-
butions to obtain the optimal workload distribution for the
compute devices such that the energy consumption by the
application is minimized. For each workload distribution,
it determines the total dynamic energy consumption during
the parallel execution of the workload. It, then, returns the
workload distribution with the optimal total dynamic energy
consumption. Briefly, the total energy consumption is the
sum of dynamic and static energy consumption. The static
energy consumption is the idle power of the platform (with-
out application execution) multiplied by the execution time
of the application. The dynamic energy consumption is the
total energy consumed by the platform during the application
execution minus the static energy consumption. In this work,
we consider only dynamic energy. We explain the rationale
behind using dynamic energy consumption instead of total
energy consumption in appendix F.

The naïve approach, however, has an exponential complex-
ity. To reduce this complexity, we need application compo-
nent energy profiles that are input to a data partitioning algo-
rithm to determine the workload distribution minimizing the
dynamic energy consumption during the parallel execution of
the workload. Consider, for example, the model-based data
partitioning algorithm [11] to compute an optimal distribu-
tion of a given workload size N amongst p heterogeneous
processors that minimizes the total dynamic energy during

the parallel execution of the application. The algorithm takes
as input p dynamic energy profiles of the application com-
ponents running parallel on p compute devices. The output
is the optimal distribution of the workload amongst the
p compute devices. More details on the algorithm and its
complexity can be found in [11].

Therefore, a fundamental challenge is to determine the
decomposition of energy consumption by a hybrid parallel
application into application component profiles. The key
building block to addressing this challenge is the accurate
measurement of energy consumption during the application
execution. Fahad et al. [10] show that the use of inaccurate
energy measurements to optimize the energy consumption by
an application can lead to significant energy losses by up to
84%.

We illustrate the energy loss by an example. Consider, for
example, a dynamic energy profile of an image processing
application for a range of problem sizes{x1, x2, · · · , xn}.
Let the tool A reports the dynamic energy consumption for
problem sizes {xi, xi+1, xi+2} (where 0 < i and i+ 2 ≤ n)
to be {776 J, 764 J, 634 J}. Whereas, the tool B (the ground
truth) reports the dynamic energy consumption by the same
problem sizes to be {409 J, 540 J, 568 J}. Now, if the
measurements by tool A are used for dynamic energy opti-
mization of the image processing application for workload
size (or image size) N = xi, an optimization method for
dynamic energy using the profile built with the tool A as
an input could use the solution for the workload size N =
xi+2, aiming to reduce the dynamic energy consumption by
18%. Solving this workload size, however, will result in an
increase of dynamic energy consumption by 39% according
to the ground truth. Hence, 39% energy loss occurs by using
inaccurate measurements to optimize the energy consump-
tion of the application.

Furthermore, the tight integration of multicore CPUs with
accelerators in modern hybrid heterogeneous HPC systems
has resulted in inherent complexities, which are: a) Severe
resource contention due to the tight integration of tens of
cores contending for shared on-chip resources such as last
level cache (LLC), interconnect (For example: Intel’s Quick
Path Interconnect, AMD’s Hyper Transport), and DRAM
controllers; b) Non-uniform memory access (NUMA); and
c) Dynamic power management (DPM) of multiple power
domains (CPU sockets, DRAM). As a result, the workload
of one application component of a hybrid application may
significantly impact the performance and energy consumed
by the others when running in parallel on multiple compute
devices. One can accurately measure the performance of the
application components running in parallel using high pre-
cision processor clocks. However, there is no such effective
equivalent for measuring the energy consumption.

III. COMPARATIVE ANALYSIS OF THE
STATE-OF-THE-ART ENERGY MEASUREMENT TOOLS
In this section, first, we survey the state-of-the-art energy
measurement approaches. Then, we compare and analyze

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

their accuracy, implementation cost and the cost to determine
the energy consumption by an application.

We categorize the dominant approaches for determining
the energy consumption by an application as follows: a).
System-level physical measurements using external power
meters, b). Measurements using on-chip power sensors, and
c). Energy predictive models. The first approach using the
external power meters is considered to be accurate [12]. It
can provide only the measurement at a computer level and
cannot, therefore, provide the fine-grained decomposition
of the energy consumption by an application executing on
multiple independent computing devices in a computer.

The second approach employs on-chip power sensors
which are now available in mainstream processors such as
Intel and AMD Multicore CPUs, Nvidia GPUs, and Intel
Xeon Phis. There are vendor-specific libraries to acquire
the power data from these sensors. For example, Running
Average Power Limit (RAPL) [13] is used to monitor power
and control frequency (and voltage) of Intel CPUs. Similarly,
Nvidia NVIDIA Management Library (NVML) [14] and In-
tel System Management Controller chip (SMC) [15] provide
the power consumption by Nvidia GPUs and Intel Xeon Phi.
NVML provides the instant power draw values with nominal
accuracy up to ±5% [14]. The accuracy of Intel SMC is not
available. Apart from insufficient documentation, there are
other issues with the power data values provided by these
vendor-specific libraries. For example, it lacks details such
as update frequency of power readings and also suffers from
potential complications such as sampling interval variability
of significant sensor lag as reported by [16].

The third approach based on software energy predictive
models emerged as a popular alternative to determine the
energy consumption of an application. Majority of the mod-
els are linear and employ performance monitoring counters
(PMCs) as predictor variables. While the models allow deter-
mination of fine-grained decomposition of energy consump-
tion during the execution of an application, there are research
works highlighting their poor accuracy [17]–[20].

Fahad et al. [10] present the first comprehensive com-
parative study on the accuracy of state-of-the-art on-chip
power sensors and energy predictive models against system-
level physical measurements using external power meters,
which is considered to be the ground truth. We illustrate
the key results of the study [10], comparing the accuracy of
energy measurements using on-chip power sensors and en-
ergy predictive models against system-level physical power
measurements using external power meters. We run our ex-
periments on two modern hybrid heterogeneous computing
platforms: HCLServer01 and HCLServer02. HCLServer01
contains an Intel Haswell CPU, an Nvidia K40 GPU and an
Intel Xeon Phi 3120P. HCLServer02 contains an Intel Sky-
lake multicore CPU and an Nvidia P100 GPU. The technical
details are provided in table 1. These nodes are representative
of computers used in cloud infrastructures, supercomputers,
data centers, and heterogeneous computing clusters. Each
node has a Watts Up Pro power meter installed between

its input power sockets and the wall A/C outlets. Watts Up
Pro power meters are periodically calibrated using the ANSI
C12.20 revenue-grade power meter, Yokogawa WT310. The
maximum sampling speed of Watts Up Pro power meters is
one sample every second. The accuracy specified in the data-
sheets is±3%. The minimum measurable power is 0.5 watts.

TABLE 1: Technical Specifications of HCLServers.

Technical Specifications HCLServer01 HCLServer02
Processor Intel E5-2670 v3 @2.30GHz Intel Xeon Gold 6152
Micro-architecture Haswell Skylake
OS CentOS 7 CentOS 7
Thread(s) per core 2 2
Cores per socket 12 22
Socket(s) 2 1
NUMA node(s) 2 1
L1d cache / L11 cache 32 KB / 32 KB 32 KB / 32 KB
L2 cache 256 KB 1024 KB
L3 cache 30720 KB 30976 KB
Main memory 64 GB DDR4 96 GB DDR4
TDP 240 W 140 W
Idle Power 58 W 32 W

NVIDIA K40c NVIDIA P100 PCIe
No. of processor cores 3584 2880
Total board memory 12 GB CoWoS HBM2 12 GB GDDR5
Memory bandwidth 549 GB/sec 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

We employ two popular scientific applications for our
experiments: (i). Matrix-matrix multiplication (DGEMM)
which computes the matrix product of two dense matrices of
size N × N. (ii). 2D fast Fourier transform (2D-FFT) which
computes the discrete Fourier transform of a complex signal
matrix of size M × N. Matrix-matrix multiplication and fast
Fourier transform routines are fundamental kernels employed
in scientific applications [21]. Highly optimized kernels for
the CPUs and the accelerators are used. For the CPUs, Intel
MKL is employed and the version on both nodes is 2017.0.2.
Accelerators typically have limited in-card memory and can-
not run workload sizes that exceed the memory. Therefore,
out-of-card packages, ZZGEMMOOC [22] for Nvidia GPUs
and XeonPhiOOC [22] for Intel Xeon Phis, are used. The
ZZGEMMOOC and XeonPhiOOC packages reuse CUBLAS
and MKL BLAS for in-card DGEMM calls. We follow the
detailed methodology explained in appendix I to compare the
energy measurements using RAPL, and GPU/Xeon Phi sen-
sors against system-level physical measurements provided by
external power meters.

A hybrid parallel application (such as DGEMM and 2D-
FFT) executing on a heterogeneous platform, consists of
several kernels (generally speaking, multithreaded), running
in parallel on different computing devices (CPU, GPU, Intel
Xeon Phi, etc.) of the platform. To minimize the resource
contention, we consider only such configurations in this
work where there is one-to-one mapping between the given
(CPU or accelerator) kernel and the corresponding device
i.e. each kernel is running only on its corresponding device

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

and there is no more than one (CPU or accelerator) is run-
ning on its corresponding device. To determine the dynamic
energy consumption by each application kernel, we model
the computing elements executing an application kernel as
abstract processors [23] so that the executing platform is
represented as a set of heterogeneous abstract processors.
Each abstract processor solely constitutes the processing
elements and resources which are involved in the execution
of the application kernel mapped to it. We explain the details
on abstract processors in section V.

We build dynamic energy profiles of DGEMM on Nvidia
Tesla P100 GPU on HCLServer02 with sensors (RAPL and
NVML) for the workload sizes ranging from 18176 × 22528
to 22528 × 22528 with a constant step size of 128. Figure 1
illustrates the dynamic energy profiles. One can observe that
the combined dynamic energy profile with RAPL and NVML
sensors exhibits a linear profile, however, the ground truth
exhibits a different pattern. We find that combined sensor
measurements do not follow the trend of dynamic energy
consumption exhibited by ground truth for 64.71% of the
data points. The maximum and the average error of the sensor
profiles are 84.84% and 40.06% respectively.

FIGURE 1: Dynamic Energy profiles of DGEMM on Nvidia
Tesla P100 GPU.

For brevity reasons, we present the results for our ex-
periments to compare the accuracy of RAPL against the
power meters on Intel Skylake Gold 6152 (HCLServer02),
and the sensors (RAPL and MPSS) on Intel Xeon Phi 3120P
(HCLServer01) in appendix J. In summary, RAPL does not
exhibit similar dynamic energy consumption behavior as that
of the ground truth for the dynamic energy consumption by
MKL-FFT executed on Intel Skylake Gold 6152. We find the
maximum and average error of RAPL to be 156% and 29%
respectively. Owing to the interlacing nature of both profiles
composed by both tools, we can not calibrate RAPL to reduce
its average error against the ground truth. For MKL-DGEMM
executed on Intel Xeon Phi 3120P, we find that sensors MPSS
report on the average higher dynamic energy consumption
than the ground truth. The average and maximum error of the

sensor (MPSS and RAPL) profile against the profile using
power measurements provided by external power meters are
64.5% and 93.06% respectively.

We finish our overview with a comparison of the prediction
accuracy of linear energy predictive models employing per-
formance monitoring counters (PMCs) as predictor variables
with the ground truth. The overview is categorized into two
classes: a). Class A contains platform-level linear regression
models, and b). Class B contains application-specific models.
We use a diverse application suite containing highly opti-
mized compute-bound and memory-bound scientific routines
such as DGEMM and FFT from Intel Math Kernel Library
(MKL), Intel HPCG, benchmarks from NASA Application
Suite (NAS), stress, naive matrix-vector multiplication, and
naive matrix-matrix multiplication. We present the details on
our application suit and experiment methodology in appendix
L.

For class A, we build a data-set of 277 points using dif-
ferent problem sizes as application configuration parameters.
Each point represents the dynamic energy consumption and
the PMC counts of one application. We used 227 points for
training the models and 50 points to test the accuracy of the
models. We build 6 linear models {A, B, C, D, E, F} using
regression analysis. Model A is based on all the selected
PMCs as predictor variables. Model B is based on five best
PMCs with the PMC with the least positive correlation with
dynamic energy is removed. Model C uses four PMCs with
two least positively correlated PMCs removed and so on until
Model F, which contains just one most positively correlated
PMC. We find that the average error of the platform-specific
energy predictive models and the ground truth ranges from
14% to 32% and the maximum reaches up to 100%.

For class B, we choose one compute-bound (MKL-
DGEMM) and one memory bound (MKL-FFT) application.
We choose six PMCs that have been employed as pre-
dictor variables in state-of-the-art energy predictive models
(Section IV). We build a dataset containing 362 and 330
points representing different configurations of DGEMM and
FFT for a range of problem sizes from 6400 × 6400 to
29504× 29504 and 22400× 22400 to 41536× 41536, with
a constant step size of 64. We use 271 and 255 points of
DGEMM and FFT, to train the energy predictive models, and
91 and 75 points for testing the accuracy of models. We build
two linear models for both applications: i). Model MM, and
ii). Model FT. We find that the average and maximum errors
for DGEMM using Model MM against the ground truth are
26% and 218%. In the case of FFT, the average and maximum
errors using Model FT against the ground truth are 27% and
147%.

A. IMPLEMENTATION COMPLEXITY AND COST
Energy predictive models employing PMCs as predictor
variables exhibit high implementation complexity due to the
following reasons:

1) There is a large number of PMCs provided in a mod-
ern multicore processor. For example: Likwid tool

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

[24] provides 164 PMCs and 385 PMCs for the Intel
Haswell and the Intel Skylake multicore processors
(Table 1) respectively.

2) Tremendous programming effort and time are required
to automate and collect all the PMCs. This is because
of the limited number of hardware registers available
on platforms for storing the PMCs. Only 3-4 PMCs can
be collected in a single run of an application. Moreover,
some PMCs can only be collected individually or in
sets of two or three for an application run. Therefore,
each application must be executed about 53 and 99
times on the Intel Haswell and Intel Skylake platforms
respectively to collect all the PMCs available on them.

3) An energy predictive model purely based on PMCs
lacks portability. This is because all the PMCs available
for a CPU processor may not be present in a GPU
processor due to inherent architectural differences or
even on in a next-generation CPU processor from the
architecture space.

The cost in terms of number of measurements to determine
a single data point of an application dynamic energy profile
with on-chip power sensors is higher than the cost for the
ground truth and for the energy predictive models based on
PMCs. To determine the dynamic energy consumption by a
given workload size using on-chip sensors, we need at least
following five measurements:

1) Base power with RAPL;
2) Total Energy with RAPL;
3) Base power with NVML/Intel SMC;
4) Total Energy with NVML/Intel SMC;
5) Execution Time.

However, we need just following three measurements for
the ground truth: i) base power, ii) total energy, and iii)
execution time. Whereas, just one measurement is sufficient
for the PMC-based energy predictive models.

Finally, we discuss the issues with topological granularity
of on-chip sensors. Consider, for example, a hybrid applica-
tion DGEMM executing in parallel on three compute devices,
a multicore CPU and two accelerators (GPU and Xeon Phi).
One CPU core acts as a host for each accelerator kernel.
Execution of an application on GPU/Xeon Phi involves the
CPU host-core, DRAM and PCIe to copy the data between
CPU host-core and GPU/Intel Xeon Phi. However, the on-
chip power sensors (NVML and MPSS) only provide the
power consumption of GPU or Xeon Phi. Therefore, to obtain
the dynamic energy profiles of applications, one can use
RAPL to determine the energy contribution of CPU host-core
and DRAM. But RAPL provides the energy consumption
at the socket level, which includes also the contribution by
other CPU cores involved in the execution of kernels running
parallel on CPU and other accelerators. Therefore, it is not
possible using on-chip sensors to accurately attribute the
individual contribution of each computation kernel to total
energy consumption by a hybrid application executing the
kernels in parallel on several heterogeneous compute devices.

In summary, energy measurement methods employing on-
chip sensors and energy predictive models suffer from poor
accuracy, implementation complexity, and topological gran-
ular limitations. Therefore, they are not suitable for optimiza-
tion of applications for dynamic energy.

IV. RELATED WORK
Additive energy models for the entire system: One of
the simplest additive models was presented by Roy et al.
[33] which represents an algorithm energy consumption as a
weighted sum of the energy consumption by CPU and mem-
ory. Lewis et al. [25] proposed a system-wide energy model
(based on hardware performance counters) as a summation of
power models of processor, memory (DRAM), fans, mother-
board (chipset) peripherals, and hard-disk drive. Basmadjian
et al. [26] presented a similar model including more compo-
nents such as network interface card and power supply unit
to the equation for constructing a similar aggregated power
model of the server as a function of resource utilization by
its sub-components. Bircher et al. [27] proposed an iterative
procedure to predict the power of the entire system using
PMCs that trickle down from the processor to other subsys-
tems such as disks, CPU, memory, I/O and chipset. Fatemeh
et al. [34] proposes a priority based energy-efficient routing
method to optimize the energy consumption of Internet of
things (IoT). Venkatraman et al. [35] present Reinforcement
Learning (RL) based framework for energy-efficient Mobile
Device Clouds (MDC). The framework learns the power-
related statistics of the system and generates a group of
resources for computation.

Energy predictive models for CPU: References [28],
[17], present component (CPU, fans, memory, and hard disk
drive) wide energy predictive models based on highly cor-
related performance events such as cache misses, floating-
point operations and integer operations. Dargie et al. [36]
quantify the relationship between the workload and power
consumption of the multicore processor by using the statis-
tics of CPU utilization. Lastovetsky et al. [8] propose an
application-level energy model by modelling the dynamic
energy consumption of a multicore CPU as a highly non-
linear function of problem size.

Energy predictive models for accelerators: Burtsher et.
al [16] examined the power profiling of three different Nvidia
GPUs (Tesla K20c, K20m, and K20x) when computing a
given workload (n-body simulation benchmark) using inte-
grated sensors. Hong et al. [29] present an energy model
for an Nvidia GPU based on a similar PMC-based power
prediction approach of [37]. Nagasaka et al. [30] propose a
PMC-based statistical power consumption modelling tech-
nique for GPUs that run CUDA applications. Song et al.
[31] present power and energy prediction models based on
machine learning algorithms such as back propagation in
artificial neural networks (ANNs). Shao et al. [32] develop
an instruction-level energy consumption model for a Xeon
Phi processor.

Critiques of built-in power sensors and PMC based

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

TABLE 2: Summary of notable related-work. Here, ’-’ indicates the value is not reported. ’*’ indicates the model is portable to
next-generation processors in the same architecture space.

Model Decomposition

Is Energy/Power
Consumption Predicted

By The Application
Executing Parallel On

Compute Devices?

Type of Power
(Instantaneous or

Average)

Is Energy
Predicted?

Accuracy of
Energy Prediction

Is
Platform

Independent?

Lewis et al [25]
Cor0 to Core 3, DRAM,

HDD, Fan, Support,
Chipsets

No Instantaneous Yes 4% No*

Basmadjian et al. [26]
CPU, RAM, NIC, HDD,

Fan No Instantaneous No - No*

Bircher et al. [27]
Chipset, CPU, Disk,

I/O, Memory, Memory
Controller

No
Instantaneous,

Average No - No

Heath et al. [28] CPU, disk, network No Instantaneous No - No
Economou et al. [17] CPU, memory, disk, network No Instantaneous No - No

Hong et al. [29]

GPU (ALU, Constant cache,
FDS (Fetch/Dec/Sch),
Floating Point Unit,
Global memory, Int.

arithmetic unit, Local
memory, Register File,
SFU, Shared memory,

Texture cache)

No Average Yes - No

Nagasaka et al. [30] GPU No Average No - No*

Song et al. [31]

GPU (Floating Point Unit,
Global Memory, Shared
Memory, Local Memory,

Texture Cache)

No Average Yes 11.02% No*

Shao et al. [32]

Intel Xeon Phi (Compute,
Hardware PF,

MEM, Private Cache,
Redundant SW-PF, Remote

Cache, Software PF)

No Average Yes 5% No

AnMoHA

Independently Powered Compute
Devices (CPU, GPU,

Intel Xeon Phi, CPU Socket,
FPGA etc.)

Yes Average Yes 5% Yes*

predictive modelling: Many researchers have highlighted
the poor prediction accuracy and limitations of built-in on-
chip power sensors and PMC based models. McCullough
et al. [18] report the prediction errors of linear regression-
based models as high as 150% in a study on the accuracy of
predictive power models for multicore architectures. O’Brien
et al. [19] report the average error of linear PMC based
energy models used in their experimental study, as high as
60%. Arsalan et al. [20] also question the reliability and
reported prediction accuracy of these models. They propose
a novel selection criterion called the additivity for selecting a
subset of PMCs to be used in linear energy predictive models
by conforming to the physical law of conservation of energy.

Burtsher et. al [16] find inaccurate power readings on
Nvidia K20c and K20m GPUs which lag behind the expected
profile. Furthermore, the authors observe that the power
sampling frequency on K20 GPUs varies greatly and the
GPU sensors do not update the power readings regularly.

Research works [38] and [39] study the RAPL accuracy on
Haswell generation processors by running different bench-
marks. While the former run micro-benchmarks using dif-
ferent thread configurations, the latter run benchmarks using
different frequency configurations. Both of them compare the

RAPL readings with total system (AC) power consumption
using power meters and find the RAPL readings in a strong
correlation with AC measurements. Our work differs from
that in Reference [38] and [39] in several ways: (a) The
authors compare the total power consumption by the sys-
tem with AC power and power consumption by the micro-
benchmarks with RAPL and therefore use different reference
domains. However, we compare the dynamic energy con-
sumption by applications with both tools (RAPL and power
measurements using external power meters) and thus com-
pare the measurements using the same reference domain. (b)
The authors run benchmarks in different threading/frequency
configurations. In contrast, we build the energy profiles of
scientific applications representing real-world workloads us-
ing different configurations such as problem size. (c) The
authors run their benchmarks on the Haswell platform only
whereas our experiment testbed is more diverse and includes
advance generations of Intel CPU micro-architecture. (d)
They find a correlation between the measurements with
both tools (power meters and RAPL) on Haswell. However,
they could not confirm if RAPL can be calibrated owing
to different reference domain. Studies [10] shows, however,
that the energy measurements cannot be calibrated with both

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

tools because of their qualitative differences and interlacing
behavior. More details on this can be found in appendix J and
[10]s.

In [10], the authors report that energy measurements using
on-chip sensors (of CPU, GPU, and Xeon Phi) do not cap-
ture the holistic picture of the dynamic energy consumption
during application execution and therefore should not be
used to measure the energy consumption of an application.
They demonstrate that inaccurate energy measurements with
on-chip sensors for dynamic energy optimization can result
in a significant loss of energy. They report that average
error of dynamic energy measurements with on-chip power
sensors can be as high as 73%, and can be 32% for energy
predictive models employing PMCs as predictor variables for
the benchmark suite used in their experiments.

In table 2, we compare different power/energy models
and AnMoHA based on their characteristics. Here Decom-
position indicates the level of component level power/energy
breakdown.

V. ANMOHA: ADDITIVE ENERGY MODELLING OF
HYBRID APPLICATIONS ON HETEROGENEOUS
COMPUTING PLATFORMS
In this section, we present our solution method, AnMoHA,
to determine the dynamic energy consumption by a hybrid
application executing in parallel on multiple heterogeneous
computing devices such as multi-core CPU, GPU, Xeon PHI,
etc., in a computing platform. The method is purely based on
system-level power measurements using power meters.

The inputs to AnMoHA are the hybrid application com-
prising of multi-threaded kernels, the number of compute de-
vices, and the precision settings (such as 2.5%) to be satisfied
during the construction of the energy profiles. There is a one-
to-one mapping between the application kernels and compute
devices. The output of AnMoHA is the energy profiles of the
application kernels satisfying the input precision settings.

AnMoHA is composed of two main stages. In the first
stage, individual computing elements executing a given ap-
plication kernel are grouped in such a way that we can
accurately measure the energy consumption of the groups.
The groups are termed as abstract processors. In the second
stage, the discrete dynamic energy functions of the abstract
processors are constructed using a additive modelling ap-
proach.

A. GROUPING OF COMPUTING ELEMENTS
The rationale behind grouping the compute devices is to
address one of the fundamental problems while modeling: to
decide the granularity level to model the energy consumption
by an application kernel. Unfortunately, there is not much
privilege to model the accurate energy consumption by an
application at a very fine granularity. Consider, for example,
two applications executing on two different cores of a CPU
socket in parallel. Currently, there is no possible way to deter-
mine the energy consumption of these applications accurately
at the core level. Similarly, we cannot measure the energy

consumption of certain data banks of DRAM used in the
execution of an application, or for the PCIe links offloading
application data to and from host CPU core to an accelerator.
Therefore, it is quite important to formulate such an abstrac-
tion of all these components that allow modelling the energy
consumption of such components sufficiently accurate.

Furthermore, modern multicore platforms have many in-
herent complexities such as severe resource contention for
shared on-chip resources (Last Level Cache, Interconnect)
and Non-Uniform Memory Access (NUMA). As a result, the
workload of one computational kernel of a hybrid application
(consists of a number of application components) may signif-
icantly impact the performance and energy consumed by the
others due to tight integration and high resource contention
in underlying heterogeneous hybrid platforms. Therefore, the
computation kernels cannot be considered fully independent
and their energy consumption should not be measured sepa-
rately. To address this issue, we only consider such configu-
rations of hybrid applications in this work where individual
kernels are coupled loosely enough to allow us to construct
their individual energy functions.

To achieve this, we consider only such configurations in
this work where there is one-to-one mapping between the
given (CPU or accelerator) kernel and its corresponding
device. Hence, each kernel runs only on its corresponding
device and there is no more than one CPU kernel or accel-
erator kernel is running on the corresponding device. Then,
each group of computing devices executing an individual
kernel of the application together (such as the group of CPU
cores executing the CPU kernel together) is modelled as
an abstract processor [23]. This way, the executing hybrid
heterogeneous computing platform is represented as a set
of heterogeneous abstract processors. We make sure that the
sharing of system resources is maximized within the groups
representing the abstract processors and minimized between
them. To minimize the contention and mutual dependence
between abstract processors, following two properties must
be satisfied to formulate the abstract processors:
• Completeness: An abstract processor contains solely the

computing elements which execute an application ker-
nel. There is a one-to-one mapping between an abstract
processor and its corresponding application kernel.

• Loose coupling: Abstract processors do not interfere
with each other during the application execution. That
is, if we run two applications A and B in parallel on
two abstract processorsAPa andAPb, then the dynamic
energy consumption by APa when executing the ap-
plication A is not affected by the activities of abstract
processor APb when running application B in parallel.

Both properties are essential for composing an abstract
processor.

We illustrate this concept using an example. Consider
HCLServer01 (technical specifications are provided in table
1) that is used in our experiments, containing an Intel Haswell
multicore CPU with two sockets of twelve cores each, an
Nvidia K40 GPU and an Intel Xeon Phi 3120P coprocessor.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

Now, consider a hybrid parallel application DGEMM which
computes the matrix multiplication of two dense matrices.
Let the application uses Intel MKL DGEMM for CPU and
Intel Xeon Phi, and CUBLAS for Nvidia GPU. We formu-
late three abstract processors {CPU1, GPU1, PHI1} that
satisfy the aforementioned two properties.

The abstract processor CPU1 contains 22 CPU cores exe-
cuting the multi-threaded CPU kernel. The abstract processor
GPU1 comprises of the Nvidia K40c GPU along with its
dedicated host CPU core executing the GPU kernel, and
the dedicated PCIe link between them. The third abstract
processor PHI1 consists of the Intel Xeon Phi 3120P co-
processor along with its dedicated host CPU core executing
the Xeon Phi kernel, and the dedicated PCIe link between
them.

The dedicated host CPU core is responsible for sending the
data from host to accelerator, kernel invocations on the accel-
erator and then copying the results back from the accelerator
to host via the dedicated PCIe link between them. Therefore,
the pair consisting of an accelerator (or co-processor) and its
dedicated host core executing one accelerator kernel, and the
dedicated PCIe link between the host core and accelerator is
modelled by an abstract processor. The application kernel ex-
ecuting on an accelerator uses all the cores of the accelerator.

Based on this grouping of compute devices into abstract
processors, the total dynamic energy consumption by an
application executing on p abstract processors will be equal
to the sum of dynamic energies consumed by all p abstract
processors running the application. So, ifEtotal(x) is the total
dynamic energy consumption by workload size x executing
in parallel on p abstract processors {AP1, · · · , APp}, then

Etotal(x) =

p∑
i=1

EAPi(x) (1)

where EAPi
(x) is the dynamic energy consumption by the

workload size x executing on abstract processor APi. Table
3 describes the notation employed in this section.

B. ENERGY MODELS OF ABSTRACT PROCESSORS
The second main stage of AnMoHA consists of building
the dynamic energy models of p abstract processors running
parallel to the application kernels. We represent the dynamic
energy model of an abstract processor with a discrete func-
tion composed of a set of points of cardinality m. There are
(2p − 1)×m number of total experiments available to build
the dynamic energy profiles of a hybrid parallel application
(containing, generally speaking, p number of independent
multi-threaded application kernels) executing on p abstract
processors containing m number of data points. There is a
one-to-one mapping between the application kernel and an
abstract processor.

Consider, for example, the abstract processors on
HCLServer01. For illustration purposes, we represent the
three abstract processors {CPU1, GPU1, PHI1} by {A, B,
C}. Now, consider a hybrid parallel application DGEMM

which computes the matrix multiplication of two dense ma-
trices. Let the application uses Intel MKL DGEMM for CPU
and Intel Xeon Phi, and CuBLAS for Nvidia GPU. The goal
is to construct the dynamic energy profiles of the application
kernels running on three abstract processors {A, B, C} within
sufficient accuracy. We can classify the total number of
experiments into following categories: {A, B, C, {A,BC},
{AB,C}, {AC,B}, ABC}. The category {A, BC} represents
the independent execution of application kernels on A, and
parallel execution of application kernels on B and C. All
categories hold commutative properties. That is, for example,
the categories {BC, A} and {CB, A} are indistinguishable
because they consume the same dynamic energy in both
cases.

TABLE 3: Table of notations used in equations 1 and 2.

Notation Description
APi ith abstract processor
x workload size
Etotal(x) Total dynamic energy consumption by workload

size x

EAPi(x)
The dynamic energy consumption by workload
size x executing on ith abstract processor

m
Cardinality (total number of data points in) of
discrete energy function.

p
Total number of abstract processors/independent
multi-threaded application kernels

EABC(x)

Total dynamic energy consumption by parallel
execution of the same application kernels of the
workload size x on the abstract processors A,
B, and C.

EA(x), EB(x),
EC(x)

The dynamic energy consumption by the
application kernels of workload size x executing
sequentially on abstract processors A, B, and C
respectively.

We consider a hypothesis that will reduce the number of
experiments to p × m. We call it the additive hypothesis.
It states that the total dynamic energy consumption by a
hybrid application consists of several (generally speaking,
multithreaded) kernels running in parallel on p abstract pro-
cessors equals the sum of dynamic energy consumption by
all p abstract processors when running the same application
kernels sequentially.

Let EA(x), EB(x), and EC(x) be the dynamic energy
consumption by the application kernels of workload size
x executing sequentially on abstract processors A, B, and
C. Let EABC(x) be the total dynamic energy consumption
by parallel execution of the same application kernels of the
workload size x on the abstract processors A, B, and C. Then,
the additive hypothesis means the following:

EABC(x) = EA(x) + EB(x) + EC(x) (2)

So, if the additive hypothesis is validated, we can build
the energy model of the abstract processor A independent
of energy model of B or energy model of C. These models

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(discrete functions) then are input to a data partitioning
algorithm to optimize the dynamic energy and total energy
consumption of the computing platform composed of the
given abstract processors. The additive hypothesis holds the
associative property and commutative property of addition.
We do not make any assumption about the shape of energy
profiles of application kernels. They can be linear or non-
linear. Furthermore, the additive hypothesis does not make
any assumption about the workload distribution to their
corresponding compute devices (abstract processors). That
is, the applications and workloads executed by the abstract
processors can be different.

VI. EXPERIMENTAL VALIDATION OF ANMOHA
In this section, we experimentally validate AnMoHA.

A. EXPERIMENT PLATFORMS AND APPLICATIONS
We use three applications for our experiments using a diverse
range of problem sizes: (i). Matrix-matrix multiplication
(DGEMM) which computes the matrix product of two dense
matrices of size N × N, (ii). 2D fast Fourier transform (2D-
FFT) which computes the discrete Fourier transform of a
complex signal matrix of size M × N, and (iii). a gene
sequencing application executing the Smith-Waterman (SW)
algorithm ([40], [41]). The platforms are HCLServer01 and
HCLServer02 (specifications given in Table 1). The details of
DGEMM, 2D-FFT, and the platforms are explained in section
III.

We choose matrix-matrix multiplication and fast Fourier
transform routines because they are fundamental kernels em-
ployed in scientific applications [21]. Furthermore, matrix-
matrix multiplication is highly compute-intensive whereas
2D-FFT is memory-intensive. Hence, they exhibit different
application characteristics. The gene sequencing application
deals with alignment of DNA or protein sequences. It em-
ploys the Smith-Waterman algorithm which uses a dynamic
programming (DP) approach to determine the optimal local
alignment score of two sequences: i) a query sequence of
length m, and ii) a database sequence of length n. The
time and space complexities of the Smith-Waterman dynamic
programming algorithm are O(m × n) and O(m), where
m < n, assuming the use of refined linear-space methods.
The application uses optimized SW routines provided by
SWIPE for Multicore CPUs [42], CUDASW++3.0 for Nvidia
GPU accelerators [43], and SWAPHI for Intel Xeon Phi
accelerators [44]. We present the detailed description of the
application in appendix M.

To ensure the reliability of our experimental results, we use
an automated tool HCLWattsUp Interface [45] to determine
the dynamic energy consumption by an application kernel.
The interface and the methodology used to obtain a data point
are explained in the appendix G. HCLWattsUp has no extra
overhead and therefore does not impact the dynamic energy
consumption by the application kernel. It follows a detailed
statistical methodology to ensure the reliability of experimen-
tal results which is explained in appendix H. Briefly, to obtain

a data point for each energy function, the software follows
Student’s t-test and executes the application repeatedly until
the sample mean lies within user-defined confidence interval
and a user-defined precision has been achieved. We set the
confidence interval as 95% and the precision as 0.025 (2.5%)
for our experiments. The software returns the sample mean
and standard deviation of the dynamic energy consumption.

To eliminate the potential contribution by other compo-
nents such as SSD (Solid State Drives), fans, etc. when
measuring the energy consumption by an abstract processor,
we follow a strict experimental methodology explained in
appendix K.

B. FORMULATION OF ABSTRACT PROCESSORS ON
HCLSERVERS
We group the compute devices of both the platforms into five
abstract processors by following the properties of complete-
ness and loose coupling.

• Abstract processors, CPU1, GPU1 and PHI1 on
HCLServer01, as explained in section V-A.

• CPU2 containing 21 CPU cores executing the multi-
threaded CPU kernel on HCLServer02.

• GPU2 comprising of the Nvidia P100 GPU, the dedi-
cated host CPU core executing the GPU kernel, and the
dedicated PCIe link between the host core and the GPU
on HCLServer02.

Let EA(x), EB(x), and EC(x) be the dynamic energy
consumption by the application kernels of workload size x
executing sequentially on abstract processors CPU1, GPU1,
and PHI1, and CombinedABC(x) represents the sum value
of their dynamic energy consumption. Let EABC(x) be the
total dynamic energy consumption by parallel execution of
the same application kernels of the work load size x on
the abstract processors CPU1, GPU1, and PHI1, which is
represented by ParallelABC(x). Then, the additive hypoth-
esis holds only if ParallelABC(x) = CombinedABC(x).
The description of notations used in additive hypothesis
is provided in table 5. For illustration purposes, we refer
the additive energy models composed using AnMoHA as
Combined, and compare their accuracy against the Parallel
energy profiles which we consider as ground truth.

To determine if the additive hypothesis is valid, we build
four dynamic energy profiles for HCLServer01 (one parallel
and one for each of the three abstract processors), and three
profiles for HCLServer02 (one parallel and one for each of
the two abstract processors) for each application configu-
ration. Then we sum the dynamic energy consumption by
sequential execution of the application and compare the value
with dynamic energy consumption by parallel execution of
the same application.

This abstract processor formulation also minimizes the
contention and mutual dependence between the kernels. We
find no difference between the execution times of the appli-
cation kernels when running sequentially and parallel. The
total parallel execution time of the hybrid application is equal

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

to the maximum of the execution times of the kernels run
sequentially.

C. RESULTS AND ANALYSIS
HCLServer01 and HCLServer02 both have different archi-
tectures and CUDA versions on their respective GPUs. We
use a hybrid configuration of multi-threaded DGEMM which
runs in parallel on different compute devices (i.e. CPUs,
GPUs, Xeon Phi) of the given platform. We observe that
the GPU kernel completes its execution faster than the CPU
on both platforms. However, in contrast with HCLServer01,
DGEMM does not destroy its context on GPU during the
parallel execution on HCLServer02 and keeps on consuming
a constant power which is a bit higher than the base (or
idle) power of GPU until all other threads complete their
execution on other abstract processors. The combined profile
(composed by summing the dynamic energy consumption of
serial execution of the application on abstract processors)
does not capture this behavior. Therefore, to calibrate the
combined dynamic energy profile of DGEMM with a par-
allel dynamic energy profile on HCLServer02, we add the
dynamic energy consumption to keep alive this context with
dynamic energy consumption by the GPU application kernel.
Hence, the equation 2 can be extended as

EABC(x) = EA(x) + EB(x) + EC(x) + e

where e ≥ 0
(3)

where e denotes the dynamic energy consumed by the ap-
plication kernel to keep its context alive. The description of
notations used in equation 3 is provided in table 5.

We run three different workload configurations (M × N
where M ≤ N) of DGEMM executing on HCLServer01 and
for each configuration build four dynamic energy functions of
DGEMM as explained in VI-B. The workload sizes range for
all three configurations are i) from 12800 × 20224 to 20224
× 20224 with a constant step size of 128, ii). from 12800 ×
20480 to 20480 × 20480 with a constant step size of 256 for
the dimensionM , and, iii). 12800× 20736 to 20736× 20736
with a constant step size of 256 for the dimension M . Fig-
ure 2a illustrate the parallel and combined dynamic energy
profiles for N=20224. We show the results for the other two
experiment configurations in appendix B. In summary, we
find the average and maximum error between combined and
parallel dynamic energy profiles i) for N=20224 to be 2.24%
and 5.56%, ii) for N=20480, 3.07% and 7.6%, and iii) for
N=20736 to be 3.87% and 9.97% respectively. Furthermore,
we find that the execution time of a hybrid application is the
maximum of all the execution times of its constituent kernels.

We then compute the 2D-FFT for the problem size ranging
from 15104 × 23552 to 18560 × 23552 with a constant step
size of 64. Figure 3a shows the dynamic energy parallel and
combined profiles of 2D-FFT executing on HCLServer01.
The average and maximum error between parallel and com-
bined dynamic energy profiles are 4.32% and 8.91%. For our
next batch of experiments on HCLServer01, we run the SW
application for the problem size ranging from 16384× 16384

to 18240 × 16384 with a constant step size of 64. Figure 4a
shows the dynamic energy parallel and combined profiles of
SW executing on HCLServer02. The average and maximum
error between parallel and combined dynamic energy profiles
are 2.14% and 5.4%.

On HCLServer02, we run DGEMM with workload size
ranges from 16384 × 22528 to 20096 × 22528 with a
constant step size of 128. Figure 2b shows the dynamic en-
ergy profiles of parallel and combined on HCLServer02. We
find the average and maximum error between combined and
parallel dynamic energy profiles to be 2.32% and 6.6%. We
then compute the 2D-FFT on HCLServer02 for the problem
size ranging from 21504 × 25600 to 25600 × 25600 with
a constant step size of 64. Figure 3b shows the dynamic
energy parallel and combined profiles of 2D-FFT executing
on HCLServer02. The average and maximum error between
parallel and combined dynamic energy profiles are 4.87%
and 13.87%. For our final batch of experiments for this study,
we run the SW application for the problem size ranging from
40000 × 16384 to 42624 × 16384 with a constant step size
of 64. Figure 4b shows the dynamic energy parallel and
combined profiles of SW executing on HCLServer02. The
average and maximum error between parallel and combined
dynamic energy profiles are 1.22% and 3.6%. Table 4 rep-
resents the percentage error between parallel and combined
dynamic energy profiles of DGEMM, 2D-FFT and SW on
HCLServers.

TABLE 4: Percentage error between parallel and combined
dynamic energy profiles on HCLServers.

DGEMM
Platform Problem

Size [N]
Min% Max% Avg%

HCLServer01 20224 0.016 5.56 2.24
HCLServer01 20480 0.07 7.6 3.07
HCLServer01 20736 0.56 9.97 3.87
HCLServer02 22528 0.29 6.60 2.32

2D-FFT
HCLServer01 23552 0.005 8.91 4.32
HCLServer02 25600 0.46 13.87 4.87

SW
HCLServer01 16384 0.05 5.4 2.14
HCLServer02 16384 0.07 3.61 1.22

VII. TRADE-OFF BETWEEN ACCURACY AND TIME
SPACE OF ADDITIVE MODELLING
We illustrate the impact of the precision settings of an exper-
iment for obtaining the data points of the dynamic energy
profile of an abstract processor with an example. Let the
execution time of a workload size j on an abstract processor
i be t seconds. Let HCLWattsUp repeat the application for
n times to obtain the average dynamic energy consumption
within the precision settings of ε. Assume the cool-down
period allowed to exclude the pipeline and cache effects

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) N=20224, HCLServer01 (b) N=22528, HCLServer02.

FIGURE 2: Dynamic energy profiles of DGEMM on HCLServers.

(a) N=23552, HCLServer01 (b) N=25600, HCLServer02

FIGURE 3: Dynamic energy profiles of 2D-FFT on HCLServers.

(a) N=16384, HCLServer01 (b) N=16384, HCLServer02

FIGURE 4: Dynamic energy profiles of Smith-Waterman application on HCLServers.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

TABLE 5: Table of notations used in equations 3 and 4.

Notation Description

ParallelABC(x)

The total dynamic energy consumption by parallel
execution of the same application kernels of the
work load size x on the abstract processors A, B
and C.

CombinedABC(x)

The sum value of the dynamic energy consumption
by the application kernels of workload size x
executing sequentially on abstract processors A, B
and C .

e
The dynamic energy consumed by the application
kernel to keep the context alive on GPU.

T Total time to build the dynamic energy profiles
j The workload size

nij

number of repetitions to obtain the average
dynamic energy consumption by the workload
size j on ith abstract processor within the user
defined precision settings.

epsilon The precision setting
s The cool-down period between two successive

repetitions

tij
The execution time of a workload size j on ith
abstract processor.

between two successive runs of the application is s seconds.
Then, it takes nij × (tij + s) seconds in total to obtain the
average dynamic energy consumption by the workload size j
on abstract processor i. If m is total data points in dynamic
energy profile of each of p abstract processors, then the total
time to build their dynamic energy profiles can be calculated
by using the following equation:

T =

p∑
i=1

 m∑
j=1

nij × (tij + s)

 (4)

The description of notations used in equation 4 is provided
in table 5. We observe that the precision settings highly
impacts the overall time T required to build the dynamic
energy profiles of abstract processors. Consider, for example,
two accuracy settings 97.5% and 90% represented as εA and
εB respectively. Let TA and TB be the total times required
to build the dynamic energy profiles of p abstract processors
within the accuracy of εA and εB respectively. We experi-
mentally observe that TA is much higher than TB . This is
because it requires more iterations to converge the sample
mean for each data point of the profile due to the higher
precision settings. As a result, it will take a longer time to
build the dynamic energy profiles of p abstract processors.
This will reduce the practical viability of AnMoHA.

In this section, we explore if we can relax the precision
settings sufficiently enough to get the application conver-
gence faster but, most importantly, without compromising
the application trend and behavior (in terms of variations).
That is, the combined dynamic energy profile must exhibit
the same trend and must have similar variations as that of the
parallel dynamic energy profile. Therefore, the following two

conditions must be satisfied to use the additive dynamic en-
ergy profiles as an input to an energy optimization algorithm
(such as [8], [11]) that uses the workload size as a decision
variable.

1) Trend of the profile: Combined dynamic energy pro-
file must follow the similar application trend as the
parallel dynamic energy profile, and

2) Variations: Combined dynamic energy profile exhibits
similar variations as of parallel dynamic energy profile.

We term it as usability test, for illustration purposes.
Consider a dynamic energy profile consists of n data points
{x1 · · ·xn}. For each pair of consecutive data points in pro-
file, we calculate the percentage difference as xi−xi−1

xi−1
× 100

where i ∈ {2 · · ·n}. If the result is positive then it suggests a
percentage increase otherwise if the result is negative then it
suggests a percentage decrease in dynamic energy consump-
tion with respect to the immediate preceding data point. We
determine if the less accurate combined dynamic energy pro-
file follows the same trend as the accurate parallel dynamic
energy profile. In an ideal case, the combined dynamic en-
ergy profile exhibits an increase/decrease in dynamic energy
consumption following a parallel dynamic energy profile for
all data points.

To analyze if both profiles exhibit the same variations,
the deviations of the combined profile is compared with
the parallel profile. To achieve this, we measure the degree
to which each data point in every energy profile deviates
from its average and maximum energy measurement (i.e.
mean absolute deviation (MAD) around the sample mean
and maximum absolute deviation around sample maximum).
Let x represents a single data point of a dynamic energy
profile consists of n data points, and X represents the mean
dynamic energy consumption of that profile. We calculate
the average absolute percent deviation from mean of that
profile asDavg(%) = MAD

X
×100. where MAD is calculated

as MAD = 1
n

n∑
i=1

|xi − X|. Similarly, we calculate the

maximum absolute percent deviation from the maximum of
a profile using the formula for the average absolute percent
deviation as above with X as max(X) where max(X) is the
sample maximum of the profile.

A. RESULTS AND DISCUSSION
For this study, we repeat the same experiments to build
energy profiles as explained in section VI-C, and keep all
the experiment settings the same. However, we relax the
precision settings from 2.5% to 10% to determine whether
the combined dynamic energy profiles exhibit a similar trend
as that of the parallel profile of the hybrid application. We
term the dynamic energy profiles constructed with precision
settings 2.5% and 10% as accurate and less accurate re-
spectively for illustration purposes. We build four dynamic
energy profiles for each application configuration similar to
as explained in section VI-B to compare the accuracy of
AnMoHA with relaxed precision settings and to study the

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

trade-off between the accuracy of the energy profiles and time
taken to build them.

For our first batch of experiments, we run following three
workload configurations of DGEMM ranging from i) 12800
× 20224 to 20224 × 20224 with a constant step size of 128,
ii). 12800 × 20480 to 20480 × 20480 with a constant step
size of 256 for the dimension M , and, iii). 12800 × 20736
to 20736 × 20736 with a constant step size of 256 for the
dimension M . Figures 5a, 5b and 5c illustrate the parallel
and combined dynamic energy profiles for all three workload
configurations with both precision settings. The average and
maximum error between accurate parallel and less accurate
combined dynamic energy profiles are 7.8% and 22.73% for
N=20224, 12.08% and 24.74% for N=20480, and 7.14% and
17% for N=20736.

We then compute the 2D-FFT on HCLServer01 for the
problem size ranging from 15104× 23552 to 18560× 23552
with a constant step size of 64. Figure 6a shows the dynamic
energy parallel and combined profiles of 2D-FFT executing
on HCLServer01. The average and maximum error between
accurate parallel and less accurate combined dynamic en-
ergy profiles are 8.16% and 22.1%. For our next batch of
experiments on HCLServer01, we run the SW application
on HCLServer02 for the problem size ranging from 16384
× 16384 to 18240 × 16384 with a constant step size of 64.
Figure 7a shows the dynamic energy parallel and combined
profiles of SW executing on HCLServer01. The average
and maximum error between parallel and combined dynamic
energy profiles are 7.78% and 12%.

On HCLServer02, we run DGEMM with workload size
ranges from 16384 × 22528 to 20096 × 22528 with a
constant step size of 128. Figure 5d shows the parallel and
combined dynamic energy profiles constructed with both
precision settings on HCLServer02. The average and max-
imum error between less accurate combined and accurate
parallel dynamic energy profiles are 3.08% and 10.43%. For
our next batch of experiments, we compute the 2D-FFT on
HCLServer02 for the problem size ranging from 21504 ×
25600 to 25600 × 25600 with a constant step size of 64.
Figure 6b shows the dynamic energy parallel and combined
profiles of 2D-FFT executing on HCLServer02 under both
aforementioned precision settings. The average and maxi-
mum error between parallel and combined dynamic energy
profiles are 14.56% and 54.18%.

For our final batch of experiments for this study, we
run the SW application on HCLServer02 for the problem
size ranging from 40000 × 16384 to 42624 × 16384 with
a constant step size of 64. Figure 7b shows the dynamic
energy parallel and combined profiles of SW executing on
HCLServer02. The average and maximum error between
parallel and combined dynamic energy profiles are 1.77%
and 5.29%. Table 6 shows the percentage errors of combined
profiles with parallel ones on both platforms.

One can observe that for all application configurations
on HCLServers, combined dynamic energy profiles exhibit
a similar energy consumption behavior as of parallel dy-

TABLE 6: Percentage errors between parallel and combined
dynamic energy profiles with 10% precision setting.

DGEMM
Platform Problem

Size [N]
Min Max Avg

HCLServer01 20224 0.02% 22.7% 7.8%
HCLServer01 20480 0.21% 24.74% 12.08%
HCLServer01 20736 0.44% 17% 7.14%
HCLServer02 22528 0.05% 10.43% 3.08%

2D-FFT
HCLServer01 22528 0.38% 22.1% 8.16%
HCLServer02 25600 0.24% 54.18% 14.56%

SW
HCLServer01 16384 2.4% 12.03% 7.78%
HCLServer02 16384 0.07% 5.29% 1.77%

TABLE 7: Percentage absolute mean and maximum devia-
tions of dynamic energy consumption by accurate parallel
(with 2.5% precision setting) and less accurate combined
profiles with 10% precision settings on HCLServers. Here
’s01’ denotes HCLServer01 and ’s02’ denotes HCLServer02.

Platform
and

Application

Problem
Size [N]

Parallel
_acc

Combined
_lacc

s01-
DGEMM 20224 Avg 8.56 11.84

Max 17.36 20.5
s01-

DGEMM 20480 Avg 8.27 11.9
Max 16.3 22.28

s01-
DGEMM 20736 Avg 9.5 12.16

Max 19.11 21.4
s01-
FFT 23552 Avg 13.86 13.8

Max 37.82 34.64
s02-

DGEMM 22528 Avg 6.5 5.23
Max 11.3 9.4

s02-
FFT 25600 Avg 11.2 23

Max 28.3 46.7
s01-
SW 16384 Avg 1.96 2.34

Max 3.8 5.47
s02-
SW 16384 Avg 2.11 2.07

Max 4 4.46

namic energy profile. Table 7 presents the absolute percent
deviations from the mean and maximum of dynamic energy
consumption by accurate parallel and less accurate combined
profiles. The less accurate combined dynamic energy profiles
of DGEMM on HCLServer01 for the batch of experiments
where dimension N is {20224,20480,20736} follow the simi-
lar energy consumption trend as their corresponding accurate
parallel dynamic energy profiles for {86,80,83} percent of
data points. On HCLServer02, the less accurate DGEMM
combined dynamic energy profile exhibits a similar energy
consumption trend as its accurate parallel profile for 81%
of the data points. For 2D-FFT, the less accurate dynamic

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) N=20224, HCLServer01 (b) N=20480, HCLServer01

(c) N=20736, HCLServer01 (d) N=22528, HCLServer02

FIGURE 5: Dynamic energy consumption by DGEMM on HCLServers.

(a) N=23552, HCLServer01 (b) N=25600, HCLServer02

FIGURE 6: Dynamic energy consumption by FFT on HCLServers.

energy profiles on HCLServer01 and HCLServer02 show a
similar energy consumption trend as their respective parallel
profile for {88,89} percent of the data points. Hence, despite
relaxing the precision settings of the experiments to 10%,
the combined dynamic energy profiles still follows the ap-
plication trend and shows similar variations. Therefore, the
additive dynamic energy profiles qualify the usability crite-

rion and can be employed as input to the energy optimization
algorithm [11].

As explained in equation 4, the precision settings highly
impact the overall time T to construct the dynamic energy
profile of an application, and higher precision settings take
longer to build the dynamic energy profile of an application.
In figure 8, we compare the accuracy against the time to

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) N=16384, HCLServer01 (b) N=16384, HCLServer02

FIGURE 7: Dynamic energy consumption by Smith-Waterman application on HCLServers.

build the dynamic energy profiles of DGEMM, FFT and SW
on HCLServers under the precision settings of 2.5% and
10%. While the energy profiles are highly accurate under
the precision settings of 2.5%, the time to construct them is
relatively much higher.

FIGURE 8: Trade-off between the time to build energy
models using AnMoHA and their accuracy.

An important finding is that we can significantly reduce
the time to build the energy profile of an application by
slightly compromising the accuracy. Consider, for example,
the average error of DGEMM (N=22528) on HCLServer02 is
2.32% under precision settings 2.5%. However, it takes more
than 56 hours to build all three dynamic energy profiles on
HCLServer02. In contrast, it takes around 7 hours to build the
energy profiles (with an average error of 3.07%) of the same
application under the precision settings 10%. Similarly, it
takes more than 41 hours to construct all four energy profiles
of FFT on HCLServer01 with an average error of 4.3%.
However, it takes about 8 hours to build the less accurate
profiles of the same application with an average error of
8.16%. For SW on HCLServer02, it takes about 18 hours to
construct all three dynamic energy profiles under precision
settings of 2.5%. The average error of the combined profile

is 1.12%. However, it takes about 13 hours to construct the
same profiles under precision settings 10% and where the
combined energy profiles has an average error of 1.17%. The
relaxed precision settings for SW reduced the time to build
the same energy profiles by 27% whereas the average error
of the combined profiles is increased by just 4.5%.

It is important to note here that the high execution times
(in hours) taken to build energy models are mainly due to the
high execution time of the workload size and high precision
settings of the experiments as discussed earlier in equation 4.
We use a detailed methodology to ensure the reliability of our
results as explained in appendix H. Briefly, to obtain a data
point for each energy function, the software follows Student’s
t-test and executes the application repeatedly until the sample
mean lies within user-defined confidence interval (CI) and a
user-defined precision has been achieved. The software starts
measuring precision and CI after taking the mean of five
repetitions of the application.

We illustrate the impact of precision settings and the
execution time of the workload size on total time to build
an energy profiles by an example. Consider, for example, the
gene sequencing application SW. The CPU takes on average
112 seconds to execute each data point of the energy profile
of SW on HCLServer02 for the experiments discussed in
section VI-C. Hence, it takes at least 560 seconds to reliably
determine a single data point within user-defined accuracy,
and more than six hours for a profile comprises of 43 points.
However, it takes 3 seconds on average by the GPU for
each data point for a single run, and about 10 minutes to
obtain the energy profile with same cardinality and precision
settings. Similarly, it takes more than six hours to build the
energy profile with same caridnality and precision settings
when executing workloads parallel on CPU and GPU due
to the higher execution time by CPU kernels. Therefore, it
takes at least about 13 hours to construct all three energy
profiles of SW of cardinality 43 on HCLServer02 (for given
configuration settings discussed in section VI-C) . It can take
more time if the application repetitions are more than five to

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

get the convergence. However, it would have taken far less
time had the workload is executed for just once.

It is important to note that the usability test just presents a
criterion to determine the degree to which an additive model
exhibits the similar energy consumption behavior to the
ground truth. The percentage that indicates whether the test
is passed, is highly dependent on application domain and a
matter of choice. Consider, for example, the applications such
as signal processing or multimedia processing. Such fault-
tolerant applications belong to the approximate computing
domains. A possibly inaccurate result is also acceptable in
such domains. Therefore, a comparatively relaxed precision
settings and relatively inaccurate model can serve the purpose
in this case. However, high precision settings are required
for the applications such as cryptography or hard real-time
applications. Therefore, one will set a comparatively higher
percentage to ensure whether the additive models qualifies
the usability test. That is why the usability does not define a
percentage limit to indicate the passing threshold.

VIII. TRADE-OFF BETWEEN ACCURACY AND DESIGN
SPACE OF ADDITIVE MODELLING
In this section, we analyze and compare the accuracy of
different experiment configurations to build the additive
dynamic energy model of an abstract processor. Each ex-
periment configuration is an independent experiment. The
objective of this study is to determine the experiment config-
uration that provides the most accurate model of the dynamic
energy profile of an application by exploring all possible
combinations of independent experiments.

We run our experiments on HCLServer01 for this study,
and follow the same analogy: {A,B,C} to represent the
abstract processors of HCLServer01 as explained in sections
VI-B and V-B. Using the additive hypothesis, we can build
the dynamic energy profile of abstract processors A, B,
and C considering different experiment configurations. The
independent experiments providing the dynamic energy con-
sumption by a workload size x executed on abstract processor
A are:

EA(x)1 = EA(x) (5)

EA(x)2 = EAB(x)− EB(x) (6)

EA(x)3 = EAC(x)− EC(x) (7)

EA(x)4 = EABC(x)− EBC(x) (8)

EA(x)5 = EABC(x)− EB(x)− EC(x) (9)

Likewise, the dynamic energy consumption by workload
x executed on the abstract processors B or C can be deter-
mined using the independent experiments as explained in
appendix C. We can compose five combined profiles using
these experiment configurations as {Combined1, Combined2,
Combined3, Combined4, Combined5} such as Combined1 =
EA1 + EB1 + EC1.

For this study, we build the dynamic energy profiles of

TABLE 8: Percentage errors between DGEMM combined
and parallel dynamic energy profiles on HCLServer01.

Experiment Configuration Min Max Avg
Combined1 0.02% 5.56% 2.02%
Combined2 0.02% 16.9% 7.74%
Combined3 0.38% 20.56% 6.59%
Combined4 0.3% 18.46% 5.99%
Combined5 0.03% 11.12% 4.03%

DGEMM on HCLServer01 for the workload size ranging
from 12800 × 20224 to 20224 × 20224 with a constant
step size of 256. We use the same experimental settings as
explained in section VI-A. However, it takes significant time
to run all possible experiment configurations. Because we
build all possible 2p − 1 profiles (each composed of a set
of data points of cardinality m) and, therefore, we have to run
(2p − 1)×m experiments in total for this study.

A. RESULTS AND DISCUSSION
The detailed results are presented in appendix C. Table 8
provides the percentage errors for each combined dynamic
energy profile (composed by using different experimental de-
sign configurations) with the parallel dynamic energy profile.
The average and maximum errors of the best dynamic en-
ergy profile (Combined1) are {2.02%, 5.56%} and the worst
dynamic energy profile (Combined2) are {7.74%, 16.9%}
respectively.

We explain the percentage deviations from the mean and
maximum of dynamic energy consumption by parallel and
each combined dynamic energy profiles in appendix C. In
summary, the absolute percentage error between average and
maximum deviations of each aforementioned combined pro-
files and parallel profile are {11.6,54.2,10.87,8.47,3.78} and
{0.33,69.67,9.56,3.91,22.93}. The Combined1, Combined2
and Combined5 dynamic energy profiles exhibit the same
dynamic energy consumption as of parallel profile for more
than 83% of the data points. In contrast, Combined3, and
Combined4 dynamic energy profiles follow the application
trend of parallel dynamic energy profile for 62% and 58.6%
of the data points. Figure 9 illustrates the trade-off between
the number of experiments to construct the combined dy-
namic energy profile using an experiment configuration and
its percentage error with parallel dynamic energy profile.

To summarize, we find that experiment configuration (in
equation 5) using direct energy measurements during the
application run provides the most accurate dynamic energy
consumption by an application kernel, and requires the least
number of independent experiments. This is because of the
fact that only the experiment configuration (in equation 5)
measures the energy consumption during the application run,
and therefore require only one experiment to determine it. In
contrast, all other experiment configurations determine the
energy consumption by the application kernel indirectly, and
therefore require more numbers of independent experiments.

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

FIGURE 9: Trade off between number of experiments and
accuracy.

We illustrate this by an example. Consider the experi-
ment configuration explained in equation 6. To determine
the energy consumption by the abstract processor A when
executing the workload size x, it requires following two
independent experiments: i) parallel execution of workload
size x on abstract processors A and B, and ii) serial execution
of workload size x on abstract processor B. In order to
determine the energy consumption by the abstract processor
A when running the workload size x, it subtracts the energy
consumption by the serial execution of workload size x
on abstract processor B from the energy consumption by
abstract processor A and B when running the workload size
x in parallel on each of them. Consequently, two independent
experiments are required to determine the energy consump-
tion by abstract processor A when running the workload size
x. That is why Combined1 (which is composed of additive
energy profiles using experiment configuration explained
in equation 5) requires the least number of experiments.
Furthermore, Combined1 has the least error because unlike
other experiment configurations, the energy consumption is
measured during the execution of application.

The experiment configuration Combined5 also provides
accurate enough dynamic energy consumption by the appli-
cation kernel, but it requires the most number of experiments
to compose the combined dynamic energy profile. However,
the Combined5 dynamic energy profile exhibits a more sim-
ilar application trend for 96.24% of the data points as of
parallel dynamic energy profile than direct measurement and
has the same percentage deviations with its mean dynamic
energy consumption on average as of the parallel dynamic
energy profile. But, it provides a relatively poor maximum
percentage deviation with a difference of 23% from parallel
dynamic energy profile. In contrast, the Combined1 dynamic
energy profile provides the same maximum variations as of
parallel dynamic energy profile. All other experiment config-
urations provide relatively worst accuracy, different applica-
tion trend, and variations from their mean. However, they re-
quire relatively less number of experiments than Combined5
for composing the combined dynamic energy profile.

In conclusion, one can opt for the experiment configuration
to compose the combined dynamic energy profile by con-
sidering the best suitable combination of the number of ex-
periments, accuracy, application trend, percentage deviations
from mean and maximum dynamic energy consumption.

IX. STUDY OF ADDITIVE ENERGY MODELLING OF
DIFFERENT WORKLOAD TYPES, GRANULARITY
LIMITATIONS AND SCALABILITY OF ANMOHA
In this section, we explore the limits of the topological gran-
ularity of a computing platform on the viability and efficacy
of the AnMoHA when different workload types/applications
and sizes are executing on their corresponding different in-
dependently powered compute devices. To explore the gran-
ularity limitations, we first study the AnMoHA at socket-
level and then at the granularity level of CPU cores. If the
additive modelling hypothesis holds for socket-level dynamic
energy consumption, then we can model and attribute the dy-
namic energy consumption to an individual application when
running two different applications parallel on two sockets.
For this study, we run our experiments on HCLServer01.
We formulate the socket-wide abstract processors: AbsCPU
to measure the dynamic energy consumption by the appli-
cation kernel running on it. Hence, first abstract processor:
AbsCPU1 contains all 12 cores of socket-1, and the second
abstract processor: AbsCPU2 contains all 12 cores of socket-
2.

We use only such configurations of the applications, for
our experiments, which execute on AbsCPU and do not use
any other system resources such as solid-state drives (SSDs),
network interface cards (NIC), GPU, and etc. Therefore,
the change in energy consumption of the system reported
by HCLWattsUp reflects solely the contributions from CPU
socket and DRAM. For our experiments, we use Intel MKL
routines of the application kernels of DGEMM and FFT as
explained in section VI-A. To study the real-time CPU usage
scenario, we run three batches of experiments to explore
the viability of additive modelling for the following three
different case studies:

1) Same application kernel with the same workload sizes
on both sockets in parallel.

2) Same application kernel: a) MKL-DGEMM, b) MKL-
FFT with different workload sizes (for example, work-
load N on socket-1 and workload M on socket-2) in
parallel. where M 6= N and M > 0, N > 0.

3) Two different application kernels (such as MKL-FFT
and MKL DGEMM) in parallel on two sockets.

A. RESULTS AND DISCUSSION
For our first batch of experiments, we run MKL-DGEMM on
both abstract processors each with the same workload size (M
× N) ranging from 9728 × 9728 to 33792 × 33792. Fig. 10
illustrates the parallel and combined dynamic energy profiles
of both application configurations. One can observe that
combined dynamic energy is exhibiting the same application
trend as of parallel. We find that both sockets consume an

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

FIGURE 10: Case study A: Socket-wide dynamic energy
profiles of same application and same workloads.

equal amount of dynamic energy. This is because they both
execute the same workload sizes of the same application ker-
nels. The average and maximum errors between parallel and
combined dynamic energy profiles are 4.56% and 10.98%.

For brevity reasons, we present the details of the exper-
iment results for second and third use case scenarios in
appendix D. To summarize, overall, we find similar results
for all use case scenarios. The combined dynamic energy
profiles exhibit the same application trend as of parallel
for all case studies with an average error ranges between
1.27% and 4.56%. Table 9 presents the percentage errors
between the parallel and combined dynamic energy profiles.
This suggests that the dynamic energy consumption can be
attributed to the individual application using AnMoHA, when
two different applications are running in parallel on a dual-
socket multicore CPU platform. Furthermore, we can de-
termine and model socket-wide application dynamic energy
consumption with additive modelling in an equally effective
way as device-wide (CPU, GPU, Xeon PHI as explained
in section VI). This is because, each CPU socket of Intel
Haswell E5-2670V3 is independently powered, and there is
minimal resource sharing when running parallel two different
applications pinned on individual sockets. Hence, the abstract
processor AbsCPU satisfies both the propositions of additive
hypothesis: completeness and loose-coupling (as explained
in section V-A), and that is why we observe that additive hy-
pothesis holds for socket-wide dynamic energy consumption.

B. STATE-OF-THE ART ENERGY MEASUREMENT
TOOLS
We compare the measurements of dynamic energy consump-
tion by RAPL against HCLWattsUp. RAPL [13] is a popular
tool to obtain energy consumption by an application running
on Intel CPUs. It provides socket-level energy consumptions.
To obtain the energy consumption provided by RAPL, we use
a well-known package, Intel PCM [46]. We ensure that the
RAPL values output by this package is correct by comparing
with values given by another well-known package, PAPI

TABLE 9: Percentage errors between socket-wide par-
allel and combined dynamic energy profiles built with
HCLWattsUp.

Experiment Configuration Min Avg Max
Same application
(DGEMM), Same workload

0.09% 4.56% 10.98%

Same application
(DGEMM), Different
workload

0.04% 1.27% 5.23%

Same application (FFT),
Different workload

0.06% 3.75% 11.56%

Different applications
(DGEMM, FFT)

0.08% 1.46% 4.96%

[47]. We strictly follow the detailed methodology explained
in [10] and appendix I to compare the energy measurements
using RAPL against HCLWattsUp. It is important to note
here that the execution time of the application kernel is the
same for dynamic energy calculations by all tools. So, any
difference between the energy readings using these tools
comes solely from their power readings. We present the
details on experiment results only for the second use case sce-
nario here. The experiment results for other aforementioned
case studies are explained in appendix D.

For our first batch of experiments to study the second
use case scenario, we run MKL-DGEMM on both abstract
processors each with the different workload sizes (N × N).
The workload size (N× N) for AbsCPU1 ranges from 10000
× 10000 to 14928 × 14928 with a constant step size of
64. The workload size for AbsCPU2 ranges from 15000
× 15000 to 19928 × 19928 with a constant step size of
64. Fig. 11a illustrates the parallel and combined dynamic
energy profiles of both applications build using RAPL and
HCLWattsUp. The x-axis in the plot shows the problem
size range of DGEMM on AbsCPU1. One can observe that
HCLWattsUp combined dynamic energy is exhibiting the
same application trend as of HCLWattsUp parallel. We find
the average and maximum errors between both parallel and
combined dynamic energy profiles built using HCLWattsUp
to be 1.27% and 5.23% respectively. In contrast, RAPL
under-reports the dynamic energy consumption as compared
with HCLWattsUp. We find the average and maximum errors
between parallel dynamic energy profiles built with RAPL
and HCLWattsUp to be 64% and 69% respectively. The av-
erage and maximum errors between parallel dynamic energy
profile built with HCLWattsUp and combined dynamic en-
ergy profile built with RAPL are 65% and 70% respectively.
However, we can reduce the average and maximum errors
to 18% and 59% respectively between the both profiles by
calibrating the RAPL readings.

For our next batch of experiments, we run MKL-FFT on
both abstract processors each with the different workload
sizes (N × N). The workload size (N × N) for AbsCPU1
ranges from 20000 × 20000 to 22432 × 22432 with a con-

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) DGEMM (b) 2D-FFT

FIGURE 11: Dynamic energy profiles of same application with different workload sizes built with RAPL and HCLWattsUp on
HCLServer01.

FIGURE 12: Dynamic energy profiles of same applica-
tion with different workload sizes built with RAPL and
HCLWattsUp on HCLServer01 with calibrated RAPL read-
ings.

stant step size of 64. The workload size for AbsCPU2 ranges
from 22560 × 22560 to 24992 × 24992 with a constant step
size of 64. Fig. 11b illustrates the parallel and combined
dynamic energy profiles of both applications build using
RAPL and HCLWattsUp. The x-axis in the plot shows the
problem size range of MKL-FFT on AbsCPU2. HCLWattsUp
combined dynamic energy is exhibiting the same application
trend as of the HCLWattsUp parallel. We find the average
and maximum errors between both parallel and combined dy-
namic energy profiles built using HCLWattsUp to be 3.75%
and 11.56%. In contrast, RAPL overestimates dynamic en-
ergy consumption as compared with HCLWattsUp. We find
the average and maximum errors between parallel dynamic
energy profiles built with RAPL and HCLWattsUp to be
75% and 178%. The average and maximum errors between
parallel dynamic energy profile built with HCLWattsUp and
combined dynamic energy profile built with RAPL are 66%

and 164%. We find similar results for our experiments to
study the other two aforementioned use case scenarios (the
details are presented in appendix D-A).

Another interesting finding is that there exists a strong
positive correlation between RAPL and HCLWattsUp energy
readings (the Pearson correlation coefficient between them
is 0.97) for MKL-DGEMM with different workload sizes.
However, both profiles disagree on energy consumption be-
havior for more than 48% of the data points. Consider, for
example, the data points (N) {11152,11984,12624,13712}
where HCLWattsUp suggests a percentage decrease of
{5,3,2,6} in dynamic energy consumption with respect to
their corresponding immediate preceding data points. In con-
trast, RAPL suggests a percentage increase of {14,9,13,13}
for the same data points. Similarly, HCLWattsUp suggests
a percentage increase in the dynamic energy consumption
of the data points {12944,13328,13584,13968} by {3,7,8,3}
with respect to their corresponding preceding data points.
However, RAPL suggests a percentage decrease of {9,7,8,8}
for the same data points.

Furthermore, the orientation (i.e. the overall energy con-
sumption trend) of both profiles is also different and the di-
vergence between the both profiles increases with an increase
in problem sizes. It shows that on-chip power sensors do not
capture the holistic picture of the energy consumption trend
when running two applications in parallel each on a different
socket. Owing to the nature of the deviations of the energy
measurements provided by the RAPL from the ground truth,
calibration can not improve the qualitative difference of the
energy profiles build with on-chip sensors to an extent that
can allow them to be used in optimization of applications
for dynamic energy. This is because the inaccurate energy
measurements can cause a significant loss of energy when
employed for the energy optimization of an application [10].

While the average error between the both profiles con-
structed with RAPL and HCLWattsUp can be reduced by
calibrating the RAPL readings, the overall qualitative differ-

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

ence of energy consumption behavior of both profiles can not
be improved. One can observe in figure 12 that the overall
energy consumption trend (the trend of energy consumption
behavior) of both profiles remains different even after cali-
brating the RAPL readings. It suggests that the correlation
coefficient and average error are not sufficient enough for
comparing the similarity between energy profiles. However,
we leave this study for the future.

C. CORE-WIDE DYNAMIC ENERGY CONSUMPTION
MODELLING
The dynamic energy consumption by the application running
sequentially on core-wide abstract processors also includes
the idle (static) energy contributed by the idle cores. As
a result, we observe a higher combined dynamic energy
consumption than the parallel one. We explain the details
in appendix D-B. This suggests that power dissipation by
the idle cores can contribute significantly to the total power
consumption by the CPU when running an application on
some of the CPU cores of a socket. Hence, we can optimize
dynamic energy consumption by the socket by switching
the idle cores off. However, it can introduce an overhead.
Alternatively, we can execute the application on all of its
cores, but it may introduce diminishing returns for some
workload types. We leave this study for the future.

D. GRANULARITY LIMITATIONS, WORKLOAD TYPES
AND SCALABILITY OF ANMOHA
To summarize, AnMoHA is an additive energy modelling
approach to address the challenge of how to model accu-
rately the energy consumption of application components
when executing them in parallel on multiple independently
powered compute devices such as CPUs, GPUs, Xeon Phis,
and sockets of multi-socket CPUs. One can use any energy
measurement tool to determine the energy consumption by
the application component in order to construct the additive
energy models.

Currently, it is not possible to determine the dynamic
energy consumption by the computing elements which are
tightly coupled or which are not independently powered,
using system-level measurements using external power me-
ters. Likewise, the popular tools such as RAPL provide also
the socket-wide power consumption details only and do not
provide core-wide power consumption. Therefore, it is not
possible at present, to build the additive energy models of
the computing elements which are tightly coupled or which
are not independently powered (such as the CPU cores) using
AnMoHA. In summary, one can build as fine-grain additive
energy profiles as the level of granularity provided by the tool
which is used to measure the power consumption.

AnMoHA does not make any assumption about the type
of workload and their sizes executed by their corresponding
compute devices. Different compute devices can execute dif-
ferent types and sizes of workloads/applications in parallel.
One can compute their individual energy consumption using
additive approach (AnMoHA), as discussed in section IX.

To illustrate the scalability of AnMoHA on large clusters,
consider a cluster of n identical nodes (servers) sharing the
same software and hardware configurations. Let each node
contain m heterogeneous compute devices. There are m
application components executing in parallel on m compute
devices of a node. Then, onlym additive energy functions are
needed to be constructed on one node using AnMoHA. The
additive energy models constructed for that particular node
can then be reused for the other n − 1 identical nodes. The
model based data partitioning algorithm [11] takes the n×m
discrete energy functions as an input to determine the optimal
distribution of the workload amongst the n × m processors
such that the energy consumption by the application is mini-
mized.

X. STUDY OF ADDITIVE ENERGY MODELLING AND
DYNAMIC ENERGY OPTIMIZATION WITH ON-CHIP
SENSORS AND HCLWATTSUP
First, we study the additive energy modelling with on-
chip built-in sensors and analyze its accuracy against
HCLWattsUp (which we consider as ground truth [10]).
Then, we study the dynamic energy optimization of a 2D-
FFT hybrid application and DGEMM with both aforemen-
tioned tools and demonstrate that we can lose significant
energy by using inaccurate energy measurements provided
by on-chip sensors for dynamic energy optimization.

A. ADDITIVE ENERGY MODELLING WITH ON-CHIP
SENSORS
HCLServer01 is used for the experiments. We use RAPL to
obtain the power consumption by CPU, Nvidia NVML [14]
to acquire the power values from on-chip sensors on Nvidia
GPUs, and Intel System Management Controller chip (SMC)
[15] to obtain the power values from Intel Xeon Phi that can
be programmatically obtained using Intel manycore platform
software stack (MPSS) [48]. For illustration purposes, we
refer these on-chip sensors collectively as sensors for the rest
of this study.

We run 2D-FFT for the workload size ranging from
15104 × 23552 to 18688 × 23552 with a constant step size
of 64. We build the dynamic energy profile when executing
the application kernels in parallel on their respective abstract
processors, and call it parallel dynamic energy profile. Then,
we build dynamic energy functions for each abstract proces-
sor executing the 2D-FFT individually with on-chip sensors
and HCLWattsUp separately and compose the combined
dynamic energy profiles using the equation 2, and call them
sensors combined and HCLWattsUp combined. Figure 13
shows the dynamic energy profile of 2D-FFT with sensors
and HCLWattsUp.

One can observe that sensors combined dynamic energy
profile lags behind the parallel dynamic energy profile and
has a higher error rate with it than the HCLWattsUp com-
bined. The average and maximum errors of sensors com-
bined dynamic energy profile and HCLWattsUp profile with
parallel dynamic energy profile are {15.1%, 31.87%} and

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

FIGURE 13: Dynamic energy profile of 2D-FFT on
HCLServer01.

TABLE 10: Percentage deviations from mean and maxi-
mum of dynamic energy consumption by parallel and com-
bined profiles of 2D-FFT (composed with Sensors and
HCLWattsUp) on HCLServer01.

Combined
Parallel HCLWattsUp Sensors

avg 13.72% 14.4% 12.94%
max 37.71% 37.95% 35.71%

{4.34%, 8.91%} respectively. We find that sensor combined
profile in comparison with HCLWattsUp combined profile
exhibits relatively poor similarity of variations on average
and maximum as of parallel dynamic energy profile. The
absolute percentage error between the average and maximum
deviations of HCLWattsUp combined dynamic energy profile
and parallel dynamic energy profiles is {4.97%, 0.64%},
and between sensors combined dynamic energy profile and
parallel dynamic energy profiles is {5.67%, 5.3%}. Table 10
provides the percentage deviations from mean and maximum
dynamic energy consumption by parallel and both combined
dynamic energy profiles.

We present the additive modelling of DGEMM with sen-
sors on HCLServer01 in appendixE-A. In summary, the
average and maximum error of sensors combined (DGEMM)
dynamic energy profile against parallel profile is {19%,
27.18%}, and HCLWattsUp combined against parallel profile
is {3.07%, 7.63%} respectively. The absolute percentage
error between the average and maximum percentage devia-
tions of parallel and HCLWattsUp combined dynamic energy
profile is {5.44%, 2.82%}, and between parallel and sensors
combined dynamic energy profile is {33.08%, 12.45%} re-
spectively.

In summary, additive energy models with sensors provide
poor accuracy and poorly model the variations in the com-
bined dynamic energy profile as that of a parallel dynamic en-
ergy profile (for the application we used for our experiment).
It suggests that the sensor combined dynamic energy profile
will not provide similar workload distributions as of parallel
profile, if used as an input to the dynamic energy optimization

TABLE 11: Percentage error of sensors against HCLWattsUp
for dynamic energy consumption by 2D-FFT.

abstract processor Min Max Avg
CPU1 0.25% 36.37% 8.25%
GPU1 0.52% 57.78% 11.2%
PHI1 1.64% 55.78% 40.87%

algorithm that leverages the profile variations. In contrast,
the combined dynamic energy profile with HCLWattsUp is
more accurate and exhibits the better average and maximum
variations as of parallel dynamic energy profile.

B. A STUDY OF DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP
We study the optimization of the parallel hybrid 2D-FFT
application and DGEMM for dynamic energy using mea-
surement tools (on-chip built-in) sensors and system-level
physical measurements with HCLWattsUp.

We run the parallel hybrid application 2D-FFT as ex-
plained in section VI-A on HCLServer01 for the problem
size ranges from 45312 × 23552 to 56064 × 23552 with a
constant step size of 192. We equally partition the dimension
M on all three abstract processors into M1, M2 and M3, so
that the 2D Fourier Transforms of signal matrix M1 × N ,
M2 × N and M3 × N are computed by abstract proces-
sor CPU1, GPU1, and PHI1. There is no communication
involved in these experiments.

Figures 14a and 14b illustrate the dynamic energy pro-
files for workload sizes (m) with sensors and HCLWattsUp.
One can observe that sensors under report the dynamic
energy consumption than HCLWattsUp. Table 11 pro-
vides the percentage error of measurements of dynamic
energy consumption by 2D-FFT with sensors against
HCLWattsUp on each abstract processor. The average errors
are {8.25%,11.2%,40.87%} for CPU1, GPU1 and PHI1 re-
spectively.

We use a model-based data partitioning algorithm [11]
to compute the decomposition of dimension M. The al-
gorithm takes the following inputs: i). the workload size,
ii). number of abstract processors, iii) cardinality of energy
functions, iv) the functions of execution time, and v) the
discrete dynamic energy functions c of the abstract pro-
cessors: {ECPU1, EGPU1, EPHI1}. The output is the opti-
mal workload partitioning allocated to abstract processors:
(mCPU1,mGPU1,mPHI1). One or more abstract processors
may be allocated the workload of size zero. More details on
the algorithm and its complexity can be found in [11].

The discrete dynamic energy consumption function
of abstract processor APi is given by DEi =
{ei(m1, n1), ..., ei(mx, ny)} where ei(m,n) represents the
dynamic energy consumption during the Fourier transform
of sizes m × n by the abstract processor i. The dimension n
is fixed as 23552, and the dimension m ranges from 15104 to
18688 with a constant step size of 64 for each APi.

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) with Sensors. (b) with HCLWattsUp.

FIGURE 14: Dynamic energy profiles of 2D-FFT on HCLServer01.

We determine the workload distribution for workload sizes
{46656,46848,48768,52800,53568,53760,54528} using the
dynamic energy profiles with sensors and HCLWattsUp as
an input to the data partitioning algorithm [11]. Using this
workload distribution, we run the application in parallel
on all abstract processors and determine its dynamic en-
ergy consumption with sensors and HCLWattsUp separately.
We find the total dynamic energy losses by using sensors
in comparison with HCLWattsUp for the aforementioned
workload sizes is {42%,39%,45%,38%,37%,38%,36%}. We
discuss the results of the dynamic energy optimization
of DGEMM on HCLServer01 in appendix E-B. In sum-
mary, we find the total dynamic energy losses by us-
ing sensors in comparison with HCLWattsUp to opti-
mize the dynamic energy consumption of DGEMM for
the workload sizes {40704,41472,42240,43008,44544} is
{22%,24%,21%,22%,24%}.

XI. CONCLUSION
In this work, we presented a novel methodology called
Additive energy Modelling of Hybrid Applications (An-
MoHA) to addresses the following challenges: i). Accurate
modelling of the energy consumptions of application compo-
nents when executing different application kernels in parallel
on multiple compute devices, ii). Accurate modelling of the
energy consumption of two different applications executing
in parallel on a multi-socket multi-core CPU platform. An-
MoHA is an additive modelling approach that constructs
the discrete dynamic energy profiles of the application com-
ponents using system-level physical power measurements
using power meters and satisfying an user-specified precision
setting.

We experimentally validated AnMoHA on a cluster of two
hybrid heterogeneous computing nodes using three highly
optimized parallel applications, matrix-matrix multiplication,
2D fast Fourier transform, and a gene sequencing application
for a diverse range of problem sizes. The estimation accuracy
of the method ranges between 2% and 5%. We demonstrated

that AnMoHA takes less time to construct the energy profiles
when precision settings is reduced. We demonstrated that the
average error for the state-of-the-art estimation methods for
the same experimental setup ranges from 15% to 75% and
the maximum reaches 178%.

Finally, we showed that a significant loss of energy (up to
45% for our applications) occurs when employing state-of-
the-art estimation methods instead of our proposed method
for dynamic energy optimization of an application.

ACKNOWLEDGEMENT
This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI)
under Grant Number 14/IA/2474.

REFERENCES
[1] N. Jones, “How to stop data centres from gobbling up the worldâĂŹs

electricity,” Nature, vol. 561, pp. 163–166, 2018.
[2] A. Andrae and T. Edler, “On global electricity usage of communication

technology: Trends to 2030,” Challenges, vol. 6, no. 1, p. 117âĂŞ157, Apr
2015.

[3] DOE, “Preliminary conceptual design for an exascale
computing initiative,” 2014. [Online]. Available:
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/
Exascale_Preliminary_Plan_V11_sb03c.pdf

[4] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An energy-efficient
task scheduling algorithm in dvfs-enabled cloud environment,” Journal of
Grid Computing, vol. 14, no. 1, pp. 55–74, Mar 2016.

[5] T. Cao, Y. He, and M. Kondo, “Demand-aware power management for
power-constrained hpc systems,” in 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 2016,
pp. 21–31.

[6] P. Arroba, J. M. Moya, J. L. Ayala, and R. Buyya, “Dynamic voltage
and frequency scaling-aware dynamic consolidation of virtual machines
for energy efficient cloud data centers,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 10, p. e4067, 2017, e4067 cpe.4067.

[7] J. Lang and G. RÃijnger, “An execution time and energy model for an
energy-aware execution of a conjugate gradient method with CPU/GPU
collaboration,” Journal of Parallel and Distributed Computing, vol. 74,
no. 9, pp. 2884 – 2897, 2014.

[8] A. Lastovetsky and R. R. Manumachu, “New model-based methods and
algorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, 2017.

VOLUME 4, 2016 23

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

[9] R. R. Manumachu and A. Lastovetsky, “Bi-objective optimization of data-
parallel applications on homogeneous multicore clusters for performance
and energy,” IEEE Transactions on Computers, vol. 67, no. 2, pp. 160–177,
2018.

[10] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky,
“A comparative study of methods for measurement of energy of
computing,” Energies, vol. 12, no. 11, 2019. [Online]. Available:
https://www.mdpi.com/1996-1073/12/11/2204

[11] H. Khaleghzadeh, M. Fahad, A. Shahid, R. R. Manumachu, and
A. Lastovetsky, “Bi-objective Optimisation of Data-parallel Applications
on Heterogeneous Platforms for Performance and Energy via Workload
Distribution,” arXiv:1907.04080 [cs, eess], Jul. 2019, arXiv: 1907.04080.
[Online]. Available: http://arxiv.org/abs/1907.04080

[12] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos, “En-
ergy consumption estimation in embedded systems,” IEEE Transactions
on Instrumentation and Measurement, vol. 57, no. 4, pp. 797–804, April
2008.

[13] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan,
“Power-Management architecture of the intel microarchitecture Code-
Named sandy bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27, March 2012.

[14] Nvidia, “Nvml reference manual,” 10 2018. [Online]. Available:
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf

[15] I. Corporation, “Intel xeon phi coprocessor sys-
tem software developers guide,” 06 2014. [Online].
Available: https://software.intel.com/sites/default/files/managed/09/07/
xeon-phi-coprocessor-system-software-developers-guide.pdf

[16] M. Burtscher, I. Zecena, and Z. Zong, “Measuring gpu power with the
k20 built-in sensor,” in Proceedings of Workshop on General Purpose
Processing Using GPUs, ser. GPGPU-7. ACM, 2014, pp. 28:28–28:36.

[17] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-system
power analysis and modeling for server environments,” in In Proceedings
of Workshop on Modeling, Benchmarking, and Simulation, 2006, pp. 70–
77.

[18] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.
Snoeren, and R. K. Gupta, “Evaluating the effectiveness of model-based
power characterization,” in Proceedings of the 2011 USENIX Confer-
ence on USENIX Annual Technical Conference, ser. USENIXATC’11.
USENIX Association, 2011.

[19] K. O’Brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou,
“A survey of power and energy predictive models in HPC systems and
applications,” ACM Computing Surveys, vol. 50, no. 3, 2017.

[20] A. Shahid, M. Fahad, R. Reddy, and A. Lastovetsky, “Additivity: A
selection criterion for performance events for reliable energy predictive
modeling,” Supercomputing Frontiers and Innovations, vol. 4, no. 4, 2017.

[21] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view from
berkeley,” Tech. Rep. UCB/EECS-2006-183, 2006. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[22] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-of-core
implementation for accelerator kernels on heterogeneous clouds,” The
Journal of Supercomputing, vol. 74, no. 2, pp. 551–568, 2018.

[23] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on multicore
and multi-GPU platforms using functional performance models,” Comput-
ers, IEEE Transactions on, vol. 64, no. 9, pp. 2506–2518, 2015.

[24] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments,” in Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on. IEEE,
2010, pp. 207–216.

[25] A. Lewis, S. Ghosh, and N.-F. Tzeng, “Run-time energy consumption es-
timation based on workload in server systems,” in Proceedings of the 2008
Conference on Power Aware Computing and Systems, ser. HotPower’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 4–4.

[26] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani, “A
methodology to predict the power consumption of servers in data centres,”
in Proceedings of the 2Nd International Conference on Energy-Efficient
Computing and Networking, ser. e-Energy ’11. New York, NY, USA:
ACM, 2011, pp. 1–10.

[27] W. L. Bircher and L. K. John, “Complete system power estimation using
processor performance events,” IEEE Transactions on Computers, vol. 61,
no. 4, pp. 563–577, Apr. 2012.

[28] T. Heath, B. Diniz, B. Horizonte, E. V. Carrera, and R. Bianchini, “Energy
conservation in heterogeneous server clusters,” in 10th ACM SIGPLAN

symposium on Principles and practice of parallel programming (PPoPP).
ACM, 2005, pp. 186–195.

[29] H. Hong, Sunpyand Kim, “An integrated GPU power and performance
model,” SIGARCH Comput. Archit. News, vol. 38, no. 3, 2010.

[30] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance counters,”
in International Green Computing Conference and Workshops (IGCC).
IEEE, 2010.

[31] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and
accurate model of power-performance efficiency on emergent GPU ar-
chitectures,” in 27th IEEE International Parallel & Distributed Processing
Symposium (IPDPS). IEEE Computer Society, 2013, pp. 673–686.

[32] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level
energy model of Intel’s Xeon Phi processor,” in Proceedings of the 2013
International Symposium on Low Power Electronics and Design, ser.
ISLPED ’13. IEEE Press, 2013.

[33] S. Roy, A. Rudra, and A. Verma, “An energy complexity model for
algorithms,” in Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, ser. ITCS ’13. New York, NY, USA:
ACM, 2013, pp. 283–304.

[34] F. Safara, A. Souri, T. Baker, I. Al Ridhawi, and M. Aloqaily,
“Prinergy: a priority-based energy-efficient routing method for iot
systems,” The Journal of Supercomputing, 2020. [Online]. Available:
https://doi.org/10.1007/s11227-020-03147-8

[35] V. Balasubramanian, F. Zaman, M. Aloqaily, S. Alrabaee, M. Gorlatova,
and M. Reisslein, “Reinforcing the edge: Autonomous energy manage-
ment for mobile device clouds,” in IEEE INFOCOM 2019 - IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS),
2019, pp. 44–49.

[36] W. Dargie, “A stochastic model for estimating the power consumption of
a processor,” IEEE Transactions on Computers, vol. 64, no. 5, 2015.

[37] C. Isci and M. Martonosi, “Runtime power monitoring in high-end pro-
cessors: Methodology and empirical data,” in 36th annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society,
2003, p. 93.

[38] D. Hackenberg, R. SchÃűne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell pro-
cessor,” in 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, May 2015, pp. 896–904.

[39] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action: Experiences in using rapl for power measurements,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 3, no. 2, pp. 9:1–9:26, Mar.
2018.

[40] T. Smith and M. Waterman, “Identification of common molecular subse-
quences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195 – 197,
1981.

[41] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of Molecular Biology, vol. 162, no. 3, pp. 705 – 708, 1982.

[42] T. Rognes, “Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation,” BMC bioinformatics, vol. 12, no. 1, p. 1, 2011.

[43] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC bioinformatics, vol. 14, no. 1, p. 1, 2013.

[44] Y. Liu and B. Schmidt, “SWAPHI: Smith-Waterman protein database
search on Xeon Phi coprocessors,” in 2014 IEEE 25th International Con-
ference on Application-Specific Systems, Architectures and Processors.
IEEE, 2014, pp. 184–185.

[45] Heterogeneous Computing Laboratory, University College Dublin,
“HCLWattsUp: API for power and energy measurements using WattsUp
Pro Meter,” 2020. [Online]. Available: https://csgitlab.ucd.ie/ucd-hcl/
hclwattsup

[46] IntelPCM, “IntelÂő performance counter monitor - a better way to
measure cpu utilization.” 2012. [Online]. Available: https://software.intel.
com/en-us/articles/intel-performance-counter-monitor

[47] PAPI, “Performance application programming interface 5.4.1,” 2015.
[Online]. Available: http://icl.cs.utk.edu/papi/

[48] I. Corporation, “IntelÂő manycore platform software stack (Intel MPSS),”
06 2014. [Online]. Available: https://software.intel.com/en-us/articles/
intel-manycore-platform-software-stack-mpss

[49] J. Haj-Yahya, E. Rotem, A. Mendelson, and A. Chattopadhyay, “A com-
prehensive evaluation of power delivery schemes for modern micropro-
cessors,” in 20th International Symposium on Quality Electronic Design
(ISQED), March 2019, pp. 123–130.

24 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

[50] C. Gough, I. Steiner, and W. Saunders, Energy Efficient Servers Blueprints
for Data Center Optimization. Apress, 2015, isbn:978-1-4302-6637-2.

[51] Perf Wiki, “perf: Linux profiling with performance counters,” 2017.
[Online]. Available: https://perf.wiki.kernel.org/index.php/Main_Page

[52] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.

[53] D. W. Mount, Bioinformatics: sequence and genome analysis. Cold
Spring Harbor Laboratory Press, 2004, isbn:9780879696870.

[54] NVIDIA, “Parallel Thread Execution ISA Version 5.0,” 2016. [On-
line]. Available: http://docs.nvidia.com/cuda/parallel-thread-execution/
#axzz4WCeB6m8U

MUHAMMAD FAHAD is a Ph.D. researcher in
Heterogeneous Computing Lab (HCL) at Univer-
sity College Dublin, Ireland. He received his MS
degree from KTH - Royal Institute of Technology,
Sweden in 2012, and BS degree from Interna-
tional Islamic University Islamabad, Pakistan in
2008. His main research interests include high-
performance heterogeneous computing, energy-
efficient computing, parallel/distributed and peer-
to-peer computing.

ARSALAN SHAHID is a PhD researcher in Het-
erogeneous Computing Lab at University College
Dublin. Arsalan graduated as a gold medalist for
the best final year project in BS Electrical Engi-
neering from HITEC University Pakistan, in 2016.
His research interests are in energy-aware and
high-performance heterogeneous computing.

RAVI REDDY MANUMACHU received a B.Tech
degree from I.I.T, Madras in 1997 and a PhD
degree from the School of Computer Science,
University College Dublin in 2005. His main re-
search interests include high performance het-
erogeneous computing, distributed computing,
energy-efficient computing, and sparse matrix
computations.

ALEXEY LASTOVETSKY received a Ph.D. de-
gree from the Moscow Aviation Institute in 1986,
and a Doctor of Science degree from the Rus-
sian Academy of Sciences in 1997. His main re-
search interests include algorithms, models, and
programming tools for high-performance hetero-
geneous computing. He has published over a hun-
dred technical papers in refereed journals, edited
books, and international conferences. He authored
the monographs Parallel computing on heteroge-

neous networks (Wiley, 2003) and High-performance heterogeneous com-
puting (Wiley, 2009).

.

APPENDIX A SUPPLEMENTAL MATERIAL
The supporting materials for the main manuscript, “Accurate
Energy Modelling of Hybrid Parallel Applications on Mod-
ern Heterogeneous Computing Platforms in Data Centers”
are:

• Empirical validation of additive modelling.
• Trade-off between accuracy and design space of addi-

tive modelling.
• Topological granularity limits of additive energy mod-

elling.
• Study of additive energy modelling and dynamic energy

optimization with On-chip sensors and HCLWattsUp.
• Rationale behind using dynamic energy consumption

instead of total energy consumption.
• Application Programming Interface (API) for mea-

surements using external power meter interfaces
(HCLWattsUp).

• Methodology to obtain a reliable data point.
• Methodology to compare measurements using sensors

and HCLWattsUp.
• Comparison of dynamic energy consumption using on-

chip sensors and HCLWattsUp
• Precautions to prevent interference of other components

in dynamic energy consumption
• Accuracy of PMC-based energy predictive models

against HCLWattsUp
• Parallel Gene Sequencing Application

APPENDIX B EMPIRICAL VALIDATION OF ADDITIVE
MODELLING
We run three different workload configurations of DGEMM
executing on HCLServer01 and for each configuration build
four dynamic energy functions of DGEMM as explained
in section VI-B. The workload sizes range for all three
configurations are: i) from 12800× 20224 to 20224× 20224
with a constatn step size of 128, ii). from 12800 × 20480
to 20480 × 20480 with a constant step size of 256 for the
dimension M , and, iii). 12800 × 20736 to 20736 × 20736
with a constant step size of 256 for the dimension M . Figure
15a and 15b illustrate the parallel and combined dynamic
energy profiles of experiment configurations: N=20480, and
N=20736 respectively. We find the average and maximum er-
rors between combined and parallel dynamic energy profiles
to be 2.24% and 5.56% for N=20224, 3.07% and 7.6% for
N=20480, and 3.87% and 9.97% for N=20736, respectively.

APPENDIX C TRADE-OFF BETWEEN ACCURACY AND
DESIGN SPACE OF ADDITIVE MODELLING
We can determine the dynamic energy consumption by
workload x executed on the abstract processors B or C
using the independent experiments: {EB(x), {EAB(x) −
EA(x)}, {EBC(x)−EC(x)}, {EABC(x)−EAC(x)}, {EABC(x)−
EA(x)−EC(x)}}, and {EC(x), {EAC(x)−EA(x)}, {EBC(x)−
EB(x)}, {EABC(x) − EAB(x)}, {EABC(x) − EB(x) −
EA(x)}}.

VOLUME 4, 2016 25

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) N=20480 (b) N=20736

FIGURE 15: Dynamic energy profiles of DGEMM on HCLServer01.

Figure 16 represents the parallel and combined pro-
files composed of all possible independent experiments on
HCLServer01. One can observe that, overall, Combined1 and
Combined5 dynamic energy profiles has less percentage error
with parallel dynamic energy profile, whereas Combined2
dynamic energy profile has the largest percentage error.

FIGURE 16: Trade off between number of experiments and
accuracy.

The Combined1 experiment configuration (using direct
measurements) requires just 3 independent experiments to
compose the combined profile which is 98% accurate,
whereas Combined5 experiment configuration needs 9 in-
dependent experiments for composing the combined profile
which is 96% accurate. All other experiment configurations
{Combined2, Combined3, Combined4} needs 6 independent
experiments to compose the combined dynamic energy pro-
file which are {92.26%, 93.41%,94%} accurate.

Table 12 presents the percentage deviations from the mean
and maximum of dynamic energy consumption by parallel
and each combined dynamic energy profiles.

TABLE 12: Percentage deviations from mean of dynamic
energy consumption by parallel and combined profiles.

Experiment Configuration Max Avg
Parallel 16.96% 8.74%
Combined1 17.02% 9.76%
Combined2 28.78% 13.48%
Combined3 18.58% 7.79%
Combined4 17.63% 8%
Combined5 20.85% 9.07%

APPENDIX D TOPOLOGICAL GRANULARITY LIMITS OF
ADDITIVE ENERGY MODELLING
For our next batch of experiments to study the second use
case, we run MKL-FFT on both abstract processors each with
the different workload size (N × N). The workload size (N
× N) for AbsCPU1 ranges from 20000 × 20000 to 22432
× 22432 with a constant step size of 64. The workload size
for AbsCPU2 ranges from 22560× 22560 to 24992× 24992
with a constant step size of 64. Fig. 17b illustrates the parallel
and combined dynamic energy profiles of both application.
The x-axis in the plot shows the problem size range of FFT
on AbsCPU2. One can observe that HCLWattsUp combined
dynamic energy is exhibiting the same application trend as
of HCLWattsUp parallel. We find the average and maximum
errors between both parallel and combined dynamic energy
profiles built using HCLWattsUp to be 3.7% and 11.56%
respectively. In contrast, RAPL under-reports the dynamic
energy consumption as compared with HCLWattsUp.

For our batch of experiments to study the second use case,
we run MKL-DGEMM on both abstract processors each with
a different workload size. The workload size (M × N) for
AbsCPU1 ranges from 7680× 30720 to 16896× 30720 with
a constant step size of 512; and for AbsCPU2, it ranges from
23040× 30720 to 32256× 30720 with a constant step size of
512. Fig. 17a illustrates the parallel and combined dynamic

26 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

energy profiles of both application configurations. The x-
axis in the plot shows the problem size range of DGEMM
on AbsCPU1 for the dimension M. One can observe that
combined dynamic energy profile is exhibiting the same
application trend as of parallel. We find the average and
maximum errors between parallel and combined dynamic
energy profiles to be 1.27% and 5.23%.

For our last batch of experiments to study the third use
case, we run MKL-FFT on AbsCPU1 with a workload size
(N × N) ranging from 20000 × 20000 to 22432 × 22432
with a constant step size of 64; and MKL-DGEMM on
AbsCPU2 (N× N) with a workload size ranging from 10000
× 10000 to 12432 × 12432 with a constant step size of
64. Fig. 18 illustrates the parallel and combined dynamic
energy profiles of MKL-FFT and MKL-DGEMM. The x-
axis on the plot shows the problem size range of MKL-
FFT on AbsCPU1. Similar to previous experiments results,
HCLWattsUp combined dynamic energy is exhibiting the
same application trend as of HCLWattsUp parallel. We find
the average and maximum errors between parallel and com-
bined dynamic energy profiles to be 1.5% and 5%.

A. STATE-OF-THE ART ENERGY MEASUREMENT
TOOLS
For our batch of experiments to study the first use case
scenario, we run MKL-DGEMM on both abstract processors
each with the same workload size (M × N) ranging from
9728× 9728 to 33792× 33792. Fig. 19a illustrates the paral-
lel and combined dynamic energy profiles of both application
configurations. We find that HCLWattsUp combined dynamic
energy exhibit the same application trend as of HCLWattsUp
parallel for 94% of the data points. In contrast, RAPL parallel
and combined dynamic energy profiles exhibit different ap-
plication behavior with HCLWattsUp parallel profile for 13%
of the data points. Consider, for example, the data points (N)
{19968,27136,30208} where HCLWattsUp suggests a per-
centage increase of {12,2,5} in dynamic energy consumption
with respect to their corresponding immediate preceding data
points. In contrast, RAPL suggests a percentage decrease of
{1,4,2} for the same data points. Similarly, HCLWattsUp
suggests a percentage decrease in the dynamic energy con-
sumption of the data points such as {11776,20992} by {14,2}
with respect to their corresponding immediate preceding data
points. However, RAPL suggests a percentage increase of
{9,2} for the same data points.

The average and maximum errors between parallel dy-
namic energy profiles built with RAPL and HCLWattsUp
are 21% and 109% respectively. The average and maximum
errors between parallel dynamic energy profile built with
HCLWattsUp and combined dynamic energy profile built
with RAPL are 16% and 77% respectively. However, the
average and maximum errors between parallel and combined
dynamic energy profiles built with HCLWattsUp are 4.56%
and 10.98% respectively. This suggests that the dynamic
energy profiles built with HCLWattsUp are more accurate and
exhibit similar energy consumption behavior as of ground

truth.
For our batch of experiments to study the third use case,

we run MKL-FFT on AbsCPU1 with a workload size (N ×
N) ranging from 20000 × 20000 to 22432 × 22432 with a
constant step size of 64; and MKL-DGEMM on AbsCPU2
(N × N) with a workload size ranging from 10000 × 10000
to 12432 × 12432 with a constant step size of 64. Fig. 19b
illustrates the parallel and combined dynamic energy profiles
of MKL-FFT and MKL-DGEMM. The x-axis on the plot
shows the problem size range of MKL-FFT on AbsCPU1.
Similar to previous experiments results, HCLWattsUp com-
bined dynamic energy is exhibiting the same application
trend as of HCLWattsUp parallel. We find the average and
maximum errors between parallel dynamic energy profiles
built with RAPL and HCLWattsUp to be 30% and 47%
respectively. The average and maximum errors between par-
allel dynamic energy profile built with HCLWattsUp and
combined dynamic energy profile built with RAPL are 35%
and 49% respectively.

Another interesting finding is that we find a strong positive
correlation between RAPL and HCLWattsUp energy read-
ings for all case studies. The Pearson correlation coefficient
between RAPL and HCLWattsUp parallel dynamic energy
profiles for first case study is 0.99. However, both profiles
disagree on energy consumption behavior for 13% of the
data points. Similarly, the correlation coefficient between
RAPL and HCLWattsUp parallel dynamic energy profiles
for third use case scenario is 0.86, but both profiles dis-
agree on energy consumption behavior for 11% of the data
points. Interestingly, the correlation coefficient is 0.89 be-
tween RAPL combined dynamic profile and HCLWattsUp
prallel profile for the same case study. However, both profiles
exhibit different application trend for more than 13% of the
data points. Similarly, the correlation coefficient between
RAPL combined and HCLWattsUp parallel dynamic energy
profiles is 0.9 for second use case when running MKL-
FFT with different workload sizes on both sockets. However,
both profiles exhibit different energy consumption trend for
more than 18% of the data points. This all suggests that two
energy profiles can exhibit different trend for a range of data
points even if they have a strong positive correlation between
them. Hence, the correlation coefficient alone is not sufficient
enough for comparing the similarity between energy profiles.

To summarize, the dynamic energy consumption can be
attributed to the individual application using AnMoHA, when
two different applications are running in parallel on a dual-
socket multicore CPU platform. Furthermore, we can de-
termine and model socket-wide application dynamic energy
consumption with additive modelling in equally effective
way as device-wide (CPU, GPU, Xeon PHI as explained in
section VI). This is because, each socket of Intel Haswell
E5-2670V3 is independently powered, and there is minimal
resource sharing when running parallel two different appli-
cations pinned on individual sockets. Hence, AbsCPU holds
both the propositions of additive hypothesis: completeness
and loose-coupling (as explained in section V-A), and that

VOLUME 4, 2016 27

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) DGEMM. x-axis scale represents the problem size range for
DGEMM executed on AbsSoc1

(b) 2D-FFT. x-axis scale represents the problem size range for 2D-FFT
executed on AbsSoc2

FIGURE 17: Socket-wide dynamic energy profiles for case study B: Same application, Different workloads.

FIGURE 18: Case study C: Different applications. x-axis
scale represents the problem size range for DGEMM exe-
cuted on AbsSoc1.

is why we observe that additive hypothesis is equally vali-
date for socket-wide dynamic energy consumption. Another
important finding is that on-chip power sensors does not
capture the holistic picture of the energy consumption trend
when running two applications in parallel each on a different
socket.

B. CORE-WIDE DYNAMIC ENERGY CONSUMPTION
MODELLING
In this section, we explore if we can further fine the topo-
logical granularity to core-wide. For this study, we explore
different core-wide combinations (such as 1-core, 2-core, etc)
on each HCLServer (technical details are provided in table 1)
to formulate the abstract processors (AbsCore) for measuring
the dynamic energy consumption by the application running
on them. We follow the same methodology to ensure the
reliability of our experiment results that we use for socket-
wide modelling.

For all our experiment sets, we find that combined dy-
namic energy consumption is relatively higher than paral-
lel dynamic energy consumption. However, the difference
is not the same across the workload sizes or AbsCore
configurations. Consider, for example, the problem size
13312 × 13312 where each AbsCore contains 11 cores
on HCLServer02. The dynamic energy consumption when
running parallel both kernels is 1982 joules whereas the
combined dynamic energy consumption is 3115.87 joules
which is 57% higher than the parallel one. Now, consider
another problem size 10752 × 10752 for the same AbsCore
formulation. The dynamic energy consumption by the par-
allel executing kernels is 736 joules whereas the combined
dynamic energy is 1887.28 joules which is 157% higher than
the parallel one. We find the similar results on HCLServer01.

The total power consumption by a complementary metal-
oxide-semiconductor (CMOS) can be roughly considered as
the sum value of idle power and dynamic power. Here, the
idle power is the (leakage) power dissipation when it does not
running the application. The usual settings of DVFS governor
(such as Ondemand or conservative governors in Linux) sets
the voltage and clock frequency of the cores depending on the
current system load. That is, it keeps the voltage and clock
frequency of cores at low when idle, and scale them up as
soon as the workload is supplied. While frequency can be
scaled up/down at core-wide, the cores cannot regulate their
voltages independent of each other because the same voltage
is supplied across all the cores sharing the same voltage
domain. While the dynamic power part is proportional to
the square of the voltage, the (leakage or idle) power scales
exponentially with voltage [49].

When a workload is executed on a some of CPU cores
of a socket, then the DVFS governor scales up the voltage
of entire socket according to change in clock frequency of
active cores. However, the idle fraction of the CPU cores
of the socket dissipates its power as leakage. Because of
higher voltage supply, this power dissipation by idle CPU

28 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) Case Study A: Same Application (DGEMM) with same workload
size. (b) Case Study C: Different applications

FIGURE 19: Socket-wide dynamic energy profiles built with RAPL and HCLWattsUp on HCLServer01.

cores is higher than the power dissipation when the voltage
supply was low. The total dynamic energy consumption by
the application running sequentially on AbsCore proces-
sors measured with HCLWattsUp includes both the dynamic
power consumed by the active CPU cores and higher idle
power dissipated by the idle CPU cores. However, this is
not the case when we run the applications on both AbsCore
abstract processors. As a result, we observe a higher com-
bined dynamic energy consumption than the parallel one.
This suggests that power dissipation by the idle cores can
contribute significantly to the total power consumption by
the CPU when running an application on some of the CPU
cores. Hence, the dynamic energy consumption by the socket
can be optimized by switching the idle cores off. However it
can introduce the overhead of a switching them on/off mech-
anism. Alternatively, we can leverage the CPU by utilizing
all of its cores, however, it may introduce diminishing effects
for some workload types. We, nevertheless, leave this study
for future.

In conclusion, we can not model the dynamic energy
consumption by the computing elements with system-level
measurements using external power meters, which are tightly
coupled or which are not independently powered.

APPENDIX E STUDY OF ADDITIVE ENERGY
MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP
A. ADDITIVE ENERGY MODELLING WITH ON-CHIP
POWER SENSORS AND HCLWATTSUP

We run DGEMM for the workload size ranging from 12800
× 20480 to 20480 × 20480 with a constant step size of
256. We build the dynamic energy profile when executing
the application kernels in parallel on their respective abstract
processors, and call it parallel dynamic energy profile. Then,
we build dynamic energy functions for each abstract proces-
sor executing the DGEMM individually with on-chip sensors

and HCLWattsUp separately, and compose the combined
dynamic energy profiles. We call them sensors combined
and HCLWattsUp combined. Figure 20 shows the dynamic
energy profile of DGEMM with sensors and HCLWattsUp.

FIGURE 20: Dynamic energy profile of DGEMM on
HCLServer01.

One can observe that sensors combined dynamic energy
profile is lagging behind the parallel dynamic energy profile
and has a higher difference with it than the HCLWattsUp
combined. The average and maximum errors between the
combined dynamic energy profiles composed with sensors
and the parallel dynamic energy profile with HCLWattsUp
are {19%,27.18%} respectively. However, the average and
maximum error between the parallel and combined dynamic
energy profiles with HCLWattsUp are {3.07%, 7.63%} re-
spectively.

We find that sensor combined profile in comparison with
HCLWattsUp combined profile exhibits relatively poor simi-
larity of variations on average and maximum as of parallel
dynamic energy profile. The absolute percentage error be-
tween the average and maximum percentage deviations of
HCLWattsUp combined dynamic energy profile and parallel
dynamic energy profiles is {5.44%, 2.86%}, and between

VOLUME 4, 2016 29

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

TABLE 13: Percentage deviations from mean and maxi-
mum of dynamic energy consumption by parallel and com-
bined profiles of DGEMM (composed with Sensors and
HCLWattsUp) on HCLServer01.

Combined
Parallel HCLWattsUp Sensors

avg 8.27% 8.72% 11%
max 16.31% 16.77% 18.34%

the sensors combined dynamic energy profile and parallel
dynamic energy profiles is {33.08%, 12.46%}. Table 13
provides the percentage deviations from mean and maximum
dynamic energy consumption by parallel and both combined
dynamic energy profiles.

In summary, additive energy models with sensors have
poor accuracy and poorly exhibit the variations in the com-
bined dynamic energy profile as of parallel dynamic energy
profile (for the application set we used for our experiment).
It suggests that we can not benefit from the sensor combined
dynamic energy profile in an equally effective way as parallel
dynamic energy profile to be used as an input to the dynamic
energy optimization algorithm where workload distribution
is used as an decision variable. In contrast, combined dy-
namic energy profile with HCLWattsUp is more accurate and
exhibits the better average and maximum variations as of
parallel dynamic energy profile.

B. A STUDY OF DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP
In this section, We study the optimization of parallel hybrid
DGEMM application for dynamic energy using measurement
tools (on-chip built in) sensors and system-level physical
measurements with HCLWattsUp.

We run a parallel hybrid application DGEMM as explained
in section I on HCLServer01 for the problem size ranges
from 38400 × 61440 to 61440 × 61440 with a constant step
size of 768. We equally partition the dimension M of matrix
A on all three abstract processors into M1, M2 and M3, so
that the matrix M1×N , M2×N and M3×N are computed
by abstract processor CPU1, GPU1, and PHI1 respectively.
There is no communication involved in these experiments.

Figures 21a and 21b illustrate the dynamic energy pro-
files for workload sizes (m) with sensors and HCLWattsUp.
One can observe that sensors under report the dynamic
energy consumption than HCLWattsUp. Table 14 provides
the percentage difference of measurements of dynamic
energy consumption by DGEMM with sensors against
HCLWattsUp on each abstract processor. The average errors
are {10.25%,14.62%,38.06%} for CPU1, GPU1 and PHI1
respectively. In section X-A, we explained the percentage
differences of average and maximum deviations from mean
dynamic energy consumption by sensor and HCLWattsUp
combined dynamic energy profiles.

We use a model-based data partitioning algorithm [11]
to compute the decomposition of dimension M. The brief

TABLE 14: Percentage difference of sensors against
HCLWattsUp for dynamic energy consumption by DGEMM.

abstract processor Min Avg Max
CPU1 0.12% 10.25% 18.74%
GPU1 0.5% 14.62% 55.22%
PHI1 31.02% 38.06% 46.53%

details on the inputs and outputs of the algorithm, and the
algorithm is presented in section X-B. The discrete dy-
namic energy consumption function of abstract processor
APi is given by DEi = {ei(m1, n1), ..., ei(mx, ny)} where
ei(m,n) represents the dynamic energy consumption during
the matrix multiplication of sizes m × n by the abstract
processor i. The dimension n is fixed as 20480, and the
dimension m ranges from 12800 to 20480 with a constant
step size of 256 for each APi.

The data partitioning algorithm takes the dynamic energy
functional models as an input and finds the optimal workload
configuration which optimizes the total dynamic energy con-
sumption for the given application using load imbalance tech-
nique. We determine the workload distribution for workload
sizes where M {40704,41472,42240,43008,44544} using the
dynamic energy profiles with sensors and HCLWattsUp as an
input to the data partitioning algorithm. Using this workload
distribution, we run the application in parallel on all abstract
processors and determine its dynamic energy consumption
with sensors and HCLWattsUp separately. We find the to-
tal dynamic energy losses by using sensors in comparison
with HCLWattsUp for the aforementioned workload sizes as
{22%,24%,21%,22%,24%}.

APPENDIX F RATIONALE BEHIND USING DYNAMIC
ENERGY CONSUMPTION INSTEAD OF TOTAL ENERGY
CONSUMPTION
We consider only the dynamic energy consumption in our
work for reasons below:

1) The static energy consumption is a major concern
in embedded systems. However, it is becoming less
compared to the dynamic energy consumption due to
advancements in hardware architecture design in HPC
systems.

2) We target the applications and platforms where dy-
namic energy consumption is the dominating energy
dissipator.

3) Finally, we believe its inclusion can underestimate the
true worth of an optimization technique that optimizes
the dynamic energy consumption (i.e. the minimal
energy consumption under service-related constraints
such as performance). We elucidate using two exam-
ples from published results.
• In our first example, consider a model that reports

predicted and measured total energy consump-
tion of a system to be 16,500 J and 18,000 J
respectively. It would report the prediction error

30 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

(a) with Sensors. (b) with HCLWattsUp.

FIGURE 21: Dynamic energy profiles of DGEMM on HCLServer01.

to be 8.3%. If it is known that the static energy
consumption of the system is 9000 J, then the
actual prediction error (based on dynamic energy
consumption only) would be 16.6% instead.

• In our second example, consider two different en-
ergy prediction models (MA and MB) with same
prediction errors of 5% for an application execu-
tion on two different machines (A and B) with
same total energy consumption of 10,000 J. One
would consider both the models to be equally ac-
curate. But supposing it is known that the dynamic
energy proportions for the machines are 30% and
60%. Now, the true prediction errors (using dy-
namic energy consumption only) for the models
would be 16.6% and 8.3% respectively. Therefore,
the second model MB should be considered more
accurate than the first.

APPENDIX G APPLICATION PROGRAMMING
INTERFACE (API) FOR MEASUREMENTS USING
EXTERNAL POWER METER INTERFACES
(HCLWATTSUP)
HCLServer01 and HCLServer02 have a dedicated power
meter installed between their input power sockets and wall
A/C outlets. The power meter captures the total power con-
sumption of the node. It has a data cable connected to the
USB port of the node. A perl script collects the data from the
power meter using the serial USB interface. The execution of
this script is non-intrusive and consumes insignificant power.

We use HCLWattsUp API function, which gathers the
readings from the power meters to determine the average
power and energy consumption during the execution of an
application on a given platform. HCLWattsUp API can pro-
vide following four types of measures during the execution
of an application:
• TIME—The execution time (seconds).
• DPOWER—The average dynamic power (watts).
• TENERGY—The total energy consumption (joules).

• DENERGY—The dynamic energy consumption (joules).

We confirm that the overhead due to the API is very
minimal and does not have any noticeable influence on the
main measurements. It is important to note that the power
meter readings are only processed if the measure is not
hcl :: TIME . Therefore, for each measurement, we have
two runs. One run for measuring the execution time. And
the other for energy consumption. The example provided in
figure 22 illustrates the use of statistical methods to measure
the dynamic energy consumption during the execution of an
application.

The API is confined in the hcl namespace. Lines 10–12
construct the Wattsup object. The inputs to the constructor are
the paths to the scripts and their arguments that read the USB
serial devices containing the readings of the power meters.

The principal method of Wattsup class is execute. The
inputs to this method are the type of measure, the path to
the executable executablePath, the arguments to the exe-
cutable executableArgs and the statistical thresholds (pIn)
The outputs are the achieved statistical confidence pOut, the
estimators, the sample mean (sampleMean) and the standard
deviation (sd) calculated during the execution of the exe-
cutable.

The execute method repeatedly invokes the executable
until one of the following conditions is satisfied:

• The maximum number of repetitions specified in
maxRepeats is exceeded.

• The sample mean is within maxStdError percent of
the confidence interval cl. The confidence interval of the
mean is estimated using Student’s t-distribution.

• The maximum allowed time maxElapsedT ime speci-
fied in seconds has elapsed.

If any one of the conditions are not satisfied, then a return
code of 0 is output suggesting that statistical confidence has
not been achieved. If statistical confidence has been achieved,
then the number of repetitions performed, time elapsed and
the final relative standard error is returned in the output

VOLUME 4, 2016 31

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

1 # i n c l u d e < w a t t s u p . hpp >
2 i n t main (i n t a rgc , c h a r ** a rgv)
3 {
4 s t d : : s t r i n g p a t h s T o M e t e r s [2] = {
5 " / o p t / p o w e r t o o l s / b i n / w a t t s u p 1 " ,
6 " / o p t / p o w e r t o o l s / b i n / w a t t s u p 2 " } ;
7 s t d : : s t r i n g a r g s T o M e t e r s [2] = {
8 "−− i n t e r v a l =1 " ,
9 "−− i n t e r v a l =1 " } ;

10 h c l : : Wat tsup w a t t s u p (
11 2 , pa thsToMete r s , a r g s T o M e t e r s
12) ;
13 h c l : : P r e c i s i o n pIn = {
14 maxRepeats , c l , maxElapsedTime , maxStdEr ro r
15 } ;
16 h c l : : P r e c i s i o n pOut ;
17 do ub l e sampleMean , sd ;
18 i n t r c = w a t t s u p . e x e c u t e (
19 h c l : : DENERGY, e x e c u t a b l e P a t h ,
20 e x e c u t a b l e A r g s , &pIn , &pOut ,
21 &sampleMean , &sd
22) ;
23 i f (r c == 0)
24 s t d : : c e r r << " P r e c i s i o n NOT a c h i e v e d . \ n " ;
25 e l s e
26 s t d : : c o u t << " P r e c i s i o n a c h i e v e d . \ n " ;
27 s t d : : c o u t << "Max r e p e t i t i o n s "
28 << pOut . reps_max
29 << " , E l a s p e d t ime "
30 << pOut . t ime_max_rep
31 << " , R e l a t i v e e r r o r "
32 << pOut . eps
33 << " , Mean en e rg y "
34 << sampleMean
35 << " , S t a n d a r d D e v i a t i o n "
36 << sd
37 << s t d : : e n d l ;
38 e x i t (EXIT_SUCCESS) ;
39 }
40

FIGURE 22: Example illustrating the use of HCLWattsUp
API for measuring the dynamic energy consumption

argument pOut. At the same time, the sample mean and
standard deviation are returned. For our experiments, we
use values of (1000, 95%, 2.5%, 3600) for the parameters
(maxRepeats, cl,maxStdError,maxElapsedT ime). Since
we use Student’s t-distribution for the calculation of the
confidence interval of the mean, we confirm specifically that
the observations follow normal distribution by plotting the
density of the observations using R tool.

APPENDIX H METHODOLOGY TO OBTAIN A RELIABLE
DATA POINT
We follow the following strict methodology described below
to make sure the experimental results are reliable:

• The server is fully reserved and dedicated to these ex-
periments during their execution. We also made certain
that there are no drastic fluctuations in the load due to
abnormal events in the server by monitoring its load
continuously for a week using the tool sar. Insignificant
variation in the load was observed during this monitor-
ing period suggesting normal and clean behaviour of

the server.
• We set the application kernel’s CPU affinity mask using

SCHED API’s system call SCHED_SETAFFINITY()
Consider for example mkl-DGEMM application kernel
running on HCLServer01. To bind this application ker-
nel, we set its CPU affinity mask to 12 physical CPU
cores of Socket 1 and 12 physical CPU cores of Socket
2.

• To make sure that pipelining, cache effects and so forth,
do not happen, the experiments are not executed in a
loop and sufficient time (120 s) is allowed to elapse
between successive runs. This time is based on obser-
vations of the times taken for the memory utilization to
revert to base utilization and processor (core) frequen-
cies to come back to the base frequencies.

• To obtain a data point, the application is repeatedly
executed until the sample mean lies in the 95% confi-
dence interval and a precision of 0.025 (2.5%) has been
achieved. For this purpose, Student’s t-test is used as-
suming that the individual observations are independent
and their population follows the normal distribution. We
verify the validity of these assumptions by plotting the
distributions of observations.
The function MeanUsingT test, shown in Algorithm
1, describes this step. The inputs to the function
MeanUsingT test are:

– The application to execute, app
– The minimum number of repetitions, minReps ∈

Z>0

– The maximum number of repetitions, maxReps ∈
Z>0

– The maximum time allowed for the application to
run, maxT ∈ R>0

– The required confidence level, cl ∈ R>0

– The required accuracy, eps ∈ R>0

The outputs by the function MeanUsingT test are:
– The number of experimental runs actually made,
repsOut ∈ Z>0

– The confidence level achieved, clOut ∈ R>0

– The accuracy achieved, epsOut ∈ R>0

– The elapsed time, etimeOut ∈ R>0

– The mean, mean ∈ R>0

For each data point, the function is invoked, which
repeatedly executes the application app until one of the
following three conditions is satisfied:

1) The maximum number of repetitions (maxReps)
have been exceeded (Line 3).

2) The sample mean falls in the confidence interval
(or the precision of measurement eps has been
achieved) (Lines 15–17).

3) The elapsed time of the repetitions of applica-
tion execution has exceeded the maximum time
allowed (maxT in seconds) (Lines 18–20).

So, for each data point, the function MeanUsingT test
is invoked and the sample mean mean is returned at

32 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

the end of invocation. The function Measure measures
the execution time or the dynamic energy consump-
tion using the HCL’s WattsUp library [45] based on
the input, TIME or ENERGY . The input minimum
and maximum number of repetitions, minReps and
maxReps, differ based on the problem size solved. For
small problem sizes (32 ≤ n ≤ 1024), these values are
set to 10,000 and 100,000. For medium problem sizes
(1024 < n ≤ 5120), these values are set to 100 and
1000. For large problem sizes (n > 5120), these values
are set to 5 and 50. The values of maxT , cl and eps are
set to 3600, 0.95 and 0.025. If the precision of measure-
ment is not achieved before the maximum number of
repeats have been completed, we increase the number of
repetitions and also the maximum elapsed time allowed.
However, we observed that condition (2) is always
satisfied before the other two in our experiments. The
complexity of the function MeanUsingT test is O(N).

APPENDIX I METHODOLOGY TO COMPARE
MEASUREMENTS USING ON-CHIP SENSORS AND
HCLWATTSUP
To analyze the dynamic energy consumption by a given
component when running an application, we need to build
application profiles on them. HCLWattsUp API provides the
dynamic energy consumption of application instead of the
component. It, therefore, contains the contributions by other
components including CPU host-core and DRAM. Built-in
sensors, on the other hand, only provide the power consump-
tion of GPU or Xeon Phi only (we offload the applications
to run on Intel Xeon Phi, so it includes the CPU host core,
DRAM and PCIe to copy and migrate the data between
CPU host core and Xeon Phi). Therefore, to compare both
methodologies in a most fairly equitable way and to obtain
the dynamic energy profiles of applications, we use RAPL as
an aide to sensors for determining the application energy. Be-
cause, RAPL determine the power consumption of CPU and
DRAM using on-chip voltage regulator and current sensor
[50].

Now, we present the work-flow of experiments that we
follow to determine the dynamic energy consumption of the
application. To obtain the CPU host-core and DRAM contri-
bution in dynamic energy consumption of the application, we
use RAPL in following way:

1) Using Intel PCM/PAPI, we obtain the base power of
CPU and DRAM (when the given application is not
running).

2) Using HCLWattsUp API, we obtain the execution time
of the given application.

3) Using Intel PCM/PAPI, we obtain the total energy
consumption of the CPU host-core (because all other
cores are idle) and DRAM, during the execution of the
given application.

4) Finally, we calculate the dynamic energy consumption
(of CPU and DRAM) by subtracting the base energy

Algorithm 1 Function determining the sample mean using
Student’s t-test.

1: procedure MEANUSINGTTEST(
app,minReps,maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run,
maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made,
repsOut ∈ Z>0

The confidence level achieved, clOut ∈ R>0

The accuracy achieved, epsOut ∈ R>0

The elapsed time, etimeOut ∈ R>0

The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← MEASURE(TIME)
5: EXECUTE(app)
6: et← MEASURE(TIME)
7: reps← reps+ 1
8: etime← etime+ et− st
9: ObjArray[reps]← et− st

10: sum← sum+ObjArray[reps]
11: if reps > minReps then
12: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps −

1))
× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum
22: etimeOut← etime; mean← sum

reps
23: end procedure

from total energy consumed during the execution of the
given application.

To obtain the GPU/Xeon Phi contribution, we use NVM-
L/Intel SMC in following way:

1) Using NVML/Intel SMC, we obtain the base power
of GPU/Xeon Phi (when the given application is not

VOLUME 4, 2016 33

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

running).
2) Using HCLWattsUp API, we obtain the execution time

of the given application.
3) Using NVML/Intel SMC, we obtain the total energy

consumption of GPU/Xeon Phi during the execution
of the given application.

4) Finally, we calculate the dynamic energy consumption
GPU/Xeon Phi by subtracting the base energy from
total energy consumed during the execution of the
given application.

Now, we present the workflow of the experiments to
determine the dynamic energy consumption by the given
application kernel, using HCLWattsUp:

1) Using HCLWattsUp API, we obtain the base power of
the server (when the given application is not running).

2) Using HCLWattsUp API, we obtain the execution time
of the application.

3) Using HCLWattsUp API, we obtain the total energy
consumption of the server, during the execution of the
given application.

4) Finally, we calculate the dynamic energy consumption
by subtracting the base power from total energy con-
sumed during the execution of the given application.

APPENDIX J COMPARISON OF DYNAMIC ENERGY
CONSUMPTION USING ON-CHIP SENSORS AND
HCLWATTSUP
We use Nvidia NVML [14] to acquire the power values
from on-chip sensors on Nvidia GPUs and Intel System
Management Controller chip (SMC) [15] to obtain the
power values from Intel Xeon Phi that can be programmat-
ically obtained using Intel manycore platform software stack
(MPSS) [48]. The steps (methodology) taken to compare
the measurements using RAPL, and GPU/Xeon Phi sensors
against HCLWattsUp are presented in appendix I. Briefly,
HCLWattsUp API provides the dynamic energy consumption
of an application using both CPU and an accelerator (GPU
or Xeon Phi) instead of the components involved in its
execution. Execution of an application using GPU/Xeon Phi
involves the CPU host-core, DRAM and PCIe to copy the
data between CPU host-core and GPU/Intel Xeon Phi. On-
chip power sensors (NVML and MPSS) only provide the
power consumption of GPU or Xeon Phi only. Therefore,
to obtain the dynamic energy profiles of applications, we
use RAPL to determine the energy contribution of CPU and
DRAM.

First, we discuss a comparison of accuracy of the energy
measurements reported by Intel RAPL with those provided
by the ground truth. We build the dynamic energy profiles of
MKL-FFT on Intel Skylake Gold 6152 (HCLServer02) with
RAPL and HCLWattsUp. The workload sizes for MKL-FFT
range from 22400 × 22400 to 41536 × 41536 with a step
size of 64. Figure 23 illustrates the dynamic energy profiles
of 2D MKL-FFT. RAPL does not exhibit the same dynamic
energy consumption behavior as that of the ground truth.

We find many such data points where the dynamic en-
ergy consumptions reported by both the tools disagree.
Consider, for example, the problem sizes where M is
30272, 34176, 37760, 38080. For these problem sizes, RAPL
suggests a percentage decrease of 12.39, 31.33, 18.77, 5.4
with respect to their immediate data points in the energy
profile whereas HCLWattsUp reports an percentage increase
of 11.68, 35.84, 6.46, 31.25. Similarly, RAPL suggests an
percentage increase of 1.26, 19.9, 40.87, 4.74 for the problem
sizes where M is 22528, 28288, 33920, 33152 with respect
to their immediate preceding data-points in energy profiles
whereas HCLWattsUp suggests a percentage decrease of
22.24, 4.79, 9.54, 6.02, 28.75 for them. Owing to the nature
of the interlacing nature of the measurements reported by
RAPL, we can not calibrate RAPL to reduce its average error
with respect to the ground truth. We find the maximum and
average error of RAPL to be 156% and 29% respectively.

FIGURE 23: Dynamic energy profiles of 2D MKL-FFT on
Intel Skylake Gold 6152 with RAPL and HCLWattsUp.

On Intel Xeon Phi 3120P on HCLServer01, we build the
dynamic energy profile of Intel MKL-DGEMM with sensors
(RAPL and MPSS) as a function of problem size (M ×
N) ranges from 7936 × 13,824 to 13,824 × 13,824 with a
constant step size of 256. Figure 24 illustrates the dynamic
energy profiles. We find that MPSS reports on the average
higher dynamic energy consumption than the ground truth
used in our experiments. The average and maximum error of
the sensor profile is 64.5% and 93.06% respectively.

APPENDIX K PRECAUTIONS TO PREVENT
INTERFERENCE OF OTHER COMPONENTS IN DYNAMIC
ENERGY CONSUMPTION
We take several precautions in computing energy measure-
ments to eliminate any potential interference of the comput-
ing elements that are not part of the abstract processor run-
ning the given application kernel. Consequently, it ensures
that the dynamic energy of an abstract processor computed
in this way solely represents the dynamic energy consumed
by the constituent computing elements of the very abstract
processor. For this, we take following precautions:

1) We group abstract processors in such a way that an
abstract processor must be constituting solely the com-

34 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

FIGURE 24: Dynamic Energy profiles of MKL-DGEMM on
Intel Xeon Phi 3120P.

puting elements which are involved to run an ap-
plication kernel. The application kernel will, in this
way, only use the computing elements of the abstract
processor executing it and do not use any other com-
ponent for its execution. Hence, the dynamic energy
consumption will solely reflect the work done by the
computing elements of the abstract processor executing
the application kernel.
Consider for example mkl-DGEMM application kernel
executing on only abstract processor A (comprises of
CPU and DRAM). However, HCLWattsUp API gives
the total energy consumption of the server during the
execution of an application. This includes the contri-
bution from all components such as NIC, SSDs, fans,
etc. Therefore, to rule out their contribution in dynamic
energy consumption, we ensure all the components
other than CPUs and DRAM are not used during the
execution of an application. In this way, the dynamic
energy consumption that we obtain using HCLWattsUp
API reflects only the contribution of CPUs and DRAM.
For this, we follow the below steps to verify if these
other components are not used:

• We monitor the disk consumption before and dur-
ing the application run and ensure that there is no
I/O performed by the application using tools such
as sar, iotop, etc.

• we ensure that the problem size used in the exe-
cution of an application does not exceed the main
memory and that swapping (paging) does not oc-
cur.

• We ensure that the network is not used by the
application by monitoring using tools such as sar,
atop, etc.

• We set the application kernel’s CPU affin-
ity mask using SCHED API’s system call
SCHED_SETAFFINITY() respecting abstract

processors formulation guidelines. Consider for
example mkl-DGEMM application kernel execut-
ing on only abstract processor A. To bind this
application kernel, we set its CPU affinity mask
to 12 physical CPU cores of Socket 1, and 12
physical CPU cores of Socket 2.

2) Fans are also a great contributor to energy consump-
tion. On our platform fans are controlled in two zones:
a) zone 0: CPU or System fans, b) zone 1: Peripheral
zone fans. There are 4 levels to control the speed of
fans:
• Standard: BMC control of both fan zones, with

CPU zone based on CPU temp (target speed 50%)
and Peripheral zone based on PCH temp (target
speed 50%)

• Optimal: BMC control of the CPU zone (target
speed 30%), with Peripheral zone fixed at low
speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed
50%), Peripheral zone fixed at 75%

• Full: all fans running at 100%
In all speed levels except the full, the speed is subject to
be changed with temperature. Consequently, the energy
consumption by the fans also changes with the change
in their speed. Higher the temperature of CPU, for ex-
ample, higher the fans speed of zone 0 to cool it down,
and as a consequence the energy consumption also gets
higher. This energy consumption to cool the server
down, therefore, is not consistent and is dependent on
the fans speed, and consequently effects the dynamic
energy consumption of the given application kernel.
Hence, to rule out fans’ contribution in dynamic energy
consumption, we set the fans at full speed before
launching the experiments. When set at full speed, the
fans on our platform run consistently at ∼13400 rpm,
and do not change their speed until we do so to another
speed level. In this way, fans consumed same amount
of power which is included in static power of the server.
We monitor the temperature of server and speed of the
fans (after setting it at full) using Intelligent Platform
Management Interface (IPMI) sensors, both with and
without the application run. We find no considerable
difference in temperature, and find the speed of fans
same in both scenarios.

Thus, we ensure that the dynamic energy consumption ob-
tained using HCLWattsUp, reflects the contribution solely by
the abstract processor executing the given application kernel.

APPENDIX L ACCURACY OF PMC-BASED ENERGY
PREDICTIVE MODELS AGAINST HCLWATTSUP
In this section , we compare the prediction accuracy of linear
energy predictive models employing performance monitoring
counters (PMCs) as predictor variables against HCLWattsUp.
Likwid [24], Linux Perf [51], PAPI [47] and Intel PCM [46],
are some popular tools which can be used to read the PMCs

VOLUME 4, 2016 35

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

data on a given platform. However, we use Likwid for PMC
collection. We can collect PMC data for an application using
Likwid with a simple command-line invocation as shown
below: likwid-perfctr -f -C S0:0-11@S1:12-23 -g EVENTS
APP here APP represents the test application and EVENTS
represents the PMCs. Our application suite contains highly
optimized memory bound and compute bound scientific rou-
tines such as DGEMM and FFT from Intel Math Kernel
Library (MKL), benchmarks from NASA Application Suite
(NAS), Intel HPCG, stress, naive matrix-matrix multiplica-
tion and naive matrix-vector multiplication. Table 15 presents
the list of applications employed in our experiments.

TABLE 15: Applications suite for comparing the accuracy of
PMC based energy predictive models against Power meters.

Application Description

MKL FFT Fast Fourier Transform

MKL DGEMM Dense Matrix Multiplication

HPCG High performance conjugate gradient

NPB IS Integer Sort, Kernel for random memory access

NPB LU Lower-Upper Gauss-Seidel solver

NPB EP Embarrassingly Parallel, Kernel

NPB BT Block Tri-diagonal solver

NPB MG Multi-Grid on a sequence of meshes

NPB FT Discrete 3D fast Fourier Transform

NPB DC Data Cube

NPB UA Unstructured Adaptive mesh, dynamic memory ac-
cess

NPB CG Conjugate Gradient

NPB SP Scalar Penta-diagonal solver

NPB DT Data traffic

stress CPU, disk and I/O stress

Naive MM Naive Matrix-matrix multiplication

Naive MV Naive Matrix-vector multiplication

We measure following three quantities during the execu-
tion of an application on our platforms. i) Dynamic energy
consumption with HCLWattsUp API, ii) the execution time,
and iii) all the PMCs available on our platforms. The appli-
cations are pinned to physical CPU cores of our platforms
during its execution. We use likwid-pin to bind the applica-
tions to CPU cores. We use numactl which is a command-line
linux tool to pin the applications to the memory blocks.

Likwid offers 164 PMCs and 385 PMCs for Intel Haswell
and Intel Skylake platform respectively. We eliminate PMCs
from our dataaset with counts less than or equal to 10 because
a) we find them to have no significance for modeling the dy-
namic energy consumption, and b) they are non-reproducible.

The reduced set contains 323 for Intel Skylake and 151
PMCs for Intel Haswell. It takes significant time to collect
all of them because only 4 PMCs can be collected in a
single application run. Furthermore, some PMCs can only
be collected individually or in sets of two or three for an
application run. Therefore, we observe that an application

must be run about 53 and 99 times on Intel Haswell and Intel
Skylake platforms, to collect all the PMCs.

The mathematical form of the linear regression models can
be stated as follows: ∀a = (ak)

n
k=1, ak ∈ R,

f
E
(a) = β0 + β × a =

n∑
k=1

βk × ak (10)

where β0 is the intercept and β = {β1, ..., βn} is the
vector of regression coefficients. To capture the stochastic
noise (measurement errors), the measured energy is typically
expressed as

f̃
E
(a) = f

E
(a) + ε (11)

where the error term or noise ε is a Gaussian random variable
with expectation zero and variance σ2, written ε ∼ N (0, σ2).

Further details on our experiment methodology and results
can be found in [10].

APPENDIX M PARALLEL GENE SEQUENCING
APPLICATION
We use a gene sequencing application HCLSW executing the
Smith-Waterman algorithm ([40], [41]) for our experiments.
The application deals with alignment of DNA or protein
sequences; a sequence is an ordering of DNA letters or
amino acid letters. Sequence alignment or comparison refers
to comparing two (or more) sequences by searching for a
series of individual characters or patterns that are in the
same order in the sequences. When sequences are aligned,
matches, mismatches, spaces, and gaps are allowed. A gap
is defined to be any maximal, consecutive run of spaces in a
single string of a given alignment. A gap may be as small as
a single space.

There are two types of alignment, global alignment and
local alignment. A global alignment [52] of two strings S1

and S2 is obtained by first inserting chosen spaces, either onto
or at the ends of S1 and S2, and then placing the two resulting
strings one above the other so that every character or space
in either string is opposite a unique character or a unique
space in the other string. A local alignment of two strings
S1 and S2 [52] is to find two substrings α and β of S1 and
S2, respectively, whose similarity (optimal global alignment
value) is maximum over all pairs of substrings from S1 and
S2.

The SW algorithm uses a dynamic programming (DP)
approach to determine the optimal local alignment score of
two sequences. The recurrence relations of the algorithm
[40] with modifications due to [41] using affine gap penalty
functions are shown below ([42]):

Hi,j =

max

Hi−1,j−1 + P [qi, dj]

Ei,j

Fi,j

0

, i > 0 ∩ j > 0

0, i = 0 ∪ j = 0
(12)

36 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2994953, IEEE Access

M. Fahad et al.: Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements

Ei,j =

max

Hi,j−1 −Q
Ei,j−1 −R
0

, j > 0

0, j = 0

(13)

Fi,j =

max

Hi−1,j −Q
Ei−1,j −R
0

, i > 0

0, i = 0

(14)

S = max
1≤i≤m∩1≤j≤n

Hi,j (15)

The two sequences targeted for alignment are q, known
as query sequence and d, known as database sequence. The
query sequence q is of lengthm and contains residues qi. The
database sequence d is of length n and contains residues dj .
Hi,j is the score for aligning the prefixes of q and d ending
in the alignment of residues qi and dj . Ei,j and Fi,j are the
scores of aligning the same prefixes of q and d but ending
with a gap in the query and database sequence, respectively.
P [qi, dj] is the score of aligning residues qi and dj with
each other according to a substitution score matrix P . Q
is the sum of gap open and extension penalties while R is
the gap extension gap penalty. S is the overall optimal local
alignment score.

For alignment of protein sequencies, two well-known fam-
ilies of substitution scoring matrices, PAM and BLOSUM,
are used. Each value in a matrix represents an odds score,
the likelihood that the two amino acids will be aligned in
alignment of similar proteins divided by the likelihood that
they will be aligned by chance in an alignment of unrelated
proteins. The PAM matrices are based on a mutational model
of evolution that assumes amino acid changes occur as a
Markov process, where each amino acid change at a site
is considered to be independent of previous changes at that
site. The BLOSUM matrices are derived from considering
all amino acid changes observed in an aligned region from a
related family of proteins [53].

The time and space complexities of the SW DP algorithm
are O(m × n) and O(m), where m < n, assuming the use
of refined linear-space methods. The performance of the SW
DP algorithm is usually measured in GCUPS, which stands
for Billions of Cell Updated per Second (a cell here refers to
a cell in the DP table of dimensions m× n).

For the parallel implementation of the application on our
platform, we use the following packages:

• SWIPE for Multicore CPUs [42]. This package contains
highly optimized implementation of SW algorithm us-
ing SIMD parallelization (for example: using the SSE3
intrinsics offered by latest Intel processors).

• CUDASW++3.0 for nVidia GPU accelerators [43]. This
package contains highly optimized implementations of
SW algorithm using SIMT (Single Instruction, Multiple
Thread) and virtualized SIMD (Single Instruction, Mul-

tiple Data) abstractions using CUDA PTX SIMD video
instructions [54] for nVidia Tesla GPUs.

• SWAPHI for Intel Xeon Phi accelerators [44]. This
package contains highly optimized implementations
of SW algorithm using tiled parallelization approach
where instruction-level parallelism using SIMD vec-
torization (512-bit SIMD instructions) and thread-level
parallelism (using OpenMP) are employed.

VOLUME 4, 2016 37

