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Abstract. Energy predictive modelling using performance monitoring
counters (PMCs) has emerged as the leading mainstream approach for
modelling the energy consumption of an application. Modern computing
platforms such as multicore CPUs provide a large set of PMCs. The pro-
grammers, however, can obtain only a small number of PMCs (typically
3–4) during an application run due to the limited number of hardware
registers dedicated to storing them. Therefore, selection of a reliable sub-
set of PMCs as predictor variables is crucial to the prediction accuracy of
online energy models. State-of-the-art methods for selecting the PMCs
are largely based on their correlation with energy consumption.

Recently, Additivity is introduced as a property of PMCs that appears
to have significant impact on the accuracy of energy predictive models.
It is based on an experimental observation that energy consumption of
serial execution of two applications is equal to the sum of the energy
consumption of those applications when they are run separately. In this
work, we demonstrate how the accuracy of energy predictive models
based on three popular techniques (Linear regression, Random forests,
and Neural networks) can be improved by selecting PMCs based on a
property of additivity.

Keywords: Performance monitoring counters · Energy consumption ·
Energy modelling · Multicore CPU · Energy predictive models

1 Introduction

Energy is now a first-class design constraint along with performance in all com-
puting settings. It is a critical limitation for battery-operated mobile systems.
Energy-proportional designs [1] in servers are crucial to the operational effi-
ciency of data centres. According to a 2010 DOE Office of Science report [3], it
is the leading concern for High Performance Computing (HPC) system designs.
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Energy consumption in computing contributes nearly 3% to the overall carbon
footprint and is now a serious environmental concern [24].

Energy efficiency in computing is driven by innovations in hardware repre-
sented by the micro-architectural and chip-design advancements, and software
that can be grouped into two categories: (a). System-level energy optimization,
and (b). Application-level energy optimization. System-level optimization meth-
ods aim to maximize energy efficiency of the environment where the applications
are executed using techniques such as DVFS (dynamic voltage and frequency
scaling), Dynamic Power Management (DPM), and energy-aware scheduling.
Application-level optimization methods use application-level parameters and
models to maximize the energy efficiency of the applications.

Accurate measurement of energy consumption during an application execu-
tion is key to energy minimization techniques at software level. There are three
popular approaches to providing it: (a). System-level physical measurements
using external power meters, (b). Measurements using on-chip power sensors,
and (c). Energy predictive models.

While the first approach is known to be accurate, it can only provide the
measurement at a computer level and therefore lacks the ability to provide fine-
grained component-level decomposition of the energy consumption of an appli-
cation. This is a serious drawback. Consider, for example, a computer consisting
of a multicore CPU and an accelerator (GPU or Xeon Phi), which is represen-
tative of nodes in modern supercomputers. While it is easy to determine the
total energy consumption of a hybrid application run that utilizes both the pro-
cessing elements (CPU and accelerator) using the first approach, it is difficult to
determine their individual contributions. This decomposition is critical to energy
models, which are key inputs to data partitioning algorithms that are critical
building blocks for optimization of the application for energy. Without the abil-
ity to determine accurate decomposition of the total energy consumption, one
has to employ an exhaustive approach (involving huge computational complex-
ity) to determine the optimal data partitioning that optimizes the application
for energy.

The second approach has no definitive research works proving its accuracy.
The third approach of energy predictive modelling emerged as the pre-

eminent alternative. The existing models predominantly use performance mon-
itoring counters as predictor variables for modelling energy consumption. Per-
formance monitoring counters are special-purpose registers provided in modern
microprocessors to store the counts of software and hardware activities. We will
use the acronym PMCs to refer to software events, which are pure kernel-level
counters such as page-faults, context-switches, etc. as well as micro-architectural
events originating from the processor and its performance monitoring unit called
the hardware events such as cache-misses, branch-instructions, etc. They have
been developed primarily to aid low-level performance analysis and tuning. While
remarkably PMCs have not been used for performance modelling, they have been
speedily adopted for energy predictive modelling and have come to dominate its
landscape over the years. The energy predictive models are, however, trained
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and validated using system-level physical measurements of energy consumptions
of the training and test applications. The most common approach proposing an
energy predictive model is to determine the energy consumption of a hardware
component based on linear regression of the performance events occurring in the
hardware component during an application run. The total energy consumption
is then calculated as the sum of these individual energy consumptions. There-
fore, this approach constructs component-level models of energy consumption
and composes them using summation to predict the energy consumption during
an application run.

We focus in this work on energy predictive modelling using PMCs. Modern
computing platforms such as multicore CPUs provide a large set of PMCs. The
most popular tools that can be used to gather the values of the PMCs for a
platform include Likwid [25], PAPI [18], Intel PCM [11], and Linux perf [19].
The programmers, however, can obtain only a small number of PMCs (typically
3–4) during an application run due to the limited number of hardware regis-
ters dedicated to storing them. Consider, for example, the Intel Haswell server
whose specification is shown in Table 1. Likwid tool provides 167 PMCs for this
platform. To obtain the values of the PMCs for an application, the application
must be executed about 53 times since only a limited number of PMCs can be
obtained in a single application run.

Table 1. Specification of the Intel Haswell and Intel Skylake multicore CPUs

Technical Specifications Intel Haswell Server Intel Skylake Server

Processor Intel E5-2670 v3 @2.30 GHz Intel Xeon Gold 6152

OS CentOS 7 Ubuntu 16.04 LTS

Micro-architecture Haswell Skylake

Thread(s) per core 2 2

Cores per socket 12 22

Socket(s) 2 1

NUMA node(s) 2 1

L1d cache/L11 cache 32 KB/32 KB 32 KB/32 KB

L2 cache 256 KB 1024 KB

L3 cache 30720 KB 30976 KB

Main memory 64 GB DDR4 96 GB DDR4

TDP 240 W 140 W

Idle Power 58 W 32 W

Since only 3–4 PMCs can be collected in a single application run, selecting
such a reliable subset as predictor variables is crucial to the prediction accuracy
of online energy models.
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We classify techniques for selecting the PMCs into following four categories:

– Techniques that consider all the PMCs offered by a tool for a platform with
the goal to capture all possible contributors to energy consumption. To the
best of our knowledge, we found no research works that adopt this approach.

– Techniques that are based on a statistical methodology such as correlation,
principal component analysis (PCA) etc. [15,28].

– Techniques that use expert advice or intuition to pick a subset (that may
not necessarily be determined in one application run) and that, in experts’
opinion, is a dominant contributor to energy consumption [8].

– Techniques that select parameters with physical significance based on funda-
mental laws such as energy conservation of computing [21].

Shahid et al. [21] introduced a new property of PMCs that appear to have
significant impact on the accuracy of energy predictive models. It is based on an
experimental observation that dynamic energy consumption of serial execution
of two applications is equal to the sum of the dynamic energy consumption
of those applications when they are run separately. The property, therefore, is
based on a simple and intuitive rule that if the parameter is intended for a linear
predictive model, the value of a PMC for a serial execution of two applications
should be equal to the sum of its values obtained for the individual execution
of each application. The PMC is branded as non-additive on a platform if there
exists an application for which the calculated value differs significantly from the
value observed for the application execution on the platform. The use of non-
additive PMCs in a model impairs its prediction accuracy. The authors show
by employing a detailed statistical experimental methodology on a modern Intel
Haswell multicore server CPU that while many PMCs are potentially additive,
a considerable number of PMCs are not. Some of the non-additive PMCs are
widely used in energy predictive models as key predictor variables.

In this work, we study how the criterion of additivity can be used to select
PMCs to improve the accuracy of the following types of models: Linear regression
(LR), Random forests (RF ), and Neural networks (NN ). We observe that a large
number of energy predictive models in the literature (Sect. 3) is based on these
three methods. In a linear regression, we solve a linear model by estimating the
regression coefficients. The RF is a decision tree based non-linear model build
by constructing many linear boundaries. A linear transfer function is used to
train our NN. Additivity property has been envisioned to be useful for selection
of PMCs to use as predictor variables in linear energy predictive models. In
this paper, we first validate it using detailed experimental evaluation on two
modern multicore platforms: (1). Intel Haswell and (2). Intel Skylake. We further
investigate its applicability on non-linear modelling techniques such as RF and
NN. We analyze these techniques in terms of the PMCs employed in them and
make sure that they appear as additive linear parameters. We demonstrate that
additivity is highly applicable to non-linear methods that employ linear functions
for composition of models.

We perform three classes of experiments: Class A, Class B, and Class C.
For Class A, we use a dual-socket Intel Haswell multicore server (Table 1).
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We select six PMCs which are common in the state-of-the-art models [4,8,14,27]
and which are highly correlated with dynamic energy consumption. We build
three sets of models. The first set, ({LR1, LR2, ..., LR6}, contains linear regres-
sion models (LRS ). The second set, {RF1, RF2, ..., RF6}, contains random for-
est models (RFS ). The third set, {NN1, NN2, ..., NN6}, contains neural net-
work models (NNS). In each set, the models contain decreasing number of non-
additive PMCs. Consider, for example, the first set. Model LR1 employs all the
selected PMCs as predictor variables. Model LR2 is based on five most additive
PMCs. Model LR3 uses four most additive PMCs and so on until Model LR6
containing the highest additive PMC.

The predictions of the models are compared with system-level physical mea-
surements using power meters ([9]), which we consider to be the ground truth.
Our results show that the removal of non-additive PMCs improves the aver-
age prediction accuracy of LR from 31.2% to 18.01%. Similarly, the average
prediction accuracy for RF is improved from 38% to 24%, and for NN from
30% to 24%.

We find no PMC to be additive for all categories of applications within a
tolerance of 5%. For Class B and Class C experiments, we use a single-socket
Intel Skylake server (Table 1) to study the application specific energy predictive
models. We choose two highly optimized scientific kernels offered by Intel math
kernel library (MKL): (a). Fast Fourier transform (FFT) and (b). Dense matrix-
matrix multiplication application (DGEMM). We identify a set of nine most
additive PMCs (PA) common for both the applications and a set of nine PMCs
that are non-additive (PNA) but which are used in state-of-the-art energy pre-
dictive models. For Class B, we build three models, {LR-A,RF-A,NN-A}, based
on PA and three models, {LR-NA,RF-NA,NN-NA}, based on PNA. We show
that the models based on PA demonstrate notably better prediction accuracy.

For Class C, since only four PMCs can be collected in a single application
run, we compose two sets of PMCs, PA4 and PNA4. PA4 contains four highly
energy correlated PMCs selected from PA, and PNA4 contains four most corre-
lated PMCs selected from PNA. Models that use PA4 demonstrate noteworthy
improvement in average prediction accuracy in comparison with models com-
posed using PNA4. We also observed that higher correlation with energy when
applied to non-additive PMCs does not improve their prediction accuracy. The
models based on PNA4 perform even worse than those based on PNA.

We conclude, therefore, that correlation with dynamic energy consumption
alone is not sufficient to provide good prediction accuracy but should be com-
bined with methods such as additivity that take into account the physical sig-
nificance of the parameters originating from fundamental laws such as energy
conservation of computing.

To summarize, the main contribution of this work is a study of the impact of
additivity on the accuracy of mainstream PMCs-based energy predictive mod-
elling techniques.

The rest of this paper is organized as follows. Section 2 present the terminol-
ogy related to power and energy followed by related work in Sect. 3. Section 4
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explains the additivity criterion of PMCs and its implications for energy predic-
tive models. In Sect. 5, we present our experimental methodology including setup
and design of the three classes of experiments. Section 5 presents the experimen-
tal results. Finally, Sect. 6 concludes the paper.

2 Terminologies

There are two types of power consumptions in a component: dynamic power and
static power. Dynamic power consumption is caused by the switching activity in
the component’s circuits. Static power or idle power is the power consumed when
the component is not active or doing work. From an application point of view,
we define dynamic and static power consumption as the power consumption of
the whole system with and without the given application execution. From the
component point of view, we define dynamic and static power consumption of
the component as the power consumption of the component with and without
the given application utilizing the component during its execution.

There are two types of energy consumptions, static energy and dynamic
energy. We define the static energy consumption as the energy consumption of
the platform without the given application execution. Dynamic energy consump-
tion is calculated by subtracting this static energy consumption from the total
energy consumption of the platform during the given application execution. If
PS is the static power consumption of the platform, ET is the total energy con-
sumption of the platform during the execution of an application, which takes TE

seconds, then the dynamic energy ED can be calculated as, ED = ET−(PS×TE).
In this work, we consider only the dynamic energy consumption. We describe

the rationale behind using dynamic energy consumption in the section 1 of sup-
plemental [22].

3 Related Work

This section presents a brief literature survey of some important tools widely
used to obtain PMCs, notable research on energy predictive models, and research
works that provide a critical review of PMCs.

Tools to obtain PMCs. Perf [19] can be used to gather the PMCs for CPUs
in Linux. PAPI [18] and Likwid [25] allow obtaining PMCs for Intel and AMD
microprocessors. Intel PCM [11] gives PMCs of core and uncore components of
an Intel processor.

Notable Energy Predictive Models for CPUs. Initial Models correlating PMCs to
energy values include [6,10,12,13]. Events such as integer operations, floating-
point operations, memory requests due to cache misses, component access
rates, instructions per cycle (IPC), CPU/disk and network utilization, etc. were
believed to be strongly correlated with energy consumption. Simple linear mod-
els have been developed using PMCs and correlated features to predict energy
consumption of platforms. Rivoire et al. [20] study and compare five full-system
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real-time power models using a variety of machines and benchmarks. They report
that PMC-based model is the best overall in terms of accuracy since it accounted
for majority of the contributors to system’s dynamic power. Other notable PMC-
based linear models are [2,8,23,26]. Manila [15] construct a densely populated
multi-dimensional space of PMCs and predict the energy consumption of plat-
form using a nearest neighborhood search algorithm. Zhuo et al. [28] present a
PMC-based energy consumption models for task characteristics in cloud data
center using regression algorithms.

Critiques of PMCs for Energy Predictive Modelling. Some attempts where poor
prediction accuracy of PMCs for energy predictive modeling has been critically
examined include [5,7,16,17]. Researchers highlight the fundamental limitation
to obtain all the PMCs simultaneously or in one application run and show that
linear regression models give prediction errors as high as 150%.

4 Additivity of PMCs

The property of additivity is based on a simple and intuitive rule that if a PMC is
intended as a parameter in a linear term of the energy predictive model then its
value for a compound application should be equal to the sum of its values for the
executions of the base applications constituting the compound application. It is
based on the experimental observation that the dynamic energy consumption of
a serial execution of two applications is the sum of dynamic energy consumptions
observed for the individual execution of each application.

We now present a test to determine if a PMC is non-additive or potentially
additive. It comprises of two stages. A PMC must pass both stages to be pro-
nounced additive for a given compound application on a given platform.

In the first stage, we determine if the PMC is deterministic and reproducible.
In the second stage, we examine how the PMC of the compound application

relates to its values for the base applications. At first, we collect the values of the
PMC for the base applications by executing them separately. Then, we execute
the compound application and obtain its value of the PMC. Typically, the core
computations for the compound application consist of the core computations of
the base applications programmatically placed one after the other.

If the PMC of the compound application is equal to the sum of the PMCs
of the base applications (with a tolerance of 5.0%), we classify the PMC as
potentially additive. Otherwise, it is non-additive.

For each PMC, we determine the maximum percentage error. For a compound
application, the percentage error (averaged over several runs) is calculated as
follows:

Error(%) = (| (eb1 + eb2) − ec
eb1 + eb2

|) × 100 (1)

where ec, eb1, eb2 are the sample means of predictor variables for the compound
application and the constituent base applications respectively. The maximum
percentage error is then calculated as the maximum of the errors for all the
compound applications in the experimental testsuite.
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We automated the determination of a PMC’s additivity using a tool called
AdditivityChecker (see section 3 of the supplemental [22]).

5 Experimental Results

The experiments are carried out on two modern multicore platforms: (1). an Intel
Haswell based dual-socket server and (2). an Intel Skylake based single-socket
server. The specifications for both are given in Table 1. We choose a diverse
set of benchmarks in our test suite (section 4 of supplemental [22]) with highly
memory bound and compute bound scientific computing applications such as
DGEMM and FFT from Intel math kernel library (MKL), scientific applications
from NAS Parallel benchmarking suite, Intel HPCG, stress, non-optimized and
non-scientific applications. Apart from reducing bias, one other reason to com-
pose a diverse test suite is to have a range of PMCs for different executions of
applications on the platform.

For an application execution, we measure the following: (1). the dynamic
energy consumption, (2). the execution time and (3). PMCs. The dynamic energy
consumption of the platform is provided by WattsUp pro power meter and the
readings are obtained programatically using a detailed statistical methodology
employing HCLWattsUp API [9]. The power meters are periodically calibrated
using an ANSI C12.20 revenue-grade power meter, Yokogawa WT210. To ensure
the reliability of our results, we follow a statistical methodology where a sample
mean for a response variable is obtained from several experimental runs. We
follow a strict statistical methodology to ensure the reliability of our experiments
(see section 3 of supplemental [22]).

We use Likwid package [25] to obtain the PMCs. It offers 164 PMCs and 385
PMCs on Intel Haswell and Intel Skylake platform, respectively. We eliminate
PMCs with counts less than or equal to 10. The eliminated PMCs have no signif-
icance on modeling the dynamic energy consumption of our platform since they
are non-reproducible over several runs of the same application on our platform.

The reduced set contains 151 PMCs for Intel Haswell and 323 for Intel Sky-
lake. The collection of all of them takes a huge amount of time since only four
PMCs can be obtained in a single application run. This is because of a limited
number of hardware registers dedicated for storing them. We also notice that
some PMCs can only be collected individually or in sets of two or three for single
execution of an application. Therefore, we observe that each application must
be executed about 53 and 99 times on Intel Haswell and Intel Skylake platform,
respectively, to collect all the PMCs.

We select three predictive models for our experiments: (1). Linear Regression
Model (LR), (2). Random Forest (RF ), and (3). Neural Networks (NN ). We
explain them in detail in section 1 of supplemental [22]. In all these models,
PMCs appear as parameters in linear terms, and therefore must be additive.

We now divide our experiments into three classes, class A, class B and class
C, as follows:
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1. Class A: we show the improvements in the average prediction accuracy of
the three modeling techniques by the additivity of PMCs. A diverse set of
applications (see section 4 of supplemental [22]) on a dual socket Intel Haswell
multicore server is used in these experiments.

2. Class B: we study the impact of the additivity of PMCs on prediction accuracy
of application-specific energy predictive models. Two highly memory bound
and compute bound scientific computing applications such as DGEMM and
FFT from Intel MKL, are used in these experiments.

3. Class C: we compare the accuracy of two four parameter models. Both models
employ subsets of parameters from the original selected set. The only differ-
ence is that one subset include higher energy correlated parameters, and the
other contains the most additive parameters.

5.1 Class A: Improving Prediction Accuracy of Energy Predictive
Models Using Additivity

We conduct the Class A experiments on the dual-socket Intel Haswell multicore
server (see Table 1). We choose six PMCs (X1 to X6 in Table 2), which are widely
used in energy predictive models. We build a dataset of 277 points as base appli-
cations by executing the applications from our test suite with different problem
sizes. This dataset is used to train the models. We build a test dataset containing
points for 50 compound applications which are composed up of serial executions
of base applications. Each point contains the dynamic energy consumption and
PMCs for the execution of an application. We apply additivity test with allowed
error percentage of 5% and found no PMC to be additive. We list the PMCs and
their additivity error percentages in Table 2.

Table 2. List of selected PMCs for modelling with their additivity test errors (%).

Selected PMCs Additivity test error (%)

X1: IDQ MITE UOPS 13

X2: IDQ MS UOPS 37

X3: ICACHE 64B IFTAG MISS 36

X4: ARITH DIVIDER COUNT 80

X5: L2 RQSTS MISS 14

X6: UOPS EXECUTED PORT PORT 6 10

We build three sets of models, LRS = {LR1, LR2, LR3, LR4, LR5, LR6},
RFS = {RF1, RF2, RF3, RF4, RF5, RF6}, and NNS = {NN1, NN2, NN3, NN4,
NN5, NN6}. In each set, the models contain decreasing number of non-additive
PMCs. Consider, for example, the first set. Model LR1 employs all the selected
PMCs as predictor variables. Model LR2 is based on five most additive PMCs.
PMC X4 is removed because it has the highest non-additivity. Model LR3 uses
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Table 3. Linear predictive models (LR1-LR6) using zero intercepts and positive coef-
ficients with their minimum, average, and maximum prediction errors.

Model PMCs Coefficients Percentage prediction

errors (min, avg, max)

LR1 X1, X2, X3, X4, X5, X6 3.83E−09, 3.67E−10, 5.30E−07, 0, 5.56E−08, 0 (6.6, 31.2, 61.9)

LR2 X1, X2, X3, X5, X6 3.83E−09, 3.67E−10, 5.30E−07, 0, 5.56E−08 (6.6, 31.2, 61.9)

LR3 X1, X3, X5, X6 3.75E−09, 5.34E−07, 5.58E−08, 0 (2.5, 25.3, 62.1)

LR4 X1, X5, X6 4.00E−09, 5.59E−08, 0 (2.5, 23.86, 100.3)

LR5 X1, X6 4.60E−09, 1.46E−09 (2.5, 18.01, 89.45)

LR6 X6 1.60E−09 (2.5, 68.5, 90.5)

Table 4. Random forest (RF) regression based energy predictive models (RF1-RF6)
with their minimum, average, and maximum prediction errors.

Model PMCs Percentage prediction errors (min, avg, max)

RF1 X1, X2, X3, X4, X5, X6 (2.78, 37.8, 185.4)

RF2 X1, X2, X3, X5, X6 (2.5, 30.4, 199.6)

RF3 X1, X3, X5, X6 (2.5, 30.02, 104)

RF4 X1, X5, X6 (2.5, 23.68, 59.3)

RF5 X1, X6 (2.5, 43.4, 174.4)

RF6 X6 (2.5, 57.7, 172.1)

four most additive PMCs and so on until Model LR6 containing the highest
additive PMC, which is X6.

We compare the predictions of the models with system-level physical mea-
surements using HCLWattsUp, which we consider to be the ground truth.
The minimum, average, and maximum percentage prediction errors for the mod-
els in the sets LRS, RFS, and NNS are given in Tables 3, 4 and 5.

Table 5. Neural Networks based energy predictive models (NN1-NN6) with their min-
imum, average, and maximum prediction errors.

Model PMCs Percentage prediction errors (min, avg, max)

NN1 X1, X2, X3, X4, X5, X6 (2.5, 30.31, 192.3)

NN2 X1, X2, X3, X5, X6 (2.5, 26.32, 201.2)

NN3 X1, X3, X5, X6 (2.5, 24.14, 160.1)

NN4 X1, X5, X6 (2.5, 24.06, 180.3)

NN5 X1, X6 (2.5, 40.21, 202.45)

NN6 X6 (2.5, 45.05, 180.5)

Since we are modelling dynamic energy consumption, the linear models in
Table 3 are built using penalized linear regression using R programming interface
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that forces the coefficients to be non-negative. All the models also have zero
intercept. One can see that the accuracy of the models improves as we remove
the highest non-additive PMCs one by one until Model LR5, which exhibits the
least average prediction error of 18.01%. We observe that LR6 has the worst
average prediction error of 68.5% due to poor linear fit.

Table 4 shows the same trend for random forest models in RFS until Model
RF4, which has the least average prediction error of 23.68%. Table 5 also shows
the same trend for neural network models in NNS until Model NN4 with the
least average prediction error of 24.06%.

It can be seen that improvements in average prediction accuracy due to
additivity are less for RF and NN models compared to linear models where we
are certain that additivity is crucial. The maximum prediction error percentages
for RF and NN models are particularly bad. We will investigate in our future
work how additivity can be used to reduce the maximum error percentage for the
three types of models. One can see, however, that the average prediction error
percentages of the best RF and NN models are close to the average prediction
accuracy of the best linear model suggesting that the RF and NN models exhibit
a relationship close to linearity.

5.2 Class B : Impact of Additivity on the Prediction Accuracy of
Application-specific Energy Predictive Models

In this section, we study the accuracy of application specific energy predictive
models built using LR, RF, and NN techniques. We choose a single-socket Intel
Skylake server (Table 1) for the experiments. We found no PMC to be additive
within tolerance of 5% for the application suite (see section 4 of supplemental
[22]). However, we discover that some PMCs are highly additive for two highly
optimized scientific kernels: Fast Fourier Transform (FFT) and Dense Matrix-
Multiplication application (DGEMM), from Intel Math Kernel Library (MKL).

We build a dataset of 50 base applications using different problem sizes for
DGEMM and FFT and apply the additivity test. The range of problem sizes
for DGEMM is 6500 × 6500 to 20000 × 20000, and for FFT is 22400 × 22400 to
29000×29000. We select this range because of reasonable execution time (>3 s)
of the applications. We also build a dataset of 30 compound applications from
these base applications.

The Additivity test based on the two datasets reveals that there are a number
of PMCs which are commonly additive for both applications. We select nine
PMCs that are highly additive with additivity test errors of less than 1%. We
also select nine PMCs which are non-additive for both the applications but which
have been employed as predictor variables in energy predictive models given in
literature (Sect. 3). We check the correlation of all PMCs with dynamic energy
consumption. The selected PMCs with their correlations are given in Table 6.

We denote the set of additive PMCs by PA and non-additive PMCs by PNA.
We build a dataset containing 801 points representing DGEMM and FFT for a
range of problem sizes from 6400 × 6400 to 38400 × 38400 and 22400 × 22400
to 41536 × 41536, respectively, with a constant step sizes of 64. We record the
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dynamic energy consumption and the selected PMCs (Table 6) for each applica-
tion. We split the dataset into training and test datasets. Training dataset con-
tains 651 points used to train the three energy predictive models. Test dataset
contains 150 points.

We build two linear models, {LR-A,LR-NA}, two random forest models, {RF-
A,RF-NA}, and two neural network models, {NN-A,NN-NA}. The models {LR-
A,RF-A,NN-A} are trained using PMCs belonging to PA and the models {LR-
NA,RF-NA,NN-NA} are trained using PMCs belonging to PNA. Table 7a show
the prediction error percentages of the models. One can see that the models based
on PA have better average prediction accuracy than the models based on PNA.

Table 6. Additive and non-additive PMCs highly correlated with dynamic energy
consumption. 0 to 1 represents positive correlation of 0% to 100%.

Additive PMCs Correlation

X1 UOPS RETIRED CYCLES GE 4 UOPS EXEC 0.992

X2 FP ARITH INST RETIRED DOUBLE 0.993

X3 MEM INST RETIRED ALL STORES 0.870

X4 UOPS EXECUTED CORE 0.993

X5 UOPS DISPATCHED PORT PORT 4 0.870

X6 IDQ DSB CYCLES 6 UOPS 0.981

X7 IDQ ALL DSB CYCLES 5 UOPS 0.972

X8 IDQ ALL CYCLES 6 UOPS 0.993

X9 MEM LOAD RETIRED L3 MISS −0.112

Non-additive PMCs

Y 1 ICACHE 64B IFTAG MISS 0.960

Y 2 CPU CLOCK THREAD UNHALTED 0.600

Y 3 BR MISP RETIRED ALL BRANCHES 0.992

Y 4 MEM LOAD L3 HIT RETIRED XSNP MISS −0.020

Y 5 FRONTEND RETIRED L2 MISS 0.806

Y 6 ITLB MISSES STLB HIT 0.111

Y 7 L2 TRANS CODE RD 0.860

Y 8 IDQ MS UOPS 0.99

Y 9 ARITH DIVIDER COUNT 0.986

5.3 Class C : Comparison of the Impact of Energy Correlation
and Additivity of PMCs on the Accuracy of Energy Predictive
Models

Since only four PMCs can be collected in a single application run, selection
of such a reliable subset is crucial to the prediction accuracy of online energy
models. The Intel Skylake server (Table 1) is used for the experiments. We use
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Table 7. Prediction accuracies of LR, RF, and NN models. (a) Class B experiments
using nine PMCs. (b) Class C experiments using four PMCs.

Model PMCs Prediction Errors (%)
[Min, Avg, Max]

Model PMCs Prediction Errors (%)
[Min, Avg, Max]

LR-A PA (0.005, 35.32, 225.5) LR-A4 PA4 (0.024, 25.12, 87.25)
LR-NA PNA (0.449, 85.61, 4039) LR-NA4 PNA4 (0.449, 85.61, 4039)
RF-A PA (.0001, 29.39, 157.4) RF-A4 PA4 (0.005, 22.73, 207.7)
RF-NA PNA (0.004, 36.90, 1682) RF-NA4 PNA4 (0.035, 38.06, 1628)
NN-A PA (0.001, 15.43, 104.2) NN-A4 PA4 (0.003, 11.46, 152.2)
NN-NA PNA (0.003, 21.04, 170.3) NN-NA4 PNA4 (0.016, 21.32, 227.5)

(a) (b)

PA and PNA from Class B experiments to build two sets of four most energy
correlated PMCs. The first set PA4, {X1, X2, X4, X8}, is constructed using
PA and the second set PNA4, {Y 1, Y 3, Y 8, Y 9}, using PNA.

We build two linear models, {LR-A4,LR-NA4}, two random forest mod-
els, {RF-A4,RF-NA4}, and two neural network models, {NN-A4,NN-NA4}. The
models {LR-A4,RF-A4,NN-A4} are trained using PMCs belonging to PA4 and
the models {LR-NA4,RF-NA4,NN-NA4} are trained using PMCs belonging
to PNA4. The training and test datasets are the same as those for Class B
experiments.

Table 7b shows the prediction error percentages of the models. Model NN-A4
has the least average prediction error of 11.46%. We can see that models {LR-
NA4,RF-NA4,NN-NA4} built using highly correlated but non-additive PMCs
do not demonstrate any improvement in average prediction accuracy compared
to models {LR-NA,RF-NA,NN-NA} based on nine non-additive PMCs.

The models based on PA4 containing four most additive and highly corre-
lated PMCs have better average prediction accuracy than the models based on
the set of non-additive PMCs, PNA4.

We conclude, therefore, that correlation with dynamic energy consumption
alone is not sufficient to provide good average prediction accuracy but should be
combined with methods such as additivity that take into account the physical
significance of the parameters originating from fundamental laws such as energy
conservation of computing.

6 Conclusion

The ability of PMC-based predictive models to provide fine-grained decomposi-
tion of energy consumption during the execution of an application makes them
ideal fundamental building blocks for several application-level energy optimiza-
tion techniques. Modern computing platforms such as multicore CPUs provide
a large set of PMCs. However, only a limited number of PMCs (typically 3–
4) can be obtained during an application run. Therefore, selection of a reliable
subset of 3–4 PMCs is crucial to the prediction accuracy of online energy predic-
tive models. The existing techniques select the PMCs based on their correlation
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with total energy consumption and construct models employing data analyti-
cal approaches such as linear regression, random forests, and neural networks.
They do not consider the physical significance of a PMC parameter arising from
fundamental laws such as energy conservation of computing.

In this work, we demonstrated how the accuracy of energy predictive mod-
els based on three popular techniques (Linear regression, Random forests, and
Neural networks) can be improved by selecting PMCs based on a criterion of
Additivity, which is derived from the application of energy conservation law for
computing.

We showed that the removal of non-additive PMCs from the list of predictor
variables in energy predictive models improved their accuracy. We illustrated
that using highly additive PMCs resulted in notable improvements in the aver-
age prediction accuracy of application-specific models compared to application-
specific models employing non-additive PMCs. Finally, we studied how a reliable
subset of 3–4 PMCs can be constructed for employment in online energy pre-
dictive models. We showed that using correlation based PMC selection methods
to non-additive PMCs do not improve the average prediction accuracy of energy
models. We demonstrated that using highly correlated PMCs but which are also
highly additive significantly improves the average prediction accuracy of the
models.

In our future work, we will focus on theoretic framework explaining why
additivity, which is based on a fundamental physical law of energy conservation,
improves the prediction accuracy for the three types of models.
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