)

Check for
updates

A Novel Algorithm for Bi-objective
Performance-Energy Optimization
of Applications with Continuous
Performance and Linear Energy Profiles
on Heterogeneous HPC Platforms

Hamidreza Khaleghzadeh!®, Ravi Reddy Manumachu?®
and Alexey Lastovetsky?

1 School of Computing, University of Portsmouth, Portsmouth, UK
hamidreza.khaleghzadeh@port.ac.uk
2 School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
{ravi.manumachu,alexey.lastovetsky}@ucd.ie

Abstract. Performance and energy are the two most important objec-
tives for optimization on heterogeneous HPC platforms. This work stud-
ies a mathematical problem motivated by the bi-objective optimization
of a matrix multiplication application on such platforms for performance
and energy. We formulate the problem and propose an algorithm of poly-
nomial complexity solving the problem where all the application profiles
of objective type one are continuous and strictly increasing, and all the
application profiles of objective type two are linear increasing. We solve
the problem for the matrix multiplication application employing five het-
erogeneous processors that include two Intel multicore CPUs, an Nvidia
K40c GPU, an Nvidia P100 PCIe GPU, and an Intel Xeon Phi. Based on
our experiments, a dynamic energy saving of 17% is gained while tolerat-
ing a performance degradation of 5% (a saving of 106 J for an execution
time increase of 0.05s).

Keywords: Bi-objective optimization -+ Min-max optimization -
Min-sum optimization - Performance optimization - Energy
optimization

1 Introduction

Performance and energy are the two most important objectives for optimiza-
tion on modern parallel platforms such as supercomputers, heterogeneous HPC
clusters, and cloud infrastructures [3,5,7,18]. State-of-the-art solutions for the
bi-objective optimization problem for performance and energy on such platforms
can be broadly classified into system-level and application-level categories.

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland (SFI) under Grant Number 14/TA/2474.
© Springer Nature Switzerland AG 2022

R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 166-178, 2022.
https://doi.org/10.1007/978-3-031-06156-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_14&domain=pdf
http://orcid.org/0000-0003-4070-7468
http://orcid.org/0000-0001-9181-3290
http://orcid.org/0000-0001-9460-3897
https://doi.org/10.1007/978-3-031-06156-1_14

Bi-objective Optimization Algorithm 167

System-level solution methods aim to optimize the performance and energy
of the environment where the applications are executed. The methods employ
application-agnostic models and hardware parameters as decision variables. The
dominant decision variable in this category is Dynamic Voltage and Frequency
Scaling (DVFS) [3,6,7,10,19,22].

The application-level solution methods proposed in [2,8,14,15] use
application-level parameters as decision variables that include the number of
threads, number of processors, loop tile size, and workload distribution. The
solution methods proposed in [14,15] solve the bi-objective optimization prob-
lem of an application for performance and energy on homogeneous clusters of
modern multicore CPUs. The solution method [2] considers the effect of het-
erogeneous workload distribution on bi-objective optimization of data analytics
applications by simulating heterogeneity on homogeneous clusters.

Khaleghzadeh et al. [8] discover that moving from the single-objective opti-
mization for performance or energy to the bi-objective optimization for perfor-
mance and energy on heterogeneous processors results in a drastic increase in
the number of optimal solutions in the case of linear performance and energy
profiles, with practically all the solutions load imbalanced. They prove that for
two processors with linear execution time and energy functions, the Pareto front
is linear and contains an infinite number of solutions, out of which one solution
is load balanced while the rest are load imbalanced. They then propose an algo-
rithm that solves the bi-objective optimization problem for discrete execution
time and dynamic energy functions with any arbitrary shape and returns the
Pareto front of load imbalanced solutions and best load balanced solutions.

This work introduces a mathematical problem motivated by the bi-objective
optimization of a matrix multiplication application on heterogeneous HPC plat-
forms for performance and energy.

Consider the bi-objective optimization of a highly optimized matrix multipli-
cation application on a heterogeneous computing platform for performance and
energy. The application computes the matrix product, C =a x A x B+ 3 x C,
where A, B, and C are matrices of size M x N, N x N, and M x N, and o and
are constant floating-point numbers. The application uses Intel MKL DGEMM
for CPUs and Intel Xeon Phi and CUBLAS for Nvidia GPUs. The Intel MKL
and CUDA versions used are 2017.0.2 and 9.2.148. Workload sizes range from
64 x 10112 to 19904 x 10112 with a step size of 64 for the first dimension m.

The platform consists of five processors: Intel Haswell E5-2670V3 multi-core
CPU (CPU_1), Intel Xeon Gold 6152 multi-core CPU (CPU_2), NVIDIA K40c
GPU (GPU.1), NVIDIA P100 PCIe GPU (GPU_-2), and Intel Xeon Phi 3120P
(XeonPhi_1).

Figurel shows the execution time functions {fo(x),..., fa(z)} and the
dynamic energy functions {go(x),...,ga(x)} of the processors against the work-
load size (x). Briefly, the total energy consumption during an application exe-
cution is the sum of dynamic and static energy consumptions. The static energy
consumption is the idle power of the platform (without application execution)
multiplied by the application’s execution time. The dynamic energy consumption
is the total energy consumed by the platform during the application execution

168 H. Khaleghzadeh et al.

—cpu_1
—gpu_1
xeonphi_1
——cpu_2
—gpu_2

Fig. 1. The top two plots contain the execution time and energy profiles of the five het-
erogeneous processors employed in the matrix multiplication application. The bottom
two plots do not contain the profiles for Xeon Phi. While the execution time profiles
of the two CPUs are close to each other, the energy profile of CPU_1 is significantly
higher than that of the CPU_2.

minus the static energy consumption. The dynamic energy consumption during
an application execution is obtained using power meters, which is considered the
most accurate method of energy measurement [9)].

The execution time function shapes are continuous and strictly increasing.
The energy function shapes can be approximated accurately by linear increasing
functions. The execution time profiles of the two CPUs are close to each other
but the energy profile of CPU_1 is significantly higher than that of the CPU_2.
The optimization goal is to find workload distributions of the workload size
n ({zo,...,24},Y ;_02; = n) minimizing the execution time (max}_, f;(z;))
and the total dynamic energy consumption (Z?:o gi(z;)) during the parallel
execution of the application. We solve the optimization problem for such shapes
of performance and dynamic energy functions in this work.

We first formulate the mathematical problem, which for a given positive real
number n aims to find a vector X = {zo, -, 251} € RE, such that Ef:_ol x; =
n, minimizing the max of k-dimensional vector of functions of objective type one
and the sum of k-dimensional vector of functions of objective type two. We then
propose an algorithm solving the case where all the functions of objective type
one are continuous and strictly increasing, and all the functions of objective type
two are linear increasing. The algorithm exhibits polynomial complexity.

We employ the algorithm to solve the problem for the matrix multiplication
application using the five heterogeneous processors. Based on our experiments,

Bi-objective Optimization Algorithm 169

the maximum dynamic energy savings can be up to 17% while tolerating a per-
formance degradation of 5% (an energy saving of 106J for an execution time
increase of 0.055s).

The main original contributions of this work are:

— Mathematical formulation of the bi-objective optimization problem which for
a given positive real number n aims to find a vector, X = {zg, -+ ,x5_1} €
R’;O, such that Zi:ol r; = n, minimizing the maximum of k£ functions of
objective type one and the sum of k functions of objective type two.

— An exact algorithm of polynomial complexity solving the bi-objective opti-
mization problem when all the functions of objective type one are continuous
and strictly increasing, and all the functions of objective type two are linear
increasing.

The rest of the paper is organized as follows. We discuss the related work in
Sect. 2. The formulation of the bi-objective optimization problem is presented in
Sect. 3. In Sect. 4, we propose our algorithm solving the bi-objective optimization
problem. Section 5 contains the experimental results. Finally, we conclude the
paper in Sect. 6.

2 Related Work

A bi-objective optimization problem can be mathematically formulated as [16,20]:
minimize {T(z),E(x)}, Subjectto z€S

where there are two objective functions, T': R¥ — R and E : R¥ — R. We denote
the vector of objective functions by F(z) = (T(x), E(x))T. The decision vectors
x = (21,...,71)T belong to the (non-empty) feasible region (set) S, which is a
subset of the decision variable space R¥. We denote the image of the feasible
region by Z (=F(S)), and call it a feasible objective region. It is a subset of the
objective space R%. The elements of Z are called objective (function) vectors or
criterion vectors and denoted by F(x) or z = (z1,22)7, where z; = T(z) and
z9 = E(x) are objective (function) values or criterion values.

The objective is to minimize both the objective functions simultaneously.
The objective functions are at least partly conflicting or incommensurable, due
to which it is impossible to find a single solution that would be optimal for all
the objectives simultaneously. Furthermore, there is no natural ordering in the
objective space because it is only partially ordered. Therefore, the concept of
optimality is handled differently from a single-objective optimization problem.
The generally used concept is Pareto optimality.

Definition 1. A decision vector x* € S is Pareto optimal if there does not exist
another decision vector x € S such that T'(z) < T'(z*), E(z) < E(z*) and either
T(x) < T(xz*) or E(z) < E(z*) or both [16].

An objective vector z* € Z is Pareto optimal if there is not another objective
vector z € Z such that z; < 27,20 <25 and z; < z;‘ for at least one index j.

170 H. Khaleghzadeh et al.

There are several classifications for methods solving bi-objective optimization
problems [16,20]. Since the set of Pareto optimal solutions is partially ordered,
one classification is based on the involvement of the decision-maker in the solu-
tion method to select specific solutions. There are four categories in this classifi-
cation, No preference, A priori, A posteriori, Interactive. The algorithms solving
bi-objective optimization problems can be divided into two major categories,
exact methods and metaheuristics. While branch-and-bound (B&B) is the dom-
inant technique in the first category, genetic algorithm (GA) is popular in the
second category.

Bi-objective Optimization on High Performance Computing Plat-
forms. There are two principal categories of methods for optimizing appli-
cations on high performance computing (HPC) platforms for performance and
energy. The first category of system-level solution methods aims to optimize the
performance and energy of the executing environment of the applications. The
dominant decision variable in this category is Dynamic Voltage and Frequency
Scaling (DVFS). DVFS reduces the dynamic power consumed by a processor by
throttling its clock frequency. The methods proposed in [6,19,22] optimize for
performance under a energy budget or optimize for energy under an execution
time constraint. The methods proposed in [3,7,10] solve bi-objective optimiza-
tion for performance and energy with no time constraint or energy budget.

The second category of application-level solution methods [2,8,11,14,15,17]
use application-level decision variables and models. The most popular decision
variables include the loop tile size, workload distribution, number of processors,
and number of threads.

Reddy et al. [15,17] study bi-objective optimization of data-parallel appli-
cations for performance and energy on homogeneous clusters multicore CPUs
employing only one decision variable, the workload distribution. They propose an
efficient solution method. The method accepts as input the number of available
processors, the discrete function of the processor’s energy consumption against
the workload size, the discrete function of the processor’s performance against
the workload size. It outputs a Pareto-optimal set of workload distributions.
Khaleghzadeh et al. [8] propose exact solution methods solving bi-objective opti-
mization problem for hybrid data-parallel applications on heterogeneous com-
puting platforms for performance and energy.

Tarplee et al. [21] consider optimizing two conflicting objectives, the make-
span and total energy consumption of all nodes in a HPC platform. They employ
linear programming and divisible load theory to compute tight lower bounds on
the make-span and energy of all tasks on a given platform. Using this formula-
tion, they then generate a set of Pareto front solutions. The decision variable is
task mapping. Aba et al. [1] present an approximation algorithm to minimize
both make-span and the total energy consumption in parallel applications run-
ning on a heterogeneous resources system. The decision variable is task schedul-
ing. Their algorithm ignores all solutions where energy consumption exceeds a
given constraint and returns the solution with minimum execution time.

Bi-objective Optimization Algorithm 171

3 Formulation of the Bi-objective Optimization Problem

Given a positive real number n € R and two sets of k functions each, F =
{fos fr,-+ fk—1} and G = {go, 91, "+ ,gk—1}, where f;,gi: R>g — Rxo,i €
{0,-++ ,k — 1}, the problem is to find a vector X = {zq, -+ ,x5_1} € RY, such
that Zf:_ol x; = n, minimizing the objective functions T(X) = max*=J f;(x;)
and E(X) = Zf:ol gi(zi). We use T' x E to denote the objective space of this
problem, R>y X Rx>q.

Thus, the problem can be formulated as follows:

BOPGVEC(n, k, F,G):

k—1 k=1
T(X) = max fiw:), B(X) = 2 9i(w:)
minimize {T(X), E(X)} (1)
s.t. ro+x1+ -+ Tp_1=n

We aim to solve BOPGVEC by finding both the Pareto front containing
the optimal objective vectors in the objective space T' x E and the decision
vector for a point in the Pareto front. Thus, our solution finds a set of triplets
¥ = {(T(X),E(X),X)} such that X is a Pareto-optimal decision vector, and
the projection of ¥ onto the objective space T' X E, ¥ |7« g, is the Pareto front.

4 Bi-objective Optimization Problem for Max of
Continuous Functions and Sum of Linear Functions

In this section, we solve BOPGVEC for the case where all functions in the set F'
are continuous and strictly increasing, and all functions in the set G are linear
increasing, that is, G = {go, - ,9k—1}, 9i(x) = b; x x,b; € R5,i=0,...,k—1.
Without loss of generality, we assume that the functions in G are sorted in the
decreasing order of coefficients, by > by > -+ > bp_1.

Our solution consists of two algorithms, Algorithm 1 and Algorithm 2. The
first one, which we call LBOPA, constructs the Pareto front of the optimal
solutions in the objective space ¥ |1« . The second algorithm finds the decision
vector for a given point in the Pareto front.

The inputs to LBOPA (see Algorithm 1 for pseudo-code) are two sets of
k functions each, F' and GG, and an input value, n € R-y. LBOPA constructs
a Pareto front, consisting of k — 1 segments {sg, s1, - ,Sx—2}. Each segment
s; has two endpoints, (t;,e;) and (¢i4+1,€i+1), which are connected by curve
P(t) =b;xn— Z?;;ﬂ(bi —b;) x fj_l(t) (0 < i < k—2). Figure2 illustrates the
functions in the sets, F' and G, when all functions in F' are linear, f;(z) = a; X x.
In this particular case, the Pareto front returned by LBOPA will be piece-wise
linear, Ps(t) =b; x n —t x Z;:;H bia_jbj (0 <i<k—2), as shown in Fig. 2.

The main loop of the Algorithm 1 computes k points (Lines 3-7). In an itera-
tion ¢, the minimum value of objective T, ¢;, is obtained using the algorithm, solv-
ing the single-objective min-max optimization problem, min X{maxf;l filz)}

172 H. Khaleghzadeh et al.

Algorithm 1. Algorithm constructing the Pareto front of the optimal solutions.

1: function LBOPA(n, k, F, G)

2. s—o
3! fori—o0,k—1do
4. t; — miny { max;?;} Fi(zg))
. k—1 —1
5: i = by X = SEZ (b —by) x £ ()
6: S — S U (t;,e;)
g: end for
: for i «— 0,k — 2 do
. k—1 -1
9: Connect (t;,e;) and (t;41,e;41) by curve by X n — Zj:'i+1(b’i — bj) X fj (t)
i?: end for
! end function
9o
f 91 N\ S
f \°
= o - . '\ s,
X = . w :
T . o | P .{i
. . '
fia Gi-1 \ '
1 '
. . i T e

Fig. 2. Sets F and G of k linear increasing functions each. Functions in GG are arranged
in the decreasing order of slopes. LBOPA returns a linear piece-wise Pareto front shown
in the bottom plot comprising a chain of £ — 1 linear segments.

We do not present the details of this algorithm. Depending on the shapes of
functions, {fo,..., fx—1}, one of the existing polynomial algorithms solving this
problem can be employed [12,13].

The end point (tmin, €maz) = (to,€0) represents decision vectors with the
minimum value of objective T" and the maximum value of objective E, while the
end point (tmaz, €min) = (tk—1,€r—1) represents decision vectors with the maxi-
mum value of objective T" and the minimum value of objective E' (as illustrated
for the case of all linear increasing functions in Fig. 2).

Given an input ¢t € [to,tk 1] Algorithm 2 finds a decision vector X = {xo,
Z1, -+, Tr—1} such that Z 0 T = n, mabxi€ 01 i(x;) = t, and Zi:ol gi(x;) is
minimal. The algorithm first initialises X with {xo,z1, -~ ,zx_1 | 7 = f; '(t)}
(Line 2) so that f;(z;) =t for all ¢ € [0,k — 1]. For this initial X the condition
mauxk_o1 filxz;)) =tis already satisfied but Zk_ol x; may be either equal to n or

greater than n. If 21 o Ti = n, then this initial X will be the only decision vector

such that Ez o ©i = n and max_J fi(z;) =t and hence the unique (Pareto-

optimal) solution. Otherwise, Zizol Z; = N+ Nprys Where nyp,s > 0. In that case,
this initial vector X will maximize both Zi:ol x; and Zi:ol gi(x;) in the set X; of
all vectors in the decision space satisfying the condition J[naxfz_o1 fi(x;) = t. The
algorithm then iteratively reduces elements of vector X until their sum becomes
equal to n. Obviously, each such reduction will also reduce Zf;ol gi(z;). To
achieve the maximum reduction of Zf:_ol gi(x;), the algorithm starts from vector
element z;, the reduction of which by an arbitrary amount Az will result in the
maximum reduction of Zi:ol gi(x;). In our case, it will be ¢ as the functions in
G are sorted in the decreasing order of coefficients b;. Thus, at the first reduction
step, the algorithm will try to reduce xg by npys. If 20 > npys, it will succeed

Bi-objective Optimization Algorithm 173

and find a Pareto-optimal decision vector X = {z¢ — npiys, 1, ,Tp—1}. If
o < Nplus, it Will reduce 1y, by 2o, set o = 0 and move to the second step.
At the second step, it will try to reduce 1 by the reduced npys, and so on. This

way the algorithm minimizes Zi:ol gi(x;), preserving maxfz_o1 fi(z;) =t and
achieving Zi:ol xT; =n.

Algorithm 2. Algorithm finding a Pareto-optimal decision vector X =
{zg, 21, - ,xx—1} for the problem BOPGVEC(n,k,F,G).

1: function PARTITION(n, k, F, G, t)
2: X ={zg, wp_q |2y — f7 (D)}
3: Nplus < Z;C;Ol x; —n
4: if 7, < O then
5: return (0,0, &)
Z: end if
: i— 0
: while (np7,s > 0) A (i < k—1) do
9: if 25 > npp,, then
10: @ mp = npryg
11: Tplus < O
%%Z else
: Nplus < Mplus — Ti
14: @; — 0
15: e i1
12: end if
: end while
: if npyys > 0 then
19: return (0,0, &)
20: end if
21: ek do; xay;
22: return (t, e, X)

23: end function

The correctness of these algorithms is proved in Theorem 1.

Theorem 1. Consider bi-objective optimization problem BOPGV EC(n,k,
F,G) where all functions in F are continuous and strictly increasing and
G = {gi(z) | gi(z) = b; x ,b; € Ryo,i € {0,---,k — 1}}. Then, the picce-
wise function S, returned by LBOPA (n,k,F,G) (Algorithm 1) and consisting
of k — 1 segments, is the Pareto front of this problem, ¥ |r«g, and for any
(t,e) € U |rxp, Algorithm 2 returns a Pareto-optimal decision vector X such
that T(X) =t and E(X) =e.

Proof. First, consider Algorithm 2 and arbitrary input parameters n > 0 and
t > 0. If after initialization of X (Line 2) we will have Zf:_ol x; < n, it means
that ¢ is too small for the given n, and for any vector Y = {yo,y1, "+ ,Yr—1}
such that Ef:_ol Yi =n, maxfz_ol fi(y;) > t. In this case, there is no solution to
the optimization problem, and the algorithm terminates abnormally.

Otherwise, the algorithm enters the while loop (Line 8). If i < k — 1 upon
exit from this loop, then the elements of vector X will be calculated as

0 7 <1
TR LD g et () B B (2)
f(@) j>i

174 H. Khaleghzadeh et al.

and therefore satisfy the conditions Ef;& x; =mnand max?;é fj(z;) =t. More-
over, the total amount of n will be distributed in X between vector elements
with higher indices, which have lower G cost, g;(z), because b; > b;y1,Vi €
{0,--- ,k —2}. Therefore, for any other Vector Y = {yo7 yl, -+ ,yYg_1} satisfying
these two conditions, we will have ZZ 0 iy > Ez 0 ' gi(z:). Indeed, such a
vector Y can be obtained from X by relocating certain amounts from vector
elements with higher indices to vector elements with lower indices, which will
increase the G cost of the relocated amounts. Thus, when the algorithm exits
from the while loop with i < k — 1, it returns a Pareto-optimal vector X.

If the algorithm exits from the while loop with ¢ = k — 1, it will mean that ¢
is too big for the given n. We would still have np,s > 0 to take off the last vector
element, xj_1, but if we did it, we would make max;?;é fj(z;) < t. This way we
would construct for the given n a decision vector, which minimizes Zf:_ol gi(x;)
but whose max;:é fj(z;) will be less than ¢, which means that no decision
vector X such that maxf;é fj(z;) =t can be Pareto optimal. Therefore, in this
case the algorithm also terminates abnormally.

Thus, for any t € T, Algorithm 2 either finds a Pareto-optimal decision vector
X such that T'(X) =t and F(X) = Zf;ol b; x x; = e, or returns abnormally
if such a vector does not exist. Let Algorithm 2 return normally, and the loop
variable ¢ be equal to s upon exit from the loop Then, according to formula
20 e = i bix @i = byx (= XU SN 0) + i x f7H(Y) =
bs X n — Zf 51+1(bi) x f1(t), where s,n,b;, by, a; are all known constants.
Therefore, the Pareto front e = Py (t) can be expressed as follows:

k—1
e=Ps(t) =bs xn— Z (bs — b;) x f;l(t)
1=s+1
. k—1
timin :H}}H { 1?35(fj(mj)} mazx fk 1()

te [tmhutmaw]) ERS Z[07k72]a

which is the analytical expression of the piece-wise function constructed by Algo-
rithm 1 (LBOPA). End of Proof.

Theorem 2. LBOPA (Algorithm 1) and PARTITION (Algorithm 2) have poly-
nomial time complerities.

Proof. The for loop in LBOPA (Algorithm 1, Lines 3-7) has k iterations. At
each iteration i, the computation of ¢; has a time complexity of O(k? x log, n)
[12], the computation of e; has a time complexity of O(k), and the insertion of
the point in the set S has complexity O(1). Therefore, the time complexity of
the loop is O(k® x logy). The time complexity of the loop (Lines 8-10) is O(k).
Therefore, the time complexity of the Algorithm 1 is O(k?® x logy n).

Let us consider the PARTITION Algorithm 2. The initialization of X (Line
2) and computation of np,s has time complexity O(k) each. The while loop

Bi-objective Optimization Algorithm 175

Matrix multiplication Pareto Front Matrix multiplication Pareto Front
N=12352x10112 N=15552x10112

~
o
=)

ocoocoocooo
@
=)

consumption (Joules)

SH8R88858G3
ooo

=N W

o o

o o

°
IS

0.5 0.6 0.7 0.8 0.9 1 1.1 07 08 09 1 11 12 13 14
Execution Time (s) Execution Time (s)

Energy consumption (Joules)
&
o =]
o

Fig. 3. Pareto front for the matrix multiplication application using five heterogeneous
processors described earlier for two workloads. Each Pareto front contains four linear
segments.

(Lines 8-17) iterates as long as np,s > 0 and ¢ < k — 1, of which ¢ < £ —1
is the worst case scenario. The time complexity of the loop is, therefore, O(k).
The time complexity of computation of e in Line 21 is O(k). Therefore, the time
complexity of the Algorithm 2 is bounded by O(k). End of Proof.

5 Experimental Results

We employ the LBOPA and PARTITION algorithms to obtain the Pareto fronts
for the matrix multiplication application using the five heterogeneous processors
mentioned earlier. An automated tool, HCLWATTSUP [4], is used to deter-
mine the dynamic and total energy consumptions using system-level physical
power measurements using power meters. HCLWATTSUP has no extra over-
head and, therefore, does not influence the energy consumption of the kernel.
The HCLWATTSUP interface is explained in the supplemental. Several precau-
tions are taken in computing energy measurements to eliminate the potential
disturbance due to components such as SSDs and fans. The input performance
and dynamic energy functions, (F,G), to LBOPA and PARTITION are linear
approximations of the profiles shown in the Fig. 1.

To obtain an experimental data point, the application is executed repeatedly
until the sample mean lies in the 95% confidence interval and a precision of 0.025
(2.5%) has been achieved. For this purpose, Student’s t-test is used assuming
that the individual observations are independent and their population follows the
normal distribution. We verify the validity of these assumptions using Pearson’s
chi-squared test.

Figure 3 shows the Pareto fronts for two workloads, 12352 x 10112 and
15552 x 10112. Each Pareto front contains four linear segments. Each seg-
ment is connected by two endpoints. All the points lying on a segment are the
performance-energy optimal solutions in the objective space.

For the workload 12352 x 10112, 17% dynamic energy saving is gained while
allowing 5% performance degradation. Similarly, for the workload 15552 x 10112,
13% energy saving is achieved while tolerating 5% performance degradation.

176 H. Khaleghzadeh et al.

The first linear segment has a steep slope signifying a significant dynamic
energy saving for a slight increase in execution time. The energy savings are 93 J
and 106 J for execution time increases of 0.03 s and 0.05s for the two workloads.
The energy-performance tradeoff (that is, the gain in energy saving for a corre-
sponding increase in execution time) decreases with each next linear segment.

Based on an input user-specified energy-performance tradeoff, one can selec-
tively focus on a specific segment to return the Pareto-optimal solutions (work-
load distributions). The shapes of the two Pareto fronts are similar, suggesting
that the qualitative conclusions apply for all workloads for this application.

6 Conclusion

Performance and energy are the two most important objectives for optimization
on heterogeneous HPC platforms. This work introduced a mathematical problem
motivated by the bi-objective optimization of a matrix multiplication application
on heterogeneous HPC platforms for performance and energy. The application
exhibits performance functions that are continuous and strictly increasing and
energy functions that are linear increasing.

We first formulated the problem, which for a given positive real number
n aims to find a vector X = {zq, - ,x5_1} € RE, such that Zi:ol x; = n,
minimizing the max of k-dimensional vector of functions of objective type one
and the sum of k-dimensional vector of functions of objective type two. We then
proposed an algorithm of polynomial complexity solving the problem for the
case where all the functions of objective type one are continuous and strictly
increasing, and all the functions of objective type two are linear increasing.

We solved the bi-objective optimization problem using the algorithm for the
matrix multiplication application employing five heterogeneous processors, two
Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCle GPU, and
an Intel Xeon Phi. Based on our experiments, 17% dynamic energy saving can
be achieved while tolerating a performance degradation of 5% (a saving of 106 J
for an execution time increase of 0.05s).

References

1. Ait Aba, M., Zaourar, L., Munier, A.: Approximation algorithm for scheduling a
chain of tasks on heterogeneous systems. In: Heras, D.B., Bougé, L. (eds.) Euro-
Par 2017. LNCS, vol. 10659, pp. 353—-365. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75178-8_29

2. Chakrabarti, A., Parthasarathy, S., Stewart, C.: A pareto framework for data ana-
lytics on heterogeneous systems: implications for green energy usage and perfor-
mance. In: 2017 46th International Conference on Parallel Processing (ICPP), pp.
533-542. IEEE (2017)

3. Durillo, J.J., Nae, V., Prodan, R.: Multi-objective energy-efficient workflow
scheduling using list-based heuristics. Futur. Gener. Comput. Syst. 36, 221-236
(2014)

https://doi.org/10.1007/978-3-319-75178-8_29
https://doi.org/10.1007/978-3-319-75178-8_29

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

Bi-objective Optimization Algorithm 177

Fahad, M., Manumachu, R.R.: HCLWattsUp: energy API using system-level phys-
ical power measurements provided by power meters. Heterogeneous Comput-
ing Laboratory, University College Dublin, April 2021. https://csgitlab.ucd.ie/
manumachu/hclwattsup

Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective app-
roach for workflow scheduling in heterogeneous environments. In: Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (Ccgrid 2012), CCGRID 2012, pp. 300-309. IEEE Computer Society
2012

(Gholk)ar, N., Mueller, F., Rountree, B.: Power tuning HPC jobs on power-
constrained systems. In: Proceedings of the 2016 International Conference on Par-
allel Architectures and Compilation, pp. 179-191. ACM (2016)

Kessaci, Y., Melab, N., Talbi, E.G.: A pareto-based metaheuristic for scheduling
HPC applications on a geographically distributed cloud federation. Clust. Comput.
16(3), 451-468 (2013)

Khaleghzadeh, H., Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A.: Bi-
objective optimization of data-parallel applications on heterogeneous HPC plat-
forms for performance and energy through workload distribution. IEEE Trans.
Parallel Distrib. Syst. 32(3), 543-560 (2021)

Khaleghzadeh, H., Fahad, M., Reddy Manumachu, R., Lastovetsky, A.: A novel
data partitioning algorithm for dynamic energy optimization on heterogeneous
high-performance computing platforms. Concurr. Comput.: Pract. Exper. 32(21),
€5928 (2020)

Kotodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.: Energy efficient genetic-based
schedulers in computational grids. Concurr. Comput.: Pract. Exper. 27(4), 809—
829 (2015)

Lang, J., Riinger, G.: An execution time and energy model for an energy-aware
execution of a conjugate gradient method with CPU/GPU collaboration. J. Parallel
Distrib. Comput. 74(9), 2884-2897 (2014)

Lastovetsky, A., Reddy, R.: Data partitioning with a realistic performance model
of networks of heterogeneous computers. In: 2004 Proceedings of 18th International
Parallel and Distributed Processing Symposium, p. 104 (2004)

Lastovetsky, A., Reddy, R.: Data partitioning with a functional performance model
of heterogeneous processors. Int. J. High Perform. Comput. Appl. 21, 76-90 (2007)
Lastovetsky, A., Reddy, R.: New model-based methods and algorithms for per-
formance and energy optimization of data parallel applications on homogeneous
multicore clusters. IEEE Trans. Parallel Distrib. Syst. 28(4), 1119-1133 (2017)
Manumachu, R.R., Lastovetsky, A.: Bi-objective optimization of data-parallel
applications on homogeneous multicore clusters for performance and energy. IEEE
Trans. Comput. 67(2), 160-177 (2018)

Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer (1999)

Reddy Manumachu, R., Lastovetsky, A.L.: Design of self-adaptable data parallel
applications on multicore clusters automatically optimized for performance and
energy through load distribution. Concurr. Comput.: Pract. Exper. 31(4), 4958
2019

%ossi,) F.D., Xavier, M.G., De Rose, C.A., Calheiros, R.N., Buyya, R.: E-eco:
performance-aware energy-efficient cloud data center orchestration. J. Netw. Com-
put. Appl. 78, 83-96 (2017)

Rountree, B., Lowenthal, D.K., Funk, S., Freeh, V.W., de Supinski, B.R., Schulz,
M.: Bounding energy consumption in large-scale MPI programs. In: SC 2007: Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 1-9 (2007)

https://csgitlab.ucd.ie/manumachu/hclwattsup
https://csgitlab.ucd.ie/manumachu/hclwattsup

178 H. Khaleghzadeh et al.

20. Talbi, E.G.: Metaheuristics: from Design to Implementation, vol. 74. Wiley, Hobo-
ken (2009)

21. Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J., Chong, E.K.: Energy
and makespan tradeoffs in heterogeneous computing systems using efficient linear
programming techniques. IEEE Trans. Parallel Distrib. Syst. 27(6), 1633-1646
(2016)

22. Yu, L., Zhou, Z., Wallace, S., Papka, M.E., Lan, Z.: Quantitative modeling of power
performance tradeoffs on extreme scale systems. J. Parallel Distrib. Comput. 84,
1-14 (2015)

	A Novel Algorithm for Bi-objective Performance-Energy Optimization of Applications with Continuous Performance and Linear Energy Profiles on Heterogeneous HPC Platforms
	1 Introduction
	2 Related Work
	3 Formulation of the Bi-objective Optimization Problem
	4 Bi-objective Optimization Problem for Max of Continuous Functions and Sum of Linear Functions
	5 Experimental Results
	6 Conclusion
	References

