
IEEE TRANSACTIONS ON , XXXX JANUARY 2024 1

Supplemental: Accurate and Reliable Energy
Measurement and Modelling of Data Transfer

between CPU and GPU in Parallel Applications on
Heterogeneous Hybrid Platforms

Hafiz Adnan Niaz, Member, IEEE, Ravi Reddy Manumachu, Member, IEEE,
and Alexey Lastovetsky, Member, IEEE

I. INTRODUCTION

THE supplementary material includes:

• Specifications of the two heterogeneous hybrid servers,
Haswell k40c GPU server and Icelake A40 GPU server.

• Methodology to obtain ground-truth profiles of data trans-
fer between computing devices in a heterogeneous hybrid
platform (III).

• Energy predictive models of data transfer between com-
puting devices in a heterogeneous hybrid platform (IV).

• Runtime software energy sensor API for computations
and data transfers (V).

• Experimental results containing energy predictive models
of computations for multicore CPUs, comparision of en-
ergies of computation and data transfers, and comparision
of total energy using sensors versus ground-truth (VI).

II. HETEROGENEOUS HYBRID SERVERS: SPECIFICATIONS

TABLE I: Specifications of the heterogeneous hybrid server
containing a dual-socket Intel multicore Haswell CPU and a
Nvidia K40c GPU. We name this server, Haswell k40c GPU
server.

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec
TDP 120 W

NVIDIA K40c GPU
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec
TDP 245 W

H. Niaz, R. Manumachu, and A. Lastovetsky are with the School of
Computer Science, University College Dublin (UCD), Belfield, Dublin 4,
Ireland.
E-mail: hafiz.niaz@ucdconnect.ie, ravi.manumachu@ucd.ie,
alexey.lastovetsky@ucd.ie

TABLE II: Specifications of the heterogeneous hybrid server
containing a single-socket Intel Icelake multicore CPU and
two Nvidia A40 GPUs. We name this server, Icelake A40 GPU
server.

Intel Platinum 8362 Icelake
No. of cores per socket 32
No. of threads per core 2
Socket(s) 2
L1d cache, L1i cache 1.5 MiB, 1 MiB
L2 cache, L3 cache 40 MiB, 48 MiB
Total main memory 62 GB DDR4-3200
TDP 265 W

NVIDIA A40 GPU
No. of GPUs 2
No. of Ampere cores 10,752
Total board memory 48 GB GDDR6 (with ECC)
Memory bandwidth 696 GB/sec
TDP 300 W

III. METHODOLOGY TO OBTAIN GROUND-TRUTH
PROFILES OF DATA TRANSFER BETWEEN CPU AND GPU

A. Main Steps for Energy Measurement of Data Transfer
Between a GPU and the Host CPU

The main steps to obtain the dynamic energy consumption
for a data transfer of m bytes from a GPU to the host CPU
are outlined below. All the steps are invoked from the CPU
side in the main thread.

• We send the data of size m bytes from the host CPU to
the GPU and keep this data on the GPU for the remainder
of the measurement.

• Query the CPU processor clock to obtain the start time.
• Start the energy measurement on the CPU side using an

energy measurement API’s start() function [1].
• Pin the main thread to a CPU core dedicated to this data

transfer using the system call, sched setaffinity().
• Send the data of size m bytes from the GPU to the host

CPU.
• Send a data item of size 1 byte from the host CPU to the

GPU.
• Stop the energy measurement on the CPU side using the

energy measurement API’s stop() function [1].
• Query the CPU processor clock to get the end time and

calculate the difference between the end and start times
to get the execution time.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 2

• The dynamic energy consumption of the data transfer is
the difference between the total energy consumption and
the static energy consumption, which is the static power
consumption of the platform multiplied by the execution
time of the data transfer.

B. Main Steps for Energy Measurement of p Data Transfers
Between p Device Pairs

The main steps to obtain the dynamic energy consumption
of parallel data transfers of data sizes, {m1, · · · ,mp}, between
p pairs of devices where mi is transferred between devices in
the i-th pair are as follows:
• Query the CPU processor clock in the main thread to

obtain the start time.
• Launch p pthreads from the program’s main thread to

perform the parallel data transfers.
• In each pthread, pin the thread to a dedicated CPU core

using the system call, sched setaffinity().
• Start the energy measurement on the CPU side in the

main thread using an energy measurement API’s start()
function [1].

• In pthread i (i ∈ {0, · · · , p − 1}), send the data of size
mi bytes from di1 to di2 in the i-th pair and a data item
of size 1 byte from di2 to di1.

• Invoke the pthread join() call in the main thread to join
with the data transfer pthreads.

• Stop the energy measurement on the CPU side in the
main thread using the energy measurement API’s stop()
function [1].

• Query the CPU processor clock to get the end time and
calculate the difference between the end and start times
to get the execution time.

• The dynamic energy consumption of the p parallel data
transfers is the difference between the total energy con-
sumption and the static energy consumption, which is the
static power consumption of the platform multiplied by
the total execution time of the parallel data transfers.

Note that the data transfers in the pthreads and the start of
energy measurement in the main thread are synchronized by a
barrier, which aims to start these operations at the same time.

C. Statistical Methodology to Measure Execution Time and
Energy Consumption

Consider a hybrid application, app, consisting of three data-
parallel kernels, Kernel cpu,Kernel gpu1, and Kernel gpu2,
which run in parallel. The goal is to measure the execution
time and the dynamic energy consumption of kernels in the
application. To do this, we instrument the application, as
shown in Algorithm 1. The instrumented application returns
the execution time of each kernel and the energy consumption
of all three kernels.

Consider a hybrid application, app, consisting of three data-
parallel kernels, Kernel cpu,Kernel gpu1, and Kernel gpu2,
which run in parallel. The goal is to measure the execution
time and the dynamic energy consumption of kernels in the
application. To do this, we instrument the application, as

shown in Algorithm 1. The instrumented application returns
the execution time of each kernel and the energy consumption
of all three kernels.

Algorithm 1 Instrumentation of a sample application (app)
consisting of three kernels, executing on CPU and two GPUs
simultaneously.
1: HCL WATTSUP START()
2: #pragma parallel
3: Begin
4: tecpu1 ← gettimeofday()
5: KERNEL CPU()
6: tecpu2 ← gettimeofday()
7: End
8: Begin
9: tegpu11 ← gettimeofday()

10: KERNEL GPU1()
11: tegpu12 ← gettimeofday()
12: End
13: Begin
14: tegpu21 ← gettimeofday()
15: KERNEL GPU2()
16: tegpu22 ← gettimeofday()
17: End
18: energyapp ← HCL WATTSUP STOP()
19: tecpu ← tecpu2− tecpu1
20: tegpu1 ← tegpu12− tegpu11
21: tegpu2 ← tegpu22− tegpu21
22: return (tecpu, tegpu1, tegpu2, energyapp)

1) Methodology to Measure Execution Time: We instru-
ment each kernel in the hybrid application (app) using the
member function gettimeofday() of the Linux library sys/time.h
to measure its execution time separately. As shown in Al-
gorithm 1, the execution times are stored in variables tecpu,
tegpu1, and tegpu2 and output at the end of the application
execution.

2) Methodology to Measure the Energy Consumption: The
heterogeneous hybrid node has one WattsUp Pro power meter
that sits between the wall A/C outlets and the node’s input
power sockets. The power meters capture the total power
consumption of the node. They have data cables connected to
one USB port of the node. A Perl script collects the data from
the power meter using the serial USB interface. The execution
of these scripts is non-intrusive and consumes insignificant
power.

The power meters are periodically calibrated using an ANSI
C12.20 revenue-grade power meter, Yokogawa WT210. The
maximum sampling speed of the power meters is one sample
every second. The accuracy specified in the data-sheets is
±3%. The minimum measurable power is 0.5 watts. The
accuracy at 0.5 watts is ±0.3 watts.

We use HCLWattsUp API [1], which gathers the readings
from the power meters to determine the average power and
energy consumption during the execution of an application for
the whole node. HCLWattsUp API also provides two macros:
HCL WATTSUP START and HCL WATTSUP STOP. The
HCL WATTSUP START macro starts gathering power read-
ings from the power meter using the Perl script, whereas the
HCL WATTSUP STOP stops gathering and return the total
energy as a sum of these power readings.

To measure the amount of energy consumed by the
application, we invoke HCL WATTSUP START and
HCL WATTSUP STOP macros, as shown in Algorithm

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 3

1. The consumed energy is stored in the variable, energyapp,
that is output at the end of the application execution.

D. Methodology to Ensure Reliability of Experimental Results

Each application is instrumented for measuring its perfor-
mance and energy consumption. We keep running the applica-
tion until the sample averages of the measured execution times
and energy consumption of the application lie within a given
confidence interval, and a given precision is achieved. For
this, we employ a script, which is named MEANUSINGTTEST.
Algorithm 2 presents the pseudocode of this script. It executes
the application app repeatedly until one of the following three
conditions is satisfied:

1) The maximum number of repetitions (maxReps) is
exceeded (Line 4).

2) The sample averages of all devices (kernel execution
times and the application energy consumption) fall in
the confidence interval (or the precision of measurement
eps is achieved) (Lines 11-15).

3) The elapsed time of the repetitions of application exe-
cution exceeds the maximum allowed time (maxT in
seconds) (Lines 16-18).

MEANUSINGTTEST returns the sample averages of the
execution times for each abstract processor (i.e. timecpu,
timegpu1, timegpu2) and the energy consumption of the ker-
nels (i.e. energy). The input parameters are the minimum and
maximum number of repetitions, minReps, and maxReps.
These parameter values differ based on the workload size
solved. For small workload sizes (32 ≤ n ≤ 1024), these
values are set to 10000 and 100000. For medium workload
sizes (1024 < n ≤ 5120), these values are set to 100 and 1000.
For large workload sizes (n > 5120), these values are set to 5
and 50. The values of maxT , cl, and eps are set to 3600, 0.95,
and 0.1. If the precision of measurement is not achieved before
the maximum number of repeats is exceeded, we increase the
number of repetitions and the maximum elapsed time allowed.
However, we observed that condition (2) is always satisfied
before the other two in the experiments.

Algorithm 3 shows the pseudocode of the helper functions
CALACCURACY, which is used by MEANUSINGTTEST. It
returns one if the sample average of a given reading lies in
the 95% confidence interval (cl), and a precision of 0.025
(eps = 2.5%) is achieved. Otherwise, it returns 0.

If the precision of measurement is not achieved before the
maximum number of repeats is exceeded, we increase the
number of repetitions and the maximum elapsed time allowed.
However, we observed that condition (2) is always satisfied
before the other two in the experiments.

E. Steps to Prevent Noise in Measurements

Several steps are taken to measure energy consumption to
eliminate any potential interference (noise) from components
not involved in data transfer between the host CPU and a GPU.

Energy consumption of the data transfer between the host
CPU and a GPU may include contributions from SSDs, NIC,
and fans. Therefore, we ensure that these contributions are
minimal using the steps below:

Algorithm 2 Script determining the mean of an experimental
run using student’s t-test.
1: procedure MEANUSINGTTEST(app,minReps,maxReps,maxT, cl, eps,

reps#, elapsedT ime, timecpu, timegpu1, timegpu2, energy)
Input:

The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run, maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, reps# ∈ Z>0

The elapsed time, elapsedTime ∈ R>0

The mean execution times, timecpu, timegpu1, timegpu2 ∈ R≥0

The mean consumed energy, energy ∈ R>0

2: reps← 0; stop← 0; etime← 0
3: sumcpu ← 0; sumgpu1 ← 0; sumgpu2 ← 0; sumeng ← 0
4: while (reps < maxReps) and (!stop) do
5: (tcpu[reps], tgpu1[reps], tgpu2[reps], eng[reps]) ← EXECUTE(app)

6: sumcpu+ = tcpu[reps]
7: sumgpu1+ = tgpu1[reps]
8: sumgpu2+ = tgpu2[reps]
9: sumeng+ = eng[reps]

10: if reps > minReps then
11: stopcpu ← CALACCURACY(cl, reps + 1, tcpu, eps)
12: stopgpu1 ← CALACCURACY(cl, reps + 1, tgpu1, eps)
13: stopgpu2 ← CALACCURACY(cl, reps + 1, tgpu2, eps)
14: stopeng ← CALACCURACY(cl, reps + 1, teng, eps)
15: stop ← stopcpu ∧ stopgpu1 ∧ stopgpu2 ∧ stopeng

16: if max{sumcpu, sumgpu1, sumgpu2} > maxT then
17: stop← 1
18: end if
19: end if
20: reps← reps + 1
21: end while
22: reps#← reps
23: elapsedTime← max{sumcpu, sumgpu1, sumgpu2}
24: timecpu ← sumcpu

reps ; timegpu1 ← sumgpu1
reps ; timegpu2 ←

sumgpu2
reps

25: energy ← sumeng
reps

26: return (reps#, elapsedT ime, timecpu, timegpu1, timegpu2, energy)
27: end procedure

Algorithm 3 Algorithm Calculating Accuracy
1: function CALACCURACY(cl, reps, Array, eps)
2: clOut ← fabs(gsl cdf tdist Pinv(cl, reps− 1))

× gsl stats sd(Array, 1, reps)
/ sqrt(reps)

3: if clOut× reps∑reps−1
i=0

Array[i]
< eps then

4: return 1
5: end if
6: return 0
7: end function

• The program performing the data transfer between the
host CPU and a GPU does not invoke any file I/O
functions. We monitor the disk consumption during the
program run and ensure that negligible I/O is performed
by the program using tools such as sar and iotop.

• The sizes of the data transferred between the host CPU
and a GPU do not exceed the CPU’s and GPU’s main
memory. Therefore, we ensure that no swapping (paging)
occurs during the program run on the CPU side and that
there are no failures on the GPU side.

• The program performing the data transfer between the
host CPU and a GPU does not invoke any network I/O
functions. We monitor the network activity using tools
such as sar and atop and ensure it is not significant.

Fans are significant contributors to energy consumption. Our

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 4

hybrid server platform controls fans in zones: a) zone 0: CPU
or System fans, b) zone 1: Peripheral zone fans. There are
four levels to control the speed of fans:
• Standard: Baseboard management controller (BMC) con-

trols both fan zones, with the CPU and Peripheral zones
set at speed 50%;

• Optimal: BMC sets the CPU zone at speed 30% and the
Peripheral zone at 30%;

• Heavy IO: BMC sets the CPU zone at speed 50% and
the Peripheral zone at 75%;

• Full: All fans running at 100%.
To rule out fans’ contribution to dynamic energy consump-

tion, we set the fans at full speed before running the programs.
Therefore, the energy consumption by fans is included in the
static power consumption of the server.

Furthermore, during the application run, we monitor the
server’s temperatures and the fans’ speeds with the help of
Intelligent Platform Management Interface (IPMI) sensors. We
make sure that there are no changes in the temperatures and
the fans’ speeds.

F. Application of the Methodology for Two Heterogeneous
Hybrid Servers

We apply our methodology to obtain the ground-truth dy-
namic energy profiles of data transfers between devices ((CPU,
K40c GPU) in heterogeneous server shown in Table I) and
between pairs of devices (CPU, A40 GPU 1) and (CPU, A40
GPU 2) in the heterogeneous server shown in Table II.

We analyze 1) the dynamic energy and execution time of
data transfers in forward and backward directions between the
host CPU and a GPU, 2) the dynamic energy and execution
time of data transfers between pairs of devices in serial, 3) the
dynamic energy and execution time of parallel data transfers
between pairs of devices, and 4) The execution times involved
in obtaining the profiles.

Figure 1 shows the dynamic energy and execution time
profiles of data transfers between a pair of computing devices
(CPU, K40c GPU) and (K40c GPU, CPU) in the heteroge-
neous server (Table I). Figure 1a shows the dynamic energy
and execution time of data transfer between the host CPU and
K40c GPU. Similarly, Figure 1b depicts the case for the data
transfer between the K40c GPU and host CPU.

Figures 2a and 2b show the dynamic energy consumption
and execution time of data transfer between the pairs of
computing devices, (CPU, A40 GPU 1) and (A40 GPU 1,
CPU), respectively, in the Icelake A40 GPU server. Similarly,
the Figures 2c and 2d depict the case for the pair of devices,
(CPU, A40 GPU 2) and (A40 GPU 2,CPU).

Figures 3a and 3b show the dynamic energy consumption
and execution time of data transfers happening in parallel
between two pairs of devices, (CPU, A40 GPU 1) and (CPU,
A40 GPU 2). Figure 3c shows the sum of the dynamic energy
consumptions of data transfer between the pair of computing
devices (CPU, A40 GPU 1) followed by data transfer between
the pair (CPU, A40 GPU 2), and data transfers between the
two pairs of devices in parallel. Figure 3d shows the sum of
the dynamic energy consumptions of data transfer between the

(a) Dynamic Energy of data transfer from CPU =⇒ K40c GPU,
and K40c GPU =⇒ CPU.

(b) Execution time of data transfer from CPU =⇒ K40c GPU,
and K40c GPU =⇒ CPU.

Fig. 1: Dynamic energy and execution time profiles of data
transfers between the pairs of computing devices (CPU,K40c
GPU) and (K40c GPU,CPU) in the Haswell k40c GPU server.

pair of devices (A40 GPU 1, CPU) followed by data transfer
between the pair (A40 GPU 2, CPU), and data transfers
between the two pairs of devices in parallel.

IV. ENERGY PREDICTIVE MODELS OF DATA TRANSFER
BETWEEN COMPUTING DEVICES

In this work, we propose a fast selection procedure that
combines a natural grouping of performance events derived
from the processor architecture, additivity, the theory of energy
predictive models of computing and high positive correlation
to select a small subset of performance events that can be
employed in linear energy models to accurately predict the
energy of data transfer between a host CPU and a GPU.

Likwid [2] offers 16 counters and more than 1500 per-
formance events for the Intel Haswell multicore CPU in the
Haswell k40c GPU server. It offers 347 counters and 2772
performance events for the Intel IceLake multicore CPU in
the Icelake A40 GPU server. One can obtain 16 and 347
performance event counts in one application run on these plat-
forms. PMC (Performance Monitoring Counters) is one such
counter group that captures core-level performance events.
Likwid provides eight counters in PMC for the Intel IceLake
multicore CPU processor. These eight counters can store 258
core-level performance events. Therefore, one gathers eight
event counts in 8 PMCs in one application run. To gather

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 5

(a) Dynamic energy of data transfer from CPU =⇒ A40 GPU 1
and A40 GPU 1 =⇒ CPU.

(b) Execution time of data transfer from CPU =⇒ A40 GPU 1
and A40 GPU 1 =⇒ CPU.

(c) Dynamic energy of data transfer from CPU =⇒ A40 GPU 2
and A40 GPU 2 =⇒ CPU.

(d) Execution time of data transfer from CPU =⇒ A40 GPU 2
and A40 GPU 2 =⇒ CPU.

Fig. 2: Dynamic energy and execution time profiles of data
transfers between the pairs of computing devices, (CPU, A40
GPU 1), (A40 GPU 1, CPU), (CPU, A40 GPU 2) and (A40
GPU 2, CPU), in the Icelake A40 GPU server.

all the 258 core-level performance events, one must run the
application 33 times.

The CUDA Profiling Tools Interface (CUPTI) [3] tool
provides performance events and metrics for Nvidia A40 GPU
that are typically employed for performance profiling. Like the
performance events for multicore CPUs, the CUPTI events
and metrics have also been used in dynamic energy predictive
models [4], [5], [6]. For the Nvidia A40 GPU, the Nsight
Compute profiler is used to obtain the events and the metrics.
However, they are also significant in number. Furthermore,
the number of events increases with each new processor
generation.

A. Likwid Performance Monitoring Counter Groups for the
Multicore CPUs

TABLE III: Performance monitoring counter groups in Intel
IceLake multicore CPU of the Haswell k40c GPU server.

Performance
Counter
Groups

Description

BBOX Measurements of the Home Agent (HA) in the uncore
CBOX Last level cache (LLC) coherency engine in the uncore
MBOX Integrated memory controllers (iMC) in the uncore
PBOX Measurements of the Ring-to-PCIe (R2PCIe) interface in

the uncore
PMC Core-local general purpose counters
PWR Measurements of the current energy consumption through

the RAPL interface
QBOX Measurements of the QPI Link layer (QPI) in the uncore
SBOX Socket internal traffic through ring-based networks
UBOX System configuration controller, interrupt traffic, and sys-

tem lock master
WBOX Power control unit (PCU) in the uncore

TABLE IV: Performance monitoring counter groups in Intel
IceLake multicore CPU of the Icelake A40 GPU server.

Performance
Counter
Groups

Description

CBOX Last level cache (LLC) coherency engine in the uncore
IBOX Responsible for maintaining coherency for Integrated

Input/Output controller (IIO) traffic
MBOX Integrated memory controllers (iMC) in the uncore
M2M Mesh2Mem (M2M) which connects the cores with the

Uncore devices. The interface between the Mesh and the
Memory Controllers.

PMC Core-local general purpose counters
PWR Measurements of the current energy consumption through

the RAPL interface
QBOX Measurements of the QPI Link layer (QPI) in the uncore
SBOX Socket internal traffic through ring-based networks
TCBOX Integrated Input/Output controller (IIO) counters
UBOX System configuration controller, interrupt traffic, and sys-

tem lock master
WBOX Power control unit (PCU) in the uncore

B. Shortlisted Performance Events

The procedure has three stages and is automated in a
software library (libedm) that we developed for this purpose
[7].

In the first stage, all highly additive (with additivity error ≤
5%) and highly positively correlated performance events with
dynamic energy (≥ 95%) are selected.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 6

(a) Dynamic energy of data transfers between two pairs of
devices CPU =⇒ A40 GPU 1 & CPU =⇒ A40 GPU 2 in
parallel, A40 GPU 1 =⇒ CPU & A40 GPU 2 =⇒ CPU in
parallel.

(b) Execution time of data transfers between two pairs of devices
CPU =⇒ A40 GPU 1 & CPU =⇒ A40 GPU 2 in parallel, A40
GPU 1 =⇒ CPU & A40 GPU 2 =⇒ CPU in parallel.

(c) Comparison between the sum of serial dynamic energies
from CPU =⇒ A40 GPU 1 + CPU =⇒ A40 GPU 2, and
dynamic energy of data transfers between two pairs of devices
in parallel CPU =⇒ A40 GPU 1 & CPU =⇒ A40 GPU 2.

(d) Comparison between the sum of serial dynamic energies
from A40 GPU 1 =⇒ CPU + A40 GPU 2 =⇒ CPU, and
dynamic energy of data transfers between two pairs of devices
in parallel A40 GPU 1 =⇒ CPU & A40 GPU 2 =⇒ CPU.

Fig. 3: Dynamic energy and execution time profiles of data transfers happening in parallel between pairs of devices, (CPU,
A40 GPU 1), (CPU, A40 GPU 2), in the Icelake A40 GPU server.

The main steps of the first stage that determines the highly
additive and positively correlated performance events are as
follows:

• Query the CPU processor clock to obtain the start time.
Start the energy meter on the CPU side using an energy
measurement API’s start() function [1].

• Execute a base or compound application in the input
dataset.

• Stop the energy meter on the CPU side using the energy
measurement API’s stop() function [1].

• Query the CPU processor clock to get the end time and
calculate the difference between the end and start times
to get the elapsed execution time. The dynamic energy
consumption of the application execution is obtained.

• The event values during the data transfers in the applica-
tion are obtained using the Likwid-perfctr tool.

• We verify that the execution time and dynamic energy
consumption of a compound application is the sum of
the execution times and dynamic energy consumptions
of the constituent base applications.

• For each application, create an event record containing
the dynamic energy and performance event values. The

event records are then normalized.
• The performance events with insignificant counts (less

than or equal to 10) and not deterministic and repro-
ducible are eliminated. A performance event is deemed
deterministic and reproducible if it exhibits the same
value (within a tolerance of 5.0%) for different executions
of the same application with the same runtime configu-
ration on the same platform.

• The additivity error of a performance event for a com-
pound application is calculated as follows: Additivity
error (%) = | (eA+eB)−eAB

(eA+eB+eAB)/2 |×100 where eAB , eA, eB are
the performance event counts for the compound (AB) and
constituent base applications, A and B, respectively. The
sample average of this error is obtained from multiple ex-
perimental runs. The additivity error of the performance
event is the maximum of errors for all the compound
applications in the dataset.

• The performance events with additivity error (≤ A) are
selected.

• Finally, from the selected highly additive performance
events, performance events with positive correlation (≥ ρ)
are shortlisted for the second stage.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 7

In the second stage, we determine the final shortlist of
performance events, starting with a natural grouping of per-
formance events derived from the processor architecture. This
stage comprises two main steps: the intra-group and inter-
group steps. The intra-group step prunes the performance
events in each group based on correlation with each other and
dynamic energy consumption. The inter-group step prunes the
performance events across groups based on correlation with
each other.

In the second stage, one can employ two approaches to
finding a grouping of performance events that are highly
correlated with each other and selecting one performance
event as a representative from a group. The first approach
is a bottom-up approach (cluster by synthesis) where all pair-
wise correlations are analyzed to create meaningful clusters.
However, this approach is practically infeasible since the
number of performance events is significant.

The second approach is a top-down approach (cluster by
analysis), which begins with groups of performance events
that naturally exist together since they record the activities of
the same hardware component in processor architecture. For
example, Table IV in the Supplemental shows 11 performance
counter groups, {CBOX, ..., WBOX}, provided by Likwid
for the Intel Icelake multicore CPU in the Icelake A40 GPU
server. The CBOX performance monitoring counter group
contains the performance events occurring in the last level
cache (LLC) coherency engine in the uncore. The WBOX
group has performance events recording the activities of the
power control unit (PCU) in the uncore. The correlations of the
performance events in the groups are then analyzed individ-
ually (intra-group) and collectively (inter-group), leading to a
final shortlist of performance events. We follow this approach
in this paper since Likwid provides such an architecture
grouping of performance events for all the multicore CPU
platforms employed in this work. However, this approach is
challenging for an arbitrary platform with no such natural
grouping.

Consider the division of the M2M group into multiple sub-
groups in the intra-group step of the second stage. Figures 4b
and 4d show a high positive correlation between the events of
one sub-group and the lack of it between the events of two
different sub-groups of the M2M group. Similarly, Figures 4a
and 4c show the sub-groups for CBOX group. Furthermore,
Figures 5a and 5b show the high positive correlation of the
representatives of sub-groups in CBOX and M2M.

Figure 6 shows the correlation between representatives
of sub-groups in different performance monitoring counter
groups. For example, the first figure CBOX:M2M at the
top refers to the correlation plot between representative per-
formance events of sub-groups, TOR OCCUPANCY EVICT
and TXR HORZ CYCLES NE BL CRD, in CBOX and
M2M, respectively.

C. Training and Testing of Energy Predictive Models of Data
Transfer

Figures 7, 8, and 9 compare the dynamic energy of serial
and parallel data transfers predicted by the models against the

(a) Correlation between performance events of one sub-group
in the group CBOX.

(b) Correlation between performance events of one sub-group
in the group M2M.

(c) Correlation between performance events of two different
sub-groups in the group CBOX.

(d) Correlation between performance events of two different
sub-groups in the group M2M.

Fig. 4: The correlation between the performance events of one
sub-group and two different sub-groups within the CBOX and
M2M groups.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 8

(a) Correlation of CBOX performance event with data transfer
dynamic energy.

(b) Correlation of M2M performance event with data transfer
dynamic energy.

Fig. 5: Correlation of the performance events with dynamic
energy in the groups, CBOX and M2M. The performance
events are highly positively correlated with dynamic energy
and follow the same trend as the dynamic energy.

TABLE V: Platform-level energy predictive models based on
performance events for both directions for the Haswell k40c
GPU server.

CPU =⇒ K40c GPU
Group
Name

Performance Events Model Coef-
ficients

MBOX WR CAS RANK1 BANK14 4.69E-09
PMC L2 RQSTS RFO HIT 7.45E-08
CBOX TOR INSERTS NID AL 1.78E-07
BBOX RING AK USED CW EVEN 3.84E-07
PWR PWR PKG ENERGY 1.81E-10
RBOX RXR INSERTS DRS 2.26E-07

K40c GPU =⇒ CPU
Group
Name

Performance Events Model Coef-
ficients

MBOX RD CAS RANK0 BANK7 4.69E-09
PMC L2 TRANS ALL REQUESTS 7.45E-08
CBOX TOR INSERTS WB 1.78E-07
BBOX RING AK USED CW ODD 3.84E-07
PWR PWR DRAM ENERGY 1.81E-10
RBOX RXR INSERTS DRS 2.26E-07
UBOXFIX UNCORE CLOCK 1.44E-09

TABLE VI: Platform-level energy predictive models based on
performance events for both directions for the Icelake A40
GPU server. Note there is only one performance event in each
cell in the column “Performance Events”. Some performance
events are wrapped to the next line due to space constraints.

CPU =⇒ A40 GPU 1

Group
Name

Performance Events Model
Coefficients

PMC OFFCORE REQUESTS OUTSTANDING
DEMAND RFO 3.27E-09

SBOX VN1 NO CREDITS NCB 4.59E-10

TCBOX TXN REQ OF CPU MEM
WRITE IOMMU1 4.53E-09

A40 GPU 1 =⇒ CPU

Group
Name

Performance Events Model
Coefficients

M2M TXR HORZ CYCLES NE BL CRD 9.1E-10

PMC OFFCORE REQUESTS OUTSTANDING CYCLES
WITH DEMAND RFO 1.91E-08

SBOX VN0 NO CREDITS SNP 1.84E-09
UBOX M2U MISC2 TXC CYCLES EMPTY AKC 2.06E-11
WBOX PKG RESIDENCY C0 CYCLES 2.3E-08

CPU =⇒ A40 GPU 1, CPU =⇒ A40 GPU 2 in Parallel

Group
Name

Performance Events Model
Coefficients

M2M TRACKER OCCUPANCY CH0 5.64E-09
CBOX LLC LOOKUP LOC HOM 8.14E-10
SBOX VN1 NO CREDITS NCB 5.1E-10
WBOX PKG RESIDENCY C0 CYCLES 3.55E-08

A40 GPU 1 =⇒ CPU, A40 GPU 2 =⇒ CPU in Parallel

Group
Name

Performance Events Model
Coefficients

M2M TXR HORZ CYCLES NE BL CRD 1.55E-08
CBOX TOR OCCUPANCY EVICT 9.36E-11
SBOX VN0 NO CREDITS SNP 9.36E-11
TCBOX REQ FROM PCIE CMPL IOMMU HIT 6.58E-09
UBOX M2U MISC2 TXC CYCLES EMPTY AKC 1.18E-08

ground-truth approach employing power measurements using
physical external power meters for the heterogeneous server
platforms (Tables I and II).

The summary of our findings are presented below:

• The energy predictive models for the two data trans-
fer directions in the Haswell k40c GPU server share
a performance event, which disallows the development
of independent runtime software sensors based on the
models for dynamic energy prediction of parallel data
transfers in the two directions.

• The energy predictive models employ disjoint sets of
performance events for the two data transfer directions in
the Icelake A40 GPU server. However, the models give
the same dynamic energy prediction for the same data
transfer message size, complementing that the ground-
truth dynamic energy profiles are almost the same for
both directions for this server. This finding signifies
that different performance events (belonging to the same
performance monitoring counter groups) are able to com-
prehensively capture the energy consumption activities
of data transfers in the two directions. Therefore, on the
one hand, while having a large number of performance
events (per performance monitoring counter group and

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 9

Fig. 6: Correlation between representative performance events of sub-groups in different performance monitoring counter groups.
For example, the first figure CBOX:M2M at the top refers to the correlation plot between representative performance events
of sub-groups, TOR OCCUPANCY EVICT and TXR HORZ CYCLES NE BL CRD, in CBOX and M2M, respectively.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 10

(a) Dynamic energy comparison of data transfers between pair
of devices (CPU =⇒ K40c GPU) measured by ground-truth
measurement method with the energy predicted by model based
on performance events.

(b) Dynamic energy comparison of data transfers between pair
of devices (K40c GPU =⇒ CPU) measured by ground-truth
measurement method with the energy predicted by model based
on performance events.

Fig. 7: Dynamic energy comparison of data transfers between
pair of devices (CPU,K40c GPU) and (K40c GPU,CPU) mea-
sured by ground-truth measurement method with the energy
predicted by model based on performance events for the
heterogeneous hybrid server as shown in Table I.

overall) complicates the selection of an optimal subset
of events to use for modelling, on the other hand, it
affords an excellent opportunity to find disjoint sets of
performance events that allows developing independent
runtime software sensors based on models employing the
disjoint sets for dynamic energy prediction of serial or
parallel data transfers in the two directions.

• The energy predictive models for parallel data transfers
between the host CPU and the two A40 GPUs em-
ploy disjoint sets of performance events. Notably, the
difference between the dynamic energy for a parallel
data transfer obtained using the model for parallel data
transfers and the sum of the dynamic energies obtained
using the direction-specific individual data transfer mod-
els is negligible. This means that a data transfer energy
model for a direction can be used to obtain the dynamic
energy for the parallel data transfers in that direction.
This finding paves the way for developing a data transfer
sensor for a direction, based on the data transfer energy
model, to estimate the dynamic energy of parallel data

(a) Dynamic energy comparison of data transfers between pair
of devices CPU =⇒ A40 GPU 1 measured by ground-truth
measurement method with the energy predicted by model based
on performance events.

(b) Dynamic energy comparison of data transfers between pair
of devices A40 GPU 1 =⇒ CPU measured by ground-truth
measurement method with the energy predicted by model based
on performance events.

Fig. 8: Dynamic energy comparison of data transfers between
pair of devices (CPU,A40 GPU 1) and (A40 GPU 1,CPU)
measured by ground-truth measurement method with the en-
ergy predicted by model based on performance events for the
heterogeneous hybrid server shown in Table II.

transfers for that direction.

D. Energy Predictive Models of Computations for Multicore
CPUs

Table VII shows the list of applications employed for train-
ing and testing the energy predictive models of computations
for the Intel IceLake multicore CPU.

Table VIII shows the model variables employed in the linear
energy predictive model of computations on Intel IceLake
multicore CPU. The model variables are obtained using our
methodology for shortlisting the performance events employ-
ing additivity and correlation.

There is no overlap in the performance events in the data
transfer energy predictive models and component-level energy
predictive models of computations for the hybrid applications
executed on our research platforms. The data transfer energy
predictive models contain performance events that capture
off-core chip traffic whereas the energy predictive models
of computations mainly employ the core-level performance
events belonging to PMC counter group. This finding allows

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 11

TABLE VII: List of benchmarks in the application suite employed for training and testing the energy predictive models of
computations for the Intel IceLake multicore CPU.

Application Description
MKL FFT Intel optimized 2-dimensional fast Fourier transform
MKL DGEMM Intel optimized dense matrix multiplication of two square matrices
HPCG Intel optimized High Performance Conjugate Gradient. 3-dimensional regular 27-point discretization of an elliptic partial

differential equation
NPB IS Integer Sort, Kernel for random memory access that sort small integers using the bucket sort technique
NPB LU Lower-Upper Gauss-Seidel solver
NPB EP Embarrassingly Parallel random number generator
NPB BT Solve synthetic system of nonlinear partial differential equations using Block Tri-diagonal solver
NPB MG Approximate 3-dimensional discrete Poisson equation using the V-cycle Multi Grid on a sequence of meshes
NPB FT A 3D fast Fourier Transform partial differential equation benchmark
NPB DC Arithmetic Data Cube, a data intensive grid benchmark representing data mining operations
NPB UA Unstructured Adaptive mesh solving heat equation with convection and diffusion from moving ball
NPB CG Solving an unstructured sparse linear system using Conjugate Gradient method
NPB SP Solve synthetic system of nonlinear partial differential equations using Scalar Penta-diagonal solver
NPB DT A graph benchmark evaluating communication throughput (Data Traffic)
LULESH Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
HPGMG High Performance Geometric Multigrid
miniFE Unstructured implicit finite element codes
miniMD Parallel molecular dynamics (MD) code
Naive MM Naive Matrix-matrix multiplication
Naive MV Naive Matrix-vector multiplication

TABLE VIII: Performance events used in the linear energy
predictive model of computations on Intel IceLake multicore
CPU.

Groups Performance Events Model
Coefficients

TCBOX IOMMU1 PWT CACHE LOOKUPS 2.24E-08
QBOX TXL0P CLK ACTIVE DFX 4.69E-09
UBOXFIX UNCORE CLOCKTICKS 3.11E-09

predicting accurately the component-level energy consumption
of a hybrid application comprising parallel overlapping com-
putations and data transfers that are crucial for the bi-objective
optimization of the application for performance and energy.

Figures 10a, 10b, and 10c compares the dynamic energy
of computations obtained by employing our energy predictive
computation models versus the ground-truth dynamic energy
profiles for the the three hybrid applications.

V. RUNTIME SOFTWARE ENERGY SENSOR API FOR
COMPUTATIONS AND DATA TRANSFERS

A. Software Energy Sensor API

libedm provide software energy sensor API functions that
allow the creation of software energy sensors based on our
proposed linear energy predictive models to estimate the
energy consumption of computations and data transfers.

The API function hcl create energy csensor() creates a
software energy sensor for computations on a device repre-
sented by a tuple, {dtype, devno}, where dtype represents the
device type (CPU or GPU) and devno signifies the device
number within a class of devices given by the device type. The
function returns a handle to the energy sensor in sensor on suc-
cessful sensor creation. The argument peventnames is an array
of size npe containing the names of the performance events.
The argument, modelf, is a user-defined model function, which
takes as input an array of performance event values and returns
the dynamic energy consumption of the computations. For

example, we pass a model function in the sensor creation
call that estimates the dynamic energy consumption using
our linear energy predictive models based on the performance
event values provided as input.

typedef double (*hcl_energy_model_func)(
int npe, const double* peventarray);

int hcl_create_energy_csensor(
hcl_device_type dtype, int devno,
int npe, const char** peventnames,
const hcl_energy_model_func* modelf,
hcl_energy_sensor* sensor

);

The API function hcl create energy dsensor() creates a
software energy sensor for data transfers between the host
CPU and one or more GPUs in the direction given by
the direction parameter. The direction parameter accepts two
values, FORWARD and BACKWARD, representing the data
transfers from the host CPU to the GPUs and GPUs to the host
CPU, respectively. The argument, modelf, is a user-defined
model function that returns the dynamic energy consumption
of the data transfers given the performance event values. On
successfully creating the sensor, the output argument, sensor,
contains a handle for the energy sensor. Note that only one
sensor can be employed for each direction to estimate the
dynamic energy consumption of data transfers happening in
that direction in a code region.

int
hcl_create_energy_dsensor(

int direction, int npe,
const char** peventnames,
const hcl_energy_model_func* modelf,
hcl_energy_sensor* sensor

);

The API functions hcl start energy sensor() and
hcl stop energy sensor() start and stop the sensor represented
by the identifier sensor for energy estimation.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 12

(a) Dynamic energy comparison of data transfers between
pair of devices (CPU,A40 GPU 1) & CPU =⇒ A40 GPU 2
measured by ground-truth measurement method with the energy
predicted by model based on performance events for parallel
data transfers.

(b) Dynamic energy comparison of data transfers between pair
of devices (A40 GPU 1 =⇒ CPU) and (A40 GPU 2 =⇒ CPU)
measured by ground-truth measurement method with the energy
predicted by model based on performance events for parallel
data transfers.

Fig. 9: Dynamic energy comparison of parallel data
transfers between pairs of computing devices (CPU,A40
GPU 1), (CPU,A40 GPU 2) and (A40 GPU 1,CPU), (A40
GPU 2,CPU) using ground-truth approach and energy predic-
tive models based on performance events for the Icelake A40
GPU server.

int
hcl_start_energy_sensor(

const hcl_energy_sensor* sensor);
int
hcl_stop_energy_sensor(

const hcl_energy_sensor* sensor,
double *estenergy);

To estimate the energy consumption of a code
region containing computations, the API function
hcl start energy sensor() is called before the start of
the region, and the API function hcl stop energy sensor() is
called after the end of the region. However, some constraints
exist on employing the software energy sensors for data
transfer in a heterogeneous hybrid application. The software
energy sensors for data transfer must be started in the main
thread or an OpenMP master thread in a parallel region
before initiating the data transfers and stopped in the main
thread or an OpenMP master thread after the transfer of

results from the GPUs to the host CPU. In the following
section, we will illustrate the usage of data transfer sensors
in a matrix multiplication application.

The API function hcl destroy energy sensor() below re-
leases the resources associated with the software energy sen-
sor, sensor.

int
hcl_destroy_energy_sensor(

hcl_energy_sensor* sensor);

B. Illustration of the Software Energy Sensor API in a Parallel
Matrix Multiplication Application

We illustrate using the software energy sensor API functions
through a parallel matrix multiplication application executing
on our Icelake A40 GPU server.

Figure 13b illustrates the hybrid parallel matrix multipli-
cation application (HDGEMM) computing the matrix product
(C+ = A×B) of two dense square matrices A and B of size
N ×N .

The application has three software components: CPU, A40
GPU 1, and A40 GPU 2. All the components share the matrix
B. The matrices A and C are horizontally partitioned such that
each software component is assigned several contiguous rows
of A and C provided as an input parameter to the application.
The CPU software component is assigned N1 rows of A and
C. The A40 GPU 1 software component is assigned N2 rows
of A and C. Finally, the A40 GPU 1 software component
is assigned the remaining (N −N1 −N2) rows of A and C.
Each software component i (i ∈ {1, 2, 3}) computes the matrix
product, Ci = Ai ×B.

The application comprises three main stages. The first stage
consists of data transfers of A2, B, and C2 from the host CPU
to A40 GPU 1 and A3, B, and C3 from the host CPU to A40
GPU 2. The second stage involves local computations in the
software components. The computations in the CPU software
component are performed using the Intel MKL DGEMM
library routine. The computations in the software components
involving the A40 GPUs are performed using the CUBLAS
DGEMM library routine. The third stage involves data transfer
of the result matrices C2 and C3 from A40 GPU 2 and A40
GPU 1 to the host CPU.

Figures 11 and 12 illustrate the use of our proposed energy
sensor API functions to estimate the energy consumption of
computations and data transfers.

The application-specific routines, cpudgemm(),
gpudgemm1(), and gpudgemm2(), contain the device-
specific computations. The routines, gpudt1() and gpudt2(),
comprise the data transfers between the host CPU and A40
GPU 1 and the host CPU and A40 GPU 2.

We first describe the code shown in Figure 11. Lines 4-
28 contain the arrays of shortlisted performance events for
computations on the multicore CPU and data transfers from
CPU to A40 GPU 1 and A40 GPU 1 to CPU.

Line 29 contain the declarations of the software energy
sensors. Lines 30-35 contain the API invocations creating the
software energy sensors for computations on the CPU and two

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 13

(a) (b)

(c)

Fig. 10: Ground-truth dynamic energy profiles versus the dynamic energy of computations estimated by energy predictive
models of computation for the three hybrid applications. (a). HDGEADD, (b). HDGEMM, and (c) HFFT.

GPUs. The sensor, csensor[0], estimates the energy consump-
tion of computations on the CPU. The sensors, csensor[1] and
csensor[2] estimate the energy consumption of computations
on the A40 GPU 1 and A40 GPU 2.

Lines 36-39 contain the API function invocations to create
the data transfer sensors. The sensors, cpu2gpusensor and
gpu2cpusensor, estimate the energy consumption of data
transfers from the host CPU to the A40 GPUs and the A40
GPUs to the host CPU, respectively. Note that the sensors for
data transfers are different in the two directions: host CPU to
GPU and GPU to host CPU.

The model function cpumodelf estimates the energy con-
sumption of computations given the values of the performance
events in the array, cpucevents. The pre-defined model function
hclnvmlmodelf is based on NVML and estimates the energy
of computations on the A40 GPUs. The model functions,
cpu2gpumodelf and gpu2cpumodelf , estimate the energy
consumption of data transfers from the host CPU to the GPUs
and GPUs to the host CPU given the values of the perfor-
mance events in the array, cpu2gpuevents and gpu2cpuevents,
respectively.

Figure 12 illustrates the rest of the code. Line 3 starts the
parallel OpenMP region comprising three OpenMP threads
that execute the three software components in parallel.

Line 3 comprises the parallel OpenMP region that launches
three OpenMP threads to execute the three software com-
ponents in parallel. In Lines 8-9, we invoke the API func-
tion, hcl start energy sensor(), to start data transfer sen-

sors, dsensor[0] and dsensor[1]. Lines 13-15 comprise the
CPU software component execution. In Lines 13 and 15,
we call the API functions, hcl start energy sensor() and
hcl stop energy sensor(), to start and stop the sensor
csensor[0] for estimating the dynamic energy consumption of
computations on the CPU. The estimated energy consumption
is returned in the variable, cpuenergy.

Lines 18-21 contain the code for the A40 GPU 1 soft-
ware component execution. In Lines 19 and 21, we in-
voke the API functions, hcl start energy sensor() and
hcl stop energy sensor(), to start and stop the sensor
csensor[1] for estimating the dynamic energy consumption
of computations on the A40 GPU 1. Similarly, Lines 23-26
contain the A40 GPU 2 software component execution and
API functions employing a sensor to estimate the dynamic
energy consumption of computations on the A40 GPU 2. The
estimated energy consumptions of computations on the GPU
are returned in the variables gpu1energy and gpu2energy.

In Lines 31-32, we invoke the API function,
hcl stop energy sensor(), to stop the data transfer
sensors, dsensor[0] and dsensor[1]. The estimated dynamic
energy consumption of the data transfers from the CPU to
A40 GPUs and the A40 GPUs to the CPU are returned in the
variables cpu2gpuenergy and gpu2cpuenergy, respectively.
Note the data transfer of results from the A40 GPU 1 to
host CPU happens in gpudgemm1() that invokes CUBLAS
DGEMM routine and from the A40 GPU 2 to host CPU in
gpudgemm2(). The barrier in Line 11 ensures that the data

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 14

1 #include <edm.h>
2 int main(int argc, char *argv[]) {
3 double *A, *B, *C;
4 int ncpuevents = 6; ncpu2gpuevents = 8,

ngpu2cpuevents = 10;
5 char* cpucevents[] = {
6 "CORE_POWER_LVL0_TURBO_LICENSE",
7 "TXC_AD_CREDIT_OCCUPANCY,"
8 "IOMMU1_PWT_CACHE_LOOKUPS",
9 "VN0_NO_CREDITS_SNP",

10 "TXL0P_CLK_ACTIVE_DFX",
11 "CBOX_CLOCKTICKS" };
12 char* cpu2gpuevents[] = {
13 "TRACKER_OCCUPANCY_CH0",
14 "OFFCORE_REQUESTS_OUTSTANDING_DEMAND_RFO",
15 "LLC_LOOKUP_LOC_HOM",
16 "UPI_CLOCKTICKS",
17 "VN1_NO_CREDITS_NCB",
18 "TXN_REQ_OF_CPU_MEM_WRITE_IOMMU1" };
19 char* gpu2cpuevents[] = {
20 "TXR_HORZ_CYCLES_NE_BL_CRD",
21 "OFFCORE_REQUESTS_OUTSTANDING_CYCLES_WITH_DEMAND_RFO",
22 "TOR_OCCUPANCY_EVICT",
23 "TXL0P_CLK_ACTIVE_CFG_CTL",
24 "VN0_NO_CREDITS_SNP",
25 "REQ_FROM_PCIE_CMPL_IOMMU_HIT",
26 "UNCORE_CLOCKTICKS",
27 "M2U_MISC2_TXC_CYCLES_EMPTY_AKC",
28 "PKG_RESIDENCY_C0_CYCLES"};
29 hcl_energy_sensor csensor[3], dsensor[2];
30 hcl_create_energy_csensor(HCL_CPU, 0,
31 ncpuevents, cpuevents, cpumodelf,

&csensor[0]);
32 hcl_create_energy_csensor(HCL_GPU, 0,
33 0, NULL, hcl_nvml_modelf, &csensor[1]);
34 hcl_create_energy_csensor(HCL_GPU, 1,
35 0, NULL, hcl_nvml_modelf, &csensor[2]);
36 hcl_create_energy_dsensor(FORWARD,

ncpu2gpuevents, cpu2gpuevents,
37 cpu2gpumodelf, &dsensor[0]);
38 hcl_create_energy_dsensor(BACKWARD,

ngpu2cpuevents, gpu2cpuevents,
39 gpu2cpumodelf, &dsensor[1]);
40 /* More to follow */
41 }

Fig. 11: Illustration of the libedm’s software energy sensor
API in a hybrid parallel matrix multiplication application
executing on a server comprising a Intel multicore CPU and
two Nvidia A40 GPUs. Five energy sensors are deployed in
this application. Three sensors for computations on the CPU,
A40 GPU 1, and A40 GPU 2.

transfer sensors are started successfully before initiating the
data transfers from the host CPU to the GPUs. Finally, the
barrier in Line 29 ensures that the data transfers from the
GPUs to the host CPU are complete before stopping the
sensors to get the dynamic energy estimate.

Lines 35-40 contain the API function invocations to destroy
the sensors involved in estimating the energy of the applica-
tion’s computations and data transfers.

1 #include <edm.h>
2 int main(int argc, char *argv[]) {
3 #pragma omp parallel sections num_threads(3)
4 {
5 #pragma omp parallel num_threads(3)
6 {
7 #pragma omp master {
8 hcl_start_energy_sensor(&dsensor[0]);
9 hcl_start_energy_sensor(&dsensor[1]);

10 }
11 #pragma omp barrier
12 if (omp_get_thread_num() == 0) {
13 hcl_start_energy_sensor(&csensor[0]);
14 cpudgemm(N1, N, N, A, B, C);
15 hcl_stop_energy_sensor(&csensor[0],

&cpuenergy);
16 } else {
17 if (omp_get_thread_num() == 1) {
18 gpudt1(N2, N, N, &A[N1*N], B,

&C[N1*N]);
19 hcl_start_energy_sensor(&csensor[1]);
20 gpudgemm1(N2, N, N);
21 hcl_stop_energy_sensor(&csensor[1],

&gpu1energy);
22 } else {
23 gpudt2(N1+N2, N, N, &A[(N1+N2)*N], B,

&C[(N1+N2)*N]);
24 hcl_start_energy_sensor(&csensor[2]);
25 gpudgemm2(N1+N2, N, N);
26 hcl_stop_energy_sensor(&csensor[2],

&gpu2energy);
27 }
28 }
29 #pragma omp barrier
30 #pragma omp master {
31 hcl_stop_energy_sensor(&dsensor[0],

&cpu2gpuenergy);
32 hcl_stop_energy_sensor(&dsensor[1],

&gpu2cpuenergy);
33 }
34 }
35 hcl_destroy_energy_sensor(&csensor[0]);
36 hcl_destroy_energy_sensor(&csensor[1]);
37 hcl_destroy_energy_sensor(&csensor[2]);
38 hcl_destroy_energy_sensor(&dsensor[0]);
39 hcl_destroy_energy_sensor(&dsensor[1]);
40 exit(EXIT_SUCCESS);
41 }

Fig. 12: The matrix multiplication application contains three
OpenMP threads invoking the energy sensor API functions
and software components (kernels) in parallel, one CPU com-
ponent, and two GPU components. Five energy sensors are
deployed in this application: three for computations in the
CPU, A40 GPU 1, and A40 GPU 2 software components
(csensor[0], csensor[1], and csensor[2]), two for data trans-
fers between the host CPU and the GPUs and the GPUs and
the host CPU (cpu2gpusensor, gpu2cpusensor).

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 15

VI. EXPERIMENTAL RESULTS

We experimentally determine the accuracy of our soft-
ware energy sensors using three highly optimized parallel
scientific applications on our Icelake A40 GPU server. The
three heterogeneous hybrid applications are Matrix Addition
(HDGEADD), Matrix Multiplication (HDGEMM), and 2D
fast Fourier Transform (2D-HFFT). We employ the same ma-
trix sizes for all the applications, starting from 30720x30720
to 31200x31200 with a stepsize of 16. For each matrix size,
we determine the following:
• Estimated and actual dynamic energy of data transfers

between pairs of devices by employing software energy
sensors and the ground-truth method.

• Estimated and actual dynamic energy of computations
on the multicore CPU by employing the software energy
sensor and the ground-truth method.

• Estimated and actual dynamic energy of computations on
the two GPUs using the software energy sensors and the
ground-truth method.

• The total dynamic energy consumption during the appli-
cation execution using the ground-truth method.

• The sum of the estimated dynamic energy consumptions
of computations and data transfers during the application
execution using our software energy sensors.

A. Comparison between Energies of Computations and Data
Transfers

Figure 14 shows the dynamic energy consumption of com-
putations and data transfers for various matrix sizes employed
in three parallel applications, matrix addition, matrix multipli-
cation and 2D fast Fourier transform, executed on a heteroge-
neous hybrid platform shown in Table II. The dynamic energy
consumption is measured using the ground-truth method.

The dynamic energy of data transfer is significant compared
to the computations on the multicore CPU processor for
all three applications, contravening the widespread notion
that data transfers consume negligible dynamic energy. The
averages of the ratios of dynamic energy of computations to
data transfer for the three applications are equal to 2, 5, and
2.5, respectively. Furthermore, the dynamic energy relationship
with matrix size is non-linear for matrix addition, suggesting
an opportunity for energy optimization.

Therefore, optimizing the data transfers in the parallel ap-
plications on heterogeneous hybrid platforms for performance
and energy is an important problem.

ACKNOWLEDGMENTS

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI)
under the SFI Frontiers for the Future Programme 20/FFP-
P/8683.

REFERENCES

[1] M. Fahad and R. R. Manumachu, “HCLWattsUp: Energy API using
system-level physical power measurements provided by power meters,”
2022. [Online]. Available: https://csgitlab.ucd.ie/manumachu/hclwattsup

[2] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in 2010
39th international conference on parallel processing workshops. IEEE,
2010, pp. 207–216.

[3] NVIDIA Corporation, “CUDA profiling tools interface (CUPTI) - 1.0,”
2021. [Online]. Available: https://developer.nvidia.com/cupti-1 0

[4] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance counters,”
in International Green Computing Conference and Workshops (IGCC).
IEEE, 2010.

[5] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis
of ATI GPU: A statistical approach,” in Proceedings of the IEEE Sixth
International Conference on Networking, Architecture, and Storage, ser.
NAS ’11. IEEE Computer Society, 2011, pp. 149–158.

[6] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and
accurate model of power-performance efficiency on emergent GPU archi-
tectures,” in 27th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, 2013, pp. 673–686.

[7] Heterogeneous Computing Laboratory (HCL), “Energy modeling of
software components in parallel applications on heterogeneous hybrid
platforms,” https://csgitlab.ucd.ie/manumachu/libedm.git, 2024.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 16

(a) Parallel matrix addition application (HDGEADD) computing the
matrix addition (C = A + B) of two dense square matrices A and
B of size N × N .The application comprises 3 software components
executed in parallel (one CPU component, one GPU 1 component,
and one GPU 2 component). Each software component i computes the
matrix addition, Ci = Ai +Bi.

(b) Matrix partitioning between the software components in hybrid
parallel matrix multiplication application (HDGEMM) computing the
matrix product (C+ = A × B) of two dense square matrices A and
B of size N ×N . The matrix B is shared by all the components. The
application comprises 3 software components executed in parallel (one
CPU component, one GPU 1 component, and one GPU 2 component).
Each software component i computes the matrix product, Ci = Ai×B.

(c) Hybrid parallel 2D fast Fourier Transform application (HFFT) com-
puting the 2D-FFT of a signal matrix S of size N×N . The application
comprises three software components executed in parallel (one CPU
component, one GPU 1 component, and one GPU 2 component). The
matrix S is partitioned such that each software component is assigned
several contiguous rows of S provided as a parameter to the application.
The 2D FFT accomplished in four steps: (1) Computing 1D FFTs on N
rows of the signal matrix N. (2) Transpose of the signal matrix. Steps
(3) and (4) repeat steps (1) and (2), respectively.

Fig. 13: Description of the three heterogeneous hybrid applications.

Hafiz Adnan Niaz received the B.Sc. degree in
computer systems engineering from UCET-IUB and
the M.S. degree in computer engineering from the
NUST College of Electrical and Mechanical Engi-
neering (CEME-NUST), Islamabad Pakistan. He is
currently pursuing the Ph.D. degree from the School
of Computer Science, University College Dublin
(UCD) Ireland. He is working on optimizing energy
of communication for high-performance heteroge-
neous platforms. His research interests includes par-
allel computing, high-performance computing, and

energy-efficient computing.

Ravi Reddy Manumachu received a B.Tech de-
gree from I.I.T, Madras in 1997 and a PhD degree
from the School of Computer Science, University
College Dublin (UCD) in 2005. He is currently As-
sistant Professor in the School of Computer Science
at UCD. His main research interests include high
performance heterogeneous computing and energy-
efficient computing.

IEEE TRANSACTIONS ON , XXXX JANUARY 2024 17

(a) (b)

(c)

Fig. 14: Dynamic energy profiles showing the comparison between computations and data transfers between CPU and A40
GPUs for three heterogeneous hybrid applications, matrix addition (HDGEADD), matrix multiplication (HDGEMM), and 2D
fast Fourier transform (HFFT), executed on the Icelake A40 GPU server.

Alexey Lastovetsky received a Ph.D. degree from
the Moscow Aviation Institute in 1986, and a Doc-
tor of Science degree from the Russian Academy
of Sciences in 1997. His main research interests
include high performance heterogeneous computing
and energy-efficient computing. He is currently As-
sociate Professor in the School of Computer Science
at University College Dublin (UCD). He is also the
founding Director of the Heterogeneous Computing
Laboratory in UCD. He authored the monographs
Parallel computing on heterogeneous networks (Wi-

ley, 2003) and High performance heterogeneous computing (Wiley, 2009).

