
Accurate Component-level Energy Modelling of Parallel Applications on
Modern Heterogeneous Hybrid Computing Platforms using System-level

Measurements

Muhammad Fahad

UCD student number: 15207261

The thesis is submitted to University College Dublin
in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science

School of Computer Science

Head of School: Assoc. Professor Chris Bleakley

Research Supervisor: Assoc. Professor Alexey Lastovetsky

August 2020

i

Acknowledgements

All praises and thanks be to Allah the Almighty for everything and more He blessed me with, and

make everything always easier for me.

I would like to acknowledge the support, wisdom, and encouragement given by many respected

and loving people around me. I would like to start by expressing my deepest gratitude to my super-

visor Dr. Alexey Lastovetsky for his invaluable support, mentorship and the immense knowledge he

provided me over the years. His continuous guidance and insights always kept me on track and do

the right thing even when the road got tough. A very grateful thanks to Dr. Ravi Reddy Manumachu

for his assistance, support and encouragement throughout my Ph.D. His insights have immensely

improved my writing skills.

A deepest gratitude to Arsalan Shahid for his collaboration and support; thank you Arsalan for

always being there whenever it was needed. A big thank you to all my colleagues in UCD’s Het-

erogeneous Computing Laboratory for their fruitful collaborations: Semen Khokhriakov, Hamidreza

Khaleghzadeh, Tania Malik, and especially to Emin Nuriyev for all the chats we had over many

lunches on almost everything: Culture, History, Science, the emerging technologies, and the list

goes on.

The last four years of my life have been truly rewarding for honing my soft skills. I would like to

thank all the professors from UCD School of Computer Science and UCD Lochlann Quinn School of

Business who provided me the opportunities to be a teaching assistant and demonstrate the world-

class modules. To all the staff of the School of Computer Science, especially to my DSP members,

Dr. Chris Bleakley and Dr. Brett Becker. Thank you also to the school’s support staff: Lorraine

McHugh, Léan Ní Chléirigh, Rosemary Deevy, Carl Lusby, D’Arcey Jackson, Paul Martin and Tony

O’Gara for their consistent helpfulness over the years.

This research has emanated from research conducted with the financial support of Science

Foundation Ireland (SFI) under Grant Number 14/IA/2474. I would like to thank SFI and University

College Dublin for their financial support in the form of scholarship awards.

A special tribute and respect to all my teachers and mentors whose affection, encouragement

and guidance have shaped me and made a lasting impact on me. My grateful thanks are also

extended to all the amazing people that I got to know during my stay in Dublin, especially to Mr.

Waqas Ansari for his moral support and guidance. I would also like to extend my gratitude to Mr.

Gerald Griffin for providing me a wonderful home (away from home!).

I am eternally grateful to my loving parents for their unconditional love and providing me with

everything possible at their disposal. I would not be the same without your support and encourage-

ment. A very special thanks to my brother and sisters for all the support and unconditional love they

have for me. I am forever indebted to you for everything and being always there for me no matter

what.

ii

To my wife for her understanding, continuous support and bearing with me throughout these

years. You have been there for me every step of the way; your appreciation and love make it all

worthwhile. Last but by no means least, I am thankful to our little shining stars Hussain and Abbas,

for bringing so much happiness and joy into our life.

iii

To,

the light of the wisdom and the conscience

iv

Abstract

It is predicted that (in a worst-case scenario) Information and Communications Technology (ICT)

systems and devices could contribute up to 23% of greenhouse gas emissions, and could share up

to 51% of global electricity in 2030. Considering such dire consequences on environment and econ-

omy, energy efficiency in ICT is becoming a grand technological challenge and is now a first-class

design constraint in all computing settings. Modern high performance computing (HPC) platforms,

cloud computing systems, and data centers are highly heterogeneous containing nodes where a

multicore CPU is tightly integrated with one or more co-processors/accelerators such as graphical

processing units (GPUs), Intel Xeon PHIs, and field-programmable gate arrays (FPGAs) to address

the twin critical concerns of performance and energy efficiency. Application component energy pro-

files are essential to energy optimization of hybrid applications executing in parallel on such hetero-

geneous computing platforms. Accurate measurement of energy consumption during an application

execution is the key to application-level energy minimization techniques. There are three popular

approaches to providing it: a). System-level physical measurements using external power meters,

b). Measurements using on-chip power sensors, and c). Energy predictive models. While the first

approach is known to be accurate, it can only provide the measurements at a computer level and

therefore lacks the ability to provide fine-grained device-level decomposition of the energy consump-

tion by an application executing on several independent computing devices (CPU,GPU, etc.) in a

computer.

In this thesis, a methodology is proposed to determine the accurate fine-grained device-level

energy consumption by an application employing system-level power measurements provided by

external power meters. Then, a comprehensive study is presented comparing the accuracy of en-

ergy measurements using state-of-the-art on-chip power sensors (provided by RAPL, NVML, Intel

MICSMC) and energy predictive models employing performance monitoring counters (PMCs) as

predictor variables, against the ground truth (system-level physical measurements using external

power meters). An important finding of this study is that the dynamic energy profile patterns of the

on-chip sensors and energy predictive models differ significantly from the patterns obtained with the

ground truth. This suggests that the measurements using on-chip sensors and energy predictive

v

models do not capture the holistic picture of the dynamic energy consumption during an application

execution. Another key finding is that owing to the nature of the deviations of the energy measure-

ments provided by on-chip sensors from the ground truth, calibration cannot improve the accuracy

of the on-chip sensors to an extent that can allow them to be used in optimization of applications

for dynamic energy. The thesis demonstrates that using inaccurate energy measurements provided

by on-chip sensors for dynamic energy optimization of an application can result in significant energy

losses (up to 84% in our case). These are important discoveries to keep in mind when basing new

research using these sensors and predictive models based on PMCs.

This thesis also addresses two important challenges for energy optimization of hybrid applica-

tions running in parallel on modern heterogeneous NUMA computing platforms: a) Accurate mod-

elling of the energy consumption of application kernels when executing in parallel on multiple com-

pute devices, b) Accurate modelling of the energy consumption of different applications executing in

parallel on a multi-socket multi-core CPU platform. It proposes a method for accurate estimation of

the application component-level energy consumption employing system-level power measurements

with power meters. The method is experimentally validated on a cluster of two hybrid heterogeneous

computing nodes using three parallel applications matrix-matrix multiplication, 2D fast Fourier trans-

form and gene sequencing. The experiments demonstrate a high estimation accuracy of the pro-

posed method, with the average estimation error ranging between 2% and 5%. The average error

demonstrated by the state-of-the-art estimation methods for the same experimental setup ranges

from 15% to 75%, while the maximum reaches 178%. It is demonstrated that the use of the state-

of-the-art estimation methods instead of the proposed one in the energy optimization loop leads to

significant energy losses (up to 45% in our case).

Finally, this thesis highlights and proposes a solution to an understudied yet fundamentally im-

portant question of how to measure the goodness of energy profiles. Accurate energy profiles are

essential to optimization of parallel applications for energy through workload distribution. Since there

are many model-based methods available for efficient construction of energy profiles, we need an

approach to measure the goodness of the profiles compared with the ground-truth profile, which

is usually built by a time-consuming but reliable method. Correlation coefficient and relative error

are two such popular statistical approaches, but they assume that profiles be linear or at least very

smooth functions of workload size. This assumption does not hold true in the multicore era. Due to

the complex shapes of energy profiles of applications on modern multicore platforms, the statistical

methods can often rank inaccurate energy profiles higher than more accurate ones and employing

such profiles in the energy optimization loop of an application leads to significant energy losses (up

to 54% in our case). In this thesis, we present the first method specifically designed for goodness

vi

measurement of energy profiles. First, it analyses the underlying energy consumption trend of each

energy profile and removes the profiles that exhibit a trend different from that of the ground truth.

Then, it ranks the remaining energy profiles using the Euclidean distances between them and the

ground truth. The proposed method is found to be more accurate than the statistical approaches

and can save a significant amount of energy. Furthermore, it is shown how the proposed method

can help determine if an energy model that provides the inaccurate energy profile has deficient or

redundant information.1

1This research is financially supported by Science Foundation Ireland (SFI) under Grant Number 14/IA/2474.

vii

Contents

Acknowledgements ii

Abstract v

Contents viii

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Motivations for This Thesis . 2

1.1.1 Energy Efficiency: Challenges . 2

1.1.2 Energy Efficiency: Approaches in ICT . 5

1.1.3 Challenges to Application-level Energy Optimization 5

1.1.4 State-of-the-art Approaches to Measure the Energy Consumption of Computing 7

1.1.5 Open Challenges with State-of-the-art Approaches 8

1.1.6 Goodness of Energy Profiles of Applications Executing on Multicore Comptu-

ing Platforms . 12

1.2 Thesis Contributions . 14

1.3 Thesis Structure . 16

2 Background and Related Work 17

2.1 Terminologies and Taxonomy . 18

2.1.1 HPC Architectures . 18

2.1.2 Energy and Power . 20

2.1.3 Instantanious Power vs Average Power . 21

2.1.4 Static vs Dynamic Power and Energy . 21

2.2 Common Practices to Measure the Energy of Computing 22

viii

2.2.1 Power Instrumentation Systems . 22

2.2.2 Power meters . 24

2.2.3 On-chip power sensors and vendor specific libraries 24

2.2.4 Energy Predictive Models . 25

2.3 Critiques of built-in power sensors and PMC based predictive modelling 29

2.3.1 On-chip integrated power sensors . 29

2.3.2 PMC based Energy predictive models . 31

2.4 Energy Optimization Approaches . 32

2.4.1 Power Saving Mechanisms . 33

2.4.2 Multi-objective Optimization Methods Involving Energy 35

2.5 Approaches for Measuring the Goodness of Energy Profiles of Applications Executing

on Multicore Comptuing Platforms . 36

2.5.1 Accuracy measurement approaches used in energy modeling 36

2.5.2 Pattern matching approaches in other fields for closely related problem 37

3 A Methodology to Determine the Energy Consumption by An Application Using

System-level Measurements 41

3.1 Introduction . 41

3.2 Energy Consumption by the application . 42

3.3 API for Power Measurements Using External Power Meter Interfaces (HCLWattsUp) . 44

3.4 Component-Level Energy Consumption Using HCLWattsUp API 47

3.5 Methodology to Obtain a Reliable Data Point using HCLWattsUp API 48

3.6 Summary . 52

4 A Comparative Study of Methods for Measurement of Energy of Computing 53

4.1 Introduction . 53

4.2 Terminologies . 54

4.3 Experimental Setup for Comparing On-Chip Sensors and System-Level Physical

Measurements Using Power Meters . 55

4.4 Comparison of Energy Measurements Using RAPL and HCLWattsUp 57

4.4.1 Experimental Methodology . 58

4.4.2 Experimental Results on HCLServer03 . 59

4.4.3 Experimental Results of RAPL and HCLWattsUp on HCLServer01 and

HCLServer02 . 66

4.4.4 Discussion . 69

ix

4.5 Comparison of Energy Measurements Using GPU and Xeon Phi Sensors with

HCLWattsUp . 71

4.5.1 Methodology To Compare Measurements Using Sensors and HCLWattsUp . . 71

4.5.2 Experimental Results Using GPU Sensors (NVML) 73

4.5.3 Experimental Results Using Intel Xeon Phi Sensors (Intel MPSS) 77

4.5.4 Discussion . 79

4.6 Comparison of dynamic energy consumption using PMC-based energy predictive

models and HCLWattsUp . 80

4.7 Energy Losses From Employing an Inaccurate Measurement Tool 80

4.8 Comparison of Costs of Measurement and Implementation Complexity 83

4.8.1 Implementation Complexity . 84

4.8.2 Topological granularity issues with sensors 84

4.9 Current Picture, Recommendations and Future Directions 85

4.10 Summary . 86

5 Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous

Computing Platforms using System-Level Measurements 88

5.1 Introduction . 88

5.2 AnMoHA: Additive Energy Modelling of Hybrid Applications on Heterogeneous Com-

puting Platforms . 89

5.2.1 Grouping of Computing Elements . 90

5.2.2 Energy Models of Abstract Processors . 92

5.3 Experimental Validation of AnMoHA . 93

5.3.1 Experiment Platforms and Applications . 93

5.3.2 Formulation of Abstract Processors on HCLServers 94

5.3.3 Results and Analysis . 95

5.4 Trade-off between accuracy and time space of additive modelling 99

5.4.1 Results and Discussion . 102

5.5 Trade-off between accuracy and design space of additive modelling 108

5.5.1 Results and Discussion . 109

5.6 Workload Types and Ganularity Limitations of AnMoHA 112

5.6.1 Workload Types and Granularity Limitations 112

5.6.2 State-of-the art Energy Measurement tools 115

5.6.3 Core-wide dynamic energy consumption modelling 120

x

5.7 Study of additive energy modelling and dynamic energy optimization with On-chip

sensors and HCLWattsUp . 122

5.7.1 Additive energy modelling with on-chip sensors 123

5.7.2 A study of dynamic energy optimization with on-chip sensors and HCLWattsUp 125

5.8 Scope and Limitations of AnMoHA . 128

5.9 Summary . 131

6 A Statistical Learning Based Novel Similarity Measuring Methodology for Energy Pro-

files of Parallel Applications 132

6.1 Introduction . 132

6.2 Goodness Measuring Problem Formulation . 134

6.3 Challenges With State-of-the-art Practices To Measure The Goodness Of Energy

Models . 135

6.4 Trend-based Similarity Measuring Methodology for Energy Profiles 137

6.4.1 Model Fitting . 137

6.4.2 The Discrepancy Analysis . 139

6.4.3 The Distance Metric . 140

6.5 Experimental Validation of Trend-based Similarity Measuring Methodology for Energy

Profiles (TSM) . 140

6.5.1 Experimental Platform and Applications . 140

6.5.2 Experimental Methodology to validate TSM 141

6.5.3 Results and Discussion . 142

6.5.4 Discussion . 146

6.6 Comparison of TSM and State-of-the-art Statistical Approaches for Energy Optimization149

6.7 Summary . 152

7 Summary, Current Picture and Future Directions 154

7.1 Summary . 154

7.2 Future Works . 158

7.3 Current Picture, Recommendations and Future Directions 158

7.3.1 Current Picture . 159

7.3.2 Recommendations and Future Directions in General 161

Bibliography 163

Appendices 177

xi

A Comparison of dynamic energy consumption using PMC-based energy predictive

models and HCLWattsUp 177

A.1 Introduction . 177

A.1.1 Experimental Setup . 177

A.1.2 Accuracy of Platform-Level Linear PMC-Based Models 179

A.1.3 Accuracy of Application-Specific PMC-Based Models 181

B Parallel Gene Sequencing Application 183

C Calibration of WattsUp Pro power-meter 185

C.1 Naked-eye visual monitoring . 185

C.2 Monitoring server base power . 186

C.3 Measurement of total energy consumption by scientific applications 186

D Similarity Results of Group A 189

E Similarity Results of Group B 191

Acronyms 197

xii

List of Figures

1.1 System share of accelerators and co-processors in TOP500 supercomputers over

time, based on the results published from top500.org [1]. 2

1.2 Projected share of Information and Communication Technologies (ICT) in global elec-

tricity and GHG emissions, based on the data from [2]. 3

1.3 Power consumption by top 10 supercomputers over time, based on the results pub-

lished from top500.org. 4

1.4 Dynamic energy consumption profile segments of HCLWattsUp and Intel RAPL for 2D

FFT computation using FFTW-3.3.7 on Intel Intel Xeon Platinum 8180. 7

1.5 Sample Dynamic Energy Profiles . 13

2.1 Block diagram of a hybrid heterogeneous Non-Uniform Memory Access (NUMA) node. 20

3.1 Static and Dynamic energy consumption . 43

3.2 Example illustrating the use of HCLWattsUp Application Programming Interface (API)

for measuring the dynamic energy consumption . 46

4.1 Dynamic energy profiles with Running Average Power Limit (Running Average Power

Limit (RAPL)) and HCLWattsUp on HCLServer03, class A. RAPL calib. means that

RAPL readings have been calibrated. 60

4.2 Dynamic energy profiles by RAPL and HCLWattsUp on HCLServer03, class B. RAPL

calib. means that RAPL readings have been calibrated. (a) DGEMM, N = 10,240–

25,600, (b) MKL-FFT, N = 32,768–43,456. 61

4.3 Dynamic energy profiles of Fastest Fourier Transform in the West (FFTW) (N =

20, 480− 26, 560) by RAPL and HCLWattsUp on HCLServer03, class C 63

4.4 Dynamic energy consumption of RAPL, RAPL calibrated and HCLWattsUp on

HCLServer01. 67

4.5 Dynamic energy consumption of RAPL and HCLWattsUp on HCLServer02. 68

xiii

4.6 Dynamic energy profiles by RAPL and HCLWattsUp on HCLServer03 falling into Class

B. (a) FFTW, N = 35,480–41,920, (b) FFTW, N = 35,480–41,920. 70

4.7 Dynamic energy consumption profiles of DGEMM and CUDA FFT on Nvidia K40c

Graphics Processing Unit (GPU) on HCLServer01. RAPL+GPUSensors calib. means

that RAPL+GPUSensors values have been calibrated. 74

4.8 Dynamic energy consumption profiles of Nvidia P100 PCIe GPU on HCLServer02. . . 76

4.9 Dynamic energy consumption profiles of Intel MKL DGEMM and Intel MKL FFT

on Intel Xeon Phi (Xeon Phi) co-processor. RAPL+PHISensors calib. means that

RAPL+PHISensors values have been calibrated. 78

4.10 Dynamic energy consumption profiles of Double-precision General Matrix Multiplica-

tion (DGEMM) on HCLServer01 and HCLServer02. 82

5.1 Dynamic energy profiles of DGEMM on HCLServer01. 96

5.2 Dynamic energy profiles of DGEMM on HCLServers. 97

5.3 Dynamic energy profiles of 2D-Fast Fourier Transform (FFT) on HCLServers. 98

5.4 Dynamic energy profiles of Smith-Waterman application on HCLServers. 100

5.5 Dynamic energy consumption by DGEMM on HCLServers. 103

5.6 Dynamic energy consumption by FFT on HCLServers. 104

5.7 Dynamic energy consumption by Smith-Waterman application on HCLServers. 105

5.8 Trade-off between the time to build energy models using AnMoHA and their accuracy. 107

5.9 Dynamic Energy Profiles of DGEMM for all possible independent experiments on

HCLServer01. 110

5.10 Trade off between number of experiments and accuracy. 111

5.11 Case study A: Socket-wide dynamic energy profiles of same application and same

workloads. 113

5.12 Case study B: Socket-wide dynamic energy profiles of same application, different

workloads. 114

5.13 Case study C: Different applications. x-axis scale represents the problem size range

for DGEMM executed on AbsSoc1. 115

5.14 Case Study B: Dynamic energy profiles of same application with different workload

sizes built with RAPL and HCLWattsUp on HCLServer01. 117

5.15 Socket-wide dynamic energy profiles built with RAPL and HCLWattsUp on

HCLServer01. 119

5.16 Dynamic energy profiles of same application with different workload sizes built with

RAPL and HCLWattsUp on HCLServer01 with calibrated RAPL readings. 121

xiv

5.17 Dynamic energy profiles of 2D-FFT on HCLServer01. 123

5.18 Dynamic energy profiles of DGEMM on HCLServer01. 124

5.19 Dynamic energy profiles of 2D-FFT on HCLServer01. 125

5.20 Dynamic energy profiles of DGEMM on HCLServer01. 127

6.1 Sample dynamic energy consumption profiles. 133

6.2 Dynamic energy consumption profile segments of matrix-matrix multiplication using

Intel MKL constructed with HCLWattsUp and Intel RAPL on HCLServer01. 135

6.3 Regression models of energy profiles in Set of Energy Profiles of an Applicaiton Con-

structed with Different Energy Measurement Techniques (EPS) DGEMM_EqualLoad

constructed with a) HCLWattsUp, and b) RAPL . 143

6.4 Regression models of energy profiles in EPS DGEMM_AnMoHA. a) Combined_1 and

Combined_5 follows the same trend, Combined_2 follows similar trend, and b) all

profiles exhibit opposite trend as of the ground truth 144

6.5 Group B (Sets of single energy profile), Class same Similarity. Group B comprises of

sets of energy profiles where only one energy profile is compared with the ground truth144

6.6 Group B (Sets of single energy profile), Class similar Similarity. Here, G= CPU thread

groups, and T=CPU threads . 145

6.7 Group B, Class C: opposite Similarity . 145

6.8 Regression models of energy profiles in EPS FFT_Predictive Models, a) Linear Mod-

els, and b) Linear Model NonAdditive Calibrated . 148

6.9 Dynamic energy profiles in EPS DGEMM_AnMoHA 151

6.10 Dynamic energy profiles of DGEMM application in the EPS, DGEMM_EqualLoad. . . 152

A.1 Dynamic Energy profiles constructed with predictive models RAPL and HCLWattsUp. 182

C.1 Base power of HCLServers with HCLWattsUp and Yokogawa. 187

C.2 Total energy consumption by DGEMM with HCLWattsUp and Yokogawa on HCLServers.187

C.3 Total energy consumption by FFT with HCLWattsUp and Yokogawa on HCLServers. . 188

xv

List of Tables

4.1 HCLserver01: Specifications of the Intel Haswell multicore CPU, Nvidia K40c and

Intel Xeon Phi 3120P. 56

4.2 HCLserver1: Specifications of the Intel Skylake multicore CPU and Nvidia P100 PCIe. 57

4.3 HCLServer3: Specifications of the Intel Skylake multicore processor (CPU) consisting

of two sockets of 28 cores each. 57

4.4 Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on

HCLServer03. Here, G = Thread-groups, T = Threads, and SS = Step Size. 64

4.5 Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on

HCLServer03. Here, G = Thread-groups, T = Threads, and SS = Step Size. 64

4.6 Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on

HCLServer03. Here, G = Thread-groups, T = Threads, and SS = Step Size. ’-’ de-

notes that calibration does not be improve the difference. 66

4.7 Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on

HCLServer01 and HCLServer02. ’-’ denotes that calibration does not improve the

difference. 01 and 02 denotes HCLServer01 and HCLServer02 respectively. 69

4.8 Percentage error of dynamic energy consumption by Nvidia K40c GPU with and with-

out calibration and HCLWattsUp on HCLServer01. 75

4.9 Percentage error of dynamic energy consumption by Nvidia P100 PCIe GPU with and

without calibration and HCLWattsUp on HCLServer02. 77

4.10 Percentage error of dynamic energy consumption with and without calibration and

HCLWattsUp on Intel Xeon Phi. 79

4.11 Prediction errors of RAPL against HCLWattsUp for dynamic energy consumption by

DGEMM. 81

4.12 Dynamic energy losses in percentage with RAPL in comparison with HCLWattsUp. . 83

5.1 Table of notations used in equations 5.1 and 5.2. 92

xvi

5.2 Percentage error between parallel and combined dynamic energy profiles on

HCLServers. 99

5.3 Table of notations used in equations 5.3 and 5.4. 101

5.4 Percentage errors between parallel and combined dynamic energy profiles with 10%

precision setting. 106

5.5 Percentage absolute mean and maximum deviations of dynamic energy consumption

by accurate parallel (with 2.5% precision setting) and less accurate combined profiles

with 10% precision settings on HCLServers. Here ’s01’ denotes HCLServer01 and

’s02’ denotes HCLServer02. 106

5.6 Percentage errors between DGEMM combined and parallel dynamic energy profiles

on HCLServer01. 110

5.7 Percentage deviations from mean and maximum of dynamic energy consumption by

parallel and combined profiles. 110

5.8 Percentage errors between socket-wide parallel and combined dynamic energy pro-

files built with HCLWattsUp. 116

5.9 Percentage deviations from mean and maximum of dynamic energy consumption by

parallel and combined profiles of 2D-FFT (composed with Sensors and HCLWattsUp)

on HCLServer01. 124

5.10 Percentage deviations from mean and maximum of dynamic energy consumption by

parallel and combined profiles of DGEMM (composed with Sensors and HCLWattsUp)

on HCLServer01. 124

5.11 Percentage error of sensors against HCLWattsUp for dynamic energy consumption

by 2D-FFT. 126

5.12 Percentage difference of sensors against HCLWattsUp for dynamic energy consump-

tion by DGEMM. 128

A.1 List of Applications. 178

A.2 Correlation of performance monitoring computers (Performance Monitoring Counter

(PMC)s) with dynamic energy consumption (ED). Correlation matrix showing rela-

tionship of dynamic energy with PMCs. 100% correlation is denoted by 1. 179

A.3 Linear predictive models (A-F) with intercepts and RAPL with their minimum, average

and maximum prediction errors. 180

A.4 Selected PMCs for Class B experiments along with their energy correlation for

DGEMM and FFT. 0 to 1 represents positive correlation of 0% to 100%. 181

xvii

C.1 Minimum, maximum and average of idle power using WattsUp Pro and Yokogawa

power meters on HCLServer01 and HCLServer02 187

C.2 Comparison of minimum, average, and maximum measurement errors for DGEMM

and FFT on HCLServer01 and HCLServer02 using WattsUp Pro and Yokogawa . . . 188

D.1 Similarity results for Group A. 189

E.1 Similarity Results of Group B. Here Problem Size is (M ×N) where 0 ≥M ≤ N . . . 191

xviii

Statement of Original Authorship

I hereby certify that the submitted work is my own work, was completed while registered as a can-

didate for the degree stated on the Title Page, and I have not obtained a degree elsewhere on the

basis of the research presented in this submitted work.

xix

Chapter 1

Introduction

Multicore architectures are now prevalent in all computing settings ranging from a handheld mobile

device to HPC computing platforms and supercomputers. The advent of multicore architectures has

boosted the performance of the applications by providing the opportunities of executing them with

a higher degree of parallelism. This has opened up a new era for High Performance Computing

(HPC).

In today’s data-driven era, HPC is considered as a key strategic resource for innovations, eco-

nomic competitiveness, and major advances of a country’s future [3] [4]. It offers an immense com-

putational power to the industry and small and medium enterprises to find the high-value innovative

solutions, lower the production cost, streamline the whole production process, minimize the time to

design and test the prototypes, and reduce the time to market for products. Furthermore, nearly all

scientific disciplines are relying on very high computing power for scientific discoveries. Consider,

for example, the Particle Physics experiments at the Large Hadron Collider require a great amount

of computing power for simulation, data processing and analysis [5]. Similarly, the scientists needs

HPC to accelerate genome sequencing by two orders of magnitude in order to crack cancer dis-

eases [3]. To summarize, HPC is the core of the industrial, societal, and scientific advancements in

modern digital world.

For decades, the performance maximization has been the chief concern of both the hardware

architects and the software developers. As per Moore’s law [6], the number of transistors in a dense

integrated circuit doubles every 18 to 24 months. Dennard scaling [7] relates to Moore’s law by pos-

tulating that the power use of the transistors stays in proportion to their area. While taking the advan-

tage of Moore’s law and Dennard’s scaling for decades, there has been an exponential improvement

in the performance of Central Processing Unit (CPU) by increasing their clock frequencies without

any significant additional power consumption. However, this period of "Free lunch" is over [8] now

due to the end of Dennard’s scaling in around 2006 [9]. This has led the semiconductor industry to

transit from single-core to multi-core and many-core architectures. However, the signs of failure of

Moore’s law indicates an end of this type of performance scaling as well [10].

As a result, the hardware acceleration and the use of co-processors together with CPU are

becoming a popular choice to gain the performance boost while keeping the power budget low.

This includes both the new customized hardware for particular application domain such as Tensor

Processing Unit (TPU), Vision Processing Unit (VPU) and Neural Processing Unit (NPU); and the

modifications in existing platforms such as Intel Xeon Phi co-processors, general purpose GPUs

1

1.1. MOTIVATIONS FOR THIS THESIS

and Field Programmable Gate Array (FPGA)s.

Such accelerators together with main processors and memory, constitute a heterogeneous sys-

tem and are greatly prevalent now in modern ICT devices ranging from handheld mobile devices

to HPC systems for many reasons such as growing accelerated computational needs and power

constraints. Figure 1.1 illustrates the increasing trend of accelerators/co-processors based super-

computers in TOP500 [1] which has been publishing an overview on the 500 most powerful computer

systems twice a year since June 1993. The plot shown in figure 1.1 is based on the data gathered

from the lists published in November every year since 2007. As per the list published in November

2019, a total of 29% of the systems are using accelerators/co-processors where no supercomputer

on the list was accelerated nearly a decade ago. However, this heterogeneity has raised unprece-

dented difficulties posed to performance and energy optimization of modern heterogeneous HPC

platforms.

Figure 1.1: System share of accelerators and co-processors in TOP500 supercomputers over time,
based on the results published from top500.org [1].

1.1 Motivations for This Thesis

1.1.1 Energy Efficiency: Challenges

This section presents the overview of general challenges to energy efficiency in computing. En-

ergy accounts for two-third of total greenhouse gas [11], and therefore is identified by International

Energy Agency (IEA) as a major contributor to climate change. In a recent report, IEA states that

energy related CO2 emission has risen 1.7% to an unprecedentedly high 33.1 gigatonnes due to

high energy demands in 2018 [12]. ICT systems and devices (including the personal digital devices,

communication networks, televisions, HPC and data centers) are large contributors with a consump-

tion of about 2000 terawatt hours (TWh) per year which is about 10% of the global electricity demand

[13]. With a share of 200 TWh, data centers are a big contributor to this high electricity consumption.

ICT is generating approximately more than 2% of overall global CO2 emissions, which is on par with

global aviation industry emissions due to fuel combustion [14]. It is predicted that (in a worst case

scenario) ICT could use up to 51% of global electricity in 2030, and it could contribute up to 23%

of globally released greenhouse gas emission [2]. Figures 1.2(a) and 1.2(b) illustrates the projected

2

1.1. MOTIVATIONS FOR THIS THESIS

share of ICT in global electricity and green house gas (GHG) emissions respectively, for the next ten

years.

(a) Percentage share of ICT of global electricity usage. (b) Percentage share of ICT of global green house gas
(GHG) emissions.

Figure 1.2: Projected share of ICT in global electricity and GHG emissions, based on the data from
[2].

As a result of Dennard scaling breakdown, energy efficiency is becoming an equally important

design concern with performance in ICT. It is becoming a grand technological challenge and is

now a first-class design constraint in all computing settings ranging from handheld mobile devices

to supercomputers [15, 16]. The advent of multicore architectures has resulted in several inherent

complexities such as severe resource contention, NUMA, etc. As a result, the shapes of speed

and energy profiles of the applications executing on these platforms are highly non-smooth and

non-linear with drastic variations [17]. The studies [17] [18] report that the traditional load-balancing

solutions (based on the equal distribution of the workload between identical processors) with such

performance and energy profiles do no assure the minimization of execution time or energy con-

sumption. Hence, the traditional methods and algorithms employed for performance and/or energy

optimization of the applications executing on modern multicore-based platforms are not applicable

anymore [19].

More often than not, modern HPC platforms, cloud computing systems, and data centers are

composed of the nodes where a multicore CPU is tightly integrated with one or more compute

devices (such as GPUs, FPGAs, Xeon Phis, et cetra) to address the twin critical concerns of per-

formance and energy efficiency. However, this tight integration of multicore CPUs with accelerators

has resulted in several inherent complexities, which are: a) Severe resource contention due to the

tight integration of tens of cores contending for shared on-chip resources such as Last Level Cache

(LLC), interconnect (For example: Intel’s Quick Path Interconnect (QPI), AMD’s Hyper Transport),

and DRAM controllers; b) NUMA where the main memory is distributed between locality domains

called NUMA nodes which allows a NUMA node to access its own local memory faster than the

non-local memory (memory shared between the NUMA nodes or local to another NUMA node); and

c) Dynamic Power Management (DPM) of multiple power domains such as CPU sockets, DRAM.

A parallel application executing on such modern hybrid heterogeneous computing platforms,

consists of multiple kernels (generally speaking, multi-threaded), running in parallel on different

computing devices of the platform. We term these kernels as application components for illustration

purposes in this thesis. As a result of the inherent complexities of heterogeneous hybrid computing

3

1.1. MOTIVATIONS FOR THIS THESIS

platforms, the workload of one application component may significantly impact the performance

and energy consumed by the others when running in parallel on different compute devices. This

has made the optimization for performance and/or energy optimization of the (hybrid) applications

executing parallel on modern multicore-based platforms even more challenging [20][21].

The focus of maximizing the performance of HPC in terms of completing the hundreds of tril-

lion Floating Point Operations Per Second (FLOPS) has led the supercomputers to consume an

enormously high amount of energy in terms of electricity and for cooling down purposes. As a con-

sequence, current HPC systems are already consuming Megawatts of energy. For example, the

world’s most powerful supercomputer as of 2019, Summit, consumes around 13 Megawatts (MW)

of power [1] which is roughly equivalent to the power draw of over 10000 households. The power

consumption by the top 10 in the TOP500 list has increased over a span of 10 years from about 25

MW in 2008 to around 83 MW in 2018 (as illustrated in figure 1.3) which is an increase of 232%.

As per the list of November 2019, the top 4 supercomputers consume a total of over 50 MW of

electricity. Because of such high power consumption, future HPC systems are highly likely to be

power constrained. For example, US department of energy (DOE) aims to deploy an exascale su-

percomputer capable of performing 1 million trillion (1018) FLOPS in a power envelope of 20-30 MW

[22].

Figure 1.3: Power consumption by top 10 supercomputers over time, based on the results published
from top500.org.

GREEN500 [23] is the complementary part of TOP500, which ranks the top 500 supercomput-

ers by energy efficiency since 2007. The disparity between the energy-efficient and the fastest

supercomputers can be noted by their corresponding positions in both lists. For example, the top

five energy efficient supercomnputers in GREEN500 list published in November 2019 are ranked as

{159,420,24,373,1} respectively in its corresponding TOP500 list published in November 2019.

To summarize, the energy of computing is now a serious problem having its dire consequences

on environment and economy, and to mitigate it is critically important. Energy efficiency (in transport,

industry, and buildings) is the central to the efforts of IEA to combat with climate change [24]. It has

become now a first-class design constraint at both hardware and software levels. Energy envelop,

carbon footprints, financial implications (electricity bills) and cooling cost bear a serious burden on

high performance computing platforms. Energy efficiency is one of the main challenges hindering

HPC community from breaking the exascale barrier [25]. In a report published by DOE, the energy

4

1.1. MOTIVATIONS FOR THIS THESIS

efficiency has been listed as a primary constraint for a productive and economically viable exascale

system [22].

1.1.2 Energy Efficiency: Approaches in ICT

This section presents a general overview of approaches to achieve energy efficiency in ICT. In gen-

eral, energy efficiency in ICT can be achieved at following two levels: i) Hardware, and ii) Software.

The first approach is driven by the innovations in hardware represented by the micro-architectural

and chip-design advancements. The new customized and specialized hardware such as TPU, VPU,

NPU, and etc.; and the modifications in existing platforms such as Intel Xeon Phi co-processors,

general purpose GPUs and FPGAs are some examples of the innovations at hardware level to

achieve the energy efficiency while leveraging the performance. Recent advancements in nanotech-

nology has also enabled semiconductor fabrication industry to use the unique ways to revolutionize

the energy-efficient architectures through innovative transistors and memory technologies. For ex-

ample, multi-gate transistors are being considered by Complementary Metal-oxide-semiconductor

(CMOS) manufacturers to produce smaller microprocessors and memory cells. The multigate metal

oxide semiconductor field effect transistor (MOSFET) devices such as gate-all-around field-effect

transistors (GAAFET) and fin field-effect transistor (FinFET) reduce the leakage and thus overall

power consumption of the incorporating device while enhancing its performance.

The second approach based on software-level can be grouped into two categorized: (a) System-

level energy optimization, and (b) Application-level energy optimization. The system-level energy op-

timization approach focuses on minimizing the energy consumption of the whole node by employing

techniques such as clock and power gating, DPM, Dynamic Voltage and Frequency Scaling (DVFS).

However, the Application-level optimization methods use application-level parameters and models

to maximize the energy efficiency of the applications. The main idea is to capture the real-life perfor-

mance or energy consumption behavior of the application when executing on a computing platform,

and then use such characteristics that influence its performance and energy for optimization pur-

poses. These characteristics include workload size, number of processors, number of threads, loop

tile size and etc. are referred as application-level parameters in this thesis for illustration purposes.

In this thesis, we will focus exclusively on the application-level approach. This approach, in

general, is comparatively understudied. However, several approaches are proposed recently such

as [26, 18, 19, 20, 27, 28, 29, 30], which use the performance and/or energy profiles of an application

to optimize its performance and/or energy consumption by employing application-level parameters

as decision variables.

1.1.3 Challenges to Application-level Energy Optimization

This section covers the challenges to application-level energy optimization approaches. A clear

manifestation of the inherent complexities (introduced by the multi-core architectures) is a complex

and non-linear functional relationship between the energy consumption and workload size of the ap-

plications executing on these platforms. The shape of speed and energy profiles of the applications

executing on modern mutlicore platforms is reported to be highly non-linear and non-smooth with

drastic variations [18]. This provides an opportunity for application-level energy optimization through

5

1.1. MOTIVATIONS FOR THIS THESIS

workload distribution as a decision variable [19][20].

We elucidate the energy optimization problem for such applications with an example. Consider

an application workload of size n executing on p processors. The problem is to find such a parti-

tioning, d = x1, ..., xq, of the workload size n between q processors (where q ≤ p) that minimizes

the energy consumption by parallel execution of the workload. A straightforward approach to solve

the application-level energy optimization problem using workload size as a decision variable, would

be to examine exhaustively all the possible combinations of the workload distributions on q proces-

sors and then find the potential workload distribution with minimum dynamic energy consumption

during its parallel execution on q processors. The computational complexity of this naïve approach,

nevertheless, will be nonlinear.

To reduce this complexity, we need energy profile of the application that is input to a data par-

titioning algorithm to determine such a workload distribution which minimizes the dynamic energy

consumption during its parallel execution. Consider, for example, the model-based data partitioning

algorithm [30] to compute an optimal distribution of a given workload size N amongst p heteroge-

neous processors that minimizes the total dynamic energy when running in parallel. The algorithm

takes as input p dynamic energy profiles of the application kernels running parallel on p compute

devices. The output is the optimal distribution of the workload amongst the p compute devices. More

details on the algorithm and its complexity can be found in [20].

Component level performance and energy models are two key principal building blocks of work-

load partitioning algorithms employed to partition applications on heterogeneous platforms to opti-

mize the execution time and dynamic energy consumption of the given applications. To accurately

measure the execution time of the application components running in parallel, one can use the built-

in high precision clocks incorporated within the processors. However, there is no such effective

equivalent for measuring the energy consumption by them. As a consequence, while there many

model based solutions [18][31][32][33][34][35][36] have been proposed to find such an optimal work-

load distribution of an application so that its performance can be optimized, a very little progress is

seen for model-based energy optimization within a sufficient accuracy.

A parallel application executing on modern hybrid heterogeneous computing platforms, consists

of multiple kernels (generally speaking, multi-threaded), running in parallel on different computing

devices of the platform. We term these kernels as application components for illustration purposes

in this work. As a result of the inherent complexities of heterogeneous hybrid computing platforms,

the workload of one application component may significantly impact the performance and energy

consumed by the others when running in parallel on different compute devices. Therefore, a fun-

damental challenge is to determine the decomposition of energy consumption by a hybrid parallel

application into application component profiles. The key building block to addressing this challenge

is the accurate measurement of energy consumption during the application execution. Accurate

energy measurements of an application are critically important also for many other interesting appli-

cations such as energy centric performance optimization, auto-tuning of the applications, debugging,

to study the trade-off between performance and energy, and identifying the most energy hungry com-

ponents of the hybrid application. In [37], we find that the use of inaccurate energy measurements

to optimize the energy consumption by an application can lead to significant energy losses of up to

84%.

6

1.1. MOTIVATIONS FOR THIS THESIS

We present a use case, here, to highlight the importance of accurate measurement of dynamic

energy during the execution of an application for its optimization for dynamic energy. Consider a

real-life dynamic energy consumption profile segment of an application computing 2D fast Fourier

transform using FFTW3.3.7 of a complex signal matrix of dimension N ×N . The Figure 1.4 shows

the dynamic energy profiles of the application for problem sizes (N) ranges from 25984 to 26432

with a step size of 64 constructed with Intel RAPL and HCLWattsUp [38] which provides system-

level power measurements using external power meters and which we consider to be the ground

truth. The profile is obtained on a modern Intel skylake server comprising of two sockets of 28 cores

each. One can observe that Intel RAPL over-reports the dynamic energy consumption for all the

problem sizes. Now, consider the workload sizes (or image sizes) N = 26,432 and N = 25,984. The

dynamic energy consumption for workload size N = 26,432 is reported by Intel RAPL as 1026 J and

591 J by HCLWattsUp, and for N = 25,984 is 735 J by Intel RAPL and 745 J by HCLWattsUp. If Intel

RAPL is used for dynamic energy optimization of an image processing application employing the 2D

FFT dynamic energy profile for workload size (or image size) N = 26,432, an optimization method

for dynamic energy using Intel RAPL profile as an input could use the solution for the workload size,

N = 25,984, aiming to reduce dynamic energy consumption by 28%. Instead, solving this workload

size will result in increase of dynamic energy consumption by 26% according to the ground truth.

Figure 1.4: Dynamic energy consumption profile segments of HCLWattsUp and Intel RAPL for 2D
FFT computation using FFTW-3.3.7 on Intel Intel Xeon Platinum 8180.

In this thesis, we address these challenges by proposing solutions to accurately and reliably

measuring the energy consumption by an application during its execution, and to accurately decom-

pose the energy consumption by a hybrid parallel application into application component profiles.

1.1.4 State-of-the-art Approaches to Measure the Energy Consumption of Comput-
ing

Energy of computing is now considered as an equally important problem as the performance. Re-

searchers [19, 20, 39] has shown that both of them are tightly coupled and conflicting objectives.

Improving performance can yield negative results on energy efficiency and vice versa. Therefore,

the accurate measurements of energy are critically important for an insight of trade-off between both

7

1.1. MOTIVATIONS FOR THIS THESIS

objectives and other interesting applications such as energy optimization and etc. The popular ap-

proaches to providing the energy consumption by an application during its execution can be broadly

categorized into following three categories: a). System-level physical measurements using external

power meters, b). Measurements using on-chip power sensors, and c). Energy predictive models.

System-level physical measurements using external power meters: The power measure-

ments by the power meters are considered to be accurate at system level[40]. In this thesis, we

consider this approach to be the ground truth.

Measurements using on-chip power sensors: The integrated on-chip power sensors are now

prevalent in mainstream processors such as Intel and AMD Multicore CPUs, Intel Xeon Phis and

Nvidia GPUs. There are vendor-specific libraries to obtain the power data from these sensors.

For example, Intel CPUs offer RAPL [41] to monitor power and to control frequency and voltage.

Intel System Management Controller chip (SMC) [42] and NVIDIA Management Library (NVML)

[43] provide the power consumption by Intel Xeon Phi and Nvidia GPUs respectively. AMD starting

from Bulldozer micro-architecture equip their processors with an estimation of average power over

a certain interval through the Application Power Management (APM) [44] capability.

Energy Predictive Models: The third approach is based on software energy predictive mod-

els, which emerged as a popular alternative to determine the energy consumption of an applica-

tion. A vast majority of such models is linear and uses PMCs as predictor variables. PMCs are

special-purpose registers provided in modern microprocessors to store the counts of software and

hardware activities. In this thesis, we use the acronym PMCs to refer to software events, which are

pure kernel-level counters such as page-faults, context-switches, etc. as well as micro-architectural

events originating from the processor and its performance monitoring unit called the hardware events

such as cache-misses, branch-instructions, etc. The most common approach proposing an energy

predictive model is to determine the energy consumption of a hardware component based on linear

regression of the performance events occurring in the hardware component during an application

run. The total energy consumption is then calculated as the sum of these individual energy con-

sumption. Therefore, this approach constructs component-level models of energy consumption and

composes them using summation to predict the energy consumption during an application run.

1.1.5 Open Challenges with State-of-the-art Approaches

This section covers the issues and challenges in general, with aforementioned state-of-the-art meth-

ods for energy measurements of computing.

System-level physical measurements using external power meters: While the system-level

physical measurements provided by the external power meters are considered to be accurate at sys-

tem level, they lack the ability to provide fine-grained component-level decomposition of the energy

consumption of an application. This is a serious drawback. Consider, for example, a computer con-

sisting of a multicore CPU and an accelerator (GPU or Xeon Phi), which is representative of nodes

in modern supercomputers. While using the system-level measurements it is easy to determine the

total energy consumption of a hybrid application run that utilizes the both compute devices (CPU

and the accelerator), it is difficult to determine their individual contributions.

This decomposition is essential to construct the energy profiles that are the key inputs to data

partitioning algorithms, and thus are fundamental building blocks for optimization of the application

8

1.1. MOTIVATIONS FOR THIS THESIS

for energy. Without the ability to determine accurate decomposition of the total energy consumption,

one has to employ an exhaustive approach (involving huge computational complexity as explained

in section 1.1.3) to determine the optimal data partitioning that optimizes the application for energy.

This thesis, however, contributes to fill this gap. The methodologies proposed in this thesis

address following three challenges for energy optimization of parallel applications running on modern

heterogeneous computing platforms:

1. Accurate measurement of the energy consumption by an application using the system level

power measurements provided by the external power meters.

2. Accurate modelling of the energy consumption of application-components when executing a

hybrid application in parallel on multiple compute devices on a computer.

3. Accurate modelling of the energy consumption of different applications executing in parallel on

a multi-socket multicore CPU platform.

On-chip built-in power sensors: On chip power sensors provide the component level power

consumption during the application run which can be accessed using vendor specific libraries such

as RAPL, NVML, and etc. However, in general, there is not much documentation available on the

accuracy of these vendor-specific libraries. The reported accuracy of the instant current readings in

the NVML manual is (±5%) [43]. The accuracy of Intel SMC is not available. For the GPU and Xeon

Phi on-chip sensors, there is no information about how a power reading is determined that would

allow one to determine its accuracy. However, for the CPU on-chip sensors, RAPL uses voltage

regulators (Voltage Regulator (VR) IMON) for CPU and DRAM. VR IMON is an analog circuit within

VR, which keeps track of an estimate of the current [45]. It, however, adds some latency because

the measured current-sense signal has a delay from the actual current signal to CPU. This latency

may affect the accuracy of the readings. The accuracy of VR IMON for different input current ranges

is not known. According to [45], DRAM and CPU IMON report higher errors when the system is

idle and DRAM VR inaccuracy can be large if the system is allocated memory capacity much lower

than its capability. Furthermore, it is reported that VRs from the same manufacturer lot may exhibit

different accuracies, and less accurate VRs (for example within an accuracy of ±20%) are used by

original equipment manufacturer (OEM) for cost-saving purposes [46].

Apart from accuracy, there are some other issues associated with on-chip power sensors. First,

how to relate the energy consumption of an application and the energy consumption of the com-

puting elements that are involved in the execution of the application and containing the sensors.

While sensors may provide the power consumption of a component within sufficient accuracy, they

may not determine the energy consumed by an application when executing on the same component

within the same accuracy window. For example, while the accuracy of a power reading is reported

by NVML for an Nvidia GPU to be ±5%, researchers found that when an application is executed

on the GPU, the accuracy is often lower [47] [37]. The topological granularity of power readings

are also vitally important to take into consideration while measuring the energy consumption by the

application. Sensors only provide the power drawn by a group of computing elements but not the

individual contributions of the elements. For example, RAPL reports the overall power consumption

by the CPU socket and does not provide the details of the contributions by the individual CPU cores.

9

1.1. MOTIVATIONS FOR THIS THESIS

The power readings by the sensors also lack details such as update frequency and suffer from

potential complications such as sampling interval variability or sensor lag as reported by Reference

[47]. Portability is another issue with on-chip sensors due to vendor-specific but non-standardized

programmatic interfaces. Existing data center management standards such as IPMI (Intelligent

Platform Management Interface) [48] and DCMI (Data Center Manageability Interface) [49]) provide

low-resolution data for supported motherboards only. Furthermore, all hardware are not equipped

with power sensors and thus the lack of pervasiveness is another important factor limiting their

efficacy as a viable approach to determine the energy consumption by an application.

Finally, we discuss the issues with topological granularity of on-chip sensors. Consider, for ex-

ample, a hybrid matrix-matrix application executing on three compute devices, a multicore CPU and

two accelerators (GPU and Xeon Phi). One CPU core acts as a host for each accelerator kernel. Ex-

ecution of an application using GPU/Xeon Phiinvolves the CPU host-core, DRAM and PCIe to copy

the data between CPU host-core and GPU/Intel Xeon Phi. However, the on-chip power sensors

(NVML and Manycore Platform Software Stack (MPSS)) provide the power consumption by GPU or

Xeon Phi only. One can use RAPL as an aide to NVML/MPSS to determine the energy contribution

of CPU and DRAM to obtain the dynamic energy profiles of applications. But, RAPL provides the

energy consumption at the socket level which includes also the contribution by other CPU cores

executing the CPU kernel and the host-core involved in the execution of other accelerator kernel.

Therefore, it is not possible currently with on-chip sensors to accurately attribute the individual con-

tribution of each computation kernel to total energy consumption by a hybrid application executing

the kernels in parallel on several heterogeneous compute devices.

To summarize, a good understanding and validation of energy measurement instrumentation

systems and on-chip power sensors is necessary for trusting and employing their readings in

application-level energy optimization techniques. Furthermore, instead of an instrumentation system

or component-level power sensors that measure the instantaneous power drawn by the component,

sufficiently accurate measurements of the energy consumed by the application are required for en-

ergy optimization and energy-centric performance analysis of applications.

Energy Predictive Models: While the models provide fine-grained component-level energy

consumption during the execution of an application, there are research works highlighting their poor

accuracy[50, 51, 15, 52, 37]. The sources of this inaccuracy are the following:

1. Model parameters (PMCs) in most cases are not deterministic.

2. In general, the model parameters (PMCs) are selected following the techniques such as princi-

pal component analysis or on the basis of their high positive correlation with energy consump-

tion. However, such techniques lack the insights of the physical significance of the model

variables originating from fundamental physical laws such as conservation of energy of com-

puting [53].

Economou et al. [50] highlight the fundamental limitation of PMC-based models, which is the

restricted access to read PMCs (generally four at a single run of an application). Therefore, it is

a tedious task to carefully select the best subset of PMCs as suitable contenders to be used as

predictor variables in a model.

10

1.1. MOTIVATIONS FOR THIS THESIS

McCullough et al. [51] report the predictions errors of such predictive energy models for modern

node architectures to be as high as 150%. O’Brien et al. [15] highlight, in their survey on predictive

energy models for heterogeneous and hierarchical node architectures, the poor prediction accuracy

and ineffectiveness of such models to accurately predict the dynamic energy consumption of modern

nodes due to the inherent complexities (such as NUMA, DPM, the contention for shared resources

such as LLC, and etc.). Fahad et al. [37] present a comparative study to analyze the accuracy of

linear energy predictive models based on PMCs. They report that the average error of the platform-

specific energy predictive models ranges from 14% to 32% and the maximum reaches up to 100%.

The average error for application-specific energy predictive models reaches up to 27% and the

maximum reaches up to 218%.

Shahid et al. [52] question the reliability and reported prediction accuracy of these models,

in general. They report that many PMCs that are used as key predictor variables in state-of-the-

art predictive models found in literature are not reproducible and does not satisfy the criterion of

additivity which is derived from the application of theory of energy predictive models for computing

(which is explained in [53]). The criterion is based on an experimental observation that dynamic

energy consumption of serial execution of two applications is equal to the sum of the dynamic energy

consumption of those applications when they are executed separately. The criterion, therefore, is

based on a simple and intuitive rule that if the parameter is intended for a linear predictive model, the

value of a PMC for a serial execution of two applications is equal to the sum of its values obtained

for the individual execution of each application. The PMC is branded as non-additive on a platform if

there exists an application for which the calculated value differs significantly from the value observed

for the application execution on the platform. The authors found that the use of non-additive PMCs

in a model impairs its prediction accuracy.

Shahid et al. [54] compared the techniques for energy predictive modelling using PMCs on mod-

ern multicore CPUs. The authors studied two following types of energy predictive models: i) linear

regression models employing PMCs based on the property of additivity, and ii) the sophisticated sta-

tistical learning models (random forest and neural network) employing PMCs based on correlation

and principal component analysis. The authors conclude that a strong positive correlation of model

variables (PMCs) with energy consumption is not sufficient enough to provide good prediction accu-

racy, and thus it should be combined with methods such as additivity [53] that consider the physical

significance of the model variables.

Apart from accuracy, energy predictive models employing PMCs as predictor variables exhibit

high implementation complexity due to the following reasons:

1. There is a large number of PMCs provided in a modern multicore processor. For example:

Likwid tool [55] provides 164 PMCs and 385 PMCs for the Intel Haswell and the Intel Skylake

multicore processors respectively.

2. The accuracy of models is highly dependent on the selection of the PMCs used as predictor

variables. However, it is not a trivial task to find the best set of PMCs which reflects the energy

consumption for all types of workloads in equally effective way.

3. Tremendous programming effort and time are required to automate and collect all the PMCs

on a platform. This is because of the limited number of hardware registers available on plat-

11

1.1. MOTIVATIONS FOR THIS THESIS

forms for storing the PMCs. Typically, only 3-4 PMCs can be collected in a single run of an

application. Moreover, some PMCs can only be collected individually or in sets of two or three

for an application run. Therefore, each application must be executed for several times to collect

all the PMCs.

4. An energy predictive model purely based on PMCs lacks portability. The reason is because the

PMCs available for a CPU processor may not be present in a GPU processor due to inherent

architectural differences, or even for the next-generation CPU processor from the architecture

space.

These restrictions make highly complex the process of employing PMCs as a predictor variable

in models. Hence, it is not a trivial task to build a energy predictive model employing PMCs for all

of the heterogeneous compute devices (such as CPUs, GPUs, Intel Xeon Phis, FPGAs, etc.) on

thousands of the servers of a data center due to such restrictions.

While the general accuracy of the models has been widely researched, their application-specific

accuracy has not been studied and, therefore, needs further validation. In this thesis, a comprehen-

sive study is presented to bridge the gap to compare the accuracy of state-of-the-art on-chip power

sensors and energy predictive models against system-level physical measurements using external

power meters, which we consider to be the ground truth.

1.1.6 Goodness of Energy Profiles of Applications Executing on Multicore Comptu-
ing Platforms

Accurate energy profiles or models that are functions of workload size are essential to optimization

of parallel applications for energy through workload distribution. However, a fundamental yet under-

studied challenge is how to measure the goodness of these models. There are many model-based

methods for efficient construction of energy profiles but none of them is accurate in all situations.

Therefore, to pick the best method in a given situation, we need a way to measure the goodness of

energy profiles produced by different methods with the ground-truth profile, which is usually built by

a time-consuming but reliable method. We define the goodness as the accuracy of a profile against

the ground truth profile. Here, the ground-truth refers to the baseline profile or the reference value for

the comparison. Inaccurate energy measurements during an application run can drastically affects

the efforts for energy efficient computing.

Pearson correlation coefficient [56] and average prediction error (also known as relative error)

[57] are the most commonly used statistical measurements to determine the accuracy of energy

profiles. A plethora of research work including [15, 37, 58, 59, 51] use average, maximum and

minimum prediction errors to determine the accuracy of energy profiles. References [60, 61, 62, 63]

are some of the notable works which used the correlation coefficient to determine whether the energy

profiles follow the ground truth.

However, there are research works questioning the effectiveness of both techniques for using

goodness measurement of energy profiles. For example, Rico-Gallego et al. [64] argue that the

relative error is lower for a profile that underestimates than for a profile that overestimates, and thus

can negatively impact the interpretation of the results. Similarly, Fahad et al. [21] demonstrate that

the two statistical measures do not capture the holistic picture of the energy consumption trend of

12

1.1. MOTIVATIONS FOR THIS THESIS

the profiles, and thus are blind to the qualitative differences of the energy profiles and the ground

truth. As a result, stat-of-the-art but inaccurate energy measurements used in energy optimization

of applications can result in significant energy losses [21], up to 84% in some real-life settings [37].

In general, both popular statistical techniques are highly sensitive to outliers and rely on the

assumption of linear or smooth increase of energy consumption by applications with the increase of

workload size. However, the energy profiles of applications on modern multicore platforms are highly

non-smooth and non-linear. Therefore, the existing statistical measures can rank an inaccurate

energy profile higher than the accurate ones. The reason is two-fold. First, in the presence of

significant variations in the energy profiles, they do not capture the difference in the general trend of

energy consumption. Second, they do not capture the similarities in variations.

While the general direction of energy profiles of applications on multicore platforms is reported

as a near-linear increasing function of workload size, the shape of the profile can be highly non-

linear and non-smooth [18]. We distinguish the terms trend and shape using the following example.

Consider the sample energy profiles shown in figure 1.5. The general direction of all three profiles,

which represents the underlying energy consumption trend, is increasing with the increase in work-

load. However, their shapes are different. The energy profile Model1 is linear whereas the shapes

of Real and Model2 are non-linear and non-smooth.

Figure 1.5: Sample Dynamic Energy Profiles

We present a case study to demonstrates that a non-similar energy profile used as an input to an

energy optimization algorithm can cause significant energy losses. In figure 1.5, two sample energy

profiles are compared against the ground truth (labeled as Real). The average errors of profiles

Model1 and Model2 against the ground truth are 62% and 64% respectively. The Euclidean distance

between profiles Model1, Model2, and the ground truth is 18108 and 33550 respectively. Model1

and Model2 are equally strongly correlated with the ground truth with the correlation coefficient equal

to 0.91.

While Model1 is ranked better than Model2 by both the Euclidean distance and average error, it

exhibits different energy consumption behavior for more than 40% of data points as compared with

ground truth. Hence, it causes a significant loss of energy when input to the energy optimization

algorithm [30], which employs the workload size as the decision variable for energy optimization of

an application. For example, Model1 only provides 21% of workload distributions that are the same

13

1.2. THESIS CONTRIBUTIONS

as those provided by ground truth when used as an input to this algorithm for energy optimization. In

contrast, Model2 provides the same workload distributions as of the ground truth for 79% of problem

sizes despite its higher average error and greater Euclidean distance. Therefore, Model2 is better

than Model1 for the use in energy optimization or energy consumption analysis of the application.

To summarize, the average error, Euclidean distance, and correlation coefficient are not sufficient

to measure the similarity between energy profiles despite being the most used statistical measures

for this purpose. The average error and Euclidean distance are highly sensitive to outliers and

do not capture the similarity of energy consumption trends. They are also highly sensitive to the

transformations such as uniform amplitude/time scaling, shifting, etc. Pearson correlation coefficient,

on the other hand, assumes a linear relationship between the variables which might not be always

true. It can also be easily misinterpreted as the high correlation coefficient does not necessarily

mean a strong linear relationship or high similarity between two profiles. Furthermore, it does not

handle a non-linear relationship between the energy profiles. Finally, they can mislead in many

cases by erroneously grading an energy profile as the best and causing significant energy losses

when used it for the energy optimization of an application.

While the goodness measuring problem is comparatively less-studied for the energy of comput-

ing, a plethora of different methods and approaches have been proposed to solve this problem in

many other fields such as data mining, time series similarity analysis, and graph (matching) theory.

Popular similarity measures for pattern matching are cosine similarity [65], Dynamic Time Warping

[66], angular metric for shape similarity (AMSS) for time series data [67], and autoregressive inte-

grated moving average (ARIMA) method [68, 69, 70, 71, 72]. Distance metrics used to determine

the pattern matching include Euclidean distance [73, 74, 75] and graph-edit-distance (GED) [76]. In

Section 2.5, we provide an overview of the popular approaches in these faculties and why they are

not applicable straightforwardly for determining the goodness of energy profiles.

In summary, there is no effective metric to measure the goodness of energy profiles. We present

a novel methodology, in this thesis, called Trend-based Similarity Measure (TSM) of energy profiles,

which measures the similarity between a given energy profile and the ground truth. TSM is designed

to capture the underlying energy consumption trend of the profiles, and is composed of the following

four stages: i). The regression model of the energy profile is learned, ii). The regression fits of

this energy profile and the ground truth are compared to determine if they exhibit the same trend,

iii). If they do not, then the energy profile is branded fundamentally inaccurate; iv). If they do, the

distance between the regression models of the energy profile (that follows the same trend-line as

of the ground truth) and the ground truth is determined using Euclidean distance as a metric of

goodness of the energy profile. To the best of our knowledge, this is the first work to estimate the

goodness of energy profiles by taking into consideration the qualitative difference of the underlying

energy consumption trends. Also, unlike other statistical methods used for goodness estimation, it

uses the Euclidean distance metric for quantitative estimation of similarity between non-linear and

non-smooth profiles, increasing the accuracy of estimation.

1.2 Thesis Contributions

The main contributions by this thesis are followings:

14

1.2. THESIS CONTRIBUTIONS

1. A detailed methodology for accurate and reliable measurement of the energy consumption by

an application during its execution, using the system-level physical measurements provided

by external power meters.

2. The first comprehensive comparative study of the accuracy of state-of-the-art on-chip power

sensors against the system-level physical measurements provided by external power meters.

The following important discoveries are made:

• The dynamic energy profile patterns of the on-chip sensors differ significantly from the

patterns obtained using the ground truth, which suggests that the measurements using

on-chip sensors do not capture the holistic picture of the dynamic energy consumption

during an application execution.

• Owing to the nature of the deviations of the energy measurements provided by on-chip

sensors from the ground truth, calibration can not improve the accuracy of the on-chip

sensors to an extent that can favour their use in optimization of applications for dynamic

energy.

3. An additive energy modelling approach that employs the system-level power measurements

to build accurate energy profiles of the individual application-components of a hybrid applica-

tion executing in parallel on several independently powered compute devices such as CPUs,

GPUs, Xeon Phis, and sockets of multi-socket CPUs in a hybrid heterogeneous computing

platform.

4. A comparative study of the accuracy of additive energy models of application-components of

a hybrid application constructed with state-of-the-art integrated power sensors and the ground

truth for two scientific hybrid applications (matrix-matrix multiplication an 2D fast Fourier trans-

form) on a modern hybrid heterogeneous computing platform containing an Intel multicore

CPU, an Nvidia GPU, and an Xeon Phi. An important finding is that likewise the application-

level energy profiles, the energy consumption behavior of the application-component energy

profiles composed with state-of-the-art integrated power sensors also differ significantly from

the patterns of the ground truth.

5. Studying the implications of employing in-accurate energy profiles constructed with state-of-

the-art approaches, in energy optimization loop of an application. An important finding is that

a significant amount of energy is lost by employing the inaccurate energy profiles obtained

with the energy measurements provided by state-of-the art approaches, for dynamic energy

optimization of an application.

6. A novel methodology to measure the similarity between an energy profile and the ground

truth. To the best of our knowledge, the proposed methodology is the first work that takes into

consideration the qualitative differences of the energy consumption trend of the profiles and

ranks the energy profiles based on their similarity with the ground truth.

• A comprehensive comparative analysis of the proposed methodology with popular sta-

tistical approaches such as correlation, average error, and Euclidean distance, which

are commonly used to compare the accuracy and similarity of energy profiles as well as

15

1.3. THESIS STRUCTURE

time series of equal lengths in general. An important finding is that all three statistical

approaches fail to capture the qualitative difference of an energy profile and the ground

truth, and thus fail to distinguish the energy profiles based on their energy consumption

trend. As a consequence, they can mislead to rank an inaccurate energy model as better

than more accurate ones.

• We demonstrate how the proposed methodology can help in determining whether the

energy model that is used to construct the energy profile, includes some extraneous

contributors that do not reflect the energy consumption by the application, or it lacks

some essential contributor to the energy consumption by the application.

1.3 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we discuss the existing techniques to mea-

sure the energy of computing, power saving mechanisms, notable energy optimization approaches,

and common practices and notable works to measure the goodness of the energy profiles. In Chap-

ter 3, a comprehensive methodology is presented to accurately and reliably determine the energy

consumption by an application using system-level power measurements. The comprehensive study

comparing the accuracy of state-of-the-art integrated on-chip power sensors and energy predictive

models against system-level physical measurements using external power meters, is presented in

Chapter 4. In Chapter 5, we present a novel methodology called Additive Energy Modelling of Hybrid

Applications AnMoHA to decompose the energy consumption by a hybrid application at component-

level using the system-level power measurements. In Chapter 6, a novel methodology is presented

to determine the goodness of energy profiles of an application built with different tools (integrated

power sensors, PMC based energy predictive models, system-level power measurements). Finally,

we conclude the thesis in chapter 7.

16

Chapter 2

Background and Related Work

This chapter is organized as follows. First, we introduce some basic taxonomy in section 2.1, re-

lated to HPC, power and energy, and terminologies that are used in this thesis. Afterwards, the

state-of-the-art techniques to measure the energy of computing are presented in section 2.2. The

existing power saving mechanisms in HPC, and some notable energy optimization approaches are

presented in section 2.4.1, and 2.4 respectively. Finally, the common practices and notable works to

measure the accuracy of the energy profiles is presented in section 2.5.

The most of the chapter is based on the following papers that I authored or co-authored. In [37],

we presented a comprehensive study comparing the accuracy of state-of-the-art on-chip power

sensors and energy predictive models against system-level physical measurements using exter-

nal power meters, which we consider to be the ground truth. In [21], we propose a novel method

for accurate estimation of the application component-level energy consumption employing system-

level power measurements with power meters. This additive energy modelling methodology is used

for the optimization of data-parallel applications on heterogeneous HPC platforms for dynamic en-

ergy through workload distribution published in [39] and [30]. The same additive energy modelling

methodology also laid the basis of the study of bi-objective optimization for performance and energy

on heterogeneous processors published in [20]. In [17], we elucidated the challenges to energy and

performance optimization of parallel application introduced by the advent of multi-core architectures.

In [77], we presented the first method specifically designed for goodness measurement of energy

profiles. In [52], we presented a novel selection criterion for PMCs called additivity, which can be

used to determine the subset of PMCs that can potentially be used for reliable energy predictive

modeling. In this work, we study the additivity of PMCs provided by mainstream performance moni-

toring tools. In [53], we presented the theory of energy of computing and its practical implications. In

[78], we study how that the accuracy of state-of-the-art energy predictive models can be improved

by selecting performance monitoring counters based on a property of additivity. In [54], we com-

pare two types of energy predictive models (linear regression and sophisticated statistical learning

models (random forest and neural network)) employing PMCs selected by different criterion such as

additivity, correlation coefficient and principal component analysis. In [169], we study the prediction

accuracy of linear models employing utilization variables only, PMCs only, and combination of both

(the utilization variables and PMCs) on modern multicore CPU platforms.

17

2.1. TERMINOLOGIES AND TAXONOMY

2.1 Terminologies and Taxonomy

In this section, first, we explain the terminologies that are used in this thesis. Then, we provide a

general overview of HPC architectures, and energy and power within the context of computing.

Modern HPC computing systems today feature tight integration of multicore CPU processors

and accelerators (mix of GPUs, Xeon Phis, FPGAs, et cetra) empowering them to provide not just

unprecedented computational power but also to address the newly established critical concerns of

power and energy efficiency. We term such heterogeneous nodes incorporating a mix of multi-

core CPUs and accelerators or co-processors as hybrid heterogeneous computing platforms. We

broadly refer the constituent processing units (including the multicore-CPU, accelerators, and the

co-processors) of such hybrid node as the compute devices. A parallel hybrid application executing

on such a hybrid node, consists of multiple kernels (generally speaking, multi-threaded), running

in parallel on different computing devices of the platform. We term these kernels as application

components.

2.1.1 HPC Architectures

Michael J. Flynn proposed an enhanced version [79] of his initially proposed methodology [80] to

classify the computer architectures based on the number of concurrent operations they provide for

handling the instructions and data streams. Based on Flynn’s taxanomy, the computer architectures

can be classified into following four categories:

1. Single Instruction Single Data (SISD): It represents the computing systems which can han-

dle only one instruction and one data at a time, and therefore do not exhibit any form of

parallelism. Examples include single core and uniprocessor systems (which has a single CPU

to execute the computational tasks).

2. Single Instructions Multiple Data (SIMD): The architectures which can operate single in-

struction on multiple data streams fall into this category. However, such architectures do not

exhibit concurrency because they execute instructions or processes sequentially but they oper-

ate each instruction on multiple data in parallel. Multimedia applications are typical examples

to take advantage of such architectures where a common operation (such as adjusting the

color) is needed to be applied to a large number of data points such as pixels. Examples

include Intel’s latest Advanced Vector Extensions and the GPUs.

3. Multiple Instructions Single Data (MISD): It represents the architectures which can operate

multiple instructions on a single data stream in parallel. This type of architectures are consid-

ered as uncommon in general. However, systolic Arrays [81] are often considered as a classic

example of MISD.

4. Multiple Instructions Multiple Data (MIMD): It represents the architectures where different

instructions are operated on different data in parallel. Multi-core/ multiprocessor systems are

the typical examples of such architectures.

Modern computing systems in general and HPC systems are in particular represent the MIMD

18

2.1. TERMINOLOGIES AND TAXONOMY

architectures. All of the current TOP500 [1] supercomputers are based on MIMD architecture. Base

on memory organizations, MIMD systems can further be classified into following two categories:

1. Distributed Memory: It represents the systems where multiple computing nodes are connected

with each other using some shared interconnect. Each node in the network has its own private

memory, processors, operating systems and peripherals. Local data (held in the memory) of

a node can not be accessed by other nodes directly. However, the nodes can share their data

with other nodes using message passing interfaces such as Messgae Passing Interface (MPI).

2. Shared Memory: It represents the systems where a number of processors are connected to a

large pool of memory called main memory. It offers a single address space to all processors.

Shared memory based systems can further be classified into following three categories based

on the memory organisation and the access time to it.

1. Uniform Memory Access (UMA): The memory is evenly shared among all the processors. All

the processors can access the memory uniformly, and the latency is the same for all pro-

cessors to access a memory word. This type is mainly suitable for time sharing and general

purpose applications.

2. Non-Uniform Memory Access (NUMA): Unlike UMA, the main memory is distributed between

locality domains called NUMA nodes. It allows a NUMA node to access its own local memory

faster than the non-local memory which is shared between the NUMA nodes or local to another

NUMA node.

3. Cache-Only Memory Architecture (COMA): Unlike NUMA, the whole shared memory is used

as cache where each memory module acts as a huge cache memory and each block has a

tag with the address and the state.

The hardware acceleration and the use of co-processors together with CPU are becoming a

popular choice to gain the performance boost while keeping the power budget low. Hence, contem-

porary computational clusters, data centres and supercomputers are getting highly heterogeneous

such that 102 out of top 500 supercomputers are heterogeneous [1]. As per the list published in

November 2019, a total of 29% of the systems are using accelerators/co-processors where no su-

percomputer on the list was accelerated nearly a decade ago. The hardware accelerators can be

classified into many forms such as

1. Fully customized application specific integrated circuits (ASIC): This includes the customarily

designed chips for a particular application domain. For example, artificial intelligence (AI)

accelerators are particularly designed to boost the artificial intelligence applications such as

VPUs for machine vision, TPUs for machine learning, and NPUs for artificial neural networks.

2. The modifications in existing platforms: This includes modifications in existing hardware in

order to decrease latency and increase throughput to support more general applications than

ASICs. For example, GPUs were originally used to accelerate the graphical computations.

However, they have extensively been evolved to support many other scientific and engineering

compute intensive applications.

19

2.1. TERMINOLOGIES AND TAXONOMY

S0 S1

CPU0

CPU24C0

C1

C2

C11

CPU1

CPU25

CPU2

CPU26

CPU11

CPU35

L
1

L
2

L
1

L
2

L
1

L
2

L
1

L
2

L
3

CPU12

CPU36

CPU13

CPU37

CPU14

CPU38

CPU23

CPU47

L
1

L
2

L
1

L
2

L
1

L
2

L
1

L
2

L
3

BANK 0 BANK 1

QPI

C12

C13

C14

C23

...
...

Applications

GPU Xeon PhiPCIPCI Energy

HCL Server

Figure 2.1: Block diagram of a hybrid heterogeneous NUMA node.

3. Re-configurable hardware accelerators: These devices can be tailored dynamically to suit

the needs of the specific application. They represent a blend of customization (to gain the

performance and energy efficiency) and generality (and thus programmability). FPGAs are

the typical example of this class.

While modern CPUs represent both SIMD and MIMD (using vector instructions and mutlicores

respectively), the accelerators such as GPUs represent SIMD and Xeon Phi represents MIMD ar-

chitectures respectively. Currently, GPUs can only be used as an accelerator where the workload is

offloaded to it by the CPU, however Xeon Phi can either be used as a co-processor or an accelerator.

Figure 2.1 illustrates the block diagram of a typical hybrid heterogeneous NUMA node incorporating

one multicore CPU and one or more accelerators.

In following sections, a brief overview of relationship between energy, time and power is pre-

sented within the context of computing.

2.1.2 Energy and Power

Energy (E) can be defined as the total amount of work performed by the system over a time period

(T), whereas power (P) is the rate at which the work is done by the system. Energy is measured in

Joules; power in Watts and time period in seconds. The relationship can be expressed as:

E = P × T (2.1)

Energy is also considered as the integration of power values for a time period T , starting from t1

till t2. Hence,

E =

∫ t2

t1
P dT (2.2)

20

2.1. TERMINOLOGIES AND TAXONOMY

2.1.3 Instantanious Power vs Average Power

Instantaneous power is the amount of power in a circuit at any instant of time, whereas the average

power consumption is the average of the instantaneous power over one complete cycle. Because

of its variations in magnitude and sign over a cycle, instantaneous power is considered as less

important. However, average power remains exactly the same for over all the time as the average

power given over one cycle. Furthermore, instantaneous power is hard to work with due to its

measurement limitations and highly dynamic nature. Therefore, average power is generally used to

determine the energy using the numerical approximation of the equation 2.2. In this thesis, power

indicates the average power over a given time period, unless specified otherwise.

2.1.4 Static vs Dynamic Power and Energy

CMOS is the main technology used to construct the integrated circuits such as microprocessors,

memory chips and other digital logic circuits, because of its high noise immunity and low static

power consumption. Total Power consumption (Ptotal) in a CMOS component is attributed to the total

current that flows within the component for/by different physical processes such as sate changes,

clock signaling, etc. Total power consumption in CMOS can be classified into two main types: static

power and dynamic power, as shown in equation 2.3.

Ptotal = Pstatic + Pdynamic (2.3)

Static power Pstatic is the idle power or base power, and is consumed because of the non-ideal

behavior of transistors. It is also called the leakage power because it is dissipated due to the current

leakage through transistors. Subthreshold conduction, gate leakage and reverse biased junction

band-to-band tunneling (BTBT) are the dominant sources of the current leakage for sub-100nm

technology [82][83][84]. Static power is temperature dependent [85] and has no relation to the clock

frequency. It is the product of supply voltage and the device leakage current. Total static power can

be obtained using the following equation [86]:

Pstatic = ICC × VCC (2.4)

Here, ICC is the leakage current and VCC is the supply voltage.

Dynamic Power Pdynamic is considered as the primary source of total power dissipation of CMOS

circuits. It is consumed due to the switching activities of the transistors. It can further be classified

into following two parts:

1. Transient or Switching power: The power used to charge/discharge the capacitive load that

drives the logic gate within the circuitry. Switching is quadratically dependent on the supply

voltage, and linearly dependent on the frequency of switching activities. It can be expressed

as:

Pswitching = α
1

2
V 2Cf (2.5)

Here, V is the supply voltage, C is the electrical capacitance, f is the clock frequency, and

α represents the switching or activity factor [87] where 0 ≤ α ≤ 1. The variable α is added

21

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

because most gates do not change their state every clock cycle.

2. Short-circuit power: It is caused by the shorting of the supply to ground when both transistors

in a CMOS gate are conducted simultaneously momentarily during the state changes of the

logic gates.

Hence, the equation 2.3 can be expressed as:

Ptotal = Pstatic + Pswitching + Pshortcircuit (2.6)

Switching power is considered as the most significant contributor to the total power dissipation by

a well designed CMOS . From the component point of view, we define the dynamic and static power

consumption of the CMOS component as the power consumption of the component with and without

the given application utilizing the component during its execution respectively. From an application

point of view, we define dynamic and static power consumption as the power consumption of the

whole system with and without the given application execution respectively.

Similarly, we classify energy into two types: dynamic energy and static energy. From the platform

point of view, we define dynamic and static energy consumption as the energy consumption of the

whole system with and without the given application execution respectively. Here, the static energy

is the base energy of the system which is an intrinsic property of the system, as it consumes this

base energy all the times regardless of doing any work or performing any computation. However,

the dynamic energy is the largest component of the total energy consumption by the application

when running on a system. That is why, it is the main target of application level energy optimization

techniques such as [18, 19, 20, 88, 30].

2.2 Common Practices to Measure the Energy of Computing

Energy of computing is determined as the product of power and time, as shown in equation 2.1.

While the time can be measured accurately using high precision CPU clocks, there is no equivalently

effective way to measure the power consumption by an application. In this section, we present

common techniques and approaches to measure the energy of computing.

2.2.1 Power Instrumentation Systems

Fine-grained power instrumentation systems provide the accurate insights of power consumption by

HPC systems and applications. Sophisticated custom-designed Power Monitoring Infrastructures

(PMI) are used for power/energy profiling of HPC applications and multiple system components.

PowerPack [89] is the one of the first instrumentation frameworks for direct and automatic pro-

filing of power consumption by parallel HPC applications. It is a combination of hardware (such

as sensors, external power meters, data acquisition devices which allow direct instrumentation and

direct power measurements) and software (such as drivers for sensors and meters, benchmarks,

instrumentation APIs, analysis tools, etc.). It was extended to support multicore and multiproces-

sor systems [90]. Sense resistors are tapped into each DC power rail, and digital meters are used

to measure the voltage difference of two ends of the resistors. Powerpack measures the power

22

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

consumption of components such as motherboard, CPU, disk, memory, CPU fans and system fans

using direct or derived measurements. However, it directly measures the power and energy con-

sumption of one node at a time. The authors [90] suggest a remapping approach to obtain the total

power consumption of a whole cluster, where the direct measurement of power consumption can be

applied to other identical nodes in the cluster.

Bedard et al [91] [92] present two low-cost power monitoring devices: PowerMon and Power-

Mon2 to monitor the voltage and current to six and eight DC rails to components respectively, by

inserting them in between the power supply and motherboard. The sampling rate of PowerMon is

50 samples per second whereas PowerMon2 can provide up to 1024 samples per second on one

channel, or 3072 samples per second when divided among multiple channels. The devices employ

an Analog Device ADM1191 [93] which is connected to a sense/shunt resistor on each power rail

for detecting the voltage and current traversing the resistor.

Laros et al [94] present PowerInsight which is composed of following three major components:

1) a BeagleBone [95], 2) a carrier board which provides the connection for 15 sensor modules, and

3) a harness which contains the sensor modules to be integrated between the motherboard and the

power supply. Hence, it can support the instrumentation of up to 15 DC rails. Unlike PowerMon line

of devices, it uses Hall effect sensor due to its low impact on the power rail being measured.

Hackenberg, et al [96] present High Definition Energy Efficiency Monitoring (HDEEM) infrastruc-

ture that facilitates energy-aware optimization of parallel codes. HDEEM is implemented on a sim-

ilar approach to PowerInsight with few different hardware design decisions. For example, HDEEM

combines an FPGA and existing baseboard management controller (BMC) instead of using an au-

tonomous measurement board. This reduces the hardware cost and the overall complexity for the

measurement equipment. HDEMM provides a higher temporal resolution (the sampling rate) of 8k

samples per second, and the finer spatial granularity at the level of per CPU. The authors claim a

higher quality of results due to the noise filtering and sensor calibration.

IBM server blades JS22 and HS211-XM are equipped with on-board power-measurement cir-

cuits [97]. Low impedance resistors in series are placed with a power rail using circuits feeding the

voltage regulators modules powering the system. The power data can be sampled using an IBM

proprietary tool Amester [97]. The sampling rate of Amester is up to 1k per second.

To summarize, PMI are custom-designed integrated systems to provide the fine-grained

component-level energy consumption of the System-Under-Test (SUT). However, apart from is-

sues related to temporal resolution (sampling rate), and spatial/topological granularity (for example,

whether it can measure the energy consumption by the cores individually or it reports the aggregated

energy consumption by all the cores at socket level), PMIs suffer from another important disadvan-

tage, which is to manually instrument the hardware that is a highly specialized skill for computer

scientists. Mostly PMIs employ sense/shunt resistors and hall effect sensors to determine the power

draw in the component/system. Following are some of the drawbacks of using sense/shunt resistors:

• The voltage drop is a big concern for low voltage and high current applications.

• A direct electrical connection is required between the power supply and the component which

requires the expertise. Any mishandling may cause damage to hardware.

• They increase the overall power draw by introducing the resistance into the circuit.

23

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

• Their resistance is temperature dependent which, therefore, affects the accuracy of power

data.

The disadvantages of using hall effect sensors include:

• External magnetic fields can interfere and thus bias the measurements. Therefore, the sensor

position is very important to consider within the system.

• The accuracy is highly influenced by the temperature.

• The occurrence of offset voltage.

2.2.2 Power meters

System level power consumption details can be obtained using physical measurements employing

external AC power meters. Dedicated power meters are installed between the input power sockets

to the system and the wall AC outlets. The total energy consumption by the system using the

external power meters is considered to be highly accurate [40] [60]. The revenue-graded power

meters such as Yokogawa WT5000 [98] offer the basic power accuracy of up to ±0.03% with a very

high sampling rate of 10M per second. Other examples include Watts Up Pro [99] and ZES Zimmer

power analyzers [100]. While the accuracy of different models of Watts Up Pro is reported as ±1.5%
and ±3% with a sampling rate of 1 sample per second, ZES Zimmer’s products such as LMG671

offers an accuracy of ±0.025% with a gap-less sampling up to 18 bit and a minimal cycle time of 10

ms.

However, power meters can provide the measurements only at a system level and cannot, there-

fore, provide the fine-grained decomposition of the energy consumption by an application executing

on multiple independent computing devices in a system. This is a serious drawback.

2.2.3 On-chip power sensors and vendor specific libraries

On-chip integrated power sensors are now prevalent in mainstream processors such as Intel and

AMD Multicore CPUs, Nvidia GPUs, and Xeon Phis.

Intel CPUs offer Running Average Power Limit (RAPL) [41] to monitor power and control fre-

quency (and voltage). RAPL is based on a software model using performance monitoring counters

(PMCs) as predictor variables to measure the energy consumption for CPUs and DRAM for pro-

cessor generations preceding Haswell such as Sandybridge and Ivybridge E5 [101]. For latest

generation processors such as Haswell and Skylake, however, RAPL uses separate voltage reg-

ulators (VR IMON) for CPU and DRAM.VR IMON is an analog circuit within the voltage regulator

(VR), which keeps track of an estimate of the current. It, however, adds some latency because the

measured current-sense signal has a delay from the actual current signal to CPU. This latency may

affect the accuracy of the readings. RAPL samples this reading periodically (100µs to 1 ms) for

calculating the power [45]. The accuracy of VR IMON for different input current ranges is not known.

According to Reference [45], DRAM and CPU IMON report higher errors when the system is idle or

if the system is allocated memory capacity much lower than its capability.

Furthermore, it is reported that VRs from the same manufacturer lot may exhibit different ac-

curacies [46]. Less accurate VRs (for example within an accuracy of ±20%) are used by original

24

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

equipment manufacturer (OEM) for cost-saving purposes [46]. However, to compensate the reported

inaccuracies of output current (IMON) from a VR to a processor, an approach is recently proposed to

use a programmable load line from BIOS instead of actual implemented load line. This programmed

load line values adds an offset to the determined inaccuracy of the VR to increase its accuracy. [46].

Hackenberg et al. [60] report systematic errors in RAPL energy counters and find that it is in-

clined towards certain types of workload and can give poor power predictions for others. However,

in another study later [62], they demonstrate that RAPL improves the accuracy of energy measure-

ments for Haswell generation processors due to employment of VR IMON for power measurement

[45]. Khan et al. [63] study the RAPL accuracy on Haswell generation processors by running

different benchmarks. While Hackenberg et al. [62] run micro-benchmarks using different thread

configurations, Khan et al. run benchmarks using different frequency configurations. However, both

of them compare the RAPL readings with total system (AC) power consumption using power meters

and report that the RAPL readings are in a strong correlation with AC measurements.

AMD starting from Bulldozer micro-architecture equip their processors with an estimation of aver-

age power over a certain interval through the Application Power Management (APM) [44] capability.

Reference [60] reports that APM provides highly inaccurate data particularly during the processor

sleep states.

Xeon Phi co-processors are equipped with on-board Intel System Management Controller chip

(SMC) [42] providing energy consumption that can be programmatically obtained using Intel many-

core platform software stack (MPSS) [102]. The accuracy of MPSS is not available.

NVML [43] provides programmatic interfaces to obtain the energy consumption of an Nvidia GPU

from its on-chip power sensors. The reported accuracy of the instant current readings in the NVML

manual is ±5%. However, experimental results demonstrate the accuracy as worse [37]. Burtsher

et al. [47] examine the power profiles of three different Nvidia GPUs (Tesla K20c, K20m and K20x)

when executing an N-body simulation benchmark. They find multiple anomalies when using the

on-chip sensors on K20 GPUs, and inaccurate power readings on K20c and K20m that lag behind

the expected power profile based on a software model (which they believe to be the ground truth).

Furthermore, the authors observe that the power sampling frequency on K20 GPUs varies greatly

and the GPU sensor do not update the power readings regularly.

Instantaneous power usage data on the motherboards can be acquired through Intelligent Plat-

form Management Interface (IPMI) [48] using Baseboard Management Controller (BMC) monitoring

chip on supported motherboards. There are a number of vendor specific extensions such as imple-

mented by the Intel Node Manager technologies or Dell Remote Access Controller to manage and

monitor the server power.

2.2.4 Energy Predictive Models

Software based energy predictive models emerged as a predominant alternate approach to pre-

dict the energy consumption by an application. A vast majority of such models is linear and uses

PMCs as predictor variables to predict the energy consumption. PMCs are special-purpose regis-

ters provided in modern microprocessors to store the counts of software and hardware activities.

In this thesis, PMCs refer to collectively i) software events which are pure kernel-level counters

such as page-faults, context-switches, etc., and ii) micro-architectural events originating from the

25

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

processor and its performance monitoring unit called the hardware events such as cache-misses,

branch-instructions, etc.

The most common approach proposing an energy predictive model is to determine the energy

consumption of a hardware component based on linear regression of the performance events oc-

curring in the hardware component during an application run. The total energy consumption is then

calculated as the sum of these individual energy consumption. Therefore, this approach constructs

component-level models of energy consumption and composes them using summation to predict

the energy consumption during an application run.

Now, we present an overview of the tools widely used to obtain PMCs, notable energy predictive

models, and critical reviews of PMCs.

Tools to obtain PMCs: Perf [103] can be used to gather software events such as context-

switches, minor-faults, etc., and hardware events such as instructions retired, L1 cache misses,

etc., for Linux-based systems.

PAPI [104] is a well-known portable API for reading PMCs found in majority of the micropro-

cessors. The latest version of PAPI (PAPI6.0) also includes the support for monitoring the power

consumption by AMD GPUs, Power9 and succeeding generations of IBM PowerPC architectures.

The latest fork of Intel PCM [105] provides a set of tools to monitor the energy and performance

metrics of a range of Intel processors including Intel Core, Xeon, Atom and Xeon Phi processors. It

supports PCM Linux, Windows, Mac OS X, FreeBSD and DragonFlyBSD operating systems.

Likwid [55] is a lightweight command line tool which can be used to obtain PMCs for for a range

of Intel, AMD, ARMv8 and POWER9 processors on the Linux operating system. It provides the

energy information by accessing RAPL counters.

For Nvidia GPUs, CUDA Profiling Tools Interface (CUPTI) [106] provides a set of APIs and

tools to profile and trace the CUDA applications. These APIs can be used to collect the PMCs.

For example, CUPTI Event API allows to read the event counters on a CUDA-enabled device, and

CUPTI Metric API allows to collect the application metrics such as cf_executed (number of executed

control-flow instructions), dram_read_transactions (device memory read transactions), and etc.

The main techniques used to select PMCs for modeling can be divided into following four cate-

gories:

• Techniques that consider all the PMCs offered for a computing platform with the goal to capture

all possible contributors to energy consumption. To the best of our knowledge, we found no

research works that adopt this approach because of the models’ complexities.

• Techniques that use a statistical methodology such as correlation, principal component analy-

sis and so forth to choose a suitable subset [107, 59].

• Techniques that use expert advice or intuition to pick a subset of PMCs and that, in experts’

opinion, are dominant contributors to energy consumption [108].

• Techniques that select parameters with physical significance based on fundamental laws such

as the energy conservation of computing [52]. Shahid et al. [52] introduced a new property

that is based on an experimental observation that dynamic energy consumption of serial ex-

ecution of two applications is equal to the sum of the dynamic energy consumption of those

26

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

applications when they are run separately. The property is based on a simple and intuitive rule

that if the PMC is intended for a linear predictive model, the value of it for a serial execution

of two applications should be equal to the sum of its values obtained for the individual execu-

tion of each application. The PMC is branded as non-additive on a platform if there exists an

application for which the calculated value differs significantly from the value observed for the

application execution on the platform. The authors report that the use of non-additive PMCs

in a model impairs its prediction accuracy.

To facilitate clarity of exposition, the mathematical form of the linear regression models can be

stated as follows:

∀a = (ak)
n
k=1, ak ∈ R,

fE (a) = β0 + β × a =
n∑

k=1

βk × ak (2.7)

where β0 is the intercept and β = {β1, ..., βn} is the vector of coefficients (or the regression coeffi-

cients). In real life, there usually is stochastic noise (measurement errors). Therefore, the measured

energy is typically expressed as

f̃E (a) = fE (a) + ϵ (2.8)

where the error term or noise ϵ is a Gaussian random variable with expectation zero and variance

σ2, written ϵ ∼ N (0, σ2).

Additive energy models for the entire system: One of the simplest additive models was

presented by Roy et al. [109] which determine the energy consumption by CPU and memory when

running an algorithm. The model determine the energy consumption by CPU and memory during

the execution of an algorithm as a weighted sum of time complexity and the number of parallel I/O

operations of the algorithm.

Lewis et al. [110] proposed a system-wide energy model which relates the energy consump-

tion by the server to its overall thermal envelope. They presented a linear regression model using

PMCs as predictor variables within an error of up to 4%. In this model, the system-wide energy

consumption is presented as a summation of power models of processor, memory (DRAM), fans,

motherboard (chipset) peripherals, and hard-disk drive.

Basmadjian et al. [111] presented a similar model which include some additional components

(such as network interface card and power supply unit) to the equation for constructing a similar

aggregated power model of the server as a function of resource utilization by its sub-components.

They report the error rate of their model ranging between 2% and 10%.

Bircher et al. [112] proposed an iterative procedure to predict the power of the entire system

using PMCs that trickle down from the processor to other subsystems such as disks, CPU, memory,

I/O and chipset. They estimated the power of entire system as a summation of six subsystems

CPU, memory, chipset, I/O, disk, and GPU, and validated their model on two platforms (server and

desktop). The average error of their model is reported as 9% per subsystem.

Heath[113] propose a linear model using the utilization of CPU, disk, and the network to estimate

the total power consumption of the entire system. The average and maximum error of their proposed

model is reported as 1.3% and 2.7% respectively. Economou et al. [50] proposed a more complex

power model called as Mantis which is a non-intrusive method and requires a one-time model fitting.

27

2.2. COMMON PRACTICES TO MEASURE THE ENERGY OF COMPUTING

It employs the utilization metrics of CPU, disk, and network components and hardware performance

counters for memory as predictor variables.

Rivoire et al. [114] study and compare five full-system real-time power models using a variety

of machines and benchmarks. One of them includes CPU PMCs and the OS-reported utilization of

CPU and disk in the model variable set whereas the remaining four models are utilization-based.

They report that the PMC-based model is the best overall in terms of accuracy because it accounts

for the majority of the contributors (particularly the memory activity) to the system’s dynamic power.

Energy predictive models for CPU: One of the first models correlating PMCs to energy values

was developed by Bellosa et al. [115]. Their model is based on events such as memory requests due

to cache misses, integer operations, floating-point operations, etc., which they reported as strongly

correlated with energy consumption. An elaborated methodology employing PMCs is proposed by

Icsi et al. [116] to determine the component-level power which is estimated from the access rates of

the components.

References [113], [50], present component (CPU, fans, memory, and hard disk drive) wide

energy predictive models based on highly correlated performance events such as cache misses,

floating-point operations and integer operations. Dargie et al. [58] quantify the relationship between

the workload and power consumption of the multicore processor by using the statistics of CPU uti-

lization. Lastovetsky et al. [18] propose an application-level energy model by modelling the dynamic

energy consumption of a multicore CPU as a highly non-linear function of problem size.

Lee et al. [117] propose a statistically rigorous approach to derive regression models using

PMCs to predict power. The median and maximum error of their method is 4.3% and 24.5% respec-

tively. Li et al. [118] report a strong correlation between instructions per cycle (IPC) and operating

system (OS) routine power, and thus propose power models for the OS. They reported the estima-

tion error of their power model as less than 6%.

Fan et al. [119] propose a simple linear model that correlates the power consumption of a

single-core processor with its utilization. Singh et al. [120] develop per-core power models based on

multiple linear regression using PMCs. Powell et al. [121] use a linear regression model to estimate

activity factors and power for a large number of micro-architectural structures using a small number

of PMCs. Goel et al. [122] derive per-core power models using PMC values and temperature

readings. A linear model that takes into account CPU utilization and I/O bandwidth is described in

[123] to predict the power consumption of a server. A power model that provides a per-component

power breakdown of a multicore CPU is presented by Bertran et al. [124]. It is based on activity

factors obtained from PMCs for various components in a multicore CPU.

Basmadjian et al. [125] report that the summation of power consumption of all active cores to

derive the total power consumption is inaccurate. They take into account, therefore, the resource

sharing in their power prediction model for multicore processors. McPAT [126] is an integrated power,

area, and timing modeling framework for multicore, manycore and multithreaded architectures. It

supports the estimation of power consumption for various components in a multiprocessor which

includes in-order and out-of-order processor cores, shared caches, integrated memory controllers

and networks-on-chip. However, Xi et al. [127] report the limitations of McPAT in power estimation.

Dargie et al. [58] use the CPU utilization statistics to model the relationship between the power

consumption of the multicore processor and workload quantitatively. They demonstrate that the

28

2.3. CRITIQUES OF BUILT-IN POWER SENSORS AND PMC BASED PREDICTIVE MODELLING

relationship is quadratic for a single-core processor and linear for multicore processors. Haj-Yihia

et al.[108] present a linear regression model for Intel Skylake processors based on PMCs. They

selected the PMCs which are popular in well-known energy and power models.

Lastovetsky et al. [18] present an application-level energy model where the dynamic energy

consumption of a processor is represented by a function of problem size. They report a highly

non-linear and non-convex nature of the relationship between energy consumption and problem

size. They use this model for solving the optimization problems of data-parallel applications on

homogeneous multicore clusters for energy.

Energy predictive models for accelerators: Hong et al. [128] present an energy model for

an Nvidia GPU based on a similar PMC-based power prediction approach of [116]. The power

consumption of the GPU is calculated as the summation of power consumption of all the components

composing the GDDR memory and Streaming Multiprocessor (SM) with an error of 8.94%. However,

it contains a large set of parameters and requires the detailed architectural information. This is the

main factor affecting the portability of this model. Nagasaka et al. [129] present a statistical approach

to predict power consumption of GPU kernels. Their model employs GPU PMCs exposed for CUDA

applications. The average and maximum errors reported in prediction of total power consumption

are 4.7% and 23% respectively.

Song et al. [130] present power and energy prediction models that are based on machine learn-

ing algorithms such as back propagation in artificial neural networks (ANNs). The selected 10 GPU

PMCs as the predictor variable of their model. The PMC values are collected using CUPTI during

the application run. They report an average prediction error rate for their power model as 2.1%, and

11% as maximum for their energy model.

Shao et al. [131] develop an instruction-level energy consumption model for a Xeon Phi pro-

cessor. They report the error of their model ranging between 1% to 5% for real-world applications.

Khatib et al. [132] present a linear instruction-level model to predict the dynamic energy consumption

by soft processors in FPGA. Their model considers both the the operand values of the instructions

and the inter-instruction effects. They report an average error rate for their model as 4.7% where the

maximum reaches up to 12%.

2.3 Critiques of built-in power sensors and PMC based predictive

modelling

While the built-in power sensors and PMC based predictive models can provide the fine-grained

component-level power consumption, many researchers have highlighted their limitations and poor

prediction accuracy.

2.3.1 On-chip integrated power sensors

Burtsher et. al [47] find inaccurate power readings on Nvidia K20c and K20m GPUs which lag

behind the expected profile. Furthermore, the authors observe that the power sampling frequency

on K20 GPUs varies greatly and the GPU sensors do not update the power readings regularly.

In [37], we present a comprehensive study comparing the accuracy of state-of-the-art on-chip

29

2.3. CRITIQUES OF BUILT-IN POWER SENSORS AND PMC BASED PREDICTIVE MODELLING

power sensors and energy predictive models against system-level physical measurements using

external power meters, which we consider to be the ground truth. It is found that the dynamic

energy profile patterns of the on-chip sensors (of CPU, GPU, and Xeon Phi) differ significantly

from the patterns obtained using the ground truth, which suggests that the measurements using

on-chip sensors do not capture the holistic picture of the dynamic energy consumption during an

application execution. Furthermore, it is demonstrated that inaccurate energy measurements with

on-chip sensors for dynamic energy optimization can result in a significant loss of energy. The

average error of dynamic energy measurements with on-chip power sensors is found to be as high

as 73%, and can be 32% for energy predictive models employing PMCs as predictor variables for

the benchmark suite used in their experiments.

Another important finding is that owing to the nature of the deviations of the energy measure-

ments provided by on-chip sensors from the ground truth, calibration can not improve the accuracy

of the on-chip sensors to an extent that can allow them to be used in optimization of applications

for dynamic energy. We also demonstrate that using inaccurate energy measurements provided

by on-chip sensors for dynamic energy optimization can result in significant energy losses up to

84%. In [21], the similar results are found demonstrating the poor accuracy of the energy measure-

ments provided by on-chip power sensors for constructing the additive energy models of application-

components of a hybrid application.

Our works [37] and [21] differ from that in References [62] and [63] in several ways:

• The authors compare the total power consumption by the system with AC power and power

consumption by the micro-benchmarks with RAPL and therefore use different reference do-

mains. However, we compare the dynamic energy consumption by applications with both

tools (RAPL and power measurements using external power meters) and thus compare the

measurements using the same reference domain.

• The authors run benchmarks in different threading/frequency configurations. In contrast, we

build the energy profiles of scientific applications representing real-world workloads using dif-

ferent configurations such as problem size, CPU Cores, CPU Threads.

• The authors run their benchmarks on the Haswell platform only. However, our experiment

testbed is more diverse and includes advance generations of Intel CPU micro-architecture.

• The authors find a correlation between the measurements with both tools (power meters and

RAPL) on Haswell. However, they could not confirm if RAPL can be calibrated owing to differ-

ent reference domain. We further extend the knowledge-base by showing that the measure-

ments with both tools can not be calibrated due to their qualitative differences and interlacing

behavior of the profiles built with them.

• We demonstrate that a high correlation coefficient does not necessarily mean a strong linear

relationship or high similarity between two energy profiles [77].

Summary: To summarize, on-chip integrated power sensors provide fine-grain component level

power consumption details. However, there are some issues with the power data values provided

by these vendor-specific libraries. The fundamental issue with this measurement approach is the

30

2.3. CRITIQUES OF BUILT-IN POWER SENSORS AND PMC BASED PREDICTIVE MODELLING

lack of information about how a power reading for a component is determined during the execution

of an application utilizing the component. Apart from accuracy, the other issues include the lack of

details on update frequency of power readings, portability, poor documentation, etc. as discussed in

section 1.1.5.

2.3.2 PMC based Energy predictive models

Economou et al. [50] highlight the fundamental limitation of PMC-based models, which is the re-

stricted access to read PMCs (generally four at a single run of an application). Therefore, It becomes

an extremely important task to carefully select the best subset of PMCs as suitable contenders to

be used as predictor variables in a model.

In a study on the accuracy of predictive power models for multicore architectures, McCullough

et al. [51] report that the prediction errors of linear regression-based models employing PMCs can

be as high as 150%. In a survey on predictive energy models for heterogeneous and hierarchical

node architectures, O’Brien et al. [15] highlight the poor prediction accuracy and ineffectiveness

of such models to accurately predict the dynamic power consumption by modern heterogeneous

hybrid NUMA nodes. They highlight the main causes of this inaccuracy as the severe resource

contention due to the tight integration of tens of cores contending for shared on-chip resources such

as LLC; interconnect (For example: Intel’s QPI, AMD’s Hyper Transport), and DRAM controllers;

Non-uniform memory access (NUMA); and DPM of multiple power domains (CPU sockets, DRAM).

Arsalan et al. [52] also question the reliability and reported prediction accuracy of PMC based

energy predictive models. They report that many PMCs that are used as key predictor variables

in state-of-the-art predictive models are not deterministic. To improve the accuracy of PMC based

energy models, they propose a novel selection criterion called the additivity for selecting a subset of

PMCs to be used in linear energy predictive models by conforming to the theory of energy predictive

models for computing. The criterion is based on an experimental observation that dynamic energy

consumption of serial execution of two applications is equal to the sum of the dynamic energy con-

sumption of those applications when they are run separately. The PMC is branded as non-additive

on a platform if there exists an application for which the calculated value differs significantly from

the value observed for the application execution on the platform. The use of non-additive PMCs

in a model impairs its prediction accuracy. In another study [78], the authors demonstrate how the

accuracy of state-of-the-art energy predictive models based on three popular techniques (Linear re-

gression, Neural networks, and Random forests) can be improved by selecting PMCs based on the

property of additivity.

Arsalan et al. [54] compared the techniques for energy predictive modelling using PMCs on

modern multicore CPUs. The authors studied two following types of energy predictive models: i)

linear regression models employing PMCs based on the property of additivity, and ii) the sophis-

ticated statistical learning models (random forest and neural network) employing PMCs based on

correlation and principal component analysis. The authors conclude that a strong positive correla-

tion of model variables (PMCs) with energy consumption is not sufficient enough to provide good

prediction accuracy. Therefore, the author suggested that it should be combined with methods such

as additivity that consider the physical significance of the model variables originating from the theory

of energy predictive models for computing.

31

2.4. ENERGY OPTIMIZATION APPROACHES

Summary: To summarize, energy optimization at system-level and application-level rely cru-

cially on accurate measurement of energy consumption during an application execution. Energy

predictive models using performance monitoring counters emerged as a dominant measurement

method. Its main advantage compared to the ground truth (system-level physical measurements

using power meters) is the fine-grained decomposition of energy consumption during the execution

of an application. However, there are several shortcomings with this approach including:

• Model parameters in most cases are not deterministic.

• Complexity of model construction and lack of consensus among the research works, which

report prediction accuracies ranging from poor to excellent.

• A vast majority of research works select PMCs solely on the basis of their high positive cor-

relation with energy consumption without any deep understanding of the physical significance

of the model variables.

• A sound theoretical framework to understand the fundamental significance of the model vari-

ables with respect to the energy consumption and the causes of inaccuracy or the reported

wide variance of the accuracy of the models is lacking.

In [21], the authors discussed the implementations complexity and lack of portability of PMC

based energy predictive models which hinders their efficacy to adopt them as a viable approach to

predict the energy consumption by the hybrid applications running in parallel on different compute

devices. Energy predictive models employing PMCs as predictor variables exhibit high implementa-

tion complexity due to the following reasons:

1. There is a large number of PMCs provided in a modern multicore processor to be considered.

2. Tremendous programming effort and time are required to automate and collect all the PMCs.

This is because of the limited number of hardware registers available on platforms for storing

the PMCs. Only 3-4 PMCs can be collected in a single run of an application. Moreover,

some PMCs can only be collected individually or in sets of two or three for an application run.

Therefore, each application must be executed for a number of times to collect all the PMCs

available on a specific platform.

3. An energy predictive model purely based on PMCs lacks portability. This is because all the

PMCs available for a CPU processor may not be present in a GPU processor due to inherent

architectural differences, or even for the next-generation CPU processor from the architecture

space.

2.4 Energy Optimization Approaches

In this section, we present some notable power mechanism existing in modern hardware to save

the overall power consumption by the system. Afterwards, we provide an overview of some notable

energy optimization approaches to achieve the bi-objective optimization for performance and energy

consumption on modern computing platforms.

32

2.4. ENERGY OPTIMIZATION APPROACHES

2.4.1 Power Saving Mechanisms

Several power saving mechanisms are provided to control and configure the power consumption in

modern computing hardware.

Clock and power gating: Clock gating [133] is a popular technique which is used in many

synchronous circuits for reducing the dynamic power dissipation. It saves power by pruning the

clock tree when the circuit is not in use. This disables the portions of the circuitry which stops the

flip-flops in them from switching the states. As a result, the switching (dynamic) power consumption

goes to zero. Power gating is a technique to reduce the stand-by or leakage power by shutting off

the current to the inactive blocks of the circuit. In order to achieve this, sleep transistors are used

to connect the circuitry blocks to the power supply [134]. Hence, both techniques together save the

overall (static and dynamic) power consumption by the circuitry. However, the studies [135] have

highlighted the negative effects of these techniques such as performance penalty, area and power

overhead, etc.

DPM: DPM techniques target to reduce the power dissipation by selectively turning off the idle

components [134]. The basic idea is to put the components to sleep; switched to low power modes;

or turned off the current when idle, and then bring them back into active state when required. How-

ever, it may hit the performance and can introduce the energy overheads for sleep-state transition.

Advanced Configuration and Power Interface (ACPI): Advanced Configuration and Power

Interface (ACPI) is an open standard co-developed by Intel, Microsoft, HP, Toshiba Phoenix and

Huawei to configure and perform power management of the system [136]. It is the central to operat-

ing system directed configuration and power management. Here, we briefly present the configuration

and control of the processors power and performance states as per described in section 8 of ACPI

version 6.3 [136].

It defines four following global (system-level) states:

1. G0 Working: where the system is executing the user tasks.

2. G1 sleeping: where the system is not executing the user tasks, and appears to be off. The

system consumes a small amount of power in this state. Example are sleep/standby and

hibernate modes in modern OS.

3. G2 Soft Off: where the system consumes minimal amount of power. It is almost the same as

G3 Mechanical Off. However, in this state the PSU still supplies power to return to G0 state.

4. G3 Mechanical Off: where the system power is totally removed.

The power states for the processors {C0, C1,· · · ,Cn} are defined by ACPI during G0 Working.

Please note here that the Cx states only apply to G0 state. C0 state is defined as active power state

where the CPU is executing the instructions. C1 is defined as halt power state where the CPU is not

executing any instruction but it can return to C0 instantaneously. C2 is defined as stop clock state

which is similar to C1 state but it takes longer to return to C0. C3 is defined as (deep) sleep state

which offers improved power savings than C1 and C2. However, it requires more time to return to C0

than required by C2. Additional C states can be defined by manufacturers to provide more control

on power savings of processors. However, all the power states from C1 through Cn are related

33

2.4. ENERGY OPTIMIZATION APPROACHES

to processor sleep states where the processor consumes less energy and dissipate less power in

comparison with C0.

C-sates are further divided into core states (CC-state) and package states (PC-states) to support

core-level power management in modern multi-core processors. CC-states {CC0, CC1,· · · ,CCn}

manages the C-states at CPU core-level, whereas PC-states {PC0, PC1,· · · ,PCn} manages the

power states of other common (shared) resources in processor such as shared cache. xC0 (where

x denotes the initial of package state or core state i.e. P or C respectively) state represents the

active state for package and core states, whereas all other CCx and PCx states from xC1 through

xCn represent different levels of sleep states. PC-sates are dependent on CC-states and thus cannot

be interacted directly. They are changed based on the CC-states of the CPU cores. Hence, package

state is active when there is at least one CPU core state is active.

The performance states {P0, P1,· · · ,Pn} are defined as the power consumption and capability

states within the active state for processors or device. P0 is when the device or processor uses its

maximum performance capability and thus may consume the maximum allowed power. P1 and other

subsequent P-states represent different level of states when the performance capability and power

consumption by a processor/device is limited below its maximum performance capability and power

consumption. Pn represents the P-state when the performance capability and power consumption

by the processor or device is at its minimum level while remaining in an active state. While C-states

mechanism saves the power consumption by putting the idle components into lower power states,

P-states allows to save the power consumption by decreasing the voltage or/and frequency of the

processor. Therefore, P-states are also known as power-performance states and represents the pair

of specific voltage and frequency.

DVFS: DVFStechnique allows changing the processors voltage and frequency at run time [137],

and therefore allows the processors to run at different clock speeds and supply voltages. However,

there is trade-off between the time and energy by reducing the clock frequency and the voltage of the

processors. Furthermore, running an application on lower frequency does not necessarily reduce its

overall energy consumption. This is because the execution time of the application may be increased

when setting the clock frequency of the processor running it at a lower speed.

The voltage input scales up/down in accordance with the change in clock frequency of processor

cores. CPU frequency can be scaled up/down dynamically in response to ACPI events, manually

by userspace programs, or automatically depending on the system load. It allows to save the power

consumption of the processor by decreasing its clock frequency (and eventually the voltage input)

while in active state (i.e. xC0). CPU frequency scaling is implemented in Linux kernels by using

the power schemes known as governors [138]. Typically, there are following governors supported

by Linux kernel: 1) Performance: The CPU frequency is set to be at highest possible frequency,

2) Powersave: The CPU frequency is set to be at lowest possible frequency, 3) Ondemand: The

CPU frequency is set at depending on the current system load, 4) Userspace: The CPU frequency

is set at user specific value. There are some additional governors such as conservative, schedutil,

etc. also supported in some Linux kernels. However, only one governor is active at a time.

Voltage change of the components are supported through voltage regulators (VRs) [139]. A VR

performs two following major functions in providing voltage to a computing device: i) it stabilizes the

supplied voltage, and ii) it changes the supplied voltage according to the needs of the device. It

34

2.4. ENERGY OPTIMIZATION APPROACHES

is important to note that the same voltage is supplied to all components sharing the same voltage

domain. A voltage domain can be defined as a set of components that is attached to a common

supply voltage. The number of voltage domains depends upon the number of VRs and their archi-

tectural implementation scheme. For example, modern Intel processors are based on one of the

two following power delivery schemes: i) Integrated Voltage Regulator (IVR) scheme: It uses one

motherboard VR and six different on die/package fully integrated VRs, and ii) Motherboard Volt-

age Regulator (MBVR) scheme: It uses four motherboard VRs and three on-die power-gates for

the Ring domains and Core0/1. It is important to note that the components which share the same

voltage domain cannot regulate their voltage independently from each other. Therefore, only the

frequency can be scaled dynamically for the cores/components sharing the same voltage domain.

2.4.2 Multi-objective Optimization Methods Involving Energy

System-level multi-objective optimization: System-level multi-objective optimization methods aim

to optimize several objectives of the system or the environment (for example: clouds, data centers,

etc) where the applications are executed. Mezmaz et al. [140] propose a parallel bi-objective genetic

algorithm to maximize the performance and minimize the energy consumption in cloud computing

infrastructures. The parameters used in their method are the computation cost of a task and the

communication costs between two tasks. The decision variable is the supply voltage of the proces-

sor. Beloglazov et al. [141] propose heuristics that consider twin objectives of energy efficiency and

Quality of Service (QoS) for provisioning data center resources. The decision variables are the num-

ber of VMs and clock frequencies. Durillo et al. [142] propose a multi-objective workflow scheduling

algorithm that maximizes performance and minimizes energy consumption of applications executing

in heterogeneous high-performance parallel and distributed computing systems. A machine is char-

acterized using nine parameters (from technology(nm) to TDP). They study the impact of different

decision variables such as number of tasks, number of machines, DVFS levels, static energy, and

types of tasks. Kolodziej et al. [143] propose multi-objective genetic algorithms that aim to maximize

performance and energy consumption of applications executing in green grid clusters and clouds.

The performance is modeled using computation speed of a processor. The decision variable is the

DVFSlevel.

Application-level multi-objective optimization: Application-level solution methods optimize

applications rather than the executing environment. Marszalkowski et al. [144] analyze the impact

of memory hierarchies on time-energy trade-off in parallel computations, which are represented as

divisible loads. They represent execution time and energy by two linear functions of problem size,

one for in-core computations and the other for out-of-core computations. Lastovetsky et al. [18]

and Reddy et al. [145] propose data partitioning algorithms that solve single-objective optimization

problems of data-parallel applications for performance or energy on homogeneous clusters of mul-

ticore CPUs. They take as an input, discrete performance and dynamic energy functions with no

shape assumptions and that accurately and realistically account for resource contention and NUMA

inherent in modern multicore CPU platforms.

Reddy et al. [19] propose a solution method to solve bi-objective optimization problem of an

application for performance and energy on homogeneous clusters of modern multicore CPUs. They

demonstrate that the method gives a diverse set of Pareto-optimal solutions and that it can be com-

35

2.5. APPROACHES FOR MEASURING THE GOODNESS OF ENERGY PROFILES OF
APPLICATIONS EXECUTING ON MULTICORE COMPTUING PLATFORMS

bined with DVFS-based multi-objective optimization methods to give a better set of (Pareto-optimal)

solutions. The methods target homogeneous HPC platforms. Chakraborti et al. [26] consider the

effect of heterogeneous workload distribution on bi-objective optimization of data analytics applica-

tions by simulating heterogeneity on homogeneous clusters.

Fredy et al. [146] proposed a dynamic energy-aware scheduler for parallel task-based applica-

tion in cloud computing. The scheduler aims to minimize a multi-objective function that combines

the energy consumption and the total execution time by an energy-performance importance factor.

The authors also proposed a model to estimate the energy consumption by an application by aggre-

gating the utilization of different elements during its task execution such as VM management, data

transfers and the background services of the node. Khaleghzadeh et al. [20] propose a solution

method solving the bi-objective optimization problem on heterogeneous processors and comprising

of two principal components. The first component is a data partitioning algorithm that takes as an

input discrete performance and dynamic energy functions with no shape assumptions. The second

component is a novel methodology [21] employed to build the discrete dynamic energy profiles of

individual computing devices, which are input to the algorithm.

Energy Proportionality of Multicore Processors: Architects of modern multicore processors

follow a key design goal called energy proportionality (EP) defined by Barroso et al. [147] as de-

signing microprocessors composed of components that consume energy proportional to the amount

of work performed. Wong et al. [148] show that EP is not uniform across various server utiliza-

tion levels by proposing metrics that they believe accurately quantifies EP. Lo et al. [149] present

a server power management solution that adjusts the power in a fine-grained manner based on la-

tency statistics with an aim to achieving EP objective. Hsu et al. [150] examine a range of metrics

for quantifying EP. Sen et al. [151] extend the definition for re-configurable processors.

Khokhriakhov et al. [88] study the practical implication of EP for applications, which is signified

by a monotonically increasing relationship between energy and execution time. A breach of this

relationship represents a violation of EP. They discover through their novel application-level method

for bi-objective optimization of the applications for energy and performance on a single multicore

processor, that EP does not hold true for modern multicore processors.

2.5 Approaches for Measuring the Goodness of Energy Profiles of

Applications Executing on Multicore Comptuing Platforms

In this section, we first present the overview of approaches that are commonly used to measure

the goodness of energy profiles. Then, we present the notable approaches used for closely related

problem of pattern matching in other faculties such as text mining, graph theory and time-series

analysis.

2.5.1 Accuracy measurement approaches used in energy modeling

The average prediction error (also known as relative error) is the most commonly used statistical

measure to determine the accuracy of energy models against the ground truth. Let E(x)M rep-

resents the model of dynamic energy consumption by an application workload size x and E(x)R

36

2.5. APPROACHES FOR MEASURING THE GOODNESS OF ENERGY PROFILES OF
APPLICATIONS EXECUTING ON MULTICORE COMPTUING PLATFORMS

represents the real dynamic energy consumption by the same application workload size x, then the

prediction error in percentage is calculated as [57]

ϵ = |(E(x)R − E(x)M)|/E(x)R × 100 (2.9)

and the average error in percentage for n data values is calculated as 1/n
n∑

i=1
ϵi. A plethora of

research work including [15, 21, 37, 58, 59, 51] use average, maximum and minimum prediction

errors to determine the accuracy of energy profiles.

Pearson’s correlation coefficient is also a common and widely used similarity measure. The

correlation between (two series) the ground truth (x) and a model (y) both of length n is represented

as [56]:

rxy =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2(yi − y)2

(2.10)

where x and y represents the sample means of x and y. The coefficient value ranges between

-1 and 1 where -1 represents a perfect negative relationship (as one of x or y increases, the other

decreases), 1 represents a perfect positive relationship (as both x and y decrease or increase to-

gether) and 0 represents an absence of any relationship. References [60, 61, 62, 63] are some of

the notable works which used the correlation coefficient to determine whether the energy profiles

follow the ground truth.

Critiques of Average Error and Correlation Coefficient: Juan-Antonio et al. [64] argue that

the relative error is low for a model that underestimates than a model that overestimates when the

proportion for the underestimated and the overestimated values of E(x)M with E(x)R is the same.

This can negatively impact the interpretation of the results. The authors propose the proportional

error µ to as an alternate to relative error. The proportional error for model prediction E(M) with the

ground truth E(R) is a ratio of the maximum of the two values with the minimum of the two values.

Let µ represents the proportional error which can be calculated as µ = max(E(R),E(M))
min(E(R),E(M)) . µ is always

greater than 1 if there exists an error, and equal to 1 otherwise.

Fahad et al. [21] highlighted the inadequacies of relative errors and correlation coefficient in cap-

turing the holistic picture of the energy consumption trend of the profiles. The authors demonstrate

that the two statistical measures are blind to the qualitative differences of the energy models and

the ground truth. They used mean absolute deviation (MAD) around the sample mean and maxi-

mum absolute deviation around sample maximum, and percentage increase and decrease between

two successive data-points of the energy profiles to compare the qualitative behavior (such as the

energy consumption trend and variations) of the energy profiles.

2.5.2 Pattern matching approaches in other fields for closely related problem

This similarity measure problem, in general, can be classified as pattern matching. A plethora of

different methods and approaches have been proposed to solve this problem in different fields such

37

2.5. APPROACHES FOR MEASURING THE GOODNESS OF ENERGY PROFILES OF
APPLICATIONS EXECUTING ON MULTICORE COMPTUING PLATFORMS

as data mining, time series similarity analysis, and graph (matching) theory. The proposed solutions

can be categorized into a non-exhaustive list of categories such as lock-step, pattern-based, model

based, elastic, feature-based and et cetra.

However, the main difference of similarity matching in energy modeling with time-series analysis

is that the energy profiles are (usually) a function of application configuration parameters (such as

problem sizes, CPU threads, CPU cores, etc.), whereas the time series data is uni-variate (only one

variable varies over time). Furthermore, the energy profiles are of the same cardinality as of the

ground truth (i.e. they have equal lengths) whereas it is not necessary in case of graph matching,

time series, and data mining. Therefore, we do not cover the similarity measures commonly known

as elastic similarity measures (such as dynamic time warping (DTW) [66]) where a data point of a

time series is compared with many data points of other time series and vice-versa i.e. one-to-many

mapping and many-to-one mapping. Now we present some of the popular similarity measures and

distance metrics used to determine the pattern matching.

Similarity Measures: Similarity measures establish the resemblance between the ground truth

and a model as an absolute value usually within the interval of [0,1] or [-1,1] where 0 or -1 indicates

an absolute opposite and 1 denotes a maximum similarity. A common and most widely used sim-

ilarity measure is Pearson’s correlation coefficient or cross-correlation coefficient. The correlation

coefficient between two energy profiles can be determined using the equation 2.5.1.

Cosine similarity is another popular similarity measure which measures the orientation of two

non-zero n-dimensional vectors irrespective of their magnitude. It is mainly used in text mining

problems such as text classification, text summarization, information retrieval, question answering,

etc. [65]. It measures the cosine of the angle between the both vectors. It is calculated by the dot

product of the vectors and normalized by the product of their lengths. Let x and y represents two

non-zero n-dimensional vectors. Then, the cosine similarity between both vectors can be determined

as [73]:

cos(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy||
=

n∑
i=1

xiyi√
n∑

i=1
x2i

√
n∑

i=1
y2i

(2.11)

T. Nakamura et al. [67] proposed a shape-based similarity measure called the Angular Metric

for Shape Similarity (AMSS) for time series data. It adopts cosine similarity as a principle measure

which disregards exact points or vector length.

Distance Metrics: Another way to compare a profile against the ground truth is the use of

a distance metric which establishes an absolute value of how far the two objects are. The most

commonly used distance metric is Euclidean distance which is based on Pythagoras’ theorem and

measures the distance between two vectors or two points in a Euclidean space. It is one of the most

popular distance metrics in data mining and time series similarity comparison. It is also used for

clustering of time series data [74] [75] because of its indexing capabilities and simple computations.

It can be determined between two vectors or two points using following equation [73]:

38

2.5. APPROACHES FOR MEASURING THE GOODNESS OF ENERGY PROFILES OF
APPLICATIONS EXECUTING ON MULTICORE COMPTUING PLATFORMS

dE(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.12)

The average geometric distance or root mean square distance is:

drms(x, y) =
dE(x, y)

n
(2.13)

Manhatten distance is related to Euclidean distance, and also called City-block or Taxicab dis-

tance. It measures the distance between two points as sum of absolute differences of their Cartesian

product:

dMan(x, y) =
n∑

i=1

|xi − yi| (2.14)

The generalized form of Euclidean distance and Manhatten distance is Minkowski distance which

is also called Lp norm, and can be computed as [152]:

dMink(x, y) =
1/p

√√√√ n∑
i=1

|xi − yi|p (2.15)

For Manhatten distance p=1, and for Euclidean distance p=2. However, Minkowski distance

variants are blind to capture the data correlation. Minkowski measures belong to the family of lock-

step measures which compare each element (data-point) in (energy) model with their corresponding

element (data-point) in ground truth. Mahalanobis distance is a variant of Euclidean distance which

takes the data correlation into account.

dMahal(x, y) =
√
(x− y)S−1(x− y)T (2.16)

where S is the co-variance matrix.

Graph-Edit-Distance (GED) [76] is a widely used distance metric in pattern recognition or graph

matching. It is related to string-edit-distance between two strings. It computes the the cost of

recognition of nodes and minimum number of modifications (such as deletion,insertion, substitution)

required to transform the input graph into the referenced one. However, the complexity of computing

GED is non-polynomial [153].

Auto-regressive (AR) modeling is a model-based approach that extracts the features from time-

series to use their underlying models to determine the similarity between them. AR modeling speci-

fies that the current value in a data-set (time-series) depends linearly on its preceding value(s). The

autoregressive integrated moving average (ARIMA) also called Box-Jenkins [68] method, is a pop-

ular approach used in time-series analysis and for anomaly detection [69]. The main idea of using

AR modelling to measure the goodness is to learn the models of time-series and then compute the

goodness using the model parameters.

Several approaches can be found in the literature which use AR to find the similarity between

two time-series such as [70], [71], [72]. However, the basic assumption of AR modelling is that

the data (time-series) is uni-variate and the future value depends upon the past value(s). This is

not the case with energy modeling because application energy profiles are (usually) a function of

39

2.5. APPROACHES FOR MEASURING THE GOODNESS OF ENERGY PROFILES OF
APPLICATIONS EXECUTING ON MULTICORE COMPTUING PLATFORMS

application parameters, and each data-point in an energy profile is distinct and independent of all

other data-points in that profile. Furthermore, AR modelling assumes that the data is stationary

which means that the statistical properties such as mean and variance of the time-series do not

change over time. On the contrary, the energy profiles are not stationary and there also exists an

energy consumption trend. Therefore, AR modelling approach is not applicable straightforwardly for

determining the goodness of energy profiles.

40

Chapter 3

A Methodology to Determine the Energy
Consumption by An Application Using
System-level Measurements

3.1 Introduction

Accurate measurement of energy consumption during an application execution is pivotal to many

interesting applications such as application-level energy optimization approaches, energy efficiency

analysis, auto-tuning, and energy aware dynamic task scheduling. However, a fundamental chal-

lenge is how to measure the energy consumption by an application during its execution accurately

and reliably.

The power measurements by the power meters are considered to be the most accurate at system

level [40]. However, they only provide the energy consumption details on system-level, and therefore

lacks the ability to provide fine-grained component-level decomposition of the energy consumption

by an application. This is a serious drawback. Because, this decomposition is essential to energy

models that are the key inputs to data partitioning algorithms that are fundamental building blocks for

energy optimization of an application. Without the ability to determine accurate decomposition of the

total energy consumption, one has to employ an exhaustive approach (involving huge computational

complexity) to determine the optimal data partitioning that optimizes the application for energy as

discussed in section 1.1.3. We bridge the gap in this chapter by presenting a methodology to

accurately and reliably determine the energy consumption by an application using the system-level

power measurements.

The rest of the chapter is organized as follows. First, we present the details on static energy and

dynamic energy consumption and the rationale of using dynamic energy consumption in section 3.2.

Then, the methodology and implementations details of HCLWattsUp API to determine the energy

consumption by an application during its execution are explained in section 3.3. Finally, the details

on precautions and the statistical methodology to ensure the reliability and accuracy of the energy

measurements using the proposed methodology are explained in sections 3.4 and 3.5 respectively.

41

3.2. ENERGY CONSUMPTION BY THE APPLICATION

3.2 Energy Consumption by the application

Energy (E) can be defined as the total amount of work performed by the system over a time period

(T), whereas power (P) is the rate at which the work is done by the system. Energy of computing is

determined as the product of power and time, as shown in equation 2.1. It is also considered as the

integration of power values for a time period T , starting from t1 till t2 and depicted in equation 2.2.

Thus, it is computed indirectly from power and time.

While the execution time can be measured accurately using high precision CPU clocks, there

is no equivalently effective way to measure the power consumption by an application. The popular

approaches to measure it can be categorized as follows: i) System-level physical power measure-

ments using external power meters, ii) Measurements using on-chip power sensor, and iii) Energy

predictive models. The power measurements by the power meters are considered to be accurate

at system level [40]. However, it provides the physical power measurement at a computer level only

and therefore lacks the ability to provide the fine-grained decomposition of the energy consumption

by the application executing on several independent computing devices on a computer.

In section 2.1.4, the two components of total energy are presented as: i) dynamic energy, and ii)

static energy. From the platform point of view, we define dynamic and static energy consumption as

the energy consumption of the whole system with and without the application execution respectively.

Here, the static energy is the base energy of the system which is an intrinsic property of the system,

as it consumes this base energy all the times regardless of doing any work or performing any com-

putation. However, the dynamic energy is the largest component of the total energy consumption by

the application when running on a system.

Linux kernels supports different governors to control the CPU frequency as explained in section

2.4.1. While Performance and Powersave scale the CPU frequency at highest possible or lowest

possible value respectively in order to maximizing the performance or minimizing the energy, On-

demand provides a balance between the two. It sets the CPU frequency depending on the current

system load. The current settings of CPU frequency governor also influence the energy consump-

tion by the system. In a typical settings of Ondemand CPU frequency governor, the system in its idle

state consumes the lowest and steady amount of (static) energy (due to deep-sleep power/perfor-

mance state). However, the processor’s power and performance state gets changed to xC0 (active

state) as soon as it gets a workload to execute. Consequently, it consumes more energy than static

energy to get the work done to execute the application for a time period ∆t as shown in figure 3.1.

This rise in energy consumption of the system attributes to the work done by the platform compo-

nents during the executing of the application. We call this difference as dynamic energy consumption

by the application (or dynamic energy for the sake of simplicity).

The total energy consumption is the sum of dynamic and static energy consumption. The static

energy is the intrinsic property of system power and independent of any application configuration.

Hence, the static energy consumption can be determined as the idle power of the platform (without

application execution) multiplied by the execution time of the application. Whereas, dynamic energy

can be determined by subtracting the static energy for this time period ∆t from the total energy of

the system that it consumed during the application execution.

Consider, for example, an application workload of size x to be executed by a given platform.

Let the dynamic energy function of the system executing this workload size x can be represented by

42

3.2. ENERGY CONSUMPTION BY THE APPLICATION

Figure 3.1: Static and Dynamic energy consumption

E(x). Now, if t is the execution time of the application then dynamic energy E(x) can be determined

as

E(x) = Etotal − (Pbase × t) (3.1)

Here, Pbase is the base or static power of the platform and Etotal is total energy consumption of

the platform during the execution of the application workload size x. The total energy consumption

Etotal is the area under the discrete function of the power samples provided by the power meter ver-

sus the time intervals between the samples. Well-known numerical approaches such as trapezoidal

rule can be used to numerically approximate this area. The trapezoidal rule works by approximating

the area under a curve using trapezoids rather than rectangles to get better approximations.

The execution time t of the application can be determined accurately using the processor clocks.

The accuracy of the static power consumption Pbase is equal to the accuracy provided in the spec-

ification of the power meter. Hence, the accuracy of obtaining the total energy consumption Etotal

employing the system-level measurements using the external power-meters is subject to the accu-

racy of the power-meter. The revenue-graded power meters such as Yokogawa WT5000 [98] offers

the basic power accuracy of up to±0.03% with a very high sampling rate of 10M per second. Hence,

one can determine the dynamic energy consumption by the application within the accuracy provided

by the external power-meter power readings. Therefore, this approach is considered as the ground

truth through out this thesis.

The advancements in power saving mechanisms has resulted in minimizing the energy con-

sumption by a system in its idle state. However, an application utilizing the system at its full capacity

consumes a much higher energy such that the static energy becomes merely a low fraction of the to-

tal energy. Consider, for example, the workload size 25600×25600 of the hybrid application DGEMM

executing on all three compute devices (CPU, GPU, and Xeon Phi) on HCLServer01 (technical de-

43

3.3. API FOR POWER MEASUREMENTS USING EXTERNAL POWER METER INTERFACES
(HCLWATTSUP)

scription are provided in table 4.1). It consumes 837 watts on average during its execution on all

three compute devices. The idle power consumption of HCLServer01 is 201 watts (which is just

about 24% of the total power consumption on average). Thus, it consumes 3x more power than

the static power to execute DGEMM at its full capacity. Hence, the dynamic energy is a dominating

factor of the total energy consumed by HCLServer01 during the execution of given workload size

of DGEMM. Therefore, we consider only the dynamic energy consumption by an application in this

thesis including the following reasons:

1. Static energy consumption is a constant (or a inherent property) of a platform that can not be

optimized. It does not depend on the application configuration.

2. Although static energy consumption is a major concern in embedded systems, it is becoming

less compared to the dynamic energy consumption due to the advancements in hardware

architecture design in HPC systems as explained in section 2.4.1.

3. We target applications and platforms where dynamic energy consumption is the dominating

source of energy dissipation.

4. Finally, we believe its inclusion can underestimate the true worth of an optimization technique

that minimizes the dynamic energy consumption. We elucidate this using two examples from

published results.

• In our first example, consider a model that reports predicted and measured total energy

consumption of a system to be 16,500 J and 18,000 J. It would report the prediction error

to be 8.3%. If it is known that the static energy consumption of the system is 9000 J,

then the actual prediction error (based on dynamic energy consumption only) would be

16.6% instead.

• In our second example, consider two different energy prediction models (MA and MB)

with same prediction errors of 5% for an application execution on two different machines

(A and B) with same total energy consumption of 10,000 J. One would consider both

the models to be equally accurate. But supposing it is known that the dynamic energy

proportions for the machines are 30% and 60%. Now, the true prediction errors (using

dynamic energy consumption only) for the models would be 16.6% and 8.3%. Therefore,

the second model MB should be considered more accurate than the first.

Now, we explain the methodology to obtain the dynamic energy consumption reliably and accu-

rately employing the system-level power measurements.

3.3 API for Power Measurements Using External Power Meter Inter-

faces (HCLWattsUp)

In a typical settings, an HPC system have a dedicated power meter installed between its input

power sockets and wall A/C outlets as shown in figure 2.1. The power meter captures the total

power consumption of the node. In case of Watts Up Pro? power meter which is installed with

44

3.3. API FOR POWER MEASUREMENTS USING EXTERNAL POWER METER INTERFACES
(HCLWATTSUP)

HCLServers (technical descriptions of each node is presented in tables 4.1, 4.2 and 4.3), a data

cable is connected to the USB port of the node. A perl script collects the data from the (Watts Up

Pro?) power meter using the serial USB interface. The execution of this script is non-intrusive and

consumes insignificant power.

A fundamental challenge is how to gather the readings from power meter to determine the en-

ergy consumption by an application during its execution. Here, we explain the design principals of

HCLWattsUp API [38] which gathers the readings from a power meter to determine the average

power and energy consumption during the execution of an application on a computing platform.

HCLWattsUp API provides following four types of measures during the execution of an application:

• TIME—The execution time of the application (seconds).

• BPOWER—The average base (idle) power of the system (watts).

• TENERGY—The total energy consumption (joules).

• DENERGY—The dynamic energy consumption (joules).

The overhead due to the API is very minimal and does not have any noticeable influence on the

main measurements. The API is confined in the hcl namespace. It is important to note that the

power meter readings are only processed if the measure is not hcl::TIME. Therefore, there are two

runs for each measurement. First run for measuring the execution time, and the second for energy

consumption.

The example provided in figure 3.2 illustrates the use of statistical methods to measure the

dynamic energy consumption during the execution of an application. Lines 10–12 construct the

Wattsup object. The inputs to the constructor are the paths to the scripts and their arguments that

read the USB serial devices containing the readings of the power meters.

The principal method of Wattsup class is execute. The inputs to this method are the following:

1. Type of measure: (one of the aforementioned four measurements)

2. Path to the application: executablePath

3. Arguments to the executable (application specific parameters): executableArgs

4. The statistical thresholds: (pIn)

The followings are the outputs which are calculated during the execution of the executable (ap-

plication):

1. The achieved statistical confidence pOut

2. The estimators

3. The sample mean (sampleMean)

4. The standard deviation (sd)

45

3.3. API FOR POWER MEASUREMENTS USING EXTERNAL POWER METER INTERFACES
(HCLWATTSUP)

1 # inc lude <wattsup . hpp>

2 i n t main (i n t argc , char∗∗ argv)

3 {

4 std : : s t r i n g pathsToMeters [2] = {

5 " / opt / powertools / b in / wattsup1 " ,

6 " / opt / powertools / b in / wattsup2 " } ;

7 std : : s t r i n g argsToMeters [2] = {

8 "−− i n t e r v a l =1 " ,

9 "−− i n t e r v a l =1 " } ;

10 hc l : : Wattsup wattsup (

11 2 , pathsToMeters , argsToMeters

12) ;

13 hc l : : P rec i s ion pIn = {

14 maxRepeats , c l , maxElapsedTime , maxStdError

15 } ;

16 hc l : : P rec i s ion pOut ;

17 double sampleMean , sd ;

18 i n t rc = wattsup . execute (

19 hc l : :DENERGY, executablePath ,

20 executableArgs , &pIn , &pOut ,

21 &sampleMean , &sd

22) ;

23 i f (r c == 0)

24 std : : ce r r << " Prec is ion NOT achieved . \ n " ;

25 else

26 std : : cout << " Prec is ion achieved . \ n " ;

27 std : : cout << "Max r e p e t i t i o n s "

28 << pOut . reps_max

29 << " , Elasped t ime "

30 << pOut . time_max_rep

31 << " , Re la t i ve e r r o r "

32 << pOut . eps

33 << " , Mean energy "

34 << sampleMean

35 << " , Standard Dev ia t ion "

36 << sd

37 << std : : endl ;

38 e x i t (EXIT_SUCCESS) ;

39 }

40

Figure 3.2: Example illustrating the use of HCLWattsUp API for measuring the dynamic energy
consumption

The execute method repeatedly invokes the executable until one of the following conditions is sat-

isfied:

• The maximum number of repetitions specified in maxRepeats is exceeded.

• The sample mean is within maxStdError percent of the confidence interval cl. The confi-

dence interval of the mean is estimated using Student’s t-distribution.

46

3.4. COMPONENT-LEVEL ENERGY CONSUMPTION USING HCLWATTSUP API

• The maximum allowed time maxElapsedT ime specified in seconds has elapsed.

If any one of the conditions are not satisfied, then a return code of 0 is output suggesting that

statistical confidence has not been achieved. If statistical confidence has been achieved, then the

number of repetitions performed, time elapsed and the final relative standard error is returned in

the output argument pOut. At the same time, the sample mean and standard deviation are also

returned. For our experiments, we use values of (1000, 95%, 2.5%, 3600) for the parameters

(maxRepeats, cl,maxStdError,maxElapsedT ime). Since the Student’s t-distribution is used for

the calculation of the confidence interval of the mean, it is confirmed specifically that the observa-

tions follow normal distribution by plotting the density of the observations using R tool. We also use

Pearson’s chi-squared test to ensure that the observations follow normal distribution.

3.4 Component-Level Energy Consumption Using HCLWattsUp API

We provide here the details of how system-level physical measurements can be used to determine

the energy consumption by a compute device such as a CPU, GPU , etc. during an application

execution, using HCLWattsUp API.

For illustration purposes, we define the group of components running a given application as an

abstract processor. Consider, for example, a matrix multiplication application running on a multicore

CPU. The abstract processor for this application, which we call AbsCPU, comprises of the multicore

CPU processor consisting of a certain number of physical CPU cores and DRAM. In this work, we

use only such configurations of the applications which execute on AbsCPU and do not use any

other system resources such as solid state drives (SSDs), network interface cards (NIC) and so

forth. Therefore, the change in energy consumption by the system reported by HCLWattsUp reflects

solely the contributions from CPU and DRAM. To eliminate any potential interference form the energy

consumption of the computing elements that are not part of the abstract processor such as AbsCPU,

following several precautions are took:

1. It is ensured that the platform is reserved exclusively and fully dedicated to our experiments.

2. The disk consumption is monitored before and during the application run. It is ensured using

the tools such as sar, iotop, etc. that there is no I/O performed by the application.

3. It is ensured that the problem size used in the execution of an application does not exceed the

main memory and that swapping (paging) does not occur.

4. It is ensured that network is not used by the application by monitoring using tools such as sar,

atop, etc.

5. The application kernel’s CPU affinity mask is set using SCHED API ’s system call

SCHED_SETAFFINITY().

6. Fans are also a great contributor to energy consumption. On our platforms, fans are controlled

in two zones: (a) zone 0: CPU or System fans, (b) zone 1: Peripheral zone fans. There are

following four levels to control the speed of fans:

47

3.5. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT USING HCLWATTSUP API

• Standard: BMC control of both fan zones, with CPU zone based on CPU temp (target

speed 50%) and Peripheral zone based on PCH temp (target speed 50%).

• Optimal: BMC control of the CPU zone (target speed 30%), Peripheral zone fixed at low

speed (fixed 30%).

• Heavy IO: BMC control of CPU zone (target speed 50%), Peripheral zone fixed at 75%.

• Full: all fans running at 100%.

In all speed levels except the full, the speed is subject to be changed with temperature and

consequently their energy consumption also changes with the change of their speed. Higher

the temperature of CPU, for example, higher the fans speed of zone 0 and higher the energy

consumption to cool down. This energy consumption to cool the server down, therefore, is

not consistent and is dependent on the fans speed and consequently can affect the dynamic

energy consumption of the given application kernel.

Hence, to rule out the fans’ contribution in dynamic energy consumption, we set the fans at

full speed before launching the experiments. When set at full speed, the fans run consistently

at a fixed speed until we set them to another speed level. Hence, fans consume same amount

of power which is included in static power of the platform.

7. The temperature of the platform and speed of the fans (after setting it at full) are monitored

with help of Intelligent Platform Management Interface (IPMI) sensors, both with and without

the application run. In both scenarios, no considerable difference is found in temperature as a

result of setting the fans speed as full.

Convincingly following this methodology, the dynamic energy consumption obtained using

HCLWattsUp API reflects the contribution solely by the abstract processor executing the given ap-

plication kernel.

3.5 Methodology to Obtain a Reliable Data Point using HCLWattsUp

API

To ensure the reliability of the results, following detailed statistical experimental methodology is

followed:

• It is ensured that there are no drastic fluctuations in the load due to abnormal events in the

server by monitoring its load continuously using the tool sar. Insignificant variation in the load

is observed during this monitoring period suggesting normal and clean behaviour of the server.

• The server is fully reserved and dedicated to the experiments during their execution.

• To make sure that pipe-lining, cache effects and so forth do not happen, the experiments

are not executed in a loop and a sufficient time (120 s) is allowed to elapse between the

successive runs. This cool-down time is based on observations of the times taken for the

memory utilization to revert to base utilization and processor (core) frequencies to come back

to the base frequencies.

48

3.5. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT USING HCLWATTSUP API

• The typical settings of CPU freq governor (such as Ondemand) keeps the processor at the

lowest possible frequency by putting it in deep sleep state (such as xC6) when it is idle. It

scales up the CPU frequency at the highest possible level by putting the processor in active

state (i.e. xC0) as soon as it gets a workload to compute. On HCLServers, we find following

C states C0, C1, C1E, C3 and C6. The transitions between the xC-states may influence the

dynamic energy. The aforementioned cool-down time ensures to rule out the entry latency

(the latency to enter into idle state) whereas the exit latency (the latency to exit out of an idle

state such as xC6) on HCLServers is negligibly minimal. For each aforementioned C-state,

the exit latency on HCLServers is as follows:

– C0: 0 microseconds

– C1: 2 microseconds

– C1E: 10 microseconds

– C3: 33 microseconds

– C6: 133 microseconds

Furthermore, following detailed statistical experimental methodology is employed to ensure that

each data point is reliable and accurate. To achieve this, the application is repeatedly executed to

obtain each data point until the sample mean lies in the 95% confidence interval and a precision of

0.025 (2.5%) has been achieved. For this purpose, Student’s t-test is used assuming that the indi-

vidual observations are independent and their population follows the normal distribution. The validity

of these assumptions are verified by using Pearson’s chi-squared test by plotting the distributions of

observations.

The function MeanUsingT test, shown in Algorithm 1, describes this step. The inputs to the

function MeanUsingT test are:

• The application to execute, app

• The minimum number of repetitions, minReps ∈ Z>0

• The maximum number of repetitions, maxReps ∈ Z>0

• The maximum time allowed for the application to run, maxT ∈ R>0

• The required confidence level, cl ∈ R>0

• The required accuracy, eps ∈ R>0

The outputs by the function MeanUsingT test are:

• The number of experimental runs actually made, repsOut ∈ Z>0

• The confidence level achieved, clOut ∈ R>0

• The accuracy achieved, epsOut ∈ R>0

• The elapsed time, etimeOut ∈ R>0

49

3.5. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT USING HCLWATTSUP API

• The mean, mean ∈ R>0

For each data point, the function is invoked, which repeatedly executes the application app until

one of the following three conditions is satisfied:

1. The maximum number of repetitions (maxReps) have been exceeded (Line 3).

2. The sample mean falls in the confidence interval (or the precision of measurement eps has

been achieved) (Lines 13–15).

3. The elapsed time of the repetitions of application execution has exceeded the maximum time

allowed (maxT in seconds) (Lines 16–18).

So, for each data point, the function MeanUsingT test is invoked and the sample mean mean

is returned at the end of invocation. The function Measure measures the execution time or the

dynamic energy consumption using the HCL’s WattsUp library [38] based on the input, TIME or

ENERGY . The input minimum and maximum number of repetitions, minReps and maxReps,

differ based on the problem size solved. For small problem sizes (32 ≤ n ≤ 1024), these values are

set to 10,000 and 100,000. For medium problem sizes (1024 < n ≤ 5120), these values are set to

100 and 1000. For large problem sizes (n > 5120), these values are set to 5 and 50. The values of

maxT , cl and eps are set to 3600, 0.95 and 0.025. If the precision of measurement is not achieved

before the maximum number of repeats have been completed, we increase the number of repetitions

and also the maximum elapsed time allowed. However, we observed that condition (2) is always

satisfied before the other two in our experiments. The complexity of the function MeanUsingT test

is O(N).

50

3.5. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT USING HCLWATTSUP API

Algorithm 1 Function determining the sample mean using Student’s t-test.

1: procedure MEANUSINGTTEST(

app,minReps,maxReps,

maxT, cl, accuracy,

repsOut, clOut, etimeOut, epsOut,mean)

Input:

The application to execute, app

The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run, maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:

The number of experimental runs actually made, repsOut ∈ Z>0

The confidence level achieved, clOut ∈ R>0

The accuracy achieved, epsOut ∈ R>0

The elapsed time, etimeOut ∈ R>0

The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0

3: while (reps < maxReps) and (!stop) do

4: st← MEASURE(TIME)

5: EXECUTE(app)

6: et← MEASURE(TIME)

7: reps← reps+ 1

8: etime← etime+ et− st

9: ObjArray[reps]← et− st

10: sum← sum+ObjArray[reps]

11: if reps > minReps then

12: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1))

× gsl_stats_sd(ObjArray, 1, reps)

/ sqrt(reps)

13: if clOut× reps
sum < eps then

14: stop← 1

15: end if

16: if etime > maxT then

17: stop← 1

18: end if

19: end if

20: end while

21: repsOut← reps; epsOut← clOut× reps
sum

22: etimeOut← etime; mean← sum
reps

23: end procedure

51

3.6. SUMMARY

3.6 Summary

System-level power measurements are considered as the most accurate approach to measure the

power consumption at node-level. In this chapter, we present a methodology to compute the energy

consumption by an application reliably and accurately using the system-level measurements. Then,

HCLWattsUp API [38] is presented that gathers the power-readings from the power-meter and return

the energy consumption by the application during its execution within user-defined precision settings

and confidence interval. The measurements are highly accurate within the accuracy provided by the

power-meter used to measure the power consumption.

The modern sophisticated revenue-graded power meters such as Yokogawa WT5000 [98] offers

the basic power accuracy of up to ±0.03% with a very high sampling rate of 10M per second. To

ensure the reliability of the measurements, a detailed statistical approach and number of precautions

are presented. To summarize, using the presented methodology and HCLWattsUp API , one can

determine the dynamic energy consumption by the application in an accurate and reliable manner

during its execution. The approach is generic and thus can be applied to any power meter connected

with a computing node.

52

Chapter 4

A Comparative Study of Methods for
Measurement of Energy of Computing

This chapter is mainly based on [37].

4.1 Introduction

Energy of computing is a serious environmental concern and mitigating it has become an impor-

tant technological challenge as explained in chapter 1. Energy efficiency in computing is driven

by innovations in hardware represented by the micro-architectural and chip-design advancements

and software that can be grouped into two categories: (a) System-level energy optimization and (b)

Application-level energy optimization. System-level optimization methods aim to maximize energy

efficiency of the environment where the applications are executed using techniques such as DVFS,

DPM and energy-aware scheduling.

Application-level optimization methods use application-level parameters and models to maximize

the energy efficiency of the applications. Accurate measurement of energy consumption during an

application execution is the key to energy minimization techniques at software level. There are three

popular approaches to providing it: (a) System-level physical measurements using external power

meters, (b) Measurements using on-chip power sensors and (c) Energy predictive models.

The general issues and challenges with all three popular approaches to measure the energy

of computing are discussed in sections 1.1.5 and 2.3. Briefly, the decomposition of energy con-

sumption into the energy consumption of the components involved in executing the application is not

straightforward using the system-level power measurements. On-chip integrated power sensors, on

the other hand, provide fine-grain component level power consumption details. However, there are

some issues with the power data values provided by these vendor-specific libraries. The fundamen-

tal issue with this measurement approach is the lack of information about how a power reading for a

component is determined during the execution of an application utilizing the component. Apart from

accuracy, the other issues include the lack of details on update frequency of power readings, porta-

bility, poor documentation, etc. as discussed in section 1.1.5. Therefore, a good understanding and

validation of energy measurement instrumentation systems and on-chip power sensors is necessary

for trusting and employing their readings in application-level energy optimization techniques.

53

4.2. TERMINOLOGIES

Energy predictive models are typically trained using a large suite of diverse benchmarks and

validated against a subset of the benchmark suite and some real-life applications. While the gen-

eral accuracy of the models has been widely researched, their application-specific accuracy has not

been studied, and therefore needs further validation. In this chapter, we present a comprehensive

study comparing the accuracy of state-of-the-art integrated on-chip power sensors and energy pre-

dictive models against system-level physical measurements using external power meters, which we

consider to be the ground truth.

The rest of the chapter is organized as follows. First, we explain in section 4.2 the common

terminologies that are used in this chapter. The experimental platforms, applications and methodol-

ogy to ensure the reliability of our results are explained in section 4.3. The dynamic energy profiles

of our testbed applications with on-chip sensors provided by RAPL and system-level power mea-

surements provided by HCLWattsUp are compared in section 4.4. In section 4.5, the comparison of

dynamic energy profiles using on-chip sensors on GPUs (NVML) and HCLWattsUp and Intel Xeon

Phi sensors (MPSS) and HCLWattsUp is presented. Then, the comparison of PMC-based dynamic

energy predictive models with RAPL and HCLWattsUp is presented in section 4.6. In section 4.7,

we study the optimization of a parallel matrix-matrix multiplication application for dynamic energy

using RAPL and HCLWattsUp, followed by the comparison of cost of measurements and the other

issues with state-of-the-art approaches in section 4.8. Section 4.9 covers the lessons learned, our

recommendations for the use of on-chip sensors and energy predictive models and future directions.

Finally, the chapter is concluded in section 4.10.

4.2 Terminologies

In this thesis, only the dynamic energy consumption is considered instead of total energy consump-

tion or static energy. We explain the rationale behind using dynamic energy consumption in section

3.2. It can be determined by subtracting the static energy from the total energy of the system that

it consumed during the application execution, using the equation 3.1. The execution time of the

application execution can be determined accurately using the processor clocks. The accuracy of

the static power consumption is equal to the accuracy provided in the specification of the power

meter. Hence, the accuracy of obtaining the total energy consumption employing the system-level

measurements using the external power-meters is subject to the accuracy of the power-meter. The

revenue-graded power meters such as Yokogawa WT5000 [98] offers the basic power accuracy of

up to ±0.03% with a very high sampling rate of 10M per second. Hence, one can determine the

dynamic energy consumption by the application within the accuracy provided by the external power-

meter power readings. Therefore, we consider this approach as the ground truth for the comparative

study of methods for measurement of energy of computing.

Using the system-level physical measurements provided by external power meters, the dynamic

energy consumption can be determined during an application execution as explained in chapter 3.

State-of-the-art on-chip power sensors (RAPL for CPUs, NVML for GPUs, MPSS for Xeon Phis)

provide power measurements at a high sampling frequency that can be obtained programmatically.

The dynamic energy consumption during an application execution on a compute device equipped

with on-chip sensors can also be calculated using the same methodology as explained in chapter 3

54

4.3. EXPERIMENTAL SETUP FOR COMPARING ON-CHIP SENSORS AND SYSTEM-LEVEL
PHYSICAL MEASUREMENTS USING POWER METERS

using the equation 3.1.

The term ”calibration” is used throughout this chapter. we define it as a constant adjustment

(positive or negative value) made to the data points in a dynamic energy profile obtained using

a measurement approach (on-chip sensors or energy predictive models) with the aim to increase

its accuracy or reduce its error against the ground truth (the physical measurements using power

meters).

Let E(x)sensors represents the dynamic energy consumption by an application workload size x

with on-chip sensors or predictive energy model. Let E(x)hclwattsup represents the dynamic en-

ergy consumption by the same application workload size x with system-level physical measure-

ments using external power meters (HCLWattsUp). Then, the prediction error is calculated as

|(E(x)hclwattsup − E(x)sensors)|/E(x)hclwattsup × 100.

4.3 Experimental Setup for Comparing On-Chip Sensors and System-

Level Physical Measurements Using Power Meters

Following three nodes are employed for this study: (a) HCLServer01 (Table 4.1) has an Intel Haswell

multicore CPU having 24 physical cores with 64 GB main memory and integrated with two accel-

erators: one Nvidia K40c GPU and one Intel Xeon Phi 3120P, (b) HCLServer02 (Table 4.2) has an

Intel Skylake multicore CPU consisting of 22 cores and 96 GB main memory and integrated with one

Nvidia P100 GPU and (c) HCLServer03 (Table 4.3) has an Intel Skylake multicore CPU having 56

cores with 187 GB main memory. These nodes are the representative of computers used in cloud

infrastructures, supercomputers and heterogeneous computing clusters.

Each node has a power meter installed between its input power sockets and the wall A/C outlets.

HCLServer01 and HCLServer02 are connected with a Watts Up Pro power meter; HCLServer03 is

connected with a Yokogawa WT310 power meter. Watts Up Pro power meters are periodically

calibrated using the ANSI C12.20 revenue-grade power meter, Yokogawa WT310. The calibration

details are provided in appendix C.

The maximum sampling speed of Watts Up Pro power meters is one sample every second. The

accuracy specified in the data-sheets is ±3%. The minimum measurable power is 0.5 watts. The

accuracy at 0.5 watts is ±0.3 watts. The accuracy of Yokogawa WT310 is ±0.1% and the sampling

rate is 100K samples per second.

Following four applications are used for this study: (a) OpenBLAS DGEMM, OpenBLAS library

routine to compute the matrix product of two dense matrices, (b) Intel MKL-Double-precision General

Matrix Multiplication (MKL-DGEMM): Intel Math Kernel Library (Intel Math Kernel Library (MKL)) rou-

tine, which computes the product of two dense matrices, (c) FFTW 2D: two dimensional FFT routine

to compute the discrete Fourier transform of a complex signal and (d) MKL-FFT 2D: two dimensional

FFT routine provided by Intel MKL to compute the discrete Fourier transform of a complex signal.

The DGEMM applications computes C = α × A × B + β × C, where A, B and C are matrices

of size M × N , N × N and M × N and α and β are constant floating-point numbers. The FFT

applications compute 2D-DFT of a complex signal matrix of size M ×N . The Intel MKL version on

the three nodes is 2017.0.2. The FFTW version used is 3.3.7. We choose applications employing

matrix-matrix multiplication and fast Fourier transform routines since they are fundamental kernels

55

4.3. EXPERIMENTAL SETUP FOR COMPARING ON-CHIP SENSORS AND SYSTEM-LEVEL
PHYSICAL MEASUREMENTS USING POWER METERS

Table 4.1: HCLserver01: Specifications of the Intel Haswell multicore CPU, Nvidia K40c and Intel
Xeon Phi 3120P.

Intel Haswell E5-2670V3

Launch Date Q3’14

No. of cores per socket 12

Socket(s) 2

CPU MHz 1200.402

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30,720 KB

Total main memory 64 GB DDR4

Memory bandwidth 68 GB/sec

Nvidia K40c

Launch Date Q4’13

No. of processor cores 2880

Total board memory 12 GB GDDR5

L2 cache size 1536 KB

Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P

Launch Date Q2’13

No. of processor cores 57

Total main memory 6 GB GDDR5

Memory bandwidth 240 GB/sec

employed in scientific applications [154].

To obtain the energy consumption provided by RAPL, a well known package Intel PCM[105] is

used. To confirm that the RAPL values output by this package are correct, they are compared with

values given by other well known package, PAPI [104].

To obtain the power measurements from the WattsUp Pro power meters and Yokogawa WT310,

HCLWattsUp interface [38] is used. HCLWattsUp interface has no extra overhead and therefore

does not impact the dynamic energy consumption by the application kernel. The interface and the

methodology used to obtain a data point are explained in sections 3.3 and 3.4. We use HCLWattsUp

throughout this thesis to represent the system-level power measurements for the sake of brevity.

A detailed sophisticated methodology is followed (as explained in section 3.5) to ensure relia-

bility of our experimental results. The methodology determines a sample mean (execution time or

dynamic energy or PMC) by executing the application repeatedly until the sample mean meets the

statistical confidence criteria (95% confidence interval, a precision of 0.025 (2.5%)). Student’s t-test

is used to determine the sample mean. The test assumes that the individual observations are inde-

pendent and their population follows the normal distribution. We use Pearson’s chi-squared test to

ensure that the observations follow normal distribution.

56

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

Table 4.2: HCLserver1: Specifications of the Intel Skylake multicore CPU and Nvidia P100 PCIe.

Intel Xeon Gold 6152

Launch Date Q3’17

Socket(s) 1

Cores per socket 22

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30,976 KB

Main memory 96 GB

Nvidia P100 PCIe

Launch Date Q2’16

No. of processor cores 3584

Total board memory 12 GB CoWoS HBM2

Memory bandwidth 549 GB/sec

Table 4.3: HCLServer3: Specifications of the Intel Skylake multicore processor (CPU) consisting of
two sockets of 28 cores each.

Technical Specifications Intel Xeon Platinum 8180

Launch Date Q3’17

Socket(s) 2

Cores per socket 28

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 1024 KB, 39,424 KB

Main memory 187 GB

We explain the experimental results into following two sections: i) First, we present the exper-

imental results comparing the energy profiles constructed with integrated on-chip sensors against

the ground truth, then ii) the dynamic energy prediction using PMC-Based energy predictive models

are compared with the ground truth.

4.4 Comparison of Energy Measurements Using RAPL and

HCLWattsUp

We first present a brief on RAPL before introducing the methodology to compare the measurements

of dynamic energy consumption by RAPL and HCLWattsUp.

RAPL (Running Average Power Limit) [41] provides a way to monitor and dynamically set the

power limits on processor and DRAM. So, by controlling the maximum average power, it matches

the expected power and cooling budget. RAPL exposes its energy counters through model-specific

registers (MSRs). It updates these counters once in every 1 ms. The energy is calculated as a

57

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

multiple of model specific energy units. For Sandy Bridge, the energy unit is 15.3 µ J, whereas it is

61 µ J for Haswell and Skylake. It divides a platform into four domains, which are presented below:

1. PP0 (Core Devices): Power plane zero includes the energy consumption by all the CPU cores

in the socket(s).

2. PP1 (Uncore Devices): Power plane one includes the power consumption of integrated graph-

ics processing unit – which is not available on server platforms– uncore components.

3. DRAM: Refers to the energy consumption of the main memory.

4. Package: Refers to the energy consumption of entire socket including core and uncore:

Package = PP0 + PP1.

PP0 is removed in the the Haswell E5 generation [45]. For our experiments, we use Package

and DRAM domains to obtain the energy consumption by CPU and DRAM when executing an

application.

4.4.1 Experimental Methodology

The following workflows of the experiments is followed for comparing the RAPL and HCLWattsUp en-

ergy measurements. The workflow to determine the dynamic energy consumption by an application

using RAPL follows:

1. Using Intel PCM/PAPI, the base power of CPUs (core and un-core) and DRAM (when the

given application is not running) is obtained.

2. Using HCLWattsUp API, the execution time of the given application is obtained.

3. Using Intel PCM/PAPI, the total energy consumption of the CPUs and DRAM, during the

execution of the given application is obtained.

4. Finally, the dynamic energy consumption (of CPUs and DRAM) by subtracting the base energy

from total energy consumed during the execution of the given application is calculated.

The workflow to determine the dynamic energy consumption using HCLWattsUp follows:

1. Using HCLWattsUp API, the base power of the platform (when the given application is not

running) is obtained.

2. Using HCLWattsUp API, the execution time of the application is obtained.

3. Using HCLWattsUp API, the total energy consumption of the server, during the execution of

the given application is obtained.

4. Finally, the dynamic energy consumption by subtracting the base power from total energy

consumed during the execution of the given application is calculated.

58

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

Any error in energy readings is either due to the time or power readings because the energy is

calculated as the product of power and time. It is confirmed that the execution time of the application

kernel is the same for dynamic energy calculations by both tools. So, it is important to note here that

any difference between the energy readings of the tools comes solely from their power readings.

Either of the following configuration parameters is used to build an energy profiles with RAPL and

HCLWattsUp: (a) Problem size (M × N) where M ≤ N , (b) Number of CPU threads, (c) Number

of CPU Cores. Hence, 51 energy profiles of different application configurations are analyzed in total

for aforementioned set of applications.

The cost in terms of number of measurements to determine the dynamic energy consumption of

the application using sensors is same for both tools as we need three (Base power, Execution Time

and Total Energy) measurements to obtain a single data point of the application dynamic energy

profile.

4.4.2 Experimental Results on HCLServer03

In the first set of experiments, we explore the FFTW and Intel MKL-Fast Fourier Transform (MKL-

FFT) energy consumption by a given workload size N = 32,768 and N = 43,328 as a function of

logical threads (1 to 112) and CPU cores (1 to 56) of CPU respectively. For next run of experiments,

we study the FFTW energy consumption by two teams of 28 cores each when distributing the work-

load sizes range from 0×N/2 to each team with a step size of 512 for the first dimension M whereas

the second dimension N is fixed. We run this configuration for 18 different problem sizes N ranging

from 20,480 to 21,568 with a step size of 64. In our next run of experiments, we explore the FFTW

energy consumption behavior when both the teams of 28 cores has different workloads. To achieve

this, we distribute the first dimension M of the problem size 32,768 × 32,768 so that we assign the

workload size ranges from 0×N to N/2×N to the first team whereas the workload size of second

team ranges from N /2 to N .

We find that RAPL reports less dynamic energy consumption for all aforementioned application

configurations than HCLWattsUp. RAPL profile follows the same pattern as that of HCLWattsUp for

most of the data points. One can significantly reduce the average error between both the profiles

by calibrating the RAPL readings. For example, one can reduce this average error from 13.05% to

2.19% for the dynamic energy profile of MKL-FFT as a function of CPU cores for the workload size

N = 43,328 as illustrated in figure 4.1a. Similarly, the average error of dynamic energy profile of

FFTW as a function of CPU threads for the workload size N = 32.768 can be reduced from 12.68%

to 3.69% by calibrating RAPL readings as illustrated in figure 4.1b. This calibration, nevertheless, is

application dependent and is also different for different configurations of the same application.

In the second set of experiments, the dynamic energy profiles of different configurations of Open-

BLAS DGEMM is examined. Each application configuration is executed using G thread-groups

where each group contains equal number of T threads. We study eight such configurations, (G,T) =

{(2,56), (4,28), (7,16), (8,14), (14,8), (16,7), (28,4), (56,2)}. We construct the dynamic energy profile

for each configuration as a function of problem size. The problem size N × N ranges from 10,240

× 10,240 to 26,112 × 26,112 with a constant step size of 512. Likewise the first set of experiments,

RAPL profiles lag behind the HCLWattsUp profiles. Unlike the first set of experiments where one can

reduce the error between both the profiles significantly by calibration, one can only reduce up to half

59

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

(a) MKL-FFT, N = 43, 328

(b) FFTW, N = 32, 768, Threadgroups = 7, Threads = 16

Figure 4.1: Dynamic energy profiles with Running Average Power Limit (RAPL) and HCLWattsUp on
HCLServer03, class A. RAPL calib. means that RAPL readings have been calibrated.

60

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

of the average error for most of the application configurations. It is important to note that likewise

the first set of experiments, the calibration is not the same for all the application configurations.

(a) Threadgroups=28, Threads=4

(b) Threadgroups=28, Threads=2

Figure 4.2: Dynamic energy profiles by RAPL and HCLWattsUp on HCLServer03, class B. RAPL
calib. means that RAPL readings have been calibrated. (a) DGEMM, N = 10,240–25,600, (b)
MKL-FFT, N = 32,768–43,456.

In our third set of experiments, the dynamic energy behavior of FFTW is examined as a func-

tion of problem size N ×N . We make three sets of application configurations using three different

problem ranges: (i) 35,480× 41,920 , (ii) 30,720 × 34,816 and (iii) 20,480 × 26,560, all with a con-

stant step size of 64. We group the 112 CPU threads into the teams considering following factors

{112, 56, 28, 16, 14, 8, 7}. In this way, we build dynamic energy profiles for 21 different application

configurations. Unlike the previous sets of experiments, we observe different behavior of RAPL pro-

files. For most of the application configurations, RAPL over-reports the energy consumption than

HCLWattsUp. Furthermore, RAPL exhibits different trend for dynamic energy consumption than

HCLWattsUp. Consider, for example, the dynamic energy profile with RAPL and HCLWattsUp of ap-

plication configuration: problem size range = 20,480× 26,560, groups = 16, number of CPU threads

= 7. The average and maximum difference of RAPL with HCLWattsUp is 31% and 147%. Figure

4.3a illustrates its dynamic energy profile. One can observe that for many data points, RAPL reports

61

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

an increase in dynamic energy consumption with respect to the previous data point in the profile

whereas HCLWattsUp reports a decrease and vice versa. One can not therefore use calibration to

reduce the average error between the profiles because of their interlacing behavior.

Figures 4.2b and 4.3a,b show drastic variations (energy drops and jumps) in the dynamic en-

ergy profiles for OpenBLAS DGEMM, MKL-FFT and FFTW. There are following causes behind the

sudden spikes and variations in energy profiles:

• According to the Intel MKL documentation [155], Intel MKL-FFT takes less time of transform for

the problem sizes which are the multiple of supported radices (such as 2, 3, 4, 5, 7, 8, 11, 13,

16 and several other larger size kernels), and 2-power sizes. It takes more time of transform

for the other problem sizes. Similarly, FFTW [156] is reported to be the best at handling sizes

of the form 2a 3b 5c 7d 11e 13f where e and f is either 0 or 1, and the other exponents are

arbitrary. Other sizes are computed by means of a slow, general-purpose routine. That is why,

it consumes less dynamic energy when the problem sizes is one of the supported indices due

to less execution time, and more dynamic energy for the other problem sizes due to the higher

execution time. Hence, it reflects into the spikes and variations in the dynamic energy profiles

of the fast Fourier transform routines.

• Modern multicore platforms have many inherent complexities, which are: a) Severe resource

contention due to tight integration of tens of cores contending for shared on-chip resources

such as last level cache (LLC), interconnect (For example: Intel’s Quick Path Interconnect,

AMD’s Hyper Transport), and DRAM controllers; b) Non-uniform memory access (NUMA); and

c) Dynamic power management (DPM) of multiple power domains (CPU sockets, DRAM). The

complexities were shown to result in complex (non-linear and non-smooth) functional relation-

ships between performance and workload size and between dynamic energy and workload

size for real-life data-parallel applications. Reference [18] highlights the performance drops

and energy jumps due to the inherent complexities in modern multicore platforms.

• References [19, 145] demonstrate by executing real-life multi-threaded data-parallel applica-

tions on modern multicore CPUs that the functional relationships between performance and

workload size and between energy and workload size have complex (non-linear) properties.

Tables 4.4, 4.5 and 4.6 present the statistics of prediction error between RAPL and HCLWattsUp

on HCLServer03. The error reduction between the dynamic energy profiles with RAPL and

HCLWattsUp after calibration is also presented.

62

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

(a) Threadgroups=16, Threads=7

(b) Threadgroups=14, Threads=8

Figure 4.3: Dynamic energy profiles of FFTW (N = 20, 480− 26, 560) by RAPL and HCLWattsUp on
HCLServer03, class C

63

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

Table 4.4: Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer03. Here, G = Thread-groups, T = Threads, and SS = Step Size.

Application
Problem
Size, Step-
Size

Configura-
tion Parame-
ter

Avg Actual
Error

Avg. Error
after Calibra-
tion

Reduction
after Calibra-
tion

FFTW N = 32, 768 CPU Threads
(1–112)

12.68% 3.69% 70.9%

MKL-FFT N = 43, 328 CPU Cores
(1–56)

13.05% 2.19% 83.22%

FFTW N = 20,480–
21560,
SS = 512

problem size
(M × N)
where 0 ≥
M ≤ N/2

8.15% 5.56% 31.78

FFTW N = 32, 768,
SS = 16

Load Imbal-
ance: prob-
lem size
(M × N)
where 0 ≥
M ≤ N/2

10.45% 0.6% 94.26%

Table 4.5: Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer03. Here, G = Thread-groups, T = Threads, and SS = Step Size.

Application
Problem
Size, Step-
Size

Configura-
tion Param-
eter

Avg Actual
Error

Avg. Error
after Cali-
bration

Reduction
after Cali-
bration

OpenBlas DGEMM N =
10,240–
25,600,
SS = 512

CPU
Threads

G = 56, T =
2

12.84% 6.66% 48.13%

G = 28, T =
4

13.28% 8.58% 35.39%

G = 16, T =
7

14.02% 8.54% 39.09%

G = 14, T =
8

13.61% 7.98% 41.37%

G = 8, T =
14

18.59% 9.64% 48.14%

G = 7, T =
16

19% 9.7% 48.95%

64

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

Application
Problem Size,
Step-Size

Configuration
Parameter

Avg Actual
Error

Avg. Error af-
ter Calibration

Reduction af-
ter Calibration

G = 4, T = 28 20.89% 10.38% 50.31%

G = 2, T = 56 23.41% 11.21% 52.11%

MKL-FFT N = 32,768–
43,456,
SS = 64

problem size

G = 28, T = 2 15.08% 4.91% 67.4%

G = 14, T = 4 13.63% 4.97% 63.54%

G = 8, T = 7 13.24% 5.25% 60.35

G = 7, T = 8 13.21% 5.4% 59.12%

G = 4, T = 14 13.03% 5.65% 56.64%

G = 2, T = 28 13.02% 5.64% 56.68%

G = 1, T = 56 14.12% 6.22% 55.95%

MKL-FFT N = 25,600–
46,080,
SS = 512

problem size

G = 28, T = 2 14.46% 5% 65.42%

G = 14, T = 4 13% 4.51% 65.31%

G = 8, T = 7 12.4% 4.49% 63.79%

G = 7, T = 8 12.34% 4.45% 63.94%

G = 4, T = 14 11.97% 4.58% 61.74%

G = 2, T = 28 12.35% 4.8% 61.13%

G = 1, T = 56 13.56% 6.27% 53.76%

FFTW N = 35,480–
41,920, SS =
64

problem size

G = 16, T = 7 12.4% 10.35% 16.53%

G = 14, T = 8 13.19% 11.54% 12.51%

G = 8, T = 14 13.66% 12.73% 6.81%%

G = 7, T = 16 14.59% 13.3% 8.84%

G = 4, T = 28 13.73% 12.78% 6.92%

G = 2, T = 56 12.3% 5.58% 54.63%

G = 1, T = 112 24.62% 3.9% 84.16%

65

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

Table 4.6: Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer03. Here, G = Thread-groups, T = Threads, and SS = Step Size. ’-’ denotes that calibra-
tion does not be improve the difference.

Application
Problem

Size, Step-

Size

Configura-

tion Parame-

ter

Avg Actual

Error

Avg. Error

after Calibra-

tion

Reduction

after Calibra-

tion

FFTW N = 30,720–

34,816,

SS = 64

problem size

G = 16, T = 7 14.51% - -

G = 14, T = 8 16.32% - -

G = 8, T = 14 16.15% - -

G = 7, T = 16 14.89% - -

G = 4, T = 28 9.32% - -

G = 2, T = 56 10.94% 5.34% 51.19%

G = 1, T =

112

25.05% 10.44% 58.32%

FFTW N = 20,480–

26,560,

SS = 64

problem size

G = 16, T = 7 31% - -

G = 14, T = 8 28.16% - -

G = 8, T = 14 21.59% - -

G = 7, T = 16 17.76% - -

G = 4, T = 28 7.6% 4.83 36.45%

G = 2, T = 56 9.76% 6.12% 37.3%

G = 1, T =

112

25.63% 10.22% 60.12

4.4.3 Experimental Results of RAPL and HCLWattsUp on HCLServer01 and
HCLServer02

For our sets of experiments on HCLServer01 and HCLServer02, the problem size is used as an

application configuration parameter. On HCLServer01, the workload sizes for MKL-DGEMM range

from 512 × 16,384 to 16,384 × 16,384 with a step size of 512 and for 2D MKL-FFT range from

16256 × 22,528 to 22,528 × 22,528 with a step size of 128. On HCLServer02, the workload sizes

for MKL-DGEMM range from 6400 × 6400 to 29,504 × 29,504 with a step size of 64. For 2D-FFT

66

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

executed on HCLServer02, the workload sizes range from 22,400× 22,400 to 41,536× 41,536 with

a step size of 64.

Figure 4.4a,b show the dynamic energy profiles of 2D MKL-FFT and MKL-DGEMM on

HCLServer01 respectively. For most of the data points in dynamic energy profile of 2D MKL-FFT,

RAPL over-reports the dynamic energy consumption than HCLWattsUp. There are, however, some

data points where it reports otherwise. The maximum and average errors of RAPL with HCLWattsUp

is 37.1% and 16.01%. One can reduce them to 9.93% and 3.48% by calibrating RAPL readings.

(a) 2D MKL-FFT

(b) MKL-DGEMM

Figure 4.4: Dynamic energy consumption of RAPL, RAPL calibrated and HCLWattsUp on
HCLServer01.

For MKL-DGEMM on HCLServer01, we find that RAPL readings are leading the HCLWattsUp

readings. Further, both profiles do not exhibit the same pattern. One can observe many data

points such as 1024 × 16,384, 2048 × 16,384, 6656 × 16,384, 14,336 × 16,384 and etc., where

67

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

HCLWattsUp suggests an increase of 14.67%, 81.53%, 55.05%, 23.2% in dynamic energy con-

sumption whereas RAPL suggest a decrease of 38.25%, 8.05%, 19.89%, 3.76%. The maximum

and average difference of RAPL with HCLWattsUp is 266.42% and 62.42%. However, one can

reduce this error to 130.53% and 42.87% using calibrating RAPL readings. But, this increases

the divergence between the data points where both the tools provide dynamic energy consumption

values oppositely. Consider, for example, the data point 1024 × 16,384. RAPL, after calibrating,

suggests a decrease of 49.12% which was 38.25% in the absence of calibration.

(a) 2D MKL-FFT

(b) MKL-DGEMM

Figure 4.5: Dynamic energy consumption of RAPL and HCLWattsUp on HCLServer02.

Figure 4.5a,b show the dynamic energy profiles of 2D MKL-FFT and MKL-DGEMM on

HCLServer02 respectively. For most of the data points of MKL-DGEMM profile, RAPL suggests a de-

crease in dynamic energy consumption whereas HCLWattsUp reports the otherwise and vice versa.

Consider, for example, the problem sizes 43454464, 125440000, 228130816, 270536704 and oth-

ers where RAPL suggests a decrease of 11.92%, 15.29%, 8.68%, 27.6% whereas HCLWattsUp

suggests an increase of 41.11%, 30.59%, 70.24%, 37.94%; and the problem sizes, for example,

68

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

42614784, 170459136, 249892864, 268435456 and others where RAPL suggests an increase of

14.09%, 17.3%, 20.92%, 38.99% whereas HCLWattsUp suggests a decrease of 29.67%, 19.51%,

11.83%, 28.75%. The maximum and average difference between both profiles is 205% and 36.13%.

We also find many such data points in MKL-FFT profile where both the tools reports the dynamic

energy consumption oppositely. Consider, for example, the problem sizes 916393984, 1167998976,

1425817600, 1450086400 where RAPL suggests a decrease of 12.39%, 31.33%, 18.77%, 5.4%

whereas HCLWattsUp reports an increase of 11.68%, 35.84%, 6.46%, 31.25%; and the the problem

sizes such as 507510784, 800210944, 1150566400, 1099055104 and others where RAPL sug-

gests an increase of 1.26%, 19.9%, 40.87%, 4.74% whereas HCLWattsUp suggests a decrease

of 22.24%, 4.79%, 9.54%, 6.02%, 28.75%. The maximum and average difference between both

profiles is 156.38% and 28.67%.

Table 4.7 presents the prediction errors of RAPL against HCLWattsUp on HCLServer01 and

HCLServer02. We also present the percentage of error reduction between the dynamic energy

profiles with RAPL and power meter after using calibration.

Table 4.7: Percentage error of dynamic energy consumption with RAPL and HCLWattsUp on
HCLServer01 and HCLServer02. ’-’ denotes that calibration does not improve the difference. 01
and 02 denotes HCLServer01 and HCLServer02 respectively.

Application Platform Average Maximum Minimum Avg after Calibration Reduction
after Calibration

FFT 01 16.01% 37.1% 0.01% 3.48% 78.26%

DGEMM 01 62.42% 266.42% 12.54% 42.86% 31.34%

FFT 02 28.67% 156.38% 0.03% - -

DGEMM 02 36.13% 205% 0.39% - -

4.4.4 Discussion

In summary, we use a diverse set of application configurations to study their energy consumption

behavior, and compare the results of RAPL with different power meters on three different Intel ar-

chitectures. The applications can be classified into following three broad categories with respect to

RAPL:

• Class A: RAPL follows most of the energy consumption pattern of the power meter. One can

reduce more than 75% difference between RAPL and power meter readings after calibration.

Figures 4.1a,b and 4.4a are the examples representing this class.

• Class B: RAPL does not follow most of the energy consumption pattern of the power meter.

The difference between both profiles can be reduced to some extent using calibration. Figures

4.2a,b, 4.6a,b and 4.4b represent this class.

• Class C: RAPL does not follow the energy consumption pattern as of exhibited by the power

meter and therefore can not be calibrated. Figures 4.3a,b and 4.5b are the examples repre-

senting this class.

69

4.4. COMPARISON OF ENERGY MEASUREMENTS USING RAPL AND HCLWATTSUP

(a) Threadgroups = 4, Threads = 28

(b) Threadgroups = 7, Threads = 16

Figure 4.6: Dynamic energy profiles by RAPL and HCLWattsUp on HCLServer03 falling into Class
B. (a) FFTW, N = 35,480–41,920, (b) FFTW, N = 35,480–41,920.

70

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

Some other important findings are that the calibration is not fixed for an architecture; is not ap-

plication independent; and is specific to an application configuration. For example, some application

configurations can be calibrated using positive offset whereas the other configurations of the same

application executing on the same platform needs negative offset for calibration.

4.5 Comparison of Energy Measurements Using GPU and Xeon Phi

Sensors with HCLWattsUp

We present in this section a comparative study of energy consumption measurements by on-chip

sensors for Nvidia GPUs and Intel Xeon Phi processors and HCLWattsUp. We use two applications,

matrix multiplication (DGEMM) and 2D-FFT, for the study. To obtain the dynamic energy consump-

tion of application executing on a GPU, we follow the same methodology as explained in section

4.3.

The experiments are run on two different Nvidia GPUs (K40c on HCLServer01, P100 PCIe on

HCLServer02) and one Intel Xeon Phi 3120P (on HCLServer01). The DGEMM application computes

the matrix product of two dense matrices A and B of sizes M × N and N × N where M <= N .

ZZGEMMOOC out-of-card package [157] is used to compute DGEMM on Nvidia GPU K40c and

CUBLAS DGEMM for Nvidia P100. The ZZGEMMOOC package reuse CUBLAS for in-card DGEMM

calls. Intel MKL FFT for Xeon Phis and CUFFT for Nvidia GPUs are used to compute 2D Discrete

Fourier Transform of a complex signal matrix of size M×N where M <= N . The Intel MKL version

on both nodes is 2017.0.2, and CUDA versions on HCLServer01 is 7.5 and on HCLServer02 is

9.2.148.

Nvidia NVML [43] is used to acquire the power values from on-chip sensors on Nvidia GPUs.

Intel SMC [42] is used to obtain the power values from Intel Xeon Phi that can be programmatically

obtained using Intel MPSS [102]. The steps (methodology) taken to compare the measurements

using GPU and Xeon Phi sensors and HCLWattsUp are similar to those for RAPL (section 4.4.1)

and presented in following section.

4.5.1 Methodology To Compare Measurements Using Sensors and HCLWattsUp

To analyze the dynamic energy consumption by a given component when running an application, we

need to build application profiles on them. Execution of an application using GPU/Xeon Phi involves

the CPU host-core, DRAM and PCIe to copy the data between CPU host-core and GPU/Intel Xeon

Phi. HCLWattsUp API provides the dynamic energy consumption of the application instead of the

component. It, therefore, contains the contributions by other components including CPU host-core

and DRAM. Built-in sensors, on the other hand, provide the power consumption of accelerator (GPU

or Xeon Phi) only (we offload the applications to run on Intel Xeon Phi. So, they does not include

the CPU host core, DRAM and PCIe to copy and migrate the data between CPU host core and

the accelerator). Therefore, to compare the both methodologies in a most fair equitable way and to

obtain the dynamic energy profiles of applications, we use RAPL as an aide to sensors to determine

the energy contribution of CPU and DRAM.

Now, we present the work-flow of experiments that we follow to determine the dynamic energy

71

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

consumption of the application. To obtain the CPU host-core and DRAM contribution in dynamic

energy consumption of the application, we use RAPL in following way:

1. Using Intel PCM/PAPI, we obtain the base power of CPU and DRAM (when the given applica-

tion is not running).

2. Using HCLWattsUp API, we obtain the execution time of the given application.

3. Using Intel PCM/PAPI, we obtain the total energy consumption of the CPU host-core (because

all other cores are idle) and DRAM, during the execution of the given application.

4. Finally, we calculate the dynamic energy consumption (of CPU and DRAM) by subtracting the

base energy from total energy consumed during the execution of the given application.

To obtain the GPU/Xeon Phi contribution, we use NVML/Intel SMC in following way:

1. Using NVML/Intel SMC, we obtain the base power of GPU/Xeon Phi (when the given applica-

tion is not running).

2. Using HCLWattsUp API, we obtain the execution time of the given application.

3. Using NVML/Intel SMC, we obtain the total energy consumption of GPU/Xeon Phi during the

execution of the given application.

4. Finally, we calculate the dynamic energy consumption GPU/Xeon Phi by subtracting the base

energy from total energy consumed during the execution of the given application.

Now, we present the workflow of the experiments to determine the dynamic energy consumption

by the given application kernel, using HCLWattsUp:

1. Using HCLWattsUp API, we obtain the base power of the platform (when the given application

is not running).

2. Using HCLWattsUp API, we obtain the execution time of the application.

3. Using HCLWattsUp API, we obtain the total energy consumption of the platform, during the

execution of the given application.

4. Finally, we calculate the dynamic energy consumption by subtracting the base power from

total energy consumed during the execution of the given application.

Important to note here, the execution time of the application kernel is the same for dynamic

energy calculations by all tools. So, any difference between the energy readings using these tools

comes solely from their power readings. The cost in terms of number of measurements to de-

termine a single data point of an application dynamic energy profile using sensors is higher than

using HCLWattsUp API. Because we need at least five (Base power with RAPL, Total Energy with

RAPL, Base power with NVML/Intel SMC, Total Energy with NVML/Intel SMC, and Execution Time)

measurements to obtain the data point of the given application dynamic energy profile using RAPL

and GPU/Xeon Phi internal sensors. However, we just need three measurements to obtain it using

HCLWattsUp.

72

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

4.5.2 Experimental Results Using GPU Sensors (NVML)

On HCLServer01, DGEMM is executed using the workload sizes ranging from 12,032 × 21,504

to 21,504 × 21,504 with a constant step size of 256. Figure 4.7a illustrates the dynamic energy

profiles of DGEMM using HCLWattsUp and sensors (RAPL and NVML). The energy readings from

the sensors exhibit a linear profile whereas HCLWattsUp does not. We find that sensors do not

follow the application behavior exhibited by HCLWattsUp for 67.58% of the data points. Consider, for

example, the data points (M ×N): 20,480 × 21,504, 19,200 × 21,504 and 16,640 × 21,504 where

HCLWattsUp demonstrates a decrease of 6.11%, 11.09% and 9.26%, whereas sensors exhibit an

increase of 1.33%, 1.07% and 1.46% respectively. We find the maximum and average errors to be

35.32% and 10.62%. We can reduce marginally the maximum and average errors using calibration

to 30.5% and 10.44% respectively but the minimum error increases from 0.08% to 0.19%.

One can observe in Figure 4.7a that the combined dynamic energy profiles with RAPL and

NVML follow the same trend for 90.6% of the data points. This can mislead to assume that the

difference of sensors with HCLWattsUp comes from both RAPL and NVML together. But, we find

that dynamic energy profile with RAPL exhibits opposite behavior to NVML for 28.12% of those data

points whereas combined profile with RAPL and NVML exhibits different trends with HCLWattsUp.

Consider, for example, the data points (M × N): 21,504 × 21,504, 19712 × 21,504, 18,176 ×
21,504. RAPL suggests a decrease of 1.81%, 1.93% and 1.56% respectively in comparison with

previous data points in dynamic energy profile whereas NVML suggest an increase of 1.25%, 1.34%

and 1.48% respectively for these data points. But, the combined profile follows the trend of NVML

and we observe an overall increase in combined dynamic energy profile. This is because NVML

has the higher contribution in dynamic energy consumption than RAPL and therefore drives the

overall trend. Hence, the difference between dynamic energy profiles with RAPL and NVML and

HCLWattsUp is mainly due to NVML.

Figure 4.7b shows the dynamic energy profiles of 2D FFT on HCLServer01 with NVML and

HCLWattsUp. Measurements by NVML follow the same trend for 71.88% of the data points. Con-

sider, for example, the data points (M × N): 15,360 × 23,552, 16,000 × 23,552, 16,704 ×
23,552 and 17,280 × 23,552 where HCLWattsUp exhibits a decrease of 22.08%, 33.78%, 21.66%

and 29.14% but NVML displays an increase of 9.24%, 2.86%, 4.04% and 81.77%. Similarly,

HCLWattsUp shows an increase of 7.17%, 11.5%, 29.83% and 25.7% for the data points (M ×N):

15744 × 23,552, 15,936 × 23,552, 16,576 × 23,552 and 17,088 × 23,552. However, NVML exhibit

a decrease of 1.48%, 37.47%, 10.91% and 16.27% for them.

We find an average and maximum error of NVML with HCLWattsUp is 12.45% and 57.77%

respectively. One can slightly reduce the average error using the calibration to 10.87%. But, it

increases the maximum error up to 94.55%.

We find that RAPL and NVML both exhibit the same trend for FFT. Therefore, the difference

with HCLWattsUp come from both sensors collectively. Table 4.8 illustrates the errors using on-chip

sensors with and without using calibration.

73

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

(a) DGEMM

(b) CUDA FFT

Figure 4.7: Dynamic energy consumption profiles of DGEMM and CUDA FFT on Nvidia K40c GPU
on HCLServer01. RAPL+GPUSensors calib. means that RAPL+GPUSensors values have been
calibrated.

74

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

Table 4.8: Percentage error of dynamic energy consumption by Nvidia K40c GPU with and without
calibration and HCLWattsUp on HCLServer01.

Without Calibration

application Minimum Maximum Average

DGEMM 0.076% 35.32% 10.62%

FFT 0.52% 57.77% 12.45%

With Calibration

application Minimum Maximum Average

DGEMM 0.19% 30.50% 10.43%

FFT 0.18% 94.55% 10.87%

On Nvidia P100 GPU on HCLServer02, the dynamic energy profile of 2D FFT is built as a

function of problem size M ×N ranging from 21, 504× 25, 600 to 25, 600× 25, 600 with a constant

step size of 64, using sensors and HCLWattsUp. Figure 4.8b illustrates the dynamic energy profiles

of 2D FFT using sensors and HCLWattsUp. We find that sensors follow the trend of HCLWattsUp for

57.14% of the data points. Consider, for example, the data points 22, 016×25, 600, 22, 080×25, 600

and 23, 360 × 25, 600 where HCLWattsUp suggests an increase of 33.53%, 15.4% and 18.49%

whereas sensors suggest an increase of 2.32%, 3.21% and 6.54% respectively. The maximum and

average errors are 175.97% and 73.34%. We can reduce them using calibration to 51.24% and

16.95% respectively.

RAPL and GPU sensors follow the same trend for 88.89% of the data points. It reflects that the

difference with HCLWattsUp comes from both together. But, the combined profile follows the GPU

sensors trend and diverges with HCLWattsUp for 51.11% of the data points. Hence, the difference

between (RAPL and GPU) sensors and HCLWattsUp is mainly from GPU sensors because they

are driving the combined profile. Consider, for example, the data point 25, 280 × 25, 600. RAPL

suggests an increase of 6.42% in dynamic energy consumption with respect to the previous data

point. However, GPU sensors suggest a decrease of 38.12% for it and we find a decrease of 2.91%

in combined profile of sensors.

Another observation is that RAPL reports more dynamic energy than GPU sensors. It suggests

that for this application configuration, data transfer between CPU host-core, DRAM and GPU con-

sumes more dynamic energy than the computation on P100 GPU.

On HCLServer02, DGEMM is executed using workload sizes ranging from 18,176 × 22,528

to 22,528 × 22,528 with a constant step size of 128. Figure 4.8a illustrates the dynamic energy

profiles of DGEMM using HCLWattsUp and sensors (RAPL and GPU sensors). Likewise K40c GPU

on HCLServer01, the combined energy profile of DGEMM with (RAPL and NVML) sensors exhibit

a linear profile whereas HCLWattsUp exhibit differently. We find that combined sensors do not

follow the application behavior exhibited by HCLWattsUp for 64.71% of the data points. Consider,

for example, the data points (M × N): 218,560 × 22,528, 18,944 × 22,528 and 22,400 × 22,528

where HCLWattsUp demonstrate a decrease of 4.14%, 3.8% and 5.32% whereas sensors exhibit an

75

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

(a) CUDA DGEMM

(b) CUDA FFT

Figure 4.8: Dynamic energy consumption profiles of Nvidia P100 PCIe GPU on HCLServer02.

76

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

increase of 1.23%, 1.06% and 0.59% respectively. The maximum and average errors are 84.84%

and 40.06%. They can be reduced using calibration to 26.07% and 11.62% respectively.

Table 4.9: Percentage error of dynamic energy consumption by Nvidia P100 PCIe GPU with and
without calibration and HCLWattsUp on HCLServer02.

Without Calibration

Application Minimum Maximum Average

DGEMM 13.11% 84.84% 40.06%

FFT 17.91% 175.97% 73.34%

With Calibration

Application Minimum Maximum Average

DGEMM 0.07% 26.07% 11.62%

FFT 0.025% 51.24% 16.95%

4.5.3 Experimental Results Using Intel Xeon Phi Sensors (Intel MPSS)

The dynamic energy profile of DGEMM is constructed on Intel Xeon Phi using the Intel MKL-DGEMM

routine. The profile is a discrete function of problem sizes ranging from 7936 × 13,824 to 13,824

× 13,824 with a constant step size of 256. Figure 4.9a illustrates the dynamic energy profiles with

sensors (RAPL and MPSS) and HCLWattsUp. We find that sensors follow the trend exhibited by

HCLWattsUp for 73.91% of the data points. However, sensors reports higher dynamic energy than

HCLWattsUp. The average and maximum error of sensors with HCLWattsUp is 64.5% and 93.06%.

But one can reduce this error significantly using calibration to 2.75% and 93.06%.

MPSS shows a trend opposite to HCLWattsUp for 26.09% of the data points. Consider, for exam-

ple, the data point 9216× 13, 824 where MPSS exhibits a decrease of 1.24% whereas HCLWattsUp

shows an increase of 4.88%. Similarly, MPSS suggests an increase of 1.1% for the data point 9728

× 13,824 whereas HCLWattsUp suggest a decrease of 3.2%.

RAPL do not follow the trend of MPSS for 53.85% of the data points. We do not, however,

find this effect reflected in the profile of the combined sensors. Consider, for example, the data

point 12,032 × 13,824 where RAPL suggests a decrease of 3.98% in dynamic energy consumption

with respect to previous data point in the profile whereas MPSS suggests an increase of 6.1% and

we find an increase of 1.86% in the combined profile. This is because of the fact that MPSS has

higher contribution in combined dynamic energy profile and thus drives the overall trend. Hence,

the difference between dynamic energy profiles with MPSS and HCLWattsUp comes mainly from

MPSS.

Intel MKL FFT is used to compute the discrete Fourier transform of 2D signal of complex data

type and build the dynamic energy profiles with HCLWattsUp and sensors (RAPL and MPSS) as a

function of problem size (M ×N) ranges from 15,104 × 23,552 to 17,152 × 23,552 with a constant

step size of 64. Figure 4.9b illustrates the dynamic energy profiles with sensors and HCLWattsUp.

We find that sensors follow the trend of HCLWattsUp for 92.59% of the data points. However, sensors

77

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

(a) MKL DGEMM

(b) MKL FFT

Figure 4.9: Dynamic energy consumption profiles of Intel MKL DGEMM and Intel MKL FFT on
Xeon Phi co-processor. RAPL+PHISensors calib. means that RAPL+PHISensors values have been
calibrated.

78

4.5. COMPARISON OF ENERGY MEASUREMENTS USING GPU AND XEON PHI SENSORS
WITH HCLWATTSUP

behave oppositely with HCLWattsUp for the data points such as 15,616× 23,552 where they display

an increase of 30.95% with respect to previous data point whereas HCLWattsUp exhibits a decrease

of 7.55%. Similarly, sensors show a decrease of 4.75% for data point 16,576 × 23,552 with respect

to previous data point whereas HCLWattsUp exhibits an increase of 6.98%.

We find RAPL and MPSS exhibit the same trend of dynamic energy consumption. Hence, the

difference between the dynamic energy profiles with combined sensors and HCLWattsUp comes

from both sensors collectively. However, given the fact that MPSS has higher contribution in com-

parison with RAPL, therefore, MPSS drives the trend and influences the overall dynamic energy

consumption reported by combined sensors. We also observe that RAPL and MPSS consume al-

most same amount of dynamic energy for running FFT. It shows that data transfer between the CPU

host core, DRAM and Xeon Phi consumes almost as much dynamic energy as it takes to compute

the given FFT plan.

Overall, MPSS reports less dynamic energy consumption than HCLWattsUp. The average and

maximum error are 40.68% and 55.78% respectively. We can reduce them significantly to 9.58%

and 32.3% by using calibration. Table 4.10 illustrates the statistics for dynamic energy profiles of

DGEMM and FFT on Xeon Phi with and without using calibration.

Table 4.10: Percentage error of dynamic energy consumption with and without calibration and
HCLWattsUp on Intel Xeon Phi.

Without Calibration

Application Minimum Maximum Average

DGEMM 45.1% 93.06% 64.5%

FFT 22.58% 55.78% 40.68%

With Calibration

Application Minimum Maximum Average

DGEMM 0.06% 9.54% 2.75%

FFT 0.06% 32.3% 9.58%

4.5.4 Discussion

We observe that the average error between measurements using sensors and HCLWattsUp can be

reduced using calibration in some cases. However, the calibration value is specific to an application

configuration, and different for the energy consumption of different application configurations com-

puted with the same sensors. Another important finding is that CPU host-core and DRAM consume

equal or more dynamic energy than the accelerator for FFT applications (FFTW 2D and MKL FFT

2D). We find that the data transfers (between CPU host-core and an accelerator) consume same

amount of energy as consumed by the computations on the accelerators for older generations of

Nvidia Tesla GPUs such as K40c and Intel Xeon Phi such as 3120P. However, for newer genera-

tions of Nvidia Tesla GPUs such as P100, the data transfers consume more dynamic energy than

computations. It suggests that optimizing the data transfers for dynamic energy consumption is

79

4.6. COMPARISON OF DYNAMIC ENERGY CONSUMPTION USING PMC-BASED ENERGY
PREDICTIVE MODELS AND HCLWATTSUP

important.

4.6 Comparison of dynamic energy consumption using PMC-based

energy predictive models and HCLWattsUp

This section presents a short summary of the comparison of the prediction accuracy of linear energy

predictive models employing performance monitoring counters (PMCs) as predictor variables, with

the ground truth. The experiments and findings are mainly done by my colleague Arsalan Shahid.

An overview of the findings is presented as an complement to the comparative study of the accuracy

of methods for measurements of computing. The details can be found in [37], and also presented in

appendix A for the convenience of reader.

The overview is categorized into two classes: a). Class A contains platform-level linear regres-

sion models, and b). Class B contains application-specific models. We use a diverse application

suite containing highly optimized compute-bound and memory-bound scientific routines such as

DGEMM and FFT from Intel Math Kernel Library (MKL), Intel HPCG, benchmarks from NASA Appli-

cation Suite (NAS), stress, naive matrix-vector multiplication, and naive matrix-matrix multiplication.

We present the details on our application suit and experiment setup in appendix A.

For class A, we build a data-set of 277 points using different problem sizes as application config-

uration parameters. Each point represents the dynamic energy consumption and the PMC counts

of one application. We used 227 points for training the models and 50 points to test the accuracy of

the models. We build 6 linear models {A, B, C, D, E, F} using regression analysis. Model A is based

on all the selected PMCs as predictor variables. Model B is based on five best PMCs with the PMC

with the least positive correlation with dynamic energy is removed. Model C uses four PMCs with

two least positively correlated PMCs removed and so on until Model F, which contains just one most

positively correlated PMC. We find that the average error of the platform-specific energy predictive

models and the ground truth ranges from 14% to 32% and the maximum reaches up to 100%.

For class B, we choose one compute-bound (MKL-DGEMM) and one memory bound (MKL-

FFT) application. We choose six PMCs that have been employed as predictor variables in state-

of-the-art energy predictive models (Section 2.2.4). We build a dataset containing 362 and 330

points representing different configurations of DGEMM and FFT for a range of problem sizes from

6400× 6400 to 29504× 29504 and 22400× 22400 to 41536× 41536, with a constant step size of 64.

We use 271 and 255 points of DGEMM and FFT, to train the energy predictive models, and 91 and

75 points for testing the accuracy of models. We build two linear models for both applications: i).

Model MM, and ii). Model FT. We find that the average and maximum errors for DGEMM using Model

MM against the ground truth are 26% and 218%. In the case of FFT, the average and maximum

errors using Model FT against the ground truth are 27% and 147%.

4.7 Energy Losses From Employing an Inaccurate Measurement Tool

In this section, we demonstrate that using inaccurate energy measuring tools in energy optimization

methods may lead to significant energy losses. We study the optimization of a parallel matrix-matrix

80

4.7. ENERGY LOSSES FROM EMPLOYING AN INACCURATE MEASUREMENT TOOL

multiplication application for dynamic energy using two measurement tools, RAPL and system-level

physical measurements using HCLWattsUp (which is considered as the ground truth).

A parallel application DGEMM is run which uses IntelMKL routine to compute the dot product of

two dense matrices A and B of sizes N ×N on two Intel multi-core processors: HCLServer01 and

HCLServer02. The matrix A is partitioned on both aforementioned processors into A1 and A2. So

that the product of matrices B and A1 of size M×N is computed by HCLServer01 and HCLServer02

computes the product of matrices B and A2 of size K × N . There is no communication involve in

these experiments.

The decomposition of the matrix A is computed using a profile-based data partitioning algo-

rithm. The inputs to the algorithm are the number of rows of the matrix A, N and the dynamic

energy consumption functions of the processors, {E1, E2}. The output is the partitioning of the

rows, (M,K). The discrete dynamic energy consumption function of processor Pi is given by

Ei = {ei(x1, y1), ..., ei(xm, ym)} where ei(x, y) represents the dynamic energy consumption during

the matrix multiplication of two matrices of sizes x× y and y × y by the processor i. The dimension

y ranges from 14, 336 to 16, 384 in steps of 512. For HCLserver01, the dimension x ranges from

512 to y/2 in increments of 512. For HCLserver01, the dimension x ranges from y − 512 to y/2 in

decrements of 512.

Figures 4.10a, 4.10b,4.10c and 4.10d illustrate the dynamic energy profiles for workload sizes

(N):{14,336, 14,848, 15,360, 16,384} using RAPL and HCLWattsUp, respectively. To ensure the

reliability of our experiments, the same strict methodology is followed as explained in sections 3.5.

One can observe that RAPL over-reports dynamic energy consumption than HCLWattsUp for

each configuration. Table 4.11 provides the error of RAPL against HCLWattsUp.

Table 4.11: Prediction errors of RAPL against HCLWattsUp for dynamic energy consumption by
DGEMM.

Problem Size (N) Minimum Maximum Average

14,336 17% 172% 65%

14,848 12% 153% 58%

15,360 13% 240% 56%

16,384 2% 300% 56%

The workload partitioning algorithm takes the dynamic energy functional model as an input and

finds the optimal workload configuration which optimizes the total dynamic energy consumption for

the given application using load imbalance technique. The main steps of the workload partitioning

algorithm are as follows:

1. Plane intersection of dynamic energy functions: Dynamic energy consumption functions

{E1, E2} are cut by the plane y = N producing two curves that represent the dynamic energy

consumption functions against x given y is equal to N .

2. Determine M and K:

(M,K) =M∈(512,N/2),K∈(N−512,N/2),M+K=N (e1(M,N) + e2(K,N)) (4.1)

81

4.7. ENERGY LOSSES FROM EMPLOYING AN INACCURATE MEASUREMENT TOOL

(a) N = 14,336 (b) N = 14,848

(c) N = 15,360 (d) N = 16,384

Figure 4.10: Dynamic energy consumption profiles of DGEMM on HCLServer01 and HCLServer02.

82

4.8. COMPARISON OF COSTS OF MEASUREMENT AND IMPLEMENTATION COMPLEXITY

We determine the workload distribution for each workload size using the dynamic energy profiles

with RAPL and HCLWattsUp as an input to the data partitioning algorithm. Using this workload

distribution, we run the application in parallel on both servers and determine its dynamic energy

consumption with RAPL and HCLWattsUp separately. Let (erapl represent the total dynamic energy

consumption by the given workload distribution on both servers with RAPL and ehclwattsup) represent

the total dynamic energy consumption by the same workload distribution on both servers using

HCLWattsUp. Then, we can calculate the percentage loss of total dynamic energy consumption with

RAPL compared with HCLWattsUp as (erapl − ehclwattsup)/ehclwattsup × 100.

Table 4.12 illustrates the total dynamic energy losses by using RAPL in comparison with

HCLWattsUp, which are {54, 37, 31, 84}. After calibrating RAPL with HCLWattsUp on both platforms,

we can reduce the losses to {16, 8, 12, 40}.

Table 4.12: Dynamic energy losses in percentage with RAPL in comparison with HCLWattsUp.

Problem Size (N) [%] Energy Loss without Calibration [%] Energy Loss after Calibration

14,336 54 16

14,848 37 8

15,360 31 12

16,384 84 40

4.8 Comparison of Costs of Measurement and Implementation Com-

plexity

In this section, we compare the cost in terms of number of measurements to determine a single data

point of an application dynamic energy profile constructed with all three aforementioned approaches.

To determine the dynamic energy consumption by a given workload size of an application, one needs

following three measurements with RAPL and HCLWattsUp:

1. Base power

2. Execution time of the application

3. Total Energy consumed by the application during the execution

However, the cost of determining the dynamic energy consumption with (RAPL and on-chip

GPU/Xeon Phi) sensors is comparatively higher, because one needs at least following five mea-

surements:

1. Base power with RAPL

2. Total Energy with RAPL

3. Base power with NVML/Intel SMC

4. Total Energy with NVML/Intel SMC

83

4.8. COMPARISON OF COSTS OF MEASUREMENT AND IMPLEMENTATION COMPLEXITY

5. Execution Time

Only one measurement is needed to predict the dynamic energy consumption with PMC based

energy predictive models. However, the cost of building the model is relatively higher as discussed

in next section.

4.8.1 Implementation Complexity

Energy predictive models employing PMCs as predictor variables exhibit high implementation com-

plexity due to the following reasons:

1. There is a large number of PMCs provided in a modern multicore processor. For example:

Likwid tool [55] provides 164 PMCs and 385 PMCs for the Intel Haswell (Table 4.1) and the

Intel Skylake multicore processors (Table 4.2) respectively.

2. Tremendous programming effort and time are required to automate and collect all the PMCs.

This is because of the limited number of hardware registers available on platforms for storing

the PMCs. Only 3-4 PMCs can be collected in a single run of an application. Moreover,

some PMCs can only be collected individually or in sets of two or three for an application run.

Therefore, each application must be executed about 53 and 99 times on the Intel Haswell and

Intel Skylake platforms respectively to collect all the PMCs available on them.

3. An energy predictive model purely based on PMCs lacks portability. This is because all the

PMCs available for a CPU processor may not be present in a GPU processor due to inherent

architectural differences or even on in a next-generation CPU processor from the architecture

space.

4.8.2 Topological granularity issues with sensors

Finally, we discuss the issues with topological granularity of on-chip sensors. Consider, for example,

a hybrid application DGEMM executing in parallel on three compute devices, a multicore CPU and

two accelerators (GPU and Xeon Phi). One CPU core acts as a host for each accelerator kernel.

Execution of an application on GPU/Xeon Phi involves the CPU host-core, DRAM and PCIe to copy

the data between CPU host-core and GPU/Intel Xeon Phi. However, the on-chip power sensors

(NVML and MPSS) only provide the power consumption of GPU or Xeon Phi. Therefore, to obtain

the dynamic energy profiles of applications, one can use RAPL to determine the energy contribution

of CPU host-core and DRAM. But RAPL provides the energy consumption at the socket level, which

includes also the contribution by other CPU cores involved in the execution of kernels running par-

allel on CPU and other accelerators. Therefore, it is not currently possible using on-chip sensors to

accurately attribute the individual contribution of each computation kernel to total energy consump-

tion by a hybrid application executing the kernels in parallel on several heterogeneous compute

devices.

84

4.9. CURRENT PICTURE, RECOMMENDATIONS AND FUTURE DIRECTIONS

4.9 Current Picture, Recommendations and Future Directions

In this section, we cover the lessons learned and our recommendations for the use of on-chip sen-

sors and energy predictive models before indicating some future directions.

Based on our study, we can not recommend use of state-of-the-art on-chip sensors (RAPL for

multicore CPUs, NVML for GPUs, MPSS for Xeon Phis). The fundamental issue with this measure-

ment approach is the lack of information about how a power reading for a component is determined

during the execution of an application utilizing the component. While the accuracy of this informa-

tion is reported in the case of NVML, experimental results demonstrate that practical accuracy is

worse. Moreover, the dynamic energy profile patterns of the on-chip sensors differ significantly from

the patterns obtained using the ground truth, which suggests that the measurements using on-chip

sensors do not capture the holistic picture of the dynamic energy consumption during an application

execution. At the same time, we observed that the energy measurements reported by the on-chip

sensors are deterministic and hence can be used as parameters in energy predictive models.

Integrated on-chip sensors typically use voltage regulators to determine the power consumption

by an component [45]. Hence, the accuracy of on-chip power sensors depends upon the accuracy

of voltage regulators. It is reported that VRs from the same manufacturer lot may exhibit different

accuracies [46]. Less accurate VRs (for example within an accuracy of ±20%) are used by original

equipment manufacturer (OEM) for cost-saving purposes [46]. However, to compensate the reported

inaccuracies of output current (IMON) from a VR to a processor, an approach is recently proposed

to use a programmable load line from BIOS instead of actual implemented load line [46]. This

programmed load line values adds an offset to the determined inaccuracy of the VR to increase

its accuracy. We envisage the chip manufacturers to adopt such an approach to address the poor

reliability and accuracy of power values provided by integrated on-chip sensors.

Energy predictive models based on PMCs are plagued by poor accuracy [50, 51, 15, 52]. The

sources of this inaccuracy are the following: (a) Model parameters in most cases are not determinis-

tic and reproducible and (b) Model parameters are selected chiefly based on correlation with energy

and not their physical significance originating from fundamental physical laws such as conservation

of energy of computing.

We will now state our recommendations and possible future directions. Since system-level phys-

ical measurements based on power meters are accurate and the ground truth, we recommend using

this approach as the fundamental building block for the fine-grained device-level decomposition of

the energy consumption during the parallel execution of an application executing on several inde-

pendent computing devices in a computer.

We envisage hardware vendors maturing their on-chip sensor technology to an extent where en-

ergy optimization programmers will be provided necessary information of how a power measurement

is determined for a component, the frequency or sampling rate of the measurements, its reported

accuracy and finally how to programmatically obtain this measurement with sufficient accuracy and

low overhead.

Linear energy predictive models can be employed in the optimization of applications for dynamic

energy provided they meet the following criteria: (a) Model parameters employed in the models

must be deterministic, (b) Model parameters are selected based on physical significance originating

from fundamental physical laws such as conservation of energy of computing. Both the criteria are

85

4.10. SUMMARY

contained in the additivity test proposed in Reference [52]. Use of parameters with high additivity

improves the prediction accuracy of the model. Additivity test can also be employed to select param-

eters for machine learning (or black box) methods such as neural networks, random forests, etc.,

provided the methods use linear functional building blocks internally. While there is experimental

evidence demonstrating good accuracy for these types of models, a sound theoretical analysis is

lacking. At this point, we do not recommend the use of non-linear energy predictive models since

they lack serious theoretical and experimental analysis.

We believe that high-level model parameters designed by combining PMCs (using functions

based on physical significance with dynamic energy) may be deterministic and reproducible instead

of individual PMCs, which are raw counters. PMCs traditionally have been developed to aid low-level

performance analysis and tuning but have been widely adopted for energy predictive modeling. We

would call the high-level model parameters, energy monitoring counts (EMCs), that are discovered

from insights based on fundamental physical laws such as conservation of energy of computing and

that are ideal for employment as predictor variables in energy predictive models.

4.10 Summary

In this chapter, we present a comprehensive study comparing the accuracy of state-of-the-art on-

chip power sensors and energy predictive models against system-level physical measurements us-

ing external power meters, which we consider to be the ground truth. The measurements provided

by on-chip sensors are obtained programmatically using RAPL for Intel multicore CPUs, NVML for

Nvidia GPUs and Intel System Management Controller chip (SMC) for Intel Xeon Phis. To compare

the approaches reliably, we presented a methodology to determine the component-level dynamic en-

ergy consumption of an application using system-level physical measurements using power meters,

which are obtained using HCLWattsUp API.

For the study comparing the accuracy of on-chip power sensors with the ground truth, we employ

61 different application configurations of two scientific applications, dense matrix-matrix multiplica-

tion and 2D fast Fourier transform, executed on one Intel Haswell and two Intel Skylake multicore

CPUs, two Nvidia Graphical Processing Units (GPUs) (Tesla K40c and Tesla P100 PCIe) and one

Intel Xeon Phi accelerator. We show that the average error between the dynamic energy profiles

obtained using on-chip power sensors and the ground truth ranges from 8% and 73% and the max-

imum reaches 300%.

For 2D-FFT applications executing on accelerators (GPUs or Intel Xeon Phis), we find that RAPL

reports higher dynamic energy than the on-chip power sensors in the accelerators. It should be

noted that RAPL reports energy consumption for only CPU and DRAM domains. It shows that the

data transfers (between CPU host-core and the accelerator) consume more dynamic energy than

the computations on the accelerator. This suggests that we can reduce the dynamic energy con-

sumption by optimizing the dynamic energy of data transfer operations. Furthermore, we found that

for 2D FFT, Intel MPSS and NVML provide more accurate dynamic energy consumption and exhibit

similar trend as that of HCLWattsUp. For DGEMM, however, we find that RAPL measurements are

significantly less than on-chip sensor values of the accelerators, which suggests that computations

are the main contributor to the total dynamic energy consumption.

86

4.10. SUMMARY

We show that, owing to the nature of the deviations of the energy measurements provided by on-

chip sensors from the ground truth, calibration can not improve the accuracy of the on-chip sensors

to an extent that can allow them to be used in optimization of applications for dynamic energy.

For the study comparing the prediction accuracy of energy predictive models with the ground

truth, we use an experimental platform containing a test-suite of seventeen benchmarks executed

on an Intel Haswell multicore CPU and an Intel Skylake multicore CPU. The average error between

energy predictive models employing performance monitoring counters (PMCs) as predictor variables

and the ground truth ranges from 14% to 32% and the maximum reaches 100%. We highlighted one

of the causes of the inaccuracy in PMC based models, which is that they do not take into account

the physical significance of the parameters based on fundamental law of conservation of energy of

computing. Our experimental results illustrated that methods solely based on correlation with energy

to select PMCs are not effective in improving the average prediction accuracy.

We demonstrated through a parallel matrix-matrix multiplication on two Intel multicore CPU

servers that using inaccurate energy measurements provided by on-chip sensors for dynamic en-

ergy optimization can result in significant energy losses up to 84%.

87

Chapter 5

Accurate Energy Modelling of Hybrid
Parallel Applications on Modern
Heterogeneous Computing Platforms
using System-Level Measurements

This chapter is mainly based on [21].

5.1 Introduction

Modern HPC platforms, cloud computing systems, and data centers are commonly composed of

heterogeneous nodes where a multicore CPU is tightly integrated with one or more accelerators

to address the twin critical concerns of performance and energy efficiency. A parallel application

executing on such a hybrid node, consists of multiple kernels (generally speaking, multi-threaded),

running in parallel on different computing devices of the platform. We term these kernels as appli-

cation components for illustration purposes in this chapter.

An important challenge for energy optimization of hybrid parallel applications on such platforms

is how to accurately estimate the energy consumption of its application components executing in

parallel on different compute devices of the platform. The details of the issues involved in address-

ing the challenge are presented in section 1.1.3. In a nutshell, a naïve approach addressing this

challenge has exponential complexity. An efficient solution method must take into account the inher-

ent complexities in modern heterogeneous platforms and employ an accurate measurement method

for energy consumption by an application.

There are three mainstream approaches for determining the energy consumption by an appli-

cation: a). System-level physical measurements using external power meters, b). Measurements

using on-chip power sensors, and c). Energy predictive models. System-level physical measure-

ments using external power meters is considered the ground truth. A comparative study of on-chip

sensors and energy predictive models against the ground truth is presented in chapter 4. In brief,

the two state-of-the-art approaches (on-chip sensors and energy predictive models) suffer from poor

accuracy and high implementation complexity [37]. To summarize, there exists no solution method

88

5.2. ANMOHA: ADDITIVE ENERGY MODELLING OF HYBRID APPLICATIONS ON
HETEROGENEOUS COMPUTING PLATFORMS

to the best of our knowledge that employs system-level power measurements using external power

meters to accurately determine the application component-level decomposition of the energy con-

sumption of an application executing on multiple independent computing devices in a computer.

We propose a novel solution method called (Additive Energy Modelling of Hybrid Parallel Ap-

plications (AnMoHA)) to fill the gap. It comprises of two main stages. In the first stage, individual

computing elements executing a given application kernel are grouped in such a way that we can

accurately measure the energy consumption of the groups. The groups are termed as abstract

processors. In the second stage, the discrete dynamic energy functions of the abstract processors

are constructed using an additive modelling approach. We do not make any assumption about the

shape of the energy profiles of application kernels. They can be linear or non-linear. Using this

method, we address two challenges for energy optimization of hybrid parallel applications running

on modern heterogeneous NUMA computing platforms:

1. Accurate modelling of the energy consumption of application components when executing a

hybrid application in parallel on multiple compute devices on a computer.

2. Accurate modelling of the energy consumption of two different applications executing in paral-

lel on a dual-socket multicore CPU platform.

The rest of the chapter is organized as follows. The so1lution method, AnMoHA, is explained in

section 5.2. The experimental validation of AnMoHA is presented in section 5.3. Then, we discuss

the trade-offs between the accuracy and time-space, and between the accuracy and design-space of

AnMoHA in sections 5.4 and 5.5. We explore the hardware topological granularity and the scalability

of AnMoHA in section 5.6. Then, we study the accuracy of additive energy modelling using on-chip

sensors against the ground truth, and dynamic energy optimization with on-chip sensors and the

ground truth in section 5.7. We discuss the scope, limitations and the efficacy of AnMoHA in section

5.8. Finally, the chapter is concluded in section 5.9.

5.2 AnMoHA: Additive Energy Modelling of Hybrid Applications on

Heterogeneous Computing Platforms

In this section, we present our solution method, AnMoHA, to determine the dynamic energy con-

sumption by a hybrid application executing in parallel on multiple heterogeneous computing devices

such as multi-core CPU, GPU, Xeon Phi, etc., in a computing platform. The method is purely based

on system-level power measurements using power meters.

The inputs to AnMoHA are the hybrid application comprising of multi-threaded kernels, the num-

ber of compute devices, and the precision settings (such as 2.5%) to be satisfied during the con-

struction of the energy profiles. There is a one-to-one mapping between the application kernels and

compute devices. The output of AnMoHA is the energy profiles of the application kernels satisfying

the input precision settings.

AnMoHA is composed of two main stages. In the first stage, individual computing elements

executing a given application kernel are grouped in such a way that we can accurately measure the

energy consumption of the groups. The groups are termed as abstract processors. In the second

89

5.2. ANMOHA: ADDITIVE ENERGY MODELLING OF HYBRID APPLICATIONS ON
HETEROGENEOUS COMPUTING PLATFORMS

stage, the discrete dynamic energy functions of the abstract processors are constructed using an

additive modelling approach.

5.2.1 Grouping of Computing Elements

The rationale behind grouping the compute devices is to address one of the fundamental problems

while modeling: to decide the granularity level to model the energy consumption by an application

kernel. Unfortunately, there is not much privilege to model the accurate energy consumption by

an application at a very fine granularity. Consider, for example, two applications executing on two

different cores of a CPU socket in parallel. Currently, there is no possible way to determine the

energy consumption of these applications accurately at the core level. Similarly, we cannot measure

the energy consumption of certain data banks of DRAM used in the execution of an application, or

for the PCIe links offloading application data to and from host CPU core to an accelerator. Therefore,

it is quite important to formulate such an abstraction of all these components that allow modelling

the energy consumption of such components sufficiently accurate.

Furthermore, modern multicore platforms have many inherent complexities such as severe re-

source contention for shared on-chip resources (Last Level Cache, Interconnect) and Non-Uniform

Memory Access (NUMA). As a result, the workload of one computational kernel of a hybrid appli-

cation (consists of a number of application components) may significantly impact the performance

and energy consumed by the others due to tight integration and high resource contention in un-

derlying heterogeneous hybrid platforms. Therefore, the computation kernels cannot be considered

fully independent and their energy consumption should not be measured separately. To address this

issue, we only consider such configurations of hybrid applications in this work where individual ker-

nels are coupled loosely enough to allow us to construct their individual energy functions. This is an

important constraint for AnMoHA. We term this constraint as loose coupling for illustration purposes.

To satisfy this constraint, we consider only such configurations in this work where there is one-to-

one mapping between the given (CPU or accelerator) kernel and its corresponding device. Hence,

each kernel runs only on its corresponding device and there is no more than one CPU kernel or

accelerator kernel is running on the corresponding device. Then, each group of computing elements

executing an individual kernel of the application together (such as the group of CPU cores execut-

ing the CPU kernel together) is modelled as an abstract processor [158]. This way, the executing

hybrid heterogeneous computing platform is represented as a set of heterogeneous abstract pro-

cessors such that the group of computing elements executing an application kernel together belong

to only one abstract processor. This mutual exclusion of the compute elements ensures that the

sharing of system resources is maximized within the groups representing the abstract processors

and minimized between them. Hence, by definition an abstract processor contains solely the com-

puting elements which execute an application kernel, and there is a one-to-one mapping between

an abstract processor and its corresponding application kernel.

While the performance of each abstract processor can be measured individually when running

the applications in parallel, it is not possible to measure their individual energy consumption if they

are not independently powered. This is due to the fact that the abstract processors which share the

same power domain cannot be considered fully independent and their energy can not be measured

separately when executing the applications in parallel. Therefore, the abstract processors should be

90

5.2. ANMOHA: ADDITIVE ENERGY MODELLING OF HYBRID APPLICATIONS ON
HETEROGENEOUS COMPUTING PLATFORMS

independently powered to measure the individual energy consumption by them when executing the

applications in parallel.

Hence, the following two constraints must be satisfied when formulating the abstract proces-

sors for measuring the energy consumption by them using AnMoHA when executing the application

kernels in parallel:

1. Independently powered: For a given platform, the abstract processors should be indepen-

dently powered such that no two abstract processors share the same power domain.

2. Loose coupling: For a given hybrid application, the constituent components (kernels) are

independent such that a component does not interfere the execution of other components

during their parallel execution on their corresponding abstract processors. That is, if we run two

applications A and B in parallel on two abstract processors APa and APb, then the dynamic

energy consumption by A executing on APa is not affected by the application B executing in

parallel on abstract processor APb.

We illustrate this concept by using an example. Consider HCLServer01 (technical specifications

are provided in table 4.1) that is used in our experiments, containing an Intel Haswell multicore CPU

with two sockets of twelve cores each, an Nvidia K40 GPU and an Xeon Phi 3120P coprocessor.

Now, consider a hybrid parallel application DGEMM which computes the matrix multiplication of

two dense matrices. Let the application uses MKL-DGEMM for CPU and Xeon Phi, and CUBLAS

for Nvidia GPU. We formulate three abstract processors {CPU1, GPU1, PHI1} that satisfy the

aforementioned two constraints.

The abstract processor CPU1 contains 22 CPU cores executing the multi-threaded CPU kernel.

The abstract processor GPU1 comprises of the Nvidia K40c GPU along with its dedicated host

CPU core executing the GPU kernel, and the dedicated PCIe link between them. The third abstract

processor PHI1 consists of the Xeon Phi 3120P co-processor along with its dedicated host CPU

core executing the Xeon Phi kernel, and the dedicated PCIe link between them.

The dedicated host CPU core is responsible for sending the data from host to accelerator, kernel

invocations on the accelerator and then copying the results back from the accelerator to host via the

dedicated PCIe link between them. Therefore, the pair consisting of an accelerator (or co-processor)

and its dedicated host core executing one accelerator kernel, and the dedicated PCIe link between

the host core and accelerator is modelled by an abstract processor. The application kernel executing

on an accelerator uses all the cores of the accelerator.

Hence, this formulation satisfies the both aforementioned constraints i.e. each abstract proces-

sor on HCLServer01 is independently powered and the application kernels of DGEMM are indepen-

dent such that the execution of one does not interfere with the execution of the other. Based on

this grouping of compute devices into abstract processors, the total dynamic energy consumption

by an application executing on p abstract processors will be equal to the sum of dynamic ener-

gies consumed by all p abstract processors running the application. So, if Etotal(x) is the total

dynamic energy consumption by workload size x executing in parallel on p abstract processors

{AP1, · · · , APp}, then

Etotal(x) =

p∑
i=1

EAPi(x) (5.1)

91

5.2. ANMOHA: ADDITIVE ENERGY MODELLING OF HYBRID APPLICATIONS ON
HETEROGENEOUS COMPUTING PLATFORMS

where EAPi(x) is the dynamic energy consumption by the workload size x executing on abstract

processor APi. Table 5.1 describes the notations employed in this section.

5.2.2 Energy Models of Abstract Processors

The second main stage of AnMoHA consists of building the dynamic energy models of p abstract

processors running parallel to the application kernels. We represent the dynamic energy model of

an abstract processor with a discrete function composed of a set of points of cardinality m. There

are (2p − 1) × m number of total experiments available to build the dynamic energy profiles of a

hybrid parallel application (containing, generally speaking, p number of independent multi-threaded

application kernels) executing on p abstract processors containing m number of data points. There

is a one-to-one mapping between the application kernel and an abstract processor.

Consider, for example, the abstract processors on HCLServer01. For illustration purposes, we

represent the three abstract processors {CPU1, GPU1, PHI1} by {A, B, C}. Now, consider a hybrid

parallel application DGEMM which computes the matrix multiplication of two dense matrices. Let

the application uses MKL-DGEMM for CPU and Xeon Phi, and CuBLAS for Nvidia GPU. The goal

is to construct the dynamic energy profiles of the application kernels running on three abstract

processors {A, B, C} within sufficient accuracy. We can classify the total number of experiments

into following categories: {A, B, C, {A,BC}, {AB,C}, {AC,B}, ABC}. The category {A, BC} represents

the independent execution of application kernels on A, and parallel execution of application kernels

on B and C. All categories hold commutative properties. That is, for example, the categories {BC, A}

and {CB, A} are indistinguishable because they consume the same dynamic energy in both cases.

Table 5.1: Table of notations used in equations 5.1 and 5.2.

Notation Description
APi ith abstract processor.
x workload size.
Etotal(x) Total dynamic energy consumption by workload size x.
EAPi(x) The dynamic energy consumption by workload size x

executing on ith abstract processor.
m Cardinality (total number of data points in) of discrete

energy function.
p Total number of abstract processors/independent multi-

threaded application kernels.
EABC(x) Total dynamic energy consumption by parallel execution

of the same application kernels of the workload size x
on the abstract processors A, B, and C.

EA(x), EB(x),
EC(x)

The dynamic energy consumption by the application ker-
nels of workload size x executing sequentially on ab-
stract processors A, B, and C respectively.

We consider a hypothesis that will reduce the number of experiments to p × m. We call it as

the additive hypothesis. It states that the total dynamic energy consumption by a hybrid application

consists of several (generally speaking, multithreaded) kernels running in parallel on p abstract pro-

cessors equals the sum of dynamic energy consumption by all p abstract processors when running

the same application kernels sequentially.

92

5.3. EXPERIMENTAL VALIDATION OF ANMOHA

Let EA(x), EB(x), and EC(x) be the dynamic energy consumption by the application kernels of

workload size x executing sequentially on abstract processors A, B, and C. Let EABC(x) be the total

dynamic energy consumption by parallel execution of the same application kernels of the workload

size x on the abstract processors A, B, and C. Then, the additive hypothesis means the following:

EABC(x) = EA(x) + EB(x) + EC(x) (5.2)

So, if the additive hypothesis is validated, we can build the energy model of the abstract proces-

sor A independent of energy model of B or energy model of C. These models (discrete functions)

then can by supply as an input to a workload partitioning algorithm to optimize the dynamic energy

and total energy consumption of the computing platform composed of the given abstract processors.

The additive hypothesis holds the associative property and commutative property of addition. We

do not make any assumption about the shape of energy profiles of application kernels. They can

be linear or non-linear. Furthermore, the additive hypothesis does not make any assumption about

the workload distribution to their corresponding compute devices (abstract processors). That is, the

applications and workloads executed by the abstract processors can be different.

5.3 Experimental Validation of AnMoHA

In this section, we experimentally validate AnMoHA.

5.3.1 Experiment Platforms and Applications

We use three applications for our experiments using a diverse range of problem sizes: (i). Matrix-

matrix multiplication (DGEMM) which computes the matrix product of two dense matrices of size N

× N, (ii). 2D fast Fourier transform (2D-FFT) which computes the discrete Fourier transform of a

complex signal matrix of size M × N, and (iii). a gene sequencing application executing the Smith-

Waterman algorithm (SW) algorithm ([159, 160]). Highly optimized kernels for the CPUs and the

accelerators are used. For the CPUs, Intel MKL is employed and the version on both nodes is

2017.0.2. Accelerators typically have limited in-card memory and cannot run workload sizes that

exceed the memory. Therefore, out-of-card packages, ZZGEMMOOC [157] for Nvidia GPUs and

XeonPhiOOC [157] for Xeon Phis, are used. The ZZGEMMOOC and XeonPhiOOC packages reuse

CUBLAS and MKL BLAS for in-card DGEMM calls.

We choose matrix-matrix multiplication and fast Fourier transform routines because they are fun-

damental kernels employed in scientific applications [154]. Furthermore, matrix-matrix multiplication

is highly compute-intensive whereas 2D-FFT is memory-intensive. Hence, they exhibit different ap-

plication characteristics. The gene sequencing application deals with alignment of DNA or protein

sequences. It employs the Smith-Waterman algorithm which uses a dynamic programming (DP)

approach to determine the optimal local alignment score of two sequences: i) a query sequence of

length m, and ii) a database sequence of length n. The time and space complexities of the Smith-

Waterman dynamic programming algorithm are O(m × n) and O(m), where m < n, assuming

the use of refined linear-space methods. The application uses optimized SW routines provided by

SWIPE for Multicore CPUs [161], CUDASW++3.0 for Nvidia GPU accelerators [162], and SWAPHI

93

5.3. EXPERIMENTAL VALIDATION OF ANMOHA

for Xeon Phi accelerators [163]. We present the detailed description of the application in appendix

B.

Following two nodes are employed for comparative study: (a) HCLServer01 (Table 4.1) has an

Intel Haswell multicore CPU having 24 physical cores with 64 GB main memory and integrated with

two accelerators: one Nvidia K40c GPU and one Xeon Phi 3120P, (b) HCLServer02 (Table 4.2) has

an Intel Skylake multicore CPU consisting of 22 cores and 96 GB main memory and integrated with

one Nvidia P100 GPU. These nodes are the representative of computers used in cloud infrastruc-

tures, supercomputers and heterogeneous computing clusters.

Each node has a Watts Up Pro power meter installed between its input power sockets and the

wall A/C outlets. Watts Up Pro power meters are periodically calibrated using the ANSI C12.20

revenue-grade power meter, Yokogawa WT310. The calibration details are provided in appendix C.

The maximum sampling speed of Watts Up Pro power meters is one sample every second. The

accuracy specified in the data-sheets is ±3%. The minimum measurable power is 0.5 watts. The

accuracy at 0.5 watts is ±0.3 watts. The accuracy of Yokogawa WT310 is ±0.1% and the sampling

rate is 100K samples per second.

To obtain the power measurements from the WattsUp Pro power meters, an automated tool

HCLWattsUp interface [38] is used. HCLWattsUp interface has no extra overhead and therefore

does not impact the dynamic energy consumption by the application kernel. The interface and the

methodology used to obtain a data point are explained in sections 3.3 and 3.4.

HCLWattsUp follows a detailed sophisticated methodology (as explained in section 3.5) to ensure

the reliability of our experimental results. The methodology determines a sample mean (execution

time or dynamic energy or PMC) by executing the application repeatedly until the sample mean

meets the statistical confidence criteria (95% confidence interval, a precision of 0.025 (2.5%)) for the

experiments used in this chapter unless specified otherwise. Student’s t-test is used to determine

the sample mean. The test assumes that the individual observations are independent and their

population follows the normal distribution. We use Pearson’s chi-squared test to ensure that the

observations follow normal distribution. To eliminate the potential contribution by other components

such as SSD (Solid State Drives), fans, etc. when measuring the energy consumption by an abstract

processor, we follow a strict experimental methodology explained in section 3.4.

5.3.2 Formulation of Abstract Processors on HCLServers

We group the compute devices of both the platforms into following five abstract processors satisfying

the constraints of independently powered and loose coupling.

• Abstract processors, CPU1, GPU1 and PHI1 on HCLServer01, as explained in section 5.2.1.

• CPU2 containing 21 CPU cores executing the multi-threaded CPU kernel on HCLServer02.

• GPU2 comprising of the Nvidia P100 GPU, the dedicated host CPU core executing the GPU

kernel, and the dedicated PCIe link between the host core and the GPU on HCLServer02.

Let EA(x), EB(x), and EC(x) be the dynamic energy consumption by the application kernels

of workload size x executing sequentially on abstract processors CPU1, GPU1, and PHI1, and

CombinedABC(x) represents the sum value of their dynamic energy consumption. Let EABC(x)

94

5.3. EXPERIMENTAL VALIDATION OF ANMOHA

be the total dynamic energy consumption by parallel execution of the same application kernels of

the work load size x on the abstract processors CPU1, GPU1, and PHI1, which is represented by

ParallelABC(x). Then, the additive hypothesis holds only if ParallelABC(x) = CombinedABC(x).

The description of notations used in additive hypothesis is provided in table 5.3. For illustration pur-

poses, we refer the additive energy models composed using AnMoHA as Combined, and compare

their accuracy against the Parallel energy profiles which we consider as ground truth.

To determine if the additive hypothesis is valid, we build four dynamic energy profiles for

HCLServer01 (one parallel and one for each of the three abstract processors), and three profiles

for HCLServer02 (one parallel and one for each of the two abstract processors) for each application

configuration. Then we sum the dynamic energy consumption by sequential execution of the appli-

cation and compare the value with dynamic energy consumption by parallel execution of the same

application.

This abstract processor formulation also minimizes the contention and mutual dependence be-

tween the kernels. We find no difference between the execution times of the application kernels

when running sequentially and parallel. The parallel execution time of the hybrid application is equal

to the maximum of the execution times of the kernels run sequentially.

5.3.3 Results and Analysis

HCLServer01 and HCLServer02 both have different architectures and CUDA versions on their re-

spective GPUs. We use a hybrid configuration of multi-threaded DGEMM which runs in parallel on

different compute devices (i.e. CPUs, GPUs, Xeon Phi) of the given platform. We observe that the

GPU kernel completes its execution faster than the CPU on both platforms. However, in contrast

with HCLServer01, DGEMM does not destroy its context on GPU during the parallel execution on

HCLServer02 and keeps on consuming a constant power which is a bit higher than the base (or idle)

power of GPU until all other kernels complete their execution on their respective abstract processors.

Nevertheless, the combined profile (composed by summing the dynamic energy consumption of se-

rial execution of the application on abstract processors) does not capture this behavior. Therefore,

to calibrate the combined dynamic energy profile of DGEMM with a parallel dynamic energy profile

on HCLServer02, we add the dynamic energy consumption to keep alive this context with dynamic

energy consumption by the GPU application kernel. Hence, the equation 5.2 can be extended as

EABC(x) = EA(x) + EB(x) + EC(x) + e

where e ≥ 0
(5.3)

where e denotes the dynamic energy consumed by the application kernel to keep its context alive.

The description of notations used in equation 5.3 is provided in table 5.3.

We run three different workload configurations (M × N where M ≤ N) of DGEMM executing

on HCLServer01 and for each configuration four dynamic energy functions of DGEMM are built as

explained in section 5.3.2. The workload sizes range for all three configurations are as follows: i)

from 12800 × 20224 to 20224 × 20224 with a constant step size of 128 for the dimension M , ii).

from 12800 × 20480 to 20480 × 20480 with a constant step size of 256 for the dimension M , and,

iii). 12800 × 20736 to 20736 × 20736 with a constant step size of 256 for the dimension M . Figure

95

5.3. EXPERIMENTAL VALIDATION OF ANMOHA

5.2(a), 5.1(a) and 5.1(b) illustrate the parallel and combined dynamic energy profiles for N=20224.

N=20480, and N=20736 respectively.

We find the average and maximum errors between combined and parallel dynamic energy pro-

files to be 2.24% and 5.56% for N=20224, 3.07% and 7.6% for N=20480, and 3.87% and 9.97% for

N=20736, respectively. Furthermore, we find that the execution time of a hybrid application is the

maximum of all the execution times of its constituent kernels.

(a) N=20480

(b) N=20736

Figure 5.1: Dynamic energy profiles of DGEMM on HCLServer01.

We then compute 2D-FFT for the problem sizes ranging from 15104 × 23552 to 18560 × 23552

with a constant step size of 64. Figure 5.3(a) shows the dynamic energy parallel and combined

profiles of 2D-FFT executing on HCLServer01. The average and maximum errors between parallel

and combined dynamic energy profiles are 4.32% and 8.91%. For our next batch of experiments on

HCLServer01, we run SW application for the problem sizes ranging from 16384 × 16384 to 18240

× 16384 with a constant step size of 64. Figure 5.4(a) shows the dynamic energy parallel and

96

5.3. EXPERIMENTAL VALIDATION OF ANMOHA

(a) N=20224, HCLServer01

(b) N=22528, HCLServer02

Figure 5.2: Dynamic energy profiles of DGEMM on HCLServers.

97

5.3. EXPERIMENTAL VALIDATION OF ANMOHA

(a) N=23552, HCLServer01

(b) N=25600, HCLServer02

Figure 5.3: Dynamic energy profiles of 2D-FFT on HCLServers.

98

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

combined profiles of SW executing on HCLServer02. The average and maximum errors between

parallel and combined dynamic energy profiles are 2.14% and 5.4%.

On HCLServer02, we run DGEMM with workload sizes range from 16384 × 22528 to 20096 ×
22528 with a constant step size of 128. Figure 5.2(b) shows the dynamic energy profiles of parallel

and combined on HCLServer02. We find the average and maximum errors between combined and

parallel dynamic energy profiles to be 2.32% and 6.6%. We then compute 2D-FFT on HCLServer02

for the problem sizes ranging from 21504 × 25600 to 25600 × 25600 with a constant step size of

64. Figure 5.3(b) shows the dynamic energy parallel and combined profiles of 2D-FFT executing on

HCLServer02. The average and maximum errors between parallel and combined dynamic energy

profiles are 4.87% and 13.87%. For our final batch of experiments for this study, we run the SW

application for the problem sizes ranging from 40000 × 16384 to 42624 × 16384 with a constant

step size of 64. Figure 5.4(b) shows the dynamic energy parallel and combined profiles of SW

executing on HCLServer02. The average and maximum errors between parallel and combined

dynamic energy profiles are 1.22% and 3.6%. Table 5.2 represents the percentage error between

parallel and combined dynamic energy profiles of DGEMM, 2D-FFT and SW on HCLServers.

Table 5.2: Percentage error between parallel and combined dynamic energy profiles on HCLServers.

DGEMM

Platform Problem

Size [N]

Min% Max% Avg%

HCLServer01 20224 0.016 5.56 2.24

HCLServer01 20480 0.07 7.6 3.07

HCLServer01 20736 0.56 9.97 3.87

HCLServer02 22528 0.29 6.60 2.32

2D-FFT

HCLServer01 23552 0.005 8.91 4.32

HCLServer02 25600 0.46 13.87 4.87

SW

HCLServer01 16384 0.05 5.4 2.14

HCLServer02 16384 0.07 3.61 1.22

5.4 Trade-off between accuracy and time space of additive modelling

We illustrate the impact of the precision settings of an experiment for obtaining the data points of

the dynamic energy profile of an abstract processor with an example. Let the execution time of a

workload size j on an abstract processor i be t seconds. Let HCLWattsUp repeat the application

for n times to obtain the average dynamic energy consumption within the precision settings of ϵ.

Assume the cool-down period allowed to exclude the pipeline and cache effects between two suc-

cessive runs of the application is s seconds. Then, it takes nij × (tij + s) seconds in total to obtain

the average dynamic energy consumption by the workload size j on abstract processor i. If m is

total data points in dynamic energy profile of each of p abstract processors, then the total time to

build their dynamic energy profiles can be calculated by using the following equation:

99

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

(a) N=16384, HCLServer01

(b) N=16384, HCLServer02

Figure 5.4: Dynamic energy profiles of Smith-Waterman application on HCLServers.

100

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

Table 5.3: Table of notations used in equations 5.3 and 5.4.

Notation Description

ParallelABC(x)

The total dynamic energy consumption by parallel
execution of the same application kernels of the
work load size x on the abstract processors A, B
and C.

CombinedABC(x)

The sum value of the dynamic energy consumption
by the application kernels of workload size x
executing sequentially on abstract processors A, B
and C .

e
The dynamic energy consumed by the application
kernel to keep the context alive on GPU.

T Total time to build the dynamic energy profiles
j The workload size

nij

number of repetitions to obtain the average
dynamic energy consumption by the workload
size j on ith abstract processor within the user
defined precision settings.

epsilon The precision setting
s The cool-down period between two successive repeti-

tions

tij
The execution time of a workload size j on ith
abstract processor.

T =

p∑
i=1

 m∑
j=1

nij × (tij + s)

 (5.4)

The description of notations used in equation 5.4 is provided in table 5.3. We observe that the

precision settings highly impacts the overall time T required to build the dynamic energy profiles

of abstract processors. Consider, for example, two accuracy settings 97.5% and 90% represented

as ϵA and ϵB respectively. Let TA and TB be the total times required to build the dynamic energy

profiles of p abstract processors within the accuracy of ϵA and ϵB respectively. We experimentally

observe that TA is much higher than TB . This is because it requires more iterations to converge the

sample mean for each data point of the profile due to the higher precision settings. As a result, it will

take a longer time to build the dynamic energy profiles of p abstract processors. This will reduce the

practical viability of AnMoHA.

In this section, we explore if we can relax the precision settings sufficiently enough to get the

application convergence faster but, most importantly, without compromising the application trend

and behavior (in terms of variations). That is, the combined dynamic energy profile must exhibit the

same trend and must have similar variations as that of the parallel dynamic energy profile. Therefore,

the following two conditions must be satisfied to use the additive dynamic energy profiles as an input

to an energy optimization algorithm (such as [18], [20]) that uses the workload size as a decision

variable.

1. Trend of the profile: Combined dynamic energy profile must follow the similar application

trend as the parallel dynamic energy profile, and

101

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

2. Variations: Combined dynamic energy profile exhibits similar variations as of parallel dynamic

energy profile.

We term it as usability test, for illustration purposes. Consider a dynamic energy profile consists

of n data points {x1 · · ·xn}. For each pair of consecutive data points in profile, we calculate the

percentage difference as xi−xi−1

xi−1
× 100 where i ∈ {2 · · ·n}. If the result is positive then it suggests

a percentage increase otherwise if the result is negative then it suggests a percentage decrease in

dynamic energy consumption with respect to the immediate preceding data point. We determine

if the less accurate combined dynamic energy profile follows the same trend as the accurate par-

allel dynamic energy profile. In an ideal case, the combined dynamic energy profile exhibits an

increase/decrease in dynamic energy consumption following the parallel dynamic energy profile for

all data points.

To analyze if both profiles exhibit the same variations, the deviations of the combined profile

is compared with the parallel profile. To achieve this, we measure the degree to which each data

point in every energy profile deviates from its average and maximum energy measurement (i.e.

mean absolute deviation (MAD) around the sample mean and maximum absolute deviation around

sample maximum). Let x represents a single data point of a dynamic energy profile consists of n

data points, and X represents the mean dynamic energy consumption of that profile. We calculate

the average absolute percent deviation from mean of that profile as Davg(%) = MAD
X
× 100. where

MAD is calculated as MAD = 1
n

n∑
i=1
|xi−X|. Similarly, we calculate the maximum absolute percent

deviation from the maximum of a profile using the formula for the average absolute percent deviation

as above with X as max(X) where max(X) is the sample maximum of the profile.

5.4.1 Results and Discussion

For this study, we repeat the same experiments to build energy profiles as explained in section 5.3.3,

and keep all the experiment settings the same. However, we relax the precision settings from 2.5%

to 10% to determine whether the combined dynamic energy profiles exhibit a similar trend as that of

the parallel profile of the hybrid application. We term the dynamic energy profiles constructed with

precision settings 2.5% and 10% as accurate and less accurate respectively for illustration purposes.

We build four dynamic energy profiles for each application configuration similar to as explained in

section 5.3.2 to compare the accuracy of AnMoHA with relaxed precision settings and to study the

trade-off between the accuracy of the energy profiles and time taken to build them.

For our first batch of experiments, we run following three workload configurations of DGEMM

ranging from i) 12800 × 20224 to 20224 × 20224 with a constant step size of 128, ii). 12800 ×
20480 to 20480 × 20480 with a constant step size of 256 for the dimension M , and, iii). 12800

× 20736 to 20736 × 20736 with a constant step size of 256 for the dimension M . Figures 5.5(a),

5.5(b) and 5.5(c) illustrate the parallel and combined dynamic energy profiles for all three workload

configurations with both precision settings. The average and maximum errors between the accurate

parallel and less accurate combined dynamic energy profiles are 7.8% and 22.73% for N=20224,

12.08% and 24.74% for N=20480, and 7.14% and 17% for N=20736.

We then compute 2D-FFT on HCLServer01 for the problem sizes ranging from 15104 × 23552

to 18560 × 23552 with a constant step size of 64. Figure 5.6(a) shows the dynamic energy parallel

102

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

(a) N=20224, HCLServer01 (b) N=20480, HCLServer01

(c) N=20736, HCLServer01 (d) N=22528, HCLServer02

Figure 5.5: Dynamic energy consumption by DGEMM on HCLServers.

103

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

and combined profiles of 2D-FFT executing on HCLServer01. The average and maximum errors

between the accurate parallel and less accurate combined dynamic energy profiles are 8.16% and

22.1%. For our next batch of experiments on HCLServer01, we run SW application on HCLServer02

for the problem sizes ranging from 16384 × 16384 to 18240 × 16384 with a constant step size

of 64. Figure 5.7(a) shows the dynamic energy parallel and combined profiles of SW executing

on HCLServer01. The average and maximum errors between the parallel and combined dynamic

energy profiles are 7.78% and 12%.

(a) N=23552, HCLServer01

(b) N=25600, HCLServer02

Figure 5.6: Dynamic energy consumption by FFT on HCLServers.

On HCLServer02, we run DGEMM with workload sizes ranging from 16384 × 22528 to 20096

× 22528 with a constant step size of 128. Figure 5.5(d) shows the parallel and combined dy-

namic energy profiles constructed with both precision settings on HCLServer02. The average and

maximum error between less accurate combined and accurate parallel dynamic energy profiles are

3.08% and 10.43%. For our next batch of experiments, we compute the 2D-FFT on HCLServer02

for the problem sizes ranging from 21504 × 25600 to 25600 × 25600 with a constant step size of

64. Figure 5.6(b) shows the dynamic energy parallel and combined profiles of 2D-FFT executing

104

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

on HCLServer02 under both aforementioned precision settings. The average and maximum errors

between the parallel and combined dynamic energy profiles are 14.56% and 54.18%.

For our final batch of experiments for this study, we run SW application on HCLServer02 for

problem sizes ranging from 40000× 16384 to 42624× 16384 with a constant step size of 64. Figure

5.7(b) shows the dynamic energy parallel and combined profiles of SW executing on HCLServer02.

The average and maximum error between parallel and combined dynamic energy profiles are 1.77%

and 5.29%. Table 5.4 shows the percentage errors of combined profiles with parallel ones on both

platforms.

(a) N=16384, HCLServer01

(b) N=16384, HCLServer02

Figure 5.7: Dynamic energy consumption by Smith-Waterman application on HCLServers.

105

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

Table 5.4: Percentage errors between parallel and combined dynamic energy profiles with 10%
precision setting.

DGEMM

Platform Problem

Size [N]

Min Max Avg

HCLServer01 20224 0.02% 22.7% 7.8%

HCLServer01 20480 0.21% 24.74% 12.08%

HCLServer01 20736 0.44% 17% 7.14%

HCLServer02 22528 0.05% 10.43% 3.08%

2D-FFT

HCLServer01 22528 0.38% 22.1% 8.16%

HCLServer02 25600 0.24% 54.18% 14.56%

SW

HCLServer01 16384 2.4% 12.03% 7.78%

HCLServer02 16384 0.07% 5.29% 1.77%

Table 5.5: Percentage absolute mean and maximum deviations of dynamic energy consumption by
accurate parallel (with 2.5% precision setting) and less accurate combined profiles with 10% preci-
sion settings on HCLServers. Here ’s01’ denotes HCLServer01 and ’s02’ denotes HCLServer02.

Platform

and

Application

Problem

Size [N]

Parallel

_acc

Combined

_lacc

s01-

DGEMM
20224

Avg 8.56 11.84

Max 17.36 20.5

s01-

DGEMM
20480

Avg 8.27 11.9

Max 16.3 22.28

s01-

DGEMM
20736

Avg 9.5 12.16

Max 19.11 21.4

s01-

FFT
23552

Avg 13.86 13.8

Max 37.82 34.64

s02-

DGEMM
22528

Avg 6.5 5.23

Max 11.3 9.4

s02-

FFT
25600

Avg 11.2 23

Max 28.3 46.7

s01-

SW
16384

Avg 1.96 2.34

Max 3.8 5.47

s02-

SW
16384

Avg 2.11 2.07

Max 4 4.46

One can observe that for all application configurations on HCLServers, combined dynamic en-

ergy profiles exhibit a similar energy consumption behavior as of parallel dynamic energy profile.

Table 5.5 presents the absolute percent deviations from the mean and maximum of dynamic energy

consumption by accurate parallel and less accurate combined profiles. The less accurate combined

106

5.4. TRADE-OFF BETWEEN ACCURACY AND TIME SPACE OF ADDITIVE MODELLING

dynamic energy profiles of DGEMM on HCLServer01 for the batch of experiments where dimen-

sion N is {20224,20480,20736} follow the similar energy consumption trend as their corresponding

accurate parallel dynamic energy profiles for {86,80,83} percent of data points. On HCLServer02,

the less accurate DGEMM combined dynamic energy profile exhibits a similar energy consumption

trend as its accurate parallel profile for 81% of the data points. For 2D-FFT, the less accurate dy-

namic energy profiles on HCLServer01 and HCLServer02 show a similar energy consumption trend

as their respective parallel profile for {88,89} percent of the data points. Hence, despite relaxing

the precision settings of the experiments to 10%, the combined dynamic energy profiles still follows

the application trend and shows similar variations. Therefore, the additive dynamic energy profiles

qualify the usability criterion and can be employed as input to the energy optimization algorithm [20].

As explained in equation 5.4, the precision settings highly impact the overall time T to construct

the dynamic energy profile of an application, and higher precision settings take longer to build the

dynamic energy profile of an application. In figure 5.8, we compare the accuracy against the time

to build the dynamic energy profiles of DGEMM, FFT and SW on HCLServers under the precision

settings of 2.5% and 10%. While the energy profiles are highly accurate under the precision settings

of 2.5%, the time to construct them is relatively much higher.

Figure 5.8: Trade-off between the time to build energy models using AnMoHA and their accuracy.

An important finding is that we can significantly reduce the time to build the energy profile of

an application by slightly compromising the accuracy. Consider, for example, the average error of

DGEMM (N=22528) on HCLServer02 is 2.32% under precision settings 2.5%. However, it takes

more than 56 hours to build all three dynamic energy profiles on HCLServer02. In contrast, it takes

around 7 hours to build the energy profiles (with an average error of 3.07%) of the same application

under the precision settings 10%. Similarly, it takes more than 41 hours to construct all four energy

profiles of FFT on HCLServer01 with an average error of 4.3%. However, it takes about 8 hours to

build the less accurate profiles of the same application with an average error of 8.16%. For SW on

HCLServer02, it takes about 18 hours to construct all three dynamic energy profiles under precision

settings of 2.5%. The average error of the combined profile is 1.12%. However, it takes about

13 hours to construct the same profiles under precision settings 10% and the average error of the

combined energy profile is 1.17%. The relaxed precision settings for SW reduced the time to build

107

5.5. TRADE-OFF BETWEEN ACCURACY AND DESIGN SPACE OF ADDITIVE MODELLING

the same energy profiles by 27% whereas the average error of the combined profiles is increased

by just 4.5%.

It is important to note here that the high execution times (in hours) taken to build energy models

are mainly due to the high execution time of the workload size and high precision settings of the

experiments as discussed earlier in equation 5.4. We use a detailed methodology to ensure the

reliability of our results as explained in section 3.5. Briefly, to obtain a data point for each energy

function, the software follows Student’s t-test and executes the application repeatedly until the sam-

ple mean lies within user-defined confidence interval (CI) and a user-defined precision has been

achieved. The software starts measuring precision and CI after taking the mean of five repetitions

of the application.

We illustrate the impact of precision settings and the execution time of the workload size on

total time to build an energy profiles by an example. Consider, for example, the gene sequencing

application SW. The CPU takes on average 112 seconds to execute each data point of the energy

profile of SW on HCLServer02 for the experiments discussed in section 5.3.3. Hence, it takes at

least 560 seconds to reliably determine a single data point within user-defined accuracy, and more

than 6 hours for a profile comprises of 43 points. However, it takes 3 seconds on average by the

GPU for each data point for a single run, and about 10 minutes to obtain the energy profile with

same cardinality and precision settings. Similarly, it takes more than 6 hours to build the energy

profile with same caridnality and precision settings when executing workloads parallel on CPU and

GPU due to the higher execution time by CPU kernels. Therefore, it takes at least about 13 hours to

construct all three energy profiles of SW of cardinality 43 on HCLServer02 (for given configuration

settings discussed in section 5.3.3). It can take more time if the application repetitions are more

than five to get the convergence. It would have taken far less time, however, had the workload is

executed for just once.

It is important to note that the usability test just presents a criterion to determine the degree to

which an additive model exhibits the similar energy consumption behavior to the ground truth. The

percentage that indicates whether the test is passed, is highly dependent on application domain and

a matter of choice. Consider, for example, the applications such as signal processing or multime-

dia processing. Such fault-tolerant applications belong to the approximate computing domains. A

possibly inaccurate result is also acceptable in such domains. Therefore, a comparatively relaxed

precision settings and relatively inaccurate model can serve the purpose in this case. However,

high precision settings are required for the applications such as cryptography or hard real-time ap-

plications. Therefore, one will set a comparatively higher percentage to ensure whether the additive

models qualifies the usability test. That is why the usability test does not define a percentage limit

to indicate the passing threshold.

5.5 Trade-off between accuracy and design space of additive mod-

elling

In this section, we analyze and compare the accuracy of different experiment configurations to build

the additive dynamic energy model of an abstract processor. Each experiment configuration is an in-

dependent experiment. The objective of this study is to determine such an experiment configuration

108

5.5. TRADE-OFF BETWEEN ACCURACY AND DESIGN SPACE OF ADDITIVE MODELLING

that provides the most accurate model of the dynamic energy profile of an application by exploring

all possible combinations of independent experiments.

We run our experiments on HCLServer01 for this study, and follow the same analogy: {A,B,C}

to represent the abstract processors of HCLServer01 as explained in sections 5.2.2 and 5.3.2. Us-

ing the additive hypothesis, we can build the dynamic energy profile of abstract processors A, B,

and C considering different experiment configurations. The independent experiments providing the

dynamic energy consumption by a workload size x executed on abstract processor A are:

EA(x)1 = EA(x) (5.5)

EA(x)2 = EAB(x)− EB(x) (5.6)

EA(x)3 = EAC(x)− EC(x) (5.7)

EA(x)4 = EABC(x)− EBC(x) (5.8)

EA(x)5 = EABC(x)− EB(x)− EC(x) (5.9)

Likewise, the dynamic energy consumption by workload x executed on the abstract pro-

cessors B or C using the independent experiments: {EB(x), {EAB(x) − EA(x)}, {EBC(x) −
EC(x)}, {EABC(x) − EAC(x)}, {EABC(x) − EA(x) − EC(x)}}, and {EC(x), {EAC(x) −
EA(x)}, {EBC(x)−EB(x)}, {EABC(x)−EAB(x)}, {EABC(x)−EB(x)−EA(x)}}. Hence, we can

compose five combined profiles using these experiment configurations as {Combined1, Combined2,

Combined3, Combined4, Combined5} such as Combined1 = EA1 + EB1 + EC1.

For this study, we build the dynamic energy profiles of DGEMM on HCLServer01 for the workload

sizes ranging from 12800 × 20224 to 20224 × 20224 with a constant step size of 256. We use the

same experimental settings as explained in section 5.3.1. However, it takes significant time to run all

possible experiment configurations. Because, we build all possible 2p − 1 profiles (each composed

of a set of data points of cardinality m) and, therefore, we have to run (2p − 1) ×m experiments in

total for this study.

5.5.1 Results and Discussion

Figure 5.9 represents the parallel and combined profiles composed of all possible independent ex-

periments on HCLServer01. One can observe that, overall, Combined1 and Combined5 dynamic

energy profiles has less percentage error with parallel dynamic energy profile, whereas Combined2

dynamic energy profile has the largest percentage error.

The Combined1 experiment configuration (using direct measurements) requires just 3 indepen-

dent experiments to compose the combined profile which is 98% accurate, whereas Combined5 ex-

periment configuration needs 9 independent experiments for composing the combined profile which

is 96% accurate. All other experiment configurations {Combined2, Combined3, Combined4} needs

6 independent experiments to compose the combined dynamic energy profile which are {92.26%,

93.41%,94%} accurate.

Table 5.6 provides the percentage errors for each combined dynamic energy profile (composed

by using different experimental design configurations) with the parallel dynamic energy profile. The

109

5.5. TRADE-OFF BETWEEN ACCURACY AND DESIGN SPACE OF ADDITIVE MODELLING

Figure 5.9: Dynamic Energy Profiles of DGEMM for all possible independent experiments on
HCLServer01.

Table 5.6: Percentage errors between DGEMM combined and parallel dynamic energy profiles on
HCLServer01.

Experiment Configuration Min Max Avg
Combined1 0.02% 5.56% 2.02%
Combined2 0.02% 16.9% 7.74%
Combined3 0.38% 20.56% 6.59%
Combined4 0.3% 18.46% 5.99%
Combined5 0.03% 11.12% 4.03%

average and maximum errors of the best dynamic energy profile (Combined1) are {2.02%, 5.56%}

and the worst dynamic energy profile (Combined2) are {7.74%, 16.9%} respectively.

Table 5.7: Percentage deviations from mean and maximum of dynamic energy consumption by
parallel and combined profiles.

Experiment Configuration Max Avg
Parallel 16.96% 8.74%
Combined1 17.02% 9.76%
Combined2 28.78% 13.48%
Combined3 18.58% 7.79%
Combined4 17.63% 8%
Combined5 20.85% 9.07%

Table 5.7 presents the percentage deviations from the mean and maximum of dynamic energy

consumption by parallel and each combined dynamic energy profiles. Let Devpar and Devcom rep-

resent the percentage deviation from the mean of dynamic energy consumption by parallel and

combined profiles respectively. Then, the absolute percentage error between average deviations of

parallel and combined profiles is calculated as |(Devpar − Devcom)|/Devpar × 100. Similarly, the

absolute percentage error between maximum deviations of parallel and combined profiles is also cal-

culated in the same way. We find the absolute percentage error between average and maximum de-

viations of each aforementioned combined profiles and parallel profile as {11.6,54.2,10.87,8.47,3.78}

and {0.33,69.67,9.56,3.91,22.93}.

110

5.5. TRADE-OFF BETWEEN ACCURACY AND DESIGN SPACE OF ADDITIVE MODELLING

The Combined1, Combined2 and Combined5 dynamic energy profiles exhibit the same dy-

namic energy consumption as of parallel profile for more than 83% of the data points. In contrast,

Combined3, and Combined4 dynamic energy profiles follow the application trend of parallel dynamic

energy profile for 62% and 58.6% of the data points. Figure 5.10 illustrates the trade-off between

the number of experiments to construct the combined dynamic energy profile using an experiment

configuration and its percentage error with parallel dynamic energy profile.

Figure 5.10: Trade off between number of experiments and accuracy.

To summarize, we find that experiment configuration (in equation 5.5) using direct energy mea-

surements during the application run provides the most accurate dynamic energy consumption by

an application kernel, and requires the least number of independent experiments. This is because of

the fact that only the experiment configuration (in equation 5.5) measures the energy consumption

during the application run, and therefore require only one experiment to determine it. In contrast,

all other experiment configurations determine the energy consumption by the application kernel in-

directly, and therefore require more numbers of independent experiments.

We illustrate this by an example. Consider the experiment configuration explained in equation

5.6. To determine the energy consumption by the abstract processor A when executing the workload

size x, it requires following two independent experiments: i) parallel execution of workload size x on

abstract processors A and B, and ii) serial execution of workload size x on abstract processor B. In

order to determine the energy consumption by the abstract processor A when running the workload

size x, it subtracts the energy consumption by the serial execution of workload size x on abstract

processor B from the energy consumption by abstract processor A and B when running the workload

size x in parallel on both of them. Consequently, two independent experiments are required to

determine the energy consumption by abstract processor A when running the workload size x. That

is why Combined1 (which is composed of additive energy profiles using experiment configuration

explained in equation 5.5) requires the least number of experiments. Furthermore, Combined1 has

the least error because unlike other experiment configurations, the energy consumption is measured

during the execution of application.

The experiment configuration Combined5 also provides accurate enough dynamic energy con-

sumption by the application kernel. While it requires the most number of experiments to compose the

combined dynamic energy profile, it exhibits a more similar application trend for 96.24% of the data

111

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

points as of parallel dynamic energy profile than direct measurement and has the same percentage

deviations with its mean dynamic energy consumption on average as of the parallel dynamic en-

ergy profile. However, it provides a relatively poor maximum percentage deviation with a difference

of 23% from parallel dynamic energy profile. In contrast, the Combined1 dynamic energy profile

provides the same maximum variations as of parallel dynamic energy profile. All other experiment

configurations provide relatively worst accuracy, different application trend, and variations from their

mean. However, they require relatively less number of experiments than Combined5 for composing

the combined dynamic energy profile.

In conclusion, one can opt for the experiment configuration to compose the combined dynamic

energy profile by considering the best suitable combination of the number of experiments, accuracy,

application trend, percentage deviations from mean and maximum dynamic energy consumption.

5.6 Workload Types and Ganularity Limitations of AnMoHA

In this section, we study the limits for the topological granularity of a computing platform, and the vi-

ability and efficacy of AnMoHA when different workload types (applications) and sizes are executing

on their corresponding different independently powered compute devices.

5.6.1 Workload Types and Granularity Limitations

To explore the granularity limitations, we first study the AnMoHA at socket-level and then at the gran-

ularity level of CPU cores. If the additive modelling hypothesis holds for socket-level dynamic energy

consumption, then we can model and attribute the dynamic energy consumption to an individual

application when running two different applications parallel on two sockets.

Socket-Wide Additive Energy Modelling: For this study, we run our experiments on

HCLServer01. We formulate the socket-wide abstract processors: AbsCPU to measure the dy-

namic energy consumption by the application kernel running on it. Hence, first abstract processor:

AbsCPU1 contains all 12 cores of socket-1, and the second abstract processor: AbsCPU2 contains

all 12 cores of socket-2.

We use only such configurations of the applications, for our experiments, which execute on

AbsCPU and do not use any other system resources such as solid-state drives (SSDs), network

interface cards (NIC), GPU, and etc. Therefore, the change in energy consumption of the system

reported by HCLWattsUp reflects solely the contributions from CPU socket and DRAM. For our

experiments, we use MKL routines of the application kernels of DGEMM and FFT as explained in

section 5.3.1. To study the real-time CPU usage scenario, we run three batches of experiments to

explore the viability of additive modelling for the following three different case studies:

1. Same application kernel with the same workload sizes on both sockets in parallel.

2. Same application kernel: a) MKL-DGEMM, b) MKL-FFT with different workload sizes (for ex-

ample, workload N on socket-1 and workload M on socket-2) in parallel. where M ̸= N and

M > 0, N > 0.

3. Two different application kernels (such as MKL-FFT and MKL-DGEMM) in parallel on two

sockets.

112

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

Figure 5.11: Case study A: Socket-wide dynamic energy profiles of same application and same
workloads.

Results and Discussion: For our first batch of experiments, we run MKL-DGEMM on both ab-

stract processors each with the same workload size (M × N) ranging from 9728 × 9728 to 33792

× 33792. Fig. 5.11 illustrates the parallel and combined dynamic energy profiles of both application

configurations. One can observe that combined dynamic energy is exhibiting the same application

trend as of parallel. We find that both sockets consume an equal amount of dynamic energy. This

is because they both execute the same workload sizes of the same application kernels. The aver-

age and maximum errors between parallel and combined dynamic energy profiles are 4.56% and

10.98%.

For our next batch of experiments to study the second use case, we run MKL-FFT on both

abstract processors each with the different workload size (N × N). The workload size (N × N)

for AbsCPU1 ranges from 20000 × 20000 to 22432 × 22432 with a constant step size of 64. The

workload size for AbsCPU2 ranges from 22560× 22560 to 24992× 24992 with a constant step size

of 64. Fig. 5.12(b) illustrates the parallel and combined dynamic energy profiles of both application.

The x-axis in the plot shows the problem size range of FFT on AbsCPU2. We find the average and

maximum errors between both parallel and combined dynamic energy profiles as 3.7% and 11.56%

respectively.

For our batch of experiments to study the second use case, we run MKL-DGEMM on both

abstract processors each with a different workload size. The workload size (M × N) for AbsCPU1

ranges from 7680 × 30720 to 16896 × 30720 with a constant step size of 512; and for AbsCPU2,

it ranges from 23040 × 30720 to 32256 × 30720 with a constant step size of 512. Fig. 5.12(a)

illustrates the parallel and combined dynamic energy profiles of both application configurations. The

x-axis in the plot shows the problem size range of DGEMM on AbsCPU1 for the dimension M. One

can observe that combined dynamic energy profile is exhibiting the same application trend as of

parallel. We find the average and maximum errors between parallel and combined dynamic energy

profiles to be 1.27% and 5.23%.

For our last batch of experiments to study the third use case, we run MKL-FFT on AbsCPU1

with a workload size (N × N) ranging from 20000 × 20000 to 22432 × 22432 with a constant step

113

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

(a) DGEMM. x-axis scale represents the problem size range for DGEMM exe-
cuted on AbsSoc1

(b) 2D-FFT. x-axis scale represents the problem size range for 2D-FFT executed
on AbsSoc2

Figure 5.12: Case study B: Socket-wide dynamic energy profiles of same application, different work-
loads.

114

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

size of 64; and MKL-DGEMM on AbsCPU2 (N × N) with a workload size ranging from 10000 ×
10000 to 12432 × 12432 with a constant step size of 64. Fig. 5.13 illustrates the parallel and

combined dynamic energy profiles of MKL-FFT and MKL-DGEMM. The x-axis on the plot shows the

problem size range of MKL-FFT on AbsCPU1. Similar to previous experiments results, HCLWattsUp

combined dynamic energy is exhibiting the same application trend as of HCLWattsUp parallel. We

find the average and maximum errors between parallel and combined dynamic energy profiles to be

1.5% and 5%.

Figure 5.13: Case study C: Different applications. x-axis scale represents the problem size range
for DGEMM executed on AbsSoc1.

Summary: To summarize, we find the similar results for all use case scenarios. The combined

dynamic energy profiles exhibit the same application trend as of parallel for all case studies with

an average error ranges between 1.27% and 4.56%. Table 5.8 presents the percentage errors be-

tween the parallel and combined dynamic energy profiles. This suggests that the dynamic energy

consumption can be attributed to the individual application using AnMoHA, when two different ap-

plications are running in parallel on a dual-socket multicore CPU platform. Furthermore, we can

determine and model socket-wide application dynamic energy consumption with additive modelling

in an equally effective way as device-wide (CPU, GPU, Xeon Phi as explained in section 5.3). This

is because, each CPU socket of Intel Haswell E5-2670V3 is independently powered, and there is

minimal resource sharing when two different applications are pinned on individual sockets during

their parallel execution. Hence, the abstract processor AbsCPU satisfies both the constraints of An-

MoHA: independently powered and loose-coupling (as explained in section 5.2.1), and that is why

we observe that additive hypothesis holds for socket-wide dynamic energy consumption.

5.6.2 State-of-the art Energy Measurement tools

In this section, we compare the socket-wide measurements of dynamic energy consumption by

RAPL with HCLWattsUp for aforementioned case-studies. RAPL [41] is explained in section 4.4.

Briefly, RAPL is a popular tool to obtain energy consumption by an application running on Intel

CPUs. It provides socket-level energy consumptions. To obtain the energy consumption provided by

115

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

Table 5.8: Percentage errors between socket-wide parallel and combined dynamic energy profiles
built with HCLWattsUp.

Experiment Configura-
tion

Min Avg Max

Same application
(DGEMM), Same work-
load

0.09% 4.56% 10.98%

Same application
(DGEMM), Different
workload

0.04% 1.27% 5.23%

Same application (FFT),
Different workload

0.06% 3.75% 11.56%

Different applications
(DGEMM, FFT)

0.08% 1.46% 4.96%

RAPL, we use a well-known package, Intel PCM [105]. We ensure that the RAPL values output by

this package is correct by comparing with values given by another well-known package, PAPI [104].

To compare the energy measurements using RAPL against HCLWattsUp, the detailed methodology

explained in Chapter 3 and 4.4 is strictly followed. It is important to note here that the execution time

of the application kernel is the same for dynamic energy calculations by all tools. So, any difference

between the energy readings using these tools comes solely from their power readings.

For our first batch of experiments to study the second use case scenario, we run MKL-DGEMM

on both abstract processors each with the different workload sizes (N × N). The workload size (N

× N) for AbsCPU1 ranges from 10000 × 10000 to 14928 × 14928 with a constant step size of 64.

The workload size for AbsCPU2 ranges from 15000 × 15000 to 19928 × 19928 with a constant

step size of 64. Fig. 5.14(a) illustrates the parallel and combined dynamic energy profiles of both

applications build using RAPL and HCLWattsUp. The x-axis in the plot shows the problem size

range of DGEMM on AbsCPU1. One can observe that HCLWattsUp combined dynamic energy is

exhibiting the same application trend as of HCLWattsUp parallel. We find the average and maximum

errors between both parallel and combined dynamic energy profiles built using HCLWattsUp to be

1.27% and 5.23% respectively. In contrast, RAPL under-reports the dynamic energy consumption as

compared with HCLWattsUp. We find the average and maximum errors between parallel dynamic

energy profiles built with RAPL and HCLWattsUp to be 64% and 69% respectively. The average

and maximum errors between parallel dynamic energy profile built with HCLWattsUp and combined

dynamic energy profile built with RAPL are 65% and 70% respectively. However, we can reduce the

average and maximum errors to 18% and 59% respectively between the both profiles by calibrating

the RAPL readings.

For our next batch of experiments, we run MKL-FFT on both abstract processors each with

the different workload sizes (N × N). The workload size (N × N) for AbsCPU1 ranges from 20000

× 20000 to 22432 × 22432 with a constant step size of 64. The workload size for AbsCPU2

ranges from 22560 × 22560 to 24992 × 24992 with a constant step size of 64. Fig. 5.14(b) illus-

trates the parallel and combined dynamic energy profiles of both applications build using RAPL

and HCLWattsUp. The x-axis in the plot shows the problem size range of MKL-FFT on Ab-

sCPU2. HCLWattsUp combined dynamic energy is exhibiting the same application trend as of the

116

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

(a) DGEMM

(b) 2D-FFT

Figure 5.14: Case Study B: Dynamic energy profiles of same application with different workload
sizes built with RAPL and HCLWattsUp on HCLServer01.

117

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

HCLWattsUp parallel. We find the average and maximum errors between both parallel and com-

bined dynamic energy profiles built using HCLWattsUp to be 3.75% and 11.56%. In contrast, RAPL

overestimates dynamic energy consumption as compared with HCLWattsUp. We find the average

and maximum errors between parallel dynamic energy profiles built with RAPL and HCLWattsUp to

be 75% and 178%. The average and maximum errors between parallel dynamic energy profile built

with HCLWattsUp and combined dynamic energy profile built with RAPL are 66% and 164%.

For our batch of experiments to study the first use case scenario, we run MKL-DGEMM on

both abstract processors each with the same workload size (M × N) ranging from 9728 × 9728 to

33792 × 33792. Fig. 5.15(a) illustrates the parallel and combined dynamic energy profiles of both

application configurations. We find that HCLWattsUp combined dynamic energy exhibit the same ap-

plication trend as of HCLWattsUp parallel for 94% of the data points. In contrast, RAPL parallel and

combined dynamic energy profiles exhibit different application behavior with HCLWattsUp parallel

profile for 13% of the data points. Consider, for example, the data points (N) {19968,27136,30208}

where HCLWattsUp suggests a percentage increase of {12,2,5} in dynamic energy consumption with

respect to their corresponding immediate preceding data points. In contrast, RAPL suggests a per-

centage decrease of {1,4,2} for the same data points. Similarly, HCLWattsUp suggests a percentage

decrease in the dynamic energy consumption of the data points such as {11776,20992} by {14,2}

with respect to their corresponding immediate preceding data points. However, RAPL suggests a

percentage increase of {9,2} for the same data points.

The average and maximum errors between parallel dynamic energy profiles built with RAPL and

HCLWattsUp are 21% and 109% respectively. The average and maximum errors between parallel

dynamic energy profile built with HCLWattsUp and combined dynamic energy profile built with RAPL

are 16% and 77% respectively. However, the average and maximum errors between parallel and

combined dynamic energy profiles built with HCLWattsUp are 4.56% and 10.98% respectively. This

suggests that the dynamic energy profiles built with HCLWattsUp are more accurate and exhibit

similar energy consumption behavior as of ground truth.

For our batch of experiments to study the third use case, we run MKL-FFT on AbsCPU1 with

a workload size (N × N) ranging from 20000 × 20000 to 22432 × 22432 with a constant step

size of 64; and MKL-DGEMM on AbsCPU2 (N × N) with a workload size ranging from 10000 ×
10000 to 12432 × 12432 with a constant step size of 64. Fig. 5.15(b) illustrates the parallel and

combined dynamic energy profiles of MKL-FFT and MKL-DGEMM. The x-axis on the plot shows the

problem size range of MKL-FFT on AbsCPU1. Similar to previous experiments results, HCLWattsUp

combined dynamic energy is exhibiting the same application trend as of HCLWattsUp parallel. We

find the average and maximum errors between parallel dynamic energy profiles built with RAPL and

HCLWattsUp to be 30% and 47% respectively. The average and maximum errors between parallel

dynamic energy profile built with HCLWattsUp and combined dynamic energy profile built with RAPL

are 35% and 49% respectively.

Another interesting finding is that we find a strong positive correlation between RAPL and

HCLWattsUp energy readings for all case studies. The Pearson correlation coefficient between

RAPL and HCLWattsUp parallel dynamic energy profiles for first case study is 0.99. However, both

profiles disagree on energy consumption behavior for 13% of the data points. Similarly, the correla-

tion coefficient between RAPL and HCLWattsUp parallel dynamic energy profiles for third use case

118

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

(a) Case Study A: Same Application (DGEMM) with same workload size.

(b) Case Study C: Different applications

Figure 5.15: Socket-wide dynamic energy profiles built with RAPL and HCLWattsUp on
HCLServer01.

119

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

scenario is 0.86, but both profiles disagree on energy consumption behavior for 11% of the data

points. Interestingly, the correlation coefficient is 0.89 between RAPL combined dynamic profile and

HCLWattsUp prallel profile for the same case study. However, both profiles exhibit different applica-

tion trend for more than 13% of the data points. Similarly, the correlation coefficient between RAPL

combined and HCLWattsUp parallel dynamic energy profiles is 0.9 for second use case when run-

ning MKL-FFT with different workload sizes on both sockets. However, both profiles exhibit different

energy consumption trend for more than 18% of the data points. This all suggests that two energy

profiles can exhibit different trend for a range of data points even if they have a strong positive corre-

lation between them. Hence, the correlation coefficient alone is not sufficient enough for comparing

the similarity between energy profiles.

Similarly, there exists a strong positive correlation between RAPL and HCLWattsUp energy read-

ings (the Pearson correlation coefficient between them is 0.97) for MKL-DGEMM with different work-

load sizes. However, both profiles disagree on energy consumption behavior for more than 48%

of the data points. Consider, for example, the data points (N) {11152,11984,12624,13712} where

HCLWattsUp suggests a percentage decrease of {5,3,2,6} in dynamic energy consumption with

respect to their corresponding immediate preceding data points. In contrast, RAPL suggests a per-

centage increase of {14,9,13,13} for the same data points. Similarly, HCLWattsUp suggests a per-

centage increase in the dynamic energy consumption of the data points {12944,13328,13584,13968}

by {3,7,8,3} with respect to their corresponding preceding data points. However, RAPL suggests a

percentage decrease of {9,7,8,8} for the same data points.

Furthermore, the orientation (i.e. the overall energy consumption trend) of both profiles is also

different and the divergence between the both profiles increases with an increase in problem sizes.

It shows that on-chip power sensors do not capture the holistic picture of the energy consumption

trend when running two applications in parallel each on a different socket. Owing to the nature of the

deviations of the energy measurements provided by the RAPL from the ground truth, calibration can

not improve the qualitative difference of the energy profiles build with on-chip sensors to an extent

that can allow them to be used in optimization of applications for dynamic energy. This is because

the inaccurate energy measurements can cause a significant loss of energy when employed for the

energy optimization of an application [37].

While the average error between the both profiles constructed with RAPL and HCLWattsUp can

be reduced by calibrating the RAPL readings, the overall qualitative difference of energy consump-

tion behavior of both profiles can not be improved. One can observe in figure 5.16 that the overall

energy consumption trend of both profiles remains different even after calibrating the RAPL readings.

It suggests that the correlation coefficient and average error are not sufficient enough for comparing

the similarity between energy profiles.

5.6.3 Core-wide dynamic energy consumption modelling

In this section, we explore if we can further fine the topological granularity to core-wide energy

measurements using system-level measurements. For this study, we explore different core-wide

combinations (such as 1-core, 2-core, etc) on HCLServer01 and HCLServer02 (technical details

are provided in tables 4.1 and 4.2 respectively) to formulate the abstract processors (AbsCore) for

measuring the dynamic energy consumption by the application running on them. We follow the

120

5.6. WORKLOAD TYPES AND GANULARITY LIMITATIONS OF ANMOHA

Figure 5.16: Dynamic energy profiles of same application with different workload sizes built with
RAPL and HCLWattsUp on HCLServer01 with calibrated RAPL readings.

same methodology to ensure the reliability of our experiment results that we use for socket-wide

modelling.

For all our experiment sets, we find that combined dynamic energy consumption is relatively

higher than parallel dynamic energy consumption. However, the difference is not the same across

the workload sizes or AbsCore configurations. Consider, for example, the problem size 13312 ×
13312 where each AbsCore contains 11 cores on HCLServer02. The dynamic energy consumption

when running parallel both kernels is 1982 joules whereas the combined dynamic energy consump-

tion is 3115.87 joules which is 57% higher than the parallel one. Now, consider another problem

size 10752 × 10752 for the same AbsCore formulation. The dynamic energy consumption by the

parallel executing kernels is 736 joules whereas the combined dynamic energy is 1887.28 joules

which is 157% higher than the parallel one. We find the similar results for other combinations of

CPU cores for example where each AbsCore contains one, two or more number of CPU cores. The

similar results are also reported for HCLServer01.

To discuss the reasons for this energy consumption behavior of CPU cores, we present a brief on

power consumption by CMOS and advance power mechanisms to control and configure the power

consumption in modern computing hardware as discussed in sections 2.1.4 and 2.4.1.

In section 2.4.1, we discussed that the voltage change of the components are supported through

voltage regulators (VRs) [139]. Briefly, a VR performs two following major functions in providing

voltage to a computing device: i) it stabilizes the supplied voltage, and ii) it changes the supplied

voltage according to the needs of the device. It is important to note that the same voltage is supplied

to all components sharing the same voltage domain. The voltage domain can be defined as a set

of components that is attached to a common supply voltage. The components which share the

same voltage domain cannot regulate their voltage independently from each other. Therefore, only

frequency can be scaled dynamically for the components sharing the same voltage domain. Hence,

all the CPU cores belonging to the same voltage domain share the same voltage.

The advancements of power saving mechanisms such as Advanced Configuration and Power

Interface (ACPI), allow the OS to change the clock frequency of the components. For example, CPU

121

5.7. STUDY OF ADDITIVE ENERGY MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP

frequency governors [138] allows one to dynamically change the CPU frequency. The voltage input

also scales up or down in accordance with the change in clock frequency of CPU cores. The usual

settings of CPU frequency governor (such as Ondemand or conservative governors in Linux) sets

the clock frequency of the cores depending on the current system load which also affects the voltage

supply as a consequence. The system, under these settings, keeps the voltage and clock frequency

of cores at low when idle, and scale them up as soon as some workload is there for execution. It is

important to note here while frequency can be scaled up ot down at core-wide, the CPU cores cannot

regulate their voltages independent of each other because the same voltage is supplied across all

the cores sharing the same voltage domain.

Total power consumption by a CMOS can be roughly considered as the sum value of idle power

and dynamic power as discussed in section 2.1.4. The idle power is the (leakage) power dissipation

when it is not running the application. While the dynamic power part is proportional to the square of

the voltage, the (leakage or idle) power scales exponentially with voltage [139].

The package C-state (power state) is active when there is at least one CPU core state is active as

discussed in section 2.4.1. It consumes more power in active C-state (C0) than other sleep C-states

(i.e. C1 through Cn). Therefore, the voltage of entire package is scaled up as a result of scaling

up in clock frequency of active CPU cores when a workload is executed on some (or even one) of

the CPU cores of a socket. However, the idle fraction of the CPU cores of the socket dissipates its

power as leakage. Because of relatively higher voltage supply, this power dissipation by idle CPU

cores is higher than the power dissipation when the voltage supply was low. The dynamic energy

consumption by the application running sequentially on core-wide abstract processors also includes

the idle (static) energy contributed by the idle cores. As a result, we observe a higher combined

dynamic energy consumption than the parallel one.

This suggests that power dissipation by the idle cores contribute significantly to the total power

consumption by the CPU when running an application on some of the CPU cores of a socket. Hence,

we can optimize dynamic energy consumption by the socket by switching the idle cores off. However,

it can introduce an overhead. Alternatively, we can execute the application on all of its cores, but it

may introduce diminishing returns for some workload types. We leave this study for the future.

In conclusion, we can not model the dynamic energy consumption by the computing elements

with system-level measurements using external power meters, which are tightly coupled or which

are not independently powered (thus violating the constraints of AnMoHA as explained in section

5.2.1).

5.7 Study of additive energy modelling and dynamic energy optimiza-

tion with On-chip sensors and HCLWattsUp

First, in this section, we study the additive energy modelling with on-chip built-in sensors for hybrid

applications and analyze its accuracy against HCLWattsUp (which we consider as ground truth).

Then, we study the dynamic energy optimization of a 2D-FFThybrid application and DGEMM with

both aforementioned tools and demonstrate that we can lose significant energy by using inaccurate

energy measurements provided by on-chip sensors for dynamic energy optimization.

122

5.7. STUDY OF ADDITIVE ENERGY MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP

5.7.1 Additive energy modelling with on-chip sensors

For this study, we use RAPL to obtain the power consumption by CPU, Nvidia NVML [43] to acquire

the power values from on-chip sensors on Nvidia GPUs, and Intel SMC [42] to obtain the power

values from Xeon Phi that can be programmatically obtained using Intel MPSS [102]. All the exper-

iments are executed on HCLServer01 (technical details are provided in table 4.1). For illustration

purposes, we refer these on-chip sensors collectively as sensors for the rest of this study.

We run 2D-FFT for the workload sizes ranging from 15104 × 23552 to 18688 × 23552 with a

constant step size of 64. We build the dynamic energy profile when executing the application kernels

in parallel on their respective abstract processors, and call it parallel dynamic energy profile with

HCLWattsUp. Then, we build dynamic energy functions for each abstract processor executing the

2D-FFT individually with on-chip sensors and HCLWattsUp separately and compose the combined

dynamic energy profiles using the equation 5.2, and call them sensors combined and HCLWattsUp

combined. Figure 5.17 shows the dynamic energy profile of 2D-FFT with sensors and HCLWattsUp.

Figure 5.17: Dynamic energy profiles of 2D-FFT on HCLServer01.

One can observe that sensors combined dynamic energy profile lags behind the parallel dynamic

energy profile and has a higher error rate with the ground truth than the HCLWattsUp combined. The

average and maximum errors of sensors combined dynamic energy profile and HCLWattsUp profile

with parallel dynamic energy profile are {15.1%, 31.87%} and {4.34%, 8.91%} respectively. We find

that sensor combined profile in comparison with HCLWattsUp combined profile exhibits relatively

poor similarity of variations on average and maximum as of parallel dynamic energy profile. The

absolute percentage error between the average and maximum deviations of HCLWattsUp combined

dynamic energy profile and parallel dynamic energy profiles is {4.97%, 0.64%}, and between sensors

combined dynamic energy profile and parallel dynamic energy profiles is {5.67%, 5.3%}. Table

5.9 provides the percentage deviations from mean and maximum dynamic energy consumption by

parallel and both combined dynamic energy profiles.

For our next batch of experiments, we run DGEMM for the workload sizes ranging from 12800 ×
20480 to 20480 × 20480 with a constant step size of 256. Figure 5.18 shows the dynamic energy

profile of DGEMM with sensors and HCLWattsUp.

One can observe that sensors combined dynamic energy profile is lagging behind the parallel

dynamic energy profile and has a higher difference with it than the HCLWattsUp combined. The av-

123

5.7. STUDY OF ADDITIVE ENERGY MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP

Table 5.9: Percentage deviations from mean and maximum of dynamic energy consumption by par-
allel and combined profiles of 2D-FFT (composed with Sensors and HCLWattsUp) on HCLServer01.

Combined
Parallel HCLWattsUp Sensors

avg 13.72% 14.4% 12.94%
max 37.71% 37.95% 35.71%

Figure 5.18: Dynamic energy profiles of DGEMM on HCLServer01.

erage and maximum errors between the combined dynamic energy profiles composed with sensors

and the parallel dynamic energy profile with HCLWattsUp are {19%,27.18%} respectively. However,

the average and maximum error between the parallel and combined dynamic energy profiles with

HCLWattsUp are {3.07%, 7.63%} respectively.

We find that sensor combined profile in comparison with HCLWattsUp combined profile exhibits

relatively poor similarity of variations on average and maximum as of parallel dynamic energy pro-

file. The absolute percentage error between the average and maximum percentage deviations of

HCLWattsUp combined dynamic energy profile and parallel dynamic energy profiles is {5.44%,

2.86%}, and between the sensors combined dynamic energy profile and parallel dynamic energy

profiles is {33.08%, 12.46%}. Table 5.10 provides the percentage deviations from mean and maxi-

mum dynamic energy consumption by parallel and both combined dynamic energy profiles.

To summarize, we find that the additive energy models with sensors provide poor accuracy and

do not follow the energy consumption trend of the ground truth. In contrast, HCLWattsUp combined

dynamic energy profile is more accurate and follows the energy consumption trend of the ground

truth. In next section, we study the consequences of using inaccurate energy profiles constructed

Table 5.10: Percentage deviations from mean and maximum of dynamic energy consumption
by parallel and combined profiles of DGEMM (composed with Sensors and HCLWattsUp) on
HCLServer01.

Combined
Parallel HCLWattsUp Sensors

avg 8.27% 8.72% 11%
max 16.31% 16.77% 18.34%

124

5.7. STUDY OF ADDITIVE ENERGY MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP

with on-chip power sensors for the energy optimization purposes of an application.

5.7.2 A study of dynamic energy optimization with on-chip sensors and
HCLWattsUp

(a) with Sensors

(b) with HCLWattsUp

Figure 5.19: Dynamic energy profiles of 2D-FFT on HCLServer01.

In this section , we study the optimization of two hybrid applications i) 2D-FFT, and ii) DGEMM for

dynamic energy measured with (on-chip built-in) sensors and system-level physical measurements

using HCLWattsUp.

Dynamic Energy Optimization of 2D-FFT: We run the parallel hybrid application 2D-FFT as

explained in section 5.3.1 on HCLServer01 for the problem sizes ranging from 45312 × 23552 to

56064 × 23552 with a constant step size of 192. There is no communication involved in these

experiments. Figures 5.19(a) and 5.19(b) illustrate the dynamic energy profiles for workload sizes

(m) with sensors and HCLWattsUp. One can observe that in comparison with HCLWattsUp, sensors

125

5.7. STUDY OF ADDITIVE ENERGY MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP

Table 5.11: Percentage error of sensors against HCLWattsUp for dynamic energy consumption by
2D-FFT.

abstract processor Min Max Avg
CPU1 0.25% 36.37% 8.25%
GPU1 0.52% 57.78% 11.2%
PHI1 1.64% 55.78% 40.87%

under-report the dynamic energy consumption for the range of all problem sizes. Table 5.11 provides

the percentage error of dynamic energy measurements of with sensors against HCLWattsUp on

each abstract processor. The average errors are {8.25%,11.2%,40.87%} for CPU1, GPU1 and PHI1

respectively.

We equally partition the dimension M on all three abstract processors into M1, M2 and M3

such that the 2D Fourier Transforms of signal matrix M1 × N , M2 × N and M3 × N are com-

puted by abstract processor CPU1, GPU1, and PHI1. We use a model-based data partitioning

algorithm [20] to compute the decomposition of dimension M. The algorithm takes the following in-

puts: i). the workload size, ii). number of abstract processors, iii) cardinality of energy profiles,

iv) the functions of execution time, and v) the discrete dynamic energy profiles of the abstract pro-

cessors: {ECPU1, EGPU1, EPHI1}. The output is the optimal workload partitioning allocated to

abstract processors: (mCPU1,mGPU1,mPHI1). One or more abstract processors may be allocated

the workload of size zero. More details on the algorithm and its complexity can be found in [20].

The discrete dynamic energy consumption function of abstract processor APi is given by DEi =

{ei(m1, n1), ..., ei(mx, ny)} where ei(m,n) represents the dynamic energy consumption during the

Fourier transform of sizes m × n by the abstract processor i. The dimension n is fixed as 23552,

and the dimension m ranges from 15104 to 18688 with a constant step size of 64 for each APi.

We determine the workload distribution for workload sizes where the dimension M is

{46656,46848,48768,52800,53568,53760,54528} using the dynamic energy profiles with sensors

and HCLWattsUp as an input to the data partitioning algorithm [20]. For each workload distribu-

tion, we run the application in parallel on all abstract processors and determine the dynamic en-

ergy consumption with sensors and HCLWattsUp separately. We find the total dynamic energy

losses by using sensors in comparison with HCLWattsUp for the aforementioned workload sizes is

{42%,39%,45%,38%,37%,38%,36%} respectively.

Dynamic Energy Optimization of DGEMM: We run a parallel hybrid application DGEMM on

HCLServer01 for the problem sizes ranging from 38400 × 20480 to 61440 × 20480 with a constant

step size of 768. Figures 5.20(a) and 5.20(b) illustrate the dynamic energy profiles for workload

sizes (m) with sensors and HCLWattsUp. One can observe that in comparison with HCLWattsUp,

sensors under-report the dynamic energy consumption for the range of all problem sizes. Ta-

ble 5.12 provides the percentage difference of measurements of dynamic energy consumption by

DGEMM with sensors against HCLWattsUp on each abstract processor. The average errors are

{10.25%,14.62%,38.06%} for CPU1, GPU1 and PHI1 respectively. There is no communication in-

volved in these experiments.

We equally partition the dimension M of matrix A on all three abstract processors into M1, M2

and M3, so that the matrix M1 × N , M2 × N and M3 × N are computed by abstract processor

CPU1, GPU1, and PHI1 respectively. We use the same aforementioned model-based data parti-

126

5.7. STUDY OF ADDITIVE ENERGY MODELLING AND DYNAMIC ENERGY OPTIMIZATION
WITH ON-CHIP SENSORS AND HCLWATTSUP

(a) with Sensors

(b) with HCLWattsUp

Figure 5.20: Dynamic energy profiles of DGEMM on HCLServer01.

127

5.8. SCOPE AND LIMITATIONS OF ANMOHA

Table 5.12: Percentage difference of sensors against HCLWattsUp for dynamic energy consumption
by DGEMM.

abstract processor Min Avg Max
CPU1 0.12% 10.25% 18.74%
GPU1 0.5% 14.62% 55.22%
PHI1 31.02% 38.06% 46.53%

tioning algorithm [20] to compute the decomposition of dimension M. The discrete dynamic energy

consumption function of abstract processor APi is given by DEi = {ei(m1, n1), ..., ei(mx, ny)}
where ei(m,n) represents the dynamic energy consumption during the matrix multiplication of sizes

m×n by the abstract processor i. The dimension n is fixed as 20480, and the dimension m ranges

from 12800 to 20480 with a constant step size of 256 for each APi.

The data partitioning algorithm takes the dynamic energy functional models as an input and

finds the optimal workload configuration which optimizes the total dynamic energy consumption for

the given application using load imbalance technique. We determine the workload distribution for

the workload sizes where the dimension M is {40704,41472,42240,43008,44544} using the dynamic

energy profiles with sensors and HCLWattsUp as an input to the data partitioning algorithm. For each

workload distribution, we run the application in parallel on all abstract processors and determine its

dynamic energy consumption with sensors and HCLWattsUp separately. We find the total dynamic

energy losses by using sensors in comparison with HCLWattsUp for the aforementioned workload

sizes as {22%,24%,21%,22%,24%} respectively.

5.8 Scope and Limitations of AnMoHA

This section covers the scope, viability and limitations of AnMoHA.

Constraints: AnMoHA is the first solution method to effectively address the challenge of how

to model accurately the energy consumption of application components when executing them in

parallel on several independently powered compute devices such as CPUs, GPUs, Xeon Phis, and

sockets of multi-socket CPUs. It is proven to work accurately and efficiently for the case of loosely

coupled kernels where the additive hypothesis is satisfied within a given user tolerance. AnMoHA is

based on following two essential constraints (as discussed in sections 5.2.1):

1. Independently powered: For a given platform, the abstract processors should be indepen-

dently powered such that no two abstract processors share the same power domain.

2. Loose coupling: For a given hybrid application, the constituent components (kernels) are

independent such that a component does not interfere the execution of other components

during their parallel execution on their corresponding abstract processors. That is, if we run two

applications A and B in parallel on two abstract processors APa and APb, then the dynamic

energy consumption by A executing on APa is not affected by the application B executing in

parallel on abstract processor APb.

Input types for AnMoHA: AnMoHAdoes not make any assumption about the nature of applica-

tions or the type of workloads and their sizes executed by their corresponding compute devices. The

128

5.8. SCOPE AND LIMITATIONS OF ANMOHA

workload types or the applications can be of any type such as compute-intensive, communication-

intensive, etc as demonstrated in section 5.3. Different compute devices can execute different types

and sizes of workloads/applications in parallel as demonstrated in section 5.6. One can accurately

and effectively compute their individual energy consumption using (AnMoHA) as long as they satisfy

the aforementioned constraints of AnMoHA.

Testing an application for its amenability for AnMoHA: AnMoHA takes a hybrid parallel ap-

plication as an input and builds the individual energy profiles for its constituent components. The

hybrid application can be a set of data-parallel or task-parallel component profiles or a mix of both.

However, it must satisfy the constraint loose-coupling. By default, it is an integral part of the hybrid

application design. Nevertheless, it can be learned empirically whether the application components

are loosely coupled or not by employing different (simple) approaches such as:

1. To test an application for its amenability for AnMoHA, one can compare the parallel execution

time of the application components with the serial execution times of the same components

of a hybrid application. In case of independent components or loose-coupling, the parallel

execution time of a hybrid application is equal to the maximum of the serial execution times

of its constituent components (as discussed in sections 5.3.3, 5.4.1, 5.5.1, and 5.7.1). To test

the amenability for AnMoHA, a dry run of the application components using HCLWattsUp [38]

can be done to compare their (parallel and serial) execution times. A longer parallel execution

time indicates the tight-coupling and race conditions between the application components.

2. It can also be learned by determining the communication between the application components.

There is no communication involved when executing the independent application components

in parallel on independently powered compute devices as discussed in sections 4.7, 5.6.2 and

5.7.

The process of profile generation: Once it is determined that the application components

are loosely coupled, the process of generation of profiles is quite natural and can be automated by

writing a script. The application components are mapped to their corresponding compute devices to

formulate an abstract processor by following the constraint called as independently powered. We ex-

plain the formulation of abstract processors to build the individual profiles of application components

in sections 5.2.2 and 5.3.2.

A unifying framework can also be developed which takes the (hybrid) application as an input;

builds the (component) profiles; determines the goodness of profiles (using the approach proposed

in [77]); map the profiles to all identical devices in the cluster; and then passes the (mapped) profiles

to an energy optimization algorithm such as [30] or a multi-objective optimization workload parti-

tioning algorithm such as [20]. The key components of this framework are AnMoHA the goodness

measuring approach [77] (which is explained in Chapter 6). Once these components are in place,

the framework can be easily developed. However, we leave the development of such a framework

as a possible extension of this thesis.

The applications of AnMoHA: The application component profiles are inputted to an

(energy/multi-objective) optimization algorithmx. In other words, the optimization method employs

AnMoHA to build the component profiles accurately and efficiently offline or at run-time and employs

them for energy optimization of the hybrid parallel application. The references [20] [30] [39] employ

129

5.8. SCOPE AND LIMITATIONS OF ANMOHA

AnMoHA to build the individual profiles of the components of a hybrid parallel application to optimize

its energy and also to study the trade-off between performance and energy optimization of such

hybrid parallel applications. AnMoHA can also be employed for energy-aware scheduling of virtual

machines deployment and resource allocations. Likewise the application components, the virtual

machines utilize the resources of the same physical machine. A scheduler can employ AnMoHA

and an optimization method to efficiently schedule these virtual machines. However, we leave this

study as a possible extension of this thesis.

The granular limitations: One can build as fine-grain additive energy profiles as the level of

granularity provided by the tool which is used to measure the power consumption as discussed in

section 5.6. For example, it is not possible currently to determine the dynamic energy consumption

by the computing elements which are tightly coupled or which are not independently powered, using

system-level measurements provided by external power meters. Likewise, the popular tools such as

RAPL provide also the socket-wide power consumption details only and do not provide core-wide

power consumption. Therefore, it is not possible at present, to build the additive energy models of

the computing elements which are tightly coupled or which are not independently powered (such as

the CPU cores) using AnMoHA. In such scenarios, AnMoHA can be erroneous due to the violation

of both aforementioned constraints by a large extent as discussed in section 5.6.3.

Scalability of AnMoHA on large clusters: One can use a remapping approach to build the

energy profile of a large cluster by constructing the energy profiles of a small number of devices

(which can be done offline) and then apply these profiles for all nodes of the same type in the

cluster. To illustrate this, consider a cluster of n identical nodes (servers) sharing the same software

and hardware configurations. Let each node contain m heterogeneous compute devices. There

are m application components executing in parallel on m compute devices of a node. Then, only

m additive energy profiles are needed to be constructed on one node using AnMoHA. The additive

energy models constructed for that particular node can then be reused for the other n − 1 identical

nodes. The profile based workload partitioning algorithm [20] takes the n×m discrete energy profiles

as an input to determine the optimal distribution of the workload amongst the n×m processors such

that the energy consumption by the application is minimized.

Energy measurement tools for AnMoHA: One can use any energy measurement tool to deter-

mine the energy consumption by the application component in order to construct the additive energy

models using AnMoHA. However, we recommend using the system-level power measurements pro-

vided by external power meters because of their accuracy as discussed in section 4.9. In case of

a large cluster, only p heterogeneous nodes are required to be equipped with external power me-

ters for building the additive energy profiles. The same energy profiles can then be mapped to the

nodes identical to them in the cluster. However, one can also use other state-of-the-art approaches

(such as integrated power sensors or PMC based energy predictive models) to measure the energy

consumption by the application components. AnMoHA can be employed in equally effective way

with such state-of-the-art techniques to build the additive energy models. But, such additive mod-

els will not be accurate due to the inherent inaccuracy of the underlying measurement approaches

employed to construct them (as discussed in Chapter 4, and sections 5.6 and 5.7.1).

130

5.9. SUMMARY

5.9 Summary

In this work, we presented a novel methodology called Additive energy Modelling of Hybrid

Applications (AnMoHA) to addresses the following challenges: i). Accurate modelling of the energy

consumption of application components when executing in parallel on multiple compute devices,

ii). Accurate modelling of the energy consumption of different applications executing in parallel on a

multi-socket multi-core CPU platform. AnMoHA is an additive modelling approach that constructs the

discrete dynamic energy profiles of the application components using system-level physical power

measurements using power meters and satisfying a user-specified precision setting.

We experimentally validated AnMoHA on a cluster of two hybrid heterogeneous computing

nodes using three highly optimized parallel applications, matrix-matrix multiplication, 2D fast Fourier

transform, and a gene sequencing application for a diverse range of problem sizes. The estimation

accuracy of the method ranges between 2% and 5%. We analyze and compare different experiment

configurations (the number of independent experiments) to build the additive dynamic energy model

of an application kernel, and their accuracy. We show that the additive models constructed with

direct energy measurements during the application run provides the best accuracy and require the

least number of experiments.

We demonstrated that AnMoHA takes less time to construct the energy profiles when precision

settings is reduced. A usability test is introduced to explore the trade-off between the accuracy

and time needed to build additive energy models of a hybrid application. We demonstrate that an

additive model with a relaxed precision setting of the experiment takes less time to build and can be

used for all pragmatic purposes (such as energy optimization) only if it qualifies the usability test.

Furthermore, it is found that the time to build the energy profile of an application can significantly be

reduced by slightly compromising the accuracy.

We explore the hardware topological granular limitations of AnMoHA and show that we cannot

model the dynamic energy consumption by the components which are tightly coupled or not inde-

pendently powered, which violate the conditions of additive modelling. An important finding is that

the base energy (or the energy due to leakage power) of idle CPU cores contributes significantly to

the total energy consumption by the CPU, if an application is executed on some of the CPU cores of

a socket. We also find in some cases that it can even exceed the dynamic energy consumption by

the active CPU cores.

We compare the accuracy of additive energy models constructed using state-of-the-art on-chip

power sensors with system-level physical measurements using external power meters (which we

consider to be the ground truth). The average error of the models built with on-chip power sensors

ranges from 15% to 75% and the maximum reaches 178%. Furthermore, we demonstrate that the

correlation between the dynamic energy profiles is not sufficient enough to compare the similarity

between the models and ground truth. A model having a strong positive correlation with ground truth

can exhibit a different energy consumption behavior for 48% of the data points.

We find that a significant loss of energy (up to 45% for the applications used in our experiments)

occurs when employing state-of-the-art estimation methods instead of our proposed method for

dynamic energy optimization of an application. Finally, we discuss different aspects of AnMoHA

including its scope, limitations, the type of input applications, the scalability on large clusters and its

efficacy for energy optimization of hybrid parallel applications.

131

Chapter 6

A Statistical Learning Based Novel
Similarity Measuring Methodology for
Energy Profiles of Parallel Applications

This chapter is mainly based on [77].

6.1 Introduction

Accurate energy profiles as functions of the workload are essential to the optimization of parallel

applications for energy through workload distribution [30]. There are many model-based methods

for efficient construction of energy profiles but none of them is accurate in all situations. Therefore,

to pick the best method in a given situation, we need a way to measure the goodness of energy

profiles produced by different methods when the ground-truth profile, built by a time-consuming

and expensive but reliable method, is available. We define the goodness as the accuracy of a

profile against the ground truth profile. Here, the ground-truth refers to the baseline profile or the

reference value for the comparison. Inaccurate energy measurements during an application run can

hamper the efforts for energy-efficient computing. Studies [21] [37] show that inaccurate energy

measurements for dynamic energy optimization can result in significant energy losses. In [37], the

authors report a loss of up to 84% when using state-of-the-art but inaccurate energy models as an

input to an optimization algorithm to minimize the energy consumption by an application.

There is no effective metric to measure the goodness of energy models. Pearson correlation

coefficient and average prediction error are the most commonly used statistical measures to deter-

mine the accuracy of energy models against the ground truth. However, both techniques have their

shortcomings to determine the goodness of energy models. In Chapter 5, we highlight the inade-

quacies of average prediction error and correlation coefficient to measure the goodness of energy

models with the ground truth. In section 6.3, a detailed study is presented to highlight the challenges

to energy optimization using either of the aforementioned approaches to measure the accuracy of

energy models against the ground truth. In general, both popular statistical techniques are highly

sensitive to outliers and rely on the assumption of linear or smooth increase of energy consump-

tion by applications with the increase of workload. However, the energy profiles of applications on

132

6.1. INTRODUCTION

modern multicore platforms are highly non-smooth and non-linear. Therefore, the existing statistical

measures can rank an inaccurate energy profile higher than accurate ones. The reason is two-fold.

First, in the presence of significant variations in the energy profiles, they do not capture the differ-

ence in the general trend of energy consumption. Second, they do not capture the similarities in

variations.

While the general direction of energy profiles of applications on multicore platforms is reported

as a near-linear increasing function of workload size, the shape of the profile can be highly non-

linear and non-smooth [18]. We distinguish the terms trend and shape using the following example.

Consider the sample energy profiles shown in figure 6.1. The general direction of all three profiles,

which represents the underlying energy consumption trend, is increasing with the increase in work-

load. However, their shapes are different. The energy profile Model1 is linear whereas the shapes

of Real and Model2 are non-linear and non-smooth.

Figure 6.1: Sample dynamic energy consumption profiles.

While the goodness measuring problem is comparatively less-studied for the energy of comput-

ing, a plethora of different methods and approaches have been proposed to solve this problem in

many other fields such as data mining, time series similarity analysis, and graph (matching) theory.

Popular similarity measures for pattern matching are cosine similarity [65], Dynamic Time Warping

[66], angular metric for shape similarity (AMSS) for time series data [67], and auto-regressive inte-

grated moving average (ARIMA) method [68, 69, 70, 71, 72]. Distance metrics used to determine

the pattern matching include Euclidean distance [73, 74, 75] and Graph-Edit-Distance (GED) [76].

We provide an overview of the popular approaches in these faculties and why they are not applicable

straightforwardly for determining the goodness of energy profiles in section 2.5.

To summarize, there is no effective metric to measure the goodness of energy profiles. In this

Chapter, we present a novel methodology called Trend-based Similarity Measure (TSM) of energy

profiles, which measures the similarity between a given energy profile and the ground truth. TSM is

designed to capture the underlying energy consumption trend of the profiles, and is composed of the

following four stages: i). The regression model of the energy profile is learned, ii). The regression

fits of this energy profile and the ground truth are compared to determine if they exhibit the same

trend, iii). If they do not, then the energy profile is branded fundamentally inaccurate; iv). If they do,

the distance between the regression models of the energy profile (that follows the same trend-line

as of the ground truth) and the ground truth is determined using Euclidean distance as a metric of

goodness of the energy profile.

133

6.2. GOODNESS MEASURING PROBLEM FORMULATION

To the best of our knowledge, this is the first work to estimate the goodness of energy pro-

files by taking into consideration the qualitative difference of the underlying energy consumption

trends. Also, unlike other statistical methods used for goodness estimation, it uses the Euclidean

distance metric for quantitative estimation of similarity between non-linear and non-smooth profiles,

and thereby increasing the accuracy of estimation. We compare TSM with popular approaches such

as Euclidean distance, average and maximum prediction errors, and correlation coefficient for a di-

verse set of 235 application energy profiles obtained on multicore heterogeneous hybrid computing

platforms using three popular energy measurement approaches i). System-level measurements us-

ing power meters, ii). Integrated on-chip power sensors, and iii). Energy predictive models. It is

discovered that the popular statistical approaches do not capture the underlying energy consump-

tion trend and thus erroneously rank an inaccurate energy profile as better than more accurate ones

in some cases. We find that using inaccurate profiles, obtained with state-of-the-art measurement

tools, in energy optimization loop may lead to significant energy losses (up to 54% in our case).

We find TSM to be more effective when employing in the energy optimization loop than the popular

statistical approaches.

The rest of the chapter is organized as follows. The challenges with common practices to mea-

sure the goodness of energy models are presented in section 6.3. The formal description of similarity

matching problem is presented in section 6.2. The proposed solution method is presented in sec-

tion 6.4, and the experimental validation of the proposed method is presented in section 6.5. We

compare TSM with stat-of-the-art statistical approaches for energy optimization of an application in

section 6.6. Finally, the summary of the chapter is presented in section 6.7.

6.2 Goodness Measuring Problem Formulation

Accuracy or goodness of energy profiles of an application can be defined as the degree to which the

energy consumption data of the methods which are employed to produce these profiles, conform

to the ground truth. Hence, the similarity of an energy profile with ground truth is also implicitly

determined when calculating its accuracy. An energy profile of an application is represented as a

function of workload size. We define the goodness as a measure that provides an absolute value of

resemblance between two vectors (ground truth and an energy profile) in a solution space (i.e. set

of energy profiles of an application (EPS)).

Goodness Measuring Problem: Consider an energy profile E(A) of an application A given

by a discrete set, E(A) = {e(x1), e(x2), ..., e(xn)} where e(xi) i ∈ {1, 2, · · · , n} is the energy

consumption by the workload size xi. Let there be m energy profiles of the same application A

for the same range of problem sizes constructed with different energy measurement approaches.

Let EPSA denotes the set of energy profiles of an application A. Then, the problem is to find the

best energy profile in EPSA which has maximum resemblance with ground truth among all energy

profiles.

134

6.3. CHALLENGES WITH STATE-OF-THE-ART PRACTICES TO MEASURE THE GOODNESS
OF ENERGY MODELS

6.3 Challenges With State-of-the-art Practices To Measure The Good-

ness Of Energy Models

Multicore architectures are now prevalent in all computing settings ranging from a handheld mobile

device to HPC computing platforms and supercomputers. However, the advent of the multicore era

has also introduced several inherent complexities, which are: a) Severe resource contention due

to the tight integration of tens of cores contending for shared on-chip resources; b) Non-Uniform

Memory Access (NUMA), and c) Dynamic Power Management (DPM) of multiple power domains

such as CPU sockets, DRAM. The functional relationship between the energy and workload size

has complex (non-linear and non-smooth) properties on modern multicore CPUs. Profile-based en-

ergy optimization algorithms [30, 18] leverage the profile variations to find energy-efficient workload

distributions. At the same time, the state-of-the-art statistical approaches consider energy profiles

as linear or smooth functions of workload sizes to find their goodness. The failure of capturing the

qualitative differences in energy profiles can drastically affect the energy optimization efforts and can

cause significant energy losses [21, 37].

We present two case studies to highlight the inadequacies of the aforementioned statistical mea-

surement. The first is based on the results of [21]. Consider an energy profile of multiplication of two

dense N×N matrices on an Intel Haswell server comprising of two CPU 12-core sockets, using Intel

Math Kernel Library (MKL) DGEMM routine (see Figure 6.2). We run two MKL-DGEMM routines in

parallel on both sockets, each with a different workload size (N ×N), ranging from 10000×10000 to

14928× 14928 with a constant step size of 64 on socket1 and from 15000× 15000 to 19928× 19928

with a constant step size of 64 on socket2. The x-axis in the plot shows the problem size range for

socket1. We measure the total dynamic energy consumption by these two parallel workloads us-

ing RAPL [41] and HCLWattsUp [38]. The latter provides system-level power measurements using

external power meters and is considered to be the ground truth.

Figure 6.2: Dynamic energy consumption profile segments of matrix-matrix multiplication using Intel
MKL constructed with HCLWattsUp and Intel RAPL on HCLServer01.

One can observe that RAPL under-reports the dynamic energy consumption for the range of

all problem sizes, resulting in the average and maximum errors of 64% and 69% respectively. The

Euclidean distance of 92104 between these profiles is large, but there exists a strong positive corre-

lation of 0.97 between them given by the Pearson correlation coefficient. Despite the strong positive

correlation, the profiles disagree on energy consumption behavior for almost 50% of the data points.

135

6.3. CHALLENGES WITH STATE-OF-THE-ART PRACTICES TO MEASURE THE GOODNESS
OF ENERGY MODELS

For example, for data points (N) {10512,11152,11984,12624,13712} HCLWattsUp suggests a per-

centage decrease of {8,5,3,2,6} in dynamic energy consumption with respect to immediately pre-

ceding data points. In contrast, RAPL suggests a percentage increase of {8,14,9,13,13}. Similarly,

while HCLWattsUp suggests a percentage increase for data points {12944,13328,13584,13968} by

{3,7,8,3}, RAPL suggests a decrease of {9,7,8,8}.

Furthermore, although both profiles exhibit an overall rising trend of energy consumption, the

degrees of the slopes are significantly different. The divergence between the profiles increases with

the increase of the problem sizes. All three aforementioned statistical measurements, however, fail

to capture this behavior.

The high positive correlation coefficient between the profiles indicates that the RAPL profile can

be calibrated. Hence, its average and maximum errors can be reduced to 18% and 59% from 64%

and 69% respectively by calibrating the RAPL readings with HCLWattsUp (using a constant positive

offset). The Euclidean distance also reduces from 92104 to 26502 after calibration. However, the

calibration does not improve the overall qualitative difference in energy consumption behavior. The

overall energy consumption trend remains different even after calibrating RAPL readings. It suggests

that the correlation coefficient, average error, and Euclidean distance are not sufficient measures for

comparing the similarity of energy profiles.

The next case study demonstrates that a non-similar energy profile used as an input to an energy

optimization algorithm can cause significant energy losses. In figure 6.1, two sample energy profiles

are compared against the ground truth (labeled Real). The average errors of profiles Model1 and

Model2 against the ground truth are 62% and 64% respectively. The Euclidean distance between

profiles Model1, Model2, and the ground truth is 18108 and 33550 respectively. Model1 and Model2

are equally strongly correlated with the ground truth with the correlation coefficient equal to 0.91.

While Model1 is ranked better than Model2 by both the Euclidean distance and average error, it

exhibits different energy consumption behavior for more than 40% of data points as compared with

ground truth. Hence, it can cause a significant loss of energy when used as an input to the energy

optimization algorithm [30], which employs the workload size as the decision variable for energy

optimization of an application. For example, Model1 only provides 21% of workload distributions

that are the same as those provided by ground truth when used as an input to this algorithm for

energy optimization. In contrast, Model2 provides the same workload distributions as of the ground

truth for 79% of problem sizes despite its higher average error and greater Euclidean distance.

Therefore, Model2 is better than Model1 for the use in energy optimization or energy consumption

analysis of the application.

To summarize, the average error, Euclidean distance, and correlation coefficient are not suffi-

cient to measure the similarity between the energy profiles despite being the most commonly used

statistical measures for this purpose. In general, the average error and Euclidean distance are highly

sensitive to outliers and do not capture the similarity of energy consumption trends. They are also

highly sensitive to the transformations such as uniform amplitude/time scaling, shifting, etc. Pearson

correlation coefficient, on the other hand, assumes a linear relationship between the variables which

might not be always true. It can also be easily misinterpreted as the high correlation coefficient does

not necessarily mean a strong linear relationship or high similarity between two variables. Similarly,

a lesser average error or Euclidean distance do not indicate a higher similarity of energy profiles.

136

6.4. TREND-BASED SIMILARITY MEASURING METHODOLOGY FOR ENERGY PROFILES

Finally, they can mislead in many cases by erroneously grading an energy profile as the best and

thereby causing significant energy losses when used for the energy optimization of an application.

6.4 Trend-based Similarity Measuring Methodology for Energy Pro-

files

In this section, we present our solution method called Trend-based Similarity Measure for energy

profiles (TSM) to determine the similarity between the energy profiles and the ground truth. We use

the term model to represent the regression model of an energy profile in the rest of this Chapter for

illustration purposes, unless stated otherwise.

The inputs to TSM are the precision settings and a set of energy profiles (constructed with dif-

ferent energy measurement approaches) and the ground truth (EPS). The precision settings are

the same as the experimental settings used to construct the energy profiles of the application as

explained in Chapters 4 and 5. For example, for each data point in the energy function of an appli-

cation, we repeatedly execute the application until the sample mean lies within the 95% confidence

interval and a precision of 0.025 (2.5%) has been achieved. The output of TSM is the ranking of

energy profiles based on their distances which reflect their resemblance with the ground truth.

TSM is composed of the following four stages: i). The underlying regression model of the energy

profile is learned, ii). The regression fits of this energy profile and the ground truth are compared

to determine if they exhibit the same trend, iii). If they do not, then the energy profile is branded

fundamentally inaccurate; iv). If they do, the distance between the regression models of the energy

profile (that follows the same trend-line as of the ground truth) and the ground truth is determined

using Euclidean distance as a metric of goodness of the energy profile.

6.4.1 Model Fitting

Energy profiles are usually constructed as a function of problem size, CPU threads/cores, or CPU

frequency. The configuration parameters have a strong influence on the overall energy consumption

behavior of an application. The experimental observation in our previous Chapters (4 and 5) is

that the overall trend of the energy profile of an application is a monotonically increasing function of

workload size. Likewise the energy profiles, their underlying energy consumption trend can be linear

or non-linear, however, the general direction of energy consumption is monotonically increasing.

The authors in [18] also report the same. They find that the dynamic energy profiles of an applica-

tion in the single-core era increase monotonically with problem size and are smooth linear functions

of problem size. However, multicore CPUs exhibit inherent complexities including a) Non-uniform

memory access (NUMA); b) Severe resource contention due to the tight integration of tens of cores

contending for shared on-chip resources such as last level cache (LLC), interconnect, and DRAM

controllers; and c) Dynamic power management (DPM) of multiple power domains (CPU sockets,

DRAM). Due to these complexities, while the trend of the energy profiles is still a monotonically

increasing function of workload size, the functional shape is non-smooth and non-linear.

Therefore, the first step of TSM is based on the regression analysis of the energy profiles to

examine their underlying regression models using the aforementioned application configuration pa-

137

6.4. TREND-BASED SIMILARITY MEASURING METHODOLOGY FOR ENERGY PROFILES

rameters as predictor variables to model the energy consumption. We use polynomial regression

to model the relationship between the energy consumption of an application and its configuration

parameter.

Polynomial regression fits the relationship between the dependent variable (the energy con-

sumption) and the predictor variable (the application configuration parameter), as an n-th degree

polynomial. Therefore, it can estimate both linear and non-linear models. For example, the linear

models are fit as polynomial regression of degree 1 whereas the non-linear models are fit as higher

(i.e. greater than 1) degrees of polynomial regression (such as quadratic, cubic, etc.). To facilitate

clarity of exposition, the mathematical form of kth order of polynomial regression model [164] can

be stated as follows:

fE (y) = c0 +

n∑
i=1

cix
k
i (6.1)

where x = {x1, ..., xn} is the predictor variable; c0 is the intercept; k is the degree of polynomial;

and c = {c1, c2, ..., cn} is the vector of coefficients (or the regression coefficients). In real life, there

usually is stochastic noise (measurement errors). Therefore, the model can be expressed [165] as

f̃E (y) = fE (y) + ϵ (6.2)

where the error term or noise ϵ is a Gaussian random variable with expectation zero and variance

σ2, written ϵ ∼ N (0, σ2).

In [53], the authors report that the dynamic energy models having a non-zero intercept violate

the basic principle of the theory of energy predictive models for computing. This is because dy-

namic energy is consumed by the CMOS component due to the switching activity when executing

an application. There is no switching activity in the absence of workload execution, and therefore

the system dissipates static energy only. Hence, regression models should predict no dynamic en-

ergy consumption when there is no workload. Therefore, to conform to this principle, we force the

intercept to be zero while fitting the regression models.

To choose the order of the polynomial regression model that reflects the best fit, we follow a

systematic approach called the forward selection procedure. In this approach, the models are suc-

cessively fit in an increasing order of polynomial and the significance of regression coefficients is

tested at each step of model fitting. The order is kept increasing until F-test for the highest order

term is non-significant. Briefly, the F-test of overall significance indicates whether the regression

model provides a better fit to the data than a model that contains no independent variables. It has

the following two hypotheses: i). The Null hypothesis: It states that the model with no indepen-

dent variables (intercepts only) fits the data equal to the regression model, and ii). The alternative

hypothesis: It states that the regression model fits the data better than the intercept-only model.

A regression model is considered as significant if the p-value of the F-test is less than the signifi-

cance level (i.e. 95% of the confidence interval or 0.05 level). We find that the first or third-order

polynomials as the best fit for all the energy profiles in our application suite.

We want to emphasize here that the purpose of fitting the regression model is not to build an

offline energy model to predict the energy consumption by employing a predictor variable. Instead,

the regression analysis is performed to examine the underlying model of energy profiles in an EPS to

138

6.4. TREND-BASED SIMILARITY MEASURING METHODOLOGY FOR ENERGY PROFILES

facilitate the comparison of their energy consumption trend. Therefore, we fit the regression model

on the whole data-set instead of splitting it into training and test datasets.

6.4.2 The Discrepancy Analysis

In the second step, we compare the regression models of energy profiles and the ground truth in

an EPS. We term this test as the discrepancy analysis. The following conditions must hold for the

regression models of two energy profiles to be ideally alike:

1. The regression models of the energy profile and the ground truth must follow the same orien-

tation. Both regression models must exhibit the same increase and decrease for the range of

all the data points.

2. The regression models of the energy profile and the ground truth must not intersect at any

point.

3. The distance between the regression models of the energy profile and the ground truth must

be the same for the range of all the data points.

All of these properties must be satisfied by a regression model to be considered as ideally similar

to that of the ground truth.

Mathematically, the idea can be expressed as the slope and its direction must be the same for

the regression models of an ideally similar energy profile and of the ground truth. The slope and

its direction can be determined by taking the first and second derivatives of the regression models.

Therefore, we compare the first and second derivatives of the regression equations of an energy

profile and the ground truth. While the first derivative indicates whether the energy consumption

trend is increasing or decreasing, the second derivative tells about the shape of the underlying

regression model of the energy function. Two regression models do not follow the same trend if the

second derivative is positive (greater than zero) for one of them and the negative (less than zero)

for the other one, or vice versa. However, they follow the same direction if the second derivatives

of both regression models are either positive (greater than zero) or negative (less than zero). The

regression models that do not follow the same direction are classified as opposite and consequently

removed from the EPS.

In the next step, we compare the coefficients of the second derivatives of the regression models

that follow the same direction. Two models are considered as same if the difference of coefficients

of their derivatives are within an interval of input precision settings. To illustrate this, consider two

third-order (cubic) polynomial regression models r1 and r2. Let r1 is the regression model of the

ground truth. Let the coefficients of the second derivatives of both models are c1 and c2 respectively.

Then, the difference between the coefficients of the second derivatives of both models is calculated

as ϵ = |(c1 − c2|/c1 × 100. Now, if ϵ lies within the input precision settings, then both regression

models are considered as the same. Otherwise, they are classified as similar.

To summarize, we analyze the qualitative behavior of regression models of the energy profiles

and the ground truth by comparing the derivatives of their polynomial functions. As a result, we

classify the energy models into one of the following three categories:

139

6.5. EXPERIMENTAL VALIDATION OF TSM

1. Opposite: The slopes of the regression models of an energy profile and the ground truth are in

the opposite direction. The regression models of an energy profile and the ground truth exhibit

opposite behavior such that one of them is increasing with an increase in x and the other one

is decreasing with an increase in x. Furthermore, the shape of the regression fit is concave

up for one of them and concave down for the other one.

2. Same: The slopes of the regression models of an energy profile and the ground truth are

identically the same and follow the same direction. This class represents the energy profiles

which are ideally the same to their corresponding ground truths.

3. Similar : The slopes of the regression models of an energy profile and the ground truth are

different, however, they follow the same direction. It indicates that the energy profile is neither

the same as the ground truth nor in the opposite direction to it.

As a result of this step, the energy profiles that have regression fits in the opposite direction to

that of the ground truth are removed from the EPS. Consequently, the resulting EPS contains only

the same or similar energy models. The goodness of the remaining energy profiles to the ground

truth is quantified in the third step.

6.4.3 The Distance Metric

In this step, we determine the distance between the regression fit of each energy profile and the

ground truth in the remaining EPS. For this purpose, we use Euclidean distance as a distance

metric to establish an absolute value of the distance of the regression fit of each profile and the

ground truth. Because of its triangular-inequality property, Euclidean distance is used to index the

model space which speeds-up the search and matching in general, especially for the huge model

space. Furthermore, it helps in ranking the similar profiles based on their distance with the ground

truth in an EPS.

Hence, to rank the profiles based on their similarity, first, the Euclidean distance between the

regression models of the profiles and the ground truth belong to the same EPS is computed. Then,

the energy profiles are ranked according to the Euclidean distance between their regression models

and that of the ground truth. The energy profile whose regression model has the least Euclidean

distance with that of the ground truth is considered as the most similar profile in that particular EPS.

The final output of this step is the sets of the energy profiles with similarity ranks. Two profiles may

have the same rank if their Euclidean distance differs by less than or equal to the input precision.

6.5 Experimental Validation of TSM

6.5.1 Experimental Platform and Applications

The dataset used in this work comprises of the energy profiles of different application configurations

executed on multicore heterogeneous hybrid computing platforms and constructed with on-chip sen-

sors, power meters, or energy predictive modes employing PMCs as predictor variables. The profiles

are constructed as the results of the experiments explained in 4 and 5. The details on experimental

140

6.5. EXPERIMENTAL VALIDATION OF TSM

set-up, platforms, application suite, configuration parameters, and the boundary conditions to con-

struct the dataset are the part of the experiments presented in the 4 and 5. Briefly, the following

application configuration parameters are employed to build the energy profiles: (a) Problem size,

(b) Number of CPU threads, or the number of CPU cores. The application suite used to construct

the profiles contains highly optimized memory bound and compute-bound scientific routines such

as OpenBLAS DGEMM, FFTW 2D, MKL-DGEMM and MKL-FFT from Intel Math Kernel Library

(MKL), benchmarks from NASA Application Suite (NAS), Intel High Performance Conjugate Gradi-

ents (HPCG) HPCG, stress, naive matrix-matrix multiplication and naive matrix-vector multiplication.

We employ three nodes for constructing the energy profiles: (a) HCLServer01 has an Intel

Haswell multicore CPU having 24 physical cores with 64 GB main memory and integrated with

two accelerators: one Nvidia K40c GPU and one Intel Xeon Phi 3120P, (b) HCLServer02 has an

Intel Skylake multicore CPU consisting of 22 cores and 96 GB main memory and integrated with

one Nvidia P100 GPU and (c) HCLServer03 has an Intel Skylake multicore CPU having 56 cores

with 187 GB main memory. Technical description of each node is presented in tables 4.1, 4.2 and

4.3 respectively. HCLServer01 and HCLServer02 are connected with a Watts Up Pro power meter;

HCLServer03 is connected with a Yokogawa WT310 power meter. Watts Up Pro power meters are

periodically calibrated using the ANSI C12.20 revenue-grade power meter, Yokogawa WT310. The

maximum sampling speed of Watts Up Pro power meters is one sample every second. The accu-

racy specified in the data-sheets is ±3%. The minimum measurable power is 0.5 watts. The Intel

MKL on all HCLServers is 2017.0.2, whereas the CUDA versions used on HCLServer01 is 7.5 and

9.2.148 on HCLServer02.

We use RAPL [41], NVIDIA NVML [43] and Intel System Management Controller chip (SMC)

[42] (using Intel manycore platform software stack (MPSS) [102]) to determine the energy consumed

by the application kernels executing on Intel CPUs, Nvidia GPUs and Intel Xeon Phi respectively.

HCLWattsUp interface [38] is used to obtain the power measurements from the WattsUp Pro power

meters. The details on methodology used to obtain a reliable data point using different tools (on-

chip power sensors and power meters), and HCLWattsUp interface are explained in 3. Briefly, we

follow a statistical methodology to ensure reliability of our experimental results. The methodology

determines a sample mean (for the execution time, dynamic energy or PMC) by executing the ap-

plication repeatedly until the sample mean meets the statistical confidence criteria (95% confidence

interval, a precision of 0.025 (2.5%)). Student’s t-test is used to determine the sample mean. The

test assumes that the individual observations are independent and their population follows the nor-

mal distribution. We use Pearson’s chi-squared test to ensure that the observations follow normal

distribution. The details on experimental setup and the methodology to construct an energy profile

is explained in sections 4.3 and 5.3.

6.5.2 Experimental Methodology to validate TSM

We classify our suite of energy profiles (EPS) into the following two groups:

1. Group A (Sets of many energy profiles): Group A comprises of the EPS where there is more

than one energy profile of the same application constructed with different approaches such as

on-chip power sensors, system-level power measurements provided by power meters, etc.

141

6.5. EXPERIMENTAL VALIDATION OF TSM

2. Group B (Sets of single energy profiles): Group B comprises of the EPS where only one

energy profile is compared with the ground truth.

For each group, we fit the regression models as n-th order of polynomial for each energy profile

and their corresponding ground truths belonging to the same EPS. To choose the best order of

polynomial approximation, we follow the forward selection procedure as explained in section 6.4.1.

Intuitively, the polynomial order should be the same for the regression models of an energy model

and its corresponding model of the ground truth belonging to the same EPS. As a result of this sanity

check, we reject the energy functions which have a different order of polynomial as a best fit than

the regression model of the ground truth.

In the next step, we analyze the qualitative behavior of regression models of the energy profiles

and their corresponding ground truths by comparing the derivatives of their polynomial functions

as explained in section 6.4.2. The energy profiles classified as opposite are removed from their

respective EPS, as a result of this step. In the third step, we determine the similarity between the

remaining energy profiles and the ground truth using Euclidean Distance. We compare the results of

TSM with other statistical approaches such as correlation, Euclidean distance, and average error to

compare the accuracy and similarity of energy profiles (and also for the time series of equal lengths

in general). The Euclidean distance that is compared with TSM is the distance between the energy

profiles and the ground truth. In contrast, TSM uses the Euclidean distance as a metric to determine

the distance between the regression models of the energy profiles and the ground truth in an EPS.

6.5.3 Results and Discussion

Group A (Sets of many energy profiles): The similarity ranking by TSM and popular statistical

approaches for the energy profiles in each EPS that belongs to group A are provided in table D.1 in

appendix D. One can observe that the correlation coefficient does not always distinguish much be-

tween the energy profiles. Consider, for example, the profiles in EPS DGEMM_EqualLoad. The pro-

files RAPL_Parallel and RAPL_Combined both have a correlation of positive 0.9993 with the ground

truth (HCLWattsUp_Parallel). Similarly, the correlation coefficient for RF_Additive and NN_Additive

is 0.9999 with the ground truth in EPS DGEMM_Predictive Models.

Similarly, the average prediction error also misleads in many cases. Consider, for ex-

ample, the profiles in EPS DGEMM_EqualLoad. The average prediction error suggests the

HCLWattsUp_Combined as the most similar profile with the ground truth. However, TSM suggests

RAPL_Combined as the most similar, and HCLWattsUp_Combined as the most different among all

three profiles in EPS DGEMM_EqualLoad. A visual illustration of regression models of the pro-

files in EPS DGEMM_EqualLoad as presented in Figure 6.3, also conforms to the TSM. In general,

one can observe that regression models of all three profiles in EPS DGEMM_EqualLoad follow the

same pattern as of the ground truth (HCLWattsUp_Parallel). However, both the RAPL_Parallel and

RAPL_Combined exhibit the closest resembling pattern with the ground truth for the range of all

problem sizes as illustrated in figure 6.3(b). HCLWattsUp_Combined, on the other hand, exhibits a

slightly different pattern at both ends of data points (that is the range of very small problem sizes and

very large problem sizes) as shown in figure 6.3(a). Therefore, while it follows the same orientation,

it is ranked as the least similar profile in its EPS.

142

6.5. EXPERIMENTAL VALIDATION OF TSM

(a) HCLWattsUp (b) RAPL

Figure 6.3: Regression models of energy profiles in EPS DGEMM_EqualLoad constructed with a)
HCLWattsUp, and b) RAPL

However, the similarity results as presented in table D.1 suggest that overall the Euclidean dis-

tance between the energy profiles proves to be more efficient than the correlation coefficient and

average prediction error. In most of the cases, it suggests the similarity ranking in line with TSM.

However, it also misleads in some of the cases. Consider, for example, the similarity ranking for

the profiles in EPS DGEMM_Predictive Models. Euclidean Distance between the profiles ranks

LM_additive as the third most similar profile, whereas TSM ranks it as the fifth most similar profile.

Similarly, Euclidean distance between the profiles ranks RF_NonAdditive as the second most similar

in EPS FFT_Predictive Models, whereas TSM ranks it as the third most similar to the ground truth

in its EPS.

It is important to note that none of the aforementioned statistical measurement and metric cap-

tures the holistic picture of the energy consumption trend of the profiles. Consider, for example,

the profiles in EPS DGEMM_AnMoHA. Both the Euclidean distance and average prediction error

consider the profiles Combined_3 and Combined_4 as the third most similar and fourth-most sim-

ilar profiles with the ground truth (Parallel) as presented in table D.1. However, one can observe

in figure 6.4(b) that the qualitative comparison of the regression fit of both profiles and the ground

truth by TSM suggests them to have a different energy consumption trend and thus drop them from

the EPS. The correlation coefficient ranks the profiles in this particular EPS in line with TSM and

ranks them as least similar. But, it also does not provide the details on their qualitative difference

of the underlying energy consumption behavior. Similarly, both the Euclidean distance and average

prediction error rank Combined_2 as the least similar profile. In contrast, TSM ranks it as the third

most similar profile.

143

6.5. EXPERIMENTAL VALIDATION OF TSM

(a) Similar (b) Opposite

Figure 6.4: Regression models of energy profiles in EPS DGEMM_AnMoHA. a) Combined_1 and
Combined_5 follows the same trend, Combined_2 follows similar trend, and b) all profiles exhibit
opposite trend as of the ground truth

Graphical illustration of regression models of the profiles in EPS DGEMM_AnMoHA as pre-

sented in figure 6.4 also confirms the same results. One can observe that Combined_3 and Com-

bined_4 exhibit different energy consumption behavior as of the ground truth (Parallel). However,

Combined_1 and Combined_5 follow the same direction with the same slope, whereas Combined_2

follows the same direction but exhibits different orientation.

Group B (Sets of single energy profile): For group B, TSM classifies the similarity of energy

profiles with ground truths (after comparing their regression fits) into the three similarity categories

explained in section 6.4.2. The similarity ranking by TSM and popular statistical approaches for the

energy profiles in each EPS that belongs to group B, are provided in table E.1 in appendix E. One

can observe that likewise group A, all three aforementioned statistical approaches fail to capture the

qualitative difference of the regression models of the energy profiles and the ground truth belong to

the same EPS.

(a) FFTW (b) MKL-FFT

Figure 6.5: Group B (Sets of single energy profile), Class same Similarity. Group B comprises of
sets of energy profiles where only one energy profile is compared with the ground truth

Consider, for example, the regression models of the energy profiles illustrated in figures 6.5

and 6.6 representing the classes same and similar respectively. The regression models of the

energy profiles follow the same trend as the ground truths in both cases. However, the slopes of

the regression models presented in figure 6.6 are different from their corresponding ground truths.

Figure 6.7 illustrates the regression models representing the class opposite. It can be observed that

144

6.5. EXPERIMENTAL VALIDATION OF TSM

(a) FFTW (b) FFTW

Figure 6.6: Group B (Sets of single energy profile), Class similar Similarity. Here, G= CPU thread
groups, and T=CPU threads

the regression models of the energy profiles and their corresponding ground truths exhibit different

trends. Consider, for example, the regression models of the EPS {FFTW,G=16,T=7}. Here, G and

T represent the number of thread groups and the number of threads per group respectively. The

slopes of the regression models of both profiles are different and have different signs, positive for

RAPL and negative for HCLWattsUp. Figure 6.7(c) also shows the same results. One can observe

while the shape of the regression model of RAPL is concave up, it is concave down for HCLWattsUp.

However, the popular statistical approaches do not capture this behavior.

(a) MKLFFT (b) DGEMM

(c) FFTW (d) DGEMM

Figure 6.7: Group B, Class C: opposite Similarity

145

6.5. EXPERIMENTAL VALIDATION OF TSM

6.5.4 Discussion

Average error and Euclidean distance do not indicate whether the calibration can improve the av-

erage error or Euclidean distance between two similar energy profiles, and thus can mislead to

consider an accurate energy profile as inaccurate. However, unlike average prediction error and

Euclidean distance, TSM can indicate if the average prediction error and Euclidean distance can be

reduced by calibrating the energy profile with the ground truth in an EPS.

Consider, for example, the energy profiles in EPS FFTW where the configuration parameter is

the problem size M × N where M ≤ N , and N = 32768. Figure 6.5(a) illustrate the regression

models of the profiles. The difference between the slopes of the regression fit of the RAPL energy

profile and the ground truth is very close to zero, and thus TSM classifies their similarity as the same.

This same similarity suggests that the regression models of both the RAPL energy profile and the

ground truth exhibit the same energy consumption behavior. Therefore, one can reduce the average

prediction error and Euclidean distance between the RAPL energy profile and the ground truth from

10.5% to 0.6% and from 1134.9 to 94 respectively after calibrating it with the ground truth. That is

an improvement of 94% in average prediction error and 92% in the Euclidean distance between the

profile.

Similarly, consider the EPS IntelMKLFFT where the configuration parameter is CPU cores and

problem size N is 43328. Figure 6.5(b) illustrates the regression models of the profiles. The differ-

ence between the slopes of the regression models of both the RAPL energy profile is close to zero,

but slightly more than the difference between the energy profiles belong to the aforementioned EPS

FFTW. TSM classifies both the RAPL energy profile and the ground truth as same. After calibration,

one can reduce the average prediction error and the Euclidean distance between the profiles from

13% to 2.19% and from 6700 to 1495.83 respectively. That is an improvement of 83% in average

prediction error and 78% in Euclidean distance between the RAPL energy profile and the ground

truth in that particular EPS.

It is important to note while the similarity classes such as opposite and same are more useful

for group B, the similarity class similar provides less information. It does not present any threshold

to indicate the absolute value of the similarity between the energy profile and the ground truth. The

percentage or threshold that indicates the value of absolute similarity is highly dependent on the

application domain and, therefore, is a matter of choice.

Consider, for example, applications such as signal processing or multimedia processing. Such

applications are considered as fault-tolerant and belong to the approximate computing domains.

A possibly inaccurate result is also acceptable in such domains. Therefore, a comparatively less

similar energy profile can also serve the purpose in this case. In contrast, the high similarity value

is required for applications such as cryptography or hard real-time applications. Therefore, one

sets a comparatively higher value of the similarity to ensure whether the energy profiles are similar.

That is why, TSM does not define a threshold to indicate the degree to which an energy profile

exhibits a similar energy consumption behavior to the ground truth. Instead, it just compares the

energy consumption behavior and the shapes of the regression models of the energy profile with

the ground truth in an EPS and determines whether or not both have a similar shape and energy

consumption behavior.

To quantify the similar energy profiles, one can take the difference of the polynomials or the

146

6.5. EXPERIMENTAL VALIDATION OF TSM

derivatives of the regression models of the energy profile under consideration and the ground truth.

A zero value of the difference between the polynomials or derivatives indicates the same polynomials

and thus the same regression models. One can give some weight to the energy profile under

consideration indicating how large is it from zero value of the difference, and thus how less similar is

it with the ground truth.

Unlike the profiles classified as same, there is little to none margin for average error and the

Euclidean distance reduction after calibration, if the profile is classified as similar. This is because

the derivatives of the regression model of the energy profile under consideration and the ground

truth have different slopes. Therefore, the calibration can reduce the average error and Euclidean

distance between the energy profile and the ground truth only to an extent. However, it highly

depends on the value of the similarity between the polynomials/derivatives of the regression models

of the energy profile and the ground truth in an EPS.

Consider, for example, the EPS FFTW where problem size N ranges from 35840 to 41920 and

the configuration of CPU threads are grouped into 8 and there are 14 CPU threads in each group. We

refer to this EPS as EPS1 for illustration purposes. Figure 6.6(a) illustrates the regression models of

the profiles in EPS1. One can reduce the average prediction error and Euclidean distance between

the RAPL energy profile and the ground truth from 13.66% to 12.73% and from 5569.4 to 4520.9

after calibration. That is an improvement of 6.81% in average prediction error and 18% in Euclidean

distance between the RAPL energy profile and the ground truth in EPS1.

In contrast, consider the EPS FFTW where problem size N ranges from 35840 to 41920 and all

112 CPU threads are grouped into 1 group. Let this EPS be EPS2 for illustration purposes. Figure

6.6(b) illustrates the regression models of the profiles in EPS2. The average prediction error and

Euclidean distance between the RAPL energy profile and the ground truth can be reduced from

24.62% to 3.9% and from 78669 to 23184.7 after calibration. That is an improvement of 84.16%

in average prediction error and 70.5% in Euclidean distance between the RAPL energy profile and

the ground truth in EPS2. This is because the difference in polynomials and derivatives of the

regression models of both profiles in EPS2 is less than the regression models in EPS1.

Another important finding is that the calibration of less similar profiles with the ground truth can

increase the maximum prediction error between them in some cases when trying to reduce the

average error and Euclidean distance. Consider, for example, the aforementioned EPS termed as

EPS1. The maximum prediction error between the RAPL energy profile and the ground truth is

29.8% which increases to 55.65% after calibration (using the same offset that reduces the average

prediction error and Euclidean distance). That is an increase of 87% in the maximum error. We

observe similar findings with other less similar energy profiles. However, it is not the case where the

similarity is higher or the same between the energy profile under consideration and the ground truth

in an EPS. The calibration improves the maximum error, average prediction error, and Euclidean

distance between such profiles.

The calibration should only be applied to the profiles that exhibit a similar energy consumption

trend as of the ground truth. Because, it only improves the Euclidean distance and prediction error,

and thus does not improve the qualitative difference of the energy consumption trend of the profiles.

TSM also indicates whether the predictive model which is employed to construct the energy

profile, includes some extraneous contributor that does not reflect the energy consumption by the

147

6.5. EXPERIMENTAL VALIDATION OF TSM

application, or it lacks some essential contributor to the energy consumption by the application. Con-

sider, for example, the similarity results for EPS FFT_Predictive Models as presented in appendix

D. The profile LM_NonAdditive has the highest average error and the greatest Euclidean distance

with the ground truth. However, the slopes of the regression models of LM_NonAdditive are in the

same direction as the ground truth (HCLWattsUp). Furthermore, the difference between its polyno-

mials and the slopes is close to that of the LM_Additive. However, LM_NonAdditive predicts energy

consumption more than the ground truth and LM_Additive. It suggests that the predictive model of

LM_NonAdditive includes some extraneous PMC which does not reflect the energy consumption by

the application.

Therefore, we apply a constant negative offset to its predictions to calibrate them with ground

truth. As a result of this calibration, the average error and Euclidean distance of LM_NonAdditive

energy profile with the ground truth is reduced from 92% to 39%, and from 3321 to 2722. This

is an improvement of 58% in average error and 18% in Euclidean distance. Consequently, the

calibrated energy profile of LM_NonAdditive is closer to LM_Additive is in terms of its average error

and Euclidean distance with ground truth. One can observe in figure 6.8 that the regression model

of calibrated LM_NonAdditive is in a closer approximation of the ground truth (HCLWattsUp) and the

profile LM_Additive.

(a) LM (b) LM_NonAdditive Calibrated

Figure 6.8: Regression models of energy profiles in EPS FFT_Predictive Models, a) Linear Models,
and b) Linear Model NonAdditive Calibrated

This suggests that the prediction error of the energy profile LM_Additive can be improved by

removing non-relevant PMCs from the set of explanatory variables. This finding conforms to the

results as presented in [53], where the authors present a study to demonstrate how the prediction

errors of PMC based energy predictive models can be improved significantly by removing irrelevant

PMCs (which does not reflect the energy consumption by the application) from the set of predictor

variables.

Likewise the indication of extraneous PMCs, TSM can also indicate whether the predictive model

which is employed to construct the energy profile, lacks some essential contributor that strongly

reflects the energy consumption by the application. Consider, for example, the regression models

of energy profiles of FFTW_32768 and MKLFFT_43328 as shown in figure 6.5. The energy profiles

of the application with RAPL exhibit the same energy consumption patterns as of the ground truth.

However, RAPL under-reports energy consumption in comparison with the ground truth. It suggests

that the energy profiles of both applications lack the contributions by some essential components.

148

6.6. COMPARISON OF TSM AND STATE-OF-THE-ART STATISTICAL APPROACHES FOR
ENERGY OPTIMIZATION

The prediction errors and Euclidean distance of both profiles can be reduced significantly by applying

a constant positive offset to its predictions to calibrate them with the ground truth. The calibration

improves the average prediction error and Euclidean distance of FFTW_32768 by 94% and 92%

respectively, and by 83% and 78% respectively for MKLFFT_43328. Hence, TSM may be used as

a selection criterion of PMCs in energy predictive models to predict the energy consumption by an

application. However, we leave this investigation as a possible future extension of this thesis.

To summarize, the statistical approaches (correlation coefficient, average prediction error, and

the Euclidean distance between the energy profiles) fail to distinguish the energy profiles based

on their underlying energy consumption trend. They erroneously rank an inaccurate energy profile

as better than more accurate ones in some cases. TSM, on the other hand, proves to be more

effective in capturing the energy consumption behavior of the profiles and comparing their qualitative

differences. It provides more information about the energy consumption behavior of the profiles and

thus ranks them based on their proximity with energy consumption behavior of the ground truth.

Furthermore, it can also suggest if the calibration can improve the Euclidean distance, and the

average and maximum prediction errors between the energy profile under consideration and the

ground truth.

6.6 Comparison of TSM and State-of-the-art Statistical Approaches

for Energy Optimization

In this section, we compare the effectiveness of TSM with other popular statistical approaches using

a profile-based energy optimization algorithm as a yardstick that employs the workload size as a de-

cision variable. Furthermore, we demonstrate that inaccurate energy profiles can cause a significant

amount of energy loss when used for the optimization of an application for dynamic energy.

The profile-based energy optimization algorithms [18][30] leverage the variations (jumps and

drops) of the energy profiles and determine the workload distributions that optimize the total dynamic

energy consumption for the given workload size. These variations in energy profiles are caused by

the intrinsic complexities in modern hybrid heterogeneous computing platforms such as resource

contention due to non-uniform memory access (NUMA) and the tight integration of multi-core CPU

with one or more accelerators. The algorithm provides different workload distributions for non-similar

energy profiles used as input for the range of the same workload sizes. This is because non-similar

energy profiles exhibit different variations in their energy consumption behavior for the same set of

data-points. However, it provides the same workload distributions for the identically same energy

profiles used as an input for the range of the same workload sizes.

We use the profile-based data partitioning algorithm [30] to compute the decomposition of work-

load size to optimize the total dynamic energy consumption of an application. We compare the

output workload distributions provided by the algorithm when using as an input the dynamic energy

profiles ranked as similar to ground truth by popular statistical approaches and TSM. It is impor-

tant to note here that the energy optimization algorithm does not make any assumptions about the

shape of input energy profiles. The algorithm takes the following inputs: i). the workload size, ii).

the number of processors, and iii). the discrete dynamic energy functions of individual processors.

The output is the optimal workload distribution that provides minimal dynamic energy consumption

149

6.6. COMPARISON OF TSM AND STATE-OF-THE-ART STATISTICAL APPROACHES FOR
ENERGY OPTIMIZATION

for the input workload size. One or more processors may be allocated the workload of size zero.

The algorithm has a polynomial complexity of O(m3 × p3). More details on the algorithm and its

complexity can be found in [30].

For our first case study, consider the profiles in the EPS, DGEMM_AnMoHA as illustrated in fig-

ure 6.9. The combined energy profiles are constructed following the additive energy modelling ap-

proach as presented in 5.2. Briefly, the approach is based on the hypothesis that the total dynamic

energy consumption during an application execution will be equal to the sum of energies consumed

by all the individual application components executing on processors in the case of loosely-coupled

application components. Let EA(x), EB(x), and EC(x) be the dynamic energy consumption by

the application kernels of workload size x executing sequentially on processors CPU1, GPU1, and

PHI1, and CombinedABC(x) represents the sum value of their dynamic energy consumption. Let

ParallelABC(x) be the total dynamic energy consumption by parallel execution of the same appli-

cation kernels of the workload size x on the same processors. Then, the additive hypothesis holds

only if ParallelABC(x) = CombinedABC(x).

We run a parallel hybrid application DGEMM (which multiplies two dense matrices A and B of

sizes M×N where M ≤ N) as explained in 5.3.1 on HCLServer01 (technical specifications are pro-

vided in table 4.1) for the workload sizes ranging from 38400×20224 to 60672×20224 with a constant

step size of 256. The dimension M is equally partitioned among three aforementioned processors

(CPU1, GPU1, PHI1) into M1, M2 and M3 such that the matrix M1 ×N , M2 ×N and M3 ×N (i.e

12800× 20224) are computed by processor CPU1, GPU1, and PHI1 respectively. There is no com-

munication involved in these experiments. The DGEMM energy profiles in DGEMM_AnMoHA are

constructed using different combinations of additive models of application-components executing on

processors. More details on additive energy modelling of hybrid parallel applications and the design

configurations of independent experiments to construct the energy profiles in DGEMM_AnMoHA

can be found in [21].

Fig. 6.9 illustrates the energy profiles in DGEMM_AnMoHA. The average prediction error,

correlation coefficients and Euclidean distance of all energy profiles are {2%,8%,7%,6%,4%},

{0.9762,0.8641,0.5741,0.6741,0.8945} and {2258,8795,8421,7523,4515} respectively as presented

in table D.1 in appendix D. The Euclidean distance and average prediction error rank the profiles

Combined_3 and Combined_4 as the most similar with the ground truth (Parallel) after Combined_1

and Combined_5. However, one can observe in figure 6.9 that the qualitative comparison of both

profiles with the ground truth by TSM suggests them to have a different energy consumption trend

and thus drop them from the EPS. The correlation coefficient ranks the profiles in this particular EPS

inline with TSM and ranks them as the least similar. But, it does not provide the details on their qual-

itative difference such as the underlying energy consumption trend of the profiles. Similarly, both

the Euclidean distance and average prediction error ranks Combined_2 as the least similar profile

in its EPS. In contrast, TSM ranks it as the third most similar profile. However, all three statistical

approaches likewise TSM rank Combined_1 as the most similar energy profile.

We determine the workload distributions for workload sizes ranging from 38400 × 20224 to

60672×20224 using the individual additive dynamic energy profiles of each processor CPU1, GPU1,

and PHI1 as an input to the data partitioning algorithm [30]. Combined_2 provides 32% of the work-

load distributions the same as of Combined_1 whereas Combined_3 and Combined_4 provide 29%

150

6.6. COMPARISON OF TSM AND STATE-OF-THE-ART STATISTICAL APPROACHES FOR
ENERGY OPTIMIZATION

Figure 6.9: Dynamic energy profiles in EPS DGEMM_AnMoHA

and 20% same workload distributions as of Combined_1. This conforms to the results of TSM, which

ranks Combined_2 as better than Combined_3 and Combined_5.

We find that overall the workload distributions provided by the algorithm when using Combined_3

and Combined_5 as inputs, consume more dynamic energy for 82% and 81% of the data points re-

spectively in comparison with Combined_2 for the aforementioned workload sizes. Consider, for

example, the workload sizes {47616,48128,49664,50176,50688,51200,51712}. The workload distri-

butions of Combined_3 consume {52%,51%,52%,51%,54%,49%,50%} respectively more dynamic

energy than the corresponding workload distributions of Combined_2 for the aforementioned work-

load sizes. Similarly, consider the workload sizes {47104,47616,48128,49152,49664,50176,51200}.

The workload distributions of Combined_4 consume {39%,38%,40%,37%,36%,38%,40%} respec-

tively more dynamic energy than the corresponding workload distributions of Combined_2 for the

aforementioned workload sizes.

For our next case study, consider the profiles in the EPS DGEMM_EqualLoad in figure 6.10. The

energy profiles of DGEMM in this EPS are constructed with RAPL and HCLWattsUp when running

equal workload sizes on each CPU socket of a dual-socket multi-core Intel Haswell platform (tech-

nical specifications are provided in table 4.1). The details on energy profiles and their construction

procedure can be found in [21]. Briefly, we equally partition the workload sizes (M × N) ranging

from 19456×9728 to 67584×33792 on both CPU sockets such that the matrix M1×N and M2×N

are computed by processor CPU socket1 and CPU socket2 respectively. There is no communica-

tion involved in these experiments. Fig. 6.10 illustrates the parallel and combined dynamic energy

profiles constructed with RAPL and HCLWattsUp.

One can observe that all three energy profiles have almost the same strong positive corre-

lation with the ground truth. The average errors of HCLWattsUp_Combined, RAPL_Parallel, and

RAPL_Combined with HCLWattsUp_Parallel are 4.6%, 21.2% and 16.1 respectively. The correla-

tion coefficient is the same (0.9993) for both RAPL_Parallel and RAPL_Combined, and 0.9995 for

HCLWattsUp_Combined. Hence, both the correlation coefficient and average prediction error ranks

HCLWattsUp_Combined as the most accurate energy profile in its EPS. However, TSM ranks it as

the least similar. It ranks, in contrast, RAPL_Combined as the most similar to the ground truth in

that EPS.

151

6.7. SUMMARY

Figure 6.10: Dynamic energy profiles of DGEMM application in the EPS, DGEMM_EqualLoad.

We determine the workload distributions for workload sizes ranging from 19456 × 9728 to

67584× 33792 using the dynamic energy profiles constructed with RAPL and HCLWattsUp as an in-

put to the data partitioning algorithm [30]. For each workload distribution, we run the applications in

parallel on both sockets and determine its dynamic energy consumption with RAPL and HCLWattsUp

separately. We find that the workload distributions when using HCLWattsUp_Combined consuming

more dynamic energy for 65% of the data points of the aforementioned range. Consider, for exam-

ple, the workload sizes {56320,56832,57344,57856,58368,58880,59392,59904,60928}. The total

dynamic energy losses by using HCLWattsUp_Combined in comparison with RAPL_Combined to

optimize the dynamic energy consumption of DGEMM for the aforementioned workload sizes are

{17%,18%,18%,17%,18%,18%,18%,18%,17%} respectively.

To summarize, we use an energy optimization algorithm [30] as a yardstick to evaluate the ef-

fectiveness of TSM and popular statistical approaches to be used in an energy optimization loop of

an application. In all the presented case scenarios, TSM proves to be more effective. The energy

profiles ranked as similar by TSM provide more number of same workload distributions as of the

ground truth when using as an input to the energy optimization algorithm. Another important finding

is that the energy profiles erroneously ranked as similar by popular statistical approaches can cause

a significant amount of energy loss when used for the energy optimization of the application.

6.7 Summary

In this work, we presented a novel similarity measuring technique which takes into account the

underlying energy consumption trend of the energy profiles. The proposed method captures the

qualitative differences of the energy consumption behavior of energy profiles and ranks them based

on their similarity with the ground truth. It effectively addresses the challenge of determining the

goodness of application energy profiles on multicore computing nodes omnipresent in cloud infras-

tructures, supercomputers, data centers, and heterogeneous computing clusters where the shapes

of energy profiles are non-smooth and non-linear. We compared the proposed method with pop-

ular statistical approaches, which are used to estimate the similarity between energy profiles, for

152

6.7. SUMMARY

a diverse set of 235 energy profiles (constructed on multicore heterogeneous hybrid computing

platforms using state-of-the-art energy measurement techniques such as integrated power sensors,

external power meters, or energy predictive models using PMCs as predictor variables). We demon-

strated that the use of the state-of-the-art similarity approaches instead of the proposed one in the

energy optimization loop leads to significant energy losses (up to 54% in our case).

We also showed that the proposed method can help determine whether the prediction model

(that is employed to construct the profile) includes some extraneous contributor that does not re-

flect the energy consumption by the application or lacks some essential contributor to the energy

consumption by the application. This finding further helps in determining whether the calibration

can improve the average and maximum errors, and Euclidean distance between the energy profiles

(constructed with over-estimated or under-estimated energy measurements) and the ground truth.

Future work would include studying the efficiency of the proposed solution method in selecting the

predictive model variables such as performance monitoring counters (PMCs) in order to improve

their prediction accuracy.

153

Chapter 7

Summary, Current Picture and Future
Directions

7.1 Summary

Energy is identified by IEA as a major contributor to climate change [11, 12]. Energy efficiency is

central to the efforts of IEA to combat climate change [24]. The ICT are predicted in the worst-case

scenario to use up to 51% of global electricity in 2030 and contribute up to 23% of globally released

greenhouse gas emission [2]. Therefore, energy efficiency in ICT is becoming a grand technological

challenge and is now a first-class design constraint in all computing settings [15, 16].

Energy efficiency in ICT can be achieved at the hardware level (or system level) and software

level (or application level). While the system-level energy optimization approach focuses on mini-

mizing the energy consumption of the whole node by employing techniques such as the clock and

power gating, dynamic voltage and frequency scaling, etc. [166, 167, 168], application-level en-

ergy optimization techniques use application-level models and model variables such as workload

distribution, number of processes, number of threads, etc. [27, 18] as decision variables for energy

optimization of applications. However, this approach is comparatively understudied and is the main

focus of this thesis.

Modern HPC, cloud computing systems, and data centers are highly heterogeneous containing

nodes where a multicore CPU is tightly integrated with accelerators. Accurate measurement of

energy consumption during an application execution is pivotal to energy minimization techniques

at software level and many other interesting applications including the energy-centric performance

analysis, auto-tuning, energy aware dynamic task scheduling. However, a fundamental challenge

is how to measure the energy consumption by an application during its execution accurately and

reliably. It is even more challenging for energy optimization of hybrid parallel applications consists of

multiple kernels (generally speaking, multi-threaded), to accurately estimate the energy consumption

by individual application components running in parallel on different compute devices of modern

heterogeneous hybrid computing platforms.

There are three popular approaches to providing it: (a) System-level physical measurements us-

ing external power meters, (b) Measurements using on-chip power sensors and (c) Energy predic-

tive models. The first approach employing the system-level physical measurements using external

154

7.1. SUMMARY

power meters is considered to be accurate at system level. However, it lacks the ability to provide

fine-grained component-level decomposition of the energy consumption of an application. This is a

serious drawback.

On-chip integrated power sensors, on the other hand, provide fine-grain component level power

consumption details. However, there are some issues with the power data values provided by these

vendor-specific libraries. The fundamental issue with this measurement approach is the lack of

information about how a power reading is determined during the execution of an application. Apart

from accuracy, the other issues include the lack of details on update frequency of power readings,

portability, poor documentation, etc. Therefore, a good understanding and validation of energy

measurement instrumentation systems and on-chip power sensors is necessary for trusting and

employing their readings in application-level energy optimization techniques.

Energy predictive models are typically trained using a large suite of diverse benchmarks and

validated against a subset of the benchmark suite and some real-life applications. While the general

accuracy of the models has been widely researched, their application-specific accuracy, however,

has not been studied and therefore needs further validation.

We bridge this gap in this thesis, by proposing a comprehensive methodology in Chapter 3 to

compute the energy consumption by an application reliably and accurately using the system-level

measurements. In this chapter, HCLWattsUp API is presented which gathers the power-readings

from the power-meter and return the energy consumption by the application during its execution

within user-defined precision settings and confidence interval. The measurements are highly ac-

curate within the accuracy provided by the power-meter used to measure the power consumption.

The modern sophisticated revenue-graded power meters such as Yokogawa WT5000 [98] offers the

basic power accuracy of up to ±0.03% with a very high sampling rate of 10M per second. To ensure

the reliability of the measurements, a detailed statistical approach and number of precautions are

followed. To summarize, using the presented methodology and HCLWattsUp API, one can deter-

mine the dynamic energy consumption by the application in an accurate and reliable manner during

its execution. The approach is generic and thus can be applied to any power meter connected with

a computing node.

After that, in chapter 4, a first comprehensive study is presented comparing the accuracy of

state-of-the-art integrated on-chip power sensors and energy predictive models against system-

level physical measurements using external power meters, which we consider to be the ground

truth. The average error of the dynamic energy profiles obtained using on-chip power sensors

is found to be as high as 73% and the maximum reaches 300% for two scientific applications,

matrix-matrix multiplication and 2D fast Fourier transform for a wide range of problem sizes. The

applications are executed on three modern Intel multicore CPUs, two Nvidia GPUs and a Xeon

Phi accelerator. The average error of the energy predictive models employing PMCs as predictor

variables is found to be as high as 32% and the maximum reaches up to 100% for a diverse set of

seventeen benchmarks executed on two Intel multicore CPUs (one Haswell and the other Skylake).

It is demonstrated that using inaccurate energy measurements provided by on-chip sensors for

dynamic energy optimization can result in significant energy losses up to 84%.

In chapter 5, a novel method is proposed for accurate estimation of the application component-

level energy consumption employing system-level power measurements with power meters. The

155

7.1. SUMMARY

proposed method address two challenges for energy optimization of hybrid parallel applications run-

ning on modern heterogeneous NUMA computing platforms: i) Accurate modelling of the energy

consumption of individual application components when executing a hybrid application in parallel

on multiple compute devices of a heterogeneous computing node, and ii) Accurate modelling of the

energy consumption of different applications executing in parallel on a multi-socket multicore CPU

platform. The proposed method is validated on a cluster of two hybrid heterogeneous computing

nodes using three hybrid parallel applications matrix-matrix multiplication, 2D fast Fourier transform

and gene sequencing. The experiments demonstrate a high estimation accuracy of the proposed

method, with the average estimation error ranging between 2% and 5%. The average error demon-

strated by the state-of-the-art estimation methods for the same experimental setup ranges from 15%

to 75%, while the maximum reaches 178%. It is found that the use of the state-of-the-art estimation

methods instead of the proposed one in the energy optimization loop leads to significant energy

losses (up to 45% in our case). An important finding is that if an application is executed on some of

the CPU cores of a socket then the base energy (or the energy due to leakage power) of idle CPU

cores can contribute significantly to the total energy consumption by the CPU, and can even exceed

the dynamic energy consumption by the active CPU cores in some cases.

Accurate energy profiles are essential to optimization of parallel applications for energy through

workload distribution. Since there are many model-based methods available for efficient construc-

tion of energy profiles, we need an approach to measure the goodness of the profiles compared

with the ground-truth profile, which is usually built by a time-consuming but reliable method. Cor-

relation coefficient and relative error are two such popular statistical approaches, but they assume

that profiles be linear or at least very smooth functions of workload size. This assumption does

not hold true in the multicore era. Due to the complex shapes of energy profiles of applications on

modern multicore platforms, the statistical methods can often rank inaccurate energy profiles higher

than the more accurate ones. It leads to the significant energy losses (up to 54% in our case) when

employing such inaccurate profiles in the energy optimization loop of an application.

In chapter 6, we present the first method specifically designed for goodness measurement of

energy profiles. First, it analyses the underlying energy consumption trend of each energy profile

and removes the profiles that exhibit a trend different from that of the ground truth. Then, it ranks

the remaining energy profiles using the Euclidean distances between them and the ground truth.

We demonstrate that the proposed method is more accurate than the popular statistical approaches

and can save a significant amount of energy. It effectively addresses the challenge of determining

the goodness of application energy profiles on multicore computing nodes omnipresent in cloud

infrastructures, supercomputers, data centers, and heterogeneous computing clusters where the

shapes of energy profiles are non-smooth and non-linear.

We also showed that the proposed method can help determine whether the prediction model

(that is employed to construct the profile) includes some extraneous contributor that does not re-

flect the energy consumption by the application or lacks some essential contributor to the energy

consumption by the application, thereby inaccurately capturing the energy consumption behavior by

the application. This finding further helps in determining whether the calibration can improve the av-

erage and maximum errors, and Euclidean distance between the energy profiles (constructed with

over-estimated or under-estimated energy measurements) and the ground truth.

156

7.1. SUMMARY

In conclusion, this thesis emphasizes the importance of accurate measurement of energy con-

sumption by an application during its execution on modern multicore (and hybrid heterogeneous)

computing platforms for its energy optimization purposes. It calls attention to the inadequacies and

inaccuracy of state-of-the-art approaches in measuring the energy consumption by an application

and highlights the implications (in terms of energy losses) of employing them in energy optimiza-

tion loop of an application. For application-level energy optimization purposes, the methodologies

proposed in this thesis suggest the solutions to the challenges of accurate measurement of energy

consumption by an application during its execution and to determine their goodness in the presence

of different measurement approaches, and thus pave the way for more green-computing in general

and for energy-efficient high performance computing in particular.

Research Impact – publications emanated from this thesis: The methodology to determine

the component-level energy measurements using the system level measurements (Chapter3) laid

the basis of following publications. The results of comparative analysis of methods for measure-

ments of energy of computing (Chapter 4) are published in [37]. The additive energy modelling

methodology for accurate estimation of the application component-level energy consumption em-

ploying system-level power measurements with power meters presented in Chapter 5 is published

in [21]. This additive energy modelling methodology is used for the optimization of data-parallel ap-

plications on heterogeneous HPC platforms for dynamic energy through workload distribution pub-

lished in [39], and the extended version of this work is published in [30]. The same additive energy

modelling methodology also laid the basis of the following studies: a) the bi-objective optimization

for performance and energy on heterogeneous processors [20], and b) a comprehensive study of

linear energy predictive models employing utilization and PMCs on modern multicore CPUs [169].

The methodologies presented in Chapters 3 and 5 are also followed in the study [170] to determine

the energy of communication of performance of optimal matrix partitioning for parallel computing on

a hybrid heterogeneous server. The methodology to measure the goodness of energy profiles of

parallel application presented in Chapter 6 is published in [77].

One of the recommendations by the reference [37] is that linear energy predictive models can

be employed in the optimization of applications for dynamic energy provided they meet the following

criteria: (a) Model parameters employed in the models must be deterministic and reproducible, (b)

Model parameters are selected based on physical significance originating from fundamental physical

laws such as conservation of energy of computing. Both the criteria are contained in the additivity

test proposed in Reference [52]. In [17], we elucidated the challenges to energy and performance

optimization of parallel application introduced by the advent of multi-core architectures. In [78],

we study how that the accuracy of state-of-the-art energy predictive models can be improved by

selecting performance monitoring counters based on a property of additivity. In [54], we compare

following two types of energy predictive models: i) linear regression, and ii) sophisticated statistical

learning models (random forest and neural network)) employing PMCs that are selected by different

criterion such as additivity, correlation coefficient and principal component analysis. For all the

aforementioned research works, the component-level energy consumption is determined using the

system-level power measurements by following the methodology presented in Chapter 3.

157

7.2. FUTURE WORKS

7.2 Future Works

Following can be the potential future works which could be relevant in the extension of this thesis:

1. The energy modeling of rather complex hybrid applications consists of a number of kernels

(application-components) that are tightly coupled or cannot be scaled neatly as a function of

problem size.

2. Determine the dynamic energy consumption by the computing elements which are not inde-

pendently powered.

3. An approach viable to optimizing the dynamic energy consumption by the CPU socket when

running an application on some of the CPU cores, by optimizing the contribution by the idle

CPU cores.

4. A comprehensive study to analyze the energy consumption by intra-node and inter-node com-

munication of a hybrid application.

5. A comprehensive study providing the insight of decomposition of energy consumption by a

hybrid application’s intra-node communication and computation.

6. Using the proposed similarity matching approach in Chapter 6 as an aide to the selection

criterion of model parameters (PMCs) set to construct the energy predictive model.

7. A comprehensive study to explore the application of proposed goodness measuring approach

(TSM) in other fields such as time-series analysis for closely related problem of similarity

matching, and its comparison with the stat-of-the-art similarity finding approaches employed

in such fields.

8. A middle-ware that unifies the component-level decomposition of energy consumption (Chap-

ter 3), the additive energy modelling (Chapter 5) and the similarity matching approach for

accurate measurement of the application-component level energy consumption (Chapter 6)

with a model-based workload partitioning algorithm to optimize the energy consumption of a

hybrid application executing on a hybrid heterogeneous computing platform.

9. An energy-aware scheduling of virtual machines deployment and resource allocations using

the methodology presented in Chapter 5.

10. The results obtained with HCLWattsUp can be compared with a measurement system de-

signed specifically for HPC infrastructure.

7.3 Current Picture, Recommendations and Future Directions

Finally, we conclude with presenting the current picture of energy of computing in general, lessons

learned from this thesis and our recommendations for the use of on-chip sensors and energy pre-

dictive models, and some likely future directions of the methods for measurements of energy of

computing.

158

7.3. CURRENT PICTURE, RECOMMENDATIONS AND FUTURE DIRECTIONS

7.3.1 Current Picture

In modern data-driven world, HPC is the core of the industrial, societal, and scientific advancements.

For decades, the performance maximization has been the chief concern of both the hardware archi-

tects and the software developers. The hardware acceleration and the use of co-processors together

with CPU are becoming a popular choice to gain the performance boost while keeping the power

budget low. This includes both the new customized hardware for particular application domain such

as TPU, VPU and NPU; and the modifications in existing platforms such as Xeon Phi co-processors,

general purpose GPU and FPGA. Such accelerators together with main processors and memory,

constitute a heterogeneous system and are greatly prevalent now in modern ICT devices ranging

from handheld mobile devices to HPC systems for many reasons such as growing accelerated com-

putational needs and power constraints.

As a result of Dennard scaling breakdown, energy efficiency is becoming an equally impor-

tant design concern with performance in ICT. The focus of maximizing the performance of HPC in

terms of completing the hundreds of trillion floating-point operations per second (FLOPS) has led

the supercomputers to consume an enormously high amount of energy in terms of electricity and

for cooling down purposes. Current HPC systems are already consuming Megawatts of energy.

For example, the world’s most powerful supercomputer, as of 2019, Summit consumes around 13

Megawatts of power [1] which is roughly equivalent to the power draw of roughly over 10000 house-

holds. As per TOP500 list of November 2019, the top 4 supercomputers consume a total of over 50

mega watts (MW) of electricity. The power consumption by the top 10 in the list has increased over

a span of 10 years from about 25 MW in 2008 to around 83 MW in 2018 which is an increase of

232%. Because of such high power consumption, future HPC systems are highly likely to be power

constrained. For example, DOE aims to deploy an exascale supercomputer capable of performing

1 million trillion (1018) floating-point operations per second in a power envelope of 20-30 megawatts

[22]. Owing to the superior performance per watt in state-of-art accelerators, contemporary compu-

tational clusters, data centres and supercomputers are getting highly heterogeneous so that 102 out

of top 500 supercomputers [1] are heterogeneous. Therefore, improving performance and energy

consumption has turned into one major issue in heterogeneous HPC. It is becoming a grand tech-

nological challenge and is now a first-class design constraint in all computing settings ranging from

handheld mobile [15, 16].

Integrated on-chip power sensors are now prevalent in mainstream processors and accelerators

such as Intel and AMD Multicore CPUs, Nvidia GPUs, and Xeon Phis. There are vendor-specific

libraries available to acquire the power data from these integrated power-sensors. However, based

on our study, we can not recommend use of state-of-the-art on-chip sensors (RAPL for multicore

CPUs, NVML for GPUs, MPSS for Xeon Phis). The fundamental issue with this measurement

approach is the lack of information about how a power reading for a component is determined

during the execution of an application utilizing the component. The lack of information on accuracy

of power data acquired using vendor-specific libraries (such as in case of RAPL, and Intel-MPSS)

is another fundamental issue. While the accuracy of this information is reported in the case of

NVML, experimental results demonstrate that practical accuracy is worse. Moreover, the dynamic

energy profile patterns of the on-chip sensors differ significantly from the patterns obtained using

the ground truth, which suggests that the measurements using on-chip sensors do not capture the

159

7.3. CURRENT PICTURE, RECOMMENDATIONS AND FUTURE DIRECTIONS

holistic picture of the dynamic energy consumption during an application execution. Furthermore,

owing to the nature of the deviations of the energy measurements provided by on-chip sensors from

the ground truth, calibration can not improve the accuracy of the on-chip sensors to an extent that

can allow them to be used in optimization of applications for dynamic energy. At the same time,

we observed that the energy measurements reported by the on-chip sensors are deterministic and

reproducible and, therefore can be used as parameters in energy predictive models.

Voltage change of the components in modern computing hardware are supported through volt-

age regulators (VRs). VR performs two following major functions in providing voltage to a computing

device: i) it stabilizes the supplied voltage, and ii) it changes the supplied voltage according to the

needs of the device. Several power saving mechanisms are provided to control and configure the

power consumption in modern computing hardware using the VRs. Integrated on-chip sensors typi-

cally use VRs to determine the power consumption by an component. Hence, the poor accuracy of

on-chip power sensors can be attributed mainly to employing inaccurate VRs. It is reported that VRs

from the same manufacturer lot may exhibit different accuracies [46]. Instead of higher accurate VRs

(such as within an accuracy of ±5%), less accurate VR (for example within an accuracy of ±20%),

are integrated by chip manufacturers for cost saving purposes [46]. However, to compensate the re-

ported inaccuracies in for current output (IMON) from a VR to a processor, an approach is recently

proposed to use a programmable load line from BIOS instead of actual implemented load line. This

programmed load line value adds an offset to the determined inaccuracy of the VR to increase its

accuracy [46].

Energy predictive models using performance monitoring counters emerged as a dominant mea-

surement method. Its main advantage compared to the system-level physical measurements using

power meters is the fine-grained decomposition of energy consumption during the execution of an

application. This approach, however, has several shortcomings:

• Accuracy: The accuracy of energy predictive model is very poor, in general.

• Reliability: Model parameters (PMCs) in most cases are not reproducible.

• Standardization: There is a lack of consensus among the research works which report pre-

diction accuracies ranging from poor to excellent.

• Model parameter selection criterion: The accuracy of models is dependent on the selection

of the PMCs used as predictor variables. It is not a trivial task to find a best set of PMCs which

reflects the energy consumption for all types of workloads in equally effective way.

• Compliance with fundamental physical laws: In general, the model parameters (PMCs)

are selected following the techniques such as principal component analysis or on the basis

of their high positive correlation with energy consumption without any insight of the physical

significance of the model variables originating from fundamental physical laws such as con-

servation of energy of computing.

• Implementation Complexity: The model construction process is highly complex and requires

a tremendous programming effort and time to automate and collect all the PMCs available on

a computing platform.

160

7.3. CURRENT PICTURE, RECOMMENDATIONS AND FUTURE DIRECTIONS

• Portability: An energy predictive model purely based on PMCs lacks portability. This is be-

cause all the PMCs available for a CPU processor may not be present in a GPU processor

due to inherent architectural differences, or even for the next-generation CPU processor from

the architecture space.

These limitations make them a poor choice for modelling a hybrid application executing in par-

allel on different compute devices of a heterogeneous computing platform. These are important

discoveries to keep in mind when basing new research using the integrated on-chip power sensors

and predictive models based on PMCs.

Another fundamental yet understudied challenge for energy-efficient computing is how to mea-

sure the goodness of energy profiles? While there is a plethora of different methods and approaches

have been proposed to solve the goodness measuring (similarity/pattern matching) problem in many

other fields such as data mining, time series similarity analysis, and graph (matching) theory, it is

comparatively less-studied for the energy of computing. The two popular statistical approaches (cor-

relation coefficient and relative error) employed to determine the goodness of energy profiles of an

application mainly rely on the assumption that the profiles be linear or at least very smooth functions

of workload size. This assumption does not hold true in the multicore era. Due to the complex

shapes of energy profiles of applications on modern multicore platforms, the statistical methods can

often rank inaccurate energy profiles higher than more accurate ones and employing such profiles

in the energy optimization of an application leads to significant energy losses.

7.3.2 Recommendations and Future Directions in General

Since system-level physical measurements based on power meters are accurate and reliable, we

recommend using the approach presented in Chapter 3 as the fundamental building block for the

fine-grained device-level decomposition of the energy consumption during the execution of an ap-

plication. Additive Energy modelling approach (AnMoHA) proposed in chapter 5 can be used to

construct the accurate energy profiles of individual application (components) of (a hybrid) parallel

executing application(s) on multiple independent compute devices.

We envisage hardware vendors maturing their on-chip sensor technology to an extent where en-

ergy optimization programmers will be provided necessary information of how a power measurement

is determined for a component, the frequency or sampling rate of the measurements, its reported

accuracy and finally how to programmatically obtain this measurement within a sufficient accuracy

and low overhead. Furthermore, we envisage the chip manufacturers to adopt such an approach

which addresses the poor reliability and accuracy of VRs and the power values provided by the

integrated on-chip sensors. Furthermore, we envisage the standardization of programmatic inter-

faces of current vendor-specific libraries and tools to acquire the power-data from integrated power

sensors. As a result, we envisage that the integrated on-chip power sensors would emerge as a

predominant method for measuring the energy of computing once the chip-makers address the poor

reliability and accuracy of power data provided by them.

Linear energy predictive models can be employed in the optimization of applications for dynamic

energy provided they meet the following criteria: (a) Model parameters employed in the models must

be deterministic, (b) Model parameters are selected based on the physical significance originating

161

7.3. CURRENT PICTURE, RECOMMENDATIONS AND FUTURE DIRECTIONS

from fundamental physical laws such as conservation of energy of computing. Both the criteria are

contained in the additivity test proposed in Reference [52]. Use of parameters with high additiv-

ity improves the prediction accuracy of the model. Additivity test can also be employed to select

parameters for machine learning (or black box) methods such as neural networks, random forests,

etc., provided the methods use linear functional building blocks internally [78, 54]. While there is

experimental evidence demonstrating good accuracy for these types of models, a sound theoreti-

cal analysis is lacking. At this point, we do not recommend the use of non-linear energy predictive

models since they lack serious theoretical and experimental analysis. It can be one of the future

research directions for researchers.

We find that high-level model parameters designed by combining PMCs (using functions based

on physical significance with dynamic energy) may be deterministic instead of individual PMCs,

which are raw counters. PMCs traditionally have been developed to aid low-level performance anal-

ysis and tuning but have been widely adopted for energy predictive modeling. We would call the

high-level model parameters, energy monitoring counts (EMCs), that are discovered from insights

based on the theory of energy predictive models for computing proposed in [53] and that are ideal

for employment as predictor variables in energy predictive models.

Finally, we recommend using such an approach instead of correlation coefficient and relative

error that takes into account the qualitative differences of the energy profiles when measuring

their goodness with the ground-truth profile, which is usually built by a time-consuming but reliable

method. TSM proposed in Chapter 6 is the first attempt to address this fundamental yet understud-

ied problem. We envisage more research works to contribute by proposing the techniques while

considering different service-related constraints such as energy or/and performance optimization of

applications executing on modern multicore architectures.

162

Bibliography

[1] Top500, “Top500 list,” November, 2019. https://www.top500.org/lists/2019/11/.

[2] A. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to

2030,” Challenges, vol. 6, p. 117157, Apr 2015.

[3] H. P. Computing and Q. T. U. C.2), “Shaping europe’s digital future, high-performance comput-

ing,” November 2019. https://ec.europa.eu/digital-single-market/en/policies/
high-performance-computing.

[4] T. W. H. O. of the Press Secretary, “Executive order – creating a national strate-

gic computing initiative,” 2015. Executive Order by President Barack Obama

https://obamawhitehouse.archives.gov/the-press-office/2015/07/29/
executive-order-creating-national-strategic-computing-initiative.

[5] F. Bührer, F. Fischer, G. Fleig, A. Gamel, M. Giffels, T. Hauth, M. Janczyk, K. Meier, G. Quast,

B. Roland, and et al., “Dynamic virtualized deployment of particle physics environments on a

high performance computing cluster,” Computing and Software for Big Science, vol. 3, May

2019. http://dx.doi.org/10.1007/s41781-019-0024-5.

[6] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics,

volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter,

vol. 11, no. 3, pp. 33–35, 2006.

[7] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design

of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of Solid-State

Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[8] H. Sutter, “The free lunch is over: A fundamental turn toward con- currency in software,” Dr.

Dobb’s Journal, vol. 30, p. 202210, March 2005.

[9] W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant, O. H. Dokumaci, A. Ku-

mar, X. Wang, J. B. Johnson, and M. V. Fischetti, “Silicon cmos devices beyond scaling,” IBM

Journal of Research and Development, vol. 50, no. 4.5, pp. 339–361, 2006.

[10] M. M. Waldrop, “The chips are down for moore’s law,” Nature, vol. 530, pp. 144–147, February

2016.

[11] IEA, “Climate change,” 2020. https://www.iea.org/topics/climate-change.

163

https://www.top500.org/lists/2019/11/
https://ec.europa.eu/digital-single-market/en/policies/high-performance-computing
https://ec.europa.eu/digital-single-market/en/policies/high-performance-computing
https://obamawhitehouse.archives.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://obamawhitehouse.archives.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
http://dx.doi.org/10.1007/s41781-019-0024-5
https://www.iea.org/topics/climate-change

BIBLIOGRAPHY

[12] IEA, “Global energy & co2 status report 2019,” 2019. https://www.iea.org/reports/
global-energy-and-co2-status-report-2019.

[13] N. Jones, “How to stop data centres from gobbling up the worlds electricity,” Nature, vol. 561,

pp. 163–166, 2018.

[14] ATAG, “Facts and figures,” january 2020. https://www.atag.org/facts-figures.html.

[15] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, “A survey of power and

energy predictive models in hpc systems and applications,” ACM Comput. Surv., vol. 50,

pp. 37:1–37:38, June 2017.

[16] G. Fagas, J. P. Gallagher, L. Gammaitoni, and D. J. Paul, “Energy challenges for ict,” in ICT

- Energy Concepts for Energy Efficiency and Sustainability (G. Fagas, L. Gammaitoni, J. P.

Gallagher, and D. J. Paul, eds.), ch. 1, Rijeka: IntechOpen, 2017. https://doi.org/10.
5772/66678.

[17] A. Lastovetsky, M. Fahad, H. Khaleghzadeh, S. Khokhriakov, R. Reddy, A. Shahid, L. Szustak,

and R. Wyrzykowski, “How pre-multicore methods and algorithms perform in multicore era,” in

International Conference on High Performance Computing, pp. 527–539, Springer, 2018.

[18] A. Lastovetsky and R. R. Manumachu, “New model-based methods and algorithms for per-

formance and energy optimization of data parallel applications on homogeneous multicore

clusters,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–

1133, 2017.

[19] R. R. Manumachu and A. Lastovetsky, “Bi-objective optimization of data-parallel applications

on homogeneous multicore clusters for performance and energy,” IEEE Transactions on Com-

puters, vol. 67, no. 2, pp. 160–177, 2018.

[20] H. Khaleghzadeh, M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “Bi-objective

optimization of data-parallel applications on heterogeneous hpc platforms for performance and

energy through workload distribution,” IEEE Transactions on Parallel and Distributed Systems,

vol. 32, no. 3, pp. 543–560, 2021.

[21] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “Accurate energy modelling of

hybrid parallel applications on modern heterogeneous computing platforms using system-level

measurements,” IEEE Access, pp. 1–1, 2020.

[22] DOE, “Preliminary conceptual design for an exascale computing initiative,” 2014.

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/
Exascale_Preliminary_Plan_V11_sb03c.pdf.

[23] Green500, “The green500,” 2020. https://www.top500.org/green500/.

[24] IEA, “Iea sets out pillars for success at cop21,” june 2015. https://www.iea.org/news/
iea-sets-out-pillars-for-success-at-cop21.

164

https://www.iea.org/reports/global-energy-and-co2-status-report-2019
https://www.iea.org/reports/global-energy-and-co2-status-report-2019
https://www.atag.org/facts-figures.html
https://doi.org/10.5772/66678
https://doi.org/10.5772/66678
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/Exascale_Preliminary_Plan_V11_sb03c.pdf
https://www.top500.org/green500/
https://www.iea.org/news/iea-sets-out-pillars-for-success-at-cop21
https://www.iea.org/news/iea-sets-out-pillars-for-success-at-cop21

BIBLIOGRAPHY

[25] J. Hsu, “Three paths to exascale supercomputing,” IEEE Spectrum, vol. 53, no. 1, pp. 14–15,

2016.

[26] A. Chakrabarti, S. Parthasarathy, and C. Stewart, “A pareto framework for data analytics on

heterogeneous systems: Implications for green energy usage and performance,” in Parallel

Processing (ICPP), 2017 46th International Conference on, pp. 533–542, IEEE, 2017.

[27] J. Lang and G. Rünger, “An execution time and energy model for an energy-aware execution of

a conjugate gradient method with CPU/GPU collaboration,” Journal of Parallel and Distributed

Computing, vol. 74, no. 9, pp. 2884 – 2897, 2014.

[28] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz, “Perfect strong scaling using no ad-

ditional energy,” in 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-

cessing, pp. 649–660, May 2013.

[29] B. Subramaniam and W. Feng, “Statistical power and performance modeling for optimizing the

energy efficiency of scientific computing,” in 2010 IEEE/ACM Int’l Conference on Green Com-

puting and Communications and Int’l Conference on Cyber, Physical and Social Computing,

pp. 139–146, Dec 2010.

[30] H. Khaleghzadeh, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “Novel data partitioning

algorithm for dynamic energy optimisation on heterogeneous hpc platforms,” Concurrency and

Computation: Practice and Experience, 2020.

[31] V. Cardellini, A. Fanfarillo, and S. Filippone, “Heterogeneous sparse matrix computations on

hybrid GPU/CPU platforms.,” in PARCO, pp. 203–212, 2013.

[32] J. Colaço, A. Matoga, A. Ilic, N. Roma, P. Tomás, and R. Chaves, “Transparent application

acceleration by intelligent scheduling of shared library calls on heterogeneous systems,” in

Parallel Processing and Applied Mathematics, pp. 693–703, Springer, 2013.

[33] A. L. Lastovetsky and R. Reddy, “Data partitioning with a realistic performance model of net-

works of heterogeneous computers,” in Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International, p. 104, IEEE, 2004.

[34] M. Radmanović, D. Gajić, and R. Stanković, “Efficient computation of galois field expressions

on hybrid CPU-GPU platforms.,” Journal of Multiple-Valued Logic & Soft Computing, vol. 26,

2016.

[35] A. Lastovetsky and R. Reddy, “Data partitioning with a functional performance model of het-

erogeneous processors,” International Journal of High Performance Computing Applications,

vol. 21, no. 1, pp. 76–90, 2007.

[36] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel data-partitioning algorithm

for performance optimization of data-parallel applications on heterogeneous HPC platforms,”

IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 10, pp. 2176–2190, 2018.

165

BIBLIOGRAPHY

[37] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A comparative study of methods

for measurement of energy of computing,” Energies, vol. 12, no. 11, 2019. https://www.
mdpi.com/1996-1073/12/11/2204.

[38] Heterogeneous Computing Laboratory, University College Dublin, “HCLWattsUp: API for

power and energy measurements using WattsUp Pro Meter,” 2020. https://csgitlab.
ucd.ie/ucd-hcl/hclwattsup.

[39] H. Khaleghzadeh, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “Optimization of data-

parallel applications on heterogeneous hpc platforms for dynamic energy through work-

load distribution,” in Euro-Par 2019: Parallel Processing Workshops (U. Schwardmann,

C. Boehme, D. B. Heras, V. Cardellini, E. Jeannot, A. Salis, C. Schifanella, R. R. Manumachu,

D. Schwamborn, L. Ricci, O. Sangyoon, T. Gruber, L. Antonelli, and S. L. Scott, eds.), (Cham),

pp. 320–332, Springer International Publishing, 2020.

[40] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos, “Energy consumption

estimation in embedded systems,” IEEE Transactions on Instrumentation and Measurement,

vol. 57, pp. 797–804, April 2008.

[41] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan, “Power-

Management architecture of the intel microarchitecture Code-Named sandy bridge,” IEEE

Micro, vol. 32, pp. 20–27, March 2012.

[42] I. Corporation, “Intel xeon phi coprocessor system software developers guide,” 06

2014. https://software.intel.com/sites/default/files/managed/09/07/
xeon-phi-coprocessor-system-software-developers-guide.pdf.

[43] Nvidia, “Nvidia management library: NVML reference manual,” 10 2020. https://docs.
nvidia.com/pdf/NVML_API_Reference_Guide.pdf.

[44] A. M. Devices, “Bios and kernel developer’s guide (bkdg) for amd family 15h models 00h-

0fh processors,” 2012. https://www.amd.com/system/files/TechDocs/42301_15h_Mod_
00h-0Fh_BKDG.pdf.

[45] C. Gough, I. Steiner, and W. Saunders, Energy Efficient Servers Blueprints for Data Center

Optimization. Apress, 2015. isbn:978-1-4302-6637-2.

[46] T. Rahal-arabi and M. S. Bashir, “Programmable imon accuracy in power systems,” March

2019. https://patentscope.wipo.int/search/en/detail.jsf?docId=US239827974&
_cid=P21-KAVQ9S-45020-1 and US Patent 20190094948.

[47] M. Burtscher, I. Zecena, and Z. Zong, “Measuring gpu power with the k20 built-in sen-

sor,” in Proceedings of Workshop on General Purpose Processing Using GPUs, GPGPU-7,

pp. 28:28–28:36, ACM, 2014.

[48] I. Corporation, “Intelligent platform management interface spec,” 10 2013. https:
//www.intel.com/content/dam/www/public/us/en/documents/product-briefs/
ipmi-second-gen-interface-spec-v2-rev1-1.pdf.

166

https://www.mdpi.com/1996-1073/12/11/2204
https://www.mdpi.com/1996-1073/12/11/2204
https://csgitlab.ucd.ie/ucd-hcl/hclwattsup
https://csgitlab.ucd.ie/ucd-hcl/hclwattsup
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://patentscope.wipo.int/search/en/detail.jsf?docId=US239827974&_cid=P21-KAVQ9S-45020-1
https://patentscope.wipo.int/search/en/detail.jsf?docId=US239827974&_cid=P21-KAVQ9S-45020-1
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf

BIBLIOGRAPHY

[49] I. Corporation, “Dcmi – data center manageability interface specification,” 08

2011. https://www.intel.com/content/dam/www/public/us/en/documents/
technical-specifications/dcmi-v1-5-rev-spec.pdf.

[50] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-system power analysis and

modeling for server environments,” in In Proceedings of Workshop on Modeling, Benchmark-

ing, and Simulation, pp. 70–77, 2006.

[51] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C. Snoeren, and R. K.

Gupta, “Evaluating the effectiveness of model-based power characterization,” in Proceedings

of the 2011 USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11,

pp. 12–12, USENIX Association, 2011.

[52] A. Shahid, M. Fahad, R. Reddy, and A. Lastovetsky, “Additivity: A selection criterion for per-

formance events for reliable energy predictive modeling,” Supercomputing Frontiers and Inno-

vations, vol. 4, no. 4, 2017.

[53] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “Energy of computing on multi-

core cpus: Predictive models and energy conservation law,” 2019.

[54] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “A comparative study of tech-

niques for energy predictive modelling using performance monitoring counters on modern

multicore cpus,” IEEE Access, vol. 8, pp. 143306–143332, 2020.

[55] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-oriented tool suite for

x86 multicore environments,” in Parallel Processing Workshops (ICPPW), 2010 39th Interna-

tional Conference on, pp. 207–216, IEEE, 2010.

[56] J. W. Kuzma, Basic statistics for the health sciences (3rd ed.). Mayfield Publishing Company,

1280 Villa Street, Mountain View, CA 94041, 1998. isbn:1-55934-951-4.

[57] M. Abramowitz, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathe-

matical Tables. Dover Publications, Inc., 31 E. Second St. Mineola, NY, United States, 1974.

isbn:0486612724.

[58] W. Dargie, “A stochastic model for estimating the power consumption of a processor,” IEEE

Transactions on Computers, vol. 64, no. 5, 2015.

[59] Z. Zhou, J. H. Abawajy, F. Li, Z. Hu, M. U. Chowdhury, A. Alelaiwi, and K. Li, “Fine-grained

energy consumption model of servers based on task characteristics in cloud data center,”

IEEE access, vol. 6, pp. 27080–27090, 2018.

[60] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E. Nagel, “Power mea-

surement techniques on standard compute nodes: A quantitative comparison,” in Performance

analysis of systems and software (ISPASS), 2013 IEEE international symposium on, pp. 194–

204, IEEE, April 2013.

167

https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/dcmi-v1-5-rev-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/dcmi-v1-5-rev-spec.pdf

BIBLIOGRAPHY

[61] B. Subramaniam and W.-c. Feng, “Towards energy-proportional computing for enterprise-

class server workloads,” in Proceedings of the 4th ACM/SPEC International Conference on

Performance Engineering, ICPE 13, (New York, NY, USA), p. 1526, Association for Comput-

ing Machinery, 2013. https://doi.org/10.1145/2479871.2479878.

[62] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer, “An energy

efficiency feature survey of the intel haswell processor,” in 2015 IEEE International Parallel

and Distributed Processing Symposium Workshop, pp. 896–904, May 2015.

[63] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in action: Experiences in

using rapl for power measurements,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 3,

pp. 9:1–9:26, Mar. 2018.

[64] J.-A. Rico-Gallego, J.-C. Díaz-Martín, and A. L. Lastovetsky, “Extending τ -lop to model concur-

rent MPI communications in multicore clusters,” Future Gener. Comput. Syst., vol. 61, p. 6682,

Aug. 2016. https://doi.org/10.1016/j.future.2016.02.021.

[65] B. Li and L. Han, “Distance weighted cosine similarity measure for text classification,” in In-

telligent Data Engineering and Automated Learning – IDEAL 2013 (H. Yin, K. Tang, Y. Gao,

F. Klawonn, M. Lee, T. Weise, B. Li, and X. Yao, eds.), (Berlin, Heidelberg), pp. 611–618,

Springer Berlin Heidelberg, 2013.

[66] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series,” in

Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining,

AAAIWS94, p. 359370, AAAI Press, 1994.

[67] T. Nakamura, K. Taki, H. Nomiya, K. Seki, and K. Uehara, “A shape-based similarity mea-

sure for time series data with ensemble learning,” Pattern Analysis and Applications, vol. 16,

pp. 535–548, 2013.

[68] G. E. P. Box and G. Jenkins, Time Series Analysis, Forecasting and Control. Holden-Day, Inc.,

500 Sansome St. San Francisco, CA, United States, 1976. isbn:978-0-8162-1104-3.

[69] Q. Yu, L. Jibin, and L. Jiang, “An improved arima-based traffic anomaly detection algorithm

for wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 12,

no. 1, p. 9653230, 2016. https://doi.org/10.1155/2016/9653230.

[70] D. Piccolo, “A distance measure for classifying arima models,” Journal of Time Series Analy-

sis, vol. 11, no. 2, pp. 153–164, 1990. https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-9892.1990.tb00048.x.

[71] M. Ramoni, P. Sebastiani, and P. Cohen, “Bayesian clustering by dynamics,” Machine Learn-

ing, vol. 47, no. 1, pp. 91–121, 2002. https://doi.org/10.1023/A:1013635829250.

[72] E. A. Maharaj, “Cluster of time series,” Journal of Classification, vol. 17, no. 2, pp. 297–314,

2000. https://doi.org/10.1007/s003570000023.

[73] H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 11th Edition. John

Wiley & Sons, Inc., Hoboken, New Jersey, United States, 2013. isbn:978-1-118-43441-3.

168

https://doi.org/10.1145/2479871.2479878
https://doi.org/10.1016/j.future.2016.02.021
 https://doi.org/10.1155/2016/9653230
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1990.tb00048.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1990.tb00048.x
https://doi.org/10.1023/A:1013635829250
https://doi.org/10.1007/s003570000023

BIBLIOGRAPHY

[74] T. Warren Liao, “Clustering of time series data-a survey,” Pattern Recogn., vol. 38,

p. 18571874, Nov. 2005. https://doi.org/10.1016/j.patcog.2005.01.025.

[75] F. Iglesias and W. Kastner, “Analysis of similarity measures in times series clustering for the

discovery of building energy patterns,” 2013.

[76] A. Sanfeliu and K. Fu, “A distance measure between attributed relational graphs for pattern

recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, pp. 353–

362, May 1983.

[77] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A novel statistical learning-

based methodology for measuring the goodness of energy profiles of applications executing

on multicore computing platforms,” Energies, vol. 13, no. 15, 2020. https://www.mdpi.com/
1996-1073/13/15/3944.

[78] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “Improving the accuracy of en-

ergy predictive models for multicore cpus using additivity of performance monitoring counters,”

in Parallel Computing Technologies (V. Malyshkin, ed.), (Cham), pp. 51–66, Springer Interna-

tional Publishing, 2019.

[79] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Transactions on

Computers, vol. C-21, no. 9, pp. 948–960, 1972.

[80] M. J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE, vol. 54, no. 12,

pp. 1901–1909, 1966.

[81] H. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” Sparse Matrix Proceedings - SIAM,

pp. 256–278, 1978.

[82] Y.-J. Xu, Z.-Y. Luo, X.-W. Li, L.-J. Li, and X.-L. Hong, “Leakage current estimation of cmos

circuit with stack effect,” Journal of Computer Science and Technology, vol. 19, p. 708717,

Sep 2004. http://dx.doi.org/10.1007/BF02945598.

[83] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and

V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer, vol. 36, no. 12,

pp. 68–75, 2003.

[84] A. Agarwal, S. Mukhopadhyay, C. H. Kim, A. Raychowdhury, and K. Roy, “Leakage power

analysis and reduction: models, estimation and tools,” IEE Proceedings - Computers and

Digital Techniques, vol. 152, no. 3, pp. 353–368, 2005.

[85] K. DeVogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “Modeling the temperature bias of

power consumption for nanometer-scale cpus in application processors,” in 2014 Interna-

tional Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS XIV), pp. 172–180, 2014.

[86] A. Sarwar, “Cmos power consumption and cpd calculation,” Tech. Rep. SCAA035B, Texas

Instrument, June 1997. https://www.ti.com/lit/an/scaa035b/scaa035b.pdf?&ts=
1589553055343.

169

https://doi.org/10.1016/j.patcog.2005.01.025
https://www.mdpi.com/1996-1073/13/15/3944
https://www.mdpi.com/1996-1073/13/15/3944
http://dx.doi.org/10.1007/BF02945598
https://www.ti.com/lit/an/scaa035b/scaa035b.pdf?&ts=1589553055343
https://www.ti.com/lit/an/scaa035b/scaa035b.pdf?&ts=1589553055343

BIBLIOGRAPHY

[87] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level power

analysis and optimizations,” SIGARCH Comput. Archit. News, vol. 28, p. 8394, May 2000.

https://doi.org/10.1145/342001.339657.

[88] S. Khokhriakov, R. R. Manumachu, and A. Lastovetsky, “Multicore processor computing is not

energy proportional: An opportunity for bi-objective optimization for energy and performance,”

Applied Energy, vol. 268, p. 114957, 2020. http://www.sciencedirect.com/science/
article/pii/S0306261920304694.

[89] Xixhou Feng, Rong Ge, and K. W. Cameron, “Power and energy profiling of scientific applica-

tions on distributed systems,” in 19th IEEE International Parallel and Distributed Processing

Symposium, pp. 10 pp.–, 2005.

[90] R. Ge, X. Feng, S. Song, H. Chang, D. Li, and K. W. Cameron, “PowerPack: Energy profiling

and analysis of high-performance systems and applications,” IEEE Transactions on Parallel

and Distributed Systems, vol. 21, pp. 658–671, May 2010.

[91] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Powermon: Fine-grained and integrated

power monitoring for commodity computer systems,” in Proceedings of the IEEE Southeast-

Con 2010 (SoutheastCon), pp. 479–484, 2010.

[92] D. Bedard, A. Porterfield, R. Fowler, and M. Y. Lim, “Powermon 2: Fine-grained, integrated

power measurement,” Tech. Rep. TR-09-04, RENCI, North Carolina, October 2009. https:
//www.renci.org/wp-content/pub/techreports/TR-09-04.pdf.

[93] AnalogDevices, “Adm1191.” https://www.analog.com/en/products/adm1191.html#
product-overview.

[94] J. H. Laros, P. Pokorny, and D. DeBonis, “Powerinsight - a commodity power measurement

capability,” in 2013 International Green Computing Conference Proceedings, pp. 1–6, 2013.

[95] beagleboard.org, “Beaglebone.” https://beagleboard.org/bone.

[96] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel, M. Simon, and Y. Georgiou,

“Hdeem: High definition energy efficiency monitoring,” in Proceedings of the 2nd International

Workshop on Energy Efficient Supercomputing, E2SC 14, p. 110, IEEE Press, 2014. https:
//doi-org.ucd.idm.oclc.org/10.1109/E2SC.2014.13.

[97] L. Brochard, R. Panda, D. DeSota, F. Thomas, and R. H. Bell, “Power and energy-aware pro-

cessor scheduling,” in Proceedings of the 2nd ACM/SPEC International Conference on Per-

formance Engineering, ICPE 11, (New York, NY, USA), p. 227234, Association for Computing

Machinery, 2011. https://doi.org/10.1145/1958746.1958780.

[98] YOKOGAWA, “Wt5000 precision power analyzer.” https://tmi.yokogawa.com/eu/
solutions/products/power-analyzers/wt5000/.

[99] Vernier, “Watts up pro.” http://www.vernier.com/files/manuals/wu-pro.pdf.

170

https://doi.org/10.1145/342001.339657
http://www.sciencedirect.com/science/article/pii/S0306261920304694
http://www.sciencedirect.com/science/article/pii/S0306261920304694
https://www.renci.org/wp-content/pub/techreports/TR-09-04.pdf
https://www.renci.org/wp-content/pub/techreports/TR-09-04.pdf
https://www.analog.com/en/products/adm1191.html#product-overview
https://www.analog.com/en/products/adm1191.html#product-overview
https://beagleboard.org/bone
https://doi-org.ucd.idm.oclc.org/10.1109/E2SC.2014.13
https://doi-org.ucd.idm.oclc.org/10.1109/E2SC.2014.13
https://doi.org/10.1145/1958746.1958780
https://tmi.yokogawa.com/eu/solutions/products/power-analyzers/wt5000/
https://tmi.yokogawa.com/eu/solutions/products/power-analyzers/wt5000/
http://www.vernier.com/files/manuals/wu-pro.pdf

BIBLIOGRAPHY

[100] Z. Z. P. P. Measurement, “Precision power analyzers.” https://www.zes.com/en/
Products/Precision-Power-Analyzers.

[101] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL: Memory power esti-

mation and capping,” in 2010 ACM/IEEE International Symposium on Low-Power Electronics

and Design (ISLPED), pp. 189–194, Aug 2010.

[102] I. Corporation, “Intel manycore platform software stack (Intel

MPSS),” 06 2014. https://software.intel.com/en-us/articles/
intel-manycore-platform-software-stack-mpss.

[103] Perf Wiki, “perf: Linux profiling with performance counters,” 2017. https://perf.wiki.
kernel.org/index.php/Main_Page.

[104] PAPI, “Performance application programming interface 5.4.1,” 2015. http://icl.cs.utk.
edu/papi/.

[105] IntelPCM, “Processor counter monitor (pcm),” 2020. https://github.com/opcm/pcm.

[106] CUPTI, “CUDA profiling tools interface,” 2017. https://developer.nvidia.com/
cuda-profiling-tools-interface.

[107] J. Mair, Z. Huang, and D. Eyers, “Manila: Using a densely populated pmc-space for power

modelling within large-scale systems,” Parallel Computing, vol. 82, pp. 37–56, 2019.

[108] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson, “Fine-grain power breakdown of mod-

ern out-of-order cores and its implications on skylake-based systems,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 13, no. 4, p. 56, 2016.

[109] S. Roy, A. Rudra, and A. Verma, “An energy complexity model for algorithms,” in Proceedings

of the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, (New York,

NY, USA), pp. 283–304, ACM, 2013.

[110] A. Lewis, S. Ghosh, and N.-F. Tzeng, “Run-time energy consumption estimation based on

workload in server systems,” in Proceedings of the 2008 Conference on Power Aware Com-

puting and Systems, HotPower’08, (Berkeley, CA, USA), pp. 4–4, USENIX Association, 2008.

[111] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani, “A methodology to predict

the power consumption of servers in data centres,” in Proceedings of the 2Nd International

Conference on Energy-Efficient Computing and Networking, e-Energy ’11, (New York, NY,

USA), pp. 1–10, ACM, 2011.

[112] W. L. Bircher and L. K. John, “Complete system power estimation using processor perfor-

mance events,” IEEE Transactions on Computers, vol. 61, pp. 563–577, Apr. 2012.

[113] T. Heath, B. Diniz, B. Horizonte, E. V. Carrera, and R. Bianchini, “Energy conservation in

heterogeneous server clusters,” in 10th ACM SIGPLAN symposium on Principles and practice

of parallel programming (PPoPP), pp. 186–195, ACM, 2005.

171

https://www.zes.com/en/Products/Precision-Power-Analyzers
https://www.zes.com/en/Products/Precision-Power-Analyzers
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
https://github.com/opcm/pcm
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/cuda-profiling-tools-interface

BIBLIOGRAPHY

[114] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-level full-system power

models,” in Proceedings of the 2008 Conference on Power Aware Computing and Systems,

HotPower’08, USENIX Association, 2008.

[115] F. Bellosa, “The benefits of event-driven energy accounting in power-sensitive systems,” in

Proceedings of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new

challenges for the operating system, ACM, 2000.

[116] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Methodology

and empirical data,” in 36th annual IEEE/ACM International Symposium on Microarchitecture,

p. 93, IEEE Computer Society, 2003.

[117] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling for microarchitectural

performance and power prediction,” SIGARCH Comput. Archit. News, vol. 34, pp. 185–194,

Oct. 2006.

[118] T. Li and L. K. John, “Run-time modeling and estimation of operating system power consump-

tion,” SIGMETRICS Perform. Eval. Rev., vol. 31, pp. 160–171, June 2003.

[119] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,”

in 34th Annual International Symposium on Computer architecture, pp. 13–23, ACM, 2007.

[120] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation and thread scheduling

via performance counters,” SIGARCH Comput. Archit. News, vol. 37, pp. 46–55, July 2009.

[121] M. D. Powell, A. Biswas, J. S. Emer, S. S. Mukherjee, B. R. Sheikh, and S. Yardi, “CAMP: A

technique to estimate per-structure power at run-time using a few simple parameters,” in 2009

IEEE 15th International Symposium on High Performance Computer Architecture, pp. 289–

300, Feb 2009.

[122] B. Goel, S. A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati, “Portable scalable

per-core power estimation for intelligent resource management,” in Portable, Scalable, per-

Core Power Estimation for Intelligent Resource Management, Green Computing Conference,

2010 International, 2010-08-16 2010.

[123] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou, “Distributed systems meet eco-

nomics: pricing in the cloud,” in Proceedings of the 2nd USENIX conference on Hot topics in

cloud computing, USENIX Association, 2010.

[124] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “Decomposable and re-

sponsive power models for multicore processors using performance counters,” in Proceedings

of the 24th ACM International Conference on Supercomputing, pp. 147–158, ACM, 2010.

[125] R. Basmadjian and H. de Meer, “Evaluating and modeling power consumption of multi-core

processors,” in Future Energy Systems: Where Energy, Computing and Communication Meet

(e-Energy), 2012 Third International Conference on, pp. 1–10, May 2012.

172

BIBLIOGRAPHY

[126] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “The McPAT

framework for multicore and manycore architectures: Simultaneously modeling power, area,

and timing,” ACM Trans. Archit. Code Optim., vol. 10, no. 1, 2013.

[127] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying sources of error in

McPAT and potential impacts on architectural studies,” in High Performance Computer Archi-

tecture (HPCA), 2015 IEEE 21st International Symposium on, pp. 577–589, IEEE, 2015.

[128] H. Hong, Sunpyand Kim, “An integrated GPU power and performance model,” SIGARCH

Comput. Archit. News, vol. 38, no. 3, 2010.

[129] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Statistical power mod-

eling of GPU kernels using performance counters,” in International Green Computing Confer-

ence and Workshops (IGCC), IEEE, 2010.

[130] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and accurate model of power-

performance efficiency on emergent gpu architectures,” in 2013 IEEE 27th International Sym-

posium on Parallel and Distributed Processing, pp. 673–686, May 2013.

[131] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level energy model of

intel’s xeon phi processor,” in International Symposium on Low Power Electronics and Design

(ISLPED), pp. 389–394, Sep. 2013.

[132] Z. Al-Khatib and S. Abdi, “Operand-value-based modeling of dynamic energy consumption of

soft processors in fpga,” in Applied Reconfigurable Computing (K. Sano, D. Soudris, M. Hüb-

ner, and P. C. Diniz, eds.), pp. 65–76, Springer International Publishing, 2015.

[133] Qing Wu, M. Pedram, and Xunwei Wu, “Clock-gating and its application to low power design

of sequential circuits,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 47, no. 3, pp. 415–420, 2000.

[134] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-v power supply

high-speed digital circuit technology with multithreshold-voltage cmos,” IEEE Journal of Solid-

State Circuits, vol. 30, no. 8, pp. 847–854, 1995.

[135] Hailin Jiang, M. Marek-Sadowska, and S. R. Nassif, “Benefits and costs of power-gating tech-

nique,” in 2005 International Conference on Computer Design, pp. 559–566, 2005.

[136] I. Unified Extensible Firmware Interface (UEFI) Forum, “Advanced configuration and power

interface (acpi) specification,” January 2019. https://uefi.org/sites/default/files/
resources/ACPI_6_3_final_Jan30.pdf.

[137] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos digital design,” IEEE

Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, 1992.

[138] R. J. W. Dominik Brodowski, Nico Golde and V. Kumar, “Linux cpufreq.” https://www.
kernel.org/doc/Documentation/cpu-freq/governors.txt.

173

https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

BIBLIOGRAPHY

[139] J. Haj-Yahya, E. Rotem, A. Mendelson, and A. Chattopadhyay, “A comprehensive evaluation

of power delivery schemes for modern microprocessors,” in 20th International Symposium on

Quality Electronic Design (ISQED), pp. 123–130, 2019.

[140] M. Mezmaz, N. Melab, Y. Kessaci, Y. Lee, E.-G. Talbi, A. Zomaya, and D. Tuyttens, “A parallel

bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems,”

Journal of Parallel and Distributed Computing, vol. 71, no. 11, pp. 1497 – 1508, 2011.

[141] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing,” Future Generation Computer Sys-

tems, vol. 28, no. 5, pp. 755 – 768, 2012. Special Section: Energy efficiency in large-scale

distributed systems.

[142] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective energy-efficient workflow scheduling using

list-based heuristics,” Future Generation Computer Systems, vol. 36, pp. 221 – 236, 2014.

[143] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya, “Energy efficient genetic-based sched-

ulers in computational grids,” Concurrency: Practice and Experience, vol. 27, pp. 809–829,

Mar. 2015.

[144] J. M. Marszalkowski, M. Drozdowski, and J. Marszalkowski, “Time and energy performance of

parallel systems with hierarchical memory,” Journal of Grid Computing, vol. 14, no. 1, pp. 153–

170, 2016.

[145] R. Reddy Manumachu and A. L. Lastovetsky, “Design of self-adaptable data parallel applica-

tions on multicore clusters automatically optimized for performance and energy through load

distribution,” Concurrency and Computation: Practice and Experience, vol. 31, no. 4, p. e4958,

2019.

[146] F. Juarez, J. Ejarque, and R. M. Badia, “Dynamic energy-aware scheduling for paral-

lel task-based application in cloud computing,” Future Generation Computer Systems,

vol. 78, pp. 257 – 271, 2018. http://www.sciencedirect.com/science/article/pii/
S0167739X1630214X.

[147] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,” Computer, no. 12,

pp. 33–37, 2007.

[148] D. Wong and M. Annavaram, “Knightshift: Scaling the energy proportionality wall through

server-level heterogeneity,” in 2012 45th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pp. 119–130, 2012.

[149] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “Towards energy pro-

portionality for large-scale latency-critical workloads,” in 2014 ACM/IEEE 41st International

Symposium on Computer Architecture (ISCA), pp. 301–312, 2014.

[150] C.-H. Hsu and S. W. Poole, “Measuring server energy proportionality,” in Proceedings of the

6th ACM/SPEC International Conference on Performance Engineering, ICPE 15, (New York,

NY, USA), p. 235240, Association for Computing Machinery, 2015. https://doi.org/10.
1145/2668930.2688049.

174

http://www.sciencedirect.com/science/article/pii/S0167739X1630214X
http://www.sciencedirect.com/science/article/pii/S0167739X1630214X
https://doi.org/10.1145/2668930.2688049
https://doi.org/10.1145/2668930.2688049

BIBLIOGRAPHY

[151] R. Sen and D. A. Wood, “Energy-proportional computing: A new definition,” Computer, vol. 50,

no. 8, pp. 26–33, 2017.

[152] N. J. SALKIND, Encyclopedia of Measurement and Statistics Spurious Correlation, vol. 1.

SAGE Publications, Inc., 2455 Teller Road, Thousand Oaks, California 91320, 2007. isbn:1-

4129-1611-9.

[153] C.-L. Lin, “Hardness of approximating graph transformation problem,” in Algorithms and Com-

putation (D.-Z. Du and X.-S. Zhang, eds.), (Berlin, Heidelberg), pp. 74–82, Springer Berlin

Heidelberg, 1994.

[154] Asanovic, Krste and Bodik, Ras and Catanzaro, Bryan Christopher and Gebis, Joseph James

and Husbands, Parry and Keutzer, Kurt and Patterson, David A. and Plishker, William Lester

and Shalf, John and Williams, Samuel Webb and Yelick, Katherine A., “The landscape of

parallel computing research: A view from berkeley,” Tech. Rep. UCB/EECS-2006-183, Elec-

trical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA,

United States, December 2006. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html.

[155] I. Corporation, “Fft-length-and-layout-advisor,” October 2017. https://software.intel.
com/content/www/us/en/develop/articles/fft-length-and-layout-advisor.html.

[156] F. org, “Fftw reference,” November 2003. http://www.fftw.org/fftw2_doc/fftw_3.html.

[157] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-of-core implementation for

accelerator kernels on heterogeneous clouds,” The Journal of Supercomputing, vol. 74, no. 2,

pp. 551–568, 2018.

[158] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on multicore and multi-GPU

platforms using functional performance models,” Computers, IEEE Transactions on, vol. 64,

no. 9, pp. 2506–2518, 2015.

[159] T. Smith and M. Waterman, “Identification of common molecular subsequences,” Journal of

Molecular Biology, vol. 147, no. 1, pp. 195 – 197, 1981.

[160] O. Gotoh, “An improved algorithm for matching biological sequences,” Journal of Molecular

Biology, vol. 162, no. 3, pp. 705 – 708, 1982.

[161] T. Rognes, “Faster Smith-Waterman database searches with inter-sequence SIMD paralleli-

sation,” BMC bioinformatics, vol. 12, no. 1, p. 1, 2011.

[162] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating Smith-Waterman protein

database search by coupling CPU and GPU SIMD instructions,” BMC bioinformatics, vol. 14,

no. 1, p. 1, 2013.

[163] Y. Liu and B. Schmidt, “SWAPHI: Smith-Waterman protein database search on Xeon Phi

coprocessors,” in 2014 IEEE 25th International Conference on Application-Specific Systems,

Architectures and Processors, pp. 184–185, IEEE, 2014.

175

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://software.intel.com/content/www/us/en/develop/articles/fft-length-and-layout-advisor.html
https://software.intel.com/content/www/us/en/develop/articles/fft-length-and-layout-advisor.html
http://www.fftw.org/fftw2_doc/fftw_3.html

BIBLIOGRAPHY

[164] J. Rawlings, S. Pantula, and D. Dickey, Applied regression analysis, a research tool. Springer

texts in statistics, New York, NY: Springer, 2. ed ed., 1998. isbn:0387984542.

[165] E. Ostertagová, “Modelling using polynomial regression,” Procedia Engineering, vol. 48,

pp. 500 – 506, 2012. Modelling of Mechanical and Mechatronics Systems and http:
//www.sciencedirect.com/science/article/pii/S1877705812046085.

[166] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An energy-efficient task scheduling

algorithm in dvfs-enabled cloud environment,” Journal of Grid Computing, vol. 14, pp. 55–74,

Mar 2016.

[167] T. Cao, Y. He, and M. Kondo, “Demand-aware power management for power-constrained

hpc systems,” in 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pp. 21–31, May 2016.

[168] P. Arroba, J. M. Moya, J. L. Ayala, and R. Buyya, “Dynamic voltage and frequency scaling-

aware dynamic consolidation of virtual machines for energy efficient cloud data centers,” Con-

currency and Computation: Practice and Experience, vol. 29, no. 10, p. e4067, 2017.

[169] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “Improving the accuracy of

energy predictive models for multicore cpus by combining utilization and performance events

model variables,” Journal of Parallel and Distributed Computing, vol. 151, pp. 38–51, 2021.

[170] T. Malik and A. Lastovetsky, “Towards optimal matrix partitioning for data parallel computing

on a hybrid heterogeneous server,” IEEE Access, vol. 9, pp. 17229–17244, 2021.

[171] P. Alonso, R. M. Badia, J. Labarta, M. Barreda, M. F. Dolz, R. Mayo, E. S. Quintana-Ortí, and

R. Reyes, “Tools for power-energy modelling and analysis of parallel scientific applications,” in

2012 41st International Conference on Parallel Processing, pp. 420–429, Sep. 2012.

[172] F. Mantovani and E. Calore, “Performance and power analysis of HPC workloads on hetero-

geneous multi-node clusters,” Journal of Low Power Electronics and Applications, vol. 8, no. 2,

p. 13, 2018.

[173] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.

[174] D. W. Mount, Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory

Press, 2004. isbn:9780879696870.

[175] NVIDIA, “Parallel Thread Execution ISA Version 7.0,” 2020. http://docs.nvidia.com/
cuda/parallel-thread-execution/#axzz4WCeB6m8U.

176

http://www.sciencedirect.com/science/article/pii/S1877705812046085
http://www.sciencedirect.com/science/article/pii/S1877705812046085
http://docs.nvidia.com/cuda/parallel-thread-execution/#axzz4WCeB6m8U
http://docs.nvidia.com/cuda/parallel-thread-execution/#axzz4WCeB6m8U

Appendix A

Comparison of dynamic energy
consumption using PMC-based energy
predictive models and HCLWattsUp

A.1 Introduction

This chapter is based on mainly the research work done by my colleague Arsalan Shahid and as

presented in [37]. It presents the prediction accuracy of linear energy predictive models employing

PMCs as predictor variables with HCLWattsUp and Intel RAPL. In section 2.2.4, we present the

popular tools to read the PMCs on a given platform such as Likwid [55], Linux Perf [103], PAPI [104]

and Intel PCM [105]. Extrae and Paraver tools [171, 172] can also be used to gather the PMCs.

These tools are built on top of PAPI.

A.1.1 Experimental Setup

The experimental setup is composed of two multicore CPU platforms (specifications given in Tables

4.1 and 4.2).Table A.1 presents the list of applications employed in our experimental suite. The appli-

cation suite contains highly optimized memory bound and compute bound scientific routines such as

DGEMM and FFT from Intel Math Kernel Library (MKL), benchmarks from NASA Application Suite

(NAS), Intel HPCG, stress, naive matrix-matrix multiplication and naive matrix-vector multiplication.

The reason to select a diverse set of applications is to avoid bias in our models and to have a range

of PMCs for different executions of diverse applications.

177

A.1. INTRODUCTION

Table A.1: List of Applications.

Application Description

MKL FFT Fast Fourier Transform

MKL DGEMM Dense Matrix Multiplication

HPCG High performance conjugate gradient

NPB IS Integer Sort, Kernel for random memory access

NPB LU Lower-Upper Gauss-Seidel solver

NPB EP Embarrassingly Parallel, Kernel

NPB BT Block Tri-diagonal solver

NPB MG Multi-Grid on a sequence of meshes

NPB FT Discrete 3D fast Fourier Transform

NPB DC Data Cube

NPB UA Unstructured Adaptive mesh, dynamic memory access

NPB CG Conjugate Gradient

NPB SP Scalar Penta-diagonal solver

NPB DT Data traffic

stress CPU, disk and I/O stress

Naive MM Naive Matrix-matrix multiplication

Naive MV Naive Matrix-vector multiplication

For a given application, we measure three quantities during its execution on our platforms. First is

the dynamic energy consumption provided by HCLWattsUp API [38] using the methodology explain

in Chapter 3. Second, we measure the execution time. Lastly, we collect all the PMCs available on

our platforms using Likwid tool [55].

Likwid can be used using a simple command-line invocation as given below where the EVENTS

represents PMCs (4 at maximum in one invocation) of the given application, APP:

likwid-perfctr -f -C S0:0-11@S1:12-23 -g EVENTS APP

The application (APP) during its execution is pinned to physical cores (0–11, 12–23) of our

platform. Likwid use likwid-pin to bind the application to the cores on any platform and lack the

facility to bind an application to memory. Therefore, we have used numactl, a command-line linux

tool to pin our applications to available memory blocks.

For Intel Haswell and Intel Skylake platform, Likwid offers 164 PMCs and 385 PMCs, respec-

tively. We eliminate PMCs with counts less than or equal to 10 since we found them to have no

physical significance for modeling the dynamic energy consumption and they are non-reproducible

over several runs of the same application on our platforms.

The reduced set contains 151 PMCs for Intel Haswell and 323 for Intel Skylake. As in a single

application run we can collect only 4 PMCs, it takes a huge amount of time to collect all of them.

Moreover, some PMCs can only be collected individually or in sets of two or three for an application

178

A.1. INTRODUCTION

run. Therefore, we observe that each application must be executed about 53 and 99 times on Intel

Haswell and Intel Skylake platform, respectively, to collect all the PMCs.

We now divide our experiments in to following two classes, Class A and Class B, as follows:

1. Class A: In this class, we study the accuracy of platform-level linear regression models using

a diverse set of applications.

2. Class B: In this class, we study the accuracy of application-specific linear regression models.

A.1.2 Accuracy of Platform-Level Linear PMC-Based Models

We select Intel Haswell multicore CPU platform (Table 4.1) for this class of experiments. We select

the PMCs commonly used by these models and they are listed below:

• IDQ_MITE_UOPS (X1)

• IDQ_MS_UOPS (X2)

• ICACHE_64B_IFTAG_MISS (X3)

• ARITH_DIVIDER_COUNT (X4)

• L2_RQSTS_MISS (X5)

• FP_ARITH_INST_RETIRED_DOUBLE (X6)

These PMCs count floating-point and memory instructions and are considered to have a very

high positive correlation with energy consumption. Table A.2 shows the correlation of the PMCs with

the dynamic energy consumption.

Table A.2: Correlation of performance monitoring computers (PMCs) with dynamic energy consump-
tion (ED). Correlation matrix showing relationship of dynamic energy with PMCs. 100% correlation
is denoted by 1.

ED X1 X2 X3 X4 X5 X6

ED 1 0.53 0.50 0.42 0.58 0.99 0.99

X1 0.53 1 0.41 0.25 0.39 0.45 0.44

X2 0.50 0.41 1 0.19 0.99 0.48 0.48

X3 0.42 0.25 0.19 1 0.21 0.41 0.40

X4 0.58 0.39 0.99 0.21 1 0.57 0.56

X5 0.99 0.45 0.48 0.41 0.57 1 0.99

X6 0.99 0.44 0.48 0.40 0.56 0.99 1

We used all the applications listed in Table A.1 with different configurations of problem sizes

to build a data-set of 277 points. Each point represents the data for one application configuration

containing its dynamic energy consumption and the PMC counts. We split this data-set in two

subsets, one for training (with 227 points) the models and the other to test (50 points) the accuracy

of models. We used this division based on best practices and experts’ opinion in this domain.

179

A.1. INTRODUCTION

Using the dataset, we build 6 linear models {A, B, C, D, E, F} using regression analysis. Model

A employs all the selected PMCs as predictor variables. Model B is based on five best PMCs with

the least energy correlated PMC (X3) removed. Model C uses four PMCs with two least correlated

PMCs (X2, X3) removed and so on until Model F, which contains just one the most correlated PMC

(X6)

The models are summarized in the Table A.3. We also show the minimum, average and maxi-

mum prediction errors of RAPL.

We will now focus on the minimum, average and maximum prediction errors of these models.

They are (2.7%, 32%, 99.9%) respectively for Model A. Model B based five most correlated PMCs

has prediction errors of (0.53%, 21.80%, 72.9%) respectively. The average prediction error signif-

icantly dropped from 32% to 21%. The prediction errors for Model C are (0.75%, 29.81%, 77.2%)

respectively. The average prediction error in this case is in between that of Model A and Model C.

Model F with just one most correlated PMC (X6) has least average prediction error of 14%. The

prediction errors of RAPL are (4.1%, 30.6%, 58.9%) From these results, we conclude that selecting

PMCs using correlation with energy does not provide any consistent improvements in the accuracy

of linear energy predictive models.

Table A.3: Linear predictive models (A-F) with intercepts and RAPL with their minimum, average
and maximum prediction errors.

Model PMCs Intercept Followed by Coefficients

Percentage Predic-

tion Errors (min,

avg, max)

A X1, X2, X3, X4, X5, X6 10, 3× 10−9, 1.9× 10−8, 3.3× 10−7, −1× 10−6, 6× 10−8, −9.3× 10−11 (2.7, 32, 99.9)

B X1, X2, X4, X5, X6 3× 10−9, 1.9× 10−8, −1× 10−6, 6.2× 10−8, −1.2× 10−10, 230 (0.53, 21.80, 72.9)

C X1, X4, X5, X6 3.7× 10−9, 7.9× 10−9, 7.5× 10−8, −5.1× 10−10, 270 (0.75, 29.81, 77.2)

D X4, X5, X6 6.7× 10−8, 9.4× 10−8, −9.7× 10−10, 490 (0.21, 23.19, 80.42)

E X5, X6 9.7× 10−8, −1.02× 10−9, 520 (2, 21.03, 83.40)

F X6 1.5× 10−9, 740 (2.5, 14.39, 34.64)

RAPL (4.1, 30.6, 58.9)

We also identified a few more causes of inaccuracy in linear regression based models by looking

at the coefficients of PMCs employed in them. Salient observations of these models are outlined

below:

• All the models have a significant intercept (β0). Therefore, the model would give predictions for

dynamic energy based on the intercept values even for the case when there is no application

executing on the platform, which is erroneous. We consider this to be a serious drawback of

existing linear energy predictive models (given in section 2.2.4), which do not understand the

physical significance of the parameters with dynamic energy consumption.

• Model A has negative coefficients (β = {β1, ..., β6}) for PMCs, X4 and X6. Similarly, Model B

have negative coefficients for PMC X4 and X6, and Models C-E, X6 has negative coefficient.

The negative coefficients in these models can give rise to negative energy consumption pre-

180

A.1. INTRODUCTION

dictions for specific applications where the counts for X4 and X6 are relatively higher than the

other PMCs.

A.1.3 Accuracy of Application-Specific PMC-Based Models

In this section, we study the accuracy of application specific energy predictive models built using

linear regression. We choose a single-socket Intel Skylake server (Table 4.2) for the experiments.

We choose two highly optimized scientific kernels: Fast Fourier Transform (FFT) and Dense Matrix-

Multiplication application (DGEMM), from Intel Math Kernel Library (MKL).

We select six PMCs (Y1-Y6) listed in the Table A.4, which have been employed as predictor

variables in energy predictive models given in literature (section 2.2.4).

Table A.4: Selected PMCs for Class B experiments along with their energy correlation for DGEMM
and FFT. 0 to 1 represents positive correlation of 0% to 100%.

Selected PMCs Corr DGEMM Corr FFT

Y1 FP_ARITH_INST_RETIRED_DOUBLE 0.99 0.98

Y2 MEM_INST_RETIRED_ALL_STORES 0.99 0.99

Y3 MEM_INST_RETIRED_ALL_LOADS 0.98 0.55

Y4 MEM_LOAD_RETIRED_L3_MISS 0.60 0.99

Y5 MEM_LOAD_RETIRED_L1_HIT 0.98 0.34

Y6 ICACHE_64B_IFTAG_MISS 0.99 0.77

We build a dataset containing 362 and 330 points representing DGEMM and FFT for a range

of problem sizes from 6400 × 6400 to 29,504 × 29,504 and 22,400 × 22,400 to 41,536 × 41,536,

respectively, with a constant step sizes of 64. We split the dataset into training and test datasets.

Training dataset for DGEMM and FFT contains 271 and 255 points used to train the energy predictive

models. Test dataset contains 91 and 75 points for both applications respectively.

Using the datasets, we build two linear models for both applications. These are Model MM and

Model FT. Figure A.1a,b shows the of dynamic energy profiles constructed with PMC base predictive

models (Model MM and Model FT), RAPL and HCLWattsUp for DGEMM and FFT, respectively.

Comparing with HCLWattsUp, the minimum, average and maximum error for DGEMM using

Model MM and RAPL are (0, 26, 218) and (0.4, 35, 161), respectively. In case of FFT, the minimum,

average and maximum error using Model FT and RAPL is (0.8, 27, 147) and (0.3, 31, 155) respec-

tively. We observe that both the models perform better in terms of average prediction accuracy than

RAPL.

181

A.1. INTRODUCTION

(a) Model MM

(b) Model FT

Figure A.1: Dynamic Energy profiles constructed with predictive models RAPL and HCLWattsUp.

182

Appendix B

Parallel Gene Sequencing Application

We use a gene sequencing application HCLSW executing the Smith-Waterman algorithm ([159,

160]) for our experiments. The application deals with alignment of DNA or protein sequences; a

sequence is an ordering of DNA letters or amino acid letters. Sequence alignment or comparison

refers to comparing two (or more) sequences by searching for a series of individual characters or

patterns that are in the same order in the sequences. When sequences are aligned, matches,

mismatches, spaces, and gaps are allowed. A gap is defined to be any maximal, consecutive run of

spaces in a single string of a given alignment. A gap may be as small as a single space.

There are two types of alignment, global alignment and local alignment. A global alignment [173]

of two strings S1 and S2 is obtained by first inserting chosen spaces, either onto or at the ends of

S1 and S2, and then placing the two resulting strings one above the other so that every character or

space in either string is opposite a unique character or a unique space in the other string. A local

alignment of two strings S1 and S2 [173] is to find two substrings α and β of S1 and S2, respectively,

whose similarity (optimal global alignment value) is maximum over all pairs of substrings from S1

and S2.

The SW algorithm uses a dynamic programming (DP) approach to determine the optimal local

alignment score of two sequences. The recurrence relations of the algorithm [159] with modifications

due to [160] using affine gap penalty functions are shown below ([161]):

Hi,j =

max

Hi−1,j−1 + P [qi, dj]

Ei,j

Fi,j

0

, i > 0 ∩ j > 0

0, i = 0 ∪ j = 0

(B.1)

Ei,j =

max

Hi,j−1 −Q

Ei,j−1 −R

0

, j > 0

0, j = 0

(B.2)

183

Fi,j =

max

Hi−1,j −Q

Ei−1,j −R

0

, i > 0

0, i = 0

(B.3)

S = max
1≤i≤m∩1≤j≤n

Hi,j (B.4)

The two sequences targeted for alignment are q, known as query sequence and d, known as

database sequence. The query sequence q is of length m and contains residues qi. The database

sequence d is of length n and contains residues dj . Hi,j is the score for aligning the prefixes of q

and d ending in the alignment of residues qi and dj . Ei,j and Fi,j are the scores of aligning the same

prefixes of q and d but ending with a gap in the query and database sequence, respectively. P [qi, dj]

is the score of aligning residues qi and dj with each other according to a substitution score matrix

P . Q is the sum of gap open and extension penalties while R is the gap extension gap penalty. S is

the overall optimal local alignment score.

For alignment of protein sequences, two well-known families of substitution scoring matrices,

PAM and BLOSUM, are used. Each value in a matrix represents an odds score, the likelihood that

the two amino acids will be aligned in alignment of similar proteins divided by the likelihood that they

will be aligned by chance in an alignment of unrelated proteins. The PAM matrices are based on a

mutational model of evolution that assumes amino acid changes occur as a Markov process, where

each amino acid change at a site is considered to be independent of previous changes at that site.

The BLOSUM matrices are derived from considering all amino acid changes observed in an aligned

region from a related family of proteins [174].

The time and space complexities of the SW DP algorithm are O(m×n) and O(m), where m < n,

assuming the use of refined linear-space methods. The performance of the SW DP algorithm is

usually measured in GCUPS, which stands for Billions of Cell Updated per Second (a cell here

refers to a cell in the DP table of dimensions m× n).

For the parallel implementation of the application on our platform, we use the following packages:

• SWIPE for Multicore CPUs [161]. This package contains highly optimized implementation of

SW algorithm using SIMD parallelization (for example: using the SSE3 intrinsic offered by

latest Intel processors).

• CUDASW++3.0 for nVidia GPU accelerators [162]. This package contains highly optimized

implementations of SW algorithm using SIMT (Single Instruction, Multiple Thread) and vir-

tualized SIMD (Single Instruction, Multiple Data) abstractions using CUDA PTX SIMD video

instructions [175] for nVidia Tesla GPUs.

• SWAPHI for Intel Xeon Phi accelerators [163]. This package contains highly optimized imple-

mentations of SW algorithm using tiled parallelization approach where instruction-level paral-

lelism using SIMD vectorization (512-bit SIMD instructions) and thread-level parallelism (using

OpenMP) are employed.

184

Appendix C

Calibration of WattsUp Pro power-meter

HCLServer01 (Table 4.1) has an Intel Haswell multicore CPU having 24 physical cores with 64 GB

main memory and integrated with two accelerators: one Nvidia K40c GPU and one Xeon Phi 3120P.

HCLServer02 (Table 4.2) has an Intel Skylake multicore CPU consisting of 22 cores and 96 GB main

memory and integrated with one Nvidia P100 GPU. These nodes are representative of computers

used in cloud infrastructures, supercomputers and heterogeneous computing clusters.

Each node has a Watts Up Pro power meter installed between its input power sockets and the

wall A/C outlets. Watts Up Pro power meters are periodically calibrated using the ANSI C12.20

revenue-grade power meter, Yokogawa WT310. The maximum sampling speed of Watts Up Pro

power meters is one sample every second. The accuracy specified in the data-sheets is ±3%. The

minimum measurable power is 0.5 watts. The accuracy at 0.5 watts is ±0.3 watts. The accuracy of

Yokogawa WT310 is ±0.1% and the sampling rate is 100K samples per second.

The dynamic energy consumption during the application execution is measured using the

WattsUp Pro power meter on each node using HCLWattsUp interface [38]. In this chapter, we

explain our methodology and some results to calibrate our power-meters.

The WattsUp Pro power-meter power measurements are compared with Yokogawa under fol-

lowing three settings:

1. Naked-eye visual monitoring

2. Monitoring server base (idle) power

3. Measurement of total energy consumption by scientific applications

The rationale to these settings is to compare the power readings of both meters in all typical

scenarios.

C.1 Naked-eye visual monitoring

The procedure is presented as follows:

• First, one WattsUp Pro power-meters is plugged in between the input power sockets and the

wall A/C outlets with each server.

185

C.2. MONITORING SERVER BASE POWER

• Once the servers are turned on and are in stable condition, the power readings in Watts as

displayed on LCDs of the meters are monitored and noted for each server.

• The WattsUp Pro power meters are carefully plugged off.

• The Yokogawa power meter is plugged in between the each server is plugged in between the

input power sockets and the wall A/C outlets with each server.

• Once the servers are turned on and are in stable condition, the power readings in Watts as

displayed on LCDs of the meters are monitored and noted for each server.

• We find a difference of 2 and 3 watts for HCLServer01 and HCLServer02 respectively.

C.2 Monitoring server base power

The procedure is the same for both WattsUp Pro power meters and Yokogawa WT310. In general:

• Both servers are connected with power meters and Yokogawa WT310.

• Once the servers are stable, the power consumption by each server is obtained progrmatically

from each power meters.

• For WattsUp Pro, a Perl script is used to obtain the power readings within the frequency of 1

second. Similarly, a python API is used to obtain the power readings within the frequency of 1

second from Yokogawa.

• We compare the power readings obtained from with naked-eye visual monitoring with software.

We find no significant overhead of software.

• The base power of each server is monitored for more than 3 hours on different times. Fig-

ure C.1 illustrate the base power profiles of HCLServer01 and HCLserver02 using both power

meters. One can observe that the base power profiles constructed with both power meters

on each server exhibit the same pattern. However, HCLServer01 exhibits more power vari-

ations than HCLServer2. For HCLServer2, there are power spikes after every half an hour

for a couple of seconds. However, this difference is due to the difference in OS and software

configuration on both servers.

• Table C.1 presents the minimum, average, and maximum power consumption by each servers

as reported by WattsUp Pro and Yokogawa power meters. In a nut shell, there is a difference

of 1 or 2 watts between them.

C.3 Measurement of total energy consumption by scientific applica-

tions

For this study, we choose two scientific applications: 1) DGEMM and 2) FFT from Intel MKL. On

HCLServer01, we execute DGEMM for problem sizes ranging from 4096×4096 to 30720×30720

186

C.3. MEASUREMENT OF TOTAL ENERGY CONSUMPTION BY SCIENTIFIC APPLICATIONS

(a) HCLServer01 (b) HCLServer02

Figure C.1: Base power of HCLServers with HCLWattsUp and Yokogawa.

Table C.1: Minimum, maximum and average of idle power using WattsUp Pro and Yokogawa power
meters on HCLServer01 and HCLServer02

HCLServer01 HCLServer02
WattsUp Pro Yokogawa WattsUp Pro Yokogawa

Min 196 197.72 99.1 99.93
Average 198.2 201.0 100.03 102.06
Max 212.8 219.47 123.3 125.6

with a constant step size of 1024. On HCLServer02, DGEMM is executed for problem sizes rang-

ing from 15360×15360 to 30720×30720 with a constant step size of 1024. We build the total

energy consumption profiles of DGEMM on each server using both power meters. For our next

batch of experiments on HCLServer1, we execute FFT for problem sizes ranging from 4096×4096

to 30720×30720 with a constant step size of 1024. On HCLServer02, FFT is executed for problem

sizes ranging from 8384×8384 to 62880×62880 with a constant step size of 2096. We build the total

energy consumption profiles of DGEMM on each server using both power meters. Figures C.3 and

C.2 illustrate the total energy consumption profiles for FFT and DGEMM on both servers, respec-

tively. Table C.2 presents the average error in percentage for total energy consumption by DGEMM

and FFT on HCLServer1 and HCLServer2 as reported by each power meter. The average error for

DGEMM is 4.95% and 9.25% on HCLServer2 and HCLServer1, respectively. For FFT, the average

measurement error is 6% and 7.4% on HCLServer2 and HCLServer1, respectively.

(a) HCLServer01 (b) HCLServer02

Figure C.2: Total energy consumption by DGEMM with HCLWattsUp and Yokogawa on HCLServers.

187

C.3. MEASUREMENT OF TOTAL ENERGY CONSUMPTION BY SCIENTIFIC APPLICATIONS

(a) HCLServer01 (b) HCLServer02

Figure C.3: Total energy consumption by FFT with HCLWattsUp and Yokogawa on HCLServers.

Table C.2: Comparison of minimum, average, and maximum measurement errors for DGEMM and
FFT on HCLServer01 and HCLServer02 using WattsUp Pro and Yokogawa

HCLServer01 Errors

[%] (Min, Avg, Max)

HCLServer02 Errors

[%] (Min, Avg, Max)

DGEMM (0.58, 9.25, 33.18) (2.01, 4.95, 8.16)

FFT (0.20, 7.41, 16.90) (0.11, 6.02, 15.84)

188

Appendix D

Similarity Results of Group A

Group A comprises of the EPS where there are more than one energy profile of the same appli-

cation constructed with different approaches such as on-chip power sensors, system-level power

measurements provided by power meters, etc.

Table D.1: Similarity results for Group A.

Correlation Average Error[%]
Euclidean Distance

Between Profiles
Similarity Class

TSM

Rank

DGEMM_DiffLoad

0.9992 1.2646 1975.9796 same 1

0.9668 63.5344 90472.0176 opposite -

0.9682 64.9294 92104.4449 opposite -

DGEMM_EqualLoad

0.9995 4.5639 13623.2651 similar 3

0.9993 21.2295 8270.0584 similar 2

0.9993 16.1469 7625.6795 similar 1

FFT_Different Load

0.9933 3.7506 483.9803 same 1

0.8983 75.6650 8394.0909 similar 3

0.9002 65.9681 7318.8504 similar 2

FFT(socket1)_DGEMM(socket2)

0.9960 1.4562 441.0981 same 1

0.8596 29.9055 8014.0644 similar 2

0.8900 34.5172 9025.7489 similar 3

FFT(HCLServer01)-Sensors

0.9785 4.3116 3806.0259 similar 1

0.9105 15.0796 12702.5932 similar 2

DGEMM(HCLServer01)- Sensors

0.9383 3.0720 3803.1372 similar 1

0.9037 19.0641 19732.2589 opposite -

DGEMM_AnMoHA

189

0.9762 2.0190 2257.6144 same 1

0.8641 7.7355 8794.7977 similar 3

0.5741 6.5949 8420.5404 opposite -

0.6741 5.9963 7522.9645 opposite -

0.8945 4.0381 4515.2345 similar 2

FFT_Predictive Models

0.9887 37.2600 2414.0882 similar 5

0.9924 91.8419 3321.1547 similar 6

0.9994 7.8324 472.2268 similar 2

0.9991 11.8382 593.4430 similar 4

0.9998 3.8569 293.9054 similar 1

0.9997 5.1557 334.3252 similar 3

DGEMM_Predictive Models

0.9993 27.3336 6217.9387 similar 5

0.9973 39.0893 10576.7382 similar 6

0.9999 8.5995 2076.8247 similar 1

0.9985 13.1182 6574.3586 similar 3

0.9999 3.0024 1276.4288 similar 2

0.9986 6.2412 6556.0057 similar 4

190

Appendix E

Similarity Results of Group B

An EPS is a constituent of Application, Configuration Parameters, Profile, Platform , Problem Size

and Step Size.

Table E.1: Similarity Results of Group B. Here Problem Size is (M ×N) where 0 ≥M ≤ N .

Application,
Configuration Parameter,

Profile, Platform

Problem Size,
Step Size(SS)

Correlation
Average_
Error[%]

Euclidean
Distance

Between Profiles

TSM
Similarity

DGEMM, Problem Size,

RAPL, HCLServer01

M=12800-20480,

N=20480, SS=256
0.9319 10.2457 5161.1469 opposite

FFT, Problem Size,

RAPL, HCLServer01

M=15104-18688,

N=23552, SS=64
0.8315 9.2421 92.3809 similar

DGEMM, Problem Size,

Sensors, HCLServer01

M=10752-21504,

N=21504, SS=256
0.7945 53.7876 3841.1001 opposite

FFT, Problem Size,

Sensors, HCLServer01

M=15104-18688,

N=23552, SS=64
0.7779 11.2001 152.0388 opposite

DGEMM, Problem Size,

Sensors, HCLServer02

M=18176-22528,

N=22528 SS=128
0.5959 13.1062 1745.9799 opposite

FFT, Problem Size,

Sensors, HCLServer02

M=21504-25600,

N=25600, SS=128
0.6419 73.3393 258.5867 opposite

DGEMM, Problem Size,

Sensors, HCLServer01

M=12800-20480,

N=20480, SS=256
0.8791 37.0786 14275.7493 similar

FFT, Problem Size,

Sensors, HCLServer01

M=15104-18688,

N=23552, SS=64
0.8534 40.8715 2715.9380 similar

DGEMM, Problem Size,

RAPL, HCLServer01

M=512-16384,

N=16384, SS=512
0.9694 62.4245 4014.0942 similar

FFT, Problem Size,

RAPL, HCLServer01

M=16256-22528,

N=22528, SS=128
0.9964 16.0109 92.5880 similar

DGEMM, Problem Size,

RAPL, HCLServer02

N=6400-29504,

SS=64
0.9857 36.1267 10085.1871 similar

FFT, Problem Size,

RAPL, HCLServer02

N=22400-41536,

SS=64
0.9928 28.6694 2557.1955 opposite

IntelMKLFFT, CPU Cores,

RAPL, HCLServer03
N=43328 0.9976 13.0454 6699.9534 similar

FFTW, CPU Threads,

RAPL, HCLServer03
N=32768 0.9999 7.4316 5485.4512 similar

FFTW, Problem Size,

RAPL, HCLServer03
N=32768 0.9836 10.4683 1134.8875 similar

191

MKL, Problem Size,

RAPL, HCLServer03

N=25600-46080,

SS=512,G=1,T=56
0.9998 13.5649 1489.3704 opposite

N=25600-46080,

SS=512,G=2,T=28
0.9999 12.3451 1375.7246 similar

N=25600-46080,

SS=512,G=4,T=14
0.9999 11.9745 1398.6977 similar

N=25600-46080,

SS=512,G=7,T=8
0.9999 12.3395 1603.8175 similar

N=25600-46080,

SS=512,G=8,T=7
0.9999 12.4057 1695.1576 similar

N=25600-46080,

SS=512,G=14,T=4
0.9998 12.9987 2153.5891 similar

N=25600-46080,

SS=512,G=28,T=2
0.9997 14.4593 3179.7384 similar

FFTW, Problem Size,

RAPL, HCLServer03

M=512 - 10240,

N=20480, SS=512
0.9977 6.5117 937.3472 similar

M=544-10272,

N=20544, SS=512
0.9674 11.1643 360.9246 similar

M=576-10304,

N=20608, SS=512
0.8846 7.0593 114.4169 same

M=308-10336,

N=20672, SS=512
0.4054 8.0483 218.7999 similar

M=128-10368,

N=20736, SS=512
0.5962 5.9544 83.1244 similar

M=108-10400,

N=20800, SS=512
0.7604 6.7705 100.8612 similar

M=192-10432,

N=20864, SS=512
0.8973 10.5817 326.0428 similar

M=224 10464,

N=20992, SS=512
0.6522 9.9545 285.7523 similar

M=256-10496,

N=20992, SS=512
0.5333 9.1475 274.5072 similar

M=288-10528,

N=21056, SS=512
0.9991 5.9861 819.9989 similar

M=320-10560,

N=21120, SS=512
0.1895 5.6268 81.5864 similar

M=352-10592,

N=21184, SS=512
0.9967 6.3244 928.4300 similar

M=384-10624,

N=21248, SS=512
0.9480 12.5488 471.9435 similar

M=416-10656,

N=21312, SS=512
0.9964 6.4423 900.8481 similar

M=448-10688,

N=21376, SS=512
0.9461 10.0455 333.6082 similar

M=480-10720,

N=21440, SS=512
0.9487 10.2235 281.0485 similar

M=512-10752,

N=2154, SS=512
0.8474 6.1786 97.7390 similar

192

OpenBlas, Problem Size,

RAPL, HCLServer03

N=10240-26112,

SS=512,G=2,T=56
0.9999 23.3422 15628.3773 similar

N=10240-26112,

SS=512, G=4,T=28
0.9998 20.8883 31537.2291 similar

N=10240-26112,

SS=512,G=7,T=16
0.9998 22.7078 48717.0221 similar

N=10240-26112,

SS=512, G=8,T=14
0.9998 21.5933 58193.8600 similar

N=10240-26112,

SS=512,G=14,T=8
0.9997 15.8470 95839.8982 similar

N=10240-26112,

SS=512,G16,T=7
0.9997 15.8663 143722.2497 similar

N=10240-26112,

SS=512,G=28,T=4
0.9998 15.4408 258623.5761 similar

N=10240-26112,

SS=512,G=56,T=2
0.9994 16.1594 31431.2584 similar

MKL, Problem Size,

RAPL, HCLServer03

N=32768-43456,

SS=64,G=1,T=56
0.9999 14.1218 7423.8074 same

N=32768-43456,

SS=64, G=2,T=28
0.9998 13.0212 7452.8136 similar

N=32768-43456,

SS=64, G=4,T=14
0.9998 13.0325 7923.3728 similar

N=32768-43456,

SS=64,G=7,T=8
0.9999 13.2150 8457.6352 same

N=32768-43456,

SS=64,G=8,T=7
0.9999 13.2373 8563.3480 same

N=32768-43456,

SS=64,G=14,T=4
1.0000 13.6266 9325.5557 similar

N=32768-43456,

SS=64,G=28,T=2
0.9999 15.0864 11717.0005 same

FFTW, Problem Size,

RAPL, HCLServer03

N=35480-41920,

SS=64,G=1,T=112
0.9978 24.6166 78669.0124 same

N=35480-41920,

SS=64,g=2,T=56
0.9995 12.2964 5993.3535 same

N=35480-41920,

SS=64,G=4,T=28
0.9976 13.7285 6227.9184 similar

N=35480-41920,

SS=64,G=7,T=16
0.9966 14.5904 5915.2791 similar

N=35480-41920,

SS=64,G=8,T=14
0.9970 13.6615 5569.3958 similar

N=35480-41920,

SS=64, G=14,T=8
0.9946 13.1908 5102.1465 similar

N=35480-41920,

SS=64,G=16,T=7
0.9947 12.3994 4850.3314 similar

193

FFTW, Problem Size,

RAPL, HCLServer03

N=30720-34816,

SS=64,G=1,T=112
0.9986 25.0459 81473.9811 similar

N=30720-34816,

SS=64,G=2,T=56
0.9984 10.9418 3060.2949 similar

N=30720-34816,

SS=64,G=4,T=28
0.9840 9.3161 3639.7016 similar

N=30720-34816,

SS=64,G=7,T=16
0.9945 14.8833 3013.0125 similar

N=30720-34816,

SS=64,G=8,T=14
0.9942 16.1527 2955.8465 similar

N=30720-34816,

SS=64,G=14,T=8
0.9912 16.3173 2595.7632 similar

N=30720-34816,

SS=64,G=16,T=7
0.9917 42.8061 2416.1999 similar

FFTW, Problem Size,

RAPL, HCLServer03

N=20480-26560,

SS=64,G=1,T=112
0.9996 25.6272 86911.0622 similar

N=20480-26560,

SS=64,G=2,T=56
0.9994 9.7569 1502.1569 similar

N=20480-26560,

SS=64,G=4,T=28
0.9985 7.5984 1324.9766 similar

N=20480-26560,

SS=64,G=7,T=16
0.9549 17.7605 1611.0385 opposite

N=20480-26560,

SS=64,G=8,T=14
0.9427 21.5876 1806.2769 similar

N=20480-26560,

SS=64,G=14,T=8
0.6497 28.1641 2012.2371 similar

N=20480-26560,

SS=64,G=16,T=7
0.6010 30.9980 2163.2482 opposite

AnMoHA [2.5% precision]

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

M=12800-20224,

N=20224,SS=128
0.9750 2.2414 3398.2869 same

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

M=12800-20480,

N=20480, SS=256
0.9383 3.0720 3803.1504 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

M=12800-20736,

N=20224, SS=256
0.9739 3.8751 4349.8794 same

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer01

M=15104-18688,

N=23552,SS=64
0.9785 4.3116 3806.0146 same

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer02

M=16384-20096,

N=22528, SS=128
0.9504 2.1708 956.8094 similar

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer02

M=21504-25600,

N=25600, SS=64
0.9387 4.8698 2252.6855 similar

194

AnMoHA Less Accurate (10% prercision)

DGEMM, Problem Size,

HCLWattsUp_Parallel,

HCLServer01

M=12800-20224,

N=20224,SS=128

0.9134 6.8688 9937.8680 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

0.9216 7.7965 10996.5086 similar

DGEMM, Problem Size,

HCLWattsUp_Parallel,

HCLServer01

M=12800-20480,

N=20480,SS=256

0.9094 5.9996 6914.4728 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

0.9023 8.9318 9266.7659 similar

DGEMM, Problem Size,

HCLWattsUp_Parallel,

HCLServer01

M=12800-20736,

N=20736

0.9110 8.1647 8258.8659 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

0.9456 7.5815 7766.5003 similar

FFT, Problem Size,

HCLWattsUp_Parallel,

HCLServer01

M=15104-18688,

N=23552,SS=64

0.7930 4.4804 2080.0339 similar

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer01

0.8625 3.0740 1516.4442 similar

DGEMM, Problem Size,

HCLWattsUp_Parallel,

HCLServer01

M=16384-20096,

N=22528,SS=128

0.9308 8.4808 7966.4267 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01

0.9010 8.1606 7241.1619 similar

FFT, Problem Size,

HCLWattsUp_Parallel,

HCLServer01

M=21504-25600,

N=25600,SS=64

0.8667 13.4232 7170.1068 similar

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer01

0.9010 8.1606 7241.1619 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01
M=64- 20288,

N=10112,SS=64

0.9963 8.0723 7060.6467 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer02

0.9994 5.0213 1184.0506 similar

DGEMM, Problem Size,

HCLWattsUp_Combined,

HCLServer01,

HCLServer02

0.9972 7.6614 7598.0246 similar

195

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer01
M=1024-10160,

N=51200, SS=16

0.9991 14.5338 6279.0562 similar

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer02

0.9971 5.7143 147.5044 similar

FFT, Problem Size,

HCLWattsUp_Combined,

HCLServer01,

HCLServer02

0.9992 14.0973 6383.0253 similar

196

Acronyms

ACPI Advanced Configuration and Power Interface.

AnMoHA Additive Energy Modelling of Hybrid Parallel Applications.

API Application Programming Interface.

CMOS Complementary Metal-oxide-semiconductor.

CPU Central Processing Unit.

DGEMM Double-precision General Matrix Multiplication.

DPM Dynamic Power Management.

DVFS Dynamic Voltage and Frequency Scaling.

EPS Set of Energy Profiles of an Applicaiton Constructed with Different Energy Measurement Tech-

niques.

FFT Fast Fourier Transform.

FFTW Fastest Fourier Transform in the West.

FLOPS Floating Point Operations Per Second.

FPGA Field Programmable Gate Array.

GPU Graphics Processing Unit.

HPC High Performance Computing.

ICT Information and Communication Technologies.

IEA International Energy Agency.

LLC Last Level Cache.

MKL Intel Math Kernel Library.

MKL-FFT Intel MKL-Fast Fourier Transform.

197

Acronyms

MPI Messgae Passing Interface.

MPSS Manycore Platform Software Stack.

NPU Neural Processing Unit.

NUMA Non-Uniform Memory Access.

NVML NVIDIA Management Library.

PMC Performance Monitoring Counter.

PMI Power Monitoring Infrastructures.

QPI Quick Path Interconnect.

RAPL Running Average Power Limit.

SMC System Management Controller chip.

SW Smith-Waterman algorithm.

TPU Tensor Processing Unit.

TSM Trend-based Similarity Measuring Methodology for Energy Profiles.

VPU Vision Processing Unit.

VR Voltage Regulator.

Xeon Phi Intel Xeon Phi.

198

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations for This Thesis
	Energy Efficiency: Challenges
	Energy Efficiency: Approaches in ICT
	Challenges to Application-level Energy Optimization
	State-of-the-art Approaches to Measure the Energy Consumption of Computing
	Open Challenges with State-of-the-art Approaches
	Goodness of Energy Profiles of Applications Executing on Multicore Comptuing Platforms

	Thesis Contributions
	Thesis Structure

	Background and Related Work
	Terminologies and Taxonomy
	HPC Architectures
	Energy and Power
	Instantanious Power vs Average Power
	Static vs Dynamic Power and Energy

	Common Practices to Measure the Energy of Computing
	Power Instrumentation Systems
	Power meters
	On-chip power sensors and vendor specific libraries
	Energy Predictive Models

	Critiques of built-in power sensors and PMC based predictive modelling
	On-chip integrated power sensors
	PMC based Energy predictive models

	Energy Optimization Approaches
	Power Saving Mechanisms
	Multi-objective Optimization Methods Involving Energy

	Approaches for Measuring the Goodness of Energy Profiles of Applications Executing on Multicore Comptuing Platforms
	Accuracy measurement approaches used in energy modeling
	Pattern matching approaches in other fields for closely related problem

	A Methodology to Determine the Energy Consumption by An Application Using System-level Measurements
	Introduction
	Energy Consumption by the application
	API for Power Measurements Using External Power Meter Interfaces (HCLWattsUp)
	Component-Level Energy Consumption Using HCLWattsUp API
	Methodology to Obtain a Reliable Data Point using HCLWattsUp API
	Summary

	A Comparative Study of Methods for Measurement of Energy of Computing
	Introduction
	Terminologies
	Experimental Setup for Comparing On-Chip Sensors and System-Level Physical Measurements Using Power Meters
	Comparison of Energy Measurements Using RAPL and HCLWattsUp
	Experimental Methodology
	Experimental Results on HCLServer03
	Experimental Results of RAPL and HCLWattsUp on HCLServer01 and HCLServer02
	Discussion

	Comparison of Energy Measurements Using GPU and Xeon Phi Sensors with HCLWattsUp
	Methodology To Compare Measurements Using Sensors and HCLWattsUp
	Experimental Results Using GPU Sensors (NVML)
	Experimental Results Using Intel Xeon Phi Sensors (Intel MPSS)
	Discussion

	Comparison of dynamic energy consumption using PMC-based energy predictive models and HCLWattsUp
	Energy Losses From Employing an Inaccurate Measurement Tool
	Comparison of Costs of Measurement and Implementation Complexity
	Implementation Complexity
	Topological granularity issues with sensors

	Current Picture, Recommendations and Future Directions
	Summary

	Accurate Energy Modelling of Hybrid Parallel Applications on Modern Heterogeneous Computing Platforms using System-Level Measurements
	Introduction
	AnMoHA: Additive Energy Modelling of Hybrid Applications on Heterogeneous Computing Platforms
	Grouping of Computing Elements
	Energy Models of Abstract Processors

	Experimental Validation of AnMoHA
	Experiment Platforms and Applications
	Formulation of Abstract Processors on HCLServers
	 Results and Analysis

	Trade-off between accuracy and time space of additive modelling
	Results and Discussion

	Trade-off between accuracy and design space of additive modelling
	Results and Discussion

	Workload Types and Ganularity Limitations of AnMoHA
	Workload Types and Granularity Limitations
	State-of-the art Energy Measurement tools
	Core-wide dynamic energy consumption modelling

	Study of additive energy modelling and dynamic energy optimization with On-chip sensors and HCLWattsUp
	Additive energy modelling with on-chip sensors
	A study of dynamic energy optimization with on-chip sensors and HCLWattsUp

	Scope and Limitations of AnMoHA
	Summary

	A Statistical Learning Based Novel Similarity Measuring Methodology for Energy Profiles of Parallel Applications
	Introduction
	Goodness Measuring Problem Formulation
	Challenges With State-of-the-art Practices To Measure The Goodness Of Energy Models
	Trend-based Similarity Measuring Methodology for Energy Profiles
	Model Fitting
	The Discrepancy Analysis
	The Distance Metric

	Experimental Validation of TSM
	Experimental Platform and Applications
	Experimental Methodology to validate TSM
	Results and Discussion
	Discussion

	Comparison of TSM and State-of-the-art Statistical Approaches for Energy Optimization
	Summary

	Summary, Current Picture and Future Directions
	Summary
	Future Works
	Current Picture, Recommendations and Future Directions
	Current Picture
	Recommendations and Future Directions in General

	Bibliography
	Appendices
	Comparison of dynamic energy consumption using PMC-based energy predictive models and HCLWattsUp
	Introduction
	Experimental Setup
	Accuracy of Platform-Level Linear PMC-Based Models
	Accuracy of Application-Specific PMC-Based Models

	Parallel Gene Sequencing Application
	Calibration of WattsUp Pro power-meter
	Naked-eye visual monitoring
	Monitoring server base power
	Measurement of total energy consumption by scientific applications

	Similarity Results of Group A
	Similarity Results of Group B
	Acronyms

