
Journal of Parallel and Distributed Computing 151 (2021) 38–51

A
S

p
l
S
m
t
p
R
s
B
c
s
s
a
d

m
(

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Improving the accuracy of energy predictivemodels formulticore CPUs
by combining utilization and performance eventsmodel variables✩

rsalan Shahid, Muhammad Fahad, Ravi Reddy Manumachu, Alexey Lastovetsky ∗

chool of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

a r t i c l e i n f o

Article history:
Received 9 November 2020
Accepted 28 January 2021
Available online 11 February 2021

Keywords:
Performance monitoring counters
CPU utilization
Energy modeling
Energy predictive models
Multicore CPU

a b s t r a c t

Energy predictive modeling is the leading method for determining the energy consumption of an
application. Performance monitoring counters (PMCs) and resource utilizations have been the principal
source of model variables primarily due to their high positive correlation with energy consumption.
Performance events, however, have come to dominate the landscape due to their better prediction
accuracy compared to utilization variables. Recently, the theory of energy of computing has been
proposed whose practical implications for constructing accurate and reliable linear energy predictive
models are unified in a consistency test that includes a selection criterion of additivity for model
variables. In this work, we analyze the prediction accuracy of models employing utilization variables
only, PMCs only, and combination of both utilization variables and PMCs, through the lens of this
theory for modern multicore CPU platforms. We discover that employing utilization variables only
in linear energy predictive models does not capture all the energy-consuming activities during an
application execution. However, combination of utilization variables with PMCs that are highly additive
and highly correlated with energy consumption, gives the most accurate linear energy predictive
model. Our experimental results show that application-specific and platform-level models using both
utilization variables and PMCs exhibit up to 3.6× and 2.6× better average prediction accuracy
respectively when compared with models employing utilization variables only and highly additive
PMCs only.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Accurate measurement of energy consumption during an ap-
lication execution is key to energy minimization at application
evel. There are three mainstream measurement approaches: (a)
ystem-level physical power measurements using external power
eters, (b) Using on-chip power sensors, and (c) Energy predic-

ive models. System-level physical measurements using external
ower meters are considered the ground truth. Fahad, Shahid,
eddy, Lastovetsky [23] present a comparative study of on-chip
ensors and energy predictive models against the ground truth.
riefly, they show that the profiles obtained for dynamic energy
onsumption of the applications using on-chip sensors deviate
ignificantly from the ground truth suggesting that on-chip power
ensors do not capture the dynamic energy consumption during
n application run holistically. We will present a synopsis of the
evelopment of the energy predictive modeling landscape.

✩ This publication has emanated from research conducted with the financial
support of Science Foundation Ireland (SFI) under Grant Number 14/IA/2474.

∗ Corresponding author.
E-mail addresses: arsalan.shahid@ucd.ie (A. Shahid),

uhammad.fahad@ucdconnect.ie (M. Fahad), ravi.manumachu@ucd.ie
R.R. Manumachu), alexey.lastovetsky@ucd.ie (A. Lastovetsky).
https://doi.org/10.1016/j.jpdc.2021.01.007
0743-7315/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
Energy predictive models emerged as a dominant energy mea-
surement approach because of their ability to provide a fine-
grained component-level breakdown of energy consumption. Re-
source utilizations and performance monitoring counters (PMCs)
have been the principal source of model variables primarily due
to their high positive correlation with energy consumption. There
are three prominent kinds of models based on them. The first
kind [25,27,32,36,58,64] is based on utilizations of resources
(CPU, memory, disk, and network). The second kind [7–10,31,
34,39,40,51] employs PMCs. PMCs are special-purpose hardware
registers provided in modern processor architectures to record
the counts of software events, that represent the kernel-level
activities such as page-faults, context-switches, etc., and hardware
events arising from the micro-architecture core and the perfor-
mance monitoring unit such as CPU-cycles, branch-instructions,
cache-misses, etc. While utilizations are high-level metrics, PMCs
are pure counters that contain activity or access counts. The third
kind of models is based on both utilizations and PMCs [22,37,49].
All the proposed models (with the exception of [37,51]) predict
power consumption. The energy consumption during an applica-
tion execution is then determined through a creative application
of the power model. One approach is to obtain the area under
the discrete function of the power measurements provided by
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2021.01.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.01.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:arsalan.shahid@ucd.ie
mailto:muhammad.fahad@ucdconnect.ie
mailto:ravi.manumachu@ucd.ie
mailto:alexey.lastovetsky@ucd.ie
https://doi.org/10.1016/j.jpdc.2021.01.007
http://creativecommons.org/licenses/by/4.0/

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

a
f
d
r
c
f
r
o
a
l
m
t
m
N
p
t
a
u
w
v
o
m

o
s
d
S
a
a
w
r
s
p
f
o

Table 1
Specification of the Intel Haswell (HCLServer1) and Intel Skylake (HCLServer2)
multicore CPU Server.
Hardware
specifications

Intel Haswell server Intel Skylake server

Processor Intel E5-2670 v3 @2.30 GHz Intel(R) Xeon(R) Gold 6152
Micro-architecture Haswell Skylake
Cores per socket 12 N/A
Socket(s) 2 1
Thread(s) per core 2 2
Main memory 64 GB DDR4 96 GB
CPU TDP 240 W 140 W
Memory TDP 12 W 9.2 W
NUMA node(s) 2 1
Idle power 58 W 32 W
L11 cache 32 kB 32 kB
L1d cache 32 kB 32 kB
L2 cache 256 kB 1024 kB
L3 cache 30720 kB 30976 kB

Software specifications

OS release CentOS 7 Ubuntu 16.04 LTS
Linux kernel 3.10 3.10
OpenMP version 3.1 3.1
MPI version 3.2.1 N/A
Compiler gcc 4.8.5 gcc 4.8.5
Python version 3.4.3 3.6.8
Likwid version 4.1 4.3.2
Intel MKL version 2017.0.2 2017.0.2

the model versus the time intervals between the measurements.
Well-known numerical approaches such as the trapezoidal rule
can be used to calculate this area approximately.

Utilization models were shown to exhibit poor prediction
ccuracy than PMC-based models [48,49] on multicore CPU plat-
orms. Research works [23,30,42,45] demonstrate the poor pre-
iction accuracy of PMC-based models and report that the linear
egression models yield prediction errors as high as 150%. This
an be explained as follows. First, modern multicore CPU plat-
orms have several inherent complexities which are: (a) Severe
esource contention due to tight integration of tens of cores
rganized in multiple sockets with multi-level cache hierarchy
nd contending for shared on-chip resources such as the last-
evel cache, interconnect, and DRAM controllers; (b) Non-uniform
emory access (NUMA) where the time for memory access be-

ween a core and main memory is not uniform and where main
emory is distributed between locality domains or groups called
UMA nodes; and (c) Dynamic power management of multiple
ower domains (CPU sockets, DRAM). Due to these complexities,
he energy consumption of a computing resource demonstrates
non-linear and non-smooth functional relationship with the
tilization of the resource. Second, a sound theoretical frame-
ork to understand the fundamental significance of the model
ariables with respect to the energy consumption and the causes
f inaccuracy or the reported wide variance of accuracy of the
odels has been lacking.
The theory of energy of computing has progressively matured

ver the past three years starting with a proposal of a criterion for
election of PMCs in the research work [52] followed by a formal
escription of the theory and its practical implications in [53].
hahid et al. [53] propose a novel theory of energy of computing
nd unified its practical implications to increase the prediction
ccuracy of linear energy predictive models in a consistency test,
hich contains a suite of properties that include determinism,
eproducibility, and additivity to select model variables and con-
traints for model coefficients. The authors show that the average
rediction accuracy of linear regression models can be improved
rom 31% to 18% by selecting PMCs that pass the consistency test
f the theory of energy of computing [51].
39
Fig. 1. Comparison of predictions of models employing utilization variables
only (UPT), PMCs only (PMC), and combining both utilization variables and
PMCs (UMPC). HCLWattsUp represents the ground truth, which is system-level
physical measurements using power meters. Application employed is dense
matrix multiplication (DGEMM) executing on HCLServer2.

In this work, we aim to improve the prediction accuracy of
linear energy predictive models further by combining utilization
variables and PMCs. We perform a comparative study of the pre-
diction accuracy of models employing utilization variables only,
PMCs only, and combining both utilization variables and PMCs
using the consistency test of the theory of energy of computing
on modern multicore CPU platforms. We first check the reliability
of CPU and memory utilizations as model variables in energy
predictive models using the consistency test. We study the addi-
tivity of average CPU and memory utilization for the execution
of applications on two modern multicore servers, HCLServer1
and HCLServer2 (specifications are shown in Table 1). Our results
show that utilization variables are highly additive (satisfying the
input tolerance of 5%) for our application suite and pass the
consistency test.

We then employ the utilization variables in linear energy
predictive models at two levels, platform and application, on
both the servers. We demonstrate that the models exhibit poor
accuracy with an average prediction error of up to 50%. Models
that employ only PMCs have an average prediction error of up
to 36%. Combining utilization variables along with PMCs that are
highly additive and highly correlated with energy consumption,
however, yields the most accurate linear energy predictive model.
Application-specific and platform-level models using both utiliza-
tion variables and PMCs perform up to 3.6× and 2.6× better
in terms of average prediction accuracy when compared with
models employing utilization variables only and PMCs only.

We illustrate our findings using results from one of our experi-
ments. Fig. 1 shows the predictions of application-specific models
constructed for dense matrix multiplication (DGEMM) employing
utilization variables only (UPT), PMCs only (PMC), and combining
both utilization variables and PMCs (UPMC). HCLWattsUp rep-
resents the ground truth, which is system-level physical power
measurements using power meters. The ground truth profile
exhibits drastic variations due to the inherent complexities in

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

f

p
v
c
S
l
t
t
p
w

2
m

a
o
c
p
o
b
e
T

d
t
o
I

c
s

E

p
{

e
e

E

modern multicore CPU platforms. Due to these complexities, the
profiles of dynamic energy and workload size for real-life data-
parallel applications have complex and non-smooth functional
relationship [38,46,47]). Utilization variables capture the overall
energy consumption trend (or the average energy consumption)
of the profiles of the application executions. However, they do
not capture the variations in the profiles. Models based on highly
additive and highly energy-correlated PMCs accurately capture
these variations that account for most of the energy-consuming
activities during the execution of an application. They do not,
however, account for some energy-consuming activities that are
captured by high-level utilization variables. Models that employ
both utilization variables and highly additive and highly energy-
correlated PMCs are able to account for all the energy-consuming
activities during the execution of an application and hence are
found to provide the best accuracy.

The original contributions of this work are summarized as
ollows:

• A first experimental study analyzing the prediction accuracy
of linear energy predictive models employing utilization
variables only, PMCs only, and both utilization variables and
PMCs and which are selected based on the theory of energy
of computing on modern multicore CPU platforms.

• We show that models employing both utilization variables
and highly additive and energy correlated PMCs are able
to better account for the energy-consuming activities dur-
ing the execution of an application and hence are found
to provide significant improvements in prediction accuracy
compared to models that are based on utilization variables
only and PMCs only.

We organize the rest of this paper as follows. Section 2
resents the terminology. Section 3 contains the literature re-
iew. Section 4 overviews the theory of energy of computing and
ontains the expressions for various energy predictive models.
ection 5 contains the experimental setup and details the se-
ection and measurement of model variables. Section 6 presents
he experimental results and analysis. In Section 7, we present
he discussions containing the learned lessons for improving the
rediction accuracies of energy predictive models and future
ork. Finally, Section 8 concludes the paper.

. Terminology: Energy consumption and energy predictive
odels

There are two types of energy consumptions, static energy,
nd dynamic energy. The total energy consumption is the sum
f dynamic and static energy consumptions. The static energy
onsumption is calculated by multiplying the idle power of the
latform (without application execution) with the execution time
f the application. The dynamic energy consumption is calculated
y subtracting this static energy consumption from the total en-
rgy consumed by the platform during the application execution.
hat is, if PS is the static power consumption of the platform,

ET is the total energy consumption of the platform during the
execution of an application, which takes TE seconds, then the
ynamic energy ED is equal to ED = ET − (PS × TE). We present
he rationale behind using dynamic energy consumption instead
f total energy consumption in section 2 of the supplemental [54].
n this work, we consider only the dynamic energy consumption.

The dynamic energy predictive models are built using spe-
ialized linear regression. The mathematical form of a model is
hown below:

= β × x + · · · + β × x (1)
D 1 1 n n

40
where ED is the dynamic energy consumption which is the de-
endent variable, {x1, . . . , xn} are the independent variables, and
β1, . . . , βn} are the regression coefficients or the model param-
ters. In real life, there usually is stochastic noise (measurement
rrors). Therefore, the measured energy is typically expressed as

˜D = ED + ϵ (2)

where the error term or noise ϵ is a Gaussian random variable
with expectation zero and variance σ 2, written ϵ ∼ N (0, σ 2).

3. Related work

Our literature survey is organized as follows: (a) Survey of
the mainstream methods for power and energy measurement,
(b) Survey of power and energy predictive models based on
utilization variables and PMCs. (c) Review of notable literature
surveys on energy predictive models, and (d) Finally, recent ad-
vancements in this field.

3.1. Mainstream methods for energy measurements

There are three mainstream methods for energy measure-
ment: (1) System-level power measurements using physical
power meters, (2) On-chip power sensors, and (3) Energy pre-
dictive models. The first method is considered the ground truth.
Fahad et al. [24] present the first methodology to measure the
component-level energy consumption of a hybrid application on
a heterogeneous computing platform using this method.

The second method is now supported by popular processor
vendors who provide vendor-specific software libraries to ac-
quire the power data from the on-chip sensors. Intel CPUs offer
Running Average Power Limit (RAPL) [50] to monitor power and
control frequency (and voltage). AMD starting from Bulldozer
micro-architecture equip their processors with an estimation of
average power over a certain interval through the Application
Power Management (APM) [20] capability. Hackenberg et al. [30]
report that APM provides highly inaccurate data, particularly
during the processor sleep states. Intel Xeon Phi co-processors
are equipped with on-board Intel System Management Controller
chip (SMC) [17] providing energy consumption that can be pro-
grammatically obtained using Intel manycore platform software
stack (Intel MPSS) [16]. The accuracy of Intel MPSS is not avail-
able. Nvidia Management Library NVML [4] provides program-
matic interfaces to obtain the energy consumption of an Nvidia
GPU from its on-chip power sensors. There are, however, some
issues with the energy measurements provided by Nvidia on-chip
sensors [13]. Fahad et al. [23] present the first detailed study on
the accuracy of on-chip power sensors and show that deviations
of the energy measurements provided by on-chip sensors includ-
ing Intel RAPL from the ground truth does not motivate their use
in the optimization of applications for dynamic energy.

The third method using energy predictive models emerged
as a popular alternative to determine the energy consumption
of an application. Performance monitoring counters (PMCs) and
resource utilizations have been the principal source of model
variables primarily due to their high positive correlation with
energy consumption. PMCs, however, have come to dominate the
landscape due to their better prediction accuracy compared to
utilization variables.

3.2. Power and energy predictive models

3.2.1. Utilization based models
The early power models using the resource utilization parame-

ters (such as CPU, memory, network, and I/O utilization statistics)
as predictor variables include [18,22,25,26,32,35,36,40,48,49,60].

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

w
{

e
n

3

a
p
N
p
I
G
f

The general utilization based model for total power consumption
can be described as follows:

P = cbase + c1 × UCPU + c2 × UMem + c3 × UDisk + c4 × UNet (3)

here cbase is the base power consumption of a processor and
c1, c2, c3, c4} are the regression coefficients or the model param-
ters. UCPU , UMem, UDisk, and UNet are the CPU, memory, disk, and
etwork utilizations respectively.

.2.2. PMC based models
Tools to Determine PMCs: PAPI [2] provides a standard API for

ccessing PMCs available on most modern microprocessors. It
rovides two types of events, native events and present events.
ative events correspond to PMCs native to a platform. Likwid [59]
rovides command-line tools and an API to obtain PMCs for both
ntel, POWER8, and AMD processors on the Linux OS. For Nvidia
PUs, CUDA Profiling Tools Interface (CUPTI) [3] can be used
or obtaining the PMCs for CUDA applications. Intel PCM [1] is
used for reading PMCs of core and uncore (which includes the
QPI) components of an Intel processor. It supports the statistical
analysis of core frequencies, QPI power, and DRAM activities.
Linux Perf [61] also called perf_events can be used to gather the
PMCs for CPUs in Linux. It also comes as a profiling tool suite
including perf stat, perf record, perf report, perf annotate, perf top
and perf bench.

PMC Based Power and Energy Predictive Model for CPUs and Ac-
celerators: A vast majority of PMC based models are linear. Some
works using PMCs as model variables in linear power and energy
predictive models include [28,29,31,38,41,56,57,62,63], and [15].
Few notable research works that have proposed energy predictive
models for accelerators such as GPUs, Xeon Phis, and FPGAs in-
clude [33,44,55,57], and [6]. Research works for power and energy
modeling of scientific applications include [12,21,29,34,62,63],
and [14].

From the literature, we can divide the approaches to select the
PMCs into the following categories:

1. Approaches that consider all the PMCs to capture all pos-
sible contributors to energy consumption. To the best of
our knowledge, we found no research works that adopt this
approach. This could be due to several reasons:

• Gathering all PMCs requires huge programming effort
and time.

• Interpretation (for example, visual) of the relationship
between energy consumption and PMCs is difficult
especially when there is a large number of PMCs.

• Dynamic or runtime models must choose PMCs that
can be gathered in just one application run.

• Typically, simple models (those with fewer parame-
ters) are preferred over complex models not because
they are accurate but because simplicity is considered
a desirable virtue.

2. Approaches that are based on a statistical methodology
such a correlation and principal component analysis for the
selection of PMCs.

3. Approaches that use expert advice or intuition to pick a
subset (that may not necessarily be determined in one
application run) and that, in experts’ opinion, is a dominant
contributor to energy consumption.

4. Approaches that select PMCs using a theoretical model of
the energy of computing, which is the manifestation of the
fundamental physical law of energy conservation [52,53].

Critiques of PMCs for Energy Predictive Modeling: There are
research works that have critically examined and highlighted the
41
poor prediction accuracy of PMCs for energy predictive modeling.
Economou et al. [22] highlight the fundamental limitation, which
is the inability to obtain all the PMCs simultaneously or in one
application run. They also mention the lack of PMCs to model
the energy consumption of disk I/O and network I/O. McCullough
et al. [42] evaluate the competence of predictive power models
for modern node architectures and show that linear regression
models show prediction errors as high as 150%. They suggest
that direct physical measurement of power consumption should
be the preferred approach to tackle the inherent complexities
posed by modern node architectures. O’Brien et al. [45] survey
predictive power and energy models focusing on the highly het-
erogeneous and hierarchical node architecture in modern HPC
computing platforms. They report that the prediction errors of
linear PMC-based energy predictive models as high as 60%.

3.2.3. Models employing utilization variables and PMCs
Economou et al. [22] propose a linear power predictive model

that employs CPU, disk, and network utilizations and a PMC
containing the off-chip memory access count. Rivoire et al. [49]
compare five full-system real-time power models. Four of these
models are utilization-based whereas the fifth includes the model
proposed by [22]. They report that the PMC-based model is the
best overall in terms of accuracy since it is able to account for
majority of the contributors to system’s dynamic power.

Khokhriakhov et al. [37] propose a qualitative linear dynamic
energy model employing CPU utilization and PMCs to explain
the discovered energy nonproportionality on their multicore CPU
platforms. The model is shown below:

Edynamic = β1 × ucpu × t + β2 × pl + β3 × ps (4)

where ucpu is the CPU utilization, pl is the PMC containing the
time of page walk caused by load miss, ps is the PMC for the
time of page walk caused by store miss in dTLB, and t is the
execution time of the application. The model is used to show that
the energy nonproportionality is due to the activity of the data
translation lookaside buffer (dTLB), which is disproportionately
energy expensive.

3.2.4. Important surveys on energy predictive models
Mobius et al. [43] present a survey of power consumption

models for single-core and multicore processors, virtual ma-
chines, and servers. They conclude that linear regression-based
approaches dominate and that one prominent shortcoming of
these models is that they use static instead of variable workloads
for training the models. Dayarathna et al. [19] present an in-
depth survey on data center power modeling. Bridges et al. [11]
present a survey of techniques to monitor and model the energy
consumption of GPUs. They cover in-depth PMC-based modeling
of GPUs. They also state that the accuracy of results from internal
power meters must be thoroughly verified using external power
meters. O’Brien et al. [45] survey predictive power and energy
models focusing on the highly heterogeneous and hierarchical
node architecture in modern HPC computing platforms.

3.2.5. Recent advancements in the energy predictive models employ-
ing PMCs

In all aforementioned works, a sound theoretical framework to
understand the fundamental significance of the model variables
with respect to the energy consumption and the causes of inac-
curacy or the reported wide variance of accuracy of the models
has been lacking.

The theory of energy of computing has progressively matured
over the past three years starting with a proposal of a criterion
for selection of PMCs in the research work [52] followed by a

formal description of the theory and its practical implications

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

p
d

u

in [53]. Shahid et al. [52] propose a novel property of PMCs called
additivity, which is based on an intuitive and simple rule that
if a PMC is intended to be employed as a model variable in a
linear energy predictive model, then its count for a compound
application should be equal to the sum of its counts for the
executions of the base applications forming the compound appli-
cation. A compound application is defined as the serial execution
of two applications. It is based on the experimental observation
that the dynamic energy consumption of a serial run of two
applications is the sum of dynamic energy consumption observed
for the sole executions of each application. The authors study the
additivity of PMCs provided by the two mainstream frameworks,
Likwid [59] and PAPI [2] on a modern Intel Haswell multicore
server. They demonstrate that many PMCs available on modern
processors obtained using Likwid and PAPI and that are employed
in state-of-the-art models are non-additive.

Shahid et al. [53] proposed a novel theory of energy of com-
uting and unified its practical implications to increase the pre-
iction accuracy of linear energy predictive models in a con-

sistency test, which contains a suite of properties that include
determinism, reproducibility, and additivity to select model vari-
ables and constraints for model coefficients. By applying the
consistency test, the authors improve the average prediction ac-
curacy of state-of-the-art linear regression models from 31% to
18%. Shahid et al. [51] demonstrate that the accuracy of energy
predictive models based on three popular mainstream techniques
(linear regression, random forests, and neural networks) can be
improved by following the properties of the consistency test,
which includes selecting PMCs based on the property of additiv-
ity. They show that the removal of non-additive PMCs improves
the average prediction accuracy of linear regression models from
31% to 18%, random forest models from 38% to 24%, and neural
network models from 30% to 24%.

4. Theory of energy of computing: Practical implications for
linear energy predictive models

In this section, we present a brief overview of the theory of
energy of computing proposed in [53]. The theory of energy of
computing is a formalism containing properties of PMC-based
energy predictive models that are manifestations of the fun-
damental physical law of energy conservation. The properties
capture the essence of single application runs and characterize
the behavior of serial execution of two applications. They are
intuitive and experimentally validated and are formulated based
on the following observations:

• In a fully dedicated and stable environment, with each exe-
cution of a single application being represented by the same
PMC vector, for any two applications, the PMC vector of their
serial execution will always be the same.

• An application run that does not perform any work does not
consume or generate energy. It is represented by a null PMC
vector (where all the PMC values are zeros).

• An application with a PMC vector that is not null must
consume some energy. Since PMCs account for energy-
consuming activities of applications, an application with any
energy-consuming activity higher than zero activity must
consume more energy than zero.

• Finally, the consumed energy of compound application is
always equal to the sum of energies consumed by the indi-
vidual applications. The serial execution of two applications,
say the base applications, forms a compound application.

The practical implications of the theory for constructing accu-
rate and reliable linear energy predictive models are unified in a
consistency test. The test includes the following selection criteria
for model variables, model intercept, and model coefficients:
42
• Each model variable must be deterministic and reproducible.
In the case of PMC-based energy predictive models, the
multiple runs of an application keeping the operating en-
vironment constant must return the same PMC count.

• Each model variable must be additive. The property of addi-
tivity is further summarized in the following section.

• The model intercept must be zero.
• Each model coefficient must be positive.

The first two properties are combined into an additivity test for
the selection of PMCs. A linear energy predictive model employ-
ing PMCs and which violates the properties of the consistency test
will have poor prediction accuracy. By definition and intuition,
PMCs are all pure counters of energy-consuming activities in
modern processor architectures and as such must be additive.
Therefore, according to the theory of energy of computing, any
consistent, and hence accurate, energy model, which only em-
ploys PMCs, must be linear. This also means that any non-linear
energy model employing PMCs only, will be inconsistent and
hence inherently inaccurate. A non-linear energy model, in order
to be accurate, must employ non-additive model variables in
addition to PMCs.

While the theory is proposed with PMC-based energy pre-
dictive models as focal point, it is applicable for any model
variables that are pure counters of energy-consuming activities.
In this work, we show how model variables based on resource
utilizations can be designed to leverage the theory.

4.1. Linear energy predictive models employing utilization variables
and PMCs

We will now look at the mathematical expressions for the
linear energy predictive models employing utilization variables
and PMCs. The model parameters (or the regression coefficients)
are constrained to be positive to meet the requirements of the
consistency test.

For the dynamic energy predictive models that employ PMCs,
the mathematical form is shown below:

Epmc = α1 × p1 + · · · + αn × pn (5)

where Epmc is the dynamic energy consumption, {p1, . . . , pn} are
the PMCs, and {α1, . . . , αn} are the regression coefficients or the
model parameters. We ignore the stochastic noise term.

We consider models employing the utilizations of CPU and
memory as model variables. Since utilizations are high-level vari-
ables and not pure counters, we have to design model variables
that are based on utilizations and that represent energy consump-
tion. We provide expressions for model variables corresponding
to CPU and memory only, since they are the most stressed by
the applications used in our experimental study and therefore
are the dominant consumers of dynamic energy. Similar model
variable expressions, however, can be derived for disk and net-
work utilizations for platforms where these two make non-trivial
contributions to dynamic energy consumption.

CPU utilization during a time period represents the proportion
of time the CPU is busy doing work divided by the total amount
of time in the time period. The product of CPU utilization and
the maximum power (thermal design power) gives an estimate
of the power consumption of the CPU, that is, the average power
consumption during the time period. The model variable, which is
this product multiplied by the execution time of the application,
represents the energy consumption. The CPU utilization model
variable, ucpu, therefore is determined using the equation below:

= (Ũ /100) × TDP × t (6)
cpu cpu cpu

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

.

4

i
a
c
o

W
e
a
t
t
a
i
b
i
n

a

Similarly, the memory utilization model variable, umem, is de-
termined using the equation below:

umem = (Ũmem/100) × TDPmem × t (7)

Ũcpu and Ũmem are the average CPU and memory utilizations,
TDPcpu and TDPmem are the thermal design powers of CPU and
memory, and t is the execution time of the application.

The mathematical form of the dynamic energy predictive mod-
els employing the utilization variables is shown below:

Eu = β1 × ucpu + β2 × umem (8)

where Eu is the dynamic energy consumption, {ucpu, umem} are the
utilization variables, and {β1, β2} are the regression coefficients
or the model parameters.

The mathematical form of the dynamic energy predictive mod-
els employing both utilization variables and PMCs is shown be-
low:

Eupmc = γ1 × ucpu + γ2 × umem + θ1 × p1 + · · · + θn × pn (9)

where Eupmc is the dynamic energy consumption and {γ1, γ2, θ1,
. . , θn} are the regression coefficients or the model parameters.

.2. Additivity of model variables

The property of additivity (first proposed in [52]) is based on an
ntuitive and simple rule that if a model variable is employed in
linear energy predictive model, its count for a compound appli-
ation should be equal to the sum of its counts for the executions
f the base applications forming the compound application.
The additivity of a model variable is determined as follows.
e first obtain the counts of the model variable for the separate

xecutions of the base applications. Then, we run the compound
pplication and record the count for the model variable. Typically,
he main computations for the compound application consist of
he main computations of the base applications executed one
fter the other. If the model variable of the compound application
s equal to the sum of the model variables obtained for the
ase applications (within a tolerance of 5%), the model variable
s categorized as potentially additive. Otherwise, it is labeled as
on-additive.
For each model variable, we determine the maximum percent-

ge error. For a compound application, the percentage error is
calculated as follows:

Error(%) = |
(eb1 + eb2) − ec

(eb1 + eb2 + ec)/2
| × 100 (10)

where ec, eb1, eb2 are the model variable values for the compound
application and the constituent base applications respectively.
The additivity test error for a model variable is the maximum
of percentage errors for all the compound applications in the
experimental test-suite.

The most additive model variables are employed in a model
for better prediction accuracy. We will go into the details of this
selection process in our experiments section.

5. Experimental setup

We start with selection of model variables using the con-
sistency test followed by comparison of prediction accuracy of
application-specific and platform-level linear energy predictive
models.

Our experimental platforms include the Intel Haswell and
Intel Skylake multicore CPU servers, whose specifications are
given in Table 1. Our application test suite is composed of highly
optimized scientific applications such as DGEMM and FFT from

the Intel math kernel library (MKL), NASA benchmarking suite

43
Table 2
List of applications for experimental analysis.
Application Description

MKL FFT Intel optimized 2-dimensional Fast Fourier Transform
HPCG Intel optimized High Performance Conjugate Gradient.
MKL DGEMM Intel optimized 3-dimensional Dense Matrix Multiplication
NPB FT Discrete 3-dimensional fast Fourier Transform
NPB CG Conjugate Gradient
NPB SP Scalar Penta-diagonal solver
NPB DT Data traffic
NPB EP Embarrassingly Parallel random number generator
NPB BT Solve synthetic system of nonlinear partial differential

equations using Block Tri-diagonal solver
NPB IS Integer Sort, Kernel for random memory access that sort

small integers using the bucket sort technique
NPB LU Lower–Upper Gauss–Seidel solver
NPB DC Data Cube
NPB UA Unstructured Adaptive mesh solving heat equation with

convection and diffusion from moving ball.
NPB MG Approximate 3-dimensional discrete Poisson equation using

the V-cycle Multi Grid on a sequence of meshes
stress CPU, disk and I/O stress
Naive MM Naive Matrix–matrix multiplication
Naive MV Naive Matrix–vector multiplication

(NAS Parallel), Intel optimized HPCG, and stress. Table 2 lists the
applications along with their description.

For each application run, we measure the following: (a) Dy-
namic energy consumption, (b) Execution time, (c) PMCs, and
(d) Utilization variables. The dynamic energy consumption during
the application execution is measured using a WattsUp Pro power
meter and is obtained programmatically via the
HCLWattsUp API [5] (section 4 of supplemental [54]). The power
meter is periodically calibrated using an ANSI C12.20 revenue-
grade power meter, Yokogawa WT210. The calibration method-
ology is explained in section 6 of the supplemental [54]. PMCs are
obtained using the Likwid tool [59] and Linux Perf [61].

To ensure the reliability of our results, we follow a statistical
methodology where a sample mean for a response variable (en-
ergy, time, PMC, utilization variables) is obtained from multiple
experimental runs. The sample mean is calculated by executing
the application repeatedly until it lies in the 95% confidence
interval and a precision of 0.05 (5%) has been achieved. For this
purpose, Student’s t-test is used assuming that the individual
observations are independent and their population follows the
normal distribution. We verify the validity of these assumptions
by plotting the distributions of observations. The experimental
methodology to determine the sample mean is described in sec-
tion 3 of the supplemental [54]. The prediction error of a model
is calculated as follows: error = |(EM − EG)|/EG × 100, where EM
is the prediction by a model and EG is the ground truth value.
The average prediction error for n data points is calculated as
(
∑n

i=1 errori)/n, where errori is the prediction error for data point
i.

We now apply the consistency test to select PMCs and utiliza-
tion parameters.

5.1. Measurement and selection of Performance Monitoring Counters
(PMCs)

Likwid tool [59] offers 164 and 323 PMCs on HCLServer1 and
HCLServer2, respectively. To collect all the PMCs, each applica-
tion must be executed about 53 and 99 times on HCLServer1
and HCLServer2, respectively. This is due to the availability of a
limited number of hardware registers (3–4) to store the PMCs.
We apply the first stage of consistency test where we check if
the PMCs are deterministic and reproducible as follows:

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

b
f
e
o
i
f
a
j
W
c
P
a
n
o
t
d
g
o
q

1. We eliminate PMCs with counts less than or equal to 10.
The eliminated PMCs have no significance on modeling en-
ergy consumption of our platform because we found them
to be non-reproducible. We also remove several PMCs that
count equal to zero. The reduced set contains 151 and 298
PMCs on HCLServer1 and HCLServer2, respectively.

2. We compare the PMCs using three different tools, Likwid,
PAPI, and Linux Perf. We eliminate the PMCs that show dif-
ferences. After this elimination, the total number of PMCs
reduces to 115 and 224 on HCLServer1 and HCLServer2.

The total work performed during the execution of an appli-
cation in our test suite is entirely due to CPU and main memory
activities. To find their contributions towards the dynamic energy,
we use two synthetic applications, A and B, performing floating-
point operations and memcpy() operations on all the memory
locks, respectively. We execute A employing all processor cores
or 10 s and measure its dynamic energy consumption, which is
qual to 1337 joules. We then execute B for the same amount
f time and discover that the dynamic energy consumption is
nsignificant and cannot be captured within the statistical con-
idence of 95%. We increase the execution time of A and B to 20
nd 30 s and find their dynamic energy consumptions to be 2596
oules and 3821 joules, and, 0 joules and 4 joules, respectively.
e conclude that the major contribution to dynamic energy

onsumption is due to CPU activities. Therefore, we remove the
MCs that belong to Likwid main memory group for any further
nalysis due to two reasons. First, the memory activities make
egligible contribution to the dynamic energy consumption on
ur platforms. Second, low counts for memory PMCs add noise
hat affects the training of models and unduly worsen the pre-
iction accuracy of the models. The main CPU activities can be
rouped as PMCs belonging to cache, branch instructions, micro-
perations (uops), floating-point instructions, instruction decode
ueue, and cycles. We denote them as prime PMCs.
The second stage of the consistency test involves application

of the additivity property. We automate the determination of a
PMC’s additivity using a tool called AdditivityChecker (section 9
of the supplemental [54]). We discover that all the prime PMCs
fail the additivity test for a vast set of applications with a specified
tolerance of 5% on our platforms.

5.2. Measurement and selection of utilization variables

We follow the steps below to determine the utilization vari-
ables (ucpu, umem) on HCLServers:

• Using an automated shell script, we collect the average
CPU and memory utilization in percentage for the platform
using Linux ps tool. The script reads the CPU and memory
utilization every 0.25 s during the application execution.

• The CPU utilization for an application is the average utiliza-
tion of the individual cores employed in the execution of
that application.

• For an application, the trapezoidal rule is used to determine
the average utilization using the utilization profile for the
application.

• Finally, the average CPU and memory utilizations are multi-
plied with the corresponding TDPs and the execution time
of the application.

We now apply the consistency test to each utilization variable
on HCLServer1 and HCLServer2. We found both variables de-
terministic and reproducible by executing applications (Table 2)
using different problem sizes on HCLServer1 and HCLServer2.

To study the additivity of the utilization variables, we take
the same application set and compose 60 and 40 compound
44
applications from the base applications on both the servers. The
additivity test reveals that both variables are highly additive
(with errors less than 5%) for all the applications. Therefore,
we conclude that both utilization variables can be employed as
model variables in any application-specific and platform-level
linear energy predictive model.

Since the contribution of memory activities towards dynamic
energy consumption of the applications is insignificant on our
platforms, we analyze the impact of umem as a model variable.
With no constraints on the model coefficients, we find that
the model coefficient of umem to be negative for all the mod-
els constructed in our experiments with the exception of the
application-specific model for FFT. For the models with the nega-
tive coefficient, we remove the memory utilization variable since
it violates the properties of the consistency test and re-construct
the models. We also find that the removal of memory utilization
variable from the model for FFT reduces the prediction power of
the model by 0.02× only. Therefore, for the consistency of the
experimental results, we remove umem as a model variable from
our energy predictive models.

6. Experimental results

We divide the experiments into the following two groups:

1. Group 1: We study the accuracy of application-specific
energy predictive models on HCLServer1 and HCLServer2
using utilization variables only, prime PMCs only, and both
utilization variables and PMCs.

2. Group 2: We study the accuracy of platform-level energy
predictive models on HCLServer1 and HCLServer2 using
utilization variables only, prime PMCs only, and both uti-
lization variables and PMCs. We divide the experiments in
this section into two classes, class A and class B. In class
A, we explore the prediction accuracies of models for a
limited set of applications (DGEMM and FFT). In class B,
we analyze models that employ data-sets composed using
all the applications in our testsuite for a wide range of
problem sizes.

6.1. Study of accuracy of application-specific energy predictive mod-
els

We select two highly optimized scientific applications: 2-
dimensional Fast Fourier Transform (FFT) and Dense Matrix-
Multiplication application (DGEMM), from Intel Math Kernel Li-
brary (MKL). The experimental steps are below:

• We build two data-sets to study the additivity of PMCs
for FFT and DGEMM containing the compound and base
applications. Using the additivity test errors, we select the
most additive PMCs that are common for both applications.

• By executing FFT and DGEMM for a range of problem sizes,
we build a vast data-set containing dynamic energy con-
sumptions, PMCs, and both utilization variables and PMCs
to build energy predictive models.

• We employ the utilization variables only, PMCs only, and
both utilization variables and PMCs in LR models as predic-
tor variables.

• Finally, we analyze the prediction accuracy of the LR models.

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

a

6

e
D
f
r
i

e
T
u
S

c

Table 3
Selected PMCs and their correlations with dynamic energy consumption on, (a)
HCLServer1 and (b) HCLServer2. 0 to 1 represents correlations of 0% to 100%,
respectively.
(a)

HCLServer1 PMCs (SA) Correlation

a1 IDQ_MITE_UOPS 0.993
a2 UOPS_EXECUTED_PORT_PORT_6 0.992
a3 L2_RQSTS_MISS 0.990
a4 UOPS_ISSUED_TOTAL_CYCLES 0.962
a5 UOPS_EXECUTED_PORT_PORT_0 0.932
a6 OFFCORE_REQUESTS_ALL_DATA_RD 0.921
a7 UOPS_RETIRED_CORE_TOTAL_CYCLES 0.917
a8 CPU_CLOCK_UNHALTED_REF_XCLK 0.801

(b)

HCLServer2 PMCs (SB) Correlation

b1 FP_ARITH_INST_RETIRED_DOUBLE 0.993
b2 UOPS_EXECUTED_CORE 0.993
b3 IDQ_ALL_CYCLES_6_UOPS 0.993
b4 UOPS_RETIRED_CYCLES_GE_4_UOPS_EXEC 0.992
b5 IDQ_DSB_CYCLES_6_UOPS 0.981
b6 IDQ_ALL_DSB_CYCLES_5_UOPS 0.972
b7 UOPS_DISPATCHED_PORT_PORT_4 0.870
b8 BR_INST_RETIRED_ALL_BRANCHES 0.860

6.1.1. Experiments to select PMCs and utilization variables
We present the methodology to select the utilization variables

nd PMCs to be employed in the models in the following steps:

• We build a dataset of 50 base applications using different
problem sizes for DGEMM and FFT to apply the additivity
test. The range of problem sizes for DGEMM is 6500 × 6500
to 20000 × 20000, and for FFT is 22400 × 22400 to
29000 × 29000. We select this range because of reasonable
execution time (>3 s) of the applications on our platforms.

• For each application in a dataset, we measure the following:
PMCs, utilization variables, dynamic energy consumption,
and the execution time. We also build a dataset of 30 com-
pound applications from the serial execution of base appli-
cations. The additivity test based on the two datasets reveals
that several PMCs are highly additive and are common for
both applications. The utilization variables for both appli-
cations are highly additive and highly positively correlated
with energy with errors less than 0.5%.

• From the additivity test results on HCLServer1 and
HCLServer2, we select PMCs that are commonly additive
with additivity test errors of less than 1%. In total there are
eight PMCs for both servers with an error equal or less than
1% represented as set SA = {a1, a2, a3, a4, a5, a6, a7, a8}
and set SB = {b1, b2, b3, b4, b5, b6, b7, b8} for HCLServer1
and HCLServer2, respectively. All these PMCs belong to the
dominant PMC groups from the CPU that represent the
energy consuming activities of our platform.

• We calculate the correlation for all PMCs in SA and SB
with the dynamic energy consumption. The PMCs and their
correlations with dynamic energy consumption are given in

Table 3.

45
• We also build two subsets with four most energy correlated
PMCs from SA and SB and label them as SA-Corr and SB-Corr.
SA-Corr and SB-Corr are {a1, a2, a3, a4} and {b1, b2, b3, b4},
respectively.

.1.2. Energy predictive models for DGEMM and FFT
We build a dataset containing dynamic energy consumption,

xecution time, PMCs (Table 3) and utilization variables for MKL-
GEMM and MKL-FFT for a range of problem sizes on our plat-
orms (Table 1). The number of data points in the data-set and
ange of problem sizes are given in Table 4. The dataset is split
nto two subsets for training and testing the models.

We build models for MKL-FFT and MKL-DGEMM using LR by
mploying the predictor variables from the training sets given in
able 4 for HCLServer1 and HCLServer2. The models are evaluated
sing the test dataset and are divided into two categories (S1 and
2) as given below:
S1: Linear energy predictive models for FFT and DGEMM exe-

uting on HCLServer1.

• S1-UPT-FFT and S1-UPT-DGEMM employ ucpu as model vari-
able.

• S1-PMC-FFT and S1-PMC-DGEMM have {a1, a2, a3, a4, a5,
a6, a7, a8} as model variables.

• S1-PMC-Corr-FFT and S1-PMC-Corr-DGEMM employ the top
four high positively correlated PMCs, {a1, a2, a3, a4}.

• S1-UPMC-FFT and S1-UPMC-DGEMM employ {ucpu, a1, a2,
a3, a4}.

S2: Linear energy predictive models for FFT and DGEMM exe-
cuting on HCLServer2.

• S2-UPT-FFT and S2-UPT-DGEMM employ ucpu as model vari-
able.

• S2-PMC-FFT and S2-PMC-DGEMM have {b1, b2, b3, b4, b5,
b6, b7, b8} as model variables.

• S2-PMC-Corr-FFT and S2-PMC-Corr-DGEMM employ the top
four high positively correlated PMCs, {b1, b2, b3, b4}.

• S2-UPMC-FFT and S2-UPMC-DGEMM employ {ucpu, b1, b2,
b3, b4}.

Tables 5 and 6 show the minimum, average, and maximum
prediction errors for the models in category S1 and S2, respec-
tively. Fig. 2 compares the average prediction accuracies of mod-
els and Intel Running Average Power Limit (RAPL) [50] in both
categories. On both our servers, RAPL is an on-chip power sensor
that employs voltage regulator current monitor (VR IMON) for
both CPU and DRAM. VR IMON is an analog circuit within a
voltage regulator (VR), which keeps track of an estimate of the
power as the VRs supply current to the CPU. RAPL samples this
reading periodically (100 µs to 1 ms).

S1-UPMC-FFT and S1-UPMC-DGEMM yield minimum average
prediction errors of 9.2% and 11% for models in category A,
respectively. Similarly, S2-UPMC-FFT and S2-UPMC-DGEMM have
minimum average prediction errors of 19% and 9.4%, respectively.

Category S1 models show that DGEMM and FFT models based on
Table 4
Data-set for application-specific models on HCLServer1 and HCLServer2.
Application Range of problem sizes Step size Total data points Training set Testing set

HCLServer1

DGEMM 12000 × 12000 to 24736 × 24736 64 200 150 50
FFT 40000 × 40000 to 44992 × 44992 64 79 59 20

HCLServer2

DGEMM 6400 × 6400 to 38400 × 38400 64 401 300 101
FFT 22400 × 22400 to 41536 × 41536 64 300 225 75

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

p

b

Fig. 2. Comparison of average prediction errors for application-specific energy
redictive models and Intel RAPL for the applications, FFT and DGEMM.

oth utilization variables and PMCs perform (3.4×, 1.83×, 3.2×)
and (3.8×, 1.7×, 3.3×) better in terms of average prediction
accuracies when compared with models employing utilization
variables only, PMCs only, and Intel RAPL, respectively. Similarly,
Category S2 models show that DGEMM and FFT models based on
both utilization variables and PMCs perform (3.3×, 2.4×, 2.9×)
and (2.6×, 1.8×, 1.4×) better in terms of average prediction
accuracies when compared with models employing utilization
variables only, PMCs only, and Intel RAPL, respectively.

6.1.3. Discussion
Following are the salient observations from the results:

• The models employing only utilization variables have poor
prediction accuracy for all model categories.

• Intel RAPL has better average prediction accuracy than the
utilization models.

• The average prediction accuracy for models employing ad-
ditive PMCs (in the sets, SA and SB) is better than models
using only utilization variables and Intel RAPL. The accuracy
further improves for the models, which employ the top four
most positively correlated PMCs (in the sets, SA-Corr and
SB-Corr) along with the additive PMCs.
46
Table 5
Prediction accuracies for application-specific models and Intel RAPL in Category
S1.
Model Model variables Prediction errors

(%) [min, avg, max]

S1-UPT-FFT ucpu (2.92, 36.32, 92.15)
S1-PMC-FFT {a1, a2, a3, a4, a5, a6, a7, a8} (1.71, 16.22, 44.91)
S1-PMC-Corr-FFT {a1, a2, a3, a4} (2.15, 14.23, 42.15)
S1-UPMC-FFT {ucpu, a1, a2, a3, a4} (2.04, 10.41, 34.52)
S1-RAPL-FFT (0.35, 30.51, 155.03)
S1-UPT-DGEMM ucpu (2.21, 37.71, 53.23)
S1-PMC-DGEMM {a1, a2, a3, a4, a5, a6, a7, a8} (1.21, 20.11, 89.01)
S1A-PMC-Corr-DGEMM {a1, a2, a3, a4} (0.01, 15.21, 82.27)
S1-UPMC-DGEMM {ucpu, a1, a2, a3, a4} (0.18, 10.98, 51.77)
S1-RAPL-DGEMM (0.38, 35.23, 160.7)

Table 6
Prediction accuracies for application-specific models and Intel RAPL in Category
S2.
Model Model variables Prediction errors (%)

[min, avg, max]

S2-UPT-FFT ucpu (1.53, 53.21, 89.84)
S2-PMC-FFT {b1, b2, b3, b4, b5, b6, b7, b8} (0.447, 36.31, 182.2)
S2-PMC-Corr-FFT {b1, b2, b3, b4} (0.042, 25.12, 190.15)
S2-UPMC-FFT {ucpu, b1, b2, b3, b4} (1.23, 19.98, 122.9)
S2-RAPL-FFT (0.51, 40.21, 173.25)
S2-UPT-DGEMM ucpu (2.12, 31.33, 53.02)
S2-PMC-DGEMM {b1, b2, b3, b4, b5, b6, b7, b8} (0.094, 22.62, 125.48)
S2-PMC-Corr-DGEMM {b1, b2, b3, b4} (0.004, 16.12, 87.25)
S2-UPMC-DGEMM {ucpu, b1, b2, b3, b4} (0.45, 9.40, 63.72)
S2-RAPL-DGEMM (0.29, 27.41, 142.72)

• The most accurate models for DGEMM and FFT applications
employ five and six PMCs. Therefore, at least six hardware
registers must be dedicated to storing the PMCs so that
these models can be used for online. Currently, only 3–4
hardware registers are dedicated to storing PMCs during an
application run on our experimental platforms.

• Fig. 2 shows that the patterns for prediction accuracy for
the two applications are different for the two platforms.
In HCLServer1, FFT models have better prediction accu-
racy than DGEMM models. It is, however, the reverse on
HCLServer2. The best set of PMCs employed as model vari-
ables for the applications is different for the two platforms.
This illustrates that the same set of model variables may not
represent the energy-consuming activities of an application
on all platforms, even if they share the same set of PMCs.
The differences in the employed model variables translate
into differences in average prediction accuracies for dynamic
energy consumption for the same application executing on
different platforms. Therefore, we conclude that the predic-
tion accuracy of PMC based models is not just sensitive to
an application but also to the platform.

• The best prediction accuracy is achieved for models that
employ both utilization variables and PMCs. This is because
they capture most of the energy-consuming activities during
an application execution on our platforms.

6.2. Study of accuracy of platform-level energy predictive models

In this section, we study the accuracy of platform-level energy
predictive models using the testsuite (Table 2). We divide our
experiments into two classes:

1. Class A: Comparison of prediction accuracy of models em-
ploying utilization variables, PMCs, and both utilization
variables and PMCs for two applications, DGEMM and FFT.

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

6
m

H
a
a
f
m

t
4
a
F
f
S
u
(
w
o

Table 7
Prediction accuracies for energy predictive models and Intel RAPL in the sets,
S1-MMFT and S2-MMFT.
Model Model variables Prediction errors (%)

[min, avg, max]

S1-MMFT models

S1-UPT-MMFT ucpu (2.32, 22.39, 121.31)
S1-PMC-MMFT {a1, a2, a3, a4, a5, a6, a7, a8} (0.014, 18.62, 125.48)
S1-PMC-Corr-MMFT {a1, a2, a3, a4} (0.014, 16.12, 87.25)
S1-UPMC-MMFT {ucpu, a1, a2, a3, a4} (0.25, 10.40, 63.72)
S1-RAPL-MMFT (0.35, 32.52, 160.7)

S2-MMFT models

S2-UPT-MMFT ucpu (1.23, 39.21, 132.23)
S2-PMC-MMFT {b1, b2, b3, b4, b5, b6, b7, b8} (0.005, 35.32, 225.5)
S2-PMC-Corr-MMFT {b1, b2, b3, b4} (0.024, 25.12, 87.25)
S2-UPMC-MMFT {ucpu, b1, b2, b3, b4} (0.20, 17.27, 112.90)
S2-RAPL-MMFT (0.29, 34.61, 173.25)

2. Class B: Comparison of prediction accuracy of models em-
ploying utilization variables, PMCs, and both utilization
variables and PMCs for a dataset obtained using a diverse
set of applications executing a wide range of problem sizes
on HCLServer1 and HCLServer2.

.2.1. Class A: Analysis of prediction accuracy of energy predictive
odels for DGEMM and FFT
The experiments in this class are run on HCLServer1 and

CLServer2 (Table 1). Since we choose commonly additive PMCs
nd utilization variables for MKL-DGEMM and MKL-FFT for
pplication-specific models (Section 6.1), we combine the dataset
or both applications. We build the following two categories of
odels using the extended dataset:

• S1-MMFT : S1-UPT-MMFT, S1-PMC-MMFT, S1-PMC-Corr-
MMFT, and S1-UPMC-MMFT are LR-based models employ-
ing utilization variable only, PMCs in the set SA, PMCs in the
set SA-Corr, and utilization variable and PMCs (ucpu, and the
set of PMCs, SA-Corr) on HCLServer1, respectively.

• S2-MMFT : S2-UPT-MMFT, S2-PMC-MMFT, S2-PMC-Corr-
MMFT, and S2-UPMC-MMFT are LR-based models employ-
ing utilization variable only, PMCs in the set SB, PMCs in the
set SB-Corr, and both utilization variables and PMCs (ucpu,
and the set of PMCs, SB-Corr) on HCLServer2, respectively.

The number of data points in the training and test data sets for
he models on HCLServer1 and HCLServer2 are 153 and 66, and,
90 and 211, respectively. Table 7 shows the minimum, average,
nd maximum prediction errors for the models built in class A.
ig. 3 shows the comparison of average prediction accuracies
or models in category S1-MMFT and S2-MMFT. The results for
1-MMFT and S2-MMFT to show that models employing both
tilization variables and PMCs perform (2.1×, 1.8×, 3.3×) and
2.3×, 2×, 2×) better in terms of average prediction accuracies
hen compared with models employing only utilization variables
nly, PMCs only, and Intel RAPL, respectively.
Discussion
Following are the salient observations from the results:

• Intel RAPL performs the worst in terms of average prediction
accuracy.

• The average prediction accuracy improves for models em-
ploying both utilization variables and PMCs. S1-UPMC-
MMFT and S2-UPMC-MMFT result in minimum average
prediction errors of 10.4% and 17% for HCLServer1 and
HCLServer2, respectively.
47
Fig. 3. Comparison of average prediction errors for energy predictive models
with Intel RAPL for combined datasets of DGEMM and FFT on (a) HCLServer1,
and (b) HCLServer2.

• The average prediction accuracy of the best performing
models employing both utilization variables and PMCs for
an application-specific model is better than the models con-
structed with the combined dataset for the two applications.
As you increase the number of applications, the average
prediction accuracy would approach the accuracy for that
of platform-level models.

6.2.2. Class B: Analysis of prediction accuracy of energy predictive
models for a broad set of applications

We choose HCLServer1 for the experiments in this section. We
select six PMCs (x1 to x6 in Table 8), which are widely used in
energy predictive models (Section 3) and belong to the dominant
energy-consuming PMC groups. We build a dataset of 277 points
as base applications by executing the applications from our test
suite with different problem sizes. This dataset is used to train
the models. We build a test dataset containing points for 50
compound applications which are composed of serial executions
of base applications. Each point contains the dynamic energy con-
sumption and PMCs for the execution of an application. We apply
additivity test and find no PMC to be additive within tolerance
of 5%. We list the PMCs and their additivity error percentages in
Table 8.

We build six LR models, {LR1, LR2, LR3, LR4, LR5, LR6}. Each
model contains a decreasing number of non-additive PMCs. Model
LR1 employs all the selected PMCs as predictor variables. Model
LR2 is based on five most additive PMCs. PMC x4 is removed
because it has the highest non-additivity. Model LR3 uses four
most additive PMCs and so on until Model LR6 containing the
top additive PMC, which is x .
6

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

p
s
m
b
m

u
r
f

e
a
m

P
b
s
c
v
p
o

T
P .
Table 8
List of selected PMCs for modeling with their additivity test errors (%).
Selected PMCs Additivity test error (%)

x1: IDQ_MITE_UOPS 13
x2: IDQ_MS_UOPS 37
x3: ICACHE_64B_IFTAG_MISS 36
x4: ARITH_DIVIDER_COUNT 80
x5: L2_RQSTS_MISS 14
x6: UOPS_EXECUTED_PORT_PORT_6 10

Table 9
Linear predictive models (LR1–LR6) using zero intercepts and positive
coefficients with their minimum, average, and maximum prediction errors.
Model PMCs Prediction errors (%) [min, avg, max]

LR1 x1, x2, x3, x4, x5, x6 (6.6, 31.2, 61.9)
LR2 x1, x2, x3, x5, x6 (6.6, 31.2, 61.9)
LR3 x1, x3, x5, x6 (2.5, 25.3, 62.1)
LR4 x1, x5, x6 (2.5, 23.86, 100.3)
LR5 x1, x6 (2.5, 18.01, 89.45)
LR6 x6 (2.5, 68.5, 90.5)

We compare the predictions of the models with system-level
hysical power measurements using HCLWattsUp, which we con-
ider to be the ground truth. The minimum, average, and maxi-
um prediction errors for the models are given in Table 9. It can
e seen that LR5 employing two most additive PMCs yields the
ost accurate PMC based energy predictive model.
We then expand our dataset with 586 points on HCLServer1

sing the applications in our testsuite (Table 2). The input pa-
ameters for the applications used to build the dataset are as
ollows:

• MKL FFT: Problem Size = 40000 × 40000 to 44992×44992
with step size of 64, verbosity = 0, Iteration = 1.

• MKL DGEMM: Problem Size = 12000 × 12000 to 24736 ×

24736 with step size of 64, verbosity = 0, Iteration = 1.
• Intel HPCG: Problem Size = 40 × 40 × 40 to 240 × 240 ×

240 with step size of 8, Iterations = 1, Threads = 48.
• NAS OMP 3D FT: Problem Size = 256 × 256 × 128, Itera-

tions 95 to 395 with step size of 5, Threads 48.
• NAS OMP 3D LU: Problem Size = 70 × 70 × 70 to 139 × 139

× 139 with step size of 1, Iterations = 250, Threads = 48.
• NAS OMP 3D SP: Problem Size = 84 × 84 × 84 to 139 × 139

× 139 with step size of 1, Iterations = 100, dt = 0.0015000,
Threads = 48.

• NAS OMP 3D BT: Problem Size = 128 × 128 × 128 to
190 × 190 × 190 with step size of 1, Iterations = 200, dt =

0.0008000, Threads = 48.
• stress: Problem Size = 4 s to 45 s with a step size of 1.

For each application configuration, we measure the dynamic
nergy consumption, execution time, PMCs, and utilization vari-
bles. 410 and 176 points have been used to train and test the
odels respectively.
We build three platform-level models PL-UPT, PL-PMC, and

L-UPMC, employing utilization variables only, PMCs only, and
oth utilization variables and PMCs on HCLServer1. Table 10
hows the prediction accuracies (also shown in Fig. 4 as bar
harts). The results show that models employing both utilization
ariables and PMCs have 2.60×, 1.42×, and 1.96× better average
rediction accuracies than models employing utilization variables
nly, PMCs only, and Intel RAPL, respectively.
Discussion
Following are the salient observations from the results:

• The minimum average prediction error of 14.36% is obtained
for the model employing both utilization variables and the
most additive PMCs.
48
able 10
rediction accuracies for platform-level energy predictive models and Intel RAPL
Model Predictor variables Prediction errors (%) [min, avg, max]

PL-UPT ucpu (0.11, 37.35, 140.05)
PL-PMC x1 , x6 (2.4, 20.41, 93.01)
PL-UPMC ucpu , x1 , x6 (0.06, 14.36, 50.75)
PL-RAPL (0.14, 36.62, 190.41)

Fig. 4. Comparison of average prediction errors for platform-level models
employing utilization variables only (UPT), PMCs only (PMC), both utilization
variables and PMCs (UPMC), and Intel RAPL.

• While utilization variables capture the overall energy con-
sumption trend of the application executions, they do not
capture holistically and completely all the energy-
consuming activities during the execution of an application.
Models that employ both utilization variables and PMCs
that are highly additive and highly energy-correlated are
able to account for most of the energy-consuming activities
during the execution of an application and hence are found
to provide the best accuracy.

7. Discussion and future work

We now summarize the most important findings from our
experiments:

• We analyzed the prediction accuracy of linear energy pre-
dictive models employing utilization variables only, PMCs
only, and both utilization variables and PMCs. The utilization
variables capture the overall energy consumption trend (or
the average energy consumption) of the profiles of the ap-
plication executions. But they fail to capture the variations
in the profiles. Models based on highly additive and highly
energy correlated PMCs accurately capture these variations.
They do not, however, account for some energy-consuming
activities that are captured by high-level utilization vari-
ables.

• The best models employing both utilization variables and
PMCs exhibit 3.6× and 2.6× better average prediction ac-
curacy than models employing utilization variables only
and PMCs only. The average prediction accuracies of the
application-specific models employing both utilization vari-
ables and PMCs for FFT and DGEMM are {10.41%, 10.98%},
and {19.98%, 9.40%} on HCLServer1 and HCLServer2 respec-
tively. The average prediction accuracy of the platform-level
model employing both utilization variables and PMCs is
14.36% on HCLServer1.

• The memory activities do not contribute towards dynamic
energy consumption of the applications on our platforms.
Therefore, we remove the PMCs related to memory activities
from the models in our analysis. With no constraints on

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51

s
d
i
p
e
w
r
d
o
f

8

d
P
t
m
t
c
e
t
s
O
p
p
t
v

D

c
t

the model coefficients, we find that the model coefficient
of umem to be negative for all the models constructed in our
experiments with the exception of the application-specific
model for FFT. For the models with the negative coefficient,
we remove the memory utilization variable since it violates
the properties of the consistency test and re-construct the
models. We also find that the removal of memory utiliza-
tion variable from the model for FFT reduces the prediction
power of the model by 0.02× only. Therefore, for the con-
sistency of the experimental results, we remove umem as a
model variable from our energy predictive models.

• We observe that the patterns for prediction accuracy for
application-specific models for FFT and DGEMM are differ-
ent for the two experimental platforms. In HCLServer1, FFT
models have better prediction accuracy than DGEMM mod-
els. It is, however, the reverse on HCLServer2. The best set
of PMCs employed as model variables for the applications
is different for the two platforms. This illustrates that the
same set of model variables may not represent the energy-
consuming activities of an application on all platforms, even
if they share the same set of PMCs. Therefore, we conclude
that the prediction accuracy of PMC based models is not just
sensitive to an application but also to the platform.

• The most accurate application-specific models for DGEMM
and FFT applications employ five and six PMCs. Therefore, at
least six hardware registers must be dedicated to storing the
PMCs so that these models can be used for online. Currently,
only 3–4 hardware registers are dedicated to storing PMCs
during an application run on our experimental platforms.

In our future work, we will pursue two related lines of re-
earch. First, we will continue to find improvements to the pre-
iction accuracy of linear energy predictive models by adding
nfluential model variables using the theory of energy of com-
uting. Second, we will analyze how energy predictive models
mploying both utilization variables and PMCs can be combined
ith system-level measurements using power meters for accu-
ately and efficiently determining application component level
ecomposition of energy consumption and energy optimization
f parallel applications on heterogeneous hybrid computing plat-
orms.

. Conclusion

In this work, we performed a comparative study of the pre-
iction accuracy of models employing utilization variables only,
MCs only, and combining both utilization variables and PMCs
hrough the lens of the theory of energy of computing on modern
ulticore CPU platforms. We discovered that employing utiliza-

ion variables only in linear energy predictive models does not
apture all the energy-consuming activities during application
xecution. However, combining utilization variables with PMCs
hat are highly additive and highly correlated with energy con-
umption gave the most accurate linear energy predictive model.
ur experimental results showed that application-specific and
latform-level models using both utilization variables and PMCs
erform up to 3.6× and 2.6× better in terms of average predic-
ion accuracy when compared with models employing utilization
ariables only and highly additive PMCs only, respectively.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
49
Acknowledgment

This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) under
Grant Number 14/IA/2474.

References

[1] IntelPCM, Intel performance counter monitor - a better way to measure
CPU utilization, 2012, URL https://software.intel.com/en-us/articles/intel-
performance-counter-monitor.

[2] PAPI, Performance application programming interface 5.4.1, 2015, URL
http://icl.cs.utk.edu/papi/.

[3] CUPTI, CUDA profiling tools interface, 2017, URL https://developer.nvidia.
com/cuda-profiling-tools-interface.

[4] Nvidia, Nvidia management library: NVML reference manual, 2018, URL
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf.

[5] HCL, HCLWattsUp: API for power and energy measurements using WattsUp
Pro Meter, 2020, URL https://csgitlab.ucd.ie/manumachu/hclwattsup.

[6] Z. Al-Khatib, S. Abdi, Operand-value-based modeling of dynamic energy
consumption of soft processors in FPGA, in: International Symposium on
Applied Reconfigurable Computing, Springer, 2015, pp. 65–76.

[7] R. Basmadjian, H. de Meer, Evaluating and modeling power consump-
tion of multi-core processors, in: Future Energy Systems: Where Energy,
Computing and Communication Meet (E-Energy), 2012 Third International
Conference on, 2012, pp. 1–10.

[8] F. Bellosa, The benefits of event: driven energy accounting in power-
sensitive systems, in: Proceedings of the 9th Workshop on ACM SIGOPS
European Workshop: Beyond the PC: New Challenges for the Operating
System, ACM, 2000.

[9] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, E. Ayguade, Decom-
posable and responsive power models for multicore processors using
performance counters, in: Proceedings of the 24th ACM International
Conference on Supercomputing, ACM, 2010, pp. 147–158.

[10] W.L. Bircher, L.K. John, Complete system power estimation using processor
performance events, IEEE Trans. Comput. 61 (4) (2012) 563–577.

[11] R.A. Bridges, N. Imam, T.M. Mintz, Understanding gpu power: A survey of
profiling, modeling, and simulation methods, ACM Comput. Surv. 49 (3).

[12] V. Bui, B. Norris, K. Huck, L.C. McInnes, L. Li, O. Hernandez, B. and
Chapman, A component infrastructure for performance and power mod-
eling of parallel scientific applications, in: Proceedings of the 2008
CompFrame/HPC-GECO Workshop on Component Based High Performance,
CBHPC ’08, ACM, 2008, pp. 6:1–6:11.

[13] M. Burtscher, I. Zecena, Z. Zong, Measuring gpu power with the k20 built-
in sensor, in: Proceedings of Workshop on General Purpose Processing
using GPUs, GPGPU-7, ACM, New York, NY, USA, 2014, pp. 28:28–28:36,
http://dx.doi.org/10.1145/2576779.2576783.

[14] A. Cabrera, F. Almeida, V. Blanco, D. Gimenez, Analytical modeling of
the energy consumption for the high performance linpack, in: 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, IEEE, 2013, pp. 343–350.

[15] M. Chadha, T. Ilsche, M. Bielert, W.E. Nagel, A statistical approach to power
estimation for x86 processors, in: Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International, IEEE, 2017, pp.
1012–1019, http://dx.doi.org/10.1109/IPDPSW.2017.98.

[16] I. Corporation, Intel R⃝ manycore platform software stack (intel MPSS),
2014, URL https://software.intel.com/en-us/articles/intel-manycore-
platform-software-stack-mpss.

[17] I. Corporation, Intel xeon phi coprocessor system software developers
guide, 2014.

[18] W. Dargie, A stochastic model for estimating the power consumption of a
processor, IEEE Trans. Comput. 64 (5).

[19] M. Dayarathna, Y. Wen, R. Fan, Data center energy consumption modeling:
A survey, IEEE Commun. Surv. Tutor. 18 (1) (2016) 732–794.

[20] A.M. Devices, Bios and kernel developer’s guide (bkdg) for amd family 15h
models 00h-0fh processors, 2012, URL https://www.amd.com/system/files/
TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf.

[21] J. Dongarra, H. Ltaief, P. Luszczek, V. Weaver, Energy footprint of advanced
dense numerical linear algebra using tile algorithms on multicore architec-
ture, in: The 2nd International Conference on Cloud and Green Computing,
2012.

[22] D. Economou, S. Rivoire, C. Kozyrakis, P. and Ranganathan, Full-system
power analysis and modeling for server environments, in: In Proceedings
of Workshop on Modeling, Benchmarking, and Simulation, 2006, pp. 70–77.

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://icl.cs.utk.edu/papi/
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/cuda-profiling-tools-interface
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://csgitlab.ucd.ie/manumachu/hclwattsup
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb6
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb6
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb6
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb6
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb6
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb10
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb10
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb10
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb12
http://dx.doi.org/10.1145/2576779.2576783
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb14
http://dx.doi.org/10.1109/IPDPSW.2017.98
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb17
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb17
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb17
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb19
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb19
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb19
https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb21

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51
[23] M. Fahad, A. Shahid, R.R. Manumachu, A. Lastovetsky, A comparative study
of methods for measurement of energy of computing, Energies 12 (11)
http://dx.doi.org/10.3390/en12112204. URL https://www.mdpi.com/1996-
1073/12/11/2204.

[24] M. Fahad, A. Shahid, R.R. Manumachu, A. Lastovetsky, Accurate energy
modelling of hybrid parallel applications on modern heterogeneous com-
puting platforms using system-level measurements, IEEE Access 8 (2020)
93793–93829.

[25] X. Fan, W.-D. Weber, L.A. Barroso, Power provisioning for a warehouse-
sized computer, in: 34th Annual International Symposium on Computer
Architecture, ACM, 2007, pp. 13–23.

[26] X. Feng, R. Ge, K.W. Cameron, Power and energy profiling of scientific
applications on distributed systems, in: Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, IEEE, 2005, p. 34.

[27] J. Flinn, M. Satyanarayanan, Powerscope: A tool for profiling the energy
usage of mobile applications, in: Proceedings WMCSA’99. Second IEEE
Workshop on Mobile Computing Systems and Applications, IEEE, 1999, pp.
2–10.

[28] B. Goel, S.A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, M. Cesati, Portable
scalable per-core power estimation for intelligent resource management,
in: Portable, Scalable, Per-Core Power Estimation for Intelligent Resource
Management, Green Computing Conference, 2010 International, 2010.

[29] P. Gschwandtner, M. Knobloch, B. Mohr, D. Pleiter, T. Fahringer, G CPU
energy consumption of hpc applications on the IBM POWER7, in: Parallel,
Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, IEEE, 2014, pp. 536–543.

[30] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, W.E. Nagel,
Power measurement techniques on standard compute nodes: A quan-
titative comparison, in: Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on, IEEE, 2013, pp. 194–204.

[31] J. Haj-Yihia, A. Yasin, Y.B. Asher, A. Mendelson, Fine-grain power break-
down of modern out-of-order cores and its implications on skylake-based
systems, ACM Trans. Archit. Code Optim. (TACO) 13 (4) (2016) 56.

[32] T. Heath, B. Diniz, B. Horizonte, E.V. Carrera, R. Bianchini, Energy conserva-
tion in heterogeneous server clusters, in: 10th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), ACM, 2005,
pp. 186–195.

[33] H. Hong, Sunpyand Kim, An integrated GPU power and performance model,
SIGARCH Comput. Archit. News 38 (3).

[34] C. Isci, M. Martonosi, Runtime power monitoring in high-end processors:
Methodology and empirical data, in: 36th Annual IEEE/ACM International
Symposium on Microarchitecture, IEEE Computer Society, 2003, p. 93.

[35] G. Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, C. Pu, Mistral: Dy-
namically managing power, performance, and adaptation cost in cloud
infrastructures, in: Distributed Computing Systems (ICDCS), 2010 IEEE 30th
International Conference on, IEEE, 2010, pp. 62–73.

[36] A. Kansal, F. Zhao, Fine-grained energy profiling for power-aware ap-
plication design, ACM SIGMETRICS Perform. Eval. Rev. 36 (2) (2008)
26.

[37] S. Khokhriakov, R.R. Manumachu, A. Lastovetsky, Multicore proces-
sor computing is not energy proportional: An opportunity for bi-
objective optimization for energy and performance, Appl. Energy
268 (2020) 114957, http://dx.doi.org/10.1016/j.apenergy.2020.114957, URL
http://www.sciencedirect.com/science/article/pii/S0306261920304694.

[38] A. Lastovetsky, R. Reddy, New model-based methods and algorithms for
performance and energy optimization of data parallel applications on
homogeneous multicore clusters, IEEE Trans. Parallel Distrib. Syst. 28 (4)
(2017) 1119–1133.

[39] B.C. Lee, D.M. Brooks, Accurate and efficient regression modeling for
microarchitectural performance and power prediction, SIGARCH Comput.
Archit. News 34 (5) (2006) 185–194.

[40] T. Li, L.K. John, Run-time modeling and estimation of operating sys-
tem power consumption, SIGMETRICS Perform. Eval. Rev. 31 (1) (2003)
160–171.

[41] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y. Su, K. Cameron,
Power-aware predictive models of hybrid (mpi/openmp) scientific ap-
plications on multicore systems, Comput. Sci.-Res. Dev. 27 (4) (2012)
245–253.

[42] J.C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A.C. Sno-
eren, R.K. Gupta, Evaluating the effectiveness of model-based power
characterization, in: Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’11, USENIX Association,
2011.
50
[43] C. Mobius, W. Dargie, A. Schill, Power consumption estimation models for
processors, virtual machines, and servers, IEEE Trans.Parallel Distrib. Syst.
25 (6).

[44] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, S. Matsuoka, Statis-
tical power modeling of GPU kernels using performance counters, in:
International Green Computing Conference and Workshops (IGCC), IEEE,
2010.

[45] K. O’Brien, I. Pietri, R. Reddy, A. Lastovetsky, R. Sakellariou, A survey of
power and energy predictive models in HPC systems and applications, ACM
Comput. Surv. 50 (3).

[46] R. Reddy, A. Lastovetsky, Bi-objective optimization of data-parallel appli-
cations on homogeneous multicore clusters for performance and energy,
IEEE Trans. Comput. 64 (2) (2018) 160–177.

[47] R. Reddy Manumachu, A.L. Lastovetsky, Design of self-adaptable data
parallel applications on multicore clusters automatically optimized for
performance and energy through load distribution, Concurr. Comput.:
Pract. Exper. 31 (4) (2019) e4958, http://dx.doi.org/10.1002/cpe.4958.

[48] S. Rivoire, Models and Metrics for Energy-Efficient Computer Systems,
(Ph.D. thesis), Stanford University, Stanford, California, 2008.

[49] S. Rivoire, P. Ranganathan, C. Kozyrakis, A comparison of high-level full-
system power models, in: Proceedings of the 2008 Conference on Power
Aware Computing and Systems, HotPower’08, USENIX Association, 2008.

[50] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, D. Rajwan, Power-
management architecture of the intel microarchitecture code-named sandy
bridge, IEEE Micro. 32 (2) (2012) 20–27.

[51] A. Shahid, M. Fahad, R.R. Manumachu, A. Lastovetsky, Improving the
accuracy of energy predictive models for multicore CPUs using additiv-
ity of performance monitoring counters, in: V. Malyshkin (Ed.), Parallel
Computing Technologies, Springer International Publishing, Cham, 2019,
pp. 51–66.

[52] A. Shahid, M. Fahad, R. Reddy, A. Lastovetsky, Additivity: A selection
criterion for performance events for reliable energy predictive modeling,
Supercomput. Front. Innov.: Int. J. 4 (4) (2017) 50–65.

[53] A. Shahid, M. Fahad, R. Reddy Manumachu, A. Lastovetsky, Energy of
computing on multicore cpus: Predictive models and energy conservation
law, arXiv. URL arXiv:1907.02805.

[54] A. Shahid, M. Fahad, R. Reddy Manumachu, A. Lastovetsky, Supple-
mental: Improving the accuracy of energy predictive models using
the utilization variables and performance events for multicore cpus,
2019, URL https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/
supplementalJPDC2020.pdf.

[55] Y.S. Shao, D. Brooks, Energy characterization and instruction-level energy
model of Intel’s Xeon Phi processor, in: Proceedings of the 2013 Interna-
tional Symposium on Low Power Electronics and Design, ISLPED ’13, IEEE
Press, 2013.

[56] K. Singh, M. Bhadauria, S.A. McKee, Real time power estimation and thread
scheduling via performance counters, SIGARCH Comput. Archit. News 37
(2) (2009) 46–55.

[57] S. Song, C. Su, B. Rountree, K.W. Cameron, A simplified and accurate model
of power-performance efficiency on emergent GPU architectures, in: 27th
IEEE International Parallel & Distributed Processing Symposium (IPDPS),
IEEE Computer Society, 2013, pp. 673–686.

[58] M.B. Srivastava, A.P. Chandrakasan, R.W. Brodersen, Predictive system
shutdown and other architectural techniques for energy efficient pro-
grammable computation, IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
4 (1) (1996) 42–55.

[59] J. Treibig, G. Hager, G. Wellein, Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments, in: Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on, IEEE, 2010,
pp. 207–216.

[60] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, L. Zhou, Distributed systems
meet economics: pricing in the cloud, in: Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, USENIX Association, 2010.

[61] P. Wiki, Perf: Linux profiling with performance counters, 2017, URL https:
//perf.wiki.kernel.org/index.php/Main_Page.

[62] M. Witkowski, A. Oleksiak, T. Piontek, J. Weglarz, Practical power con-
sumption estimation for real life HPC applications, Future Gener. Comput.
Syst. 29 (1).

[63] X. Wu, V. Taylor, J. Cook, P.J. Mucci, Using performance-power modeling
to improve energy efficiency of HPC applications, Computer 49 (10) (2016)
20–29.

[64] W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, The design and use of
simplepower: a cycle-accurate energy estimation tool, in: Proceedings of
the 37th Annual Design Automation Conference, ACM, 2000, pp. 340–345.

http://dx.doi.org/10.3390/en12112204
https://www.mdpi.com/1996-1073/12/11/2204
https://www.mdpi.com/1996-1073/12/11/2204
https://www.mdpi.com/1996-1073/12/11/2204
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb25
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb25
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb25
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb25
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb25
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb31
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb31
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb31
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb31
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb31
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb34
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb34
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb34
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb34
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb34
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb36
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb36
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb36
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb36
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb36
http://dx.doi.org/10.1016/j.apenergy.2020.114957
http://www.sciencedirect.com/science/article/pii/S0306261920304694
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb38
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb39
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb39
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb39
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb39
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb39
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb40
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb40
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb40
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb40
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb40
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb41
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb42
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb44
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb46
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb46
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb46
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb46
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb46
http://dx.doi.org/10.1002/cpe.4958
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb48
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb48
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb48
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb49
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb49
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb49
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb49
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb49
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb50
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb50
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb50
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb50
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb50
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb51
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb52
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb52
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb52
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb52
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb52
http://arxiv.org/abs/1907.02805
https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/supplementalJPDC2020.pdf
https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/supplementalJPDC2020.pdf
https://github.com/ArsalanShahid116/SLOPE-PMC/blob/master/supplementalJPDC2020.pdf
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb55
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb56
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb56
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb56
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb56
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb56
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb57
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb58
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb59
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb60
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb60
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb60
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb60
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb60
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb63
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb63
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb63
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb63
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb63
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb64
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb64
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb64
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb64
http://refhub.elsevier.com/S0743-7315(21)00013-7/sb64

A. Shahid, M. Fahad, R.R. Manumachu et al. Journal of Parallel and Distributed Computing 151 (2021) 38–51
Arsalan Shahid received his PhD degree from the
University College Dublin. He graduated as a gold
medalist for the best final year project in BS Elec-
trical Engineering from HITEC University Pakistan, in
2016. His research interests are energy-aware high-
performance heterogeneous computing and intelligent
cloud computing.

Muhammad Fahad is a Ph.D. researcher in Hetero-
geneous Computing Lab (HCL) at University College
Dublin, Ireland. He received his MS degree from KTH
- Royal Institute of Technology, Sweden in 2012,
and BS degree from International Islamic University
Islamabad, Pakistan in 2008. His main research in-
terests include high-performance heterogeneous com-
puting, energy-efficient computing, parallel/distributed
and peer-to-peer computing.
51
Ravi Reddy Manumachu received a B.Tech degree from
I.I.T, Madras in 1997 and a Ph.D. degree from the
School of Computer Science, University College Dublin
in 2005. His main research interests include high per-
formance heterogeneous computing, distributed com-
puting, energy-efficient computing, and sparse matrix
computations.

Alexey Lastovetsky received a Ph.D. degree from
the Moscow Aviation Institute in 1986, and a Doc-
tor of Science degree from the Russian Academy of
Sciences in 1997. His main research interests in-
clude high-performance heterogeneous computing and
energy-efficient computing. He has published over 150
technical papers in refereed journals, edited books, and
international conferences. He authored the monographs
Parallel computing on heterogeneous networks (Wiley,
2003) and High-performance heterogeneous computing
(Wiley, 2009).

	Improving the accuracy of energy predictive models for multicore CPUs by combining utilization and performance events model variables
	Introduction
	Terminology: Energy consumption and energy predictive models
	Related work
	Mainstream methods for energy measurements
	Power and energy predictive models
	Utilization based models
	PMC based models
	Models employing utilization variables and PMCs
	Important surveys on energy predictive models
	Recent advancements in the energy predictive models employing PMCs

	Theory of energy of computing: Practical implications for linear energy predictive models
	Linear energy predictive models employing utilization variables and PMCs
	Additivity of model variables

	Experimental setup
	Measurement and selection of Performance Monitoring Counters (PMCs)
	Measurement and selection of utilization variables

	Experimental results
	Study of accuracy of application-specific energy predictive models
	Experiments to select PMCs and utilization variables
	Energy predictive models for DGEMM and FFT
	Discussion

	Study of accuracy of platform-level energy predictive models
	Class A: Analysis of prediction accuracy of energy predictive models for DGEMM and FFT
	Class B: Analysis of prediction accuracy of energy predictive models for a broad set of applications

	Discussion and future work
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

