
Received: 14 December 2017 Revised: 23 July 2018 Accepted: 28 July 2018

DOI: 10.1002/cpe.4958

R E S E A R C H A R T I C L E

Design of self-adaptable data parallel applications on multicore
clusters automatically optimized for performance and energy
through load distribution

Ravi Reddy Manumachu Alexey L. Lastovetsky

School of Computer Science, University

College Dublin, Dublin, Ireland

Correspondence

Ravi Reddy Manumachu, School of Computer

Science, University College Dublin, Dublin D04

V1W8, Ireland.

Email: ravi.manumachu@ucd.ie

Funding information

Science Foundation Ireland, Grant/Award

Number: 14/IA/2474

Summary

Self-adaptability is a highly preferred feature in HPC applications. A crucial building block of a

self-adaptable application is a data partitioning algorithm that must possess several essential

qualities apart from low runtime and memory costs. On modern platforms composed of multi-

core CPU processors, data partitioning algorithms striving to solve the bi-objective optimization

problem for performance and energy (BOPPE) face a formidable challenge. They must take into

account the new complexities inherent in these platforms such as severe resource contention and

non-uniform memory access (NUMA). Novel model-based methods and data partitioning algo-

rithms have been proposed that address the challenge. However, these methods take as input full

functional performance and energy models (FPM and FEM), which have prohibitively high model

construction costs. Therefore, they are not suitable for employment in self-adaptable applica-

tions. In this paper, we present a self-adaptable data partitioning algorithm called ADAPTALEPH,

which solves BOPPE on homogeneous clusters of multicore CPUs. Unlike the state-of-the-art

solving BOPPE that take as inputs full FPM and FEM, it constructs partial FPM and FEM dur-

ing its execution using all the available processors. It returns a locally Pareto-optimal set of

solutions, which are the heterogeneous workload distributions that achieve inter-node opti-

mization of data-parallel applications for performance and energy. We experimentally study the

efficiency of ADAPTALEPH for three data-parallel applications, ie, matrix-vector multiplication,

matrix-matrix multiplication, and fast Fourier transform, on a modern multicore CPU and simu-

lations for homogeneous clusters of such CPUs. We demonstrate that the locally Pareto-optimal

front approaches the globally Pareto-optimal front as the number of points in the partial discrete

FPM and FEM functions are increased. The number of points in the partial FPM/FEM when the

locally Pareto-optimal front becomes the globally Pareto-optimal front is considerably less than

the number of points in the full FPM/FEM thereby suggesting development of methods that can

leverage this finding to drastically reduce the model construction times.
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1 INTRODUCTION

Self-adaptability is a highly preferred feature in HPC and must-have in application domains such as adaptive mesh refinement, particle simulations,

transient dynamics calculations, etc. We define self-adaptable applications in the HPC context as applications that automatically adapt at runtime to

any set of heterogeneous processors with a priori unknown performance characteristics.1,2 They are ideally suited for execution in dynamic environ-

ments where the number of available processors and their performance characteristics can be different for different runs of the same application.

They must adapt at runtime to dynamic changes in the environment even during a single run.

We briefly describe few real-life cases where self-adaptability is essential. They are covered in substantial detail in Section 1 of the supplemental.
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• Self-adaptability of the solver is vital in adaptive mesh refinement on clusters for solving large computational fluid dynamics (CFD) and computa-

tional mechanics (CM) problems where the computational load varies throughout the evolution of the solution. For example, solving for flow or

stress in different parts of the domain in a multiphysics casting simulation. The works of Williams,3 Walshaw et al,4 and Arulananthan et al5 are

notable works describing methods for dynamic partitioning of unstructured meshes.

• Autotuning parallel softwares typically perform an empirical search by generating numerous versions of a program at runtime, which are then

executed to find the best configuration of a program. A key building block that enables them to prune and accomplish this search in reasonable

runtime is a fast data partitioning algorithm that is based on realistic computation and communication performance models. Reddy et al6 pro-

posed a linear algebra package for heterogeneous clusters that determines the optimal number and arrangement of processors to be used during

the execution of a linear algebra kernel. One important reason how the mapping runtime module in this software accomplishes this task in a

reasonable time is the invocation of fast data partitioning algorithms that are based on realistic computation and communication performance

models, which are efficiently constructed at runtime.

• Supercomputer administrators routinely report that nodes closer to the hotter regions (hotspots) execute codes slower than the nodes closer to

the cooler regions in the supercomputing centers due to variations in the airflow caused by how the cooling systems are laid out.7 Thermal-aware

workload scheduling techniques8-10 have been proposed to take into account these temperature variations to optimize for performance and

energy.

• Shared environments such as cloud computing systems today are placing great emphasis in facilitating easier migration and execution of HPC

workloads by striving to remove daunting impediments to this process. The leading objectives for optimization for the cloud service providers are

performance, energy consumption, cost, and reliability. Self-adaptable applications employing fast data partitioning algorithms for optimization

of their performance and energy evidently and directly address the first two concerns.

A crucial building block of a self-adaptable application executing on modern parallel platforms composed of multicore CPU processors is a data

partitioning algorithm that must strive to solve the bi-objective optimization problem for performance and energy (BOPPE). However, it faces a

formidable challenge. Modern multicore CPU platforms are composed of tightly integrated multicore CPUs with highly hierarchical arrangement of

cores. This tight integration has resulted in the cores contending for various shared on-chip resources such as Last Level Cache (LLC) and intercon-

nect (eg, Intel's Quick Path Interconnect, AMD's Hyper Transport), leading to severe resource contention and non-uniform memory access (NUMA).

Due to these newly introduced complexities, the performance and energy profiles of real-life scientific applications executing on these platforms

are not smooth and may deviate significantly from the shapes observed before. These behaviors limit the applicability of state-of-the-art load bal-

ancing algorithms (based on functional performance models (FPMs)). Therefore, the data partitioning algorithm must take into account the new

real-life behavior of applications by employing realistic computation and communication models of performance and energy. Along with addressing

the challenge, it must also possess the following essential qualities, ie, (a) it must have low practical runtime and memory costs compared to that

of the application, and (b) it must minimize the cost of data redistribution arising from dynamic partitioning. We do not consider the cost of data

redistribution in our proposed solution since it is quite straightforward to integrate it.

We cover briefly the new behaviors of the data-parallel applications executing on modern homogeneous clusters of multicore CPUs. They are

described in sufficient detail in the following background section. The state-of-the-art load balancing algorithms designed for optimization of the

computational performance of data-parallel applications assume that their performance profiles (FPMs) satisfy properties of continuity and cer-

tain assumptions on shape such as smoothness. The smooth FPMs accurately capture the shapes of real-life scientific applications on platforms

consisting of uniprocessors (single-core CPUs). We illustrate this using the execution of the OpenBLAS DGEMM application on a single core of an

Intel Haswell server (Table 1). Figures 1A and 1B, respectively, show the shapes of the experimentally built speed and dynamic energy functions.

The application multiplies two square matrices of size n × n (problem size is equal to n2). In these experiments, the numactl tool is used to bind the

application to one core. The dynamic energy consumptions are obtained using Watts Up Pro power meter. To make sure the experimental results are

reliable, we follow a statistical methodology described in Section 4 of the supplemental. Briefly, for every data point in the functions, the automa-

tion software executes the application repeatedly until the sample mean lies in the 95% confidence interval and a precision of 0.025 (2.5%) has been

achieved. For this purpose, Student's t-test is used assuming that the individual observations are independent and their population follows the nor-

mal distribution. We verify the validity of these assumptions using Pearson's chi-squared test. The speed and energy values shown in the graphical

plots throughout this work are the sample means.

However, if we run the same application on all 24 cores of the multicore CPU of the Haswell server executing 24 threads, the picture will drastically

change, as shown in Figure 3. The performance and energy profiles are no longer smooth and deviate significantly from the shapes observed before.

Even more spectacular variations in speed and energy can be seen in Figure 2 for the FFTW application11 performing a 2D FFT of size n × n (the

problem size being n2). The variations in energy reach a maximum of 400%, and the average variation in speed is 300%. It is important to note

that these variations are not noise but an inherent trait of applications executing on multicore servers with resource contention and NUMA. It is

evident that equal distribution of the workload between identical processors with such performance and energy profiles will no longer guarantee

minimization of execution time or energy consumption. More generally, traditional methods and algorithms used for optimization of performance

and/or energy of parallel applications will not work for modern multicore-based platforms.

We now present an overview of the state-of-the-art data partitioning algorithms that have addressed the first two challenges. We then explain

why they are not suitable for employment in self-adaptable applications before presenting our solution.



REDDY MANUMACHU AND LASTOVETSKY 3 of 24

TABLE 1 Specification of the Intel Haswell server used
to build the functional performance and energy models
for multithreaded Intel MKL FFT and OpenBLAS DGEMM
applications

Technical Specifications Intel Haswell Server

Processor Intel E5-2670 v3 @ 2.30GHz

OS CentOS 7

Microarchitecture Haswell

Memory 64 GB

Socket(s) 2

Core(s) per socket 12

NUMA node(s) 2

L1d cache 32 KB

L11 cache 32 KB

L2 cache 256 KB

L3 cache 30720 KB

TDP 240 W

Base Power 58 W

(A) (B)

FIGURE 1 A, Speed function of OpenBLAS DGEMM application executed on a single core on the Intel Haswell server; B, Dynamic energy
consumption of OpenBLAS DGEMM application executed on a single core on the Intel Haswell server. The application multiplies two square
matrices of size n × n (problem size is equal to n2)

Lastovetsky and Reddy12 illustrated in depth the drastic variations in performance and energy profiles of two widely known and highly optimized

scientific routines, ie, OpenBLAS DGEMM13 and FFTW,11,14 on a modern multicore Intel Haswell CPU platform. They propose novel model-based

methods and algorithms for minimization of time and energy of computations (called POPTA and EOPTA, respectively) for the most general per-

formance and energy profiles of data-parallel applications executing on homogeneous clusters of modern multicore CPUs. Unlike load balancing

algorithms, optimal solutions found by these algorithms may not load-balance an application. Manumachu and Lastovetsky15 studied BOPPE for

data-parallel applications on homogeneous clusters of modern multicore CPUs, which is based on only one decision variable, ie, workload dis-

tribution. They present an efficient and exact global optimization algorithm called ALEPH that solved the BOPPE. It takes as inputs, functions of

performance and dynamic energy consumption against problem size, and outputs the globally Pareto-optimal set of solutions. These solutions are

the workload distributions, which achieve inter-node optimization of data-parallel applications for performance and energy.

The algorithms of the works of Lastovesky and Reddy12 and Manumachu et al15 have time complexity of O(m2 × p2), where m is the cardinality

of the discrete sets representing the speed/energy functions and p is the number of available processors. The memory complexity of the algorithms

is O(n × p2). However, they are sequential, recursive, and have high practical runtime, and memory costs for large values of p (several hundreds).

To address this problem, Reddy and Lastovetsky16 proposed parallel versions of the sequential data partitioning algorithms. They have low time

complexity of O(m2 × p), where m is the number of points in the discrete speed/energy function and p is the number of available processors. The

memory complexity of the algorithms is just O(m × p).
The state-of-the-art discussed above take as inputs, full functional models of performance (FPM) and dynamic energy consumption (FEM) against

problem size. However, the cost of experimentally constructing the full FPM and FEM is prohibitively high. We illuminate this point by considering

the execution times of building them for two data-parallel applications, Intel MKL FFT and OpenBLAS DGEMM,13 on an Intel multicore server CPU

(Table 1).
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(A) (B)

FIGURE 2 A, Speed function of multithreaded Intel MKL FFT executed using 48 threads on the Intel Haswell server; B, Dynamic energy function of
multithreaded Intel MKL FFT executed using 48 threads on the Intel Haswell server. The application computes a DFT (2D, double precision,
real-to-complex) of problem size n2

(A) (B)

FIGURE 3 A, Speed function of multithreaded OpenBLAS DGEMM executed using 48 threads on the Intel Haswell server; B, Dynamic energy
function of multithreaded OpenBLAS DGEMM executed using 48 threads on the Intel Haswell server. The application multiplies two square
matrices of size n × n (problem size is equal to n2)

Before that, we define what we mean by a full FPM/FEM. Functional performance models (FPMs) were defined in the works of Lastovetsky and

Reddy.17,18 Functional energy models were defined in the work of Manumahcu et al.15 A full functional model contains points, (x, f(x)), where x

is a multiple of minimum granularity. f(x) is a speed function in the case of FPM and dynamic energy consumption function in the case of FEM.

Minimum granularity is defined to be the minimum allocation unit to a processor during the execution of a data-parallel application. Therefore, the

data is allocated to the processors in multiples of minimum granularity. Consider, eg, the parallel matrix-matrix application based on SUMMA.19 The

minimum allocation unit is a square block of size b × b, where b is determined experimentally and the unit of computation in this application is a local

DGEMM update of two b × b blocks. The last point in these functions corresponds to the problem size that fills the virtual memory. Since swapping

is disabled in our Intel Haswell server, the last problem size experimentally built in the full FPM/FEM functions fills the main memory, and therefore,

there are no points with problem sizes that exceed it.

The performance and energy models are built simultaneously using an automated build procedure. The dynamic energy consumption during

the application execution is obtained using Watts Up Pro power meter. For each data point, the execution time and dynamic energy consumption

(sample means) are measured together by invoking the HCLWattsUp interface functions,20 which employ the statistical methodology detailed in

Section 4 of the supplemental. The full FPM and FEM for Intel MKL FFT are shown in Figures 2A and 2B and for OpenBLAS DGEMM, in Figures 3A

and 3B, respectively. Both the functions are constructed together since obtaining energy values using physical measurements from power meters

adds negligible overhead to determination of execution times using processor clocks.

The number of points in the functions for Intel MKL FFT and OpenBLAS DGEMM are 485 and 1250, respectively, and their model construction

execution times are 25920 seconds and 11540 seconds, respectively. The reason for the high model construction time of Intel MKL FFT (as compared

to OpenBLAS DGEMM) is because it is optimized only for specific problem sizes and exhibits severe drops in performance for other problem sizes.
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Consider the execution times of the parallel FFT and parallel matrix-matrix multiplication applications employing the data partitioning algo-

rithms. Since we could not find a cluster containing multicore servers similar to our server, just to give you an idea of the application execution times

involved, we perform experiments in the Grid'5000 platform hosted in France (http://www.grid5000.fr). The application execution times represent

the upper bounds in the sense that they would be less on a cluster of multicore servers with the specification shown in Table 1. The platform contains

24 clusters distributed over 10 sites (nine in France and one in Luxembourg), which includes 1006 nodes and 8014 cores. We used the Graphene clus-

ter in Nancy site for our experiments. We used a total of 576 cores from 144 nodes. Each node has a disk of 298 GB storage, 16 GB of memory, and a

quad-core Intel Xeon X3440 CPU. The nodes in the cluster are interconnected via 20 Gb/s Infiniband. For the MPI communications, OpenMPI-1.6.5

is used. gcc compiler version used for compilation is 4.9.2.

The parallel FFT application (PFFT) computes a DFT (2D, double precision, real-to-complex) of size n × n. For local computations, it employs the

Intel MKL FFT routine, which computes a 2D DFT of size nl × n (the 2D array n × n is partitioned so that each process gets a subset nl of the rows). For

homogeneous workload distribution, nl = n
p

. The execution times of PFFT range from 1.5 seconds to 37 seconds, respectively, to compute 2D DFT of

domains whose problem sizes lie between 4096 × 4096 and 16384 × 16384 using 2 processes. Using 144 processes, the execution times range from

39 seconds to 565 seconds respectively to compute 2D DFT of domains whose problem sizes lie between 32768 × 32768 and 139264 × 139264.

Using 576 processes, the execution times range from 154 seconds to 1560 seconds respectively to compute 2D DFT of domains whose problem

sizes lie between 69362 × 69362 and 277504 × 277504.

The parallel matrix-matrix application (PDGEMM) is based on SUMMA19 and employs heterogeneous two-dimensional block-cyclic distribution

of matrices.21 In this application, the square matrices A, B, and C of size (n × n) are distributed over a two-dimensional arrangement of processors,

p1 × p2, p1 =
√

p, p2 = p
p1

. The local computations are performed by a OpenBLAS DGEMM routine, which updates two matrices of sizes (nl × b) and

(b × nl), where b is the block size (experimentally determined to be 256). For homogeneous workload distribution, nl = n
p

. The execution times of

PDGEMM range from 10 seconds to 590 seconds, respectively, to multiply matrices with problem sizes lying between 4096 × 4096 and 16384 ×
16384 using 2 processes (p1 = 2, p2 = 1). Using 144 processes (p1 = 12, p2 = 12), the execution times range from 648 seconds to 8461 seconds

respectively to multiply matrices with problem sizes lying between 32768× 32768 and 139264 × 139264. Using 576 processes (p1 = 24, p2 = 24),

the execution times range from 2975 seconds to 25392 seconds, respectively, to multiply matrices with problem sizes lying between 69362 × 69362

and 277504 × 277504.

One can see that the full model construction time can be greater than the execution time of the data-parallel application. Therefore, the high model

construction costs hinder the applicability of these data partitioning algorithms in self-adaptable applications. They are more suited for situations

where the full FPM and FEM are built once and used for several application runs so that the model construction costs become insignificant when

compared to the total performance gains from the executions of the optimized application. However, this approach does not apply to self-adaptable

applications, which are executed in dynamic environments where the number of available processors and their performance characteristics can be

different for different runs of the same application.

In this paper, we address this problem by proposing a self-adaptable data partitioning algorithm called ADAPTALEPH, which solves BOPPE on

homogeneous clusters of multicore CPUs. Unlike the algorithms that take as inputs full FPM and FEM, it constructs partial FPM and FEM during its

execution using all the available processors, which makes it a distributed algorithm. It accepts as input the size of neighborhood  , which is the num-

ber of points in the neighborhood of (ie, on either side of load-balanced point) x = n
p

to be constructed in the FPM/FEM. Unlike the state-of-the-art

data partitioning algorithms for self-adaptable applications that return a solution, which tries to maximize performance, ADAPTALEPH returns a

locally Pareto-optimal set of solutions. These solutions are the heterogeneous workload distributions, which achieve inter-node optimization of

data-parallel applications for performance and energy. The user can then select a solution that satisfies her preference, which expresses a trade-off

between performance and energy, during the execution of the data-parallel application.

Our work extends the research presented in the works of Clarke et al1 and Lastovetsky et al2 where a data partitioning algorithm was proposed

that tries to optimize the data-parallel application for performance only. It builds a partial estimate of the speed function sufficient for optimal

distribution of computations and returns a solution not perfectly balancing the load of the processors but rather a solution balancing their load

with a given accuracy, which acts as the termination criterion for the algorithm. It is targeted for clusters of heterogeneous processors. However,

ADAPTALEPH tries to optimize a data-parallel application on homogeneous clusters of multicore CPUs for both performance and energy. It returns

a locally Pareto-optimal front of solutions, which are workload distributions that may not load-balance the application. To determine the globally

Pareto-optimal front of solutions, the algorithm must necessarily build the full FPM and FEM, which is prohibitively expensive. Therefore, it takes

as input the number of points to build in the partial FPM and FEM, which allows the user to limit the execution time taken by it. It also takes as

input a tolerance (𝜀), which expresses the tolerable variation between the speeds and the dynamic energies (using their sample means) of the pro-

cessors executing a problem size. If the tolerance is exceeded, ADAPTALEPH indicates that the speed and energy functions of the processors are not

homogeneous by quitting and returning the load-balanced workload distribution.

We present experimental analysis of the practical efficiency of our algorithm using three data-parallel applications, ie, parallel matrix-vector

multiplication based on Intel MKL DGEMV routine, parallel matrix-matrix multiplication based on SUMMA19 and employing OpenBLAS DGEMM for

local computations, and parallel fast Fourier transform employing Intel MKL FFT for local computations, on a modern multicore CPU and simulations

on clusters of such CPUs.

We demonstrate that while the partial FPM and FEM model construction times for OpenBLAS DGEMM application and the total execution time

of ADAPTALEPH are quite reasonable compared to the execution times of the parallel application, it is not the case for Intel MKL FFT. This is because

http://www.grid5000.fr
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the Intel MKL FFT is optimized for only specific problem sizes (power-of-two, prime number). We propose two approaches to reduce the partial FPM

and FEM construction times. One is to increase the granularity between the problem sizes in the FPM/FEM. However, we show that the locally

Pareto-optimal fronts of solutions in this case are actually quite inferior. The other approach is to a priori determine if the variation between the

speeds and the dynamic energies is less than the input tolerance 𝜀. In this case, all the available p processors can build p data points in the FPM and

FEM in parallel thereby reducing the FPM and FEM construction times by a factor of p. However, there is no straight-forward method to find out a

priori if the variation constraint is satisfied since the underlying execution environment is dynamic. One approach is to use past records of variations

and use them as a guide.

While using partial speed and energy functions, one would expect to obtain a locally Pareto-optimal front, which would lie between the

load-balanced solution and the globally Pareto-optimal front. In addition, as the number of points in the partial speed and energy functions are

increased, the locally Pareto-optimal front would approach the globally Pareto-optimal front. We show this to be true from our experiments.

We do not consider communications in this work. While execution times of communications (or a communication performance model) can be

easily integrated in our algorithm, energy model of communications is still an open research problem.

To summarize, our main contributions in this paper are the following.

• The data partitioning algorithm ADAPTALEPH for solving BOPPE that is ideally suited for self-adaptable data-parallel applications on homoge-

neous clusters of multicore CPUs. Unlike the state-of-the-art for self-adaptable applications that return a single solution, which tries to maximize

performance, ADAPTALEPH returns a locally Pareto-optimal set of solutions. The user can then select a solution that satisfies her preference,

which expresses a trade-off between performance and energy, during the execution of the data-parallel application.

• We describe a procedure detailing how DVFS-based bi-objective optimization methods can be combined with ADAPTALEPH to determine a better

Pareto-optimal front of solutions.

The rest of this paper is structured as follows. Section 2 presents the challenges posed to solve BOPPE by the inherent complexities in mod-

ern multicore CPUs. Section 3 contains theory and notation of multi-objective optimization and the concept of optimality. We then formulate

the bi-objective optimization of data-parallel applications on homogeneous clusters of multicore CPU processors for performance and energy.

Section 4 presents the self-adaptable data partitioning algorithm solving the BOPPE. Section 5 contains experimental analysis of the algorithm.

Section 6 presents related work on data partitioning techniques targeted for self-adaptable applications. Section 7 concludes this paper.

2 BACKGROUND: PERFORMANCE AND ENERGY OF DATA-PARALLEL APPLICATIONS ON
HOMOGENEOUS CLUSTERS OF MULTICORE CPUS

We will now describe in detail the new behaviors of the data-parallel applications executing on modern homogeneous clusters of multicore CPUs.

To elucidate the new behaviors, we compare the typical shapes of scientific data-parallel applications on platforms consisting of uniprocessors

and modern multicore CPUs. For this purpose, we select two widely used and highly optimized scientific routines, dense matrix-matrix multipli-

cation using OpenBLAS DGEMM13 and fast Fourier transform using Intel MKL FFT. The OpenBLAS DGEMM application multiplies two dense square

matrices of size n × n (problem size is equal to n2). The Intel MKL FFT routine computes a discrete Fourier transform (DFT, 2D, double precision,

real-to-complex) of size n × n.

Consider the shapes of the speed and dynamic energy consumption functions of the OpenBLAS DGEMM application built experimentally by

executing it on a single core of an Intel Haswell workstation (specification shown in Table 2). In these experiments, the numactl tool is used to bind the

application to one core. The dynamic energy consumptions are obtained using Watts Up Pro power meter (refer to Section 3 of the supplemental).

Figures 4A and 4B show the shapes of the speed and energy functions, whose properties are summarized below.

• The functions are smooth.

• The speed function satisfies the following properties:

- Monotonically increasing.

- Concave.

- Any straight line passing through the origin of the coordinate system intersects the graph of the function in no more than one point.

• The dynamic energy consumption is a monotonically increasing convex function of problem size.

For such shapes, Lastovetsky et al12,22,23 proved that the solutions determined by the traditional (constant performance model) and the

state-of-the-art load-balancing algorithms (based on functional performance models (FPMs))17,18,24-26 simultaneously minimize the execution time

and dynamic energy consumption of computations in the parallel execution of the application. Figures 1A and 1B show the shapes of the speed

and dynamic energy consumption functions, respectively, for the same application built experimentally by executing it on a single core of an Intel

Haswell server (specification shown in Table 1). It can be seen that, while the shape of the speed function is the same as before, the shape of the

dynamic energy consumption is linear. This implies that all workload distributions will result in same dynamic energy consumption and therefore

parallelization has no effect on the dynamic energy consumption of computations in the parallel execution of the application.
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TABLE 2 Specification of the Intel Haswell workstation used
to build the uniprocessor speed and energy models

Technical Specifications Intel Haswell i5-4590

Processor Intel(R) Core(TM) i5-4590 3.3 GHz

Microarchitecture Haswell

Memory 8 GB

Socket(s) 1

Core(s) per socket 4

L1d cache 32 KB

L11 cache 32 KB

L2 cache 256 KB

L3 cache 6144 KB

TDP 84 W

Base Power 22.3 W

Max Turbo Frequency 3.7 GHz

(A) (B)

FIGURE 4 A, Speed function of OpenBLAS DGEMM application executed on a single core on the Intel Haswell workstation; B, Dynamic energy
consumption of OpenBLAS DGEMM application executed on a single core on the Intel Haswell workstation. The application multiplies two square
matrices of size n × n (problem size is equal to n2)

To summarize, on platforms composed of uniprocessors, one can observe that the shapes of the performance and energy functions are smooth

with minimal variations. The performance functions comfortably satisfy the conditions imposed by the FPMs that are crucial for the correct

operation of the load balancing algorithms.

On modern homogeneous clusters composed of multicore CPUs, the performance and energy profiles of real-life scientific applications executing

on these platforms are not smooth and may deviate significantly from the shapes observed before. This is due to the newly introduced inherent

complexities such as resource contention and NUMA. This is illustrated in Figures 2 and 3, which show the speed and dynamic energy consumption

graphs for multi-threaded OpenBLAS DGEMM and Intel MKL FFT applications executed with 48 threads on the Intel Haswell multicore server CPU

(specification is shown in Table 1). The data points in the graphs are connected by solid lines to highlight the variations.

The variation observed is not noise but is an inherent trait of applications executing on multicore servers with resource contention and NUMA.

In a function (speed or energy f), it is defined as the difference of function values between two subsequent local minima (f1) and maxima (f2), ie,

variation(%) = |f1−f2|
min(f1 ,f2)

× 100.

Some interesting properties about the variations are summarized below.

• The variations can be quite large. This is evident from the speed and energy functions shown in Figure 2A and 2B, respectively. From the speed

function plot, one can observe performance drops of around 300% for many problem sizes. From the energy function plot, there are energy

increases of about 400% for many problem sizes.

• The variations cannot be explained by the constant and stochastic fluctuations due to OS activity or a workload executing in a node in common

networks of computers. In such networks, a node is persistently performing minor routine computations and communications by being an integral

part of the network. Examples of such routine activities include OS-level daemon tasks, bookkeeping, etc. As a result, the node will experience

constant and stochastic fluctuations in the workload. This changing transient load will cause a fluctuation in the speed of the node in the sense

that the speed will vary for different runs of the same workload. One way to represent these inherent fluctuations in the speed is to use a speed

band rather than a speed function. The width of the band characterizes the level of fluctuation in the speed due to changes in load over time.17,18,24

For a node with uniprocessors, the width of the band has been shown to decrease as the problem size increases. For a node with a very high level



8 of 24 REDDY MANUMACHU AND LASTOVETSKY

of network integration, typical widths of the speed bands were observed to be around 40% for small problem sizes and narrowing down to 3% for

large problem sizes. Therefore, as the problem size increases, the width of the speed band is observed to decrease. Therefore, for long running

applications, one would observe the width to become quite narrow (3%). However, this is not the case for variations in the presented graphs. The

dynamic energy consumption in Figures 2B and 3B show the widths of the variations increasing as problem size increases. These widths reach

a maximum of 400% and 25%, respectively, for large problem sizes. The speed functions in Figures 2A and 3A demonstrate that the widths are

bounded with the averages around 300% and 20% respectively. This suggests therefore that the variation is largely due to the newly introduced

complexities and not due to the fluctuations caused by changing transient load.

Although we use two standard scientific kernels to illustrate the drastic variations in performance and energy profiles, these variations have

been the central research focus in the works of Lastovetsky et al22,23 where the authors studied them for a real-life scientific application, Multidi-

mensional Positive Definite Advection Transport Algorithm (MPDATA). MPDATA is a core component of the EULAG (Eulerian/semi-Lagrangian fluid

solver) geophysical model,27 which is an established computational model developed for simulating thermo-fluid flows across a wide range of scales

and physical scenarios.

Therefore, these variations are not singular and will become inherent because chip manufacturers are increasingly favoring and featuring tighter

integration of processor cores, memory, and interconnect in their products.

To summarize, the new inherent complexities introduced in modern multicore CPUs have posed formidable challenges to solving optimization

problems of minimization of time and energy of computations for the most general shapes of performance and energy profiles of data-parallel

applications observed on such platforms. These profiles limit the applicability of state-of-the-art load balancing algorithms (based on FPMs) thereby

necessitating either a thorough redesign or development of novel models and algorithms.

3 MULTI-OBJECTIVE OPTIMIZATION (MOP): BACKGROUND

In this section, we briefly describe the theory of multi-objective optimization and the concept of optimality.

A multi-objective optimization (MOP) problem may be defined as follows:28,29

minimize { (x) = (f1(x), … , fk(x))}

Subject to x ∈  ,

where there are k(≥ 2) objective functions fi ∶ R
p → R. The objective is to minimize all the objective functions simultaneously.

 (x) = (f1(x), … , fk(x))T denotes the vector of objective functions. The decision (variable) vectors x = (x1, … , xp) belong to the (non-empty)

feasible region (set)  , which is a subset of the decision variable space R
p. We call the image of the feasible region represented by  (= f()), the

feasible objective region. It is a subset of the objective space R
k . The elements of  are called objective (function) vectors or criterion vectors and

denoted by  (x) or z = (z1, … , zk)T, where zi = fi(x),∀i ∈ [1, k] are objective (function) values or criterion values.

If there is no conflict between the objective functions, then a solution x∗ can be found where every objective function attains its optimum29

∀x ∈  , fi(x∗) ≤ fi(x), i = 1, … , k.

However, in real-life multi-objective optimization problems, the objective functions are at least partly conflicting. Because of this conflicting nature

of objective functions, it is not possible to find a single solution that would be optimal for all the objectives simultaneously. In multi-objective opti-

mization, there is no natural ordering in the objective space because it is only partially ordered. Therefore, we must treat the concept of optimality

differently from single-objective optimization problem. The generally used concept is Pareto-optimality.

Definition 1. A decision vector x∗ ∈  is Pareto-optimal if there does not exist another decision vector x ∈  such that fi(x) ≤ fi(x∗),∀i =
1, … , k and fj(x) < fj(x)∗ for at least one index j. 28

An objective vector z∗ ∈  is Pareto-optimal if there does not exist another objective vector z ∈  such that zi ≤ z∗
i
,∀i = 1, … , k and zj < z∗

j
for

at least one index j.

Mathematically speaking, every Pareto-optimal point is an equally acceptable solution of the multi-objective optimization problem. Therefore,

user preference relations (or preferences of decision maker) are provided as input to the solution process to select one or more points from the set

of Pareto-optimal solutions.28

In Figure 5, a feasible region  ⊂ R
3 and its image, a feasible objective region  ⊂ R

2 , are shown. The thick blue line in the figure showing the

objective space contains all the Pareto-optimal objective vectors. The vector z∗ is one of them.
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FIGURE 5 An example showing the set  of decision variable vectors, the set  of objective vectors, and Pareto-optimal objective vectors

3.1 Bi-objective optimization for performance and energy on homogeneous multicore clusters BOPPE:

problem formulation

Consider a data-parallel application workload of size n executed using p available identical processors where the speed function of a processor exe-

cuting a problem size x is represented by s(x) and the dynamic energy consumption of the execution of a problem size x by a processor is represented

by e(x). Then, the bi-objective optimization problem for minimization of execution time (maximization of performance) and minimization of total

dynamic energy of computations during the execution of the workload can be formulated as follows:

BOPPE(n, p, s, e, q) ∶

minimize

{
q

max
i=1

xi

s(xi)
,

q∑
i=1

e(xi)

}

Subject to x1 + x2 + · · · + xq = n

xi ≥ 0 i = 1, … , q

xi ≤ n i = 1, … , q

1 ≤ q ≤ p

where p, q, n, xi ∈ Z>0,

s(x), e(x) ∈ R>0.

The output of a solution method solving BOPPE is a set of Pareto-optimal solutions represented by workload distributions. It is important to note

that the optimal number of processors (q) that are selected in a Pareto-optimal solution satisfies the constraint, 1 ≤ q ≤ p.

4 ADAPTALEPH: SELF-ADAPTABLE DATA PARTITIONING ALGORITHM SOLVING BOPPE

In this section, we present the self-adaptable data partitioning algorithm solving BOPPE called ADAPTALEPH (Algorithm 1).

The inputs to the algorithm are data-parallel application workload size n, the number of available processors p, the size of neighborhood,  , which

is the number of points in the neighborhood of (x = n
p

) to be constructed in the speed/energy function, the step size between the points in the

speed/energy function, Δx, the tolerance, 𝜀, which represents the maximum variation in the speeds and the dynamic energies that can be tolerated,

and finally, the data-parallel kernel, DPKernel. The data-parallel kernel contains the core computations of the data-parallel application.

We define the neighborhood  to be the following set of points in the vicinity of the load-balanced point, n
p

:  = { n
p
,

n
p
− Δx, n

p
+ Δx, … ,

n
p
−

 × Δx, n
p
+  × Δx}. The size of the neighborhood is given by 2 ×  + 1. The points are separated by the granularity of computation, Δx. Briefly, if

the granularity is small, there is ample scope for finding globally Pareto-optimal solutions. However, the cost of building the FPM and FEM functions

increases.

All the processors take part in the execution of ADAPTALEPH and are identified by id ∈ {1,2, … , p}. The size of the neighborhood, , and the gran-

ularity or the step size,Δx, determine how the points in the partial FPM/FEM are constructed, That is, all the processors take part in the construction

of each point in the partial FPM/FEM and the order of construction is following: { n
p
,

n
p
− Δx, n

p
+ Δx, … ,

n
p
−  × Δx, n

p
+  × Δx}.

The outputs from the algorithm are stored at processor 1. They are the set of locally Pareto-optimal solutions for performance and energy, p,

and the corresponding workload distributions, p.
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The first step is to build the partial FPM and FEM by invoking the function, BuildPartialModels (Algorithm 2, Section 6 of the supplemental). All the

processors take part in the execution of this function. The processors start by executing the data-parallel kernel DPKernel for the problem size, n
p

.

The speeds and dynamic energies for this problem size are broadcast to processor 1, which determines the variation in the speeds and the dynamic

energies using the functions, GetSpeedVariation and GetEnergyVariation (Algorithm 1, Section 5 in the supplemental), respectively. The variation is

then broadcast by processor 1 to all the other processors. If the variation exceeds the tolerance, 𝜖, then it indicates that the speed and energy

functions are not homogeneous, which means that we can not use the average for the speeds and the dynamic energies.22,23 It should be noted that

the speeds and the energies that we refer to here are actually sample means output by a statistical method. In this case, ADAPTALEPH terminates

by returning one solution, which is the execution time and dynamic energy consumption for the load balanced distribution (xi = n
p
,∀i ∈ [1, p], xi+ =

1,∀i ∈ [1, n mod p]). If the variation does not exceed the tolerance, then the speed and energy functions for the problem size, x = n
p

, are updated at

processor 1. The index in the arrays representing the speed and energy functions is given by  . The speed and energy set for a problem size in the

output speed and energy functions (( , )) are calculated to be the average of all the speeds and all the energies, respectively.

Then, the processors execute the problem size n
p
− Δx in the neighborhood of n

p
followed by n

p
+ Δx and so on until the number of points

experimentally obtained equals 2 ×  + 1.

Once the partial FPM and FEM are constructed, processor 1 executes the remainder of ADAPTALEPH (Algorithm 1, lines 9 to 11). The algorithm

is an extension to the algorithm presented in the work of Manumachu and Lastovetsky,15 which takes as input the full FPM and FEM instead of

partial FPM and FEM. The core of ALEPH contains two invocations to the algorithm, ALEPHCORE (Algorithm 2). ALEPHCORE determines the optimal

workload distribution solving single objective optimization problem of performance/energy based on the input partial FPM and FEM functions. The

input ObjType signifies the type of optimization (performance or energy).

The ALEPHCORE algorithms for performance and energy, respectively, are variants of the POPTA and EOPTA algorithms, which are presented in

detail in the work of Lastovetsky and Reddy.12 Unlike POPTA, which examines a subset of points in the full FPM ( ,), and EOPTA, which examines

only the convex points in the full FEM ( ,  ), ALEPHCORE examines all the points in the partial FPM and FEM, which is equal to (2 ×  + 1) (the

cardinality of the sets ( , ,  )).

A key optimization in ALEPHCORE is the 3D array, memoized, of size O( × p2), which memorizes the points that have already been visited during

the recursive invocations of ALEPHCORE in the invocation of ADAPTALEPH. Briefly speaking, for the execution of the problem size n using p proces-

sors, the array value memoized( n
p
, p, n mod p) contains the ending index of the range of points examined during the previous invocation, the optimal
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workload distribution, and the optimal value of the objective function. The array entry memoized( n
p
, p) is of size p, where the index nmodp represents

a problem size ( n
p
+ n mod p) in the range [ n

p
,

n
p
+ p]. This memorization ensures that there are only O( × p2) recursive invocations of the core kernel

(Algorithm 2) to solve a problem size of n using p processors.

Line 2 deals with the simple case of solving the problem size n using one processor. The execution time to solve the problem is n
[n]

and the energy

consumption is [n] using the partial FPM and FEM.

Then, it starts from a balanced workload distribution, xi = n
p
,∀i ∈ [1, p]. Lines 3 and 4 initialize the optimal workload distribution, dopt, and the

optimal value of the objective function, fopt.

Lines 5 to 40 contain the kernel of ALEPHCORE. The points between B = n
p

and F = || are sequentially examined (Line 5). For each point A, there

are (p − 1) main execution steps in the nested for loop (Line 6). In a main step, each of the r processors is allocated the problem size nr to the right of

B. If the remaining problem size nl is less than 0, that means there is excessive allocation to the right of B. In this situation, we allocate all the problem

size n to the processor 1 and save this distribution if the objective function value is lesser (ie, fr < fopt) (lines 8 to 16). We then break from the loop
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because subsequent allocations to the right of B will always result in negative remaining problem size to the left of B to be solved using a recursive

invocation of ALEPHCORE. If the remaining problem size nl is equal to 0, then we save this distribution if the objective function value is lesser (ie,

fr < fopt) (lines 18 to 24).

To solve now the problem size nl to the left of B using p − r processors, we check if the range of points ([ nl

p−r
, L]) have already been examined (Line

25). If yes, then they will not be re-examined due to the memorization and recursive invocation of ALEPHCORE is avoided. The memorized optimal

objective function value solving this problem size is retrieved in fl. If the combined objective function value (ftmp) is less than fopt, then we save the

memorized workload distribution and avoid recursion (lines 26 to 30).

For the main step, if the objective function value of the parallel execution (ftmp) is lesser than the previously saved value, fopt, then we save the

improved solution (lines 34 to 36). For each problem size nl solved using p − r processors, the ending index L, which contains the range of points

already examined, is saved (Line 39). Therefore, if an invocation for solving this problem size recurs, then recursion is avoided using the memorized

arrays (lines 26 to 30). Therefore, memorization ensures that the total number of points (including those in the recursive invocations) for a point in

the interval [ n
p
, ||] is not more than O( × p2).

The Pareto-optimal set of solutions is updated using the call, UpdateParetoSet (lines 11, 19, and 33). This call is invoked only when the recursion

level is 1. This level essentially represents the different workload distributions for workload of size n using p possible combinations of number of

processors.

ADAPTALEPH can be easily extended for the case where the user can specify input tolerances (𝛿1, 𝛿2) for performance and energy, respectively,

and it would determine the set, which has solutions where the execution times and dynamic energy consumptions do not exceed (1 + 𝛿1) × topt and

(1 + 𝛿2) × eopt, respectively.

4.1 DVFS-based MOP methods plus ADAPTALEPH

Dynamic voltage and frequency scaling (DVFS) is a dominant decision variable employed in several notable bi-objective optimization

methods,30-33 etc.

Our method ADAPTALEPH, which employs workload distribution as the only decision variable, can be combined with DVFS-based methods to

determine a better set of (locally and globally Pareto-optimal) solutions. The essential steps are the following.

1. For a given workload size n and number of available processors p, employ load-balanced workload distribution (where all the processors are

assigned x = n
p

) and obtain the Pareto-optimal front using the DVFS-based bi-objective optimization method. Each point in the front is a DVFS

combination for the cores in the multicore CPU processor.

2. For each point in the Pareto-optimal front (determined in Step 1)

(a) Set all the cores of the multicore CPU processors to the frequencies in the DVFS combination.

(b) Given the number of points to construct in the neighborhood ( ) of n
p

, execute ADAPTALEPH to determine the locally Pareto-optimal front

of solutions based on the partial FPM and FEM.

3. Construct the final Pareto-optimal front of solutions from the locally Pareto-optimal fronts obtained for the key DVFS combinations. If the total

number of points from all the fronts are n, then there is an efficient algorithm of complexity O(n log n)34 to determine the final frontier.

The reader is advised to read the work of Manumachu and Lastovetsky15 for a demonstration of this approach for two applications, matrix-matrix

multiplication and fast Fourier transform.

5 EXPERIMENTAL ANALYSIS AND DISCUSSION

In this section, we study the efficiency of ADAPTALEPH using three data-parallel applications that employ Intel MKL DGEMV, OpenBLAS DGEMM,13

and Intel MKL FFT, respectively, for local computations. To make sure the experimental results are reliable, we follow an experimental methodology,

which is described in detail in Section 4 of the supplemental. It employs automated software, which takes as inputs the application and application

parameters (problem size, number of threads, etc) and statistical confidence interval. To obtain a data point in the partial FPM/FEM function, the

software executes the application repeatedly until the sample mean lies in the 95% confidence interval and a precision of 0.025 (2.5%) has been

achieved. For this purpose, Student's t-test is used assuming that the individual observations are independent and their population follows the

normal distribution. We verify the validity of these assumptions using Pearson's chi-squared test. Hereafter, when we refer to speed or energy

values, we signify the sample means.

5.1 Intel MKL DGEMV Application

For our first application, we consider the execution of a matrix-vector multiplication application executing the highly optimized multi-threaded Intel

MKL DGEMV routine in a homogeneous cluster of six nodes where each node contains two Intel Xeon Phi accelerators. Therefore, altogether, there

are twelve identical Xeon Phi co-processors. The specification of the accelerator is shown in Table 3. The application multiplies a dense matrix of size



REDDY MANUMACHU AND LASTOVETSKY 13 of 24

TABLE 3 Specification of the Intel Xeon Phi coprocessor
SE10/7120 series

Technical Specifications Intel Xeon Phi SE10/7120 series

No. of processor cores 61

Base frequency 1333 MHz

Total main memory 15 GB GDDR5

L2 cache size 30.5 MB

Memory bandwidth 352 GB/sec

Memory clock 2750000 kHz

TDP 300 W

Idle Power 98 W

(A)

(B)

FIGURE 6 A, Full FPMs of Intel MKL DGEMV application for twelve Intel Xeon Phi SE10/7120 series coprocessors. The application multiplies a
square matrix of size n × n and a vector of size n (problem size is equal to n2); B Speeds of Intel MKL DGEMV application for twelve Intel Xeon Phi
SE10/7120 series coprocessors during the execution of ADAPTALEPH for (n = 245760, p = 12). The relative difference (variation) in speeds
exceeds the tolerance, 𝜀 = 0.05

n × n with a vector of size n. The inputs, Δx and 𝜀, to ADAPTALEPH are fixed to be 1048576 and 0.05 (5%). Therefore, for a data point in the speed

function, if the variation between the speeds (using their sample means) is greater than 5%, then we consider this scenario to be heterogeneous. In

this case, ADAPTALEPH returns the load-balanced solution.

Consider the execution of ADAPTALEPH for parallel DGEMV application for (n = 245760, p = 12) shown in Figure 6B. For the first data point
n
p
= 20480, the variation is 4.7%. For the neighboring points ( n

p
−Δx = 20448) and ( n

p
+Δx = 20512), the variations are 5.2% and 7.5%, respectively.

They exceed the input tolerance suggesting that the speed functions are not homogeneous, and therefore, ADAPTALEPH returns the load-balanced

solution.

Figure 6A shows the full FPMs (each containing 1500 data points) of the application for all the twelve accelerators. The model construction

execution time is 18226 seconds. These profiles were built simultaneously to take into account resource contention. The average variation in speeds

is around 7% with maximum about 12%. To deal with such speed functions, we need to extend ADAPTALEPH to deal with the case of heterogeneous

speed functions, which we will consider in our future work.



14 of 24 REDDY MANUMACHU AND LASTOVETSKY

TABLE 4 Solutions for PFFT for increasing sizes of neighborhood. n = 3974, p = 32. Each cell shows a Pareto-optimal set
containing tuples, (Execution time(sec), dynamic energy consumption (Joules)). The granularity is Δx = 1048576

 = 0  = 65  = 75  = 100  = 120  = 128 Full FPM,FEM

(5.89,7780.01) (5.89,7780.01)

(5.89,7780.01) (5.99,7549.49) (5.99,7549.49)

(14.86,20362.30) (5.89,7780.01) (5.99,7549.49) (6.78,7515.21) (6.78,7515.21)

(22.10,37405.80) (14.89,16598.16) (5.89,7780.01) (5.99,7549.49) (6.78,7515.21) (7.72,7513.10) (7.72,7513.10)

(15.05,13539.09) (5.99,7549.49) (6.78,7515.21) (7.72,7513.10) (9.40,7475.91) (9.40,7475.91)

(7.72,7513.10) (9.40,7475.91) (9.67,7143.50) (9.67,7143.50)

5.2 Parallel FFT and matrix-multiplication applications

In this section, we consider the other two data-parallel applications, parallel matrix-matrix multiplication based on OpenBLAS DGEMM,13 and parallel

FFT application based on Intel MKL FFT. The experiments are a combination of actual measurements conducted on the server (specification shown

in 1) and simulations for clusters containing 256 such identical servers.

The local computations in the applications are executed on the multicores in a Intel Haswell server whose specification is shown in Table 1. The

inputs, Δx and 𝜖, to ADAPTALEPH are fixed to be 1048576 and 0.05.

5.2.1 Full FPM and FEM

The full speed and the energy functions (FPM and FEM, respectively) are experimentally built simultaneously on the Intel Haswell server. Figures 2A

and 2B, respectively, show the full FPM and FEM functions of the FFT application. Figures 3A and 3B, respectively, show the full FPM and FEM

functions of OpenBLAS DGEMM application. The total dynamic energy consumption during the application execution is obtained using Watts Up Pro

power meter.

The cardinality of the discrete sets representing the speed and dynamic energy functions of OpenBLAS DGEMM application is 1250. The car-

dinality of the discrete sets representing the speed and dynamic energy functions of FFT application is 485. The step size (Δx) selected for both

the applications is the same, ie, 1048576. For the FFT application, this represents a 2D Discrete Fourier Transform of size 1024 × 1024. For the

OpenBLAS DGEMM application, this represents a local DGEMM update of two 1024 × 256 and 256 × 1024 matrices.

The full FPM and FEM construction execution times for FFT and OpenBLAS DGEMM are 25920 seconds and 11540 seconds, respectively.

5.2.2 Analysis of ADAPTALEPH for small n and p

We present two experiments, one with small workload size executed using small number of processors and the other using large workload size exe-

cuted using large number of processors. For each experiment, we illustrate two examples demonstrating the Pareto-optimal solutions determined

by ADAPTALEPH for the FFT and OpenBLAS DGEMM applications as the size of the neighborhood ( ) is increased. For the value of neighborhood

 = 0, the solution is the execution time and energy for the load-balanced distribution.

We consider now the first experiment for small workload sizes executed using small number of processors (p ≤ 100).

Table 4 shows the Pareto-optimal fronts for Intel MKL FFT determined for n = 3974, p = 32 for increasing values of ( ). The load-balanced

solution is 22.10 seconds and 37405 Joules, respectively. The execution time of the parallel FFT application employing ADAPTALEPH is 153 seconds.

There are several noteworthy observations.

• The optimal execution time and the optimal dynamic energy consumptions are 5.9 seconds and 7143 Joules, respectively. The performance

improvement and dynamic reduction percentages are therefore, respectively, 275% and 424%.

• ADAPTALEPH finds the solution containing the optimal execution time by constructing 75 points in the neighborhood of the load-balanced point,

x = n
p

, ( = 75). This results in partial FPM and FEM construction times of 3712 seconds. However, it must construct 257 points (128 points on

either side of the load-balanced point) to determine the optimal dynamic energy consumption, which means partial FPM and FEM construction

times of 5835 seconds.

• When the size of neighborhood  is equal to 128, the Pareto-optimal front determined by ADAPTALEPH becomes the Pareto-optimal front deter-

mined given the full FPM and FEM functions (we call it the globally Pareto-optimal front). Therefore, one need not build/use the full FPM and FEM

(containing 485 points) to determine the globally Pareto-optimal front. Partial FPM and FEM containing just 257 points (128 points on either

side of the load-balanced point, x = n
p

) are sufficient. This reduces the FPM and FEM construction time from 25920 seconds to 5835 seconds, a

reduction of 350%.

There are two approaches to reduce the partial FPM and FEM construction time. One is to increase the granularity (or the step size),Δx, between

the points. Consider the case where we double the granularity,Δx = 2097152. That is, we double the step size between the points, which essentially

reduces the partial FPM and FEM model construction time by 2 times. Table 5 shows the Pareto-optimal fronts for increasing values of ( ). Table 6

shows the Pareto-optimal fronts when the granularity is tripled. One can see that the locally Pareto-optimal fronts are quite inferior.
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TABLE 5 Solutions for PFFT for increasing sizes of neighborhood. n = 3974, p = 32. The
granularity is doubled, Δx = 2097152

 = 0  = 65  = 100  = 200 Full FPM,FEM

(5.89,7780.01)

(5.99,7549.49)

(14.73,17059.41) (12.31,17217.31) (6.78,7515.21)

(22.10,37405.80) (15.93,16959.31) (13.62,16565.53) (9.67,16497.32) (7.72,7513.10)

(9.40,7475.91)

(9.67,7143.50)

TABLE 6 Solutions for PFFT for increasing sizes of neighborhood. n = 3974, p = 32. The granularity is tripled,
Δx = 3145728

 = 0  = 65  = 70  = 100  = 200 Full FPM,FEM

(5.89,7780.01)

(5.99,7549.49)

(6.78,7515.21)

(22.10,37405.80) (22.10,37405.80) (20.66,33258.91) (18.45,28441.07) (18.45,28441.07) (7.72,7513.10)

(9.40,7475.91)

(9.67,7143.50)

The other approach is to determine a priori that the variation between the speeds and the energies is less than the tolerance 𝜀. Assuming this to

be the case, the partial FPM and FEM construction time when the locally Pareto-optimal front becomes the globally Pareto-optimal front becomes

182 seconds. This represents a reduction of 14140% over construction times of full FPM and FEM.

Table 7 shows the Pareto-optimal fronts for OpenBLAS DGEMM determined for n = 2766, p = 64 for increasing values of ( ). The load-balanced

solution is 0.84 seconds and 753 Joules respectively. The execution time of the parallel matrix-matrix multiplication application employing ADAP-

TALEPH is 3166 seconds. Some interesting observations follow.

• The optimal execution time and the optimal dynamic energy consumptions are 0.07 seconds and 597 Joules, respectively. The performance

improvement and dynamic reduction percentages are therefore, respectively, 21% and 26%.

• ADAPTALEPH finds the solution containing the optimal execution time by constructing 22 points in the neighborhood of the load-balanced point,

x = n
p

, ( = 22) resulting in construction of a total of 45 points. This results in partial FPM and FEM construction times of 385 seconds. However,

it must construct 93 points (43 points to the right and 50 points to the left of the load-balanced point) to determine the optimal dynamic energy

consumption, which means partial FPM and FEM construction times of 804 seconds.

• When the size of neighborhood  becomes equal to 50, the Pareto-optimal front determined by ADAPTALEPH becomes the globally

Pareto-optimal front determined given the full FPM and FEM functions. Therefore, one need not build/use the full FPM and FEM (containing

1250 points) to determine the globally Pareto-optimal front. Partial FPM and FEM containing just 93 points are sufficient. This reduces the FPM

and FEM construction time from 11540 seconds to 804 seconds, a reduction of 1330%.

• The execution time of ADAPTALEPH for  = 50 is 25% of the execution time of the parallel application.

Tables 8 and 9 shows the Pareto-optimal fronts when granularity is doubled and tripled respectively. One can observe that, in this case, there are

no Pareto-optimal solutions better than the load-balanced solution. Assuming that the variation between the speeds and the energies is less than the

tolerance 𝜀, the partial FPM and FEM construction time when the locally Pareto-optimal front becomes the globally Pareto-optimal front becomes

13 seconds. This represents a reduction of 88700% over construction times of full FPM and FEM. The execution time of ADAPTALEPH becomes just

0.4% of the execution time of the parallel application.

As expected, the locally Pareto-optimal front approaches the globally Pareto-optimal front as one increases the number of points in the partial

speed/energy functions.

5.2.3 Analysis of ADAPTALEPH for large n and p

We consider now the second experiment for large workload sizes executed using large number of processors (p > 100).

Table 10 shows the Pareto-optimal fronts for Intel MKL FFT determined for n = 20544, p = 144 for increasing values of ( ). The load-balanced

solution is 22.4 seconds and 152970 Joules, respectively. The execution time of the parallel FFT application employing ADAPTALEPH is 700 seconds.

Following are some interesting observations.

• The optimal execution time and the optimal dynamic energy consumptions are 5.9 seconds and 38082 Joules, respectively. The performance

improvement and dynamic reduction percentages are therefore, respectively, 280% and 300%.
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TABLE 8 Solutions for OpenBLAS DGEMM for increasing sizes of
neighborhood,  . n = 2766, p = 64. The granularity is doubled,
Δx = 2097152

 = 0  = 50  = 500 Full FPM,FEM

(0.07,737.03)

(0.07,681.98)

(0.07,680.38)

(0.07,676.16)

(0.08,624.67)

(0.08,612.63)

(0.084,906.02) (0.084,906.02) (0.084,906.02) (0.08,612.28)

(0.09,601.15)

(0.10,600.82)

(0.10,599.93)

(0.11,598.99)

(0.13,597.89)

(0.14,596.70)

TABLE 9 Solutions for OpenBLAS DGEMM for increasing sizes of
neighborhood,  . n = 2766, p = 64. The granularity is tripled,
Δx = 3145728

 = 0  = 50  = 300 Full FPM,FEM

(0.07,737.03)

(0.07,681.98)

(0.07,680.38)

(0.07,676.16)

(0.08,624.67)

(0.08,612.63)

(0.084,906.02) (0.084,906.02) (0.084,906.02) (0.08,612.28)

(0.09,601.15)

(0.10,600.82)

(0.10,599.93)

(0.11,598.99)

(0.13,597.89)

(0.14,596.70)

TABLE 10 Solutions for PFFT for increasing sizes of neighborhood,  . n = 20544, p = 144. The granularity is Δx = 1048576

 = 0  = 80  = 90  = 100  = 120  = 150 Full FPM,FEM

(5.89,46415.33) (5.89,46415.33)

(5.89,46415.33) (5.99,42414.93) (5.99,42414.93)

(5.89,46415.33) (5.89,46415.33) (5.99,42414.93) (6.78,42049.17) (6.78,42049.17)

(22.37,152970.4) (5.89,46415.33) (5.99,42436.85) (5.99,42414.93) (6.78,42049.17) (9.40,40594.82) (9.40,40594.82)

(5.99,42436.85) (6.78,42049.17) (6.78,42049.17) (9.40,40594.82) (9.67,38082.86) (9.67,38082.86)

• ADAPTALEPH finds the solution containing the optimal execution time by constructing 80 points in the neighborhood of the load-balanced point,

x = n
p

, ( = 80). This results in partial FPM and FEM construction times of 4385 seconds. However, it must construct 292 points to determine

the optimal dynamic energy consumption, which means partial FPM and FEM construction times of 8320 seconds.

• When the size of neighborhood  is equal to 150, the Pareto-optimal front determined by ADAPTALEPH becomes the Pareto-optimal front deter-

mined given the full FPM and FEM functions (we call it the globally Pareto-optimal front). Therefore, one need not build/use the full FPM and

FEM (containing 485 points) to determine the globally Pareto-optimal front. Partial FPM and FEM containing just 292 points are sufficient. This

reduces the FPM and FEM construction time from 25920 seconds to 8320 seconds, a reduction of 211%.

• The execution time of ADAPTALEPH for  = 150 is quite large compared to the execution time of the parallel application. Assuming that the varia-

tion between the speeds and the energies is less than the tolerance 𝜀, the partial FPM and FEM construction time when the locally Pareto-optimal
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TABLE 11 Solutions for OpenBLAS DGEMM for increasing sizes of neighborhood,  .
n = 16896, p = 256. The granularity is Δx = 1048576

 = 0  = 33  = 35  = 50  = 55 Full FPM,FEM

(0.10,4535.25) (0.10,4535.25)

(0.10,4535.25) (0.10,4535.25) (0.10,4464.88) (0.10,4464.88)

(0.11,6362.97) (0.10,4464.88) (0.10,4464.88) (0.11,4010.73) (0.11,4010.73)

(0.11,6362.96) (0.11,5015.08) (0.11,4464.53) (0.11,4010.73) (0.13,3966.88) (0.13,3966.88)

(0.14,3933.87) (0.14,3933.87)

front becomes the globally Pareto-optimal front becomes 58 seconds, which is a huge order of magnitude less than the construction times of full

FPM and FEM. The execution time of ADAPTALEPH is then 8.25% of the execution time of the parallel application.

Table 11 shows the Pareto-optimal fronts for OpenBLAS DGEMM determined for n = 16896, p = 256 for increasing values of ( ). The

load-balanced solution is 0.11 seconds and 6362 Joules, respectively. The execution time of the parallel matrix-matrix multiplication application

employing ADAPTALEPH is 10450 seconds. Some observations follow.

Some observations follow:

• The optimal execution time and the optimal dynamic energy consumptions are 0.10 seconds and 3933 Joules, respectively. The performance

improvement and dynamic reduction percentages are therefore, respectively, 7% and 61%.

• ADAPTALEPH finds the solution containing the optimal execution time by constructing 35 points in the neighborhood of the load-balanced point,

x = n
p

, ( = 35) resulting in construction of a total of 71 points. This results in partial FPM and FEM construction times of 608 seconds. However,

it must construct 101 points (55 points to the right and 55 poins to the left of the load-balanced point) to determine the optimal dynamic energy

consumption, which means partial FPM and FEM construction times of 970 seconds.

• When the size of neighborhood  becomes equal to 55, the Pareto-optimal front determined by ADAPTALEPH becomes the globally

Pareto-optimal front determined given the full FPM and FEM functions. Therefore, one need not build/use the full FPM and FEM (containing

1250 points) to determine the globally Pareto-optimal front. Partial FPM and FEM containing just 101 points are sufficient. This reduces the

FPM and FEM construction time from 11540 seconds to 970 seconds, a reduction of 1090%.

• The execution time of ADAPTALEPH for  = 55 is 9% of the execution time of the parallel application. Assuming that the variation between the

speeds and the energies is less than the tolerance 𝜀, the partial FPM and FEM construction time, when the locally Pareto-optimal front becomes

the globally Pareto-optimal front, becomes 4 seconds. The execution time of ADAPTALEPH becomes quite insignificant compared to the execution

time of the parallel application.

It can be seen that the execution time of ADAPTALEPH compared to the execution time of the parallel application becomes less and less when the

problem size n and p become large.

Again, one can observe that the locally Pareto-optimal front approaches the globally Pareto-optimal front as one increases the number of points

in the partial speed/energy functions.

5.3 Discussion

The most important findings are summarized below.

• The experiments confirm our expectations that as the number of points in the partial FPM/FEM functions is increased; the locally Pareto-optimal

front of solutions approaches the globally Pareto-optimal front (determined using the full FPM and FEM). In several cases, the globally

Pareto-optimal front is built incrementally as one increases the number of points to be built in the partial FPM/FEM.

• The number of points in the partial FPM/FEM when the output locally Pareto-optimal front of solutions becomes the globally Pareto-optimal

front is quite less compared to the number of points in the full FPM/FEM. This suggests that one can considerably reduce the model construction

times if one can predict the juncture analytically when this happens. From our experiments, we show reductions of about 1330%. However, it is

a difficult research problem to tackle and we would look at it in our future work.

• A common observation is that one must explore a larger neighbourhood to determine the optimal dynamic energy consumption compared

to that for optimal execution time. This leads to high partial FPM and FEM construction times. Therefore, if the goal is to construct a locally

Pareto-optimal front close to the energy-optimal point, we must design and implement a different algorithm to ADAPTALEPH that starts explor-

ing from the low-energy workload distributions. However, this goal is not legitimate in HPC since there would be unacceptable performance

degradation associated with such locally Pareto-optimal front of solutions.

• While the partial FPM and FEM model construction times for OpenBLAS DGEMM application and the total execution time of ADAPTALEPH are

quite reasonable compared to the execution times of the parallel application, it is not the case for FFT. This is because the Intel MKL FFT is optimized

for only specific problem sizes (power-of-two, prime number). We would explore softwares that provide optimized FFT for all problem sizes.
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• There are two approaches to reduce the partial FPM and FEM construction time. One is to increase the granularity/step size between the points

in the partial FPM/FEM. However, this may result in inferior locally Pareto-optimal front or in the worse-case situation, no solutions better than

load-balanced solution. The other approach is to a priori determine if the variation between the speeds and the energies is less than the input

tolerance 𝜀. In this case, all the available p processors can build p data points in the FPM and FEM in parallel thereby reducing the FPM and FEM

construction times by a factor of p. This is another interesting piece of research that we would pursue.

6 RELATED WORK

In this section, we study briefly research works in three relevant categories. The first category presents dynamic load balancers. The second cat-

egory deals specifically with works that have proposed data partitioners for self-adaptable applications on heterogeneous platforms. The third

category surveys research that present methods solving multi-objective optimization problems (eg, performance, energy, reliability, etc) of scientific

applications.

6.1 Dynamic load balancers

Runtime schedulers such as KAAPI,35 StarPU,36 and DAGuE37 schedule an application described as a Direct Acyclic Graph (DAG) or task graph

onto parallel platforms. The DAG expresses different types of tasks and the data dependencies between them and is created either statically or

dynamically. Little information exists on the computational performance and memory utilization of DAG schedulers. They cater to particular classes

of applications (sparse, irregular, etc) that are not the target of our work in his paper.

Legrand et al38 studied mapping of iterative computations onto heterogeneous clusters. The processors employed in the application is assumed to

be arranged in a virtual ring. At each iteration, local computations are performed in parallel and some communications (boundary information) take

place between consecutive processors in the ring. Several processor pairs share communication links. The authors consider the problem of optimal

partitioning the workload in each iteration taking into account the computations and communications so that the total execution time is minimized.

They prove the NP-completeness of the problem and design an efficient heuristic. Mahanti and Eager39 studied different data redistribution policies

when processors (or nodes) are added or removed during the execution of a data parallel application in a dynamic heterogeneous environment.

To be precise, they study how to change the shape of the partitions when nodes are added or removed without adversely affecting the quality of

partitioning (measured by the cost of migration of the redistributed data). In this paper, we do not consider the cost of data migration arising from

dynamic partitioning.

Dynamic algorithms, such as task scheduling and work stealing,40-42 balance the load by moving fine-grained tasks between processors during the

execution. They do not require a priori information about execution but may incur large communication overhead due to data migration. They can

use static partitioning for the initial step due to its provably near-optimal communication cost, bounded tiny load imbalance, and lesser scheduling

overhead.

Dynamic load balancers based on graph partitioners were proposed by Schloegel et al43 and Catalyurek et al44 for adaptive scientific computa-

tions where two objectives, interprocessor communication and data migration costs, are considered.

6.1.1 Dynamic data partitioners for heterogeneous platforms

Galindo et al45 proposed a dynamic load balancing approach to balance the workload of iterative algorithms in dedicated heterogeneous platforms.

Before the start of execution of the iterative algorithm, homogeneous distribution of the workload is used. The speeds of the processors is deter-

mined after the execution of one iteration. These speeds are used to determine new workload distribution for the next iteration. Martínez et al46,47

proposed a dynamic load balancing approach to balance the workload of iterative algorithms in heterogeneous dedicated and non-dedicated plat-

forms composed of multiprocessor nodes. Sanjuan-Estrada et al48 proposed a dynamic load balancing strategy, which determines the number of

threads at runtime (at various stages of an application execution) based on two decisions. These are the completed work and the existence of a sleep-

ing thread in the application. The execution of an application starts with one thread. The strategy uses these decisions to determine if a thread needs

to be created to maintain load balance at various (predetermined or equidistant) stages of the application. Wang et al49 present a self-adaptive

and parallelized maximum likelihood evaluation (MLE) framework. It consists of a master process and a set of worker processes in a distributed

environment where the master is responsible for re-distributing the computing tasks to workers; the workers compute tasks. The goal of the frame-

work is to achieve load balance of workload between the workers. The workload distribution is based on the execution times of the workers. Acosta

et al50 proposed a dynamic load balancing approach to balance the workload of iterative algorithms in homogeneous and heterogeneous multi-GPU

platforms. The approach is similar to the efforts presented earlier.

Clarke et al1 and Lastovetsky et al2 proposed a data partitioning algorithm for employment in self-adaptable applications due to its low run-

time cost. This algorithm does not require as input the full functional performance model (FPM). Unlike algorithms that require construction of full

FPMs as a prerequisite, it builds a partial estimate of the FPM and uses it to determine optimal data partitioning satisfying a user-defined accuracy.
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However, the proposed algorithm does not take into account the new behaviors arising from the inherent complexities of resource contention and

NUMA on modern multicore platforms.

The data partitioning algorithm that we propose in this paper has several noteworthy differences. First, it takes as input a functional performance

model and not a constant performance model such as an execution time to determine the workload distribution. Second, the workload distribution

output by it may not load-balance the application. Third, it takes into account the new behaviors caused by resource contention and NUMA on mod-

ern multicore platforms. Finally, it solves BOPPE (and not single objective performance optimization problem) and returns a locally Pareto-optimal

front of solutions instead of a single solution.

6.2 Multi-objective optimization for scientific applications

In this section, we survey the state-of-the-art solution methods solving BOPPE.

6.2.1 System-level methods

In this section, we present system-level solution methods for solving BOPPE. These are methods that aim to optimize several objectives of the system

or the environment (eg, clouds, data centers, etc) where the applications are executed. We will focus on works that consider performance and energy

consumption as two prominent objectives. All these methods propose heuristics. Our summary of each work contains the parameters and decision

variables that are used in it and the relationships between the objectives and parameters (and decision variables).

Ge et al51 presented a runtime system (CPU MISER) based on DVFS that provides energy savings with minimal performance degradation by using

a performance model. Huang and Feng52 proposed an eco-friendly daemon that employs workload characterization as a guide to DVFS to reduce

power and energy consumption with little impact on application performance. Mezmaz et al53 proposed a parallel bi-objective genetic algorithm

to maximize the performance and minimize the energy consumption in cloud computing infrastructures. The parameters used in their method are

the computation cost of a task (w) and the communication costs between two tasks. The decision variable is the supply voltage (V) of the processor.

Energy consumption of computations is modeled as a function of V2 × w. Fard et al54 presented a four-objective case study comprising performance,

economic cost, energy consumption, and reliability for optimization of scientific workflows in heterogeneous computing environments. The param-

eters are the computation speeds of the processors and the bandwidths of the communication links connecting a pair of processors. The decision

variable is the task assignment or mapping. The energy consumption of computations is modeled as cube-root of clock frequency. Beloglazov et al55

proposed heuristics that consider twin objectives of energy efficiency and Quality of Service (QoS) for provisioning data center resources. The

decision variables are the number of VMs and clock frequencies. The energy consumption is modeled as a linear function of CPU utilization.

Kessaci et al56 presented a multi-objective genetic algorithm that minimizes the energy consumption, CO2 emissions, and maximizes the gen-

erated profit of a cloud computing infrastructure. The parameters are the execution time of an application, the number of processors used in the

execution of an application, and the deadline for completion of the application. The decision variable is the arrival rate. The energy consumption is

calculated as a product of execution time and power consumption, which is modeled using the formula 𝛼 × f3 + 𝛽 , where f is the clock frequency.

Durillo et al57 proposed a multi-objective workflow scheduling algorithm that maximizes performance and minimizes energy consumption of appli-

cations executing in heterogeneous high-performance parallel and distributed computing systems. A machine is characterized using nine parameters

(from technology(nm) to TDP). They study the impact of different decision variables, ie, number of tasks, number of machines, DVFS levels, static

energy, and types of tasks. The execution time and energy consumption are predicted using neural networks.

Zhang and Chang58 presented a DVFS scheduler that makes sure the multiple user applications executing on multicores in clouds meet their SLA

requirement, which is the specific allowed performance loss. Kołodziej et al59 proposed multi-objective genetic algorithms that aim to maximize

performance and energy consumption of applications executing in green grid clusters and clouds. The performance is modeled using computation

speed of a processor. The decision variable is the DVFS level. Energy consumption is modeled using the equation, 𝛾 × V2 × f × te, where 𝛾 is a constant

for a processor, V is the supply voltage, f is the clock frequency, and te is the estimated completion time. Sundriyal and Sosonkina60 presented a

runtime system that performs both processor and DRAM frequency scaling and demonstrate total energy savings with minimal performance loss.

Inadomi et al61 and Gholkar et al62 considered the fluctuations in performance arising from manufacturing and thermal variations and propose

approaches that take into account these variations to assign jobs to machines, which have a specified power budget. In our work, we consider the

variations in performance caused by severe resource contention and NUMA inherent in modern multicore platforms during the execution of highly

multithreaded scientific data-parallel applications.

6.2.2 Application-level methods

In this section, we present application-level solution methods for solving BOPPE for parallel platforms. We focus exclusively on three aspects of

each method, ie, (a) type of optimization achieved, (b) parameters and decision variables used, and (c) the relationship of performance and energy

consumption with the parameters and decision variables.

Intra-node Methods: The work of Freeh et al30 is an intra-node optimization method that analyzes the performance-energy trade-offs of

serial and parallel applications on a cluster of DVFS-capable AMD nodes. They use three parameters in their study, ie, 𝛽 , which compares the
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application slowdown to the CPU slowdown; memory pressure, which is determined using hardware performance counters such as memory of oper-

ations retired and L2 cache misses; and slack, which predicts communication bottlenecks. Ahmad et al31 formulated a bi-objective optimization

problem of power-aware scheduling of tasks onto heterogeneous and homogeneous multicore processor architectures. The twin objectives in their

problem formulation are minimization of energy consumption and the makespan of computationally intensive scientific problems. Their approach

aims to achieve intra-node optimization by considering node-level parameters such as DVFS, computational cycles, and core architecture type

in their optimization problem. They mention a solution that combines a classical game-theoretic approach and Karush-Kuhn-Tucker (KKT) condi-

tions to simultaneously optimize both the objectives. Choi et al63 presented an energy roofline model based on the time-based roofline model.64

Choi et al65 extended the roofline model by adding an extra parameter, power caps, to their execution time model. These two works63,65 presented

an intra-node optimization approach to study the performance-energy trade-offs. The work of Balaprakash et al33 is an intra-node optimization

approach that explores trade-offs among power, energy, and performance using various application-level tuning parameters such as number of

threads and hardware parameters such as DVFS.

Intra-node and Inter-node Methods: Subramaniam and Feng32 used multi-variable regression to study the performance-energy trade-offs of the

high-performance LINPACK (HPL) benchmark. Their model contains four parameters, ie, N, the problem size, NB; the block size, P,Q; the rows and

columns, respectively, of the process grid. They study performance-energy tradeoffs using the following decision variables separately: (a) threads,

(b) number of nodes, and (c) DVFS levels. Song et al66 proposed an iso-energy-efficiency model to quantify the improvements in energy consumption

of parallel applications. It is based on lines similar to performance iso-efficiency function. The energy improvement (of parallel over sequential appli-

cation) is studied using pairs of decision variables, ie, level of parallelism, clock frequency, and problem size. Demmel et al67 presented an intra-node

and inter-node optimization approach that studies energy savings at the algorithmic level. The performance is modeled as a linear function of param-

eters representing costs of computations and communications. The energy consumption is modeled as a linear function of parameters representing

costs of computations, communications, and leakage (static power). Drozdowski et al68 proposed a concept called an iso-energy map, which rep-

resent points of equal energy consumption in a multi-dimensional space of system and application parameters. They use iso-energy maps to study

performance-energy trade-offs. Marszalkowski et al69 analyzed the impact of memory hierarchies on time-energy trade-off in parallel computa-

tions, which are represented as divisible loads. They represent execution time and energy by two linear functions on problem size, one for in-core

computations and the other for out-of-core computations.

It should be noted the surveyed works do not consider workload distribution as a decision variable. In this work, we propose an inter-node opti-

mization method for self-adaptable applications that is based on this single decision variable. We show using experiments on a modern multicore

CPU (see introduction) that the speed and dynamic energy functions of problem size are highly non-linear and non-convex.

7 CONCLUSION

Self-adaptability is a highly preferred feature in HPC due to several reasons, two of the important ones being the variation of the computational load

during the evolution of a solution and the other the dynamic underlying execution environment. A crucial building block of a self-adaptable applica-

tion is a data partitioning algorithm, which must possess several essential qualities. It must take into account the real-life behavior of applications

executing on the platform by employing realistic computation and communication models of performance and energy, must exhibit low practical

runtime and memory costs compared to that of the data-parallel application in which it is applied, and must minimize the cost of data redistribution

arising from dynamic partitioning.

On modern platforms composed of multicore CPUs, the data partitioning algorithms must address a formidable challenge posed by the new

inherent complexities that have been introduced due to severe resource contention and NUMA. Innovative model-based methods and data parti-

tioning algorithms have been proposed that address the challenge. However, these algorithms take as input full functional performance and energy

models (FPM and FEM), which have prohibitively high model construction costs. Therefore, they are not suitable for employment in self-adaptable

applications, which are executed in dynamic environments where the number of available processors and their performance characteristics can be

different for different runs of the same application.

In this paper, we have presented a self-adaptable data partitioning algorithm called ADAPTALEPH, which solves the bi-objective optimization

problem for performance and energy (BOPPE) on homogeneous clusters of multicore CPUs. Unlike the state-of-the-art solving BOPPE that take as

inputs full FPM and FEM, it constructs partial FPM and FEM during its execution using all the available processors. It returns a locally Pareto-optimal

set of solutions, which are the heterogeneous workload distributions that achieve inter-node optimization of data-parallel applications for perfor-

mance and energy.

We experimentally study the efficiency of ADAPTALEPH for three data-parallel applications, ie, matrix-vector multiplication, matrix-matrix mul-

tiplication, and fast Fourier transform, on a modern multicore CPU and homogeneous clusters of such CPUs. We demonstrated that the locally

Pareto-optimal front lies between the load-balanced solution and the globally Pareto-optimal front determined using the full FPM and FEM and

that, as the number of points in the partial FPM and FEM functions are increased, it approaches the globally Pareto-optimal front.

We showed that the number of points in the partial FPM/FEM when the output locally Pareto-optimal front of solutions becomes the globally

Pareto-optimal front is quite less compared to the number of points in the full FPM/FEM. This suggests that one can considerably reduce the model

construction times if one can predict the juncture analytically. However, this is a difficult research problem that we intend to tackle in our future work.
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While the partial FPM and FEM model construction times for OpenBLAS DGEMM application and the total execution time of ADAPTALEPH are

quite reasonable compared to the execution times of the parallel application, it is not the case for FFT. This is because the Intel MKL FFT is optimized

for only specific problem sizes (power-of-two, prime number). We would explore softwares that provide optimized FFT for all problem sizes.

However, the partial FPM and FEM construction times can be reduced by a large order of magnitude if all the available processors build the data

points in these functions in parallel based on a priori knowledge that the variation between the speeds and energies of execution of a problem size

between the processors is within user-specified tolerance. This is also one line of research that we would pursue.

We also observed that one must explore a larger neighborhood (in the vicinity of load-balanced workload distribution) to determine the optimal

dynamic energy consumption compared to that for optimal execution time. This leads to high partial FPM and FEM construction times. Therefore, if

the goal is to construct a locally Pareto-optimal front close to the energy-optimal point, we must design and implement an algorithm different from

ADAPTALEPH that starts exploring from the low-energy workload distribution points. However, this goal is not legitimate in HPC since there would

be unacceptable performance degradation associated with such locally Pareto-optimal front of solutions.
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