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Abstract—Performance and energy are the two most important objectives for optimization on modern parallel platforms. In this article,

we show that moving from single-objective optimization for performance or energy to their bi-objective optimization on heterogeneous

processors results in a tremendous increase in the number of optimal solutions (workload distributions) even for the simple case of

linear performance and energy profiles. We then study full performance and energy profiles of two real-life data-parallel applications

and find that they exhibit shapes that are non-linear and complex enough to prevent good approximation of them as analytical functions

for input to exact algorithms or optimization software for determining the Pareto front. We, therefore, propose a solution method solving

the bi-objective optimization problem on heterogeneous processors. The method’s novel component is an efficient and exact global

optimization algorithm that takes as an input performance and energy profiles as arbitrary discrete functions of workload size, which

accurately and realistically take into account resource contention and NUMA inherent in modern parallel platforms, and returns the

Pareto-optimal solutions (generally speaking, load imbalanced). To construct the input discrete energy functions, the method employs a

methodology that accurately models the energy consumption by a hybrid data-parallel application executing on a heterogeneous HPC

platform containing different computing devices using system-level power measurements provided by power meters. We

experimentally analyse the proposed solution method using three data-parallel applications, matrix multiplication, 2D fast Fourier

transform (2D-FFT), and gene sequencing, on two connected heterogeneous servers consisting of multicore CPUs, GPUs, and Intel

Xeon Phi. We show that it determines a superior Pareto front containing the best load balanced solutions and all the load imbalanced

solutions that are ignored by load balancingmethods.

Index Terms—Heterogeneous platforms, data-parallel applications, workload partitioning, performance optimization, energy optimization,

bi-objective optimization, workload distribution, multicore CPU, GPU, Intel Xeon Phi
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1 INTRODUCTION

PERFORMANCE and energy are the two most important
objectives for optimization on modern parallel platforms

such as supercomputers, heterogeneous HPC clusters, and
cloud computing infrastructures ([1], [2], [3], [4]).

State-of-the-art solutions for the bi-objective optimization
problem for performance and energy on heterogeneous HPC
platforms can be broadly classified into system-level and appli-
cation-level categories. System-level solution methods aim to
optimize the performance and energy of the environment
where the applications are executed. The methods employ
application-agnostic models and hardware parameters as
decision variables. The dominant decision variable in this

category is Dynamic Voltage and Frequency Scaling (DVFS).
The majority of the works in this category can be further
grouped as follows: a). Methods optimizing for performance
under a power cap constraint (or energy budget) or optimiz-
ing for energy under an execution time constraint [5], [6], [7].
They determine a partial Pareto front by applying the power
cap or an execution time constraint and then selecting the
best configuration to fulfill a user-specific criterion. b). Meth-
ods solving unconstrained bi-objective optimization for per-
formance and energy (with no time or energy constraints)
[2], [3], [8]. They build the full Pareto front.

The application-level solution methods proposed in [9],
[10], [11], [12], [13], [14] use application-level parameters as
decision variables and application-level models for predict-
ing the performance and energy consumption of applica-
tions to solve the bi-objective optimization problem. The
application-level parameters include the number of threads,
number of processors, loop tile size, and workload distribu-
tion. The methods in [9], [10], [11] do not consider workload
distribution as a decision variable. The methods proposed
in [13], [14] demonstrate by executing real-life data-parallel
applications on modern multicore CPUs that the functional
relationships between performance and workload size and

� The authors are with the School of Computer Science, University College
Dublin, Belfield, Dublin 4, Ireland. E-mail: {hamidreza.khaleghzadeh,
arsalan.shahid, ravi.manumachu, alexey.lastovetsky}@ucd.ie, muhammad.
fahad@ucdconnect.ie.

Manuscript received 19Mar. 2019; revised 21 Aug. 2020; accepted 24 Sept. 2020.
Date of publication 28 Sept. 2020; date of current version 8 Oct. 2020.
(Corresponding author: Ravi Reddy Manumachu.)
Recommended for acceptance by R. Tolosana.
Digital Object Identifier no. 10.1109/TPDS.2020.3027338

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021 543

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College Dublin. Downloaded on October 08,2020 at 20:25:53 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0003-4070-7468
https://orcid.org/0000-0002-3595-8484
https://orcid.org/0000-0002-3595-8484
https://orcid.org/0000-0002-3595-8484
https://orcid.org/0000-0002-3595-8484
https://orcid.org/0000-0002-3595-8484
https://orcid.org/0000-0002-3748-6361
https://orcid.org/0000-0002-3748-6361
https://orcid.org/0000-0002-3748-6361
https://orcid.org/0000-0002-3748-6361
https://orcid.org/0000-0002-3748-6361
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0001-9460-3897
mailto:hamidreza.khaleghzadeh@ucd.ie
mailto:arsalan.shahid@ucd.ie
mailto:ravi.manumachu@ucd.ie
mailto:alexey.lastovetsky@ucd.ie
mailto:muhammad.fahad@ucdconnect.ie
mailto:muhammad.fahad@ucdconnect.ie


between energy and workload size have complex (non-lin-
ear) properties and show that workload distribution has
become an important decision variable that can no longer
be ignored. The methods target homogeneous HPC plat-
forms. Research work [12] considers the effect of heteroge-
neous workload distribution on bi-objective optimization of
data analytics applications by simulating heterogeneity on
homogeneous clusters. The performance is represented by a
linear function of problem size and the energy is predicted
using historical data tables.

In this work, we study the bi-objective optimization
problem for data-parallel applications for performance and
energy on heterogeneous HPC systems. The problem aims to
optimize the parallel execution of a given workload of n by
a set of p heterogeneous processors. It has one decision vari-
able, the workload distribution. The motivation for the study
comes from our observation of the effect of heterogeneity
on the solution space as we move from single-objective opti-
mization for performance or energy to bi-objective optimi-
zation for performance and energy for the simple case
where the execution time and energy functions are linear.

Consider two processorsP1 andP2, whose linear execution
time and energy functions are shown in the Figs. 1 and 2. The
functions are real-life profiles of a data-parallel matrix multi-
plication application executed using a single core of a multi-
core CPU. For a given input workload size n, an algorithm,
which we designed for the case of linear time and energy pro-
files and which is detailed in the supplemental, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2020.3027338, deter-
mines the Pareto front (distributions ðx1; x2Þ of workload n
where x1 þ x2 ¼ n). The solution for single-objective optimi-
zation for performance (minimizing the execution time of

computations during the parallel execution of the workload)
is the load balanced solution where all the processors
involved in the parallel execution of a given workload have
equal execution times. The solution for single-objective opti-
mization for energy allocates the entire workload to the most
energy efficient processor, P1.

We prove (in the supplemental, available online) that for
two processors characterized by linear execution time and
energy functions, the Pareto front is given by a linear seg-
ment connecting two endpoints, which is illustrated in
Fig. 3. The first endpoint represents the performance opti-
mal solution, which minimizes the execution time and dis-
tributes the workload in proportion to the speeds of the
processors. The second endpoint represents the energy-
optimal solution and allocates the total workload to the
most energy-efficient processor. Apart from the perfor-
mance optimal solution, all other Pareto-optimal solutions
are load imbalanced.

We thus discover that moving from single-objective opti-
mization for performance or energy to the bi-objective opti-
mization for performance and energy on heterogeneous
processors results in a drastic increase in the number of
optimal solutions for the simple case of linear performance
and energy profiles, with practically all the solutions load
imbalanced.

Motivated by this finding, we study the performance and
energy profiles of two data-parallel applications executed
on two connected heterogeneous multi-accelerator NUMA
nodes, HCLServer01, and HCLServer02. The applications
employ two standard and highly optimized scientific ker-
nels, matrix multiplication (DGEMM) that is highly com-
pute-intensive and 2D fast Fourier transform (2D-FFT),
which is memory intensive. We observe that the shapes of
the performance and energy functions are non-linear and
complex. Therefore, they are challenging to approximate as
analytical functions that can be used as inputs to exact
mathematical algorithms or optimization software for deter-
mining the Pareto front.

We, therefore, propose a solution method solving the bi-
objective optimisation problem for performance and energy.
It comprises two principal components. The first component
is an efficient and exact global optimization algorithm, Het-
erogeneous Energy PerformanceOPTimization (HEPOPTA).
The algorithm takes as inputs, the workload size, n; the num-
ber of available heterogeneous processors, p; p discrete perfor-
mance functions (one for each processor); p discrete dynamic

Fig. 1. Linear execution time functions of the processors P1 and P2.

Fig. 2. Linear energy functions of the processors P1 and P2.

Fig. 3. Pareto-optimal solutions for a workload size 348. The front is lin-
ear. The end points are the solutions for single-objective optimization for
performance and for energy.
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energy functions (one for each processor); and the base/idle
power of the platform. Briefly, the total energy consumption
is the sum of dynamic and static energy consumptions. The
static energy consumption is calculated by multiplying the
idle power of the platform (without application execution)
with the execution time of the application. Dynamic energy
consumption is calculated by subtracting this static energy
consumption from the total energy consumed by the platform
during the application execution. The performance and
dynamic energy of a processor are represented by discrete
functions of workload size. HEPOPTA returns the Pareto-
optimal solutions for performance and energy. Each solution
in the set is a distribution of workload n between the p hetero-
geneous processors, which, generally speaking, is not load
balanced. In contrast, the traditional approaches to optimiza-
tion for performance and energy do not consider non-bal-
anced solutions as optimal. We prove the computational
complexity of HEPOPTA to be Oðm3 � p3 � log 2ðm� pÞÞ,
where m is the cardinality of the discrete execution time and
dynamic energy functions. The second component is a meth-
odology used to construct the dynamic energy profiles that
are input to the algorithm [15]. The methodology is based
solely on system-level power measurements using power
meters. It accurately models the energy consumption by a
hybrid scientific data-parallel application executing on a het-
erogeneous HPC platform containing different computing
devices such as CPU, GPU, and Xeon Phi. The algorithm,
HEPOPTA, employs as a building block, Heterogeneous
Dynamic energy Performance OPTimization (HDePOPTA),
which solves the bi-objective optimisation problem for perfor-
mance and dynamic energy. The inputs to HDePOPTA are
the same as those for HEPOPTA and the base power of the
platform is set to 0. The computational complexity of HDe-
POPTA is the same asHEPOPTA.

We analyse HEPOPTA experimentally using three data-
parallel applications, matrix multiplication, 2D-FFT, and
gene sequencing using the Smith-Waterman algorithm. The
average and maximum reductions in execution time and
dynamic energy consumption against load balanced solu-
tion are (26%, 102%) and (130%, 257%) for matrix multipli-
cation, (7%, 44%) and (44%, 105%) for 2D-FFT, and (2.5%,
13.5%) and (64%, 507%) for gene sequencing. The average
and the maximum number of Pareto-optimal solutions for
the three applications are (55, 96), (11, 33), and (6,22). We
demonstrate that minimisation of the dynamic energy con-
sumption may not necessarily minimise the total energy
consumption. The average and the maximum differences in
total energy consumption between the dynamic-energy
optimal and total-energy optimal solutions are (11%, 37%)
for matrix multiplication, (29%, 106%) for 2D-FFT, and
(9.6%, 53%) for gene sequencing.

The Pareto-optimal solutions determined by HEPOPTA
contain the best load balanced solutions (mostly one solu-
tion in very few cases), whereas the rest of the solutions are
load imbalanced. We distinguish between two types of load
imbalanced solutions, strong and weak. We will define the
two types in terms of both the workload distribution and
the ratio of execution times of load balanced and load imbal-
anced solutions (called the load imbalance ratio (LIR)). A
strong load imbalanced solution is one where one or more
processors can be assigned zero workloads, the same as for

the load balanced solution, but the rest of the processors,
different workloads. A weak load imbalanced solution rep-
resents the case where all the processors are assigned work-
loads that are different from the workloads in the load
balanced solution. The LIR for a strong load imbalanced
solution is higher than that for a weak load imbalanced
solution. A very high percentage of solutions determined
by HEPOPTA are strong load imbalanced where PHI_1 gets
zero workload. Therefore, HEPOPTA determines a superior
Pareto front containing all the strong load imbalanced solu-
tions ignored by load balancing approaches (Figs. 6 and 7).

The main original contributions of this work are:

� We discover that moving from the single-objective
optimization for performance or energy to the bi-
objective optimization for performance and energy
on heterogeneous processors results in a drastic
increase in the number of optimal solutions in the
case of linear performance and energy profiles, with
practically all the solutions load imbalanced. We
prove that for two processors with linear execution
time and energy functions, the Pareto front is linear
and contains an infinite number of solutions out of
which one solution is load balanced while the rest
are load imbalanced.

� We propose a model-based data partitioning algo-
rithm, HEPOPTA solving the bi-objective optimiza-
tion problem for execution time and energy for data-
parallel applications on heterogeneous HPC plat-
forms. The algorithm takes input discrete execution
time and dynamic energy functions with any arbi-
trary shape and returns the Pareto front of load imbal-
anced solutions and best load balanced solutions.

� We experimentally study the applicability of HEPOPTA
to the optimization of real-life state-of-the-art data-
parallel applications on two connected hybrid hetero-
geneous multi-accelerator servers consisting of multi-
core CPUs, GPUs, and Intel Xeon Phi. We demonstrate
that the algorithm’s solutions significantly improve the
performance and reduce the energy consumption com-
pared with the load balanced configuration of the
applications.

The rest of the paper is organized as follows. Section 2 pre-
sents the challenges posed by performance and energy pro-
files of real-life scientific kernels for solving the bi-objective
optimization problem. Relatedwork is discussed in Section 3.
Section 4 contains the formulation of the bi-objective optimi-
zation problem for performance and energy. Section 5
presents our algorithm, HEPOPTA, solving the bi-objective
optimization problem. In Section 6, the methodology to con-
struct the input discrete energy functions is described. We
present the experimental results for HEPOPTA in Section 7.
Finally, we conclude the paper in Section 8.

2 MOTIVATION: PERFORMANCE AND ENERGY

PROFILES OF REAL-LIFE SCIENTIFIC KERNELS

We discover that moving from single-objective optimization
for performance or energy to the bi-objective optimization for
performance and energy on heterogeneous processors results
in a drastic increase in the number of optimal solutions for the
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simple case of linear performance and energy profiles, with
practically all the solutions load imbalanced.

Motivated by this finding, we study the performance and
energy profiles of two data-parallel applications executed
on two connected heterogeneous multi-accelerator NUMA
nodes, HCLServer01, and HCLServer02. We observe that
the shapes of the speed and energy functions are non-linear
and complex. Therefore, they are challenging to approxi-
mate as analytical functions that can be used as inputs to
exact mathematical algorithms or optimization software for
determining the Pareto front. We employ HEPOPTA that
takes input discrete execution time and dynamic energy
functions with arbitrary shape to determine the Pareto front.
Using this algorithm, we now present an analysis of the Par-
eto fronts for the two applications.

The first node, HCLServer01, consists of an Intel Haswell
multicore CPU involving 24 physical cores with 64 GB main
memory, which hosts two accelerators, one Nvidia K40c
GPU and one Intel Xeon Phi 3120P (specifications in Table 1).
HCLServer02 contains an Intel Skylake multicore CPU con-
sisting of 22 cores and 96 GB main memory. The multicore
CPU is integrated with one Nvidia P100 GPU (specifications
in Table 2). Each accelerator connects to a dedicated host
core via a separate PCI-E link.

A data-parallel application executing on this heteroge-
neous hybrid platform, consists of several kernels (generally
speaking, multithreaded), running in parallel on different
computing devices of the platform. The proposed algorithm
for solving the bi-objective optimisation problem for perfor-
mance and energy requires individual performance and
energy profiles of all the kernels. Due to tight integration and
severe resource contention in heterogeneous hybrid plat-
forms, the load of one computational kernel in a given hybrid
application may significantly impact others’ performance to
the extent of preventing the ability to model the performance
and energy consumption of each kernel in hybrid applica-
tions individually [16]. To address this issue, we restrict our
study in this work to configurations of hybrid applications,
where individual kernels are coupled loosely enough to

allow us to build their performance and energy profiles with
the accuracy sufficient for successful application of the pro-
posed algorithms. To achieve this objective, we only consider
configurations where no more than one CPU kernel or accel-
erator kernel runs on the corresponding device. To apply our
optimization algorithms, each group of cores executing an
individual kernel of the application is modelled as an
abstract processor [16], so that the executing platform is rep-
resented as a set of heterogeneous abstract processors. We
make sure that the sharing of system resources is maximized
within groups of computational cores representing the
abstract processors andminimized between the groups. This
way, the contention and mutual dependence between
abstract processors areminimized.

We thus model HCLServer01 by three abstract processors,
CPU_1, GPU_1, and PHI_1. CPU_1 represents 22 (out of total
24) CPU cores. GPU_1 involves the Nvidia K40c GPU and a
host CPU core connected to this GPU via a dedicated PCI-E
link. PHI_1 ismade up of one Intel Xeon Phi 3120P and its host
CPU core connected via a dedicated PCI-E link. In the same
manner, HCLServer02 is modelled by two abstract processors,
CPU_2 and GPU_2. Since there should be a one-to-one map-
ping between the abstract processors and computational ker-
nels, any hybrid application executing on the servers in
parallel should consist of five kernels, one kernel per computa-
tional device. Because the abstract processors contain CPU
cores that share some resources such as main memory and
QPI, they cannot be considered entirely independent. There-
fore, the performance of these loosely-coupled abstract pro-
cessors must be measured simultaneously, thereby taking into
account the influence of resource contention [16].

The execution time of any computational kernel can be
measured accurately using high precision processor clocks
and used to model the performance of a parallel application
and build its speed functions. There is, however, no such
effective equivalent for measuring energy consumption.
There are two dominant approaches to determine energy
consumption: a). Hardware-based, such as using on-chip
power sensors or system-level physical measurements using
external power meters, and b). Software-based, such as
energy predictive models using performance monitoring
counters (PMCs). While energy predictive models provide
the decomposition of energy consumption at the component
level, they exhibit poor prediction accuracy and demonstrate
high implementation complexity ([17], [18], [19], [20]). We
present an overview of the issues with measurements using

TABLE 1
HCLServer1: Specifications of the Intel Haswell Multicore CPU,

Nvidia K40c, and Intel Xeon Phi 3120P

Intel Haswell E5-2670V3

No. of cores per socket 12
Socket(s) 2
CPUMHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c

No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P

No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

TABLE 2
HCLServer2: Specifications of the Intel Skylake

Multicore CPU and Nvidia P100 PCIe

Intel Xeon Gold 6152

Socket(s) 1
Cores per socket 22
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Main memory 96 GB

NVIDIA P100 PCIe

No. of processor cores 3584
Total board memory 12 GB CoWoS HBM2
Memory bandwidth 549 GB/sec
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on-chip power sensors and energy predictive models in the
experimental results section.

System-level physical measurements using power meters
are accurate, but they do not provide a fine-grained decompo-
sition of the energy consumption during the application run
in a hybrid platform. Fahad et al. [15] propose a methodology
to determine this decomposition, which employs only system-
level power measurements using power meters. The method-
ology allows us to build discrete dynamic energy functions of
abstract processors with sufficient accuracy for applying the
proposed optimization algorithms in our use cases.

In our first use case, we study the performance and
dynamic energy profiles of a 2D fast Fourier transform (2D-
FFT) application on HCLServer01 and HCLServer02. The
application computes 2D-DFT of a complex signal matrix of
sizem� n. It employs Intel MKL FFT routines for CPUs and
Xeon Phis, and CUFFT routines for Nvidia GPUs. All com-
putations are in-card.Workloads range from 1024� 51200 to
10000� 51200with the step size of 16 form. The experimen-
tal data set does not include problem sizes that cannot be fac-
tored into primes less than or equal to 127. For these problem
sizes, CUFFT for GPU gives failures. The speed of execution
of a 2D-DFT of size m� n is calculated as ð2:5�m� n�
log 2ðm� nÞÞ=twhere t is the execution time.

Figs. 4 and 5 show the speed and dynamic energy func-
tions of the abstract processors. For each data point in these

functions, the experiments are repeated until sample means
of all the five kernels running on the abstract processors fall
in the confidence interval of 95 percent. Our experimental
methodology is detailed in the supplemental, available
online. Fig. 6 shows the Pareto front containing 24 solutions
for the input workload size w ¼ 19248� 51200. The work-
load distributionmaximizing the performance has the execu-
tion time of 0.63 seconds and dynamic energy consumption
of 189 joules. The workload distribution with the minimal
dynamic energy consumption of 131 joules has an execution
time of 1.33 seconds. Optimizing for dynamic energy con-
sumption alone degrades performance by 111 percent, and
optimizing for performance alone increases dynamic energy
consumption by 44 percent. The blue circle in the figure is
the load balanced solution, which is close to the Pareto front.

In our second use case, we experiment with a matrix
multiplication application, DGEMM. The application com-
putes C ¼ a�A�Bþ b� C, where A, B, and C are matri-
ces of size m� n, n� n, and m� n, and a and b are
floating-point constants. The application uses Intel MKL
DGEMM for CPUs, ZZGEMMOOC out-of-card package
[21] for Nvidia GPUs, and XeonPhiOOC out-of-card pack-
age [21] for Intel Xeon Phis. ZZGEMMOOC and Xeon-
PhiOOC packages reuse CUBLAS and MKL BLAS for in-
card DGEMM calls. The out-of-card packages allow the
GPUs and Xeon Phis to execute computations of arbitrary
size. The Intel MKL and CUDA versions used on
HCLServer01 are 2017.0.2 and 7.5, and on HCLServer02 are
2017.0.2 and 9.2.148. Workload sizes range from 64� 10112
to 28800� 10112 with a step size of 64 for the first dimen-
sion m. The speed of execution of a given problem size m�
n is calculated as ð2�m� n2Þ=t where t is the execution
time. The speed and energy profiles are provided in the
supplemental, available online.

Fig. 7 shows the Pareto front containing 68 solutions for
the given workload size w ¼ 17152� 10112. The solutions
are the workload distributions employing one or more of
the five abstract processors. The workload distribution with
the maximum performance has an execution time of 1.08
seconds, and dynamic energy consumption of 604 joules.
The workload distribution with the minimum dynamic
energy consumption of 167 joules has an execution time of
1.63 seconds. Optimizing for dynamic energy consumption
degrades performance by 51 percent, whereas optimizing
for execution time increases dynamic energy consumption
by 260 percent. Thus, we observe a good number of trade-

Fig. 4. Speed functions of heterogeneous 2D-FFT application executing
on HCLServer01 and HCLServer02. The application computes the 2D-
DFTof a matrix of sizeM �N, whereM ranges from 1024 to 10000 and
N is 51200.

Fig. 5. Dynamic energy functions of heterogeneous 2D-FFT application
executing on HCLServer01 and HCLServer02. The dynamic energy pro-
file for Phi_1 is ignored since it consumes 10 times more energy and
dwarfs the other profiles. The application calculates the 2D-DFT of a
matrix sizeM �N, whereM ranges from 1024 to 10000 andN is 51200.

Fig. 6. Pareto-optimal solutions for 2D-FFT for a given workload size,
w ¼ 19248� 51200. Blue circle is the load balanced solution.
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off solutions for performance and dynamic energy when
workload distribution is used as the decision variable.

To summarize, we can conclude that due to the effect of
heterogeneity, there is a drastic increase in the number of
optimal solutions (workload distributions) as we move
from single-objective optimization for performance or
energy to bi-objective optimization for performance and
energy on heterogeneous processors. We show using an
exact workload partitioning algorithm designed by us that
for the simple case of linear performance and energy pro-
files for two heterogeneous processors, the Pareto front is
linear with an infinite number of solutions where practically
all the solutions are load imbalanced.

Motivated by this finding, we study the performance and
energy profiles of two standard and highly optimized scien-
tific kernels, matrix multiplication, and 2D fast Fourier trans-
form. We observe that the shapes of the profiles are non-
linear and non-smooth. To the best of our knowledge, there
is no bi-objective optimization method (or workload parti-
tioning algorithm) that takes the profiles as an input without
making any assumptions about their shapes to determine
the Pareto front. To bridge this gap,we propose a bi-objective
optimization algorithm for performance and total energy.
The algorithm is general because it accepts discrete perfor-
mance and energy profiles that can be linear or non-linear.

3 RELATED WORK

Realistic and accurate performance and energy models of
computations are essential building blocks for data partition-
ing algorithms solving the bi-objective optimization problem
for performance and energy. We first cover them in our liter-
ature survey. We follow this with notable methods solving
bi-objective optimization problem onHPC platforms.

3.1 Performance Models of Computation

Performance models of computations can be classified into
analytical and non-analytical categories.

Analytical models use techniques such as linear regres-
sion, analysing patterns of computation and memory
accesses, and static code analysis to estimate performance for
CPUs and accelerators [22], [23]. In the non-analytical cate-
gory, the most simple model is a constant performance model
(CPM)where different notions such as normalized cycle time,
normalized processor speed, average execution time, and

task computation time. characterize the speed of an applica-
tion [24], [25]. In CPMs, no dependence is assumed between
the performance of a processor and theworkload size.

CPMs are too simplistic to accurately model the perfor-
mance of data-parallel applications executing on modern
heterogeneous platforms. The most advanced load balanc-
ing algorithms employ functional performance models
(FPMs) that are application-specific and that represent the
speed of a processor by a continuous function of problem
size [26], [27]. The FPMs capture realistically and accurately
the real-life behaviour of applications executing on nodes
consisting of uniprocessors (single-core CPUs).

The complex nodal architecture of modern HPC systems,
consisting of tightly integrated processors with inherent
severe resource contention and NUMA, pose serious chal-
lenges to load balancing algorithms based on the FPMs.
These inherent traits result in significant variations (drops)
in the performance profiles of parallel applications execut-
ing on these platforms, thereby violating the assumptions
on the shapes of the performance profiles considered by the
FPM-based load balancing algorithms. In [13], [28], [29],
[30], novel model-based data partitioning algorithms are
proposed that employ load imbalancing parallel computing
method to address the new challenges.

3.2 Energy Modelling Techniques

There are two dominant approaches to provide an accurate
measurement of energy consumption during an application
execution: a). Physical measurements using external power
meters or on-chip power sensors, and b). Energy predictive
models. While the first approach is known to be accurate, it
can only provide the measurement at a computer level and
cannot, therefore, provide a fine-grained component-level
decomposition of the energy consumption of an application,
which is required by data partitioning algorithms optimiz-
ing the application for energy.

State-of-the-art energy predictive models predominantly
use Performance Monitoring Counts (PMCs) to predict
energy consumption during application execution. A typi-
cal approach is to model the energy consumption of a hard-
ware component (such as CPU, DRAM, fans, and disks
(HDD)) using linear regression of the performance events
occurring in the component during application execution.

3.2.1 Energy Predictive Models for CPUs

Component level energy predictive models based on high
positively correlated performance events such as integer
operations, floating-point operations, and cache misses
include [31], [32], [33]. They construct models for different
hardware components such as CPU, disk, and network,
based on their utilizations. Basmadjian et al. [34] construct a
power model of a server using the summation of power
models of its components: the processor (CPU), memory
(RAM), fans, and disk (HDD). Lastovetsky et al. [13] pro-
pose a model representing the energy consumption of a
multicore CPU by a non-linear function of workload size.

3.2.2 Energy Predictive Models for Accelerators

Hong et al. [35] present an energy model for an Nvidia GPU
based on a PMC-based power prediction approach similar

Fig. 7. Pareto-optimal solutions for heterogeneous DGEMM application
for a given workload size w ¼ 17152� 10112. Blue circle represents the
load balanced solution. The discrete speed and the energy functions are
provided in the supplemental, available online.
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to [36]. Nagasaka et al. [37] propose a PMC-based statistical
power consumption modelling technique for GPUs that run
CUDA applications. Song et al. [38] present power and
energy prediction models based on machine learning algo-
rithms such as backpropagation in artificial neural networks
(ANNs). Shao et al. [39] develop an instruction-level energy
consumption model for a Xeon Phi processor.

3.2.3 Critiques of PMC-Based Modelling

Although PMC based energy predictive software models
have become popular in the scientific community, several
research works highlight the poor prediction accuracy and
limitations of these models. McCullough et al. [17] present a
study on the accuracy of predictive power models for new
multicore architectures and show that PMC models based
on linear regression give prediction errors as high as 150
percent. O’Brien et al. [18] survey predictive power and
energy models focusing on the highly heterogeneous and
hierarchical node architecture in modern HPC computing
platforms. They also present an experimental study with
linear PMC based energy models where they give an aver-
age prediction error equal to 60 percent. Economou et al.
[32] highlight the fundamental limitation of PMC-based
models, which is the restricted access to read PMCs (gener-
ally four at a single run of an application). Shahid et al. [19]
propose a selection criterion called the additivity for choos-
ing a subset of PMCs to improve the accuracy of linear
energy predictive models. They show that many PMCs in
modern multicore CPU platforms fail the additivity test and
hence are not reliable parameters.

3.3 Notable Works Involving Performance and
Energy as Objectives

Research works [1], [2], [40], [41] propose methods for multi-
objective optimization involving performance and energy as
objectives. A parallel method to solve a bi-objective optimi-
zation problem for performance and energy consumption in
cloud computing infrastructures is presented in [40]. It
deploys a genetic algorithm to find bi-objective solutions.
The parameters, input to the algorithm, are the task compu-
tation cost (w) and the communication costs between two
tasks. The supply voltage (V ) of the processor is the only
decision variable. The consumed energy is modelled as a
polynomial function of V 2 � w. Fard et al. [1] consider four
objectives, which are execution time, economic cost, energy,
and reliability. Beloglazov et al. [41] consider twin objectives
of energy efficiency and Quality of Service (QoS) for provi-
sioning data center resources. Kessaci et al. [2] present a
multi-objective genetic algorithm that minimizes the energy
consumption, CO2 emissions, and maximizes the generated
profit of a cloud computing infrastructure.

Research works [42], [43], [44] propose methods optimiz-
ing Energy-Delay Product (EDP) at the hardware level. The
EDP objective function is constructed using analytical
expressions for performance and energy. EDP is also used to
solve software optimization problems in [45], [46], [47].
However, in [48], it is demonstrated that EDP-based techni-
ques are not suitable for bi-objective optimization for perfor-
mance and energy at the software level. These approaches
are not shown to be scalable.

Research works [10], [49], [50], [51] are analytical studies
of bi-objective optimization for performance and energy.
Choi et al. [49] extend the energy roofline model by adding
an extra parameter, power cap, to their execution time
model. Drozdowski et al. [50] use iso-energy map, which
are points of equal energy consumption in a multi-dimen-
sional space of system and application parameters, to study
performance-energy trade-offs. Marsza»kowski et al. [51]
analyze the impact of memory hierarchies on time-energy
trade-off in parallel computations, which are represented as
divisible loads.

The works reviewed in this section do not consider work-
load distribution as a decision variable.

4 FORMULATION OF HETEROGENEOUS

PERFORMANCE-ENERGY OPTIMIZATION

PROBLEM (HEPOPT)

Consider a workload size n executed using p heterogeneous
processors, whose execution time and dynamic energy
functions are represented by T ¼ ft0ðxÞ; . . . ; tp�1ðxÞg and
E ¼ fe0ðxÞ; . . . ; ep�1ðxÞg where eiðxÞ (tiðxÞ), i 2 f0; 1; . . . ; p�
1g, is a discrete dynamic energy (execution time) function
with cardinality m for processor Pi, and PS is the base
power of the platform. The function eiðxÞ represents the
amount of dynamic energy consumed by Pi to execute the
problem size x, and tiðxÞ is the execution time of the prob-
lem size on this processor. Without loss of generality, we
assume x 2 f1; 2; . . . ;mg.

The bi-objective optimization problem to find a workload
distribution minimizing the execution time and the total
energy consumption of computations during the parallel
execution of workload n using the p processors is formu-
lated as follows:

HEPOPT ðn; p;m; T;E; PSÞ :

minX max
p�1

i¼0
tiðxiÞ; PS �max

p�1

i¼0
tiðxiÞ þ

Xp�1

i¼0

eiðxiÞ
( )

Subject to:
Xp�1

i¼0

xi ¼ n; 0 � xi � m; i 2 ½0; p� 1�

where p; n;m 2 Z> 0; xi 2 Z�0; tiðxÞ; eiðxÞ; PS 2 R�0:

(1)

For each given workload distribution,X ¼ fx0; . . . ; xp�1g,
HEPOPT calculates the parallel execution time, which is the
time taken by the longest running processor to execute its
workload, and the total energy consumption. HEPOPT
returns a set of Pareto-optimal solutions, which are thework-
load distributions. One or more processors in an optimal
solution can be allocated aworkload of size zero.

5 HEPOPTA: ALGORITHM FINDING
PARETO-OPTIMAL SOLUTIONS FOR

EXECUTION TIME AND ENERGY

The algorithm, HEPOPTA, solves HEPOPT. It employsHet-
erogeneous Dynamic energy Performance OPTimization
(HDePOPTA) as a building block, solving the bi-objective
optimization problem for performance and dynamic energy.
HDePOPTA solves the particular case of HEPOPT, where
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PS is considered to be zero and returns Pareto-optimal solu-
tions for performance and dynamic energy.

We describe HDePOPTA using a simple example. Sup-
pose there are four heterogeneous processors (p ¼ 4) execut-
ing a given workload size n ¼ 4. The other inputs are four
discrete dynamic energy functions, E ¼ fe0ðxÞ; . . . ; e3ðxÞg,
as well as four discrete time functions, T ¼ ft0ðxÞ; . . . ; t3ðxÞg,
shown in Fig. 8. The functions are sorted by dynamic energy
in non-decreasing order. The functions represent the execu-
tion time and dynamic energy profiles of a real-life data-par-
allel application.

A naive algorithm explores the full solution tree and
finds all possible workload distributions to construct the
Pareto front for execution time and dynamic energy. Fig. 9
shows the tree, which is constructed by such an algorithm.
Due to lack of space, only a partial tree is shown.

The tree consist of 4 levels fL0; L1; L2; L3gwhere all prob-
lem sizes given to processor Pi are examined in levelLi. Each
node in Li, i 2 f0; 1; 2; 3g, is labelled by a positive value rep-
resenting the workload size that is distributed between pro-
cessors fPi; . . . ; P3g. Each edge connecting a node at level Li

to its ancestor is labelled by a triple ðw; e; tÞ where w is the
problem size assigned to Pi, along with its consumed
dynamic energy (eiðwÞ) and its execution time (tiðwÞ).

The exploration process begins from the root to find all
distributions for the workload size four between four pro-
cessors fP0; P1; P2; P3g. Five problem sizes, including all data
points in the function e0ðxÞ and a zero problem size, are
assigned to the processor P0 one after another. Although
there is no ordering assumption, we examine the problem
sizes in this example in non-decreasing order of their

dynamic energy consumption. Assigning the problem sizes
f0; 2; 1; 3; 4g to P0 expands the root into 5 children at L1 rep-
resenting the remaining workload to be distributed between
processors fP1; P2; P3g. For instance, the edge (2,1,2),
highlighted in blue in Fig. 9, indicates that a problem size 2
with a dynamic energy consumption of 1 and an execution
time of 2 is given to P0, and its child is labelled by 2 which
equals the remaining size distributed at the levelL1.

In the same manner, each node in levels fL1; L2; L3g is
expanded towards the leaves. Any leaf node, labelled by 0,
illustrates a solution that its dynamic energy consumption
is the summation of dynamic energy consumptions, and its
execution time is the maximum of the execution times label-
ling the edges in the path from the root to the leaf. For exam-
ple, the blue path fð2; 1; 2Þ; ð2; 1; 6Þg in the tree highlights a
solution distributing the workload 4 on two processors P0

and P1. The dynamic energy consumption of this workload
distribution is 2 ð¼ 1þ 1Þ, and the corresponding execution
time is 6 ð¼ maxf2; 6gÞ. It is obvious that the other two pro-
cessors fP2; P3g are assigned a zero problem size.

Due to lack of space, we have not shown the branches
that do not provide any solution. In a non-solution branch,
the summation of problem sizes labelling the edges from
the root to its leaf is greater than 4.

In this example, each internal node in the solution tree has
either 5 children (or mþ 1 in the general case) or just one
child in which case the child is always a leaf. There are two
types of leaves: solution leaves, labelled by 0 along with its
dynamic energy consumption and execution time beneath it,
and no-solution leaves, eliminated from, and therefore, not
shown in the tree. Each internal node at level Li, labelled by
a positive numberw, becomes a root of a solution tree for dis-
tribution of the workload w between processors fPi; . . . ; P3g
and is therefore constructed recursively.

Once a solution is found, the algorithmupdates the Pareto
front. In the end, the Pareto front includes three members,
fðh2; 6i; f2; 2; 0; 0gÞ; ðh4; 3i; f2; 1; 0; 1gÞ; ðh5; 2i; f2; 0; 2; 0gÞg,
where each element, like ðheng; eTimei; fx0; . . . ; x3gÞ, in the
set determines the dynamic energy consumption (eng) and
the execution time (eTime) of the workload distribution
fx0; . . . ; x3g.

The naive algorithm has exponential complexity. We pro-
pose HDePOPTA, which is an efficient recursive algorithm

Fig. 8. Sample dynamic energy and execution time functions sorted in
non-decreasing order of dynamic energies.

Fig. 9. For a workload n ¼ 4 on four processors, the solution tree explored by the naive algorithm to find all the workload distributions and its Pareto-
optimal solutions.
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to determine the Pareto-optimal solutions for data-parallel
applications executing on heterogeneous processors. It has
polynomial computational complexity. The algorithm
reduces the search space by utilizing three optimizations to
avoid exploringwhole subtrees in the solution tree.

We will now explain how HDePOPTA efficiently solves
the example above. It scans dynamic energy functions, start-
ing with e0ðxÞ, from left to right in non-decreasing order of
dynamic energy consumption. The first optimization con-
cerns the upper bound for dynamic energy consumption,
which we call it energy threshold represented by ". It is the
dynamic energy consumption of the workload distribution
whichminimizes the execution time of the workload 4 on the
processors. We determine this optimal distribution by using
the algorithmHPOPTA [29]. We then initialize the variable "
to the dynamic energy consumption of this distribution.
Applying the energy threshold enables HDePOPTA to
reduce the search space by ignoring all data points with con-
sumed dynamic energies greater than ". In the example, the
optimal workload distribution, returned by HPOPTA, is
Xtopt ¼ f2; 0; 2; 0g with an execution time (topt) of 2. There-
fore, " in this example is set to 5, which is the dynamic energy
consumption for this distribution (

Pp�1
i¼0 eiðxtopt ½i�Þ ¼ 5).

HDePOPTA, as shown in Fig. 10, ignores all data points
whose dynamic energy consumptions are greater than 5. We
highlight in brown all nodes and branches eliminated from
the solution tree by deploying the energy threshold in Fig. 9.
There may exist more than one workload distribution mini-
mizing the execution time but with different dynamic energy
consumptions. The best solution is the distribution, which
minimizes ". Nevertheless, using a non-optimal " does not
restrainHDePOPTA from obtaining the Pareto front.

To reduce the search space further, HDePOPTA assigns
each level of the tree a size threshold si; i 2 f0; . . .; p� 1g. It
represents the maximum workload which can be executed
in parallel on processors fPi; . . . ; Pp�1g so that the dynamic
energy consumption of each processor in fPi; . . . ; Pp�1g is
not greater than ". In this example, the size threshold vector
s contains four elements, s ¼ fs0; s1; s2; s3g ¼ f8; 5; 3; 1g.
Before expanding each node, HDePOPTA compares its
workload with its corresponding size threshold. If the work-
load exceeds the size threshold, the node is not expanded
since it results in a solution with a dynamic energy con-
sumption greater than ".

After calculating the energy threshold ", and the size
threshold vector s, HDePOPTA explores the solution tree
from its root in the left-to-right and depth-first order. It,
first, allocates zero problem sizes to P0 and P1 (Fig. 9). The
remaining workload at the level L2 is 4, which is labelled by
4(a) in the tree. Since the workload 4 is greater than the

corresponding size threshold, s2, the node is not expanded
further and is cut. This optimization is called operation Cut.
We highlight in red all sub-trees eliminated from the search
space using the operation Cut.

Returning to the tree exploration, HDePOPTA examines
the next node 2(b) at the level L2. The expansion of this
node results in two solutions partitioning workload 2 on
processors P2 and P3. HDePOPTA updates the Pareto front
for this node and saves the solution in memory called
PMem.

HDePOPTA memorizes solutions for each node in levels
fL1; . . . ; Lp�2g. The information stored for a node with a
workload of w at a given level Li, i 2 f1; . . . ; p� 2g, is a quin-
tuple < eng; time; part; P#; key > where eng is the dynamic
energy consumption of the solution, time is its parallel execu-
tion time on processors fPi; . . . ; Pp�1g, part is the problem
size given to Pi, P# is the number of active processors in the
solution and finally, key, is set to the dynamic energy con-
sumption of a saved Pareto-optimal solution for workload
w� c at level Liþ1. We call this Pareto-optimal solution at
level Liþ1 a partial solution for the workload w. This partial
solution may not exist for some nodes, which in this case is
represented by ;. Since dynamic energies are unique in a Par-
eto front, we use key as a pointer to partial solutions. For each
solution leaf in levels fL1; . . . ; Lp�2g, like 0ðfÞ in Fig. 9, HDe-
POPTAmemorizes a solution f< 0; 0; 0; 0; ; > g.

Thus, the information saved for the node 2(b) is a
Pareto front including two members, f< 4; 2; 2; 1; ; > ; <
6; 1; 1; 2; ; > g. We call this key operation, SavePareto. Green
nodes in the solution tree highlight ones whose Pareto fronts
are saved. After 2(b), the node 3(c) is examined. The solution
saved for this node is f< 5; 2; 2; 2; ; > g.

HDePOPTA then backtracks to the node 4(d) on L1 and
builds its Pareto front by merging Pareto fronts saved for its
children, 2(b) and 3(c). Consider the edge (2,1,6) connecting
the node 4(d) to 2(b).Merging this edgewith the Pareto front,
which has been already saved for 2(b), f< 4; 2; 2; 1; ; > ; <
6; 1; 1; 2; ; > g, results in one Pareto-optimal solution for the
node 4(d), which is saved as the quintuple < 5; 6; 2; 2;4 > .
In this solution, the last element, 4, which is highlighted in
bold, points to its partial solution in the node 2(b) at L2,
which is f< 4; 2; 2; 1; ; > g. Merging the edge (1,2,3) with
the Pareto front for 3(c), f< 5; 2; 2; 2; ; > g, results in a new
solution f< 7; 3; 1; 3; 5 > g. Therefore, the Pareto front for
the node 4(d) is f< 7; 3; 1; 3; 5 > ; < 5; 6; 2; 2; 4 > g, which is
saved in thememory.

After building and saving the Pareto front of the node 4
(d), HDePOPTA visits the node 2(e) at the level L2. This
node has already been explored, and therefore, its Pareto
front is retrieved from PMem. We call this key operation,
ReadParetoMem. The nodes whose solutions are retrieved
from the memory are highlighted in orange.

After visiting the other remaining nodes, HDePOPTA
backtracks to the root and builds the Pareto-optimal solu-
tions for the workload 4 executing on processors fP0; . . . ; P3g
using the Pareto fronts saved for its children. Then it
terminates.

HDePOPTA thus deploys three key operations, which
are a). Cut, b). SavePareto, and c). ReadParetoMem, to effi-
ciently explore solution trees and build Pareto-optimal solu-
tions optimizing for execution time and dynamic energy.

Fig. 10. Removing data points (not in bold cells) from the profiles by
applying the energy threshold ".
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The formal description of HDePOPTA, its correctness,
and complexity proofs are presented in the supplemental,
available online.

We prove (in the supplemental, available online) that the
solution found by HEPOPTA is a subset of the Pareto front
for execution time and dynamic energy determined by
HDePOPTA. Therefore, HEPOPTA calls HDePOPTA to
find the Pareto front for execution time and energy. Its pseu-
docode and correctness proof are described in the supple-
mental, available online.

6 HYBRID HETEROGENEOUS SERVER ENERGY

MODELING

We present an overview of the methodology to solve the
problem ofmodelling the dynamic energy consumption dur-
ing application execution on a hybrid server composed of
heterogeneous computing elements [15]. The methodology
employs system-level power measurements using power
meters.

To motivate the case for modelling, let us consider the
optimization problem for minimizing the dynamic energy
consumption during the parallel execution of a workload.
To obtain the optimal workload distribution, a naı̈ve
approach explores all possible workload distributions. For
each workload distribution, it determines the total dynamic
energy consumption during the parallel execution of the
workload from the system-level power measurements. It
returns the workload distribution with the minimum total
dynamic energy consumption. This approach, however, has
exponential complexity.

Therefore, to reduce this complexity, we need energy
models of the heterogeneous computing elements that are
inputs to HDePOPTA to determine the workload distribu-
tion minimizing the dynamic energy consumption during
the parallel execution of the workload.

Themethodology comprises twomain steps. The first step
is identifying or grouping the computing elements satisfying
properties that allowmeasurement of their energy consump-
tions to sufficient accuracy. We call these groups as abstract
processors. The second step is constructing the dynamic
energymodels of the abstract processors, where the principal
goal, apart from minimizing the time taken for model con-
struction, is tomaximize the accuracy of measurements.

6.1 Grouping of Computing Elements

We group individual computing elements executing an
application together in such a way that we can accurately
measure the energy consumption of the group. We call these
groups, abstract processors. We consider two properties essen-
tial to composing the groups: (a). Completeness: An abstract
processor must contain only those computing elements
which execute the given application kernel, and (b). Loose
coupling:Abstract processors do not interfere with each other
during the application. That is, the dynamic energy con-
sumption of one abstract processor is not affected by the
activities of other abstract processor.

Based on this grouping into abstract processors, we
hypothesize that the total dynamic energy consumption
will equal the sum of energies consumed by all the abstract
processors during an application execution. So, if ET is the

total dynamic energy consumption of the system incorpo-
rating p abstract processors fAP1; . . . ; APpg, then ET ¼Pp

i¼1 ET ðAPiÞ where ET ðAPiÞ is the dynamic energy con-
sumption of the abstract processor APi. We call this our
additive hypothesis.

6.2 Energy Models of Abstract Processors

The second main step of the methodology builds the
dynamic energy models of the p abstract processors. We
represent the dynamic energy model of an abstract proces-
sor by a discrete function composed of a set of points of car-
dinalitym.

The total number of experiments to build the dynamic
energy models is ð2p � 1Þ �m. Consider, for example, three
abstract processors fA;B;Cg. The experiments can be classi-
fied into the following categories: fA;B;C; fAB;Cg; fA;
BCg; fAC;Bg; ABCg. The category fAB;Cg represents par-
allel execution of application kernels onA andB followed by
application kernel execution on C. For each workload size x,
the total dynamic energy consumption is obtained from the
system-level power measurements for this combined execu-
tion of kernels. The categories fAB;Cg and fBA;Cg are con-
sidered indistinguishable. There are m experiments in each
category. The goal is to construct the dynamic energymodels
of the three abstract processors fA;B;Cg from the experi-
mental points to sufficient accuracy.

We reduce the number of experiments to p�m by
employing our additive hypothesis.

7 EXPERIMENTAL RESULTS

We experimentally analyse the practical performance of
HEPOPTAusing three data-parallel applications,matrixmul-
tiplication, 2D-FFT, and gene sequencing using the Smith-
Waterman algorithm, on the platform consisting of two con-
nected heterogeneous multi-accelerator NUMA nodes,
HCLServer01, andHCLServer02.We start with a summary of
state-of-the-art energy measurement methods before analy-
sing the additive approach for determining dynamic energy
functions using the data-parallel applications, matrix multi-
plication, and 2D-FFT.

7.1 State-of-the-Art Energy Measurement Methods

Accurate measurement of energy consumption during an
application execution is key to energy minimization at the
application level and is a fundamental building block of
the additive approach for constructing the dynamic energy
functions. There are three popular approaches for energy
measurement: (a) System-level physical measurements
using external power meters, (b) Measurements using on-
chip power sensors, and (c) Energy predictive models. We
consider the first approach to be the ground truth. The addi-
tive method employs this approach.

The energy measurement approach based on on-chip
power sensors is now available in mainstream processors
such as Intel and AMD Multicore CPUs, Nvidia GPUs, and
Intel Xeon Phis. There are vendor specific libraries to
acquire the power data from these sensors. For example,
Running Average Power Limit (RAPL) [52] can be used to
monitor power and control frequency (and voltage) of Intel
CPUs, and Nvidia NVIDIA Management Library (NVML)
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[53] and Intel System Management Controller chip (SMC)
[54] provide the power consumption by Nvidia GPUs and
Intel Xeon Phi respectively. While NVML manual specifies
the accuracy of GPU on-chip sensors (�5%) [53], the accu-
racy of the other sensors are not known.

Fahad et al. [20] present the first comprehensive compara-
tive study comparing the accuracy of state-of-the-art on-chip
power sensors and energy predictive models against sys-
tem-level physical measurements using external power
meters. They find that the average error of the dynamic
energy profiles obtained using on-chip power sensors can be
as high as 73 percent, and the maximum reaches 300 percent
for the two scientific applications, matrix multiplication, and
2D fast Fourier transform. They also show that the shape of a
dynamic energy profile determined using on-chip sensors
differs significantly from the shape obtainedwith the ground
truth. Therefore, the energy measurements using on-chip
sensors do not capture the holistic picture of the dynamic
energy consumption during application execution.

Consider the dynamic energy profile of CUBLAS matrix
multiplication on Nvidia Tesla K40c GPU (HCLServer01) for
workload sizes ranging from 12,032 x 21,504 to 21,504 x
21,504 using a constant step size of 256. The dynamic energy
consumption by DGEMM is measured with RAPL and
NVML [53]. We term them collectively as on-chip sensors. The
energy measurements using sensors are compared against
HCLWattsUp API, which provides the system-level energy
measurements using power meters. Fig. 11 presents the
dynamic energy profiles of DGEMM using HCLWattsUp
and on-chip sensors. The energy readings from the sensors
exhibit a linear profile, whereas HCLWattsUp does not. The
maximum and average errors of profiles given by the sensors
are 35.32 and 10.62 percent, respectively.

The third approach based on software energy predictive
models emerged as a popular alternative to determine the
energy consumption of an application. While the models
allow determination of fine-grained decomposition of energy
consumption during the execution of an application at low
cost compared to the other approaches, there are research
works highlighting their poor accuracy [17], [18], [19], [32].
Fahad et al. [20] study the accuracy of platform-level and
application-level energy predictive models based on linear
regression. The models employ PMCs as predictor variables
that have high positive correlation with dynamic energy con-
sumption. They show that the average error between the
energy predictive models and the ground truth ranges from
14 to 32 percent, and themaximum reaches 100 percent.

To summarize, a crucial requirement for the high accu-
racy of our solution method is the construction of accurate
component-level energy functions of workload size. Power
measurement APIs (PowerAPI [55]) are proven to be accu-
rate for system-level optimization where dynamic voltage
and frequency scaling (DVFS) is the key decision variable.
However, based on our research, we observed that the APIs
are not accurate enough to determine component-level
dynamic energy profiles that can be used for energy optimi-
zation of data-parallel applications executing on multiple
independent devices on a computer. In other words, while
the power APIs correlate with real measurements if we vary
frequency/voltage (and fix the workload), they do not corre-
late with real measurements if we vary the workload, as

shown in the Fig. 11. Therefore, we cannot use them in meth-
ods aiming to find energy-optimal workload distributions.

7.2 Construction of Discrete Time and Dynamic
Energy Functions

Based on our additive approach, we group the processing
units of the platform into five abstract processors following
the properties explained in Section 6.1. We name the
abstract processors on HCLServer01 as CPU_1, GPU_1,
Phi_1, and on HCLServer02, as CPU_2 and GPU_2.

The execution time and the dynamic energy functions of
the abstract processors are experimentally built separately
using an automated build procedure using five parallel pro-
cesseswhere one process ismapped to one abstract processor.
To ensure the reliability of our experimental results, we follow
adetailed statisticalmethodology explained in Section 2 of the
supplemental, available online. Briefly, to obtain a data point
for each function, the software uses Student’s t-test and exe-
cutes the application repeatedly until the sample mean of the
measurement (execution time\dynamic energy\total energy)
lies in the user-defined confidence interval and a user-defined
precision is achieved. The confidence interval and the preci-
sion are set to 95 and 10 percent for our experiments.

An automated tool, HCLWATTSUP [56], developed by
us, is used to determine the dynamic energy and total energy
consumptions of a given application kernel based on system-
level power measurements using external power meters.
HCLWATTSUP has no extra overhead and, therefore, does
not influence the energy consumption of the application ker-
nel. The HCLWATTSUP interface is explained in the supple-
mental, available online.

Several precautions are taken in computing energy meas-
urements to eliminate the potential disturbance due to com-
ponents such as Solid State Drives (SSD) and fans. They are
detailed in the supplemental, available online.

The execution times of all the abstract processors execut-
ing the same workload are measured simultaneously,
thereby taking into account the influence of resource con-
tention. The execution time for accelerators includes the
time taken to transfer data between the host and devices.

Dynamic energy functions for each abstract processor are
constructed using the methodology explained in Section 6.2.
To verify if the additive hypothesis is valid,we build four pro-
files for HCLServer01 (one parallel and one for each of the
three abstract processors), and three profiles for HCLServer02
(one parallel and one for each of the two abstract processors).

Fig. 11. Dynamic energy profiles of DGEMM on Nvidia Tesla K40c GPU.
Sensors represent the summation of RAPL and NVML measurements.
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Figs. 12 and 13 show the parallel and combined dynamic
energy profiles of matrix multiplication and FFT. Here,
combined refers to the sum of dynamic energy consump-
tions of all abstract processors when running the given
workload sequentially. Table 3 shows the statistics for per-
centage difference of parallel to combined.

We find an average difference of 5.9 and 8.3 percent
between parallel and combined dynamic energy profiles on
both HCLServer01 and HCLServer02 for matrix multiplica-
tion and 2D-FFT. Despite the percentage error, both parallel
and combined profiles follow the same pattern for both
applications.

The parallel profiles always consume more energy than
the combined profiles due to two reasons: a). Resource con-
tention and NUMA, when all abstract processors execute
the given workload in parallel. This can be seen from the
relatively higher error rate for HCLServer01 compared to
HCLServer02 since HCLServer01 contains three abstract
processors whereas HCLServer02 has two abstract process-
ors. b). The high precision setting of 10 percent for our
experiments. This setting means that HCLWATTSUP keeps
executing the given application workload until the sample
mean lies in the precision interval of 10 percent.

The error rate between parallel and combined dynamic
energy consumption can be reduced significantly if the preci-
sion is set to 2.5 percent. However, it will drastically increase
the execution time to determine the sample mean for the
given experimental data point since we need to build seven
profiles: four onHCLServer01 and three onHCLServer02.We
will study in our future work how to leverage the additive

component energy modelling without incurring a significant
time penalty.

For each data point in the discrete performance and
energy functions in the figures, all the abstract processors
solve the same workload size. HEPOPTA takes the discrete
functions as input and determines the optimal workload dis-
tribution. The workload distribution typically will contain
different workload sizes assigned to the abstract processors,
but they are still members of the input discrete sets. For a
given workload, the time and energy of parallel execution of
the workload is calculated as the maximum of the execution
times of the assignedworkload sizes and summation of their
respective energies. We can call them the predicted time and
energy. We confirm through exhaustive experimentation
that the real time and energy of parallel execution of the
workload do not differ significantly from the predicted time
and energy. In Section 3 of the supplemental, available
online, we experimentally show that the execution times of
problem sizes executed in parallel do not differ significantly
from those present in the discrete time functions.

7.3 Consideration of Cost of Communications

In this section, we discuss how our proposed solution
method considers the energy consumptions of the intra-
node and inter-node communications during the execution
of a data-parallel application.

The execution times and the dynamic energy consump-
tions of the intra-node communications are included in the
performance and dynamic energy models of an abstract pro-
cessor. Consider for example, the abstract processor GPU_1
in HCLServer01. For each data point in the performance and
dynamic energymodels of GPU_1, the execution time during
the execution of a workload size by GPU_1 is the total execu-
tion time that includes the transfer of data from the host core
to theGPU, kernel invocation on the accelerator, and copying
results back from the accelerator to the host core. Similarly,
the dynamic energy consumption during the execution of a
workload size by GPU_1 is the total dynamic energy con-
sumption that includes the transfer of data from the host
core to the GPU, kernel invocation on the accelerator, and
copying results back from the accelerator to the host core.
Therefore, the performance and dynamic energy models of
an abstract processor involving accelerators integrate the
data movements and take into consideration the execution
times and energy consumptions of communications between
a host core and accelerators inside a node.

HCLServer01 and HCLServer02 are connected by a Giga-
bit Ethernet network switch that consumes a constant power
of 5.6 W irrespective of the amount of data transferred

Fig. 12. Parallel and combined dynamic energy profiles for matrix multi-
plication application. Each data point shows the amount of dynamic
energy consumed for the matrix multiplication execution of a problem
sizeM �N, where M ranges from 64 to 28800 and N is 10112.

Fig. 13. Parallel and combined dynamic energy profiles for 2D-FFTappli-
cation. The application calculates the 2D-DFTof a matrix of sizeM �N,
where M ranges from 1024 to 10000 and N is 51200.

TABLE 3
Percentage Difference of Dynamic Energy Consumption

of Parallel to Combined

Platform Application Min Max Average

HCLServer01 DGEMM 0.026% 29.2% 6.38%
HCLServer02 DGEMM 0.001% 29.03% 3.8%
BOTH DGEMM 0.04% 26.1% 5.9%
HCLServer01 2D-FFT 1.8% 18.4% 9.1%
HCLServer02 2D-FFT 0.02% 28.8% 12.4%
BOTH 2D-FFT 0.16% 24.7% 8.3%
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between the two servers. The energy consumption by the net-
work due to the inter-node communications is included in the
static energy consumption of the platform. Since the contribu-
tion to the dynamic energy consumption due to the network
during the execution of an application is zero, the dynamic
energy models of the abstract processor are not affected. The
total energy models will include an additional component,
5:6� t, where t is the execution time of the data-parallel appli-
cation. This component forms a negligible portion of the total
static energy consumption of the platform.

A holistic approach to solve the bi-objective optimization
problem for performance and energy must consider the per-
formance models and energy models of both computations
and communications. Rico-Gallego, Lastovetskty, and D�ıaz-
Mart�ın [57] proposed a model-based approach where a
functional performance model for computations and a con-
tention-aware communication model are combined for per-
formance optimization of data-parallel applications on
heterogeneous clusters of nodes containing CPUs and GPU
accelerators. We plan to extend this approach to take into
account the energy of computations and communications in
our future work.

7.4 Analysis of HDePOPTA

The experimental data set for matrix multiplication is f64�
10112; 128� 10112; 196� 10112; . . . ; 57600� 10112g, and for
2D-FFT is f1024� 51200; 1040� 51200; 1056� 51200; . . . ;
20000� 51200g. We determine the minimum, average and
maximum cardinality of Pareto fronts determined by HDe-
POPTA. These values for the matrix multiplication applica-
tion are (1, 55, 96), and for the 2D-FFT application, (1, 11, 33).

We study improvements in performance and reductions
in dynamic energy consumption of optimal solutions deter-
mined by HDePOPTA in comparison with load balanced
solution. A load balanced solution (orworkload distribution)
is one with the minimum difference between the execution
times of processors. The number of active processors in a
load balanced solution may be less than the total number of
available processors. The percentage performance improve-
ment is obtained using ðtbalance � toptÞ=topt 	 100, where tbalance
represents the execution time of the load balanced solution,
and topt is the optimal execution time. The percentage
dynamic energy saving is calculated as ðebalance � eoptÞ=eopt 	
100, where ebalance represent the dynamic energy consump-
tion of load balanced solution, and eopt is optimal dynamic
energy consumption. For matrix multiplication, the average
and maximum performance improvements are 26 and 102
percent. The average and maximum energy savings are 130
and 257 percent. For 2D-FFT, the average andmaximumper-
formance improvements are 7 and 44 percent. The average
and maximum dynamic energy savings are found to be 44
and 105 percent.

We obtain to what extent performance can be improved
when the dynamic energy consumption is increased by up
to 5 percent over the optimal and to what extent dynamic
energy can be reduced with 5 percent degradation in perfor-
mance over the optimal. The percentage performance
improvement is obtained using ðteopt � teopt�1:05Þ=teopt�1:05 	
100, where teopt and teopt�1:05 are the execution time of the
energy-optimal endpoint and execution time associated
with 5 percent increase in energy consumption over the

optimal. The percentage dynamic energy saving is obtained
using ðetopt � etopt�1:05Þ=etopt�1:05 	 100, where etopt and
etopt�1:05 are the dynamic energy consumption of the perfor-
mance-optimal endpoint in the Pareto front and the
dynamic energy consumption associated with 5 percent
degradation in performance over the optimal.

The average andmaximum performance improvements for
the matrix multiplication application are 5 and 50 percent.
These values for the 2D-FFT application are 19 and 109 percent.
The average and maximum savings of dynamic energy con-
sumption for our matrix multiplication application are 18 and
116 percent, and for the 2D-FFT are 6 and 63 percent.

7.5 Analysis of HEPOPTA

We use the same experimental data sets as those employed
for analysis of HDePOPTA. First, the minimum, average,
and maximum cardinality of Pareto fronts for execution
time and total energy are determined. These values for the
matrix multiplication application are ð1; 15; 35Þ, and for the
2D-FFT application are ð1; 2; 8Þ. The cardinalities are less
than the corresponding values for the Pareto fronts for exe-
cution time and dynamic energy since the Pareto front for
execution time and total energy is a subset of Pareto front
for execution time and dynamic energy. Pareto-optimal sol-
utions for execution time and total energy for matrix multi-
plication and FFT are shown in Figs. 14 and 15. In these
figures, the blue circles above the Pareto fronts represent
the execution time and total energy consumption of load
balanced solutions. The Pareto front in Fig. 15 is virtually a
single point signifying that optimizing for performance
results in optimizing for total energy.

To study the trade-off between execution time and total
energy consumption, we calculate how much performance
can be gained in case the total energy consumption is
increased by up to 5 percent over the optimal and to what
extent dynamic energy can be reduced with 5 percent degra-
dation in performance over the optimal. The average and
maximum performance improvements for the matrix multi-
plication application are 8 and 17 percent. These values for
the 2D-FFT application are 0.7 and 9 percent. The average and
maximum savings of total energy consumption for the matrix
multiplication application are 4 and 13 percent, and for the
2D-FFT are 0.4 and 6 percent. The performance improvements
and total energy savings for the 2D-FFT application are negli-
gible (considering the accuracy ofmeasurement in our experi-
ments).We provide a discussion for this below.

To demonstrate that dynamic energy optimization does
not always result in minimizing total energy, we calculate
the percentage total energy saving over HDePOPTA solu-
tions for the data set mentioned above. Zero total energy
saving means that HEPOPTA and HDePOPTA determine
the same workload distribution. The minimum, average,
and maximum total energy savings for the matrix multipli-
cation application are 0, 11, and 37 percent. These values for
the 2D-FFT application are 0, 29, and 106 percent.

7.6 Performance, Energy, and Scalability of
HEPOPTA

The sequential algorithm HEPOPTA is executed on a single
core of a multicore CPU in our experimental testbed. For
any workload size in the experimental data sets for matrix
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multiplication and 2D-FFT applications, the algorithms
have execution times less than one second. The amount of
energy consumed by the algorithms is also negligible com-
pared to the energy consumption of the applications.

To describe the scalability of the proposed method on
large clusters, consider a cluster of h identical nodes where
each node consists of c heterogeneous processors. Since all
the nodes are identical, only c execution time functions and
c energy functions are constructed on one node. HEPOPTA
uses h copies of each of the c execution time functions and c
energy functions, that is, h� c execution time and h� c
energy functions, to determine the optimal workload distri-
butions. The time complexity of HEPOPTA will be Oðm3 �
p3 � log 2ðm� pÞÞ where p ¼ h� c and m represents the car-
dinality of the discrete functions representing the execution
time and dynamic energy. The practical time complexity is
observed to be negligible compared to the execution time of
the application. Therefore, the cost of our method is domi-
nated by the construction of the execution time and energy
functions for a single node.

To derive the time complexity of HEPOPTA, we have
only considered the memorization technique. There are two
other important optimisations, energy and size thresholds,
that have been ignored because their occurrence is a func-
tion of the shape of the input discrete functions and the
input workload size. These optimizations play an important
role leading to very less practical complexity. HEPOPTA
falls into the class of branch-and-cut algorithms. We can
think of two approaches to reduce the time complexity: (a).
Parallel branch-and-cut techniques, and (b). Hierarchical
algorithmic approaches, which can potentially reduce the

complexity to Oððm2 � hþm3 � c3Þ � log 2ðm� pÞÞ. This is
the subject of our future work.

7.7 Gene Sequencing Using Smith-Waterman
Algorithm

We use a gene sequencing application executing the Smith-
Waterman algorithm (SW) ([58], [59]) to analyse our pro-
posed algorithms. The application deals with the alignment
of DNA or protein sequences. It employs the SW algorithm,
which uses a dynamic programming (DP) approach to deter-
mine the optimal local alignment score of two sequences, a
query sequence of length m and a database sequence of
length n. The time and space complexities of the SWDP algo-
rithm are Oðm� nÞ and OðmÞ, where m < n, assuming the
use of refined linear-space methods. The speed of execution
of the application for a given workload size, ðmþ nÞ, is cal-
culated as ðm� nÞ=twhere t is the execution time. The speed
is usually measured in GCUPS, which stands for Billions of
Cell Updated per Second. A detailed description of the appli-
cation is presented in the supplemental, available online.

Three abstract processors model the application, CPU_1,
GPU_1 and PHI_1, on HCLServer01, and two abstract pro-
cessors, CPU_2 and GPU_2, on HCLServer02. The applica-
tion employs optimized SW routines provided by SWIPE
for Multicore CPUs [60], CUDASW++3.0 for Nvidia GPU
accelerators [61], and SWAPHI for Intel Xeon Phi accelera-
tors [62]. All the computations are in-card.

Figs. 16 and 17 show speed and dynamic energy func-
tions of the application executing on HCLServer01 and
HCLServer02. Workloads range from 64� 16384 to 8192�
16384 for Phi_1 abstract processor and to 19200� 16384
for the other abstract processors with the step size 64 for

Fig. 14. Pareto-optimal solutions for execution time and total energy for a
workload size 41728� 10112 determined by HEPOPTA for the matrix
multiplication application. The blue circle is the load balanced solution.

Fig. 15. Pareto-optimal solutions for execution time and total energy for a
workload size 19248� 51200 determined by HEPOPTA for the 2D-FFT
application. The blue circle is the load balanced solution.

Fig. 16. Speed functions of heterogeneous SW application executing on
HCLServer01 and HCLServer02.

Fig. 17. Dynamic energy functions of heterogeneous SW application
executing on HCLServer01 and HCLServer02.
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m. The figures contain real execution times and energy
consumptions.

The experimental data set in this case study is f64�
16384; 128� 16384; . . . ; 40000� 16384g. The minimum, aver-
age and maximum cardinality of Pareto fronts determined
by HDePOPTA are ð1; 6; 22Þ. These values for the sets
obtained by HEPOPTA are ð1; 2; 6Þ. Pareto-optimal solutions
for execution time and dynamic energy and execution time
and total energy for a workload size 29312� 16384 are
shown in Figs. 18 and 19.

For this application, the average and maximum perfor-
mance improvements over load balanced solutions are 2.5
and 13.5 percent, respectively. The average and maximum
dynamic energy saving over load balanced solutions are 64
and 507 percent. The average and maximum performance
improvements when the dynamic energy consumption is
increased by 5 percent over the optimal are 0.5 and 40 per-
cent. The average and maximum dynamic energy savings
with 5 percent degradation in performance over the optimal
are 48 and 528 percent.

The average and maximum performance improvements
when the total energy consumption is increased by 5 per-
cent over the optimal are 1.5 and 18 percent. The average
and maximum savings in total energy with 5 percent degra-
dation in performance over the optimal are 2.2 and 19 per-
cent. We also calculate the total energy saving over
HDePOPTA solutions (solutions minimising dynamic
energy consumption) to experimentally show that dynamic
energy optimization does not always result in minimizing
total energy. The minimum, average, and maximum total
energy savings over optimal solutions for dynamic energy
are 0, 10, and 53 percent.

7.8 Analysis of Pareto Fronts

In this section, we will analyse the interplay between perfor-
mance and energy (plotted on x and y axes, respectively) in
the Pareto fronts and provide guidelines to decide which
objective to optimize. Since the state-of-the-art optimization
methods are based on load balancing, we will focus on
guidelines that employ the load balancing solution as the
starting point of optimization [14]. The endpoints of a Par-
eto front represent the optimal solutions for single-objective
optimization for performance and energy. A steep slope
close to time-optimal endpoint means that allowing a small
degradation in performance can result in significant energy
savings. Similarly, a steep slope close to the energy-optimal

endpoint means that large performance improvement can
be achieved with a small increase in energy consumption. A
few other interesting guidelines follow:

Figs. 6 and 7 show that the load balanced solution lies
inside the intervals bounded by the projections of the end-
points on the x-axis and y-axis. In that case, minimizing for
one objective will result in worsening the other objective.
Fig. 14 shows that the total energy of the load balanced solu-
tion lies outside the interval bounded by the projections of
the endpoints on the y-axis. In this case, maximizing perfor-
mance will also result in a reduction in energy. Suppose the
execution time of the load balanced solution lies outside the
interval bounded by the projections of the endpoints on the
x-axis. In that case, minimizing for energy will also result in
performance improvement. If the load balanced solution
lies outside the intervals bounded by the projections of the
endpoints on the x-axis and y-axis, then minimizing for one
objective will result in improvement for the other objective.

Suppose the execution time of the load balanced solution
is much closer to projection of the energy-optimal endpoint
on the x-axis than the time-optimal endpoint. In that case, a
major reduction in energy will only result in minor perfor-
mance improvement and maximizing for performance will
lead to large increase in energy. Similarly, suppose the
energy of the load balanced solution is much closer to pro-
jection of the time-optimal endpoint on the y-axis than the
energy-optimal endpoint (Figs. 18 and 19). In that case, a
major reduction in execution time will only result in minor
reduction in energy and minimizing for energy will lead to
significant performance degradation.

7.9 Discussion

Our solution method provides good tradeoffs for perfor-
mance and total energy for the matrix multiplication and
gene sequencing applications. However, it is not the case for
the 2D-FFT application (Fig. 15), where the performance
optimal solution is also the optimal solution for total energy.
This behaviour is due to the large total static energy con-
sumption during the application execution. Our platforms,
HCLServer01, and HCLServer02, are already six and four
years old and therefore consume high static energy, and its
share in the total energy consumption is especially high for
heavily memory-bound applications such as 2D-FFT. The
tradeoffs for performance and dynamic energy, however, are
good for this application (Fig. 6). Therefore, we believe that
as the hardware platforms become more energy-efficient,

Fig. 18. Pareto-optimal solutions for execution time and dynamic energy
for a workload size 29312� 16384 determined by HDePOPTA for the
SW application. The blue circle is the load balanced solution.

Fig. 19. Pareto-optimal solutions for execution time and total energy for a
workload size 29312� 16384 determined by HEPOPTA for the SW appli-
cation. The blue circle is the load balanced solution.
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thereby consuming lower static energy, the dynamic energy
consumption will become more prominent, and our solution
method will find good tradeoffs for performance and total
energy even for heavilymemory-bound applications.

8 CONCLUSION

Performance and energy are the two most important objec-
tives for optimization on modern parallel platforms such as
supercomputers, heterogeneous HPC clusters, and cloud
computing infrastructures. We discovered in this work that
moving from single-objective optimization for performance
or energy to their bi-objective optimization on heteroge-
neous processors results in a drastic increase in the number
of optimal solutions (workload distributions) even in the
simple case of linear performance and energy profiles. Moti-
vated by this finding, we studied the full performance and
energy profiles of two data-parallel applications executed
on two connected heterogeneous hybrid nodes and found
them to be non-linear and complex. Therefore, the profiles
are challenging to approximate as analytical functions that
can be used as inputs to exact mathematical algorithms or
optimization software for determining the Pareto front.

We then proposed an efficient global optimization algo-
rithm solving the bi-objective optimization problem on het-
erogeneous HPC platforms for performance and energy.
The problem aims to optimize the parallel execution of a
given workload of n by a set of p heterogeneous processors.
It has one decision variable, the workload distribution. The
algorithm takes discrete speed and dynamic energy func-
tions with arbitrary shape and returns the Pareto-optimal
solutions (generally speaking, load imbalanced). The input
dynamic energy functions are constructed using a method-
ology which is purely based on system-level power meas-
urements using power meters and which accurately models
the energy consumption of a hybrid scientific application
executing on a heterogeneous HPC platform incorporating
different computing devices.

We experimentally analysed our solution method using
three data-parallel applications, matrix multiplication, 2D
fast Fourier transform, and gene sequencing using the
Smith-Waterman algorithm on two connected heteroge-
neous servers consisting of multicore CPUs, GPUs, and Intel
Xeon Phi. We demonstrated that the solutions provided by
our method significantly improve the performance and
reduce the energy consumption in comparison with the load
balanced configuration of the applications. We have shown
that our method determines a superior Pareto front contain-
ing all strong load imbalanced solutions that are ignored by
load balancing approaches and best load balanced solutions.
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