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Abstract. The performance of collective operations has been a critical
issue since the advent of Message Passing Interface (MPI). Many algo-
rithms have been proposed for each MPI collective operation but none of
them proved optimal in all situations. Different algorithms demonstrate
superior performance depending on the platform, the message size, the
number of processes, etc. MPI implementations perform the selection of
the collective algorithm empirically, executing a simple runtime decision
function. While efficient, this approach does not guarantee the optimal
selection. As a more accurate but equally efficient alternative, the use of
analytical performance models of collective algorithms for the selection
process was proposed and studied. Unfortunately, the previous attempts
in this direction have not been successful.

We revisit the analytical model-based approach and propose two inno-
vations that significantly improve the selective accuracy of analytical
models: (1) We derive analytical models from the code implementing the
algorithms rather than from their high-level mathematical definitions.
This results in more detailed models. (2) We estimate model parameters
separately for each collective algorithm and include the execution of this
algorithm in the corresponding communication experiment.

We experimentally demonstrate the accuracy and efficiency of our
approach using Open MPI broadcast algorithms and two different
Grid’5000 clusters.

Keywords: Message Passing · Collective communication algorithms ·
Communication performance modelling · MPI

1 Introduction

The message passing interface (MPI) [1] is the de-facto standard, which provides
a reliable and portable environment for developing high-performance parallel
applications on different platforms. The study [2] shows that collective operations
consume more than eighty percent of the total communication time of a typical
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MPI application. Therefore, a significant amount of research has been invested
into optimisation of MPI collectives. Those researches have resulted in a large
number of algorithms, each of which comes up optimal for specific message sizes,
platforms, numbers of processes, and so forth. Mainstream MPI libraries [3,4]
provide multiple collective algorithms for each collective routine.
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Fig. 1. Performance estimation of the binary and binomial tree broadcast algorithms by
the traditional analytical models in comparison with experimental curves. The exper-
iments involve ninety processes (P = 90). (a) Estimation by the existing analytical
models. (b) Experimental performance curves.

There are two ways how this selection can be made in the MPI program.
The first one, MPI T interface [1], is provided by the MPI standard and allows
the MPI programmer to select the collective algorithm explicitly from the list
of available algorithms for each collective call at run-time. It does not solve the
problem of optimal selection delegating its solution to the programmer. The
second one is transparent to the MPI programmer and provided by MPI imple-
mentations. It uses a simple decision function in each collective routine, which
is used to select the algorithm at runtime. The decision function is empirically
derived from extensive testing on the dedicated system. For example, for each
collective operation, both MPICH and Open MPI use a simple decision routine
selecting the algorithm based on the message size and number of processes [5–7].
The main advantage of this solution is its efficiency. The algorithm selection is
very fast and does not affect the performance of the program. The main dis-
advantage of the existing decision functions is that they do not guarantee the
optimal selection in all situations.

As an alternative approach, the use of analytical performance models of col-
lective algorithms for the selection process has been proposed and studied [8].
Unfortunately, the analytical performance models proposed in this work could
not reach the level of accuracy sufficient for selection of the optimal algorithm
(Fig. 1).
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In this paper, we revisit the model-based approach and propose a number of
innovations that significantly improve the selective accuracy of analytical models
to the extent that allows them to be used for accurate selection of optimal
collective algorithms.

The main contributions of this paper can be summarized as follows:

– We propose and implement a new analytical performance modelling approach
for MPI collective algorithms, which derives the models from the code imple-
menting the algorithms.

– We propose and implement a novel approach to estimation of the param-
eters of analytical performance models of MPI collective algorithms, which
estimates the parameters separately for each algorithm and includes the mod-
elled collective algorithm in the communication experiment, which is used to
estimate the model parameters.

– We experimentally validate the proposed approach to selection of optimal
collective algorithms on two different clusters of the Grid’5000 platform.

The rest of the paper is structured as follows. Section 2 reviews the exist-
ing approaches to performance modelling and algorithm selection problems.
Section 3 describes our approach to construction of analytical performance mod-
els of MPI collective algorithms by deriving them from the MPI implementation.
Section 4 presents our method to measure analytical model parameters. Section 5
presents experimental validation of the proposed approach. Section 6 concludes
the paper with a discussion of the results and an outline of the future work.

2 Related Work

In order to select the optimal algorithm for a given collective operation, we have
to be able to accurately compare the performance of the available algorithms.
Analytical performance models are one of the efficient ways to express and
compare the performance of collective algorithms. In this section, we overview
the state-of-the-art in analytical performance modelling, measurement of model
parameters and selection of the optimal collective algorithms.

2.1 Analytical Performance Models of MPI Collective Algorithms

Thakur et al. [5] propose analytical performance models of several collective
algorithms using the Hockney model [9]. Chan et al. [10] build analytical perfor-
mance models of Minimum-spanning tree algorithms and Bucket algorithms for
MPI Bcast, MPI Reduce, MPI Scatter, MPI Gather, MPI Allgather collectives
and later extend this work for multidimensional mesh architecture in [11]. Nei-
ther of the studies listed above uses the build models for selecting the optimal col-
lective algorithms. Pjevsivac-Grbovic et al. [8] study selection of optimal collec-
tive algorithms using analytical performance models for barrier, broadcast, reduce
and alltoall collective operations. The models are built up with the traditional
approach using high-level mathematical definitions of the collective algorithms.
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In order to predict the cost of a collective algorithm by analytical formula, model
parameters are measured using point-to-point communication experiments. After
experimental validation of their modelling approach, the authors conclude that
the proposed models are not accurate enough for selection of optimal algorithms.

2.2 Measurement of Model Parameters

Hockney [9] presents a measurement method to find the α and β parameters of
the Hockney model. The set of communication experiments consists of point-to-
point round-trips. Culler et al. [12] propose a method of measurement of param-
eters of the LogP model, namely, L, the upper bound on the latency, os, the
overhead of processor involving sending a message, or, the overhead of processor
involving receiving a message, and g, the gap between consecutive message trans-
mission. Kielmann et al. [13] propose a method of measurement of parameters
of the PLogP (Parametrized LogP) model. PLogP defines its model parame-
ters, except for latency L, as functions of message size. All approaches listed
above to measure model parameters are based on point-to-point communication
experiments.

From this overview, we can conclude that the state-of-the-art analytical per-
formance models are built using only high-level mathematical definition of the
algorithms, and methods for measurement of parameters of communication per-
formance models are all based on point-to-point communication experiments.
The only exception from this rule is a method for measurement of parameters
of the LMO heterogeneous communication model [14–16]. LMO is a communi-
cation model of heterogeneous clusters, and the total number of its parameters
is significantly larger than the maximum number of independent point-to-point
communication experiments that can be designed to derive a system of inde-
pendent linear equations with the model parameters as unknowns. To address
this problem and obtain the sufficient number of independent linear equations
involving model parameters, the method additionally introduces simple collec-
tive communication experiments, each using three processors and consisting of
a one-to-two communication operation (scatter) followed by a two-to-one com-
munication operation (gather). This method however is not designed to improve
the accuracy of predictive analytical models of communication algorithms.

In this work, we propose to use collective communication experiments in the
measurement method in order to improve the predictive accuracy of analytical
models of collective algorithms. A more detailed survey in analytical performance
modelling and estimation of the model parameters can be found in [17].

2.3 Selection of Collective Algorithms Using Machine Learning
Algorithms

Machine learning (ML) techniques have been also tried to solve the problem of
selection of optimal MPI algorithms.

In [18], applicability of the quadtree encoding method to this problem is stud-
ied. The goal of this work is to select the best performing algorithm and segment
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size for a particular collective on a particular platform. The experimental results
show that the decision function performs poorly on unseen data. Applicability
of the C4.5 algorithm to the MPI collective selection problem is explored in [19].
The C4.5 algorithm [20] is a decision tree classifier, which is employed to generate
a decision function, based on a detailed profiling data of MPI collectives. While
the accuracy of the decision function built by the C4.5 classification algorithm is
higher than that of the decision function built by quadtree encoding algorithm,
still, the performance penalty is higher than 50%.

Most recently Hunold et al. [21] studied the applicability of six different
ML algorithms including Random Forests, Neural Networks, Linear Regressions,
XGBoost, K-nearest Neighbor, and generalized additive models (GAM) for selec-
tion of optimal MPI collective algorithms. First, it is very expansive and difficult
to build a regression model even for a relatively small cluster. There is no clear
guidance how to do it to achieve better results. Second, even the best regression
models do not accurately predict the fastest collective algorithm in most of the
reported cases. Moreover, in many cases the selected algorithm performs worse
than the default algorithm, that is, the one selected by a simple native decision
function.

To the best of the authors’ knowledge, the works outlined in this subsection
are the only research done in MPI collective algorithm selection using ML algo-
rithms. The results show that the selection of the optimal algorithm without
any information about the semantics of the algorithm yields inaccurate results.
While the ML-based methods treat a collective algorithm as a black box, we
derive its performance model from the implementation code and estimate the
model parameters using statistical techniques. The limitations of the application
of the statistical techniques (AI/ML) to collective performance modelling and
selection problem can be found in a detailed survey [22].

3 Implementation-Derived Analytical Models of
Collective Algorithms

As stated in Sect. 1, we propose a new approach to analytical performance
modelling of collective algorithms. While the traditional approach only takes
into account high-level mathematical definitions of the algorithms, we derive
our models from their implementation. This way, our models take into account
important details of their execution having a significant impact on their per-
formance. Open MPI uses six tree-based broadcast algorithms to implement
MPI Bcast including Linear tree algorithm, Chain tree algorithm, Binary tree
algorithm, Split binary tree algorithm, K-Chain tree algorithm and Binomial
tree algorithm. Because of the limited space, we present our analytical modelling
approach by applying it to only binomial tree broadcast algorithm implemented
in Open MPI.

To model point-to-point communications, we use the Hockney model, which
estimates the time Tp2p(m) of sending a message of size m between two processes
as Tp2p(m) = α + β · m, where α and β are the latency and the reciprocal
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bandwidth respectively. For segmented collective algorithms, we assume that
m = ns ·ms, where ns and ms are the number of segments and the segment size
respectively. We assume that each algorithm involves P processes ranked from
0 to P − 1.

3.1 Binomial Tree Broadcast Algorithm

0

1

3

7

5

2

6

4

Fig. 2. Balanced binomial
tree

In Open MPI, the binomial tree broadcast algorithm
is segmentation-based and implemented as a combi-
nation of linear tree broadcast algorithms using non-
blocking send and receive operations. The height of
the binomial tree is the order of the tree, H = �log2 P �
(Fig. 2).

Figure 3 shows the stages of execution of the bino-
mial tree broadcast algorithm. Each stage consists of
parallel execution of a number of linear broadcast
algorithms using non-blocking communication. The
linear broadcast algorithms running in parallel have a
different number of children. Therefore, the execution

time of each stage will be equal to the execution time of the linear broadcast
algorithm with the maximum number of children. The execution time of the
whole binomial broadcast algorithm will be equal to the sum of the execution
times of these stages.

Fig. 3. Execution stages of the binomial tree broadcast algorithm, employing the non-
blocking linear broadcast (P = 8, ns = 3). Nodes are labelled by the process ranks.
Each arrow represents transmission of a segment. The number over the arrow gives the
index of the broadcast segment.

In the non-blocking linear broadcast algorithm, P −1 non-blocking sends will
run on the root concurrently. Therefore, the execution time of the linear broad-
cast algorithm using non-blocking point-to-point communications and buffered
mode, Tnonblock

linear bcast(P,m), can be bounded as follows:

Tp2p(m) ≤ Tnonblock
linear bcast(P,m) ≤ (P − 1) · Tp2p(m). (1)
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We will approximate Tnonblock
linear bcast(P,m) as

Tnonblock
linear bcast(P,m) = γ(P,m) · (α + m · β), (2)

where

γ(P,m) =
Tnonblock
linear bcast(P,m)

Tp2p(m)
. (3)

In Open MPI, the binomial tree broadcast algorithm employs the balanced
binomial tree virtual topology (Fig. 2). Therefore, the number of stages in the
binomial broadcast algorithm can be calculated as

Nsteps = �log2P � + ns − 1. (4)

Thus, the time to complete the binomial tree broadcast algorithm can be
estimated as follows:

Tbinomial bcast(P,m, ns) =
�log2P�+ns−1∑

i=1

max
1≤j≤min(�log2P�,ns)

Tnonblock
linear bcast(Pij ,

m

ns
), (5)

where Pij denotes the number of nodes in the j-th linear tree of the i-th stage.
Using the property of the binomial tree and Formula 2, we have

Tbinomial bcast(P,m, ns) = (ns · γ(�log2 P � + 1)

+
�log2 P�−1∑

i=1

γ(�log2 P � − i + 1) − 1) · (α +
m

ns
· β). (6)

4 Estimation of Model Parameters

4.1 Estimation of γ(P )

The model parameter γ(P ) appears in the formula estimating the execution time
of the linear tree broadcast algorithm with non-blocking communication, which
is only used for broadcasting of a segment in the tree-based segmented broad-
cast algorithms. Thus, in the context of Open MPI, the linear tree broadcast
algorithm with non-blocking communication will always broadcast a message of
size ms to a relatively small number of processes.

According to Formula 3,

γ(P ) =
Tnonblock
linear bcast(P,ms)

Tp2p(ms)
=

Tnonblock
linear bcast(P,ms)

Tnonblock
linear bcast(2,ms)

.

Therefore, in order to estimate γ(P ) for a given range of the number of processes,
P ∈ {2, ..., Pmax}, we need a method for estimation of Tnonblock

linear bcast(P,ms). We
use the following method:
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– For each 2 ≤ q ≤ Pmax, we measure on the root the execution time T1(P,N) of
N successive calls to the linear tree with non-blocking communication broad-
cast routine separated by barriers. The routine broadcasts a message of size
ms.

– We estimate Tnonblock
linear bcast(P,ms) as T2(P ) = T1(P,N)

N .

The experimentally obtained discrete function T2(P )
T2(2)

is used as a platform-
specific but algorithm-independent estimation of γ(P ).

From our experiments, we observed that the discrete estimation of γ(P ) is
near linear. Therefore, as an alternative for platforms with very large numbers
of processors, we can build by linear regression a linear approximation of the
discrete function T2(P )

T2(2)
, obtained for a representative subset of the full range of

P , and use this linear approximation as an analytical estimation of γ(P ).

(ns1 · γ(�log2 P � + 1) +
�log2 P�−1∑

i=1
γ(�log2 P � − i + 1) − 1) · (α + m1

ns1
· β) + (P − 1) · (α + mg1 · β) = T1

(ns2 · γ(�log2 P � + 1) +
�log2 P�−1∑

i=1
γ(�log2 P � − i + 1) − 1) · (α + m2

ns2
· β) + (P − 1) · (α + mg2 · β) = T2

. . .

(nsM · γ(�log2 P � + 1) +
�log2 P�−1∑

i=1
γ(�log2 P � − i + 1) − 1) · (α + mM

nsM
· β) + (P − 1) · (α + mgM · β) = TM

⇓

α + β ·
(ns1 ·γ(�log2 P�+1)+

�log2 P�−1∑
i=1

γ(�log2 P�−i+1)−1)· m1
ns1

+(P−1)·mg1

(ns1 ·γ(�log2 P�+1)+
�log2 P�−1∑

i=1
γ(�log2 P�−i+1)−1)+P−1

= T1(
(ns1 ·γ(�log2 P�+1)+

�log2 P�−1∑
i=1

γ(�log2 P�−i+1)−1)+P−1

)

α + β ·
(ns2 ·γ(�log2 P�+1)+

�log2 P�−1∑
i=1

γ(�log2 P�−i+1)−1)· m2
ns2

+(P−1)·mg2

(ns2 ·γ(�log2 P�+1)+
�log2 P�−1∑

i=1
γ(�log2 P�−i+1)−1)+P−1

= T2(
(ns2 ·γ(�log2 P�+1)+

�log2 P�−1∑
i=1

γ(�log2 P�−i+1)−1)+P−1

)

. . .

α + β ·
(nsM

·γ(�log2 P�+1)+
�log2 P�−1∑

i=1
γ(�log2 P�−i+1)−1)· mM

nsM
+(P−1)·mgM

(nsM
·γ(�log2 P�+1)+

�log2 P�−1∑
i=1

γ(�log2 P�−i+1)−1)+P−1

= TM(
(nsM

·γ(�log2 P�+1)+
�log2 P�−1∑

i=1
γ(�log2 P�−i+1)−1)+P−1

)

Fig. 4. A system of M non-linear equations with α, β, γ(�log2 P �+1) and γ(�log2 P �−
i + 1) as unknowns, derived from M communication experiments, each consisting of
the execution of the binomial tree broadcast algorithm, broadcasting a message of size
mi (i = 1, ..., M) from the root to the remaining P −1 processes, followed by the linear
gather algorithm without synchronisation, gathering messages of size mgi(mgi �= ms)
on the root. The execution times, Ti, of these experiments are measured on the root.
Given γ(�log2 P � + 1) and γ(�log2 P � − i + 1) are evaluated separately, the system
becomes a system of M linear equations with α and β as unknowns.

4.2 Estimation of Algorithm Specific α and β

To estimate the model parameters α and β for a given collective algorithm, we
design a communication experiment, which starts and finishes on the root (in
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order to accurately measure its execution time using the root clock), and involves
the execution of the modelled collective algorithm so that the total time of the
experiment would be dominated by the time of its execution.

For example, for all broadcast algorithms, the communication experiment
consists of a broadcast of a message of size m (where m is a multiple of segment
size ms), using the modelled broadcast algorithm, followed by a linear-without-
synchronisation gather algorithm, gathering messages of size mg(mg �= ms) on
the root. The execution time of this experiment on P nodes, Tbcast exp(P,m),
can be estimated as follows:

Tbcast exp(P,m) = Tbcast alg(P,m) + Tlinear gather(P,mg) (7)

The execution time of the linear-without-synchronisation gather algorithm,
gathering a message size of mg on the root from P−1 processes where mg �= ms,
is estimated as follows,

Tlinear gather(P,mg) = (P − 1) · (α + mg · β) (8)

Using Formula 6 and 8 for each combination of P and m this experiment
will yield one linear equation with α and β as unknowns. By repeating this
experiment with different p and m, we obtain a system of linear equations for α
and β. Each equation in this system can be represented in the canonical form,
α + β × mi = Ti (i = 1, ...,M). Finally, we use the least-square regression to
find α and β, giving us the best linear approximation α + β × m of the discrete
function f(mi) = Ti (i = 1, ...,M).

Figure 4 shows a system of linear equations built for the binomial tree broad-
cast algorithm for our experimental platform. To build this system, we used the
same P nodes in all experiments but varied the message size m ∈ {m1, ...,mM}
and mg ∈ {mg1 , ...,mgM }. With M different message sizes, we obtained a system
of M equations. The number of nodes, P , was approximately equal to the half of
the total number of nodes. We observed that the use of larger numbers of nodes
in the experiments will not change the estimation of α and β.

5 Experimental Results and Analysis

This section presents experimental evaluation of the proposed approach to selec-
tion of optimal collective algorithms using Open MPI broadcast operation. In all
experiments. We use the default Open MPI configuration (without any collective
optimization tuning).

5.1 Experiment Setup

For experiments, we use Open MPI 3.1 running on a dedicated Grisou and Gros
clusters of the Nancy site of the Grid‘5000 infrastructure [23]. The Grisou cluster
consists of 51 nodes each with 2 Intel Xeon E5-2630 v3 CPUs (8 cores/CPU),
128 GB RAM, 2x558 GB HDD, interconnected via 10 Gbps Ethernet. The Gros
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cluster consists of 124 nodes each with Intel Xeon Gold 5220 (18 cores/CPU),
96 GB RAM, 894 GB SSD, interconnected via 2 × 25 Gb Ethernet.

To make sure that the experimental results are reliable, we follow a detailed
methodology: 1) We make sure that the cluster is fully reserved and dedicated
to our experiments. 2) For each data point in the execution time of collective
algorithms, the sample mean is used, which is calculated by executing the appli-
cation repeatedly until the sample mean lies in the 95% confidence interval and
a precision of 0.025 (2.5%) has been achieved. We also check that the individual
observations are independent and their population follows the normal distribu-
tion. For this purpose, MPIBlib [24] is used.

In our communication experiments, MPI programs use the one-process-per-
CPU configuration, and the maximal total number of processes is equal to 90 on
Grisou and 124 on Gros clusters. The message segment size, ms, for segmented
broadcast algorithms is set to 8 KB and is the same in all experiments. This
segment size is commonly used for segmented broadcast algorithms in Open
MPI. Selection of optimal segment size is out of the scope of this paper.

5.2 Experimental Estimation of Model Parameters

First of all, we would like to stress again that we estimate model parameters for
each cluster separately.

Table 1. Estimated values
of γ(P ) on Grisou and Gros
clusters.

P γ(P )
Grisou Gros

3 1.114 1.084
4 1.219 1.17
5 1.283 1.254
6 1.451 1.339
7 1.540 1.424

Estimation of parameter γ(p) for our experi-
mental platforms follows the method presented in
Sect. 4.1. With the maximal number of processes
equal to 90 (Grisou) and 124 (Gros), the maxi-
mal number of children in the linear tree broadcast
algorithm with non-blocking communication, used
in the segmented Open MPI broadcast algorithms,
will be equal to seven. Therefore, the number of
processes in our communication experiments ranges
from 2 to 7 for both clusters. By definition, γ(2) = 1.
The estimated values of γ(p) for p from 3 to 7 are
given in Table 1.

After estimation of γ(p), we conduct communi-
cation experiments to estimate algorithm-specific values of parameters α and β
for six broadcast algorithms following the method described in Sect. 4.2. In these
experiments we use 40 processes on Grisou and 124 on Gros. The message size,
m, varies in the range from 8 KB to 4 MB in the broadcast experiments. We
use 10 different sizes for broadcast algorithms, {mi}10i=1, separated by a constant
step in the logarithmic scale, log mi−1− log mi = const. Thus, for each collective
algorithm, we obtain a system of 10 linear equations with α and β as unknowns.
We use the Huber regressor [25] to find their values from the system.

The values of parameters α and β obtained this way can be found in Table 2.
We can see that the values of α and β do vary depending on the collective algo-
rithm, and the difference is more significant between algorithms implementing
different collective operations. The results support our original hypothesis that
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the average execution time of a point-to-point communication will very much
depend on the context of the use of the point-to-point communications in the
algorithm. Therefore, the estimated values of the α and β capture more than just
sheer network characteristics. One interesting example is the Split-binary tree
and Binary tree broadcast algorithms. They both use the same virtual topology,
but the estimated time of a point-to-point communication, α+β ×m, is smaller
in the context of the Split-binary one. This can be explained by a higher level
of parallelism of the Split-binary algorithm, where a significant part of point-to-
point communications is performed in parallel by a large number of independent
pairs of processes from the left and right subtrees.

Table 2. Estimated values of α and β for the Grisou and Gros clusters and Open MPI
broadcast algorithms.

Collective algorithm α(sec) β ( sec
byte

)

Broadcast

Linear tree 2.2 × 10−12 1.8 × 10−8

K-Chain tree 5.7 × 10−13 4.7 × 10−9

Chain tree 6.1 × 10−13 4.9 × 10−9

Split-binary tree 3.7 × 10−13 3.6 × 10−9

Binary tree 5.8 × 10−13 4.7 × 10−9

Binomial tree 5.8 × 10−13 4.8 × 10−9

Collective algorithm α(sec) β ( sec
byte

)

Broadcast

Linear tree 1.4 × 10−12 1.1 × 10−8

K-Chain tree 5.4 × 10−13 4.5 × 10−9

Chain tree 4.7 × 10−12 3.8 × 10−8

Split-binary tree 5.5 × 10−13 4.5 × 10−9

Binary tree 5.8 × 10−13 4.7 × 10−9

Binomial tree 1.2 × 10−13 1.0 × 10−9

5.3 Accuracy of Selection of Optimal Collective Algorithms Using
the Constructed Analytical Performance Models

The constructed analytical performance models of the Open MPI broadcast col-
lective algorithms are designed for the use in the MPI Bcast routines for runtime
selection of the optimal algorithm, depending on the number of processes and
the message size. While the efficiency of the selection procedure is evident from
the low complexity of the analytical formulas derived in Sect. 3, the experimental
results on the accuracy are presented in this section.

Figure 5 shows the results of our experiments for MPI Bcast. We present
results of experiments with 50, 80 and 90 processes on Grisou, and 80, 100
and 124 on Gros. The message size, m, varies in the range from 8 KB to
4 MB in the broadcast experiments. We use 10 different sizes for broadcast
algorithms, {mi}10i=1, separated by a constant step in the logarithmic scale,
log mi−1 − log mi = const. The graphs show the execution time of the collective
operation as a function of message size. Each data point on a blue line shows the
performance of the algorithm selected by the Open MPI decision function for the
given operation, number of processes and message size. Each point on a red line
shows the performance of the algorithm selected by our decision function, which
uses the constructed analytical models. Each point on a green line shows the
performance of the best Open MPI algorithm for the given collective operation,
number of processes and message size.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of the selection accuracy of the Open MPI decision function and
the proposed model-based method for MPI Bcast. (a–c) and (d–f) present performance
of collectives on Grisou and Gros clusters respectively.

Table 3. Comparison of the model-based and Open MPI selections with the best
performing MPI Bcast algorithm. For each selected algorithm, its performance degra-
dation against the optimal one is given in braces.

P=90, MPI Bcast, Grisou

m (KB) Best Model-based (%) Open MPI (%)

8 binomial binary (3) split binary (160)

16 binary binary (0) split binary (1)

32 binary binary (0) split binary (0)

64 split binary binary (1) split binary (0)

128 binary binary (0) split binary (1)

256 split binary binary (2) split binary (0)

512 split binary binary (2) chain (111)

1024 split binary binary (3) chain (88)

2048 split binary binary (2) chain (55)

4096 split binary binary (1) chain (20)

P=100, MPI Bcast, Gros

m (KB) Best Model-based (%) Open MPI (%)

8 binary binomial (3) split binary (549)

16 binomial binomial (0) split binary (32)

32 binomial binomial (0) split binary (3)

64 split binary binomial (8) split binary (0)

128 split binary binomial (8) split binary (0)

256 binary binary (0) split binary (6)

512 binary binary (0) chain (7297)

1024 split binary binary (7) chain (6094)

2048 split binary binary (4) chain (3227)

4096 split binary binary (9) chain (2568)

Table 3 presents selections made for MPI Bcast using the proposed model-
based runtime procedure and the Open MPI decision function. For each message
size m, the best performing algorithm, the model-based selected algorithm, and
the Open MPI selected algorithm are given. For the latter two, the performance
degradation in percents in comparison with the best performing algorithm is
also given. We can see that for the Grisou cluster, the model-based selection
either pick the best performing algorithm, or the algorithm, the performance of
which deviates from the best no more than 3%. Given the accuracy of measure-
ments, this means that the model-based selection is practically always optimal
as the performance of the selected algorithm is indistinguishable from the best
performance. The Open MPI selection is near optimal in 50% cases and causes
significant, up to 160%, degradation in the remaining cases. For the Gros clus-
ter, the model-based selection picks either the best performing algorithm or the
algorithm with near optimal performance, no worse than 10% in comparison
with the best performing algorithm. At the same time, while near optimal in
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40% cases, the algorithms selected by the Open MPI demonstrate catastrophic
degradation (up to 7297%) in 50% cases.

The Open MPI decision functions select the algorithm depending on the
message size and the number of processes. For example, the Open MPI broadcast
decision function selects the chain broadcast algorithm for large message sizes.
However, from Table 3 it is evident that chain broadcast algorithm is not the best
performing algorithm for large message sizes on both clusters. From the same
table, one can see that the model-based selection procedure accurately picks
the best performing binomial tree broadcast algorithm for 16 KB and 32 KB
message sizes on the Gros cluster, where Open MPI only selects the binomial
tree algorithm for broadcasting messages smaller than 2 KB.

6 Conclusions

In this paper, we proposed a novel model-based approach to automatic selec-
tion of optimal algorithms for MPI collective operations, which proved to be
both efficient and accurate. The novelty of the approach is two-fold. First, we
proposed to derive analytical models of collective algorithms from the code of
their implementation rather than from high-level mathematical definitions. Sec-
ond, we proposed to estimate model parameters separately for each algorithm,
using a communication experiment, where the execution of the algorithm itself
dominates the execution time of the experiment.

We also developed this approach into a detailed method and applied it to
Open MPI 3.1 and its MPI Bcast. We experimentally validated this method
on two different clusters and demonstrated its accuracy and efficiency. These
results suggest that the proposed approach, based on analytical performance
modelling of collective algorithms, can be successful in the solution of the prob-
lem of accurate and efficient runtime selection of optimal algorithms for MPI
collective operations.
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