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Abstract

The message passing interface (MPI) is the de facto standard in

distributed-memory parallel programming. MPI collective operations provide

optimized solutions to realize communication among groups of processes.

The performance of collective operations has been a critical issue since the

advent of MPI. Many algorithms have been proposed for each MPI collective

operation but none of them proved optimal in all situations. Different

algorithms demonstrate superior performance depending on the platform, the

message size, the number of processes, etc. MPI implementations perform

the selection of the collective algorithm empirically, executing a simple

runtime decision function. Compiled decision function selects the same

algorithm on all platforms for given parameters such as message size,

number of processes and so forth. Therefore, while efficient, this approach

does not guarantee the optimal selection. As a more accurate but equally

efficient alternative, the use of analytical performance models of collective

algorithms for the selection process was proposed and studied.

Unfortunately, the previous attempts in this direction have not been

successful.

In this thesis, we revisit the analytical model-based approach and propose

two innovations that significantly improve the selective accuracy of analytical

models: (a) We derive analytical models from the code implementing the
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algorithms rather than from their high-level mathematical definitions. This

results in more detailed models. (b) We estimate model parameters

separately for each collective algorithm and include the execution of this

algorithm in the corresponding communication experiment. Our approach

takes the following steps to select the optimal collective algorithm: (1) We

build analytical performance models for each collective algorithm taking into

account implementation and platform details. (2) We execute each collective

algorithm on the platform of interest and collect performance information. (3)

We build a system of linear equations with unknown model parameters for

each algorithm using collected performance information and built models. (4)

We find the algorithm-specific values of the model parameters from the

system of linear equations using linear regression. (5) We select the optimal

collective algorithm at runtime by comparing the performance of algorithms

using the built models and estimated model parameters.

The thesis presents a theoretical and experimental study of model-based

selection. We present the proposed approach using broadcast and gather

algorithms implemented in Open MPI 3.1. The models of the algorithms are

built using the Hockney and τ -Lop communication performance models. We

implement and experimentally validate our approach on three different

platforms of multi-core processors, Grid5000, MareNostrum4, and Shaheen

II. We have implemented a software tool supporting all five steps of the

proposed method of selection of the optimal collective algorithms at runtime -

collection of the performance information of the algorithms, estimation of the

model parameters, and selection of the optimal algorithms at runtime.
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Chapter 1

Introduction

High-performance computing (HPC) is focused on aggregating computing

power to deliver much higher performance than a general-purpose computer.

HPC offers standards, techniques and tools to process data on large-scale

systems and applications. Due to the large amount of data generated by the

industry in recent years, HPC becomes essential for many different areas

such as media, entertainment, finance, healthcare and so forth. With

increasing the complexity of problems to be solved, the scale of the

supercomputers and clusters are becoming larger. Increasing computing

power on multi-core clusters, high bandwidth memory/IO, forces the HPC

community to develop new algorithms and techniques to improve the

performance of parallel applications and runtime systems.

The TOP500 project [1] was started in 1993 to provide ranks and details

of the 500 most powerful supercomputers in the world. Based on the latest

TOP500 list for 2020, the Japanese Fugaku [2] is the world’s most powerful

supercomputer. We see the remarkable growth in power and scale of

supercomputers in the last 10 years. While as of November 2010 the

entry-level into the TOP50 is at 126.5 Tflop/s, the entry-level into the TOP50

moves up to 1.32 petaflops in June 2020 rankings. Besides that, we can

easily see how the scale of supercomputers changes over the years.

Compared to the November 2010 statistics [3] where the number one

supercomputer Tianhe-1 [4] was powered by 71,680 CPU cores, the number
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one supercomputer FUGAKU in November 2020 was powered by 7,630,848

CPU cores. Mostly, the supercomputers in the TOP 500 list provides MPI

library implemented by a supplier which is based on some mainstream

open-source MPI implementation such as MPICH [5] or Open MPI [6, 7].

Developing high-performance applications for such types of parallel

platforms as supercomputers and clusters is a challenging task. Main

challenges come from the use of different network technologies and system

memories in parallel systems each of which requires different

approaches/technologies to have high-level parallelism in the application. I/O

management on large scale systems for data-intensive scientific applications

requires a special HPC I/O model to design optimal distributed-memory

applications.

The message passing interface (MPI) [8] is the de-facto standard, which

provides a reliable and portable environment for developing high-performance

parallel applications on different platforms. MPI offers portable and scalable

performance on HPC platforms. Therefore, it has been dominantly used since

its invention in HPC applications. MPI proposes an execution model based on

processes deployed on the hardware resources of the HPC platform and

communicating using message passing primitives. MPI standard offers

point-to-point and collective communication. Both types of communication

are defined with different semantics, including non-blocking, buffered and

persistent communication.

Collective routines in MPI involve a group of processes communicating in

an isolated context, and those collectives rely on the semantics of collective

operations such as broadcast, gather, reduce and so forth. A profiling study

[9] reports that in average 80% of the total execution time of MPI applications

is consumed by MPI collective operations. That is why significant research

efforts have been invested in the design and implementation of efficient

collective algorithms aimed to improve the performance of collective

operations [10, 11, 12, 13, 14, 15, 16, 17, 18]. For example, MPICH [5, 19]

employs three broadcast algorithms to implement MPI_Bcast. Open MPI 3.1

[6] employs six different algorithms to implement MPI_Bcast and five

algorithms to implement MPI_Allreduce. On a given platform, different
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algorithms will be optimal depending on many factors including the physical

topology of the network, number of processes, message sizes and so forth.

Unfortunately, there is no single collective algorithm optimal in all situations.

Thus, there is a problem of selection of the optimal algorithm for each call of a

collective routine, which normally depends on the platform, the number of

processes, the message size and so forth.

The problem of selection of the optimal collective algorithm worsens for

modern clusters, which are built up with multi-core CPUs with high-bandwidth

memory I/O subsystems, connected by high performance networks. In those

widespread architectures, processes deployed in the platform communicate

using those uneven communication channels depending on their location. As

a consequence, that scenario complicates the search for the more efficient

collective algorithm given a mapping of processes to resources.

MPI Tools Information Interface (MPI_T) [8] is provided by the MPI

standard and allows the MPI programmer to control internal variables of MPI

implementations. For example, the MPI programmer can select the collective

algorithm explicitly from the list of available algorithms for each collective call

at runtime. However, it does not solve the problem of optimal selection

delegating its solution to the programmer. Thus, finding the optimal algorithm

is left to the MPI programmer.

MPI libraries provide modules and components allowing the MPI

programmers to take advantage of multi-core CPUs and communication

channels characteristics. For example, Open MPI offers a library

communication component [20, 21], which employs a Linux utility KNEM [22]

to enable direct inter-process memory copy. Remote direct memory access

[23, 24, 25] through a network (e.g. Infiniband) is supported on some network

software components. Such components reduce the time to transmit a

message between two processes and this way contribute in acceleration of all

collective algorithms. However, they do not solve the problem of selection

between different collective algorithms implementing the same collective

operation.

Several approaches to the selection of optimal MPI collective algorithms

have been proposed and validated. The existing approaches to the selection

3



1.1. ALGORITHM SELECTION OF MPI COLLECTIVES USING
EMPIRICALLY DERIVED DECISION FUNCTIONS

of optimal MPI collective algorithms can be classified into three main

categories: (1) Empirically Derived Decision Function; (2) Analytical

Performance Modelling; (3) Machine Learning Algorithms. We overview

the three categories of approaches in the below sections.

1.1 Algorithm Selection of MPI Collectives using

Empirically Derived Decision Functions

The use of empirically derived decision functions is the only approach for

algorithm selection in mainstream MPI implementations. The main idea of the

approach is based on extracting conditions for the selection from the

performance data of the collective algorithms on a particular platform

depending on the message size and the number of processes. For example,

Listing 1.1 shows the Open MPI decision function for MPI_Bcast. The Open

MPI decision function selects the broadcast algorithm based on the message

size and number of processes. The shortcoming of this approach is that the

conditions are extracted on a particular platform. It means the function built

using this approach will be platform-specific.

Open MPI decision functions [26] are built on a cluster of AMD64

processors communicating across a Gigabit Ethernet Interconnect. An

exhaustive benchmarking technique was used on the given platform to

extract the rules to build the function in order to select the algorithm. The

same approach is used for the MPICH decision functions. Decision functions

in the MPICH implementation [27] are built using experimental performance

data of the collective algorithms obtained on the Cray T3E 900 platform. Like

Open MPI, the MPICH decision functions select the algorithm depending on

the message size and number of processes. As we can see, both

implementations use the performance of collective algorithms on a particular

platform.
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1.1. ALGORITHM SELECTION OF MPI COLLECTIVES USING
EMPIRICALLY DERIVED DECISION FUNCTIONS

int bcast_intra_dec_fixed( void *buff,int count,

MPI_Datatype *datatype, int root,MPI_comm *comm) {

const size_t small_message_size = 2048;

const size_t intermediate_message_size = 370728;

const double a_p16 = 3.2118e-6;

const double b_p16 = 8.7936;

const double a_p64 = 2.3679e-6;

const double b_p64 = 1.1787;

const double a_p128 = 1.6134e-6;

const double b_p128 = 2.1102;

int communicator_size;

size_t message_size, dsize;

communicator_size = MPI_comm_size(comm);

MPI_Type_size(datatype, &dsize);

message_size = dsize * (unsigned long)count;

if ((message_size < small_message_size) || (count <= 1)){

return binomial_tree_bcast(. . .);

} else if (message_size < intermediate_message_size){

return split_binary_tree_bcast(. . .);

} else if (communicator_size < (a_p128 * message_size + b_p128)){

return chain_bcast(. . . );

} else if (communicator_size < 13) {

return split_binary_tree_bcast(. . .);

} else if (communicator_size < (a_p64 * message_size + b_p64)){

return chain_bcast(. . .);

} else if (communicator_size < (a_p16 * message_size + b_p16)){

return chain_bcast(. . .);

}

return chain_bcast(. . .);

}

Listing 1.1: Open MPI decision function for MPI_Bcast.
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The main advantage of this solution is its efficiency. The algorithm

selection is very fast and does not affect the performance of the application.

However, the MPI programmer has no control over the conditions built in the

decision function. The main disadvantage of the existing decision functions is

that they do not guarantee the optimal selection in all situations. On a

particular platform, one subset of the implemented algorithms may always

outperform the rest of the algorithms. Therefore, the decision functions

constructed on a particular platform will only use that subset of the

implemented algorithms. For example, due to better performance of the

binary tree, split-binary tree and chain tree broadcast algorithms on the

platform used for construction of its decision functions, the Open MPI 3.1

broadcast decision function does not use three out of six implemented

broadcast algorithms, namely,the k-chain tree, binomial tree and linear tree

broadcast algorithms.

1.2 Algorithm Selection of MPI Collectives using

Analytical Performance Models

Analytical performance models offer us a low-cost efficient way to estimate

the performance of collective algorithms. As an alternative approach, the use

of analytical performance models of collective algorithms for the selection

process has been proposed and studied. In the case of success, the

analytical performance modelling approach, being as efficient as the existing

decision functions approach, would guarantee the optimal selection in all

situations.

Pjesivac-Grbovic et al. [28] first proposed algorithm selection of MPI

collectives using analytical performance models. In this work, several

communication performance models, such as Hockney [29], LogP [30],

LogGP [31], PLogP [32], are used to build analytical performance models of

collective algorithms. The performance models are built using the high-level

definition of collective algorithms. The analytical performance models are

then used in decision functions for selection of the optimal algorithm.
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Figure 1.1: Performance estimation of the binary and binomial tree broadcast
algorithms by the traditional analytical models in comparison with experimental
curves. The experiments involve ninety processes (P=90). (a) Estimation by
the existing analytical models. (b) Experimental performance curves.

Unfortunately, the analytical performance models proposed in this work could

not reach the level of accuracy sufficient for selection of the optimal algorithm.

Figure 1.1 shows the performance of the binary tree and binomial tree

broadcast algorithms using: a) the estimation by the existing analytical

models; b) the experimental results on the Grisou cluster of the Grid’5000

platform. It is evident that the existing models wrongly predict performance of

collective algorithms.

1.3 Algorithm Selection of MPI Collectives using

Machine Learning Techniques

Machine learning (ML) techniques as an alternative solution have also been

tried to solve the problem of selection of optimal MPI algorithms. Supervised

learning methods such as regression/classification trees (C4.5, SLIQ,

SPRINT) [33], support vector machines [34], neural networks [35], are used

to model the performance of collective algorithms.

Application of the quadtree encoding method [36] to the selection problem

shows that the collection of detailed profiling data of collectives for all
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message sizes and communication sizes is a very expensive procedure.

Besides that, the constructed decision functions perform poorly on unseen

data. Most recently Hunold et al. [37] studied the applicability of six different

ML algorithms for selection of optimal MPI collective algorithms. The results

show that the selection of the optimal algorithm without any information about

the semantics of the algorithm yields inaccurate results. The main limitations

of ML algorithms used as a solution to the selection problem are listed below.

• Biased performance data - A robust training set is crucial to the

success of ML algorithms. The model built using biased performance

data of the collective algorithms can overfit. Thus, it makes the model

less usable for unseen data.

• Training time - Artificial Neural Network (ANN) takes very long training

time to effectively train a model with traditional back propagation

optimization techniques.

• Runtime overhead - Searching multidimensional data for optimal

decision using regression tree predictors requires several iterations at

application runtime for convergence. This technique at runtime can be

a source of significant overhead.

• Classification difficulty - Large number of parameters ranging from

algorithm index, segment size, mpi_affinity_alone, eager threshold, etc

, can become increasingly hard problem to classify due to the explosion

in connections to each of the output layers of an ANN.

• Weak learner - Decision trees tightly fit the given training data.

Therefore, they are considered weak learners. Thus, the decision

function built for a particular platform to select the optimal collective

algorithm will perform poorly on unseen data.

1.4 Contributions

In this thesis, we revisit the model-based approach and propose a number

of innovations that significantly improve the selective accuracy of analytical

8
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models to the extent that allows them to be used for accurate selection of

optimal collective algorithms. Our analytical modelling approach is based on

the following innovations:

1. While previous attempts to build analytical performance models of

collective algorithms only take into account their high-level

mathematical definition, we derive our analytical models from the code

implementing the algorithms. This results in much more detailed

models, which are able to correctly compare the performance of

different algorithms implementing the same collective operation.

2. We propose to estimate the model parameters separately for each

collective algorithm and carefully design the communication

experiments for their estimation.

More specifically, we design a specific communication experiment for

each collective algorithm, so that the algorithm itself would be involved

in the execution of the experiment. Moreover, the execution time of this

experiment must be dominated by the execution time of this collective

algorithm. Then, we conduct a number of experiments on the target

platform for a range of numbers of processors and message sizes and

accurately measure their execution times. From these experiments, we

derive a sufficiently large number of equations with the model

parameters as unknowns. Finally, we use a solver to find the values of

the model parameters.

We applied our approach to collective algorithms implemented in Open

MPI. As a result, we managed to build a detailed analytical performance model

for each collective algorithm and successfully use the models for selection

of the optimal one. The accuracy of our solution has been validated on the

Grid’5000 [38], MareNostrum4 [39] and Shaheen II [40] platforms.

The main contributions of this thesis can be summarized as follows:

• We propose and implement a new analytical performance modelling

approach for MPI collective algorithms, which derives the models from

the code implementing the algorithms.
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• We propose and implement a novel approach to estimation of the

parameters of analytical performance models of MPI collective

algorithms, which estimates the parameters separately for each

algorithm and includes the modelled collective algorithm in the

communication experiment, which is used to estimate the model

parameters.

• We experimentally validate the proposed approach to selection of

optimal collective algorithms on two different clusters of the Grid’5000

platform.

1.5 Thesis Structure

The content of the thesis is organized as follows. Chapter 2 provides relevant

information about the MPI standard and collective operations. Chapter 3

reviews the existing approaches to performance modelling, measurement of

the model parameters, and algorithm selection problems. Chapter 4

introduces MPI collective algorithms implemented in Open MPI and describes

our approach to construction of analytical performance models of MPI

collective algorithms by deriving them from the MPI implementation. Chapter

5 presents our method to measure analytical model parameters. Chapter 6

presents experimental validation of the proposed approach. Chapter 7

concludes the thesis with a discussion of the results and an outline of the

future work.
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Chapter 2

Message Passing Interface

2.1 MPI Standard

The first version of MPI standard (MPI-1.0) was released in 1994 after

collaboration of over forty organizations from academia and industry. The

goal was to generate a standard which enables programmers to build

portable, scalable and effective distributed memory applications. Due to the

large scale collaboration, the first version of the standard delivered many

essential features and specifications including point-to-point communication,

collective operations, communication contexts (communicators), process

topologies, bindings for FORTRAN 77 and C, and so forth. Therefore, starting

from the first version the MPI became the de facto standard for distributed

memory applications. Since 1994 several versions of MPI standard were

delivered each of which was released with error corrections, new definitions,

new routines and so forth. The latest version of the standard for today (MPI

3.1) was released in 2015.

MPI-2.0 [41] was approved in 1997. MPI-2.0 has been extended to the

standard adding one-sided communications, extended collective

communications, external interfaces and parallel I/O. Bindings for C++ have

been added in MPI-2.0 as well.

MPI-3.0 was released on September 21, 2012. Collective operations

introduced in MPI-1.0 are blocking collective operations. It means the
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collective operations cannot take advantage of overlapping communication

and computation. Thus, non-blocking collective operations were introduced in

MPI-3.0 [42] for better performance. Non-blocking collectives return

immediately to the running code and enable the user to utilise the CPU even

during ongoing message transmissions.

MPI Tools Information Interface (MPI_T) was introduced in the 3.0 version

of MPI in order to have control over internal environmental variables of MPI

tools. The interface provides mechanisms for MPI implementers to expose

internal variables. For example, we can set new broadcast algorithm for

MPI_Bcast at runtime using MPI_T_cvar_write() function and

coll_tuned_bcast_algorithm variable in Open MPI. MPI_T only defines

standard specifications for API’s, but the naming of variables is left to

implementers.

We overview two types of MPI communications, point-to-point and

collective, below in Section 2.2 and 2.3.

2.2 Point-to-Point Communication

A point-to-point communication is the basic mechanism in MPI designed to

transmit a message between two processes. Two processes exchange a

message using send and receive operations in context of point-to-point

communication. In order to implement reliable communication between

sender and receiver, four communication modes are defined in MPI:

standard, buffered, synchronous and ready. The semantics of each

communication mode has been provided in the MPI standard.

MPI provides blocking and non-blocking routines for send and receive

operations. The definition of blocking send and receive operations are given

below.

• Blocking send

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)
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The process calling MPI_Send sends count amount of message from

buf to the receiver which is defined as dest in the routine. The routine

blocks the process until the send operation is finished

• Blocking receive

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Status *status)

The process calling MPI_Recv receives count amount of message from

sender which is defined as source in the routine. The routine blocks the

process until buff contains the received message.

The definition of non-blocking send and receive operations are given below.

• Non-blocking send

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request *request)

The process calling MPI_Isend initialises the send operation but does

not complete it. The separate call can be called to check whether the

send operation is completed or not.

• Non-blocking receive

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request *request)

The process calling MPI_Irecv initializes receive operation. The

separate call can be called to check whether the receive operation is

completed or not.
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2.3 MPI Collective Operations

Unlike point-to-point communication where the communication is established

between two processes, collective operations are designed as communication

involves a group of processes to transmit a message. The key concept in

MPI collectives is the communicator which defines a group of processes and

provides the context for the operation. The definition of "MPI process" is up to

the implementation which can be different from the operating system process.

Most of the MPI collective operations defined in MPI-3.0 are listed below.

• Barrier

int MPI_Barrier(MPI_Comm comm)

The routine blocks the caller until all processes in the given

communicator have called it. In other words, the function is used for

synchronization purposes between MPI processes in the given

communicator.

• Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

Root process broadcasts a message to all processes in the given

communicator, itself included.

• Gather(v)

int MPI_Gather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

The routine gathers constant size of sendbuf of each process in the

given communicator into root including root itself.
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int MPI_Gatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int displs[],

MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Gatherv allows root to receive a varying count of data from each

process. This is done by providing the new argument, displs.

• Scatter(v)

int MPI_Scatter(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

MPI_Scatter is very similar to MPI_Bcast and inverse operation to

MPI_Gather. The message is split into n equal chunks at root and

chunks of an array are sent to processes in a given communicator.

int MPI_Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], MPI_Datatype sendtype,

void* recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

The routine sends the varying counts of elements to each process by

providing new arguments, sendcounts and displs.

• Reduce

int MPI_Reduce(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm)

MPI_Reduce combines the elements provided in the input buffer of each

process in the given communicator using the operation op. Predefined

or user-defined operation can be used in MPI_Reduce. The value of

output is a single n-element vector owned by root.
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• Allreduce

int MPI_Allreduce(const void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)

MPI_Allreduce is very similar to MPI_Reduce. The difference is that all

processes receive the same copy of the result vector in case of

MPI_Allreduce.

• Allgather(v)

int MPI_Allgather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

MPI_Allgather collects sendbuf from all processes in a given

communicator and stores the data collected in the recvbuf of each

process.

int MPI_Allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int displs[],

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allgatherv can be thought of as MPI_Gatherv, but where all

processes receive the result, instead of just the root.

• Alltoall(v)

int MPI_Alltoall(const void *sendbuf, int sendcount,

MPI_Datatype sendtype,void *recvbuf,

int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

MPI_Alltoall performs like MPI_Allgather where each process sends

distinct data to each of the receivers.The j-th block sent from process i
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is received by process j and is placed in the i-th block of recvbuf. The

amount of data sent must be equal to the amount of data received.

int MPI_Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype,

void* recvbuf, const int recvcounts[],

const int rdispls[], MPI_Datatype recvtype,

MPI_Comm comm)

MPI_Alltoallv is the flexible version of MPI_Alltoall. The flexibility is

provided by new arguments, sdispls and rdispls. Sdispls and rdispls

arguments specify the location of data for the send and data on the

receive respectively.

• Reduce-Scatter(block)

int MPI_Reduce_scatter(const void* sendbuf, void* recvbuf,

int* counts, MPI_Datatype datatype,

MPI_Op operation, MPI_Comm communicator)

As the name implies, the routine first performs a global element-wise

reduction of the vector then the result is scattered to the processes of

the group.

int MPI_Reduce_scatter_block(const void* sendbuf, void* recvbuf,

int recvcount, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)

The routine is equivalent to an MPI_Reduce with count equal to

recvcount*n, followed by an MPI_Scatter operation with sendcount

equal to recvcount.

• Scan

int MPI_Scan(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)
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MPI_Scan performs a prefix reduction across all processes in the given

communicator.

• Exscan

int MPI_Exscan(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)

Like MPI_Scan, MPI_Exscan performs a prefix reduction across all MPI

processes in the given communicator but excludes the calling MPI

process.

All collection operations listed above are blocking collective

communications. Non-blocking collective operations are out of scope in this

work.

2.4 MPI implementations

2.4.1 Open MPI

Open MPI [6, 7] is an open source high-performance MPI implementation.

While the Open MPI project started as a collaborative effort of four different

MPI implementation teams: FT-MPI [43], LA-MPI [44], LAM/MPI [45], and

PACX-MPI [46], currently, the project has 57 contributors which consist of 16

individuals and 41 organizations.

Open MPI is implemented using a Modular Component Architecture

(MCA) [47]. It is composed of three main components: the MPI layer (OMPI),

the runtime environment (ORTE), and the portability layer (OPAL). The OMPI

layer is designed to provide MPI API semantics such as point-to-point

communication, collective algorithms, memory allocation so forth. The ORTE

frameworks provide resource manager, error manager, RTE message layer,

I/O forwarding and so forth. The last component, OPAL, provides many useful

functions such as debugging call stack backtrace support, checkpoint and

restart service, runtime memory checking, processor affinity and so forth.
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MCA provides internal parameters to the MPI programmers to configure

components and frameworks.

The framework called COLL in OpenMPI implements collective

communication routines. The decision functions to select collective

algorithms are implemented in this framework. As we presented in Chapter 1,

Open MPI uses Empirically Derived Decision Functions. In this thesis, we use

Open MPI 3.1 [48] to validate our approach.

Open MPI is one of the main-stream MPI implementations used in HPC.

Many supercomputers and clusters are shipped with Open MPI. For example,

SUMMIT [49] and SIERRA [50] supercomputers developed by IBM are

shipped with IBM® Spectrum MPI [51], the high-performance MPI

implementation based on the Open MPI.

2.4.2 MPICH

MPICH [5] is a high performance and portable implementation of the MPI

standard. Version 3.4.1 [19] is the new stable version of MPICH.

For each collective operation one or more collective algorithms are

implemented in MPICH. The popular algorithmic patterns, such as Linear

tree, Bruck, Recursive doubling, Binomial tree, Ring, are used in

implementation of various collectives, such as Allgahter, Alltoall, Allreduce

and so forth [9, 27]. Several HPC vendors such as Intel [52], HP(Cray) [53]

and Microsoft [54] implemented their own MPI library based on MPICH

specification.

2.5 Alternatives To MPI

2.5.1 Partitioned Global Address Space

A partitioned global address space (PGAS) is a parallel programming model

where a number of parallel processes execute an algorithm by

communicating with one another via the global memory space that is

conceptually partitioned among all processes. Starting from the late 1990s,
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dozen PGAS languages have been designed and implemented. We overview

several well-known PGAS languages below.

Co-Array Fortran (CAF) [55] emerged in 1998 and it is one of the earliest

PGAS languages. When CAF was designed the main idea was to create a

parallel programming language which allows converting Fortran 95 code into

robust parallel code with small changes. The main idea of the language is

that the cost of accessing remote data should be manageable. The WG5

committee [56] decided to include co-arrays in the next Fortran Standard in

May 2005 [57].

Unified Parallel C (UPC) [58] is an extension of ISO C 99 based on PGAS

with a number of extensions such as parallel execution model, communication

and synchronization routines, shared address space support. Any C program

implemented based on ISO C 99 is also a UPC program. UPC provides private

and shared variables where the last one is achieved by extending C arrays and

pointers. Many parallel applications are implemented using UPC to benefit

from fast one-sided communication and avoid communication [59, 60, 61].

X10 [62] is a modern object-oriented programming PGAS language

developed at IBM. Due to widespread adoption of the Java language, X10

developers have decided to use the Java programming language as the

foundation. The language supports both task and data parallelism. Unlike

other PGAS languages such as Unified Parallel C (UPC), X10 offers a

uniform way to access shared memory. The library [63] provides large-scale

graph analysis algorithms and efficient distributed computing framework

using X10.

Chapel [64] is a parallel programming language developed for productive

parallel computing on large-scale systems by Cray. The three concepts

implemented in Chapel such as (1) the global view of computation; (2) the

support for both task and data-driven parallelism; (3) the separation of

algorithm and data structure, made it one of the powerful PGAS languages.

Chapel was designed from scratch as an object-oriented language. The main

advantage is the usability of the language. Learning the Chapel language is

very easy for programmers of Python, Java and C++. Chapel has been

implemented using GASNet [65] framework, the language and network
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independent high-performance communication framework implemented by

Lawrence Berkeley National Laboratory.

2.5.2 PVM

The Parallel Virtual Machine (PVM) [66] uses the message-passing

techniques to allow users to exploit distributed computing across a network.

As the name implies, the main idea of PVM is to abstract a collection of

computers as a single virtual machine which comes with easy to use APIs.

The parallel PVM tasks are dynamic and asynchronous. It means they do not

have to start altogether. The programmers can define any number of

subgroups of PVM tasks to perform collective operations like MPI_Bcast,

MPI_Gather and so forth. PVM also provides fault tolerance by enabling the

management of dynamic groups.

Having a simple intuitive user interface has made PVM popular as an

educational tool to teach distributed memory computing. PVM was designed

before the MPI standard. Therefore, PVM developers have invested notably

effort in designing MPI APIs.

2.5.3 mpC

The mpC language [67, 68, 69, 70] was designed to implement

distributed-memory applications on heterogeneous networks by supporting

task and data parallelism. The network object is the basic notation in mpC

language like MPI communicator. The language allows the programmer to

specify dynamically application topology. Processes in mpC applications

communicate by means of message passing. The main disadvantage of mpC

is the lack of components for modern clusters and supercomputers support.

Besides that, it is not easy to learn mpC language.

2.5.4 HeteroMPI

HeteroMPI [71] is an extension of MPI for distributed memory computations

on heterogeneous networks. It is designed based on the features in the
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specification of network types of the mpC language. The main idea of

HeteroMPI is to provide an automated selection of such a group of processes

that executes the heterogeneous algorithm faster than any other group. In

order to automate the selection, it allows the programmers to describe a

performance model of their heterogeneous algorithm.

2.5.5 Charm++

Charm++ [72] is a parallel programming system designed based on C++ at

the University of Illinois. Computation in Charm++ is defined in terms of

collections of objects called chare. The chares interact via asynchronous

method invocations supported by the Charm++ runtime system. Unlike MPI,

the runtime system provides dynamic load balancing strategies. The load

balancing strategy allows to balance priorities and workloads during the

execution time. Besides that, Charm++ provides support for fault tolerance,

including application-level checkpointing. Charm++ is used in many different

fields such as molecular dynamics, quantum chemistry and astronomy to

implement parallel applications [73, 74].
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Chapter 3

Background and Related Work

This chapter falls into the following major categories: Communication

Performance Models; Analytical Performance Models of MPI Collective

Algorithms; Measurement of Model Parameters; Selection of Collective

Algorithms. We review some of the most notable related works in these four

fields and provide a comprehensive discussion.

3.1 Communication Performance Models (CPM)

All analytical performance models of collective algorithms use communication

models as building blocks. In this section we describe the most commonly

used communication models in detail.

Hockney model

The Hockney model [29] estimates the time T (m) of sending a message of

size m between two nodes as T (m) = α + β · m, where α and β are the

message latency and the reciprocal bandwidth respectively. The original paper

presents the model using asymptotic values of α and β. While the model is

very simple and effective to use, it cannot model network congestion. Different

authors extended this model to address this issue [75, 76]. For example, Chan

et al. [75] extend the Hockney model in the presence of network conflicts.

With extension of the model, the time T (m) of sending a message of size m
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between two nodes becomes T = α + k · β · m, where k is the maximum

number of network conflicts.

Several tools have been implemented to measure the Hockney model

parameters [77, 78]. These tools measure the Hockney model parameters

using simple point-to-point communication tests.

LogP/LogGP models

The LogP model [30] was introduced in 1993 by Culler et al. The name is an

acronym from its four parameters, L, o, g, and P . The parameters stand for

network delay, overhead, gap per message, and the number of processors

respectively. The time to transmit a short message in terms of LogP is

estimated as T = L + 2o. In LogP model, the sender is allowed to initiate

new send operation after g period of time. Parameter g is the minimum time

interval needed by the network card between two send operations. It means

that the network allows transmission of at most bL/gc messages

simultaneously. The key advance of LogP is that the model recognizes the

contribution of the processor to the communication latency. As it is presented

above none of the LogP model parameters depends on message size. This

implies that only constant-size small messages are transmitted between the

nodes.

Alexandrov et al. introduce the LogGP model in [31] as an extension of

the LogP. The LogP model introduces a fifth parameter G, the gap per byte,

which captures the cost of sending large messages across the network. The

LogGP model estimates the time to send a message of size m between two

processes as T = L + 2o + (m − 1) · G. The reciprocal 1/G is the network

bandwidth for long messages.

The LogP model became the foundation of many subsequent models such

as LogGPS [79], LogGPO [80], LogGPG [81], LogGPC [82], LogGPH [83],

LoPC [84], LogfP [85] that extend it by adding parameters for representing

specific characteristics of the platform . For example, LogGPC [82] extends the

LogGP model taking into account the impact of network contention Cn. The

time T (m) of sending a message size of m in terms of LogGPC is estimated
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as T (m) = os + L + (m− 1) ·G + Cn + or. LogGPH models communication

considering the representation of hierarchical networks using the concept of

"communication level".

PLogP model

Kielmann et al. introduce the Parameterized LogP, PLogP, model in [32].

Authors build the PLogP model by transforming constant LogP parameters

into piecewise linear functions of the message size m. The PLogP model is

defined in terms of latency L, os(m) and or(m), sender and receiver

overheads, gap per message g(m), and the number of processes P involved

in communication. The PLogP model estimates the time T (m) of sending a

message of size m as T (m) = L + g(m). The notion of latency in PLogP

slightly differs from those of LogP/LogGP, the gap and overhead parameters

are equivalent in both models. The gap parameter in the model is defined as

the minimum time interval between consecutive message transmissions. This

implies that at all times g(m) ≥ os(m) and g(m) ≥ or(m). Authors present a

transformation from PLogP parameters to LogP/LogGP parameters in [32] as

well.

All communication models presented above are very first efforts in

communication modelling. These communication models were designed for

homogeneous platforms in mind and tested on such platforms. Nowadays,

HPC platforms (clusters/supercomputers) are powered by several thousands

of CPU cores, deep memory hierarchies and advanced network technologies.

Distributed memory applications face the challenge of obtaining as much

performance as possible from such complex platforms. The general adoption

of large scale multi-core HPC platforms has seen a rise in new approaches to

communication modeling. We overview some of them in the sections below.

logn P model

The message transmissions in distributed memory applications are provided

by middleware (library) using implicit communication mechanisms. Series of

implicit communications performs by middleware has impact on point-to-point
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communication. Thus, Cameron et al. [86, 87] propose the logn P model

taking into account the middleware costs of the communication. The main

idea of the proposed model is that the message progresses as a succession

of transfers through intermediate buffers between sender and receiver

buffers. The model estimates the time T (m) of sending a message size of m

as T (m) =
n−1∑
i=0

(max{gi, oi} + li) where o: the per transfer time dedicated by

the CPU without resource contention, g: o plus additional system delays, l:

the length of time the processor is engaged in the transmission of a the

message stored in non-contiguous or strided ways, n: the number of implicit

transfers between sender and receiver, P : the number of processes. The

main disadvantage of the model is that it is not easy to use it. While the

model helps to understand the impact of implicit communications performed

by middleware, due to complexity of the model parameters it is not feasible to

measure them accurately in all cases.

τ -Lop model

Rico-Gallego et al. [88] introduce the τ -Lop model to measure the

communication time between sender and receiver on shared memory. The

authors extend this approach for multi-core clusters in [89]. The τ -Lop model

considers the distinctive features of the communication channels to represent

a point-to-point transmission as a sequence of transfers via shared memory

or network. The model assumes that the cost of transmission of a message

of size m is estimated as T cp2p(m) = oc(m) +
∑s−1

j=0 L
c
j(m, τj), where c

represents the communication channel, oc(m) is the overhead of protocols

and software stack, Lcj(m, τj) is the time to transfer a message of size m

through channel c at the j-th step of the transmission, with τj contending

transfers (Lcj(0, τj) = 0), and s is the number of steps of the message

transmission. Hence, the τ -Lop model considers a different representation for

a message transmitted through shared memory (c = 0) and network channel

(c = 1). In the shared memory channel (c = 0 and s = 2) the time T (m) of

sending a message size of m is estimated as T 0
p2p(m) = o0(m) + 2L0(m, 1).

In an Ethernet network the model considers two shared memory transfers,
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from sender memory to NIC and from receiver NIC to destination memory,

and a network transfer between NICs, as

T 1
p2p(m) = o1(m) + 2L0(m, 1) + L1(m, 1).

3.1.1 Conclusion

Although the Hockney model is one of the oldest and simplest communication

models in terms of representation of communication and model parameters, it

is widely used to design algorithms on a variety of platforms. As a matter of

fact, more complex communication models can be difficult to use in practice.

Too many parameters make it challenging to measure them accurately. Given

that the goal of this thesis is to derive analytical performance models for

collective algorithms, taking into account details of the implementing code

and executing platform, the simple Hockney model is sufficient to express

communication in a homogeneous platform where MPI programs use a

one-process-per-CPU configuration. For analytical performance modelling of

collective algorithms where shared memory is involved in communication and

processes are mapped by CPU-Core, we use the τ -Lop model.

3.2 Analytical Performance Models of MPI

Collective Algorithms

It is very important to understand the performance of collective algorithms to

optimise them. This section surveys the current state of analytical

performance models of collective algorithms. The list of the collective

algorithms used in Open MPI is given in Table 3.1. Tables 3.2, 3.3, 3.4, 3.5,

3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 show the existing analytical performance

models for broadcast, gather, scatter, allgather, alltoall, barrier, reduce,

reduce-scatter and scan collective algorithms.

Thakur et al. [27] propose analytical performance models of several

collective algorithms for MPI_Allgather, MPI_Bcast, MPI_Alltoall,

MPI_Reduce_scatter, MPI_Reduce, and MPI_Allreduce routines using the

Hockney model. The parameters of the models, α and β, are assumed to be
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Collective
routine

Collective algorithm

Allgather Ring [27], Recursive doubling [27], Bruck [12], Neighbor exchange [90]

Broadcast Flat tree [91], Chain tree [92], Binomial [27, 91], Binary [91], Split-binary [91], K-Chain
tree [91]

Barrier Flat tree [91], Double Ring [91], Recursive doubling [91], Bruck [12]

Scater Linear [93], Binomial [91]

Gather Linear [91], Linear with synchronisation [91], Binomial [91]

Alltoall Linear [91], Pairwise exchange [91], Bruck [12]

Reduce Flat tree [91], Chain [10, 91], Binomial [91], Binary [91], Rabenseifner [94, 11]

Reduce-scatter Reduce-scatterv [91], Recursive halving [91], Ring [91]

Allreduce Recursive doubling [91], Ring [91], Ring with segmentation [91], Rabenseifner [94, 11]

Scan Linear [95, 91], Linear with segmentation [91], Binomial [91]

Table 3.1: List of collective algorithms used in Open MPI

the same for all algorithms, message sizes and numbers of processes. The

authors find their models not accurate enough for the task of selection of

optimal collective algorithms. They conclude that in order to improve the

accuracy of their analytical models, we have to assume that α and β depend

on the message size and the number of processes. They do not propose

models improved this way though. In our work, we stick to the assumption of

independence of model parameters on the message size and the number of

processes. Instead, we improve the accuracy of our models by deriving them

from the implementation of the modelled algorithms. In addition, we assume

that α and β may depend on the algorithm. Thus, our approach to improving

the accuracy of models of collective algorithms is to make them more

algorithm and implementation specific.

Chan et al. [75] build analytical performance models of

Minimum-spanning tree algorithms and Bucket algorithms for MPI_Bcast,

MPI_Redcue, MPI_Scatter, MPI_Gather, MPI_Allgather,

MPI_Reduce_scatter, MPI_Allreduce collectives and later extend this work for

multidimensional mesh architecture in [96]. The proposed models are built

using high-level theoretical descriptions of the algorithms. Therefore, the

28



3.2. ANALYTICAL PERFORMANCE MODELS OF MPI COLLECTIVE
ALGORITHMS

authors conclude that while the models can be used for analysis of theoretical

complexity of the algorithms, they are not accurate enough for the task of

estimation and comparison of their practical performance.

An analytical performance model of a new reduction algorithm is

proposed for a non-power-of-two number of processes by Rabenseifner et al.

[11]. The model uses a traditional high-level mathematical description of the

algorithm. The aim of the model is to understand and express the complexity

of the algorithm. Like in all previous models, its level of abstraction is too high

to reach the accuracy required for comparison of the practical performance of

the proposed reduction algorithm with its counterparts.

A general analytical performance model for tree-based broadcast

algorithms with message segmentation has been proposed by Patarasuk et

al. [92]. Unlike traditional models, this model introduces a new parameter,

Maximum nodal degree of the tree. The purpose of this model is restricted to

theoretical comparison of different tree-based broadcast algorithms. Accurate

prediction of the execution time of the broadcast algorithms and methods for

measurement of the model parameters, including the maximal nodal degree

of the tree, are out of the scope of their work.

Barchet-Estefanel et al. evaluate performance of inter-cluster and

intra-cluster collectives using the PLogP model in [102]. The authors extend

the same approach including contention and supplemental factors in [103].

The latest work validates the proposed approach in different network

environments using All-to-All collective algorithms.

Hasanov et al. propose high-level hierarchical topology-oblivious

optimization of MPI broadcast algorithms in [99]. P MPI processes executing

the broadcast are splitted into G logical groups each of which has P
G

number

of processes. The approach is designed as a composition of two steps: (1)

Broadcast operation is performed among the first elements of groups. (2) The

first element of each group broadcasts a message inside the group. Following

this approach, the authors developed new hierarchical broadcast algorithms

using hierarchical arrangement of MPI processes. While the approach is

validated experimentally, theoretical analysis of the approach is done using

the Hockney communication model as well. The performance models of
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Broadcast CPM Performance model of the algorithm Reference

Linear Hockney T = (P − 1) · (α +m · β) [27], [75, 28]

Linear LogP/LogGP T = L+ 2 · o− g + ns · (P − 1) · ((ms − 1) ·G+ g) [28, 91]

Linear PLogP T = L+ ns · (P − 1) · g(ms) [97, 98]

Chain Hockney T = (P + ns − 2) · (α +m · β) [92, 91]

Chain LogP/LogGP
T = (P − 1) · (L+ 2 · (ms − 1) ·G)+

(ns − 1) · (g + (ms − 1) ·G+ o) [91]

Chain PLogP T = (P − 1) · (L+ g(ms)) + (ns − 1) · g(ms) [98]

Binary Hockney T = 2 · (dlog2(P + 1)e+ ns − 2) · (α +m · β) [91]

Binary LogP/LogGP
T = (dlog2(P + 1)e − 1) · (L+ g + 2 · (o+ (ms − 1) ·G))

+(ns − 1) · (o+ 2 · (g + (ms − 1) ·G)) [30]

Binary PLogP
T = (dlog2(P + 1)e − 1) · (L+ 2 · g(ms))+

(ns − 1) ·max{2 · g(ms), or(ms) + g(ms) + os(ms)} [98, 97]

Split-binary Hockney T = 2 · (blog2 P c+ ns

2
− 1) · (α +ms · β) + (α + m

2
· β) [91]

Split-binary LogP/LogGP

T = (dlog2(P + 1)e − 1) · (L+ g + 2 · o+ (ms − 1) ·G)

+(
ns
2
− 1) · (o+ 2 · (g + (ms − 1) ·G))+

L+ 2 · o+ (
m

2
− 1) ·G [91]

Split-binary PLogP

T = (dlog2(P + 1)e − 1) · (L+ 2 · g(ms)) + (
ns
2
− 1)·

max{2 · g(ms), or(ms) + g(ms) + os(ms)}+

L+ g(
m

2
) [91]

Binomial Hockney T = dlog2 P e · ns · (α +ms · β) [91]

Binomial LogP/LogGP
T = dlog2 P e · (L+ 2 · o+ (ms − 1) ·G+
(ns − 1) · (g + (ms − 1) ·G)) [30]

Binomial PLogP T = dlog2 P e · (L+ ns · g(ms)) [98, 97]

Table 3.2: Existing analytical performance models of broadcast algorithms.
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Gather CPM Performance model of the algorithm Reference

Linear without
sync.

Hockney T = (P − 1) · (α +m · β) [27], [75]

Linear without
sync.

LogP/LogGP T = L+ 2 · o+ (P − 2) · ((m− 1) ·G+ g) [28, 91]

Linear without
sync.

PLogP T = L+ (P − 1) · g(m) [97, 98]

Linear with
sync.

Hockney T = α + (P − 1) · (2 · α + β ·m) [91]

Linear with
sync.

LogP/LogGP T =


(P − 1) · (2 · L+ 4 + (ms − 1) ·G) + g + (m−ms − 1) ·G,

if g +m ·G < L+ 2 · (o+ms ·G)
(P − 1) · (o+ g + (m− 1) ·G+ L+ o), otherwise

[91]

Linear with
sync.

PLogP T =


T = (P − 1) · (2 · L+ g(ms) + g(0)) + g(m−ms)),

if g(m−ms) < L+ g(0)

T = 2 · L+ g(0) + (P − 1) · (g(ms) + g(m−ms)), otherwise

[91]

Binomial Hockney T = log2 P · α + P · β ·m [91]

Binomial LogP/LogGP T = (blog2 P c − 1) · (L+ 2 · o) + ((2 · P − 1) ·m− blog2 P c) ·G [91]

Binomial PLogP T =
blog2 P c−1∑

k=0

(L+ g(2k ·m)) [98]

Table 3.3: Existing analytical performance models of gather algorithms.

Scatter CPM Performance model of the algorithm Reference

Linear Hockney T = (P − 1) · (α +m · β) [27, 75]

Linear LogP/LogGP T = L+ 2 · o+ (P − 2) · ((m− 1) ·G+ g) [28, 91]

Linear PLogP T = L+ (P − 1) · g(m) [97, 98]

Binomial Hockney T = log2 P · α + (P − 1) · β ·m [91]

Binomial LogP/LogGP
T = L+ 2 · o+ (m · (P − 1)− dlog2 P e) ·G+

(dlog2 P e − 1) ·max{L+ 2 · o, g}
[28, 91]

Binomial PLogP T =
blog2 P c−1∑

k=0

(L+ g(2k ·m)) [98]

Table 3.4: Existing analytical performance models of scatter algorithms.
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Allgather CPM Performance model of the algorithm Reference

Bruck Hockney T = log2 P · α + P · β ·m+ P · δ ·m [27, 75]

Bruck LogP/LogGP
T = blog2 P c · (o+max{g, L+ o} −G)+

(P − 1) ·m ·G+ P · δ ·m [91]

Bruck PLogP

T =

blog2 P c−1∑
k=0

(L+ g(2k ·m)) + L+

g · ((P −
blog2 P c−1∑

k=0

2k) ·m) + P · δ ·m [91]

Recursive doubling Hockney T = log2 P · α + (P − 1) · β ·m [27, 91]

Recursive doubling LogP/LogGP T = log2 P · (o+max{g, L+ o} −G) + (P − 1) ·m ·G [91]

Recursive doubling PLogP T =
log2 P−1∑
k=0

(L+ g(2k ·m)) [91]

Ring Hockney T = (P − 1) · (α + β ·m) [27, 91]

Ring LogP/LogGP T = (P − 1) · (L+ 2 · o+ (m− 1) ·G) [91]

Ring PLogP T = (P − 1) · (L+ g(m)) [91]

Neighbor exchange Hockney T = α + β ·m+ (P
2
− 1) · (α + 2 · β ·m) [75, 91]

Neighbor exchange LogP/LogGP T = P
2
· (L+ 2 · o+ (2 ·m− 1) ·G)−m ·G [91]

Neighbor exchange PLogP T = L+ g(m) + (P
2
− 1) · g(2 ·m) [91]

Table 3.5: Existing analytical performance models of allgather algorithms.
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Alltoall CPM Performance model og the algorithm Reference

Linear Hockney T = (P − 1) · (α + β ·m) [27]

Linear LogP/LogGP T = L+ 2 · o+ (m− 1) ·G+ 2 · (P − 1) · g [30]

Linear PLogP T = L+ 2 · (P − 1) · g(m) [91]

Pairwise
exchange

Hockney T = (P − 1) · (α + β ·m) [27, 91]

Pairwise
exchange

LogP/LogGP T = (P − 1) · (L+ o+ (m− 1) ·G+ g) [91]

Pairwise
exchange

PLogP T = (P − 1) · (L+ g(m)) [91]

Bruck Hockney

T = dlog2 P e · α + blog2 P c · (β + δ) · P
2
·m+ δ · P ·m+

(β + δ) · (P − 2blog2 P c) ·m [27, 12]

Bruck LogP/LogGP T =



log2 P · (o+ (P
2
·m− 1) ·G+ δ · P

2
·m+max{g, L+ o})+

δ · P ·m, if P = 2k

blog2 P c · (o+ (P
2
·m− 1) ·G+ δ · P

2
·m+max{g, L+ o})+

δ · P ·m+ o+ ((P − 2blog2 P c) ·m− 1) ·G+
δ · (P − 2blog2 P c) ·m+max{g, L+ o}, otherwise

[91]

Bruck PLogP
T = dlog2 P e · L+ blog2 P c · (g(

P

2
·m) + δ · P

2
·m)

+δ · P ·m+ g · ((P − 2blog2 P c) ·m)+

δ · (P − 2blog2 P c) ·m

[91]

Table 3.6: Existing analytical performance models of alltoall algorithms.
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Barrier CPM Performance model of the algorithm Reference

Linear Hockney T = (P − 1) · α [91]

Linear LogP/LogGP
Tmin = (P − 2) · g + 2 · (L+ 2 · o)
Tmax = (P − 2) · (g + o) + 2 · (L+ 2 · o) [91]

Linear PLogP
Tmin = P · g + 2 · L
Tmax = P · (g + or) + 2 · (L− or)

[91]

Double Ring Hockney T = 2 · P · α [91]

Double Ring LogP/LogGP T = 2 · P · (L+ o+ g) [91]

Double Ring PLogP T = 2 · P · (L+ g) [91]

Recursive Doubling Hockney T =

{
log2 P · α, if P = 2k

(log2 P + 2) · α, if P 6= 2k
[27]

Recursive Doubling LogP/LogGP T =

{
log2 P · (L+ o+ g), if P = 2k

(blog2 P c+ 2) · (L+ o+ g), if P 6= 2k
[91]

Recursive Doubling PLogP T =

{
log2 P · (L+ g), if P = 2k

(blog2 P c+ 2) · (L+ g), if P 6= 2k
[91]

Bruck Hockney T = dlog2 P e · α [27]

Bruck LogP/LogGP T = dlog2 P e · (L+ o+ g) [91]

Bruck PLogP T = dlog2 P e · (L+ g) [91]

Table 3.7: Existing analytical performance models of barrier algorithms.
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Reduce CPM Performance model of the algorithm Reference

Flat tree Hockney T = ns · (P − 1) · (α + β ·ms + γ ·ms) [27, 75]

Flat tree LogP/LogGP
T = o+ (ms − 1) ·G+ L+
ns ·max{g, (P − 1) · (o+ (ms − 1) ·G+ γ ·ms)}

[91]

Flat tree PLogP T = L+ (P − 1) · ns ·max{g(ms), or(ms) + γ ·m} [97]

Chain Hockney T = (P + ns − 2) · (α + β ·m+ γ ·ms) [91]

Chain LogP/LogGP
T = (P − 1) · (L+ 2 · o+ (ms − 1) ·G+ γ ·ms)+

(ns − 1) ·max{g, 2 · o+ (ms − 1) ·+γ ·ms} [91]

Chain PLogP
T = (P − 1) · (L+max{g(ms), or(ms) + γ ·ms})+
(ns − 1) · (max{g(ms), or(ms) + γ ·ms}+ os(ms)) [91]

Binomial Hockney T = ns · dlog2 P e · (α + β ·ms + γ ·ms) [27, 75]

Binomial LogP/LogGP T = dlog2 P e · (o+ L+ ns · ((ms − 1) ·G+max{g, o+ γ ·ms})) [30, 31]

Binomial PLogP
T = dlog2 P e · (L+ ns · ((ms − 1) ·G+

max{g(ms), or(ms) + γ ·ms + os(ms)})) [91]

Binary Hockney T = 2 · (dlog2(P + 1)e+ ns − 2) · (α + β ·ms + γ ·ms) [75, 27]

Binary LogP/LogGP

T = (dlog2(P + 1)e − 1) · (L+ 3 · o+ (ms − 1) ·G+
2 · γ ·ms + (ns − 1) · ((ms − 1) ·G+

max{g, 3 · o+ 2 · γ ·ms})) [30, 31]

Binary PLogP
T = (dlog2(P + 1)e − 1) · (L+ 2 ·max{g(ms), or(ms) + γ ·ms})+

(ns − 1) · (os(ms) + 2 ·max{g(ms), or(ms) + γ ·ms}) [91]

Rabenseifner Hockney T = 2 · log2 P · α + 2 · (P − 1) · β ·m+ (P − 1) · γ ·m [27, 11]

Rabenseifner LogP/LogGP
T = 2 · log2 P · (L+ 2 · o) + 2 · ((P − 1) ·m− log2 P ) ·G+

(P − 1) · γ ·m [91]

Rabenseifner PLogP T = 2 · log2 P · L+ (P − 1) · γ ·m+
log2 P∑
k=1

g(m
2k
) [91]

Table 3.8: Existing analytical performance models of reduce algorithms.
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Reduce-
scatter

CPM Performance model of the algorithm Reference

Recursive
halving

Hockney T =

{
log2 P · α + (P − 1) · (β + δ) ·m, if P = 2k

(blog2 P c+ 2) · α + 2 · P · β ·m+ (2 · P − 1) · δ ·m, if P 6= 2k
[27]

Recursive
halving

LogP/LogGP T =


log2 P · (L+ 2 · o) + ((P − 1) ·m− log2 P ) ·G+
(P − 1) · γ ·m, if P = 2k

(blog2 P c+ 2) · (L+ 2) + (2 · (P ·m− 1)− blog2 P c) ·G+
(2 · P − 1) · γ ·m, if P 6= 2k

[91]

Recursive
halving

PLogP T =


log2 P · L+ (P − 1) · γ ·m+

log2 P∑
k=1

g( P
2k
), if P = 2k

(blog2 P c+ 2) · L+ g(m) + (2 · P − 1) · γ ·m+
log2 P∑
k=1

g( P
2k
),

if P 6= 2k

[91]

Ring Hockney T = (P − 1) · (α + β ·m+ γ ·m) + P · δ ·m [91]

Ring LogP/LogGP T = (P − 1) · (L+ 2 · o+ (m− 1) ·G+ γ ·m) + P · δ ·m [91]

Ring PLogP T = (P − 1) · (L+ g(m) + γ ·m) + P · δ ·m [91]

Table 3.9: Existing analytical performance models of reduce-scatter
algorithms.

Scan CPM Performance model of the algorithm Reference

Linear Hockney T = (P − 1) · (α + β ·m+ γ ·m) [27]

Linear LogP/LogGP T = (P − 1) · (L+ 2 · o+ (m− 1) ·G+ γ ·m) [91]

Linear PLogP T = (P − 1) · (L+ g(m) + γ ·m) [91]

Linear
with segment.

Hockney T = (P + ns − 2) · (α + β ·ms + γ ·ms) [91]

Linear
with segment.

LogP/LogGP
T = (P − 1) · (L+ 2 · o+ (ms − 1) ·G+ γ ·ms)+

(ns − 1) · (max{g, 2 · o+ (ms − 1) ·G+ γ ·ms}) [91]

Linear
with segment.

PLogP
T = (P − 1) · (L+ g(ms) + γ ·ms)+

(ns − 1) · (max{g(ms), o(ms) + or(ms) + γ ·ms}) [91]

Binomial Hockney T = dlog2 P e · (α + β ·m+ γ ·m) [91]

Binomial LogP/LogGP T = dlog2 P e · (L+ 2 · o+ (m− 1) ·G+max{g, o+ γ ·m}) [91]

Binomial PLogP T = dlog2 P e · (L+ g(m) + max{g, os(m) + γ ·m}) [91]

Table 3.10: Existing analytical performance models of scan algorithms.
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Allreduce CPM Performance model of the algorithm Reference

Recursive
doubling

Hockney T =


log2 P · (α + β ·m+ γ ·m), if P = 2k

(blog2c+ 2) · (α + β ·m+ γ ·m)− γ ·m,
if P 6= 2k

[27]

Recursive
doubling

LogP/LogGP T =


log2 P · (L+ 2 · o+ (m− 1) ·G+ γ ·m), if P = 2k

(blog2c+ 2) · (L+ 2 · o+ (m− 1) ·G+ γ ·m)− γ ·m,
if P 6= 2k

[91]

Recursive
doubling

PLogP T =

{
log2 P · (L+ g(m) + γ ·m), if P = 2k

(blog2c+ 2) · (L+ g(m) + γ ·m)− γ ·m, if P 6= 2k
[91]

Ring Hockney T = 2 · (P − 1) · (α + β · dm
P
e) + (P − 1) · γ · dm

P
e [91]

Ring LogP/LogGP T = 2 · (P − 1) · (L+ 2 · o+ (dm
P
e − 1) ·G) + (P − 1) · γ · dm

P
e [91]

Ring PLogP T = 2 · (P − 1) · (L+ g(dm
P
e)) + (P − 1) · γ · dm

P
e [91]

Ring
with segment.

Hockney T = (P + ns − 2) · (α + β ·ms + γ ·ms) + (P − 1) · (α + β · dm
P
e) [91]

Ring
with segment.

LogP/LogGP

T = (P − 1) · (L+ 2 · o+ (ms − 1) ·G)+
(ns − 1) · (max{g, (γ ·ms + o)}+ (ms − 1) ·G)+

(P − 1) · (L+ 2 · o+ (dm
P
e − 1) ·G) [91]

Ring
with segment.

PLogP

T = (P − 1) · (L+ g(ms) + γ ·ms) + (ns − 1) · (g(ms) + γ ·ms)+

(P − 1) · (L+ g(dm
P
e)) [91]

Rabenseifner Hockney T = 2 · log2 P · α + 2 · P−1
P
· β ·m+ P−1

P
· γ ·m [27]

Rabenseifner LogP/LogGP

T = 2 · log2 P · (L+ 2 · o) + 2 · ((P − 1) ·m− log2 P ) ·G+

(P − 1) · γ · m
P

+ log2 P · (o+max{g, L+ o} −G)+

(P − 1) · m
P
·G [91]

Rabenseifner PLogP T = 3 · log2 P · L+ (P − 1) · γ · m
P
+ 3 ·

log2 P−1∑
k=1

g(m
2k
) [91]

Table 3.11: Existing analytical performance models of allreduce algorithms.
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Hierarchical
broadcast

Performance model of the algorithm Reference

Hierarchical
Linear

T (G) = (G+ P
G
− 2) · (α +m · β) [99]

Hierarchical
Chain

T (G) = (2 · ns +G+
P

G
− 4) · (α +ms · β) [99]

Hierarchical
Split-binary

T (G) = 2 · (log2(P +G)− 4) · (α + β · m
2
) + 2 · (α +

m

2
· β) [99]

Hierarchical
Scatter-
Ring-
Allgather

T (G) = (log2 P +G+
P

G
− 2) · α + 2 ·m · (2− 1

G
− G

P
) · β [99]

Hierarchical
Scatter-
Recursive-
Doubling-
Allgather

T (G) = 2 · log2 P · α + 2 ·m · (2− 1

G
− G

P
) · β [99]

Table 3.12: Analytical performance models of the hierarchical broadcast
algorithms.

Hierarchical
reduce

Performance model of the algorithm Reference

Hierarchical
Flat

T (G) = (G+ P
G
− 2) · (α +m · β +m · γ) [100]

Hierarchical
Chain

T (G) = (2 · ns +G+
P

G
− 4) · (α +ms · β +ms · γ) [99]

Hierarchical
Rabenseifner’s
Reduce

T (G) = 2 · log2 P · α + 2 ·mβ · (2− G

P
− 1

G
) +m · γ · (2− G

P
− 1

G
) [99]

Table 3.13: Analytical performance models of the hierarchical reduce
algorithms.

Hierarchical
scatter & gather

Performance model of the algorithm Reference

Hierarchical
Linear

T (G) = (G+ P
G
− 2) · (α +m · β) [101]

Hierarchical
Linear with synch.

T (G) = 2 · α + (G+ P
G
− 2) · (2 · α +m · β) [101]

Hierarchical
Binomial

T (G) = log2 P · α + (G− 1) ·m · β + log2
P

G
· α + (

P

G
− 1) ·m · β [101]

Hierarchical
Minimum Spanning

T (G) = log2 P · α + (2− 1

G
− G

P
) ·m · β [101]

Table 3.14: Analytical performance models of the hierarchical gather
algorithms.
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hierarchical broadcast algorithms are built using high-level mathematical

description of the native broadcast algorithms and used only for theoretical

analysis of the algorithms. The same approach is applied to the MPI reduce

algorithms in [100], the MPI gather algorithms in [101]. All analytical

performance models of the hierarchical collective algorithms are given in

Table 3.12, 3.13 and 3.14. Hierarchical broadcast algorithms are applied to

SUMMA [104] in [105, 106].

Pjevsivac-Grbovic et al. [28] study selection of optimal collective

algorithms using analytical performance models for barrier, broadcast, reduce

and alltoall collective operations. Analytical performance models are built

using the Hockney, LogP/LogGP, and PLogP communication performance

models. Additionally, the splitted-binary broadcast algorithm has been

designed and analysed with different performance models in this work. The

models are built up with the traditional approach using high-level

mathematical definitions of the collective algorithms. In order to predict the

cost of a collective algorithm by analytical formula, model parameters are

measured using point-to-point communication experiments. After

experimental validation of their modelling approach, the authors conclude that

the proposed models are not accurate enough for selection of optimal

algorithms.

Lastovetsky et al. [107] propose a communication performance model for

heterogeneous clusters. The model assumes that time to transmit a message

between two nodes in a heterogeneous cluster is composed of the network

transmission delay, source and destination processing delays. The analytical

performance model of the binomial broadcast algorithm is built up using this

model taking into account the impact of message passing protocols. While the

predicted execution time of the binomial broadcast algorithm was close to the

experimentally measured time, its use for comparison of practical performance

of broadcast algorithms has never been studied.

Lastovetsky and O’Flynn [108] propose a non-deterministic model of

MPI_Gather for MPI platforms on a swithched Ethernet network.The model

reflects a significant non-deterministic increase in the execution time for

medium-sized messages, persistently observed for different parallel platforms
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and MPI implementations and not reflected in traditional communication

performance models.

3.3 Measurement of Model Parameters

One of the uses of analytical communication performance models is for

theoretical analysis of the complexity of collective algorithms. In such purely

theoretical studies, the authors do not pay much attention to methods of

measurement of model parameters. However, if a model is intended for

accurate prediction of the execution time of the communication algorithm on

each particular platform, a well-defined experimental measurement method

of the model parameters will be as important as the theoretical formulation of

the model. Different measurement methods may give significantly different

values of the model parameters and therefore either degrade or improve the

model’s prediction accuracy.

In general, a typical measurement method consists of a well-defined set of

communication experiments, each of which is used to obtain an equation with

model parameters as unknowns on one side of the equation and the measured

execution time of the experiment on the other side. The full system of such

equations is then solved to find the values of the model parameters for each

particular platform. Existing measurement methods predominantly consist of

point-to-point communication experiments, which are used to obtain a system

of linear equations. In this subsection, we overview some notable works in

this area.

Hockney [29] presents a measurement method to find the α and β

parameters of the Hockney model. The set of communication experiments

consists of point-to-point round-trips. The sender sends a message of size m

to the receiver, which immediately returns the message to the sender upon its

receipt. The time RTT (m) of this experiment is measured on the sender side

and estimated as RTT (m) = 2 · (α + m · β). These round-trip

communication experiments for a wide range of message sizes m produce a

system of linear equations with α and β as unknowns. To find α and β from

this system, the linear least-squares regression is used.
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Culler et al. [109] propose a method of measurement of parameters of the

LogP model, namely, L, the upper bound on the latency, os, the overhead of

processor involving sending a message, or, the overhead of processor

involving receiving a message, and g, the gap between consecutive message

transmission. The measurement method relies on the Active Messages (AM)

protocol [110] and consists of the following four communication experiments:

• In the first experiment, the sender issues a small number of messages,

Ns, consecutively without receiving any reply. The time of this

experiment is measured on the sender side and estimated as

Ts = Ns · os. Thus, from this equation os can be found as os = Ts/Ns.

• In the second experiment, the sender issues a large number of

messages, Nl (Nl >> Ns), consecutively. Time to send a message

increases due to arriving replies during sending a message. When the

capacity limit of the network is reached, the send request will eventually

stall. Thus, the time to send Nl messages in one direction can be

estimated as Tl = Nl · g, and g is found from this linear equation as

g = Tl/Nl. The time of this experiment is again measured on the

sender side.

• The third experiment is designed to find or. The sender issues Nl

messages in one direction with 4 amount of time between messages.

The delay 4 is introduced in order to make sure that the reply from the

receiver has reached the sender side and therefore the time to process

the reply by the sender can be accurately estimated as or. The time of

this experiment is measured on the sender side and estimated as

T
′
= Nl · (os + 4 + or). Since 4 and os are known, or can be found

from this linear equation as or = T
′
/Nl − os −4.

• The fourth experiment performs a round-trip of a single message. The

time of this experiment is measured on the sender side and estimated

as RTT = 2 · (os + L + or). From this linear equation, L can be found

as L = RTT/2− os − or.
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Kielmann et al. [32] propose a method of measurement of parameters of

the PLogP (Parameterized LogP) model. PLogP defines its model parameters,

except for latency L, as functions of message size. The method consists of the

following four communication experiments:

• The first experiment is designed to measure g(0). The sender sends N

consecutive zero-byte messages followed by a single empty reply from

the receiver. Network saturation is achieved by increasing the number

of messages, N . It is assumed that when the network is saturated, the

time T to send a large number of zero-byte messages can be estimated

as T = N · g(0), and g can be found by solving this linear equation as

g(0) = T/N . The time of this experiment is measured on the sender

side.

• The second experiment is designed to measure os(m). The sender

starts the clock, sends a single message of size m, and then stops the

clock. The time of this experiment is estimated as Ts(m) = os(m).

• The third experiment is designed to measure or(m). The sender sends

a zero-byte message to the receiver, waits for 4 time (4 > Ts(m)),

starts the clock, receives a message of size m and then stops the clock.

The receiver receives the zero-byte message from the sender and sends

back a message of sizem. The time Tr(m) measured on the sender side

is estimated as Tr(m) = or(m).

• The fourth experiment is designed to measure L and g(m). It consists

of two round-trips, with a zero-byte message and a message of size m

respectively. The time of the first round-trip is estimated as

RTT (0) = 2(L + g(0)), and the time of the second round-trip is

estimated as RTT (m) = 2 · L+ g(0) + g(m). Both times are measured

on the sender side. L and g(m) are then found from this system of two

linear equations as L = RTT (0)/2 − g(0) and

g(m) = RTT (m)−RTT (0) + g(0).

Hoefler et al. [111] developed a method to measure parameters of the

LogGP model. LogGP extends the LogP model by adding a G parameter, the
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gap per byte for long messages. The building block of the method is a

ping-ping round-trip, where the sender sends N consecutive messages of

size m with delay d to the receiver, the receiver first receives all these

messages and then sends them back to the sender, which also receives them

all. The execution time of each communication experiment of the method,

PRTT (N, d,m), depends on parameters N , d and m of the experiment and

measured on the sender side (PRTT stands for Parameterized Round-Trip

Time). Three particular ping-ping round-trip experiments are used to obtain

equations involving the LogGP model parameters as unknowns:

• The first experiment executes a round-trip of a single message (N = 1)

of size m without delay (d = 0). The time of this experiment,

PRTT (1, 0,m), is estimated as

PRTT (1, 0,m) = 2 · (os + L+ or + (m− 1) ·G).

• The second experiment executes a ping-ping round-trip that issues N

consecutive messages of size m without delay (d = 0). The time of this

experiment, PRTT (N, 0,m), is estimated as

PRTT (N, 0,m) = PRTT (1, 0,m) + (N − 1) · Gall, where Gall is a

cumulative hardware gap, estimated as Gall = G · (m− 1) + g.

• The third experiment executes a ping-ping round-trip that issues N

consecutive messages of size m with delay d > 0. The time of this

experiment, PRTT (N, d,m), is estimated as

PRTT (N, d,m) = PRTT (1, 0,m) + (N − 1) ·max {os + d,Gall}.

Now model parameters g, G, L, or and os are found as follows:

• From equations obtained from the first and second experiments, the

linear equation G · (m− 1) + g = PRTT (N,0,m)−PRTT (1,0,m)
N−1 , involving two

unknown parameters g and G, can be derived. By repeating these

experiments for a wide range of message size m, a system of m linear

equations with g and G as unknowns is produced. To find g and G from

this system, the linear least-squares regression can be used.
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• From the first experiment with m = 1, the equation PRTT (1, 0, 1) =

2 · (os + L + or) can be derived, giving L = PRTT (1, 0, 1)/2 − (os +

or). However, the authors argue that due to the overlap of processor

overheads and network latency, L should be more accurately estimated

as L = PRTT (1, 0, 1)/2.

• In order to measure or, the measurement method proposed by Kielmann

[32] is used.

• Finally, os is found from the linear equation

os + dG = PRTT (N,dG,m)−PRTT (1,0,m)
N−1 , which is derived from the first and

third experiments, as os = PRTT (N,dG,m)−PRTT (1,0,m)
N−1 − dG. Here,

parameter d = dG of the third experiment is determined empirically to

guarantee that dG > Gall.

Rico-Gallego et al. [89] propose a detailed method for measurement of

parameters of the τ -Lop model on a multi-core cluster. τ -Lop assumes that the

cost of transmission of a message of sizem is estimated as T cp2p(m) = oc(m)+∑s−1
j=0 L

c
j(m, τj), where oc(m) is the overhead of protocols and software stack,

Lcj(m, τj) is the time to transfer a message of size m through channel c at the

j-th step of the transmission, with τj contending transfers (Lcj(0, τj) = 0), and s

is the number of steps of the message transmission. For each communication

channel, shared memory or network, experimental measurement of oc(m) is

designed separately using the following round-trip experiments:

• The first experiment executes a round-trip of a message of size m under

the Eager protocol for shared memory and network. The time of the

experiment is estimated as RTT c(0) = 2 · (oc(m) +
∑s−1

j=0 L
c
j(0, 1)). For

each channel, oc(m) is found as oc(m) = RTT c(0)/2.

• The second experiment executes a round-trip of a message of size m

under the Rendezvous protocol for shared memory and network. The

time of the experiment is estimated as

Pingc(0) = oc(m) +
∑s−1

j=0 L
c
j(0, 1). Therefore, oc(m) = Pingc(0).
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• The third set of experiments exchange messages of size m between

processes using MPI_Sendrecv routine in a ring shape. Process Pi

sends a message to Pi+1 and receives a message from Pi−1. Then,

MPI_Wait is called to complete both transmissions. L0 and L1 are

estimated by the execution of these experiments in different channels

respectively.

From this overview, we can conclude that the state-of-the-art methods for

measurement of parameters of communication performance models are all

based on point-to-point communication experiments, which are used to derive

a system of equations involving model parameters as unknowns. In this work,

we propose to use collective communication experiments in the measurement

method in order to improve the predictive accuracy of analytical models of

collective algorithms.

The only exception from this rule is a method for measurement of

parameters of the LMO heterogeneous communication model

[112, 113, 114]. LMO is a communication model of heterogeneous clusters,

and the total number of its parameters is significantly larger than the

maximum number of independent point-to-point communication experiments

that can be designed to derive a system of independent linear equations with

the model parameters as unknowns. To address this problem and obtain the

sufficient number of independent linear equations involving model

parameters, the method additionally introduces simple collective

communication experiments, each using three processors and consisting of a

one-to-two communication operation (scatter) followed by a two-to-one

communication operation (gather). The experiments are implemented using

the MPIBlib library [77]. This method however is not designed to improve the

accuracy of predictive analytical models of communication algorithms.
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3.4 Selection of collective algorithms using

machine learning algorithms

Machine learning (ML) techniques have been also tried to solve the problem

of selection of optimal MPI algorithms.

In [36], applicability of the quadtree encoding method to this problem is

studied. The goal of this work is to select the best performing algorithm and

segment size for a particular collective on a particular platform. The approach

is based on the following steps. (1) Collective algorithms are executed on a

particular platform to collect detailed performance data. (2) The decision map

is built for the collective on a particular platform by analyzing the performance

data. It is assumed that the decision map covers all message and

communicator sizes. (3) The quadtree is initialized using the decision map.

(4) The decision function source code is generated from the initialised

quadtree. For example, Linear tree, Binary tree, Binomial tree, Split-binary

tree, and Chain tree broadcast algorithms are profiled with maximum 50

processes. The experimental results show that mean performance penalty

reaches 74% and 37% and maximum performance penalty reaches 391%

and 743% on different platforms respectively. While the study shows some

level of applicability of the quadtree encoding algorithm to the problem,

collection of detailed profiling data of collectives for all message sizes and

communicator sizes is a very expensive procedure. Besides, for some

message sizes and communicator sizes the penalty of the decision function is

too high. Taking into account that decision trees are considered weak

learners [115], the decision function will perform poorly on unseen data.

Applicability of the C4.5 algorithm to the MPI collective selection problem

is explored in [116]. The C4.5 algorithm [117] is a decision tree classifier,

which is employed to generate a decision function, based on a detailed

profiling data of MPI collectives. The same steps are followed to build the

decision tree using the C4.5 algorithm as in the quadtree encoding method

presented above. The same weaknesses are shared by the decision trees

built by the quadtree encoding algorithm and by the C4.5 algorithm. While the
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accuracy of the decision function built by the C4.5 classification algorithm is

higher than that of the decision function built by quadtree encoding algorithm,

still, the performance penalty is higher than 50%.

Most recently Hunold et al. [37] studied the applicability of six different ML

algorithms for selection of optimal MPI collective algorithms. The basic idea

of their approach is to create a regression model for every collective algorithm

that is available for a given collective operation, predicting the execution time

of the collective algorithm. The constructed regression models are then used

at run time to select the algorithm that minimizes the execution time for

unseen configurations. The ML algorithms employed to build the regression

models are Random Forests [118], Neural Networks [35], Linear Regressions

[119], XGBoost [120], K-nearest Neighbor [121], and Generalized Additive

Models (GAM) [122]. The configuration is characterised by the message size,

the number of nodes, and the number of processes per node. The approach

is evaluated using MPI_Bcast, MPI_Allreduce and MPI_Alltoall collectives. In

the experimental evaluation, the number of nodes varies between 4 and 36,

and the number of processes per node varies between 1 and 32. The

experimental results show two things. First, it is very expensive and difficult to

build a regression model even for a relatively small cluster. There is no clear

guidance how to do it to achieve better results. Second, even the best

regression models do not accurately predict the fastest collective algorithm in

most of the reported cases. Moreover, in many cases the selected algorithm

performs worse than the default algorithm, that is, the one selected by a

simple native decision function.

To the best of the authors’ knowledge, the works outlined in this

subsection are the only research done in MPI collective algorithm selection

using ML algorithms. The results show that the selection of the optimal

algorithm without any information about the semantics of the algorithm yields

inaccurate results. While the ML-based methods treat a collective algorithm

as a black box, we derive its performance model from the implementation

code and estimate the model parameters using statistical techniques. The

limitations of the application of the statistical techniques (AI/ML) to collective

performance modelling and selection problem can be found in a detailed
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survey [123].

3.5 Summary

As presented in Section 3.3, most of the analytical performance models are

used either to design the algorithms or for theoretical analysis of the

algorithms. Applicability of the analytical models to the selection problem is

studied in [28]. The analytical performance models in this work are built using

the traditional high-level description of the algorithms. Unfortunately, the

experimental validations show that this approach is failed to compare the

performance of the algorithms accurately. Moreover, the model parameters

are measured using simple point-to-point communication tests where the

measured values are constant for all algorithms. Thus, in this thesis we

propose two innovations that significantly improve the selective accuracy of

analytical models: (1) We derive analytical models from the code

implementing the algorithms rather than from their high-level mathematical

definitions. (2) We estimate model parameters separately for each collective

algorithm and include the execution of this algorithm in the corresponding

communication experiment.
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Chapter 4

Modelling of Collective

Communication Algorithms

In this chapter, we build new analytical performance models for broadcast and

gather algorithms. Section 4.1.1 and 4.1.2 provide descriptions of broadcast

and gather algorithms used in Open MPI respectively. We build new analytical

performance models for two different configurations: (1) MPI processes are

mapped by CPU (One-Process-Per-CPU). (2) MPI processes are mapped by

CPU-core (One-Process-Per-Core).

4.1 Collective Communication Algorithms

4.1.1 MPI Broadcast Algorithms

Open MPI architecture is based on software components, plugged into the

library kernel. A component provides with a functionality with specific

implementation features. For instance, collective component known as Tuned

implements different algorithms for each collective operation defined in MPI

as a sequence of point-to-point transmissions between the involved

processes. A communicator provides with an isolated communication context

for the group of processes executing the collective operation. Processes in a

communicator are identified by an assigned rank integer number, starting at
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0.

In the broadcast operation (MPI_Bcast) a process called root sends a

message with the same data to all processes in the communicator.

Messages can be segmented in transmissions. Segmentation of messages is

a common technique used for enabling higher bandwidth utilization, and

hence, improving the performance. It consists on dividing up the message

into smaller fragments called segments and sending them in sequence. MPI

libraries use two protocols to implement point-to-point communication: eager

and rendezvous. The send primitive switches from eager to rendezvous when

the message size reaches a threshold size E. Use of message segmentation

where segment size smaller than eager threshold (E) avoids the rendezvous

protocol.

Every algorithm implementing the broadcast in the Tuned component

defines a communication graph with a specific topology between the P ranks

in the communicator. Ranks are the nodes in the graph, and they are mapped

to the processes of the parallel machine. The features and topology of the

broadcast algorithms implemented in Open MPI Tuned component are listed

below:

• Linear (Flat) tree algorithm. The algorithm employs a single level tree

topology shown in Figure 4.1a where the root node has P − 1 children.

The message is transmitted to child nodes without segmentation. In this

thesis linear and flat tree broadcast algorithms are used interchangeably.

• Chain tree algorithm. Each internal node in the topology has one child

(see Fig 4.1b). The message is split into segments and transmission

of segments continues in a pipeline until last node gets the broadcast

message. ith process receives the message from (i− 1)th process, and

sends to (i+ 1)th process.

• Binary tree algorithm. Unlike the chain tree, each internal process

has two children, and hence data is transmitted from each node to both

children (Figure 4.1c). Segmentation technique is employed in this

algorithm. For simplicity we assume that binary tree is complete, then

P = 2H − 1 where H is the height of the tree, H = log2(P + 1).
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Figure 4.1: Virtual topologies for collective algorithms
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• Split binary tree algorithm. The split binary tree algorithm employs

the same virtual topology as the binary tree (Figure 4.1c). As the name

implies, the difference from the binary tree algorithm is that the message

is split into two halves before transmission. After splitting the message,

the right and left halves of the message are pushed down into the right

and left sub-trees respectively. In an additional last phase, the left and

right nodes exchange in pairs their halves of the message to complete

the broadcast operation.

• K-Chain tree algorithm. The K-Chain virtual topology is employed in

the algorithm (Figure 4.1d). The root broadcasts the message using

segmentation to the child processes, and then the child processes

broadcast the message to their children in parallel. As the name

implies, the virtual topology consists of K number of chain tree virtual

topology each of which is connected to root. The height of K-chain tree

is estimated as H = bP−1
K
c. Last process must wait for Hk−chain steps

until it gets the broadcast message. Rank of processes are mapped

into K-Chain tree virtual topology using following formula,
K−1∑
k=0

H−1∑
i=0

(H · k + i+ 1)

• Binomial tree algorithm.

Definition 4.1.1 (Balanced binomial tree). The balanced binomial tree

of degree k with root R is the tree Bk defined as follows,

1. If k = 0, Bk = B0 = {R}, i.e., the binomial tree of degree zero

consists of a single node, R.

2. If k > 0, Bk = {Bk−1, ..., B0, R} i.e., the binomial tree of degree k

comprises the root R, and k binomial subtrees, Bk−1, ..., B0

Figure 4.2 illustrates how the balanced binomial tree is built. The

binomial tree broadcast algorithm employs balanced binomial tree.

Unlike the binary tree, the maximum nodal degree of the binomial tree

decreases from the root down to the leaves as follows:
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Figure 4.2: The balanced binomial tree of order 3. We highlighted subtrees
of all lower ordered binomial trees. The order 3 binomial tree is connected to
an order 2, 1, and 0 (highlighted as blue, green and red respectively) binomial
tree.

dlog2 P e, dlog2 P e − 1, dlog2 P e − 2, .... The height of the binomial tree

is the order of the tree, H = blog2 P c.

4.1.2 MPI Gather Algorithms

MPI_Gather is a many-to-one MPI operation. MPI_Gather takes data

elements from all processes of the communicator and gathers them in one

single process which is called root. MPI_Gather is used in many parallel

applications such as parallel sorting and searching. The complete list of

gather algorithms employed in Open MPI is as follows:

• Linear algorithm without synchronisation. This algorithm employs

flat tree virtual topology (Figure 4.1a). In this algorithm, the non-root

processes send their messages to the root, which posts receives from

everyone. If the operation is not denoted as “in-place”, the root must

perform a local copy of its own data.

• Linear algorithm with synchronisation. The algorithm uses flat tree

virtual topology (Figure 4.1a) as well. This algorithm was introduced to

prevent overloading of the root process using message segmentation

technique. The message is split into two segments on each non-root

53



4.1. COLLECTIVE COMMUNICATION ALGORITHMS

0

1

B0

0

B1

3

1 2

0

B2

3

1 2

0

B2

7

5 6

4


3

1 2

3

1 2

0

B2

0

B3

Figure 4.3: The in-order binomial tree of order 3. We highlighted subtrees of
all lower ordered binomial trees. The order 3 binomial tree is connected to an
order 0, 1, and 2 (highlighted as blue, green and red respectively) binomial
tree.

process. To receive the message from non-root processes, the algorithm

performs the following steps: (1) The root receives the first incoming

segment of the message; (2) Then, the root sends a zero-byte message

to non-root processes, signalling them to send the second segment of

the message; (3) The root receives the second segment of the message.

• Binomial algorithm.

Definition 4.1.2 (In-order binomial tree). The in-order binomial tree of

degree k with root R is the tree Bk defined as follows,

1. If k = 0, Bk = B0 = {R}, i.e., the binomial tree of degree zero

consists of a single node, R.

2. If k > 0, Bk = {R,B0, B1, ..., Bk−1} i.e., the binomial tree of degree

k comprises the root R, and k binomial subtrees, B0, B1, ..., Bk−1

Figure 4.3 illustrates how the in-order binomial tree is built. The

binomial algorithm employs in-order binomial tree topology (Figure

4.1f). The leaf nodes send their data to their parent processes

immediately. Internal nodes in the tree wait to receive the data from all

children before forwarding the message up the tree. Once the root node

receives all messages, a local data shift operation may be necessary to

put the data in the correct place.
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Algorithm 1 Tree-based segmented broadcast algorithm

if (rank == root) then
// Send segments to all children
for i ∈ 0..ns − 1 do

for child ∈ list of children do
MPI_Isend(segment[i], child, ... )

end for
MPI_Waitall(. . .)

end for
else if (intermediate nodes) then

for i ∈ 0..ns − 1 do
// Post receive and wait
MPI_Irecv(segment[i])
MPI_Wait(. . .)
// Send data to children
for child ∈ list of children do

MPI_Isend(segment[i], child, ... )
end for
MPI_Waitall(children)

end for
else if (leaf nodes) then

// Receive all segments from parent in a loop
for i ∈ 0..ns − 1 do

MPI_Irecv(segment[i], ... )
MPI_Wait(. . .)

end for
end if

Section 4.2 and 4.3 introduce performance models of the algorithms

described above for one-process-per-cpu and one-process-per-core

configurations respectively.

4.2 Modelling of Collective Communication

Algorithms: One-Process-Per-CPU

As stated in Chapter 1, we propose a new approach to analytical

performance modelling of collective algorithms. While the traditional

55



4.2. MODELLING OF COLLECTIVE COMMUNICATION ALGORITHMS:
ONE-PROCESS-PER-CPU

approach only takes into account high-level mathematical definitions of the

algorithms, we derive our models from their implementation. This way, our

models take into account important details of their execution having a

significant impact on their performance. In this section, we present our

analytical modelling approach by applying it to broadcast and gather

collective algorithms implemented in Open MPI. This approach could be

similarly applied to other collective algorithms and MPI implementations such

as MPICH. Analytical models of the broadcast and gather collective

algorithms implemented in Open MPI are derived in Sections 4.2.1 and 4.2.2.

To model point-to-point communications, we use the Hockney model,

which estimates the time Tp2p(m) of sending a message of size m between

two processes as Tp2p(m) = α + β · m, where α and β are the latency and

the reciprocal bandwidth respectively. For segmented collective algorithms,

we assume that m = ns ·ms, where ns and ms are the number of segments

and the segment size respectively. We assume that each algorithm involves

P processes ranked from 0 to P − 1.

4.2.1 Broadcast Algorithms

In this section, we build analytical performance models of broadcast

algorithms implemented in Open MPI. All broadcast algorithms implemented

in Open MPI, except for the linear tree broadcast algorithm, are implemented

using message segmentation. As the main purpose of message

segmentation is to avoid the rendezvous protocol, we only build analytical

models of broadcast algorithms with message segmentation assuming the

buffered mode of send operations. Models of segmented broadcast

algorithms employing the rendezvous (synchronous) mode would have no

practical application in Open MPI as they assume a configuration with a

segment size being not small enough to avoid the rendezvous protocol, which

does not make much sense.
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Algorithm 2 Linear (Flat) tree broadcast algorithm

if (rank == root) then
// Send whole message
for child ∈ list of children do

MPI_Send(message, child, ... )
end for

else
// Receive whole message from root
MPI_Recv(message, ... )

end if

4.2.1.1 Linear (Flat) Tree Algorithm

In Open MPI, the linear broadcast algorithm is implemented using blocking

send and receive operations (see Algorithm 2). The algorithm transmits the

whole message from root to the leaves without message segmentation.

Regardless of communication mode (buffered or not), because of blocking

communication, each next send only starts after the previous one has been

completed. Therefore, the execution time of the linear tree broadcast

algorithm will be equal to the sum of execution times of P − 1 send

operations:

T blockinglinear_bcast(P,m) = (P − 1) · (α +m · β). (4.1)

In Open MPI, this linear tree algorithm is one of the six algorithms

available for implementation of the MPI_Bcast routine. There is another linear

tree broadcast algorithm, which cannot be chosen to implement MPI_Bcast,

but only used as a building block in other tree-based broadcast algorithms

implementing MPI_Bcast, namely, in the binomial tree, binary tree, k-chain

tree, and chain tree broadcast algorithms (see Algorithm 1 for more details).

That linear tree algorithm is implemented using non-blocking send and

receive operations.

In this latter case, P − 1 non-blocking sends will run on the root

concurrently. Therefore, the execution time of the linear broadcast algorithm

using non-blocking point-to-point communications and buffered mode,
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T nonblocklinear_bcast(P,m), can be bounded as follows:

Tp2p(m) ≤ T nonblocklinear_bcast(P,m) ≤ (P − 1) · Tp2p(m). (4.2)

We will approximate T nonblocklinear_bcast(P,m) as

T nonblocklinear_bcast(P,m) = γ(P,m) · (α +m · β), (4.3)

where

γ(P,m) =
T nonblocklinear_bcast(P,m)

Tp2p(m)
. (4.4)

We will use this approximation when deriving analytical performance

models of the remaining five broadcast algorithms implemented in Open MPI.

As we can see from Algorithm 1, the non-blocking version of linear tree

broadcast is used in these five algorithms for transmission of a single

message segment. In this thesis, we assume the same fixed segment size in

all segmented algorithms. Therefore, in the rest of the thesis we define γ as a

function of P only, γ(P ). From Formula 4.2, we can derive that

T nonblocklinear_bcast(2,m) = Tp2p(m) and, hence, γ(2) = 1.

4.2.1.2 Binomial Tree Algorithm

In Open MPI, the binomial tree broadcast algorithm is segmentation-based

and implemented as a combination of linear tree broadcast algorithms using

non-blocking send and receive operations.

Figure 4.7 shows the stages of execution of the binomial tree broadcast

algorithm. Each stage consists of parallel execution of a number of linear

broadcast algorithms using non-blocking communication.The linear broadcast

algorithms running in parallel have a different number of children. Therefore,

the execution time of each stage will be equal to the execution time of the linear

broadcast algorithm with the maximum number of children. The execution

time of the whole binomial broadcast algorithm will be equal to the sum of the

execution times of these stages.

In Open MPI, the binomial tree broadcast algorithm employs the balanced
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Figure 4.4: Execution stages of the binomial tree broadcast algorithm,
employing the non-blocking linear broadcast (P = 8, ns = 3). Nodes
are labelled by the process ranks. Each arrow represents transmission of
a segment. The number over the arrow gives the index of the broadcast
segment.

binomial tree virtual topology. Therefore, the number of stages in the binomial

broadcast algorithm can be calculated as

Nsteps = blog2P c+ ns − 1. (4.5)

Thus, the time to complete the binomial tree broadcast algorithm can be

estimated as follows:

Tbinomial_bcast(P,m, ns) =

blog2P c+ns−1∑
i=1

max
1≤j≤min(blog2P c,ns)

T nonblocklinear_bcast(Pij,
m

ns
), (4.6)

where Pij denotes the number of nodes in the j-th linear tree of the i-th stage.

Using the property of the binomial tree and Formula 4.23, we have

Tbinomial_bcast(P,m, ns) = (ns · γ(dlog2 P e+ 1)+

blog2 P c−1∑
i=1

γ(dlog2 P e − i+ 1)− 1) · (α +
m

ns
· β). (4.7)
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4.2.1.3 Chain Tree Algorithm

In Open MPI, the chain tree algorithm is segmentation-based and

implemented using non-blocking point-to-point communication. While the

height of the chain tree equal to P − 1, the algorithm will be completed in

P + ns − 2 steps, each consisting of a varying number of concurrent

non-blocking point-to-point communications (technically, Open MPI employs

concurrent non-blocking linear tree broadcast algorithms, but in this case

each linear broadcast will be equivalent to a point-to-point communication).

Therefore, the execution time of the chain tree algorithm can be estimated as

Tchain_bcast(P,m, ns) = (P + ns − 2) · (α +
m

ns
· β). (4.8)

4.2.1.4 Split-Binary Tree Algorithm

In Open MPI, the split-binary tree algorithm is segmentation-based and

implemented using blocking point-to-point communication. The algorithm

consists of two phases – forwarding and exchange. In the first phase, the

message of size m is split into two equal parts in the root, which are then sent

to the left and right subtrees respectively using message segmentation. After

completion of the first phase, each node in the left subtree contains the first

half of the message and each node in the right subtree – the second half of

the message. Because of segmentation, each node will receive ns

2
segments

during the first phase.

As the balanced binary tree virtual topology is employed in the split-binary

tree algorithm, each node in the left subtree will have a matching pair in the

right subtree and vice versa. In the second phase, each pair of matching

nodes in the left and right subtrees exchange their halves of the message.

The execution time of the split-binary tree broadcast will be equal to the sum

of the execution times of the first and the second phases. As the heigh of the

balanced binary tree is equal to blog2 P c, we have
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Tsplit_binary_bcast(P,m, ns) = 2 · (blog2 P c+
ns
2
− 1)·

(α +
m

ns
· β) + (α +

m

2
· β) (4.9)

4.2.1.5 Binary Tree Algorithm

In Open MPI, the binary tree broadcast algorithm is segmentation-based and

uses the balanced binary tree topology (see Figure c). The root broadcasts

each segment to its children using the non-blocking linear tree broadcast

algorithm. Upon receipt of next segment, each internal node acts similarly. As

the binary tree used in this algorithm is balanced, all the non-blocking linear

broadcasts will have the same execution time, namely,

T nonblocklinear_bcast(3,ms) = γ(3) · (α + m
ms
· β).

As the height of the balanced binary tree is equal to blog2 P c, the algorithm

will be completed in (blog2 P c + ns − 1) steps, each consisting of a varying

number of concurrent non-blocking linear broadcasts, involving 3 processes.

Therefore,

Tbinary_bcast(P,m, ns) = γ(3) · (blog2 P c+ ns − 1)·

(α +
m

ns
· β). (4.10)

4.2.1.6 K-chain Tree Algorithm

In Open MPI, the K-chain tree algorithm is implemented using non-blocking

communication and message segmentation. In the K-chain tree, the root node

has K(K = 4) children, while the internal nodes have a single child each

(Figure d). As the height of the tree is bP−1
K
c, the algorithm takes bP−1

K
c+ns−1

steps to complete. At each step, a varying number of non-blocking linear tree

broadcast algorithms will be executed concurrently (one at the first step, K

at the last step, and up to K × (bP−1
K
c − 1) + 1 algorithms for intermediate

steps). Note, that while Open MPI employs concurrent non-blocking linear
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tree broadcast algorithms, in this case the most of the linear broadcasts will

be equivalent to non-blocking point-to-point communications.

The execution time of the K-chain tree algorithm will be equal to the sum

of the execution times of its steps. The execution time of each step will be

equal to the maximum execution time of the concurrently executed linear

broadcasts. For the first ns steps, this maximum time will be the time of the

linear broadcast involving the root of the whole K-chain tree, which is

estimated as γ(K + 1) · (α + m
ns
· β) according to Formula 4.23. For each of

the remaining bP−1
K
c − 1 steps, all concurrently executed linear broadcasts

will be equivalent to non-blocking point-to-point communications, the time of

which is α + m
ns
· β. Thus, the total execution time of the K-chain tree

algorithm will be estimated as

Tk_chain_bcast(P,m, ns) = (bP − 1

K
c+

γ(K + 1) · ns − 1) · (α +
m

ns
· β). (4.11)

4.2.2 Gather Algorithms

In this section, we derive analytical formulas of the gather algorithms

implemented in Open MPI.

4.2.2.1 Linear Without Synchronisation

In the Open MPI implementation of the linear without synchronisation gather

algorithm, the root receives messages from its P − 1 children using blocking

receive operations. Therefore, the execution time of this gather algorithm can

be estimated as the sum of the execution times of P − 1 blocking receive

operations, that is,

Tlinear_gather(P,m) = (P − 1) · (α +m · β). (4.12)
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4.2.2.2 Linear With Synchronisation

The Open MPI implementation of the linear with synchronisation gather

algorithm employs both blocking and non-blocking communications. The

messages gathered from the children are all identically split into two equal

parts. In order to receive all these parts from its P − 1 children, the root

executes a loop, at i-th iteration of which it receives both halves of the

message from the i-th child by performing the following steps: 1) it first posts

a non-blocking receive for the first part; 2) then it sends a zero-byte message

using a blocking send, signalling the child to start sending the message parts;

3) then the root posts a non-blocking receive for the second half of the

message; 4) finally, it blocks itself waiting for the completion of the previously

posted non-blocking receives.

At the same time, upon receipt of a zero-byte signal message from the

root, each child will perform two successive standard blocking sends for the

first and the second parts of its message. When the size of these parts, m
2

, is

grater than the eager threshold, E, then the standard blocking sends will

follow the rendesvouz protocol, that is, will be equivalent to synchronous

sends. Otherwise, they will follow the eager protocol, that is, will be

equivalent to buffered sends. In the first case, the execution of all

point-to-point communications will be serialized, and, therefore, the execution

time of the linear gather with synchronisation algorithm can be estimated as

the sum of the execution times of the employed point-to-point

communications:

Tlinear_gather_with_synch(P,m) = (P − 1) · (2 · (α +
m

2
· β))

= (P − 1) · (2 · α +m · β). (4.13)

Otherwise, when m
2
≤ E, each child will send its half-messages concurrently.

Therefore, the execution time of the linear gather with synchronisation

algorithm in this case can be estimated as
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Figure 4.5: Performance estimation of the binary and binomial tree broadcast
algorithms by the traditional and proposed analytical models in comparison
with experimental curves. The experiments involve ninety processes (P=90).
(a) Estimation by the existing analytical models. (b) Experimental performance
curves. (c) Estimation by the proposed analytical models derived from the
implementation codes.

Tlinear_gather_with_synch(P,m) = (P − 1) · (α +
m

2
· β). (4.14)

4.2.2.3 Binomial Algorithm

In Open MPI, the binomial gather algorithm employs the in-order binomial

tree virtual topology (Figure 4.1f). The leaf nodes and internal nodes use the

standard blocking send to send the messages to their parents, which receive

the message using the blocking receive. The algorithm will be completed in

blog2 P c steps, each performing a set of concurrent blocking receives.

At i-th step, the root will receive a message of size 2i−1 · m from its i-th

child, combining the messages gathered by the latter acting as the root of the

i-th subtree during the previous i − 1 steps (i = 1, ..., blog2 P c). Given this

message size, 2i−1 ·m, will be the largest communicated at the i-th step of the

algorithm, its execution time can be estimated as

Tbinomial_gahter(P,m) =

dlog2 P e∑
i=1

(α + 2i−1 ·m · β)

= dlog2 P e · α + (P − 1) ·m · β. (4.15)
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4.2.3 Comparison of The Proposed Analytical Models

Against The State of The Art

In this section, we use the binomial and binary tree algorithms as an example

to illustrate that unlike the traditional approaches, the approach based on the

derivation of analytical models of collective algorithms from their

implementation codes, yields models, which can be used for accurate

pairwise comparison of the performance of collective algorithms

implementing the same collective operation.

Existing analytical modelling approaches [91, 27, 100] estimate the

execution time of the binary and binomial tree broadcast algorithms as

follows:

Tbinomial_bcast(P,m) = dlog2 P e · (α +m · β),

Tbinary_bcast(P,m) = 2 · (dlog2(P + 1)e − 1) · (α +m · β).

Figure 4.5 shows the performance of the binary tree and binomial tree

algorithms using: a) the estimation by the existing analytical models; b) the

experimental results on the Grisou cluster of the Grid’5000 platform; c) the

estimation by the analytical models presented in Section 4.2.1. It is evident

that while the existing models wrongly predict that the binomial tree algorithm

will outperform the binary tree algorithm on the target platform, our models

correctly predict the relative performance of these algorithms.

4.3 Modelling of Collective Communication

Algorithms: One-Process-Per-Core

We build new analytical performance models of broadcast algorithms

described in Section 4.1.1 for multi-core clusters. For point-to-point

communication modelling, we use the τ -Lop model.

τ -Lop takes into account the distinctive features of the communication

channels to represent a point-to-point transmission as a sequence of
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transfers via shared memory or network. In this approach, we use the τ -Lop

model, that it estimates the time of sending a point-to-point message in s

transfers as T cp2p(m) = oc(m) +
∑s

i=1 L
ci(m), where c represents the

communication channel, and the o and L parameters represent the overhead

of the communication protocol and the transfer time respectively. Hence,

τ -Lop considers a different representation for a message transmitted through

shared memory (c = 0) and network channel (c = 1). For instance, through

shared memory, MPI libraries default transmission is through a shared

intermediate buffer between sender and receiver processes, hence two

identical transfers (s = 2) are needed to transmit the message, and previous

expression reduces to T 0
p2p(m) = o0(m) + 2L0(m). While, through a network,

representation depends on the network capabilities. For instance, in an

Ethernet network we consider two shared memory transfers, from sender

memory to NIC and from receiver NIC to destination memory, and a network

transfer between NICs, as T 1
p2p(m) = o1(m) + 2L0(m) + L1(m).

Most of the Open MPI broadcast algorithms are implemented using

message segmentation, except for the flat tree broadcast algorithm. For

segmented broadcast algorithms, we assume that m = ns ·ms, where ns and

ms are the number of segments and the segment size respectively. In this

work, we assume the same fixed segment size in all segmented algorithms.

4.3.1 Flat Tree Algorithm

In Open MPI, the linear broadcast algorithm is implemented using blocking

send and receive operations. The algorithm transmits the whole message

from the root to the leaves without message segmentation. Regardless of

communication mode (buffered or not), because of blocking communication

and assuming the rendezvous protocol, each next send only starts after the

previous one has been completed. Therefore, the execution time of the linear

tree broadcast algorithm will be equal to the sum of execution times of P − 1

send operations:
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TBFT (P,m) =
P−1∑
i=1

T cip2p(m), (4.16)

where T cip2p is the point-to-point communication time through a channel ci,

connecting the root and the i-th process, estimated using the τ -Lop model. In

the rest of the thesis, we use BFT to refer to the blocking flat tree broadcast

algorithm.

Every time the Open MPI MPI_Bcast operation is invoked with a specific

root, an internal tree with the specific virtual topology for the chosen algorithm

is built, and then, the algorithm is executed. This internal tree is used as a

building block in tree-based segmented broadcast algorithms implementing

MPI_Bcast, namely, in the binomial tree, binary tree, split binary tree, k-chain

tree, and chain tree broadcast algorithms (see Algorithm 1 for more details).

That tree algorithm is composed of flat trees using non-blocking send and

receive operations, hence we separately refer to any of them as non-blocking

flat tree (NBFT).

As illustrated in Figure 4.6 and Figure 4.7, NBFT can use either one of the

two available channels for all point-to-point communications or both of them. In

general, the number of network point-to-point communications, C, in an NBFT

can be calculated as follows,

C =
P−1∑
i=1

ci (4.17)

Obviously, 0 ≤ C ≤ P − 1. Then, the number of point-to-point

communications through shared memory in the NBFT can be expressed as

P − C − 1. The time of message transmission through network channel is

longer than through shared memory. In our model, we assume that

T 1
p2p(m) = Q(m) · T 0

p2p(m), (4.18)

where Q(m) is a platform-dependent parameter representing the ratio of

delays of the communication channels (Q(m) ≥ 2). We denote T cNBFT (P,m)

the execution time of an NBFT, which uses only one channel, c, for all
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message transmissions. The execution time of an arbitrary NBFT,

TNBFT (P,C,m), is modelled as follows,

TNBFT (P,C,m) =

T 0
NBFT (P,m), if C=0

T 1
NBFT (C + bP−C−1

Q(m)
c+ 1,m), otherwise.

(4.19)

Thus, in our model the execution time of any NBFT A, which uses two

channels, will be calculated as the execution time of the NBFT B, only using

the network channel and obtained from A by formally replacing each group of

Q(m) shared-memory transmissions by one network transmission.

It is evident from Algorithm 1 that NBFTs are only used in Open MPI to

transmit segments of the same fixed size, ms, which is therefore not a variable

in our model.

The execution time of the NBFT broadcasting a message of size ms

through channel c, T cNBFT (P,ms), can be bounded as follows,

T cp2p(ms) ≤ T cNBFT (P,ms) ≤ T cBFT (P,ms). (4.20)

From formula (4.16), we can derive

T cBFT (P,ms) =
P−1∑
i=1

T cp2p(ms) = (P − 1) · T cp2p(ms). (4.21)

Hence,

T cp2p(ms) ≤ T cNBFT (P,ms) ≤ (P − 1) · T cp2p(ms). (4.22)

Therefore, we approximate T cNBFT (P,ms) as follows,

T cNBFT (P,ms) = γc(P ) · T cp2p(ms), (4.23)

where γc(P ) is a parallelisation factor, representing the increase in the cost of

the overlapping P − 1 non-blocking transmissions of a segment of size ms

through the channel c in the NBFT with respect to a single point-to-point
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transmission.

4.3.2 Binomial Tree Algorithm

In Open MPI, the binomial tree broadcast algorithm is segmentation-based

and implemented as a combination of flat tree broadcast algorithms using

non-blocking send and receive operations. Figure 4.6 shows the topology of

a binomial tree with P = 8 and the NBFTs executing at different stages of the

algorithm (see Algorithm 1). Figure 4.7 illustrates the stages of execution of

the binomial tree algorithm illustrated in Figure 4.6. Each stage consists of

parallel execution of a number of NBFTs. Therefore, the execution time of a

stage will be equal to the maximum execution time of its NBFTs and the

execution time of the algorithm will be equal to the sum of the execution times

of the stages.

Open MPI employs the balanced binomial tree for the binomial tree

broadcast algorithm. The height of the balanced binomial tree is equal to

blog2P c. The number of parallel running NBFTs, j, at the i-th stage can be

bound by 2 + (blog2P c − 1) · (blog2P c − 2). The algorithm will be completed

in blog2P c + m
ms
− 1 stages. Thus, the time to complete the binomial tree

broadcast algorithm will be estimated as follows,

Tbinomial(P,m,ms) =

blog2P c+ m
ms
−1∑

i=1

max
j
TNBFT (Pij, Cij,ms) , (4.24)

where Pij (1 ≤ Pij ≤ dlog2P e) is the number of nodes in the j-th NBFT

running at i-th stage.

4.3.3 Chain Tree Algorithm

In Open MPI, the chain tree algorithm is segmentation-based and

implemented using non-blocking point-to-point communication. While the

height of the chain tree equal to P − 1, the algorithm will be completed in

P + m
ms
− 2 steps, each consisting of a varying number of concurrent NBFTs.
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Figure 4.6: A binomial tree made
of eight processes. Rectangles
above present nodes on the
cluster each of which consist of
a quad-core processor. Ranks
are mapped using sequential
mapping algorithm. Below, green
and red arrows in the binomial
tree represent shared memory and
network message transmission
respectively. Rectangles represent
the non-blocking flat trees (NBFTs)
executed by Algorithm 1.
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Figure 4.7: Execution stages of
the binomial broadcast algorithm
employing the non-blocking flat
trees (NBFTs) broadcasts on
the cluster of two nodes each of
which composes of a quad-core
processor described in Figure 4.6.
The message is split up into ns = 3
segments. Each arrow represents
transmission of a segment through
shared memory (green) and
network (red) channels. The
number over the arrow gives the
index of the broadcast segment.
The execution time of the stage is
equal to the execution time of the
grey coloured NBFT.
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The number of parallel running NBFTs at the ith execution stage of the chain

tree algorithm, j, varies as 1 ≤ j ≤ P − 1. Therefore, the execution time of

the chain tree algorithm can be estimated as

Tchain(P,m,ms) =

P+ m
ms
−2∑

i=1

max
j
TNBFT (Pij, Cij,ms) . (4.25)

where Pij = 2.

4.3.4 Binary Tree Algorithm

In Open MPI, the binary tree broadcast algorithm is segmentation-based and

uses the balanced binary tree topology (see Figure c). The root broadcasts

each segment to its children using the NBFT. Upon receipt of next segment,

each internal node acts similarly. As the height of the balanced binary tree

is equal to blog2 P c, the algorithm will be completed in blog2 P c + m
ms
− 1

steps, each consisting of a varying number of concurrent non-blocking flat tree

broadcasts, involving 3 processes. The number of parallel running NBFTs at

the ith execution stage of the binary tree algorithm, j, varies as 1 ≤ j ≤
2blog2P c. Therefore,

Tbinary(P,m,ms) =

blog2 P c+ m
ms
−1∑

i=1

max
j
TNBFT (Pij, Cij,ms) , (4.26)

where Pij = 3

4.3.5 K-chain Tree Algorithm

In Open MPI, the K-chain tree algorithm is implemented using non-blocking

communication and message segmentation. In the K-chain tree, the root node

has K(K > 1) children, while the internal nodes have a single child each

(Figure d). As the height of the tree is bP−1
K
c, the algorithm takes bP−1

K
c+ m

ms
−1

steps to complete. The number of parallel running NBFT at the ith execution

stage of the k-chain tree algorithm, j, varies as 1 ≤ j ≤ (P −K − 1). Note,
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that while Open MPI employs concurrent NBFTs, in this case the most of the

NBFTs will be equivalent to non-blocking point-to-point communications.

Tkchain(P,m,ms) =

bP−1
K
c+ m

ms
−1∑

i=1

max
j
TNBFT (Pij, Cij,ms) , (4.27)

where Pij ∈ {1, K}.

4.3.6 Split-Binary Tree Algorithm

In Open MPI, the split-binary tree algorithm is segmentation-based and

implemented using blocking send and non-blocking receive routines. This is

the difference from other segmented tree-based broadcast algorithms which

all use non-blocking standard-mode send. However, because in Open MPI

the segment size ms is selected so that the blocking sends in the split binary

tree will be executed in the buffered mode, we approximate the execution

time of all flat tree broadcast algorithms in the split binary by the execution

time of an NBFT.

The split binary algorithm consists of two phases – forwarding and

exchange. In the first phase, the message of size m is split into two equal

parts in the root, which are then sent to the left and right subtrees

respectively using message segmentation.

After completion of the first phase, each node in the left subtree contains

the first half of the message and each node in the right subtree – the second

half of the message. Because of segmentation, each node will receive m
2·ms

segments during the first phase.

As the balanced binary tree virtual topology is employed in the split-binary

tree algorithm, each node in the left subtree will have a matching pair in the

right subtree and vice versa. In the second phase, each pair of matching

nodes in the left and right subtrees exchange their halves of the message.

The execution time of the split-binary tree broadcast will be equal to the sum

of the execution times of the first and the second phases. As the height of the

balanced binary tree is equal to blog2 P c, the first phase will be completed in
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blog2P c + m
2ms
− 1 steps. While in the second phase each pair of matching

nodes send/receive message at the same time, the execution time of the

second phase will be equal to max
ck

T ckp2p
(
m
2

)
where 1 ≤ k ≤ bP−1

2
c and

ck ∈ {0, 1}. Thus, the time to complete the split-binary tree algorithm will be

estimated as follows:

Tsplit_binary(P,m,ms) =

blog2 P c+ m
2ms
−1∑

i=1

max
j
TNBFT (Pij, Cij,ms)+

max
ck

{
T ckp2p

(m
2

)}
, (4.28)

where Pij = 3.
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Chapter 5

Estimation of Model Parameters

This section presents the proposed approach to estimation of the parameters

of analytical performance models of MPI collective algorithms. We estimate

the parameters separately for each algorithm and include the modelled

collective algorithm in the communication experiment, which is used to

estimate the model parameters. The same fixed segment size is used in the

estimation of model parameters for all segmented collective algorithms. The

segment size used in this thesis is less than Open MPI eager threshold.

Thus, only the eager protocol is employed for segmented collective

algorithms in our communication experiments. As stated in Chapter 4, the

approach to estimation of the model parameters are presented for two

different configurations as well: One-Processes-Per-CPU and

One-Processes-Per-Core.

5.1 One-Processes-Per-CPU

As presented in Section 4.2, the analytical model of an Open MPI collective

algorithm uses three platform parameters – α, β, and γ(p). The traditional

state-of-the-art approach to estimation of α and β would be to find these

parameters from a number of point-to-point communication experiments.

Namely, the time of a round-trip of a message of size m, RTT (m), is

measured for a wide range of m. From these experiments, a system of linear
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equations with α and β as unknowns is derived. Then, linear regression is

applied to find α and β. The found values of α and β would be then used in

all analytical predictive formulas.

This approach yields a unique single pair of (α, β) for each target

platform. Unfortunately, with α and β found this way, not all our analytical

formulas will be accurate enough to be used for accurate selection of the best

performing collective algorithm. Using non-linear regression does not improve

the situation as the function RTT (m) is typically near linear. Therefore, we

propose to estimate the model parameters separately for each collective

algorithm. More specifically, we propose to design a specific communication

experiment for each collective algorithm, so that the algorithm itself would be

involved in the execution of the experiment. Moreover, the execution time of

this experiment must be dominated by the execution time of this collective

algorithm. Then, we conduct a number of experiments on the target platform

for a range of numbers of processors, p, and message sizes, m. From those

experiments, we can derive a sufficiently large number of equations with α, β,

and γ(p) as unknowns, and then use an appropriate solver to find their

values.

Unfortunately, when applied straightforwardly, this approach yields a

system of non-linear equations like the one shown in Figure 5.1. This

nonlinearity makes the task of estimation of the parameters mathematically

very difficult, because we need to solve a large system of nonlinear

equations.

Our approach to this problem is the following. As the non-linearity is

caused by multiplicative terms involving γ(p), we separate the estimation of

γ(p) from the estimation of α and β. Namely, we assume that γ(p) is

algorithm-independent and design a separate communication experiment for

its estimation. The values of γ(p) found from this experiment are then used

as known coefficients in the algorithm-specific systems of equations for α and

β. We present this approach in Sections 5.2.1 and 5.2.2.
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
(P−1
K

+ γ(K + 1) · ns1 − 1) · (α + m1

ns1
· β) + (P − 1) · (α +mg1 · β) = T1

(P−1
K

+ γ(K + 1) · ns2 − 1) · (α + m2

ns2
· β) + (P − 1) · (α +mg2 · β) = T2

. . .

(P−1
K

+ γ(K + 1) · nsM − 1) · (α + mM

ns2
· β) + (P − 1) · (α +mgM · β) = TM

⇓

α +
(P−1

K
+γ(K+1)·ns1−1)·

m1
ns1

+(P−1)·mg1

(P−1)·(1+K)
K

+γ(K+1)·ns1−1
· β = T1

(P−1)·(1+K)
K

+γ(K+1)·ns1−1

α +
(P−1

K
+γ(K+1)·ns2−1)·

m2
ns2

+(P−1)·mg2

(P−1)·(1+K)
K

+γ(K+1)·ns2−1
· β = T2

(P−1)·(1+K)
K

+γ(K+1)·ns2−1

. . .

α +
(P−1

K
+γ(K+1)·nsM

−1)· mM
nsM

+(P−1)·mgM

(P−1)·(1+K)
K

+γ(K+1)·nsM
−1

· β = TM
(P−1)·(1+K)

K
+γ(K+1)·nsM

−1

Figure 5.1: A system of M non-linear equations with α, β, and γ(K + 1)
as unknowns, derived from M communication experiments, each consisting
of the execution of the K-Chain tree broadcast algorithm, broadcasting a
message of size mi (i = 1, ...,M ) from the root to the remaining P − 1
processes, followed by the linear gather algorithm without synchronisation,
gathering messages of size mgi (mgi < E and mgi 6= ms) on the root. The
execution times, Ti, of these experiments are measured on the root.
Given γ(K + 1) is evaluated separately, the system becomes a system of M
linear equations with α and β as unknowns.
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5.1.1 Estimation of γ(p)

The model parameter γ(p) appears in the formula estimating the execution

time of the linear tree broadcast algorithm with non-blocking communication,

which is only used for broadcasting of a segment in the tree-based

segmented broadcast algorithms. Thus, in the context of Open MPI, the

linear tree broadcast algorithm with non-blocking communication will always

broadcast a message of size ms to a relatively small number of processes.

According to Formula 4.4,

γ(p) =
Tnonblock
linear_bcast(p,ms)

Tp2p(ms)
=

Tnonblock
linear_bcast(p,ms)

Tnonblock
linear_bcast(2,ms)

.

Therefore, in order to estimate γ(p) for a given range of the number of

processes, p ∈ {2, ..., P}, we need a method for estimation of

T nonblocklinear_bcast(p,ms). We use the following method:

• For each 2 ≤ p ≤ P , we measure on the root the execution time

T1(p,N) of N successive calls to the linear tree with non-blocking

communication broadcast routine separated by barriers. The routine

broadcasts a message of size ms.

• We estimate T nonblocklinear_bcast(p,ms) as T2(p) =
T1(p,N)

N
.

The experimentally obtained discrete function T2(p)
T2(2)

is used as a

platform-specific but algorithm-independent estimation of γ(p).

From our experiments, we observed that the discrete estimation of γ(p) is

near linear. Therefore, as an alternative for platforms with very large numbers

of processors, we can build by linear regression a linear approximation of the

discrete function T2(p)
T2(2)

, obtained for a representative subset of the full range of

p, and use this linear approximation as an analytical estimation of γ(p).

5.1.2 Estimation of Algorithm Specific α And β

To estimate the model parameters α and β for a given collective algorithm,

we design a communication experiment, which starts and finishes on the root

(in order to accurately measure its execution time using the root clock), and
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involves the execution of the modelled collective algorithm so that the total

time of the experiment would be dominated by the time of its execution.

For example, for all broadcast algorithms, the communication experiment

consists of a broadcast of a message of size m (where m is a multiple of

segment size ms), using the modelled broadcast algorithm, followed by a

linear-without-synchronisation gather algorithm, gathering messages of size

mg (mg < E) on the root. The execution time of this experiment on P nodes,

Tbcast_exp(P,m), can be estimated as follows:

Tbcast_exp(P,m) = Tbcast_alg(P,m) + Tlinear_gather(P,mg) (5.1)

Using analytical formulas from Section 4.2 for Tbcast_alg(P,m) and

Tlinear_gather(P,mg), for each combination of P and m this experiment will

yield one linear equation with α and β as unknowns. By repeating this

experiment with different P and m, we obtain a system of linear equations for

α and β. Each equation in this system can be represented in the canonical

form, α + β × mi = Ti (i = 1, ...,M ). Finally, we use the least-square

regression to find α and β, giving us the best linear approximation α + β ×m
of the discrete function f(mi) = Ti (i = 1, ...,M ).

Figure 5.1 shows a system of linear equations built for the K-Chain tree

broadcast algorithm for our experimental platform. To build this system, we

used the same P nodes in all experiments but varied the message size m ∈
{m1, ...,mM}. With M different message sizes, we obtained a system of M

equations. The number of nodes, P , was approximately equal to the half of the

total number of nodes. We observed that the use of larger numbers of nodes

in the experiments will not change the estimation of α and β.

5.2 One-Process-Per-Core

As presented in Section 4.3, the analytical models of the Open MPI

broadcast algorithms use the τ -Lop model parameters, the ratio of delays of

the communication channels Q(m), and the parallelisation factor γc(P ) as

the model parameters. The traditional state-of-the-art approach to estimation
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of model parameters would be to find these parameters from a number of

point-to-point communication experiments. Namely, the time of a round-trip of

a message of size m, RTT (m), is measured for a wide range of m. From

these experiments, a system of linear equations with unknown model

parameters is derived. Then, linear regression is applied to find model

parameters.

This approach yields a unique single set of parameters for each target

platform. Unfortunately, with model parameters found this way, not all our

analytical formulas will be accurate enough to be used for accurate selection

of the best performing broadcast algorithm. Using non-linear regression does

not improve the situation as the function RTT (m) is typically near linear.

Therefore, we propose to estimate the model parameters separately for each

broadcast algorithm. More specifically, we propose to design a specific

communication experiment for each broadcast algorithm, so that the

algorithm itself would be involved in the execution of the experiment.

Moreover, the execution time of this experiment must be dominated by the

execution time of this broadcast algorithm. Then, we conduct a number of

experiments on the target platform for a range of numbers of processors and

message sizes. From those experiments, we can derive a sufficiently large

number of equations with unknown model parameters, and then use an

appropriate solver to find their values.

Our approach to this problem is the following. We consider γc(P ) and

Q(m) platform-specific but algorithm-independent parameters and design a

separate communication experiment for their estimation. The values of γc(P )

and Q(m) found from this experiment are then used as known constants in

the algorithm-specific systems of equations for the τ -Lop model parameters.

We present this approach in Sections 5.2.1 and 5.2.2. The motivation behind

assuming γc(P ) andQ(m) algorithm-independent is that otherwise they would

appear in the derived equations as unknowns and make the the equations

non-linear.
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5.2.1 Estimation of γc(P ) And Q(m)

The model parameter γc(P ) represents the increase in the cost of the

overlapping P − 1 non-blocking transmissions through the network in the

NBFT with respect to a single point-to-point message transmission. The

NBFT is only used for broadcasting of a segment in the tree-based

segmented broadcast algorithms. Thus, in the context of Open MPI, the

NBFT will always broadcast a message of size ms to a relatively small

number of processes.

According to Formula (4.23),

γc(P ) =
T cNBFT (P,ms)

T cp2p(ms)
=
T cNBFT (P,ms)

T cNBFT (2,ms)
. (5.2)

where P ∈ {2, ..., Pmax(c)
NBFT }. P

max(c)
NBFT is the maximum number of the processes

communicating through channel c in NBFTs on a given platform. Therefore,

in order to estimate γc(P ), we need a method for estimation of T cNBFT (P,ms).

We use the following method:

• For each 2 ≤ P ≤ P
max(c)
NBFT , we measure on the root the execution time

θc(P,N) of N successive calls of the NBFT separated by barriers. The

routine broadcasts a message of size ms.

• We estimate T cNBFT (P,ms) as

T cNBFT (P,ms) =
θc(P,N)

N
.

The experimentally obtained discrete function
T cNBFT (P,ms)

T cNBFT (2,ms)
is used as a

platform-specific but algorithm-independent estimation of γc(P ).

Parameter Q(m) only appears in the analytical models of the Open MPI

broadcast algorithms in the context of NBFTs broadcasting a segment of fixed

size ms (see Section 4.3.1). Therefore, we only need to estimate Q(ms). By

definition T cNBFT (2,ms) = T cp2p(ms), and using formula (4.18) we estimate

Q(ms) as
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Q(ms) =
T 1
NBFT (2,ms)

T 0
NBFT (2,ms)

(5.3)

5.2.2 Estimation of Algorithm Specific Model Parameters

To estimate the model parameters for a given broadcast algorithm, we design

a communication experiment, which starts and finishes on the root (in order

to accurately measure its execution time using the root clock), and involves

the execution of the modelled broadcast algorithm so that the total time of the

experiment would be dominated by the time of its execution. In this section,

we present the estimation of τ -Lop model parameters.

For all broadcast algorithms, the communication experiment consists of a

broadcast of a message of size m (where m is a multiple of segment size

ms), using the modelled broadcast algorithm, followed by the

flat-without-synchronisation gather algorithm. This algorithm works by

gathering messages of size ms on the root. The execution time of this

experiment on P nodes, Tcomm_experiment(P,m), can be estimated as follows,

Tcomm_experiment(P,m) =

Tbcast(P,m) + Tflat_gather(P,ms). (5.4)

The execution time of the flat-without-synchronisation gather algorithm,

gathering a segment of size mg on the root from P − 1 processes, is

estimated as follows [124],

Tflat_gather(P,ms) =
P−1∑
i=1

T cip2p (ms) =

P−1∑
i=1

T 0
p2p(ms), if ci = 0

T 1
p2p(ms), if ci = 1

=

P−1∑
i=1

o0 + 2L0, if ci = 0

o1 + 2L0 + L1, if ci = 1
(5.5)

where o0, o1, L0 and L1 denote o0(ms), o1(ms), L0(ms) and L1(ms)
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respectively. Thus, as {ci}P−1i=1 are all knowns for the experimental setup,

Tflat_gather(P,ms) is estimated as a linear function of unknown τ -Lop model

parameters o0, o1, L0 and L1.

To explain in detail the contribution of the broadcast algorithm in the

estimated time of the experiment, we assume the binomial tree broadcast

algorithm. Therefore, according to formulas (4.18), (4.19) and (4.24), the

execution time of the broadcast algorithm will be expressed as follows,

Tbcast(P,m) = Tbinomial(P,m) =

N∑
i=1

max
j
TNBFT (Pij, Cij,ms) =

N∑
i=1

max
j

γ0(Pij) · T 0
p2p(ms), if Cij = 0

γ1(P ◦ij) · T 1
p2p(ms), otherwise

=

N∑
i=1

max
j


γ0(Pij)

Q(ms)
· T 1

p2p(ms), if Cij = 0

γ1(P ◦ij) · T 1
p2p(ms), otherwise

=

T 1
p2p(ms) ·

N∑
i=1

max
j


γ0(Pij)

Q(ms)
, if Cij = 0

γ1(P ◦ij), otherwise
=

(
o1 + 2L0 + L1

)
·
N∑
i=1

max
j


γ0(Pij)

Q(ms)
, if Cij = 0

γ1(P ◦ij), otherwise
(5.6)

where N is the number of execution stages of the algorithm,

N = blog2P c + m
ms
− 1; Pij and Cij are the number of nodes and the number

of network point-to-point communications in the j-th NBFT at i-th stage

respectively; P ◦ij = Cij + b
Pij − Cij − 1

Q(ms)
c.

In this experiment, {Pij} and {Cij} are all knowns. As presented in

Section 5.2.1, γc(P ) and Q(ms) are algorithm-independent parameters,

which are estimated separately, before the estimation of algorithm-specific

τ−Lop parameters. Therefore, P ◦ij = Cij + bPij − Cij − 1

Q(ms)
c, γ0(Pij)

Q(ms)
and

γ1(P ◦ij) are also all knowns for all i and j. Thus, like Tflat_gather(P,m),

Tbcast(P,m) is also estimated as a linear function of unknown τ -Lop model
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
λ11 · o0 + λ12 · o1 + λ13 · L0 + λ14 · L1 = T1

λ21 · o0 + λ22 · o1 + λ23 · L0 + λ24 · L1 = T2

. . .

λM1 · o0 + λM2 · o1 + λM3 · L0 + λM4 · L1 = TM

Figure 5.2: A system of M linear equations with o0, o1, L0 and L1 as
unknowns, derived from M communication experiments, each consisting
of the execution of the binomial tree broadcast algorithm, broadcasting a
message of size mi (i = 1, ...,M ) from the root to the remaining P −
1 processes, followed by the flat-without-synchronisation gather algorithm,
gathering messages of size ms (segment size) on the root. The execution
times, Ti, of these experiments are measured on the root.

parameters o0, o1, L0 and L1.

Therefore, for each pair of (P , m), formula (5.4) will yield one linear

equation with unknown τ -Lop model parameters of the form

Tcomm_experiment(P,m) = λ1 · o0 + λ2 · o1 + λ3 · L0 + λ4 · L1 (5.7)

where λ1, λ2, λ3 and λ4 are constants. By repeating this experiment with

different m, we obtain a system of linear equations for o0, o1, L0 and L1

(Figure 5.2). Each equation in this system is represented in the canonical

form, λi1 · o0 + λi2 · o1 + λi3 · L0 + λi4 · L1 = Ti, (i = 1, ...,M). Finally, we use

the least-square regression to find unknown model parameters. Similarly, we

build systems of linear equations for other broadcast algorithms implemented

in Open MPI.
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Chapter 6

Experimental Results

The goal of this thesis is selection of the optimal collective algorithms using

analytical performance models. To achieve this, we derive new analytical

performance models from implementing code in Chapter 4 and propose a

new method to measure model parameters in Chapter 5. This chapter

presents an experimental validation of the proposed approach to selection of

the optimal collective algorithms using Open MPI broadcast and gather

operations. The approach is validated for two different configurations: (1) MPI

processes are mapped by CPU, One-Process-Per-CPU. (2) MPI processes

are mapped by CPU-core, One-Process-Per-Core. In all experiments, we use

the default Open MPI configuration (without any collective optimization

tuning).

6.1 One-Process-Per-CPU

6.1.1 Experiment Setup

For experiments, we use Open MPI 3.1 running on a dedicated Grisou and

Gros clusters of the Nancy site of the Grid‘5000 infrastructure [38]. The

Grisou cluster consists of 51 nodes each with 2 Intel Xeon E5-2630 v3 CPUs

(8 cores/CPU), 128GB RAM, 2x558GB HDD, interconnected via 10Gbps

Ethernet. The Gros cluster consists of 124 nodes each with Intel Xeon Gold

5220 (18 cores/CPU), 96GB RAM, 894GB SSD, interconnected via 2 x 25Gb
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Number of processes (p) γ(p)
Grisou Gros

3 1.114 1.084
4 1.219 1.17
5 1.283 1.254
6 1.451 1.339
7 1.540 1.424

Table 6.1: Estimated values of γ(p) on Grisou and Gros clusters.

Ethernet. We do not utilize the InfiniBand interconnect on the Grisou cluster

in our experiments.

To make sure that the experimental results are reliable, we follow a

detailed methodology: 1) We make sure that the cluster is fully reserved and

dedicated to our experiments. 2) For each data point in the execution time of

collective algorithms, the sample mean is used, which is calculated by

executing the application repeatedly until the sample mean lies in the 95%

confidence interval and a precision of 0.025 (2.5%) has been achieved. We

also check that the individual observations are independent and their

population follows the normal distribution. For this purpose, MPIBlib [77] is

used.

In our communication experiments, MPI programs use the

one-process-per-CPU configuration, and the maximal total number of

processes is equal to 90 on Grisou and 124 on Gros clusters. The message

segment size, ms, for segmented broadcast algorithms is set to 8KB and is

the same in all experiments. This segment size is commonly used for

segmented broadcast algorithms in Open MPI. Selection of optimal segment

size is out of the scope of this thesis.

6.1.2 Experimental Estimation of Model Parameters

First of all, we would like to stress again that we estimate model parameters

for each cluster separately.

Estimation of parameter γ(p) for our experimental platforms follows the

method presented in Section 5.2.1. With the maximal number of processes
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equal to 90 (Grisou) and 124 (Gros), the maximal number of children in the

linear tree broadcast algorithm with non-blocking communication, used in the

segmented Open MPI broadcast algorithms, will be equal to seven. Therefore,

the number of processes in our communication experiments ranges from 2 to

7 for both clusters. By definition, γ(2) = 1. The estimated values of γ(p) for p

from 3 to 7 are given in Table 6.1.

After estimation of γ(p), we conduct communication experiments to

estimate algorithm-specific values of parameters α and β for six broadcast

algorithms and three gather algorithms following the method described in

Section 5.2.2. In these experiments we use 40 processes on Grisou and 124

on Gros. The message size, m, varies in the range from 8KB to 4MB in the

broadcast experiments, and from 64KB to 1MB in the gather experiments.

We use 10 different sizes for broadcast algorithms, {mi}10i=1, and 5 different

sizes for gather algorithms, {mi}5i=1, separated by a constant step in the

logarithmic scale, logmi−1 − logmi = const. Thus, for each collective

algorithm, we obtain a system of 10 linear equations with α and β as

unknowns. We use the Huber regressor [125] to find their values from the

system. It is less sensitive to outliers in data than the squared error loss. We

visualized the lines built using the Ordinary Least Squares [126], Theil-Sen

[127], Random Sample Consensus (RANSAC) [128] and Huber regressors

[125], and the Huber regressor was the best fit (Figure 6.1). Besides, Table

6.2 shows that estimated negative values using OSL, Theil-Sen and

RANSAC have no physical meaning.

OSL Theil-Sen RANSAC
Linear tree 2.8× 10−4, 0.0 1.6× 10−12, 2.0× 10−8 3.5× 10−5, 0.0
K-Chain tree −2.6× 10−5, 4.7× 10−9 −2.5× 10−5, 4.6× 10−9 −3.0× 10−5, 5.0× 10−9

Chain tree 6.3× 10−4, −2.7× 10−8 2.5× 10−3, −1.8× 10−7 7.7× 10−3, −6.2× 10−7

Split-binary tree 8.7× 10−4, −5.3× 10−8 1.0× 10−3, −6.4× 10−8 1.8× 10−3,−1.1× 10−7

Binary tree −2.2× 10−5, 3.9× 10−9 −1.8× 10−5, 3.7× 10−9 −2.3× 10−5, 4.0× 10−9

Binomial tree −3.2× 10−5, 4.5× 10−9 −3.4× 10−5,4.7× 10−9 −3.2× 10−5, 4.5× 10−9

Table 6.2: Estimated values of α and β using OSL, Theil-Sen and RANSAC
algorithms for Open MPI broadcast algorithms.

The values of parameters α and β obtained this way can be found in Table

6.3 and Table 6.4. We can see that the values of α and β do vary depending
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Figure 6.1: Comparison of the accuracy of the linear regression algorithms.
Experimental curve plotted using the system of linear equations presented in
Figure 5.1 where P = 50. X and Y axises present β coefficient and left side
coefficient respectively in the second system of linear equations in Figure 5.1.

on the collective algorithm, and the difference is more significant between

algorithms implementing different collective operations. The results support

our original hypothesis that the average execution time of a point-to-point

communication will very much depend on the context of the use of the

point-to-point communications in the algorithm. Therefore, the estimated

values of the α and β capture more than just sheer network characteristics.

One interesting example is the Split-binary tree and Binary tree broadcast

algorithms. They both use the same virtual topology, but the estimated time

of a point-to-point communication, α + β ×m, is smaller in the context of the

Split-binary one. This can be explained by a higher level of parallelism of the

Split-binary algorithm, where a significant part of point-to-point

communications is performed in parallel by a large number of independent

pairs of processes from the left and right subtrees.
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Collective algorithm α(sec) β ( sec
byte

)
Broadcast

Linear tree 2.2× 10−12 1.8× 10−8

K-Chain tree 5.7× 10−13 4.7× 10−9

Chain tree 6.1× 10−13 4.9× 10−9

Split-binary tree 3.7× 10−13 3.6× 10−9

Binary tree 5.8× 10−13 4.7× 10−9

Binomial tree 5.8× 10−13 4.8× 10−9

Gather
Linear tree without
synchronisation

1.5× 10−5 1.5× 10−9

Binomial tree 1.2× 10−4 8.6× 10−10

Linear tree with
synchronisation

5.9× 10−5 9.4× 10−10

Table 6.3: Estimated values of α and β for the Grisou cluster and Open MPI
broadcast and gather algorithms.

Collective algorithm α(sec) β ( sec
byte

)
Broadcast

Linear tree 1.4× 10−12 1.1× 10−8

K-Chain tree 5.4× 10−13 4.5× 10−9

Chain tree 4.7× 10−12 3.8× 10−8

Split-binary tree 5.5× 10−13 4.5× 10−9

Binary tree 5.8× 10−13 4.7× 10−9

Binomial tree 1.2× 10−13 1.0× 10−9

Gather
Linear tree without
synchronisation

1.3× 10−4 3.4× 10−10

Binomial tree 1.0× 10−4 4.2× 10−10

Linear tree with
synchronisation

9.5× 10−5 3.9× 10−10

Table 6.4: Estimated values of α and β for the Gros cluster and Open MPI
broadcast and gather algorithms.
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6.1.3 Accuracy of Selection of Optimal Collective

Algorithms Using The Constructed Analytical

Performance Models

The constructed analytical performance models of the Open MPI broadcast

and gather collective algorithms are designed for the use in the MPI_Bcast and

MPI_Gather routines for runtime selection of the optimal algorithm, depending

on the number of processes and the message size. While the efficiency of

the selection procedure is evident from the low complexity of the analytical

formulas derived in Section 4.2, the experimental results on the accuracy are

presented in this section.

Figure 6.2 and 6.3 show the results of our experiments for MPI_Bcast and

MPI_Gather on Grisou and Gros clusters respectively. For both operations,

we present results of experiments with 50, 80 and 90 processes on Grisou,

and 80, 100 and 124 on Gros. The message size, m, varies in the range from

8KB to 4MB in the broadcast experiments, and from 64KB to 1MB in the

gather experiments. We use 10 different sizes for broadcast algorithms,

{mi}10i=1, and 5 different sizes for gather algorithms, {mi}5i=1, separated by a

constant step in the logarithmic scale, logmi−1 − logmi = const. The graphs

show the execution time of the collective operation as a function of message

size. Each data point on a blue line shows the performance of the algorithm

selected by the Open MPI decision function for the given operation, number

of processes and message size. Each point on a red line shows the

performance of the algorithm selected by our decision function, which uses

the constructed analytical models. Each point on a green line shows the

performance of the best Open MPI algorithm for the given collective

operation, number of processes and message size.
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Figure 6.2: Comparison of the selection accuracy of the Open MPI
decision function and the proposed model-based method for MPI_Bcast and
MPI_Gather on Grisou cluster.
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Figure 6.3: Comparison of the selection accuracy of the Open MPI
decision function and the proposed model-based method for MPI_Bcast and
MPI_Gather on Gros cluster.
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P=90, MPI_Bcast, Grisou
m (KB) Best Model-based (%) Open MPI (%)

8 binomial binary (3) split_binary (160)
16 binary binary (0) split_binary (1)
32 binary binary (0) split_binary (0)
64 split_binary binary (1) split_binary (0)

128 binary binary (0) split_binary (1)
256 split_binary binary (2) split_binary (0)
512 split_binary binary (2) chain (111)
1024 split_binary binary (3) chain (88)
2048 split_binary binary (2) chain (55)
4096 split_binary binary (1) chain (20)

P=100, MPI_Bcast, Gros
m (KB) Best Model-based (%) Open MPI (%)

8 binary binomial (3) split_binary (549)
16 binomial binomial (0) split_binary (32)
32 binomial binomial (0) split_binary (3)
64 split_binary binomial (8) split_binary (0)

128 split_binary binomial (8) split_binary (0)
256 binary binary (0) split_binary (6)
512 binary binary (0) chain (7297)
1024 split_binary binary (7) chain (6094)
2048 split_binary binary (4) chain (3227)
4096 split_binary binary (9) chain (2568)

Table 6.5: Comparison of the model-based and Open MPI selections with
the best performing MPI_Bcast algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.

P=90, MPI_Gather, Grisou
m (KB) Best Model-based (%) Open MPI (%)

64 binomial binomial (0) linear_sync (190)
128 binomial binomial (0) linear_sync (104)
256 binomial binomial (0) linear_sync (68)
512 binomial binomial (0) linear_sync (36)
1024 binomial binomial (0) linear_sync (19)

P=100, MPI_Gather, Gros
m (KB) Best Model-based (%) Open MPI (%)

64 binomial binomial (0) linear_sync (524)
128 binomial binomial (0) linear_sync (271)
256 binomial binomial (0) linear_sync (2073)
512 binomial binomial (0) linear_sync (71)
1024 binomial binomial (0) linear_sync (36)

Table 6.6: Comparison of the model-based and Open MPI selections with
the best performing MPI_Gather algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.

Table 6.5 presents selections made for MPI_Bcast using the proposed

model-based runtime procedure and the Open MPI decision function. For

each message size m, the best performing algorithm, the model-based

selected algorithm, and the Open MPI selected algorithm are given. For the

latter two, the performance degradation in percents in comparison with the

best performing algorithm is also given. We can see that for the Grisou

cluster, the model-based selection either picks the best performing algorithm,

or the algorithm, the performance of which deviates from the best no more

than 3%. Given the accuracy of measurements, this means that the

model-based selection is practically always optimal as the performance of the

selected algorithm is indistinguishable from the best performance. The Open

MPI selection is near optimal in 50% cases and causes significant, up to

160%, degradation in the remaining cases. For the Gros cluster, the

model-based selection picks either the best performing algorithm or the

algorithm with near optimal performance, no worse than 10% in comparison

with the best performing algorithm. At the same time, while near optimal in
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40% cases, the algorithms selected by the Open MPI demonstrate

catastrophic degradation (up to 7297%) in 50% cases.

Table 6.6 shows results for MPI_Gather. One can see that the Open MPI

selection significantly degrades the performance of MPI_Gather for all

message sizes and numbers of processes (up to 190% on Grisou, and up to

2073% on Gros), while our model-based selection always picks the best

performing algorithm.

The Open MPI decision functions select the algorithm depending on the

message size and the number of processes. For example, the Open MPI

broadcast decision function, shown in Listing 1.1, selects the chain broadcast

algorithm for large message sizes. However, from Table 6.5 it is evident that

the chain broadcast algorithm is not the best performing algorithm for large

message sizes on both clusters. From the same table, one can see that the

model-based selection procedure accurately picks the best performing

binomial tree broadcast algorithm for 16KB and 32KB message sizes on the

Gros cluster, where Open MPI only selects the binomial tree algorithm for

broadcasting messages smaller than 2KB.

In this section, we present experimental validation of the proposed

approach to selection of optimal broadcast algorithms on multi-core clusters.

6.1.4 Shaheen II

In Chapter 1 we discuss the remarkable growth in power and scale of

supercomputers in the last 10 years. While our modelling approach is able to

select the optimal collective algorithms accurately, due to the small number of

nodes in the Grid5000 platform we could not validate the scalability of the

proposed approach (see Section 6.1.3). Therefore in this section, we validate

our approach in the large scale Shaheen II supercomputer using broadcast

algorithms and we demonstrate that our approach is scalable in large scale

platform.

Shaheen II is a supercomputer [40] owned by King Abdullah University of

Science and Technology, Saudi Arabia. It consists of 6174 nodes (197568

cores) each with 2 Intel Haswell CPUs (16 processors core per CPU,
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2.3GHz), 128 GB of memory per node, Cray Aries interconnect with

Dragonfly topology. Unfortunately, we had limited access (limited time and

sources) to the Shaheen II supercomputer, and therefore, we could use only

512 number of nodes in our experiments.

In our experiments, we use 512 nodes where MPI programs use the

one-process-per-CPU. Thus, we have a total of 1024 MPI processes in all

experiments. The message segment size, ms, for segmented broadcast

algorithms is set to 8KB. The estimated values of parameters α and β can be

found in Table 6.7.

Collective algorithm α(sec) β ( sec
byte

)
Broadcast

Linear tree 2.6× 10−12 2.1× 10−8

K-Chain tree 2.5× 10−13 2.1× 10−9

Chain tree 2.1× 10−13 1.8× 10−9

Split-binary tree 3.4× 10−13 2.8× 10−9

Binary tree 3.1× 10−13 2.5× 10−9

Binomial tree 1.6× 10−13 1.3× 10−9

Table 6.7: Estimated values of α and β for the Shaheen II cluster and Open
MPI broadcast algorithms.

P=1024, MPI_Bcast, Shaheen II
m (KB) Best Model-based (%) Open MPI (%)

8 binomial binomial (0) split_binary (44)
40 binary binary (0) split_binary (6)
152 split_binary split_binary (0) split_binary (0)
232 binary binary (0) binary (0)
328 split_binary binary (1) split_binary (0)
472 binary binary (0) chain (101)
648 binary binary (0) chain (146)
1032 split_binary binary (1) chain (25)
2088 split_binary binary (1) chain (27)
4840 binary binary (0) chain (16)

Table 6.8: Comparison of the model-based and Open MPI selections with
the best performing MPI_Bcast algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.

Figure 6.4 shows the results of our experiments in Shaheen II for
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Figure 6.4: Comparison of the selection accuracy of the Open MPI decision
function and the proposed model-based method for MPI_Bcast on Shaheen II
supercomputer.

MPI_Bcast. We present results of experiments with P = 1024 and the

message size, m, varies in the range from 8KB to 4MB, and we use 10

different sizes, m(KB) ∈ {8, 40, 152, 232, 328, 472, 648, 1032, 2088, 4840}.
The plot shows the execution time of the broadcast operation as a function of

the message size. Each data point on a green line shows the performance of

the algorithm selected by the Open MPI decision function for the given

number of processes and message size. Each point on a red line shows the

performance of the algorithm selected by our decision function, which uses

the constructed analytical models. Each point on a blue line shows the

performance of the best broadcast algorithm for MPI_Bcast.

Table 6.8 presents selections made for MPI_Bcast using the proposed

model-based runtime procedure and the Open MPI decision function. For

each message size m, the best performing algorithm, the model-based

selected algorithm, and the Open MPI selected algorithm are given. For the
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latter two, the performance degradation in percents in comparison with the

best performing algorithm is also given. We can see that the model-based

selection picks the best performing algorithm, or the algorithm, the

performance of which deviates from the best no more than 1%. Given the

accuracy of measurements, this means that the model-based selection is

practically always optimal as the performance of the selected algorithm is

indistinguishable from the best performance. The Open MPI selection is near

optimal in 30% cases and causes significant, up to 146%, degradation in the

remaining cases.

6.2 One-Process-Per-Core

6.2.1 Experimental Setup And Methodology

We validate our approach on three large scale clusters. Two clusters, Grisou

and Gros, are located in France and belong to the Grid5000 experimental

infrastructure. The third cluster, MareNostrum4, is hosted by Barcelona

Supercomputing Center.

Grid5000 is the large scale testbed with seven sites in Grenoble,

Luxembourg, Lyon, Nancy, Nantes, Rennes and Sophia. We run our

experiments on Grisou and Gros clusters of the Nancy site using Open MPI

3.1. Grisou consists of 51 nodes each with 2 Intel Xeon E5-2630 v3 CPUs (8

cores/CPU), 128GiB RAM, interconnected via 10Gbps Ethernet. Gros

consists of 124 nodes each with Intel Xeon Gold 5220 CPU (18 cores/CPU),

96 GiB RAM, interconnected via 25 Gbps Ethernet.

MareNostrum4 is a cluster based on Intel Xeon Platinum processors from

the Skylake generation in the Barcelona Supercomputing Center. It consists of

3456 nodes each with 2-socket Intel Xeon Platinum 8160 CPU with 24 cores

per socket, 96 GiB of main memory 1.880 GB/core, interconnected via 10 Gbit

Ethernet.

In our collective experiments, we use up to 38 nodes in Grisou, up to 56

nodes in Gros, and up to 10 nodes in MareNostrum4. MPI programs use

the one-process-per-CPU-core configuration, and the maximal total number of
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processes is 600 for Grisou, 1000 for Gros and 480 for MareNostrum4. They

utilize all CPU-cores in the nodes used in experiments. The default serial

mapping of MPI processes to cores is used in all programs. The message

segment size, ms, for segmented broadcast algorithms is set to 8KB and is

the same in all experiments. This very segment size is commonly used for

segmented broadcast algorithms in Open MPI. Selection of optimal segment

size is out of the scope of this thesis.

We follow a detailed methodology to make sure that the experimental

results are reliable: 1) We make sure that the cluster is fully reserved and

dedicated to our experiments. 2) For each data point in the execution time of

collective algorithms, the sample mean is used, which is calculated by

executing the application repeatedly until the sample mean lies in the 95%

confidence interval and a precision of 0.025 (2.5%) has been achieved. We

also check that the individual observations are independent and their

population follows the normal distribution. For this purpose, MPIBlib [77] is

used.

6.2.2 Experimental Estimation of Model Parameters

Platform-specific but algorithm-independent model parameters γc(P ) and

Q(ms) are estimated first (and separately for each experimental cluster)

following the methodology described in Section 5.2.1.

The calculated values of Pmax(1)
NBFT and Pmax(0)

NBFT for our experimental setups

are given in Table 6.9a. γ0(Pmax(0)
NBFT ) is estimated 1 for all the clusters. Q(ms)

is estimated 6 for Grisou, 12 for Gros and 9 for MareSotrum4. The estimated

values of γ1(P ) for P from 3 to 7 are given in Table 6.9b.
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(a)

Cluster P
max(1)
NBFT P

max(0)
NBFT

Gros 7 3
Grisou 7 3

MareNostrum4 5 3

(b)

Number of processes (P) γ1(P )

Grisou Gros MareNostrum4
3 1.114 1.084 1.145
4 1.219 1.170 1.290
5 1.283 1.254 1.435
6 1.451 1.339
7 1.540 1.424

Table 6.9: Estimated values of Pmax(1)
NBFT , Pmax(0)

NBFT and γ1(P ) on Grisou, Gros
and MareNostrum4 clusters.

Broadcast algorithm o1, L0, L1(sec)

Grisou MareNostrum4 Gros
Linear tree 2.1× 10−4, 2.1× 10−4, 2.1× 10−4 6.8× 10−4, 6.7× 10−4, 6.8× 10−4 8.2× 10−5, 8.2× 10−5, 8.2× 10−5

K-Chain tree 2.2× 10−4, 4.1× 10−5, 2.2× 10−4 6.2× 10−5, 1.2× 10−5, 6.2× 10−5 8.0× 10−6, 1.1× 10−5, 8.0× 10−6

Chain tree 1.2× 10−5, 2.0× 10−5, 1.2× 10−5 5.4× 10−5, 5.8× 10−6, 5.4× 10−5 8.1× 10−6, 1.3× 10−5, 8.1× 10−6

Split-binary tree 7.4× 10−5, 3.5× 10−4, 7.4× 10−5 1.7× 10−4, 2.1× 10−5, 1.7× 10−4 3.2× 10−5, 9.3× 10−6, 3.2× 10−5

Binary tree 3.3× 10−4, 3.0× 10−4, 3.3× 10−4 3.0× 10−4, 7.5× 10−5, 3.0× 10−4 5.6× 10−5, 9.7× 10−6, 5.6× 10−5

Binomial tree 9.7× 10−5, 2.1× 10−4, 9.7× 10−5 7.9× 10−5, 7.9× 10−6, 7.9× 10−5 1.9× 10−5, 8.0× 10−6, 1.9× 10−5

Table 6.10: Estimated values of o1, L0 and L1 on the Grisou, MareNostrum4
and Gros clusters for Open MPI broadcast algorithms.

Then, algorithm-specific τ -Lop model parameters are estimated for each

platform and each algorithm, following the method described in Section 5.2.2.

In the communication experiments, we use 600 processes on Grisou, 1000

processes on Gros, and 480 processes on MareNostrum4. The message

size, m, varies in the range from 16KB to 4MB on all platforms. We use 9

different message sizes for Open MPI broadcast algorithms, {mi}9i=1,

separated by a constant step in the logarithmic scale,

log2mi+1 − log2mi = 1. Thus, for each broadcast algorithm, we obtain a

system of 9 linear equations with τ -Lop model parameters as unknowns (See

Figure 6.5). We use the Huber regressor [125] to find their values from the

system. The values of the parameters for each platform can be found in Table

6.10. We can see that the values of model parameters do vary depending on

the broadcast algorithm. The results support our original hypothesis that the

average execution time of a point-to-point communication will very much

depend on the context of the use of point-to-point communications in the

algorithm. Therefore, the estimated values capture more than just sheer

network characteristics. Despite the fact that the Split-binary tree and Binary

tree broadcast algorithms use the same virtual topology, the estimated time
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

14.31 · o1 + 1012.31 · L0 + 14.31 · L1 = 0.0103169514

17.15 · o1 + 1015.15 · L0 + 17.15 · L1 = 0.010932707

22.85 · o1 + 1020.85 · L0 + 22.85 · L1 = 0.0121768391

34.24 · o1 + 1032.24 · L0 + 34.24 · L1 = 0.015099681

57.03 · o1 + 1055.03 · L0 + 57.03 · L1 = 0.0199503694

102.59 · o1 + 1100.59 · L0 + 102.59 · L1 = 0.0293413861

193.73 · o1 + 1191.73 · L0 + 193.73 · L1 = 0.0479402791

376.00 · o1 + 1374.00 · L0 + 376.00 · L1 = 0.0479402791

740.55 · o1 + 1738.55 · L0 + 740.55 · L1 = 0.1595142696

Figure 6.5: A system of linear equations built in Gros cluster using binomial
tree broadcast algorithm where P = 1000 and m ∈ [16KB, 4MB].

of a point-to-point communication is smaller in the context of the Split-binary

one. This can be explained by a higher level of parallelism of the Split-binary

algorithm, where a significant part of point-to-point communications is

performed in parallel by a large number of independent pairs of processes

from the left and right subtrees. o0 has been estimated 0 in all clusters

because of the small size, 8K, of the message segment transmitted through a

shared memory channel.

6.2.3 Accuracy of Selection of Optimal Collective

Algorithms Using The Constructed Analytical

Performance Models

The constructed analytical performance models of the Open MPI broadcast

algorithms are designed for the use in the MPI_Bcast routines for efficient

and accurate runtime selection of the optimal algorithm, depending on the

number of processes and the message size. While the efficiency is evident

from the low complexity of the analytical formulas derived in Section 4.3, the

experimental results on the accuracy are presented in this section.

Figure 6.6, 6.7 and 6.8 show the results of our experiments in Grisou,
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Figure 6.6: Comparison of the selection accuracy of the Open MPI decision
function and the proposed model-based method for MPI_Bcast on Grisou
cluster.
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Figure 6.7: Comparison of the selection accuracy of the Open MPI decision
function and the proposed model-based method for MPI_Bcast on Gros
cluster.
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Figure 6.8: Comparison of the selection accuracy of the Open MPI
decision function and the proposed model-based method for MPI_Bcast on
MareNostrum4 cluster.
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P=450, Grisou
m (KB) Best Model-based (%) Open MPI (%)

16 flat chain (24) split_binary (1568)
32 chain chain (0) split_binary (1211)
64 chain chain (0) split_binary (702)
128 chain chain (0) split_binary (1153)
256 chain chain (0) split_binary (1106)
512 chain chain (0) chain (0)

1024 chain chain (0) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=600, Grisou
m (KB) Best Model-based (%) Open MPI (%)

16 flat chain (20) split_binary (1006)
32 chain chain (0) split_binary (744)
64 chain chain (0) split_binary (808)
128 chain chain (0) split_binary (792)
256 chain chain (0) split_binary (762)
512 chain chain (0) chain (0)

1024 chain chain (0) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=400, Gros
m (KB) Best Model-based (%) Open MPI (%)

16 split_binary binary (1) split_binary (0)
32 split_binary binary (6) split_binary (0)
64 split_binary split_binary (0) split_binary (0)
128 split_binary split_binary (0) split_binary (0)
256 k − chain k − chain (0) split_binary (4)
512 k − chain k − chain (0) chain (67)
1024 k − chain k − chain (0) chain (76)
2048 k − chain k − chain (0) chain (62)
4096 k − chain k − chain (0) chain (42)

P=1000, Gros
m (KB) Best Model-based (%) Open MPI (%)

16 split_binary binomial (1) split_binary (0)
32 split_binary split_binary (0) split_binary (0)
64 split_binary split_binary (0) split_binary (0)
128 split_binary split_binary (0) split_binary (0)
256 split_binary split_binary (0) split_binary (0)
512 split_binary split_binary (0) chain (97)
1024 split_binary k − chain (2) chain (570)
2048 k − chain k − chain (0) chain (73)
4096 k − chain k − chain (0) chain (66)

P=96, MareNostrum4
m (KB) Best Model-based (%) Open MPI (%)

16 split_binary k − chain (3) split_binary (0)
32 k − chain k − chain (0) split_binary (4)
64 k − chain k − chain (0) split_binary (19)
128 k − chain k − chain (0) split_binary (40)
256 k − chain k − chain (0) split_binary (74)
512 k − chain k − chain (0) chain (9)
1024 chain k − chain (1) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=480, MareNostrum4
m (KB) Best Model-based (%) Open MPI (%)

16 split_binary k − chain (84) split_binary (0)
32 k − chain k − chain (0) split_binary (92)
64 k − chain k − chain (0) split_binary (385)
128 k − chain k − chain (0) split_binary (719)
256 k − chain k − chain (0) split_binary (209)
512 k − chain k − chain (0) chain (31)

1024 k − chain k − chain (2) chain (21)
2048 k − chain k − chain (0) chain (49)
4096 k − chain k − chain (0) chain (49)

Table 6.11: Comparison of the model-based and Open MPI selections with
the best performing MPI_Bcast algorithm. For each selected algorithm, its
performance degradation against the optimal one is given in braces.
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Gros and MareNostrum4 clusters for MPI_Bcast respectively. We present

results of experiments with P ∈ {450, 500, 550, 600} in Grisou, with

P ∈ {400, 600, 800, 1000} in Gros and with P ∈ {96, 144, 336, 480} in

MareNostrum4. Again, the message size, m, varies in the range from 16KB

to 4MB on all platforms, and we use 9 different sizes, {mi}9i=1, separated by a

constant step in the logarithmic scale, log2mi+1 − log2mi = 1. The plots

show the execution time of the broadcast operation as a function of the

message size. Each data point on a green line shows the performance of the

algorithm selected by the Open MPI decision function for the given number of

processes and message size. Each point on a red line shows the

performance of the algorithm selected by our decision function, which uses

the constructed analytical models. Each point on a blue line shows the

performance of the best broadcast algorithm for MPI_Bcast. Figure 6.9

demonstrates the accuracy of the model-based selection compare to the best

performance and Open MPI decision function for all message sizes and the

number of processes on three clusters.

Table 6.11 presents selections made for MPI_Bcast using the proposed

model-based runtime procedure and the Open MPI decision function. For

each message size m, the best performing algorithm, the model-based

selected algorithm, and the Open MPI selected algorithm are given. For the

latter two, the performance degradation in percents in comparison with the

best performing algorithm is also given. As we presented in Section 5.2.2, in

order to have accurately estimated algorithmic specific model parameters, the

execution time of the broadcast algorithm should be dominant in the

communication experiments. While the buffered mode is used for small

message sizes (m < E), the execution time of the flat tree broadcast

algorithm with blocking communication cannot be dominant in the

experiments. Therefore, the model-based selection degrades the best

performance of MPI_Bcast more than 10% just only for the 16KB message

size on Grisou cluster. The Open MPI selection is near optimal in 40-50%

cases and causes significant, up to 1106%, 570% and 719% degradation on

Grisou, Gros and MareNostrum4 clusters respectively.

Open MPI decision function uses only three broadcast algorithms (chain
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Figure 6.9: (6.9a), (6.9b) and (6.9c) present performance of MPI_Bcast on
Grisou, Gros and MareNostrum4 clusters respectively. Blue, red and green
surfaces present the best performance of MPI_Bcast, model-based estimation
and Open MPI decision function respectively.

tree, split-binary tree and binomial tree) from six implemented broadcast

algorithms (see Listing 1.1). For example, K-Chain tree broadcast algorithm,

which is never used by Open MPI decision function, outperforms all the

algorithms on Gros for m ∈ {2MB, 4MB}, and on MareNostrum4 for all

message sizes except 16KB. In contrast to Open MPI decision function, the

model-based selection picks K-Chain broadcast algorithm on Gros and

MareNostrum4 platforms with the minimum penalty compare to Open MPI

decision function.
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Chapter 7

Summary and Conclusion

In this thesis, we proposed a novel model-based approach to automatic

selection of optimal algorithms for MPI collective operations, which proved to

be both efficient and accurate. The novelty of the approach is two-fold. First,

we proposed to derive analytical models of collective algorithms from the

code of their implementation rather than from high-level mathematical

definitions. Second, we proposed to estimate model parameters separately

for each algorithm, using a communication experiment, where the execution

of the algorithm itself dominates the execution time of the experiment.

We also developed this approach into a detailed method and applied it to

Open MPI 3.1 and its MPI_Bcast and MPI_Gather operations. We developed

different analytical models for the same collective algorithm depending on the

configuration of the application. While we drove analytical models of

collective algorithms from the code of their implementation, we took into

account the topology of the communication channels on multi-core clusters

as well. We experimentally validated this method on four different clusters

and demonstrated its accuracy and efficiency. These results suggest that the

proposed approach, based on analytical performance modelling of collective

algorithms, can be successful in the solution of the problem of accurate and

efficient runtime selection of optimal algorithms for MPI collective operations.

One limitation of the work presented in the thesis is the assumption that

the values of model parameters do not depend on the number of processes
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but only on the algorithm. When the maximum number of processes is

relatively small, this simplification does not affect the predictive accuracy of

the constructed models. This has been demonstrated in this thesis. However,

for larger platforms, this assumption may negatively affect the accuracy of the

models. A natural solution to this problem would be to break the full range of

number of processes into a small number of segments and find the values of

the model parameters separately for each segment. Unfortunately, our

access to a sufficiently large platform was way too limited to conduct a

non-speculative research in this direction. We hope to find collaborators with

access to such platforms and continue working in this direction in the future.

MPI offers many collective routines each of which has its own semantics.

In this thesis, we used only MPI_Bcast (one-to-all) and MPI_Gather (

all-to-one) algorithms to validate our approach. The accurate and efficient

selection of the optimal collective algorithms encourages us to apply our

model-based approach to the rest of the MPI collectives in order to optimise

them. For example, the reduce algorithms (MPI_Reduce and MPI_Allreduce)

are the most used collective algorithms in scientific applications. Especially

nowadays, we observe growth in the number of MPI based distributed AI

frameworks. The most used collective routine in AI frameworks to combine

gradient values is MPI_Allreduce. Considering the achieved optimization in

MPI_Bcast and MPI_Gather using our approach (Section 6), the approach

can be applied to reduce training time in MPI based distributed AI

frameworks.
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Appendix A

A tool to select the optimal

collective algorithms.

The selection of the optimal collective algorithms using an analytical

performance modelling approach is the main goal of the thesis. We build new

analytical formulas to estimate the execution time of the algorithms accurately

in Section 4.3 and 5.1. In Chapter 6 we demonstrate experimental validation

of the proposed approach. In this chapter, we present the tool [129]

implemented for the selection of the optimal collective algorithms at runtime

using analytical performance models. Figure A.1 demonstrates the logical

view of software architecture.

The tool is designed as a composition of two modules: (1) MPI C code

calls the collective algorithms implemented in Open MPI using MPI_T

interface and measures the execution time. (2) Python code receives the

estimated execution time series, extracts algorithmic specific model

parameters using Huber regression and selects the optimal collective

algorithm using built models (see Figure A.2).

The first module is designed as a GNU Autotools [130] project,

implemented in the C programming language [131]. The estimation of the

execution time of the collective algorithms is implemented based on the

approach introduced in Chapter 5. As presented in Chapter 1 MPI_T

interface allows to control and manage internal variables of MPI
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Call each collective algorithm 

Estimate the execution time 

Estimate algorithmic specific 
model parameters using 
Huber regressor 

Build a system of linear 
equations 

Estimate the execution time 
of the algorithms using 
analytical formulas

Select the optimal collective 
algorithm

Figure A.1: Logical view of the software architecture.
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MPI C code calls each 
collective algorithm and 
estimate the execution time 

Python code receives the 
estimated execution time series 
and extracts the model 
parameters

Open MPI

GNU-GSL

GNU 
Autotools

Sklearn

numpy

matplotlib

Figure A.2: The architecture of the tool. The arrow shows that the output of
the first module is the input of the second module.

implementations. Like other MPI libraries, Open MPI provides a bunch of

internal variables to control the performance of collectives. All internal

variables used in Open MPI can be extracted using ompi_info tool [132]. The

internal variables used in this tool are listed below.

• coll_tuned_bcast_algorithm - It allows to select the broadcast algorithm

from the available list of implemented broadcast algorithms.

• coll_tuned_bcast_algorithm_segmentsize - It allows to set new segment

size for segmented broadcast algorithms.

• coll_tuned_gather_algorithm - It allows to select the gather algorithm

from the available list of implemented gather algorithms.

Listing A.1 shows the function controls Open MPI internal variables using

MPI_T APIs. A separate set of initialization and finalization routines required

for MPI_T interface. Line 2 and 21 initializes and finalizes MPI_T interface

respectively. The function alters the value of variable_name passed as an

argument. For example, in order to set a new broadcast algorithm for

MPI_Bcast, we pass coll_tuned_bcast_algorithm internal variable as an
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argument. Unsuccessful calls to the MPI_T interface are not fatal. Therefore,

MPI_T APIs do not impact the execution of subsequent MPI routines.

1 int set_mca_variable(const char *variable_name, int value)

2 {

3 int cidx, nvals, err, provided;

4 int val;

5 MPI_T_cvar_handle chandle;

6

7 err = MPI_T_init_thread(MPI_THREAD_SINGLE, &provided);

8 if (err != MPI_SUCCESS)

9 return err;

10

11 err = MPI_T_cvar_get_index(variable_name, &cidx);

12 if (err != MPI_SUCCESS)

13 return err;

14

15 MPI_T_cvar_handle_alloc(cidx, NULL, &chandle, &nvals);

16 err = MPI_T_cvar_write(chandle, &value);

17 if (err != MPI_SUCCESS)

18 return err;

19

20 MPI_T_cvar_handle_free(&chandle);

21 MPI_T_finalize();

22 return EXIT_SUCCESS;

23 }

Listing A.1: Altering MCA variables using MPI_T interface.

The second module is designed using Python language and ecosystem of

libraries (see Figure A.2). This module receives the estimated performance

data of the collective algorithms from the first module. Then, received data is

analysed and built the system of linear equations. While Python ecosystem

offers many different liner regression implementations, we use Huber loss

function [125, 133] for building robust regression.
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1 MPI_Barrier(MPI_COMM_WORLD);

2 while (!stop && reps < precision.max_reps)

3 {

4 MPI_Barrier(MPI_COMM_WORLD);

5 if (rank == root)

6 time = MPI_Wtime();

7 MPI_Bcast(bcast_message, msg_size, MPI_CHAR, root, dump_comm);

8 MPI_Barrier(MPI_COMM_WORLD);

9 if (rank == root)

10 {

11 for (j = 1; j < comm_size; j++)

12 MPI_Recv(&received_message[j], SEGSIZE, MPI_CHAR, j,

13 tag, dump_comm, MPI_STATUSES_IGNORE);

14 T[reps] = MPI_Wtime() - time;

15 totaltime += T[reps];

16 }

17 else

18 MPI_Send(&to_root, SEGSIZE, MPI_CHAR, root, tag, dump_comm);

19 reps++;

20 if (reps >= precision.min_reps)

21 {

22 if (rank == root)

23 {

24 ci = time_ci(precision.cl, reps, T);

25 stop = ci * reps / totaltime < precision.eps;

26 }

27 MPI_Bcast(&stop, 1, MPI_INT, root, dump_comm);

28 }

29 }

Listing A.2: Collective experiments for the broadcast algorithms.

Listing A.2 shows the code estimating the execution time of the experiment

designed for the broadcast collective algorithms. The code is implemented

using the approach proposed in Chapter 5. As presented in the code we
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synchronize the processes by the double MPI_Barrier. The communication

experiments are performed using max_reps number of repetitions which is

controlled by the user. min_reps defines the lower bound for repetitions the

experiments should be performed. We measure the execution time of the

experiment at the root where it is started. The GNU Scientific Library [134] is

used for statistical analysis. The maximum error in our experiments is equal

to eps = 0.025. The execution time is estimated within a confidence interval

(1− eps).
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