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Abstract: The energy consumption of Information and Communications Technology (ICT) presents
a new grand technological challenge. The two main approaches to tackle the challenge include
the development of energy-efficient hardware and software. The development of energy-efficient
software employing application-level energy optimization techniques has become an important
category owing to the paradigm shift in the composition of digital platforms from single-core
processors to heterogeneous platforms integrating multicore CPUs and graphics processing units
(GPUs). In this work, we present an overview of application-level bi-objective optimization methods
for energy and performance that address two fundamental challenges, non-linearity and heterogeneity,
inherent in modern high-performance computing (HPC) platforms. Applying the methods requires
energy profiles of the application’s computational kernels executing on the different compute devices
of the HPC platform. Therefore, we summarize the research innovations in the three mainstream
component-level energy measurement methods and present their accuracy and performance trade-
offs. Finally, scaling the optimization methods for energy and performance is crucial to achieving
energy efficiency objectives and meeting quality-of-service requirements in modern HPC platforms
and cloud computing infrastructures. We introduce the building blocks needed to achieve this scaling
and conclude with the challenges to scaling. Briefly, two significant challenges are described, namely
fast optimization methods and accurate component-level energy runtime measurements, especially
for components running on accelerators.

Keywords: energy-efficient computing; parallel computing; high-performance computing; multicore
CPU; GPU

1. Introduction

The energy consumption of Information and Communications Technology (ICT) ac-
counted for 7% of the global electricity usage in 2020 and is forecast to be around the
average of the best-case and expected scenarios (7% and 21%) by 2030 [1]. This trend makes
the energy efficiency of digital platforms a large new technological challenge.

There are two main approaches to responding to this challenge—hardware and soft-
ware. The first approach deals with energy-efficient hardware devices at a transistor (or
gate) level and aims to produce electronic devices consuming as little power as possible.

The second approach deals with the development of energy-efficient software. On
the level of solutions, it can be further subdivided into the system-level and application-
level approaches. The system-level approach tries to optimize the execution environment
rather than the application. It is currently a mainstream approach using Dynamic Voltage
and Frequency Scaling (DVFS), Dynamic Power Management (DPM), and energy-aware
scheduling to optimize the energy efficiency of the execution of the application. DVFS
reduces the dynamic power a processor consumes by throttling its clock frequency. Briefly,
dynamic power is consumed due to the switching activity in the processor’s circuits. Static
power is consumed when the processor is idle. DPM turns off the electronic components or
moves them to a low-power state when idle to reduce energy consumption.
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The application-level energy optimization techniques use application-level decision
variables and aim to optimize the application rather than the executing environment [2,3].
This category’s most important decision variable is workload distribution.

The development of energy-efficient software employing application-level energy
optimization techniques has become an important category owing to the paradigm shift in
the composition of digital platforms from single-core processors to heterogeneous platforms
integrating multicore CPUs and graphics processing units (GPUs). This paradigm shift has
created significant opportunities for application-level energy optimization and bi-objective
optimization for energy and performance.

In this work, we present an overview of the application-level bi-objective optimiza-
tion methods for energy and performance that address two fundamental challenges, non-
linearity and heterogeneity, inherent in modern HPC platforms. Applying the methods
requires energy profiles of computational kernels (components) of a hybrid parallel ap-
plication executing on the different computing devices of the HPC platform. Therefore,
we summarize the research innovations in the three mainstream component-level energy
measurement methods and present their accuracy and performance trade-offs.

Finally, accelerating and scaling the optimization methods for energy and performance
is crucial to achieving energy efficiency objectives and meeting quality-of-service require-
ments in modern HPC platforms and cloud computing infrastructures. We introduce
the building blocks needed to achieve this scaling and conclude with the challenges to
scaling. Briefly, two significant challenges are described, namely fast optimization methods
and accurate component-level energy runtime measurements, especially for components
running on accelerators.

The paper is organized as follows. Section 2 presents the terminology used in energy-
efficient computing, including a brief on bi-objective optimization. Section 3 describes the
experimental methodology and statistical confidence in experiments used in this work.
Section 4 reviews the application-level optimization methods on modern heterogeneous
HPC platforms for energy and performance. Section 5 overviews the state-of-the-art energy
measurement methods. Section 6 illuminates the building blocks for scaling for energy-
efficient parallel computing and highlights the challenges to scaling. Finally, Section 7
provides concluding remarks.

2. Terminology for Energy-Efficient Computing

The static energy consumption during an application execution is the product of the
platform’s static power and the execution time of the application. The static power is
the idle power of the platform. The dynamic energy consumption during an application
execution is the difference between the total energy consumption of the platform and the
static energy consumption.

Brief on Bi-Objective Optimization

A bi-objective optimization problem can be mathematically formulated as follows [4,5]:

minimize {T(X), E(X)}, Subject to X ∈ S

where there are two objective functions, T : Rk → R and E : Rk → R.
F (X) = (T(X), E(X))T denotes the vector of objective functions. The decision vectors

X = (x0, ..., xk−1)
T belong to the (non-empty) feasible region S . S is a subset of the decision

variable space Rk. Z (= F (S)) denotes the feasible objective region. It is a subset of
the objective space R2. The elements of Z are denoted by F (X) or z = (z1, z2)

T , where
z1 = T(X) and z2 = E(X) are objective values.

The objective functions, T and E, are incommensurable. That is, no solution exists that
optimizes both objectives simultaneously.
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Definition 1. A decision vector X∗ ∈ S is Pareto-optimal if there does not exist another deci-
sion vector X ∈ S such that T(X) ≤ T(X∗), E(X) ≤ E(X∗), and either T(X) < T(X∗) or
E(X) < E(X∗) or both [4].

An objective vector z∗ ∈ Z is Pareto-optimal if there is not another objective vector
z ∈ Z such that z1 ≤ z∗1 , z2 ≤ z∗2 , and zj < z∗j for at least one index j.

In this work, we focus on single-objective optimization problems for energy and
performance and bi-objective optimization problems for dynamic energy and performance
and total energy and performance.

3. Experimental Methodology

We present a brief on the methodology of measurement of the execution time and
dynamic energy consumption of the hybrid data-parallel applications used in this work.

The hybrid application is composed of several components executed in parallel. There
is a one-to-one mapping between the components and computing devices of the hybrid
platform. The execution of an accelerator component involves a dedicated CPU core,
running the hosting thread, and the accelerator itself, performing the accelerator code.
The execution of the accelerator component includes data transfer between the CPU and
accelerator memory, computations by the accelerator code, and data transfer between the
accelerator memory and CPU. The execution of a CPU component only involves the CPU
cores performing the multithreaded CPU code.

The execution time of a component is measured on the CPU side using a CPU processor
clock. The measurement step sequence includes querying the processor clock to obtain the
start time, executing the component, querying the processor clock to obtain the end time,
and calculating the difference between the end and start times to obtain the execution time.

The dynamic energy consumption of a component is also measured on the CPU side
using an energy measurement API [6]. First, the total energy consumption of the platform
during the component execution is measured. The measurement step sequence includes
starting the energy meter, executing the component, stopping the energy meter, and then
querying the energy meter for the total energy consumption of the platform. All the steps
in the sequence are invoked from the CPU side. The dynamic energy consumption of
a component equals the difference between the total energy consumption and the static
energy consumption, which is the static power consumption of the platform multiplied by
the execution time of the component.

3.1. Precautions to Reduce Noise in Measurements

The hybrid nodes (Figure 1) are fully reserved and dedicated to the experiments
during their execution. Several precautions are taken in measuring energy consumption
to eliminate any potential interference of the computing elements that are not part of the
component running the application kernel.

Energy consumption of a CPU component also includes the contribution from NIC,
SSDs, and fans. Therefore, we ensure they are used minimally during the execution of
an application to lessen their contribution to dynamic energy consumption. In this way,
the contribution of CPUs and DRAM dominates the dynamic energy consumption. The
following steps are employed for this purpose:

• The disk consumption is monitored before and during the application run and ensures
no I/O is performed by the application using tools such as sar and iotop.

• The workload used in the execution of an application does not exceed the main
memory, and swapping (paging) does not occur.

• The application does not use the network by monitoring using tools such as sar
and atop.

• The application kernel’s CPU affinity mask is set using SCHED API’s system call,
SCHED_SETAFFINITY().
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Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

Intel Xeon Gold 6152
Socket(s) 1
Cores per socket 22
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Main memory 96 GB

NVIDIA P100 PCIe
No. of processor cores 3584
Total board memory 12 GB CoWoS HBM2
Memory bandwidth 549 GB/sec

Figure 1. Specifications of the five heterogeneous processors, Intel Haswell multicore CPU, Nvidia
K40c, Intel Xeon Phi 3120P, Intel Skylake multicore CPU and Nvidia P100 PCIe.

Fans are significant contributors to energy consumption. On our hybrid nodes, fans
are controlled in zones: (a) zone 0: CPU or system fans; (b) zone 1: peripheral zone fans.
There are four levels to the control of fan speeds:

• Standard: Baseboard management controller (BMC) controls both fan zones, with the
CPU and peripheral zones set at speed 50%;

• Optimal: BMC sets the CPU zone at speed 30% and the peripheral zone at 30%;
• Heavy IO: BMC sets the CPU zone at speed 50% and the Peripheral zone at 75%;
• Full: All fans run at 100%.

To rule out fans’ contribution to dynamic energy consumption, we set the fans at
full speed before launching the experiments. In this way, fans consume the same amount
of power, which is included in the static power consumption of the server. Furthermore,
we monitored the server’s temperatures and the fans’ speeds with the help of Intelligent
Platform Management Interface (IPMI) sensors during the application run and when there
is no application run. We found no significant differences in temperature, and the speeds
of fans were the same in both scenarios.

Thus, we ensured that the dynamic energy consumption measured reflects the contri-
bution solely by the component executing the given application kernel.

3.2. Statistical Confidence in Our Experiments

For the results shown in this work, a detailed statistical methodology was used
to obtain a sample average for a response variable (energy, power, and execution time)
from multiple experimental runs to ensure the reliability of the results. The methodology
employed Student’s t-test with a 95% confidence interval and precision of 0.05 (5%) for
the sample average. In addition, the assumptions in the Student’s t-test of normality and
independence of observations were verified using Pearson’s chi-squared test.

4. Application-Level Optimization Methods on Modern Heterogeneous HPC
Platforms for Energy and Performance

This section first presents the lack of opportunity for application-level optimization of
energy in a linear and homogeneous HPC world. Then, it highlights the challenges posed
by non-linearity and heterogeneity inherent in modern HPC platforms to the optimization
of applications for the energy and performance on such platforms. Finally, it overviews
solutions addressing the challenges.
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4.1. Linearity and Homogeneity

In a linear and homogeneous HPC world, there is no room for application-level
optimization of energy. The linearity means that both the dynamic energy consumed by a
processor and the execution time are linear functions of the size of the executed workload.
The homogeneity means that all processors in the system are identical.

The HPC world was linear and homogeneous before the advent of multicore processors
and accelerators. To simulate the pre-multicore single-core CPU era, we studied the
execution time and dynamic energy consumption profiles of a multi-threaded application
executed on a single core of an Intel Haswell multicore CPU, whose specification is shown
in Figure 1. The application employs a highly optimized scientific routine, OpenBLAS
DGEMM [7], multiplying two square matrices of size n× n. The workload size equals
2 × n3. The application employs one thread bound to the core used for executing the
application. Therefore, the workload size is executed by one thread.

Figure 2 shows the execution time and dynamic energy profiles of the application. The
numactl tool is used to bind the application to one core. The static and dynamic energy
consumption during the application execution is obtained using power meters, which is
considered the most accurate method of energy measurement [8]. Hereafter, we will refer
to this energy measurement approach as the ground-truth method. One can observe that the
execution time and dynamic energy profiles are linear functions of workload size.

Figure 2. Execution time and dynamic energy profiles of OpenBLAS DGEMM application multiplying
two square matrices of size n× n on a single core of the Intel Haswell multicore CPU shown in Figure 1.
The application is multithreaded and uses only one thread during its execution. The workload size
shown on the x-axis equals 2× n3. The workload is shown in Giga floating point operations. The y-
axis in the left-hand and right-hand plots show the execution time and dynamic energy consumption
of the computations involved in matrix multiplication in the OpenBLAS DGEMM application. The
execution time and dynamic energy profiles observed are linear functions of workload size.

Now, consider optimizing the application of energy and performance using p such
identical linear parallel processors. Mathematically, any workload distribution between
identical linear parallel processors will consume the same dynamic energy, and the load-
balanced distribution of the workload will always be optimal for performance and total
energy. We provide the theorems and corresponding proofs in Appendix A.

4.2. Impact of Heterogeneity

The assumption of homogeneity was acceptable in the past when HPC platforms
were built from identical processors. However, the modern HPC world is increasingly
heterogeneous. For example, more than 30% of the Top500 supercomputer list systems are
heterogeneous, integrating various CPUs and GPUs [9]. In addition, there is a plethora
of research on programming models and tools, benchmark suites, and applications for
heterogeneous CPU-GPU compute platforms [10–12]. The implications of heterogeneity
for bi-objective optimization of applications for performance and energy are profound.

Khaleghzadeh et al. [13] study the bi-objective optimization problem for performance
and energy for the simple case of two heterogeneous processors characterized by linear
execution time and energy functions. The study reveals an infinite number of globally
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Pareto-optimal solutions distributing a given workload between the processors. Further-
more, the study found that the only load-balanced solution is Pareto-optimal and will
minimize the execution time. The solution using the single most energy-efficient processor
will also be Pareto-optimal and minimize dynamic energy consumption.

Figure 3a–c illustrate the results of the study. Figure 3a contains the linear execution
time functions of two processors P1 and P2. Figure 3b shows the linear energy functions
of the same two processors. The functions were obtained using a well-known and highly
optimized matrix multiplication application executing on one core of a multicore CPU. The
Pareto front is a linear segment connecting the performance-optimal and energy-optimal
endpoints and is shown in Figure 3c. Apart from the performance-optimal solution, all
other Pareto-optimal solutions are load-imbalanced.

(a) (b)

(c)

Figure 3. Solving bi-objective optimization problems for two processors with linear execution time
and energy functions results in a linear Pareto front. The endpoints of the front are the solutions for
single-objective optimization for performance and energy. (a). Linear execution time functions of
workload size of the processors P1 and P2. The units for workload size on the x-axis are Giga floating
point operations. (b). Linear energy functions of workload size of the processors P1 and P2. The units
for workload size on the x-axis are Giga floating point operations. (c). Pareto-optimal solutions for a
workload size 348.

Motivated by these findings, the authors [14] comprehensively study these implica-
tions for the general case of p linear heterogeneous processors executing workload size n.
A more general problem is actually solved in this research, allowing performance profiles
to be just continuously monotonically increasing, not necessarily linear.

Figure 4 illustrates the p linear heterogeneous processors characterized by p linear
increasing time functions, { f0, · · · , fp−1}, in sets F and p linear increasing energy functions,
{g0, · · · , gp−1}, in set G. The shape of the Pareto front shown in Figure 4c is found to
be a piece-wise continuous linear function consisting of a chain of p− 1 linear segments,
{S0, · · · , Sp−2}, connecting the performance-optimal and energy-optimal endpoints. The
other qualitative conclusions apply to the endpoints. The performance-optimal endpoint
is the load-balanced solution that distributes the workload in proportion to the speeds of
the processors. The energy-optimal endpoint has the total workload assigned to the most
energy-efficient processor, the processor with linear energy function with the lowest slope.
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Figure 4. Consider the bi-objective optimization problem for performance and energy for p heteroge-
neous processors characterized by p linear increasing time functions, { f0, · · · , fp−1}, in set F, and p
linear increasing energy functions, {g0, · · · , gp−1} in set G. (a). The set of p linear increasing time
functions, { f0, · · · , fp−1}, in set F. (b). The set of p linear increasing energy functions, {g0, · · · , gp−1}
in set G. (c). The algorithm proposed in [14] solves the problem and returns a piecewise linear Pareto
front comprising a chain of p− 1 linear segments, {S0, · · · , Sp−2}.

Furthermore, the research work [14] proposes efficient exact polynomial algorithms
constructing the Pareto front for performance and dynamic energy and performance and
total energy. The algorithms exhibit time complexity of O(p3 × log2 n). In addition, an
exact algorithm is presented that finds the Pareto-optimal solution for a given point in the
Pareto front in linear time O(p).

In Appendix B, we illustrate the findings of the study [14] using a highly optimized
matrix multiplication application executing on a heterogeneous computing platform shown
in Figure 1 comprising five heterogeneous processors (p = 5). The algorithms take input
performance and dynamic energy functions that are linear approximations of the profiles.
Figure A2 shows the output Pareto fronts for two workloads. Each Pareto front contains
p− 1 = 4 linear segments. The solution with minimal execution time (shown as a circle) is
the load-balancing solution.

4.3. Impact of Non-Linearity

The assumption of linearity was acceptable for single-core processors. However,
modern CPUs and accelerators are all multicore, and their performance and energy profiles
have proved to be non-linear for popular and carefully optimized applications for such
platforms [2].

4.3.1. Multicore CPUs

To illustrate the non-linearity of modern multicore CPUs, we study the performance
and energy profiles of two real-life scientific applications executing on the Intel Haswell
processor comprising two sockets of 12 cores each (Figure 1). The OpenBLAS DGEMM
application [7] multiplies two matrices of size x× n and n× n. The FFTW application [15]
computes a 2D fast Fourier transform (FFT) of a dense signal matrix of size n× n. Both
applications are multi-threaded and are executed by T threads.
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Figure 5 contains the profiles for the OpenBLAS DGEMM application employing
24 threads. Figure 6 contains the profiles for the FFTW application employing 24 threads.
The workload size is equally distributed between the threads. The variations in the figures are
reproducible owing to the detailed statistical methodology employed in the experiments.

Figure 5. The speed and dynamic energy consumption profiles for the OpenBLAS DGEMM applica-
tion employing 24 threads on the Intel Haswell multicore CPU are shown in Figure 1. The application
multiplies two matrices of size x× n and n× n where n is 46,080. The problem size in the figure is
x× n. The workload size 2× x× n2 is proportional to the problem size (since n is kept constant).
Note the non-linear profile shapes in the plots are observed for many matrix sizes. We have selected
one matrix size (n = 46,080) only for illustration.

Figure 6. The speed and dynamic energy consumption profiles for the FFTW application employing
24 threads on the Intel Haswell multicore CPU are shown in Figure 1. The application computes a 2D
fast Fourier transform (FFT) of a dense signal matrix of size n× n. The problem size on the x-axis is
n2. The workload size is 5× n2 × log2 n. Therefore, the speed and dynamic energy profiles versus
workload size will still be highly non-linear.

The variations are not due to constant and stochastic fluctuations experienced by a
node while executing a workload as an integral part of a common network of computers.
Instead, such fluctuations produce variations in the speed that is best represented by a
band. The width of the band characterizes the speed variations over time due to load
changes [16–18]. The width decreases as the workload size increases for uniprocessor
(single-core) CPU nodes. However, variations in the presented graph exhibit a different
pattern. Therefore, the variations are not caused by random fluctuations in the executing
environment. Instead, they are due to the systematic complexity of the integration of
resources in multicore processors. Hence, they are an inherent trait of applications executing
on multicore servers with resource contention and Non-Uniform Memory Access (NUMA).

Figure 7 graphs the variations for the OpenBLAS DGEMM application as the number
of threads executing in the application increases. The fluctuations increase with the number
of threads and reach the peak for 24 threads, which equals the total number of physical
cores in the server. The figure shows that the variations are noticeable even for a smaller
number of threads (T = 2).
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Figure 7. The speed (MFLOPs) and dynamic energy consumption profiles of OpenBLAS DGEMM
application executing a varying number of threads (T) on the Intel Haswell server. The application
multiplies two matrices of size x× n and n× n where n is 46,080. The problem size in the figure is
x× n. The workload size 2× x× n2 is proportional to the problem size (since n is kept constant).

Furthermore, Figure 6 illustrates the large magnitude of the variations exhibiting
performance drops of around 70% for many workload sizes (in the speed function plot).

This behavior for performance and energy implies that the discrete non-linear func-
tions of the execution time and energy consumption against the workload size are highly
irregular and impossible to be approximated by smooth functions.

In addition, the variations in execution time and energy consumption are often not
correlated. Namely, the increase in workload can lead to a decrease in execution time and
an increase in energy consumption or to an increase in execution time and a decrease in
energy consumption. Therefore, the lack of correlation presents a significant opportunity
for bi-objective optimization for performance and energy.

To further explore the potential trade-offs between performance and dynamic energy,
we look at the improvements in performance obtained when using workload distribution,
minimizing the dynamic energy consumption and the improvements in energy obtained
when using workload distribution, maximizing performance for the OpenBLAS DGEMM
and FFTW applications.

Optimizing for performance alone can lead to a sound reduction in dynamic energy
consumption. For OpenBLAS DGEMM, the average and maximum percentage reductions
in energy were 12% and 68%, respectively. For FFTW, the average and maximum percentage
reductions in energy were 23% and 55%, respectively. However, optimizing for energy
alone can cause significant performance degradation. For OpenBLAS DGEMM, the average
and maximum performance degradations were 95% and 100%. For FFTW, the average and
maximum performance degradations were close to 100% and 100%, respectively.

4.3.2. Graphics Processing Units (GPUs)

Khaleghzadeh et al. [13] studied the execution time and dynamic energy profiles of
a matrix multiplication application and a 2D FFT application on two Nvidia GPUs. They
show that the GPUs also exhibit drastic variations similar to the multicore CPUs. We
present the findings for the 2D-FFT application here.

Figure 8 shows the execution time and dynamic energy profiles of the 2D-FFT applica-
tion. The application computes a 2D discrete Fourier Transform of a complex signal matrix
of size n× n. The workload size is 5.0× n2 × log2 n. It employs CUFFT routines. The same
detailed statistical methodology is followed to ensure the reliability of the results. The
dynamic energy consumption is obtained using the ground-truth method. CUFFT routines
give failures for n that cannot be factored into primes less than or equal to 127. For these
matrix sizes, we find a matrix size nl greater than n for which CUFFT provides a solution.
Therefore, we pad the input matrix to increase its problem size from n to nl and zero the
contents of the extra padded areas. For problem sizes (n2) exceeding the main memory of
the GPU, out-of-core computations are employed.
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Figure 9 shows the zoomed plot of the dynamic energy profile. One can see that the
execution time and dynamic energy profiles are highly non-linear. Furthermore, we find
that the variations in execution time and energy consumption are not correlated.

Figure 8. Plots of the execution time and dynamic energy profiles for the 2D-FFT application. The
application computes a 2D discrete Fourier Transform of a dense square complex signal matrix of size
n× n on two GPUs, an Nvidia K40c GPU and an Nvidia P100 PCIe GPU (Figure 1). The workload
size is shown in Giga floating point operations.

Figure 9. The dynamic energy consumption profile of the 2D-FFT application. The application
computes a 2D discrete Fourier Transform of a dense complex signal matrix of size n× n on two
GPUs, an Nvidia K40c GPU, and an Nvidia P100 PCIe GPU (Figure 1). The workload size is
5.0× n2 × log2 n and is shown in Giga floating point operations.

Therefore, there is a need for novel methods of solving optimization problems on
modern HPC platforms for energy and performance that consider the non-linearity and
heterogeneity inherent in such platforms. We now review research in this direction.
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4.4. Optimization Methods for Energy and Performance on Modern HPC Platforms

This section overviews solutions addressing the challenges posed by non-linearity and
heterogeneity inherent in modern HPC platforms to the optimization of applications for
energy and performance on such platforms.

4.4.1. Non-Linearity on Homogeneous Platforms

Lastovetsky et al. [2] study the implications of the non-linearity of homogeneous
multiprocessors for optimizing applications for performance or energy. They formulate
the single-objective optimization problems of data-parallel applications for performance
and energy on homogeneous clusters of multicore CPUs. They propose data partitioning
algorithms solving the problems that take as input application-specific performance and
dynamic energy profiles of the multicore CPU processor. The profiles are discrete functions
of workload size of arbitrary shape. They realistically consider the resource contention and
NUMA inherent in modern multicore CPU platforms. The algorithms output performance-
optimal and energy-optimal workload distributions and exhibit the time complexity of
O(p2) where p is the number of homogeneous processors. The performance-optimal and
energy-optimal solutions are not necessarily load-balanced.

Motivated by the findings in [2], Reddy et al. [3] study the bi-objective optimization
of data-parallel applications on homogeneous multicore CPU clusters for performance
and energy. The problem has workload distribution as the only decision variable. The
authors propose an exact global optimization algorithm solving the problem exhibiting
time complexity of O(m2 × p2), where m is the cardinality of discrete performance and
energy profiles and p is the number of homogeneous processors. The algorithm takes
discrete performance and dynamic energy functions against workload size as input and
outputs the globally Pareto-optimal set of solutions.

The research work [3] experiments with two highly optimized scientific data-parallel
applications, OpenBLAS DGEMM [7] and FFTW [15], executed on the Intel Haswell mul-
ticore CPU platform (Figure 1). Figure 10 presents a representative sample of the results
for two (n, p) combinations for both applications where n is the workload size and p is
the number of homogeneous processors. For the OpenBLAS DGEMM application, the
(n, p) combinations are (1024, 9) and (690, 36), and for the FFTW application, (5000, 9) and
(4672, 16). The Pareto front output by the exact global optimization algorithm is shown in
each figure, along with the load-balanced solution.

The experiments demonstrate that load-balanced solutions, equally distributing the
workload between the homogeneous processors and only considered by the state of the
art as optimal, are neither performance-optimal nor energy-optimal, and always far away
from the Pareto front of globally optimal solutions. The shape of the Pareto front for
both applications suggests that significant reductions in energy consumption over the
performance-optimal solution can be achieved at the expense of minor increases in exe-
cution time. Similarly, significant improvements in performance over the energy-optimal
solution can be achieved at the expense of minor increases in energy consumption. Fur-
thermore, the number of globally Pareto-optimal solutions found by the algorithm was
significant, providing a wide range of optimal solutions to pick from.
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Figure 10. Pareto fronts for OpenBLAS DGEMM and FFTW applications for two different workload
sizes (n) and the number of homogeneous processors (p). The workload size n is given in multiples
of fixed granularity (a basic computation unit that does not differ during the application execution).
The Pareto front is the line connected by blue square points. The load-balanced solution is shown as
a blue circle.

4.4.2. Non-Linearity on Heterogeneous Platforms

Khaleghzadeh et al. [19] propose a novel data-partitioning algorithm (HPOPTA) that
solves the single-objective optimization problems of data-parallel applications for perfor-
mance on p non-linear heterogeneous processors. The algorithm finds the performance-
optimal solution (workload distribution) for the most general shapes of performance pro-
files for data-parallel applications executing on such platforms. Moreover, it exhibits a time
complexity of O(m3 × p3), where m represents the cardinality of the discrete performance
functions. Furthermore, the authors propose data-partitioning algorithms in [20] that
solve the single-objective optimization problems of data-parallel applications for dynamic
or total energy on p non-linear heterogeneous processors. The algorithms find dynamic
energy-optimal and total energy-optimal solutions (workload distributions) for the most
general shapes of dynamic energy and total energy profiles for data-parallel applications
executing on such platforms.

Khaleghzadeh et al. [13] study the bi-objective optimization problem of data-parallel
applications for performance and energy on heterogeneous processors. They propose
a solution method (HEPOPTA) comprising an efficient and exact global optimization
algorithm. The algorithm takes input performance and dynamic energy profiles of the
processors as arbitrary discrete functions of workload size and returns the Pareto-optimal
solutions (generally load-imbalanced). It has time complexity O(m3 × p3 × log2(m× p))
where m is the maximum cardinality of the discrete sets representing the performance and
energy profiles of the h heterogeneous processors. Furthermore, the input dynamic energy
profiles are obtained using a methodology [21] that accurately models component-level
energy consumption of a hybrid data-parallel application using the ground truth method.
The number of globally Pareto-optimal solutions for performance and energy found by
these algorithms was significant for real-life performance and energy profiles.

In order to apply the energy-optimization methods [2,3,13,14,19,20], we need energy
profiles of individual components of a hybrid parallel application and their performance
profiles (for bi-objective optimization). Therefore, we need methods for component-level
measurement of the execution time and energy.
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While the component-level measurement of execution time may not be trivial for
tightly coupled units, it is doable as all processing units are equipped with sufficiently
precise clocks. However, methods for the component-level measurement of energy con-
sumption represent a real challenge. In the absence of such methods, the problem of
building energy profiles of individual components of a hybrid parallel application becomes
intractable. Indeed, in this case, we could only use system-level energy measurements.
Therefore for a system integrating p heterogeneous processors, we would have to ex-
perimentally build the energy profile of cardinality mp (for all possible combinations of
workload distribution) instead of m× p (p individual profiles that can be used to calculate
energy consumption for all possible combinations of workload distribution given each
profile consists of m data points). We now review research progress on component-level
measurement of energy consumption.

5. State-of-the-Art Energy Measurement Methods

There are three mainstream energy measurement methods that can be employed
for determining component-level energy consumption. The first method is system-level
physical power measurements using external power meters. The second method is power
measurements provided by on-chip power sensors embedded in mainstream server pro-
cessors. The third method is energy-predictive models employing measurable runtime
performance-related predictor variables.

5.1. System-Level Physical Power Measurements Using External Power Meters

This approach is the most accurate but very expensive. In our experience, it can
take hours and even days to obtain a single experimental point with sufficient statistical
confidence. The measurements obtained this way are considered ground truth [8].

5.2. On-Chip Power Sensors

Mainstream CPU and GPU processors now provide on-chip power sensors that give
power measurements at a high sampling frequency. The measurements can be collected
using special programmatic interfaces.

Intel and AMD are the leading vendors for multicore CPU microprocessors with
x86-64 architecture. Intel’s brand of Xeon multicore microprocessors competes with AMD’s
line of Eypc multicore microprocessors in the HPC server market. Intel’s multicore CPU
processors are equipped with a Running Average Power Limit (RAPL) [22] feature that
provides power measurements obtained using programmatic and command-line interfaces
of Likwid tool [23]. AMD provides the uProf tool [24], which can be used for energy
profiling of applications. Nvidia and AMD are the leading vendors of GPUs employed in
the HPC server and data center market. Nvidia’s Ampere architecture GPUs compete with
AMD’s Instinct GPUs with Compute DNA for the Data Center (CNDA) architecture.

5.2.1. Intel Running Average Power Limit (RAPL)

Intel multicore CPUs offer Running Average Power Limit (RAPL) [22] capability to
monitor power and control frequency (and voltage). In addition, RAPL provides energy
counters for CPU and DRAM that are further detailed in Appendix C.

Fahad et al. [8] demonstrate that using Intel RAPL in energy optimization may lead
to significant energy losses. Experiments with a DGEMM matrix-multiplication hybrid
application have shown that using RAPL for building energy profiles for energy optimiza-
tion methods results in energy losses ranging from 37% to 84% (depending on matrix sizes)
in comparison with the use of accurate ground-truth profiles. Appendix C presents the
application and experimental results in detail.
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5.2.2. AMD Application Power Management (APM)

AMD processors provide average power estimates through the Application Power
Management (APM) [25] interface. However, research work [26] reports that APM provides
highly inaccurate data, particularly during the processor sleep states.

5.2.3. Intel Manycore Platform Software Stack (Intel MPSS)

Intel Xeon Phi co-processors host an on-board Intel System Management Controller
chip (SMC) [27]. It provides energy consumption that is programmatically obtained using
the Intel manycore platform software stack (Intel MPSS) [28]. However, there is no record
of the accuracy of Intel MPSS in the literature or Intel manuals. Furthermore, these co-
processors have been discontinued.

Fahad et al. [8] examine the accuracy of MPSS for two highly optimized applications,
DGEMM and 2D FFT. The DGEMM application multiplies two square matrices of size
N × N using the Intel MKL DGEMM routine. The 2D FFT application computes the 2D
discrete Fourier transform of a signal matrix of size N× N using the Intel MKL FFT routine.
The Intel Xeon Phi processor employed for the experiments is shown in Figure 1. The
authors compare the dynamic energy profiles of the applications obtained using MPSS
with ground-truth profiles.

The average and maximum errors of MPSS are found to be 40.68% and 55.78%, respec-
tively. Appendix D presents further details on the results.

5.2.4. Nvidia Management Library (NVML)

Nvidia GPUs have on-chip power sensors providing readings that can be obtained
programmatically using the Nvidia Management Library (NVML) [29] interface. The
reported accuracy of the energy readings in the NVML manual is 5%.

However, Fahad et al. [8] study the accuracy of NVML for two highly optimized
applications, CUBLAS DGEMM and CUBLAS FFT, computing the matrix multiplication of
two square matrices of size N × N and 2D discrete Fourier transform of a signal matrix of
size N × N. The Nvidia GPU employed for the experiments is Nvidia K40c GPU shown in
Figure 1. The authors compare the dynamic energy profiles of the applications obtained
using NVML with the ground-truth profiles.

The average and maximum errors of NVML are found to be 10.62% and 35.32% for the
DGEMM application and 12.45% and 57.77% for the FFT application. Appendix E contains
further details on NVML accuracy on Nvidia P100 PCIe GPU.

5.2.5. Summary

While cheap and efficient, on-chip power sensors have been found to be inaccurate and
poorly documented. Extensive and solid experiments with several mainstream CPUs, accel-
erators, and highly optimized scientific kernels have shown that energy profiles constructed
using state-of-the-art on-chip power sensors are qualitatively inaccurate. For example, the
shape of a dynamic energy profile determined using on-chip sensors differs significantly
from the shape obtained with the ground truth, showing the increase in energy consump-
tion in situations where the ground-truth system-level measurements give a decrease and
vice versa. Therefore, the energy measurements using on-chip sensors do not capture the
holistic picture of the dynamic energy consumption during application execution.

5.3. Software Energy Predictive Models

The third approach uses software energy-predictive models employing various mea-
surable runtime performance-related predictor variables. State-of-the-art models still need
to be more accurate but are improving. Nevertheless, this approach is the only realistic
alternative to methods using power meters.

Most popular and studied models use Performance Monitoring Counters (PMCs) as
predictor variables. PMCs are special-purpose hardware registers provided in modern
processor architectures for low-level performance analysis and tuning. However, they are
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large in number. For example, the Likwid tool [23] offers 1665 architecture events and
143 counters to store the events for the Intel Haswell multicore processor (Figure 1). Out
of the 1665 events, there are 164 core-level general-purpose counters, called PMCs. An
application must be executed 41 times to collect all the PMCs since only four counters are
provided to store the event values. If one includes the cost of statistical averaging to obtain
the mean and variance for each event, then collecting all the PMCs and other architecture
events becomes prohibitive and practically infeasible at runtime.

For the Intel Skylake multicore processor (Figure 1), Likwid offers 1993 performance
events and 329 counters. Therefore, the number of events increases with each new processor
generation. Furthermore, the events are architecture-specific and, therefore, non-portable.

Linear PMC-based dynamic energy-predictive models are the most common. Domi-
nant PMC groups for these models include cache misses, branch instructions, floating point
operations, page faults, and memory accesses. The issues with PMC-based models are the
large number of PMCs to consider, the tremendous programming effort and time to collect
PMCs, and the need for portability.

Before 2017, techniques to select PMCs for a model either considered all PMCs to
capture all possible contributors to energy consumption, were based on a statistical method-
ology such as correlation and Principal Component Analysis (PCA), or used expert advice
or intuition to pick a subset.

Numerous PMC-based models have been proposed proposed, but none was suffi-
ciently accurate [30]. Although research on energy predictive models reports excellent
accuracy, they typically report the prediction accuracy of total energy with a very high static
power base. In addition, most reported results surveyed in [30] were not reproducible. The
best verifiable average prediction error of average dynamic power by such models for an
Intel Haswell multicore CPU (Figure 1) used to validate these models was in the range of
90–100%.

5.3.1. Additivity of Performance Monitoring Counters

One cause of inaccuracy of PMC-based energy models discovered in 2017 is that
many popular PMCs are not additive on modern multicore processors [31]. Energy is
additive. Indeed, the energy consumption of serial execution of two applications A and
B will be equal to the sum of their individual consumptions, EAB = EA + EB. Therefore,
any PMC parameter x in a linear power/energy predictive model should be additive, i.e.,
xAB = xA + xB.

The details of how to obtain the additivity error of a PMC are presented in Appendix F.
While all PMCs are additive by description, PMCs that are most commonly used in state-of-
the-art energy models are non-additive in practice, some exhibiting up to 200% deviation
from additivity [31]. Numbers of non-additive PMCs increase with the increase in cores
(very few non-additive PMCs in the case of single core) [31].

5.3.2. Selection of Model Variables Based on Energy Conservation Laws

Another cause of inaccuracy is the violation of basic laws of energy conservation
in these models, including non-zero intercepts in dynamic energy models, negative co-
efficients in additive terms, and non-linearity of some advanced models (including ML
models) [31,32].

To understand the practical implications of the basic energy conservation laws for the
accuracy of linear energy-predictive models, we present a digest of the theory of energy-
predictive models of computing in Appendix G. Briefly, the theory formalizes properties of
PMC-based energy predictive models derived from the fundamental physical law of energy
conservation. Then, it provides practical implications, including selection criteria for model
variables, model intercept, and model coefficients to construct accurate and reliable linear
energy predictive models.

Thus, the accuracy of PMC-based dynamic energy models can be improved by re-
moving non-additive PMCs from models and enforcing basic energy conservation laws.
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Applying this technique has significantly improved the accuracy of state-of-the-art models,
bringing it to 25–30% [33,34].

5.3.3. Best Linear Energy Predictive Models for Intel Multicore CPUs

While the theory of energy-predictive models of computing is proposed with PMC-
based energy predictive models as the focal point, it can be applied creatively for model
variables (such as resource utilization) that account for energy-consuming activities.

Shahid et al. [34] consider models employing processor and memory utilizations and
PMCs as model variables. Appendix H presents the mathematical form of the linear models.
The model variables are positive and highly additive to meet the requirements of the theory
for better model prediction accuracy.

The best models employing Likwid PMCs and utilization variables achieved 10–20%
accuracy on popular scientific kernels [34]. Therefore, while there is still a long way to go,
the recent results are promising.

5.3.4. Runtime Energy Modeling on Nvidia GPU Accelerators

The CUDA Profiling Tools Interface (CUPTI) [35] tool provides performance events
and metrics for Nvidia k40 GPU and Nvidia P100 PCIe GPU (specifications in Figure 1)
that are typically employed for performance profiling. Like the PMCs for multicore CPUs,
however, they have also been used in dynamic energy predictive models [36–38]. For
the Nvidia A40 GPU (Table 1), the Nsight Compute profiler is used to obtain the metrics.
However, they are quite large in number.

Table 1. Specifications of Nvidia A40 GPU.

Specification Description
GPU architecture NVIDIA Ampere
GPU memory 48 GB GDDR6
No. of CUDA cores 10,752
TDP 300 W
CUDA Version 12.0

Based on our experiments on these GPUs, many key events and metrics overflow for
large matrix sizes (N > 2048) due to 32-bit integers being dedicated to storing the values.
Hence, they are unsuitable for the energy-predictive modelling of HPC applications where
the problem sizes can be large. However, this problem is not present in Nvidia A40 GPU
(Table 1).

There is no equivalent to CPU utilization for Nvidia GPUs. A proxy for utilization,
achieved_occupancy, is commonly employed for modeling GPU energy consumption [39–42].
However, we observed that achieved_occupancy exhibits a complex non-linear non-functional
relationship with energy consumption for the data-parallel applications employed in
our experiments. Figure 11 shows the relationship between average dynamic power
versus achieved_occupancy and performance versus achieved_occupancy for the matrix
multiplication application employing the CUBLAS DGEMM routine on Nvidia P100 PCIe
GPU. Each data point in the graph is obtained using a rigorous experimental statistical
methodology where the application is run repeatedly until the sample mean lies in the 95%
confidence interval and a precision of 0.025 (2.5%) is achieved.

There is no method currently available to implement the additivity test for GPUs to
determine the most additive model variables. Therefore, selecting reliable model variables
based on energy conservation laws for designing accurate software predictive models for
accelerators is currently an open research problem.
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Figure 11. Average dynamic power versus achieved_occupancy and performance versus
achieved_occupancy for the matrix multiplication application employing the CUBLAS DGEMM
routine on Nvidia P100 PCIe GPU (Figure 1).

5.4. Accuracy vs. Performance of Component-Level Energy Measurement Methods

We conclude our overview of energy measurement methods by summarizing their
accuracy and performance trade-offs.

Figure 12 summarizes the trade-offs between the accuracy and the performance of the
construction of dynamic energy profiles associated with the three energy measurement
methods. The best accuracy obtained using the ground truth is equal to the sum of the
statistical accuracy of experiments (typically ±5%) and the inherent accuracy of the power
meters (±3% for WattsUp Pro power meters). However, while the ground-truth method
has the highest accuracy (8%), it has the lowest performance. On the other hand, the
method based on on-chip power sensors has the ideal performance but exhibits the highest
inaccuracy (73%), as presented earlier. Moreover, the dynamic energy profile built using
this method has a shape that deviates significantly from the ground truth. The method
based on energy-predictive models exhibits a good trade-off between these two extremes.
If we exclude the cost of construction of the energy-predictive models, it has an ideal
performance equivalent to the method based on on-chip sensors since both methods predict
the energy consumption using model variables stored in registers. On the other hand, the
method based on energy predictive models has an accuracy (11%) close to the ideal. In
addition, the dynamic energy profile built using this method has a shape that follows the
ground truth.

Figure 12. The accuracy and performance tradeoffs between the different energy measurement
methods to construct the dynamic energy profiles. Methods employing the ground truth (system-
level power measurements using power meters) have the highest accuracy but the lowest performance.
On the other hand, methods based on on-chip power sensors exhibit the ideal performance but also
the lowest accuracy. The method based on energy predictive models exhibits a good trade-off between
these two extremes.
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Therefore, the approach using software energy-predictive models employing various
measurable runtime performance-related predictor variables is the only realistic alternative
to methods using power meters. Furthermore, this approach is ideally suited to implement
software energy sensors, an essential building block for scaling optimization methods for
energy and performance that are presented below.

6. Building Blocks for Scaling for Energy-Efficient Parallel Computing

Accelerating and scaling the optimization methods for energy and performance is cru-
cial to achieving energy efficiency objectives and meeting quality-of-service requirements
in modern HPC platforms and cloud computing infrastructures.

To elucidate the building blocks needed to achieve this scaling, we will recapitulate
the main steps of the optimization methods [2,3,13,14,19,20].

The first step involves modeling the hybrid application if the execution environment is
a heterogeneous hybrid platform comprising different computing devices (multicore CPUs
and accelerators). A hybrid application comprises several multithreaded kernels executing
simultaneously on different computing devices of the platform. The load of one kernel may
significantly affect others’ performance due to severe resource contention arising from tight
integration. Due to this, modeling each kernel’s performance and energy consumption
individually in hybrid applications becomes a problematic task [43].

Therefore, the research above considers hybrid application configurations comprising
no more than one kernel per device. Each group of cores executing a kernel is modeled as an
abstract processor. Hence, the executing platform is represented by a set of heterogeneous
abstract processors. The grouping aims to minimize the contention and mutual dependence
between abstract processors. In addition, the sharing of system resources is maximized
within groups and minimized between the groups.

Hence, a hybrid application is represented by a set of computational kernels executing
on groups of cores, which we term heterogeneous abstract processors. Consider the platform
shown in Figure 1 as an example. It consists of two multicore CPUs: a dual-socket Intel
Haswell multicore CPU with 24 physical cores with 64 GB main memory and a single-
socket Intel Skylake processor containing 22 cores. The first multicore CPU hosts two
accelerators, an Nvidia K40c GPU and an Intel Xeon Phi 3120P. The second multicore
CPU hosts an Nvidia P100 PCIe GPU. Therefore, the hybrid application executing on this
platform is modeled by four heterogeneous abstract processors, CPU_1, GPU_1, PHI_1, and
GPU_2. CPU_1 comprises 22 (out of a total of 24) CPU cores. GPU_1 symbolizes the Nvidia
K40c GPU and a host CPU core connected to this GPU via a dedicated PCI-E link. PHI_1
symbolizes the Intel Xeon Phi and a host CPU core connected to this Xeon Phi processor
via a dedicated PCI-E link. The Nvidia P100 PCIe GPU and a host CPU core connected to
this GPU via a dedicated PCI-E link are denoted by GPU_2.

Then, the computational kernels’ performance and dynamic energy profiles are built
offline using a methodology based on processor clocks and system-level power measure-
ments provided by external power meters (ground-truth method).

Finally, given the performance or dynamic energy profiles or both, a data-partitioning
algorithm solves the single-objective optimization problems for performance or energy
or the bi-objective optimization problem for energy and performance to determine the
Pareto-optimal solutions (workload distributions), minimizing the execution time and the
energy consumption of computations during the parallel execution of the application.

However, two issues hinder the scaling of the proposed optimization methods. We will
highlight the issues using as an example the solution method [13] solving the bi-objective op-
timization problem for energy and performance on p non-linear heterogeneous processors.

First, constructing the performance and dynamic energy profiles by employing system-
level power measurements provided by external power meters (ground-truth method) is
sequential and expensive. The execution times of constructing the discrete performance and
dynamic energy profiles comprising 210 and 256 workload sizes for the two applications,
DGEMM and 2D-FFT, are 8 h and 14 h, respectively. The construction procedure is run on
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the Intel Skylake processor (Figure 1). Briefly, while the ground-truth method exhibits the
highest accuracy, it is also the most expensive [8]. In addition, it cannot be employed in
dynamic environments (HPC platforms and data centers) containing nodes not equipped
with power meters.

Second, the data-partitioning algorithm is sequential and takes exorbitant execution
times for even moderate values of p. For example, consider its execution times for HEP-
OPTA [13] solving the bi-objective optimization problem for two scientific data-parallel
applications, matrix multiplication (DGEMM) and 2D fast Fourier transform (2D-FFT),
executed on the hybrid platform (Figure 1). HEPOPTA is sequential and is executed using
a single core of the Intel Skylake multicore processor. For the DGEMM application, the
data-partitioning algorithm’s execution time ranges from 4 s to 6 h for values of p varying
from 12 to 192. For the 2D-FFT application, the execution time increases from 16 s to 16 h
for values of p, going from 12 to 192.

Therefore, there are three crucial challenges to accelerating and scaling optimization
methods on modern heterogeneous HPC platforms:

1. Acceleration of the sequential optimization algorithms allowing fast runtime com-
putation of Pareto-optimal solutions optimizing the application for performance
and energy.

2. Software energy sensors for multicore CPUs and accelerators that are implemented
using energy-predictive models employing model variables that are highly additive
and satisfying energy conservation laws and based on statistical tests such as high
positive correlation.

3. Fast runtime construction of performance and dynamic energy profiles using the
software energy sensors.

All three challenges are open problems. However, good progress has been made
toward developing software energy sensors for multicore CPUs. For example, the software
energy sensor for the Intel multicore CPU can be implemented using a linear energy-
predictive model based on resource utilization variables and performance monitoring
counters (PMCs) that have shown 10-20% accuracy for popular scientific kernels.

Older generations of Nvidia GPUs (Figure 1) were poorly instrumented for runtime
energy modeling. However, the latest generation of GPUs, such as Nvidia A40 (Table 1),
provide better energy instrumentation support to facilitate the accurate runtime modeling
of energy consumption.

7. Concluding Remarks

The paradigm shift in the composition of digital platforms from single-core processors
to heterogeneous platforms integrating multicore CPUs and graphics processing units
(GPUs) has created significant opportunities for application-level energy optimization and
bi-objective optimization for energy and performance. It also engendered two fundamental
challenges, non-linearity and heterogeneity.

In this work, we presented an overview of the application-level optimization methods
that address the challenges inherent in modern HPC platforms. Applying the methods
requires energy profiles of computational kernels (components) of a hybrid parallel appli-
cation executing on the different computing devices of an HPC platform. Therefore, we
summarized the research innovations in the three mainstream component-level energy
measurement methods and present their accuracy and performance trade-offs.

Finally, scaling the optimization methods for energy and performance is crucial to
achieving energy efficiency objectives and meeting quality-of-service requirements in
modern HPC platforms and cloud computing infrastructures. We introduced the building
blocks needed to achieve this scaling and concluded with the challenges to scaling. Briefly,
two significant challenges are fast optimization methods and accurate component-level
energy runtime measurements, especially for components running on accelerators.

Runtime modeling of energy consumption by components running on accelerators
is currently in its infancy. So far, the progress in energy modeling concerns CPUs, not
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accelerators. Older generations of Nvidia GPUs were poorly instrumented for runtime
energy modeling. However, the latest generation GPUs, such as Nvidia A40, provide
better energy instrumentation support that would facilitate accurate runtime modeling of
energy consumption.
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Appendix A. Optimization for Performance and Energy Using p Identical Linear
Parallel Processors

We now prove that any workload distribution between identical linear parallel pro-
cessors will consume the same dynamic energy, and the load-balanced distribution of the
workload will always be optimal for performance and total energy.

Theorem A1. Consider p identical processors solving a workload n and whose execution time and
dynamic energy functions are given by T = {t1, t2, · · · , tp}, ti(x) = a × x and
Ed = {ed1 , ed2 , · · · , edp}, edi

(x) = b × x. Any workload distribution, X = {x1, · · · , xp},
∑

p
i=1 xi = n, will consume the same dynamic energy.

Proof. Consider an arbitrary workload distribution of n, X = {x1, · · · , xp}, ∑
p
i=1 xi = n. The

total dynamic energy consumption (Ed) during the execution of the workload n employing
X is the following:

Ed = ed1(x1) + · · ·+ edp(xp)

= b× x1 + · · ·+ b× xp

= b× (x1 + · · ·+ xp)

= b× n
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Therefore, any workload distribution between identical linear parallel processors will
consume the same dynamic energy equal to b× n.

Theorem A2. Consider p identical processors solving a workload n and whose execution time and
dynamic energy functions are given by T = {t1, t2, · · · , tp}, ti(x) = a × x and
Ed = {ed1 , ed2 , · · · , edp}, edi

(x) = b × x. Let us assume the static power consumption of a
processor is Ps. Then, the load-balanced distribution of the workload is optimal for performance and
total energy.

Proof. Consider the load-balanced distribution of the workload n, Xlb = {x1, · · · , xp},
∑

p
i=1 xi = n. By the definition of load-balanced distribution, t1(x1) = · · · = tp(xp) =⇒

a× x1 = · · · = a× xp =⇒ x1 = · · · = xp. Therefore, the load-balanced distribution is
also the load-equal distribution, and the total execution time during the execution of the
workload n is equal to any of the execution times, {a× x1, · · · , a× xp}.

Consider an arbitrary workload distribution, Y = {y1, · · · , yp}, ∑
p
i=1 yi = n, other

than Xlb. Let us assume that processor k takes the longest time tk in solving the workload
size, yk, assigned to it. By definition, tk(yk) > ti(xi) =⇒ a× yk > a× xi =⇒ yk > xi.
Therefore, the total execution time during the execution of the workload n employing Y is
equal to the following:

T = min max(t1(y1), · · · , tp(yp))

= min tk(yk)

= tk(yk)

> ti(xi)∀i ∈ {1, · · · , p}

Hence, the load-balanced distribution Xlb is optimal for performance.
Since by Theorem 1, any workload distribution between identical linear parallel

processors will consume the same dynamic energy equal to b× n, Xlb will also consume the
same amount of dynamic energy. The total energy consumption (ET) during the execution
of the workload n employing Xlb is the following:

ET = Ps × t1(x1) + · · ·+ Ps × tp(xp) + b× n

= Ps × (a× x1 + · · ·+ a× xp) + b× n

= Ps × a× (x1 + · · ·+ xp) + b× n

= Ps × a× n + b× n

Following on similar lines, consider again an arbitrary workload distribution,
Y = {y1, · · · , yp}, ∑

p
i=1 yi = n, other than Xlb. Let us assume that processor k takes the

longest time tk in solving the workload size, yk, assigned to it. The total energy consumption
(ET) during the execution of the workload n employing Y is the following:

ET = Ps × tk(yk) + · · ·+ Ps × tk(yk) + b× n

= Ps × a× (yk + · · ·+ yk) + b× n

= Ps × a× n× yk + b× n

> Ps × a× n + b× n

Therefore, the load-balanced distribution Xlb is optimal for total energy.

Appendix B. Optimization for Performance and Energy Using p Heterogeneous Linear
Parallel Processors

We illustrate the study’s findings [14] using a highly optimized matrix multiplication
application executing on a heterogeneous computing platform shown in Figure 1. The
application computes the matrix product, C = α × A × B + β × C, where A, B, and C
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are matrices of size M × N, N × N, and M × N, respectively, and α and β are constant
floating-point numbers. The application invokes CUBLAS library functions for Nvidia
GPUs and Intel MKL DGEMM library functions for CPUs and Intel Xeon Phi. The Intel
MKL and CUDA versions used are 2017.0.2 and 9.2.148.

The platform consists of five heterogeneous processors: Intel Haswell E5-2670V3
multi-core CPU, Intel Xeon Gold 6152 multi-core CPU, NVIDIA K40c GPU, NVIDIA P100
PCIe GPU, and Intel Xeon Phi 3120P. In addition, the platform has five heterogeneous
abstract processors, CPU_1, GPU_1, xeonphi_1, CPU_2, and GPU_2, each executing a
computational kernel.

Figure A1 shows the execution time and dynamic energy functions of the processors
against the workload size that ranges from 64 × 10,112 to 19,904 × 10,112 with a step
size of 64 for the first dimension M. The static and dynamic energy consumption during
the application execution is obtained using the ground-truth method. The shapes of the
execution time functions are continuous and strictly increasing. The shapes of the energy
functions can be approximated accurately by linear increasing functions.

Figure A1. The figures in the left column show the execution time and energy profiles of the five
heterogeneous processors (Figure 1) employed in the matrix multiplication application. The figures
in the right column exclude the Xeon Phi profiles since its energy profile dominates the other energy
profiles. Note that the execution time profiles of CPU_1 and CPU_2 are close to each other. However,
the energy profile of CPU_1 is significantly higher than that of CPU_2.

Figure A2 shows the Pareto fronts obtained using the algorithms proposed in [14] for
the matrix multiplication application for two workloads, 12,352 × 10,112 and 15,552 × 10,112.
The algorithms take input performance and dynamic energy functions that are linear approxi-
mations of the profiles. Each Pareto front contains four linear segments. The solution (shown
as a circle) with minimal execution time is the load-balancing solution.
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Figure A2. Pareto fronts for the matrix multiplication application executing on the heterogeneous
platform (Figure 1) for two workloads. Each Pareto front contains four linear segments.

Appendix C. Intel RAPL

Running Average Power Limit (RAPL) [22] provided in Intel multicore CPUs allows
for monitoring power and controlling frequency (and voltage). In addition, for processor
generations preceding Haswell, such as Sandybridge and Ivybridge E5, it employs a
software model using performance monitoring counters (PMCs) as predictor variables to
measure energy consumption for CPUs and DRAM [44].

However, for Haswell and later processor generations, RAPL uses separate voltage
regulators (VR IMON) for CPU and DRAM. VR IMON is an analog circuit within a voltage
regulator (VR). It keeps track of the current estimate. However, there is a latency between
the measured current-sense signal and the actual current signal to the CPU, which may
affect the accuracy of the readings. The CPU samples this reading periodically (100 µs to
1 ms) for calculating the power [45].

RAPL provides energy counters in model-specific registers (MSRs). It divides a
platform into power domains for fine-grained control. These domains include Package,
which includes core and uncore components; DRAM, which is is available only for servers;
and CPU cores, the graphics component of the CPU (uncore).

References [26,45] cite systematic errors in RAPL energy counters that are rectified to
some extent due to the use of VR IMON for power measurement [46].

We present the findings by Fahad et al. [8]. The authors study the optimization of a
parallel matrix multiplication application for dynamic energy using Intel RAPL and the
ground-truth method. The ground-truth method comprises system-level physical power
measurements obtained using the HCLWattsUp API. The study demonstrates that using
Intel RAPL leads to significant energy losses.

The parallel application multiplies two dense square matrices A and B of size N × N
and is executed on the two Intel multicore CPU processors shown in Figure 1, Intel Haswell
E5-2670V3 (CPU1) and Intel Xeon Gold 6152 (CPU2). Matrix B is replicated at both pro-
cessors. CPU1 computes the product of matrices A1 and B, while CPU2 computes the
product of matrices A2 and B. The local matrix products are computed using the Intel MKL
DGEMM routine. There are no communications involved.

The matrix A is partitioned into A1 and A2 of sizes M× N and K × N between the
processors using a model-based data partitioning algorithm where M + K = N.

The algorithm takes as input the matrix size, N, and the discrete dynamic energy func-
tions of the processors, e1(x, y) and e2(x, y). ei(x, y) gives the dynamic energy consumption
of matrix multiplication of matrices of sizes x× y and y× y. Therefore, the dynamic energy
function is represented by a surface. The algorithm outputs M and K.

Informally, the algorithm cuts the surfaces of the dynamic energy functions by a
plane y = N. The cut produces two curves. It then determines two points on the curves,
(M, e1(M, N)) and (K, e2(K, N)), whose sum of energy consumptions, e1(M, N) + e2(K, N),
is minimal.

Figure A3 illustrates the dynamic energy profiles for four workload sizes (N), {14,336,
14,848, 15,360, 16,384}, using RAPL and HCLWattsUp, respectively.
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(a) N = 14336 (b) N = 14848

(c) N = 15360
(d) N = 16384

Figure A3. Dynamic energy consumption profiles of DGEMM on the two Intel multicore
CPU processors.

Intel RAPL reports more dynamic energy consumption than the ground truth for all
the workload sizes. The prediction errors of Intel RAPL are tabulated in Table A1. The
average errors are {65%, 58%, 56%, 56%}.

Table A1. Prediction errors of Intel RAPL against ground-truth for dynamic energy consumption
by DGEMM.

Workload Size (N) Min Max Avg

14,336 17% 172% 65%

14,848 12% 153% 58%

15,360 13% 240% 56%

16,384 2% 300% 56%

The data-partitioning algorithm determines the workload distribution using the inputs,
workload size N and the dynamic energy profiles of the two processors. Then, the dynamic
energy consumption is obtained by executing the parallel application using the workload
distribution. The dynamic energy losses (in percent) incurred by employing Intel RAPL for
the four workload sizes are {54, 37, 31, 84}.

Appendix D. Accuracy of MPSS against Ground Truth on Intel Xeon Phi Co-Processor

Table A2 compares the accuracy of MPSS for Intel MKL DGEMM and Intel MKL
FFT applications against the ground-truth method. Using calibration, the average and
maximum errors can be reduced to 9.58% and 32.3%, respectively. Calibration is a constant
adjustment made to all the points in a dynamic energy profile to improve its accuracy
against the ground truth.
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Table A2. Percentage error of MPSS against ground-truth dynamic energy profiles with and without
calibration on the Intel Xeon Phi co-processor (Figure 1) for Intel MKL DGEMM and Intel MKL
FFT applications.

Without Calibration

Application Min Max Avg

Intel MKL DGEMM 45.1% 93.06% 64.5%

Intel MKL FFT 22.58% 55.78% 40.68%

With Calibration

Application Min Max Avg

Intel MKL DGEMM 0.06% 9.54% 2.75%

Intel MKL FFT 0.06% 32.3% 9.58%

Appendix E. Accuracy of NVML against Ground-Truth on Nvidia K40c GPU and
Nvidia P100 PCIe

Tables A3 and A4 illustrate the errors using NVML with and without using calibration
on Nvidia K40c and Nvidia P100 PCIe GPUs (Figure 1).

Table A3. Percentage error of dynamic energy consumption obtained using NVML against ground-
truth on Nvidia K40c GPU (Figure 1) with and without calibration.

Without Calibration

Application Min Max Avg

CUBLAS DGEMM 0.076% 35.32% 10.62%

CUBLAS FFT 0.52% 57.77% 12.45%

With Calibration

Application Min Max Avg

CUBLAS DGEMM 0.19% 30.50% 10.43%

CUBLAS FFT 0.18% 94.55% 10.87%

Table A4. Percentage error of dynamic energy consumption obtained using NVML against the
ground truth on Nvidia P100 PCIe GPU (Figure 1) with and without calibration.

Without Calibration

Application Min Max Avg

CUBLAS DGEMM 13.11% 84.84% 40.06%

CUBLAS FFT 17.91% 175.97% 73.34%

With Calibration

Application Min Max Avg

CUBLAS DGEMM 0.07% 26.07% 11.62%

CUBLAS FFT 0.025% 51.24% 16.95%

Appendix F. Additivity of Performance Monitoring Counters (PMCs)

The additivity error of a PMC is determined using a procedure. The input to the
procedure is a dataset of applications, which are called base applications. The dataset of
applications is a collection of well-known benchmarks, highly optimized scientific kernels,
and naive unoptimized scientific routines. An example of such a collection is given in [32].
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Using the input dataset, a dataset of compound applications is composed. Each
compound application is a serial execution of two base applications.

For each compound application in the dataset, the PMC counts for the base appli-
cations and the compound application are obtained. The PMC error for the compound
application is calculated as follows:

Error(%) = | (eb1 + eb2)− ec

(eb1 + eb2 + ec)/2
| × 100 (A1)

where ec, eb1, eb2 are the PMC counts for the compound and constituent base applications,
respectively. The sample average of this error is obtained from multiple experimental runs
of the compound and base applications.

The additivity error of the PMC is the maximum of errors for all the compound
applications in the dataset.

Appendix G. Selection of Model Variables Based on Energy Conservation Laws

We present a review of the theory of energy predictive models of computing proposed
in [32]. The theory formalizes properties of PMC-based energy predictive models that are
derived from the fundamental physical law of energy conservation. The properties capture
the essence of single application runs and characterize the behavior of serial execution of
two applications. A PMC vector represents an application run. A null PMC vector contains
zeroes for all its PMC values.

The properties are intuitive and experimentally validated. The formulations of the
properties are based on the following observations:

• In a dedicated and stable environment, the PMC vector of the serial execution of
two applications will always be the same if the same PMC vector represents each
application run.

• An application run that does not consume energy has a null PMC vector.
• An application with a non-null PMC vector must consume some energy.
• Finally, the consumed energy of a compound application is equal to the sum of the

energies consumed by the individual applications.

The theory provides practical implications for constructing accurate and reliable linear
energy-predictive models. They include selection criteria for model variables, model
intercept, and model coefficients that are outlined below:

• Each model variable must be deterministic and reproducible.
• Each model variable must be additive.
• The model intercept must be zero.
• Each model coefficient must be positive.

The first two properties form the additivity test for selecting PMCs. Therefore, a PMC-based
linear energy-predictive model that violates the criteria will have poor prediction accuracy.

Appendix H. Best Linear Energy Predictive Models for Intel Multicore CPUs

Shahid et al. [34] propose linear models employing processor and memory utilizations
and PMCs as model variables.

The processor utilization model variable, uprocessor, is given by the equation below:

uprocessor = (Ũprocessor/100)× TDPprocessor × t (A2)

The parameter Ũprocessor is the processor utilization. It is the proportion of time
the processor is busy doing work divided by the total amount of time. The parameter
TDPprocessor is the theoretical maximum power consumed by the processor, also known as
the thermal design power, TDP. The product of the two parameters gives an estimate of the
average power consumption by the processor. The model variable uprocessor that multiplies
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this product by the application’s execution time (t) represents the energy consumption. The
details of obtaining the processor utilization are given in [47].

Similarly, the memory utilization model variable, umemory, is determined using the
equation below:

umemory = (Ũmemory/100)× TDPmemory × t (A3)

The parameters Ũmemory and TDPmemory are the memory utilization and the thermal design
power of the memory (DRAM).

The mathematical form of the dynamic energy predictive models employing both
utilization variables and PMCs is shown below:

Eupmc = α1 × uprocessor + α2 × umemory + β1 × pmc1 + · · ·+ βn × pmcn (A4)

where Eupmc is the dynamic energy consumption and {α1, α2, β1, ..., βn} are the regression
coefficients or the model parameters.
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