
Multicore Processor Computing is not Energy Proportional: An Opportunity for
Bi-objective Optimization for Energy and Performance

Semyon Khokhriakov, Ravi Reddy Manumachu, and Alexey Lastovetsky

School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

Energy proportionality is the key design goal followed by architects of multicore processors. One of its implications
is that optimization of an application for performance will also optimize it for energy.

In this work, we show that energy proportionality does not hold true for multicore processors. This finding creates
the opportunity for bi-objective optimization of applications for energy and performance. We propose and study a
novel application-level bi-objective optimization method for energy and performance for multithreaded dataparallel
applications. The method uses two decision variables, the number of identical multithreaded kernels (threadgroups)
executing the application and the number of threads per threadgroup, with a given workload partitioned equally
between the threadgroups.

We experimentally demonstrate the efficiency of the method using four popular and highly optimized multithreaded
data-parallel applications, two employing two-dimensional fast Fourier transform and the other two, dense matrix
multiplication. The experiments performed on four modern multicore processors show that the optimization for
performance alone results in increase in dynamic energy consumption by up to 89% and optimization for dynamic
energy alone results in performance degradation by up to 49%. By solving the bi-objective optimization problem, the
method determines up to 11 Pareto-optimal solutions.

Finally, we propose a qualitative dynamic energy model employing performance events as variables to explain
the discovered energy nonproportionality. The model shows that the energy nonproportionality on our experimental
platforms for the two data-parallel applications is due to disproportionately energy expensive activity of the data
translation lookaside buffer.

Keywords: energy proportionality, multicore processor, energy optimization, energy predictive models, bi-objective
optimization, fast Fourier transform, matrix multiplication

1. Introduction

Computing is omnipresent in our digital era, and the
share of computing platforms in the total energy con-
sumption is rapidly increasing. Nicola Jones [1] reports
that the energy consumption of computing systems and
devices accounts for 20% of the global electricity de-
mand. Andrae and Edler [2] predict that computing
systems and devices will consume up to 50% of global
electricity in 2030 with a contribution towards green-
house gas emissions of 23%. This makes the energy of
computing the next grand technological challenge. Mul-
ticore CPUs are at the heart of modern computing plat-
forms. Therefore, their energy efficiency is critical for
addressing the challenge of energy of computing.

Architects of modern multicore processors (CPUs)
follow a key design goal called energy proportionality

(defined by Barroso and Hölzle [3] and extended by Sen
and Wood [4]), which means designing microprocessors
composed of components that consume energy propor-
tional to the amount of work performed. One of the im-
plications of energy proportionality is that optimization
of an application for performance will also optimize it
for energy.

Modern multicore CPUs however have many inher-
ent complexities, which are: a) Severe resource con-
tention due to tight integration of tens of cores orga-
nized in multiple sockets with multi-level cache hierar-
chy and contending for shared on-chip resources such
as last level cache (LLC), interconnect (For example:
Intel’s Quick Path Interconnect, AMD’s Hyper Trans-
port), and DRAM controllers; b) Non-uniform mem-
ory access (NUMA) where the time for memory access

Preprint submitted to Applied Energy May 10, 2020



between a core and main memory is not uniform and
where main memory is distributed between locality do-
mains or groups called NUMA nodes; and c) Dynamic
power management (DPM) of multiple power domains
(CPU sockets, DRAM). The complexities were shown
to result in complex (non-linear and non-smooth) func-
tional relationships between performance and workload
size and between dynamic energy and workload size for
real-life data-parallel applications on modern multicore
CPUs (Lastovetsky and Reddy [5], Reddy and Lastovet-
sky [6], Reddy and Lastovetsky [7]). Motivated by these
research findings and based on further deep exploration,
we show that energy proportionality does not hold true
for multicore CPUs. This creates the opportunity for
bi-objective optimization of applications for energy and
performance on a single multicore CPU.

We present now an overview of notable state-of-the-
art methods solving the bi-objective optimization prob-
lem of an application for energy and performance on
multicore CPU platforms. System-level methods are
introduced first since they dominated the landscape.
This will be followed by recent research in application-
level methods. Then we describe the proposed solution
method solving the bi-objective optimization problem
of an application for energy and performance on a sin-
gle multicore CPU.

1.1. Overview of System-level Solution Methods

Solution methods solving the bi-objective optimiza-
tion problem for energy and performance can be broadly
classified into system-level and application-level cate-
gories. System-level methods aim to optimize energy
and performance of the environment where the applica-
tions are executed. The methods employ application-
agnostic models and hardware parameters as decision
variables. They are principally deployed at operating
system (OS) level and therefore require changes to the
OS. They do not involve any changes to the application.
The methods can be further divided into the following
prominent groups:

I. Thread schedulers that are contention-aware and
that exploit cooperative data sharing between
threads (Petrucci, Loques, Mossé, Melhem,
Gazala, and Gobriel [8], Kim, Kim, and Chung
[9]). The goal of a scheduler is to find thread-to-
core mappings to determine Pareto-optimal solu-
tions for energy and performance. The schedulers
operate at both user-level and OS-level with those
at OS-level requiring changes to the OS. Thread-
to-core mapping is the key decision variable. Per-
formance monitoring counters such as LLC miss

rate and LLC access rate are used for predicting
the performance given a thread-to-core mapping.

II. Dynamic private cache (L1 and L2) reconfigura-
tion and shared cache (L3) partitioning strategies
(Wang, Mishra, and Ranka [10], Zhuravlev, Saez,
Blagodurov, Fedorova, Prieto [11], Cheng, Huang,
Huang, and Knoll [12]). The proposed solutions
in this category mitigate contention for shared on-
chip resources such as last level cache by physi-
cally partitioning it and therefore require substan-
tial changes to the hardware or OS.

III. Thermal management algorithms that place or mi-
grate threads to not only alleviate thermal hotspots
and temperature variations in a chip but also re-
duce energy consumption during an application
execution (Yang, Zhou, Chrobak, Zhang, and Jin
[13], Ayoub and Rosing [14]). Some key strategies
are dynamic power management (DPM) where
idle cores are switched off, Dynamic Voltage and
Frequency Scaling (DVFS), which throttles the
frequencies of the cores based on their utilization,
sand migration of threads from hot cores to the
colder cores.

IV. Asymmetry-aware schedulers that exploit the
asymmetry between sets of cores in a multicore
platform to find thread-to-core mappings that pro-
vide Pareto-optimal solutions for energy and per-
formance (Li, Baumberger, Koufaty, and Hahn
[15], Humenay, Tarjan, and Skadron [16]). Asym-
metry can be explicit with fast and slow cores
or implicit due to non-uniform frequency scal-
ing between different cores or performance dif-
ferences introduced by manufacturing variations.
The key decision variables employed here are
thread-to-core mapping and DVFS. Typical strat-
egy is to map the most power-intensive threads to
less power-hungry cores and then apply DVFS to
the cores to ensure all threads complete at the same
time whilst satisfying a power budget constraint.

1.2. Overview of Application-level Solution Methods
In the second category, solution methods optimize ap-

plications rather than the executing environment. The
methods use application-level decision variables and
predictive models for energy and performance of appli-
cations to solve the bi-objective optimization problem.
The dominant decision variables include the number of
threads, loop tile size, workload distribution, etc. Fol-
lowing the principle of energy proportionality, a domi-
nant class of such solution methods aim to achieve op-

2



timal energy reduction by optimizing for performance
alone. Definitive examples are scientific routines of-
fered by vendor-specific software packages that are ex-
tensively optimized for performance. For example, In-
tel Math Kernel Library [17] provides extensively opti-
mized multithreaded basic linear algebra subprograms
(BLAS) and 1D, 2D, and 3D fast Fourier transform
(FFT) routines for Intel processors. Open source pack-
ages such as OpenBLAS [18], FFTW [19], and ZZGem-
mOOC [20] offer the same interface functions but con-
tain portable optimizations and may exhibit better aver-
age performance than a heavily optimized vendor pack-
age as demonstrated by Khaleghzadeh, Reddy, and Las-
tovetsky [21], Khokhriakov, Reddy, and Lastovetsky
[22]. The optimized routines in these software pack-
ages allow employment of one key decision variable,
which is the number of threads. A given workload is
load-balanced between the threads. In this work, we
show that the optimal number of threads (and conse-
quently load-balanced workload distribution) maximiz-
ing the performance does not necessarily minimize the
energy consumption of multicore CPUs.

State-of-the-art research works on application-level
optimization methods (Lastovetsky and Reddy [5],
Reddy and Lastovetsky [6], Reddy and Lastovetsky [7])
demonstrate that due to the aforementioned design com-
plexities of modern multicore CPU platforms, the func-
tional relationships between performance and workload
size and between dynamic energy and workload size for
real-life data-parallel applications have complex (non-
linear and non-smooth) properties and show that work-
load distribution has become an important decision vari-
able that can no longer be ignored. The research works
[5, 6, 7] propose model-based data partitioning methods
that take as input discrete performance and dynamic en-
ergy functions without any assumptions on their shapes.
The functions accurately and realistically account for
resource contention and NUMA inherent in modern
multicore CPU platforms. Using a simulation of the ex-
ecution of a data-parallel matrix multiplication applica-
tion based on OpenBLAS DGEMM on a homogeneous
cluster of multicore CPUs, Lastovetsky and Reddy [5]
show that optimizing for performance alone results in
average and maximum dynamic energy reductions of
24% and 68%, but optimizing for dynamic energy alone
results in performance degradations of 95% and 100%.
For a 2D fast Fourier transform application based on
FFTW, the average and maximum dynamic energy re-
ductions are 29% and 55% and the average and maxi-
mum performance degradations are both 100%.

Reddy and Lastovetsky [6] proposes a solution
method to solve bi-objective optimization problem of

an application for energy and performance on homoge-
neous clusters of modern multicore CPUs. This method
is shown to determine a diverse set of Pareto-optimal
solutions whereas existing solution methods give only
one solution when the problem size and number of pro-
cessors are fixed. The methods [5, 6, 7] target ho-
mogeneous high performance computing (HPC) plat-
forms. Khaleghzadeh, Fahad, Shahid, Reddy, and Las-
tovetsky [23] propose a solution method solving the bi-
objective optimization problem on heterogeneous pro-
cessors. The authors prove that for an arbitrary number
of processors with linear execution time and dynamic
energy functions, the Pareto front is piece-wise lin-
ear and contains an infinite number of solutions out
of which one solution is load balanced while the rest are
load imbalanced. A data partitioning algorithm is pre-
sented that takes as an input discrete performance and
dynamic energy functions with no shape assumptions
and outputs Pareto front of solutions (workload distri-
butions).

The research works (Lastovetsky and Reddy [5],
Reddy and Lastovetsky [6], Reddy and Lastovetsky [7],
Khaleghzadeh, Fahad, Shahid, Reddy, and Lastovetsky
[23]) are theoretical demonstrating energy and perfor-
mance improvements based on simulations of clusters
of homogeneous and heterogeneous nodes. Khokhri-
akov, Reddy, and Lastovetsky [22] present two novel
optimization methods to improve the average perfor-
mance of the FFT routines on modern multicore CPUs.
The methods employ workload distribution as the de-
cision variable and are based on parallel computing
employing threadgroups. They utilize load imbalanc-
ing data partitioning technique that determines optimal
workload distributions between the threadgroups, which
may not load-balance the application in terms of execu-
tion time. The inputs to the methods are discrete 3D
functions of performance against problem size of the
threadgroups, and can be employed as nodal optimiza-
tion techniques to construct a 2D FFT routine highly
optimized for a dedicated target multicore CPU. The
authors employ the methods to demonstrate significant
performance improvements over the basic FFTW and
Intel MKL FFT 2D routines on a modern Intel Haswell
multicore CPU consisting of thirty-six physical cores.

1.3. Motivation
The findings in (Lastovetsky and Reddy [5],

Reddy and Lastovetsky [6], Reddy and Lastovet-
sky [7], Khokhriakov, Reddy, and Lastovetsky [22],
Khaleghzadeh, Fahad, Shahid, Reddy, and Lastovet-
sky [23]) motivate us to study the influence of three-
dimensional decision variable space on bi-objective op-

3



Table 1: Specifications of the four Intel multicore CPUs, {HCLServer1, HCLServer2, HCLServer3, HCLServer4}.

Technical Specifications HCLServer1 (S1) HCLServer2 (S2) HCLServer3 (S3) HCLServer4 (S4)
Processor Intel Xeon Gold 6152 Intel Haswell E5-2670V3 Intel Xeon CPU E5-2699 Intel Xeon Platinum 8180
Core(s) per socket 22 12 18 28
Socket(s) 1 2 2 2
L1d cache, L1i cache 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB 256 KB, 30976 KB 256 KB, 46080 KB 1024 KB, 39424 KB
Total main memory 96 GB 64 GB 256 GB 187 GB
Power meter WattsUp Pro WattsUp Pro - Yokogawa WT310

timization of applications for energy and performance
on multicore CPUs. The three decision variables are: a).
The number of identical multithreaded kernels (thread-
groups) involved in the parallel execution of an appli-
cation; b). The number of threads in each threadgroup;
and c). The workload distribution between the thread-
groups. We focus exclusively on the first two deci-
sion variables in this work. The number of possible
workload distributions increases exponentially with in-
creasing number of threadgroups employed in the exe-
cution of a data-parallel application and it would require
employment of threadgroup-specific energy and perfor-
mance models to reduce the complexity. It is a subject
of our future work.

We propose and study a novel application-level
method for bi-objective optimization of multithreaded
data-parallel applications for energy and performance.
The method introduces a new direction towards energy-
optimal design of multithreaded data-parallel applica-
tions. It employs two optimization objectives, dynamic
energy and performance, and uses two decision vari-
ables, the number of identical multithreaded kernels
(threadgroups) executing the application in parallel and
the number of threads in each threadgroup. The work-
load distribution is not a decision variable. It is fixed so
that a given workload is always partitioned equally be-
tween the threadgroups. The method allows full reuse of
highly optimized scientific codes and does not require
any changes to hardware or OS. The first step of the
method includes writing a data-parallel version of the
base kernel that can be executed using a variable number
of threadgroups in parallel and solving the same prob-
lem as the base kernel, which employs one threadgroup.

We demonstrate our method using four multithreaded
applications: a) 2D-FFT using FFTW 3.3.7; b) 2D-FFT
using Intel MKL FFT; c) Dense matrix multiplication
using OpenBLAS; and d) Dense matrix multiplication
using Intel MKL FFT.

Four different modern Intel multicore CPUs are used
in the experiments: a) A single-socket Intel Skylake
consisting of 22 physical cores; b) A dual-socket In-
tel Haswell consisting of 24 physical cores; c) A dual-

Figure 1: Energy nonproportionality on S2 found by our method for
OpenBLAS DGEMM application solving workload size, N=16384.
Energy and execution time do not exhibit a monotonically increasing
relationship.

socket Intel Haswell consisting of 36 physical cores;
and d) A dual-socket Intel Skylake consisting of 56
cores. Specifications of the experimental servers S1,
S2, S3, and S4 equipped with these CPUs are given
in Table 1. Servers S1, S2, and S4 are equipped with
power meters and fully instrumented for system-level
energy measurements. Server S3 is not equipped with a
power meter and therefore is not employed in the exper-
iments for single-objective optimization for energy and
bi-objective optimization for energy and performance.

Figure 1 illustrates the energy nonproportionality on
S2 found by our method for OpenBLAS DGEMM
application solving workload size, N=16384. Data
points in the graph represent different configurations of
the multithreaded application solving exactly the same
problem. Energy proportionality is signified by a mono-
tonically increasing relationship between energy and
execution time. This is clearly not the case for the re-
lationship shown in the figure.

The average and maximum performance improve-
ments for performance optimization on a single-socket
multicore CPU (S1) are (7%, 26.3%), (5%, 6.5%) and
(27%, 69%) for the OpenBLAS DGEMM, Intel MKL

4



DGEMM and Intel MKL FFT applications against their
best single threadgroup configurations. Along with per-
formance optimization, the energy improvements for
OpenBLAS DGEMM and Intel MKL DGEMM are
(7.9%, 30%) and (35.7%, 67%) against their best sin-
gle threadgroup configurations.

At the same time, the optimization for performance
alone results in average and maximum increases in dy-
namic energy consumption of (22.5%, 67%) and (87%,
89%) for the Intel MKL DGEMM and Intel MKL FFT
applications in comparison with their energy-optimal
configurations. The optimization for dynamic energy
alone results in average and maximum performance
degradations of (27%, 39%) and (19.7%, 38.2%) in
comparison with their performance-optimal configura-
tions. The average and the maximum number of Pareto-
optimal solutions for Intel MKL DGEMM and Intel
MKL FFT are (2.3, 3) and (2.6, 3).

On the 24-core dual-socket CPU (S2), the average
and maximum performance improvements of (16%,
20%) and (8%, 21%) for the OpenBLAS DGEMM
and Intel MKL DGEMM applications against their best
single-threadgroup configurations. Even higher aver-
age and maximum performance improvements of (30%,
50%) are achieved for the FFTW application on the 56-
core dual-socket CPU (S4). Again, the improvements
are measured against the original single-threadgroup ba-
sic routine employing optimal number of threads.

At the same time, we find that optimization of the
OpenBLAS DGEMM and Intel MKL DGEMM appli-
cations on S2 for performance only, results in average
and maximum increases in dynamic energy consump-
tion of (15%, 35%) and (7.1%, 49%) in comparison
with their energy-optimal configurations, and optimiza-
tion of the Intel MKL FFT and FFTW applications on
S4 for performance alone results in average and maxi-
mum increases in dynamic energy consumption of (7%,
25%) and (15%, 57%).

On S2, the optimization of the OpenBLAS DGEMM
and Intel MKL DGEMM applications for energy only,
results in average and maximum performance degra-
dations of (2.5%, 6%) and (3.7%, 11%). On S4, the
average and maximum performance degradations are
(20%, 33%) and (31%, 49%) for the Intel MKL FFT
and FFTW applications. The performance degradations
are over the performance-optimal configuration.

By solving the bi-objective optimization problem on
three servers {S1,S2,S4}, the average and the maximum
number of Pareto-optimal solutions determined by out
method are (2.7, 3), (3,11), (2.4, 5) and (1.8, 4) for In-
tel MKL FFT, FFTW, OpenBLAS DGEMM and Intel
MKL DGEMM applications.

1.4. Qualitative Dynamic Energy Model to Explain En-
ergy Nonproportionality

There are three mainstream approaches to pro-
viding measurement of energy consumption during
an application execution: (a) System-level physi-
cal measurements us ing external power meters, (b)
Measurements using on-chip power sensors, and (c)
Energy predictive models. Fahad, Shahid, Reddy,
and Lastovetsky [24] present a comprehensive com-
parative study of the approaches. A vast majority
of software energy predictive models employ perfor-
mance monitoring counters (PMCs) as predictor vari-
ables. PMCs are special-purpose registers provided in
modern microprocessors to store the counts of software
and hardware activities. To explain the discovered en-
ergy nonproportionality, we propose a qualitative dy-
namic energy model based on linear regression and em-
ploying PMCs as variables.

There are few research works that highlight the poor
accuracy of state-of-the-art linear regression models
employing PMCs as predictor variables and demon-
strate how the accuracy can be improved using model
variables that are deterministic and reproducible and
that are selected based on physical significance origi-
nating from fundamental physical laws such as conser-
vation of energy of computing. Economou, Rivoire,
Kozyrakis, and Ranganathan [25] highlight the funda-
mental limitation, which is the inability to obtain all the
PMCs simultaneously or in one application run. They
also mention the lack of PMCs to model the energy
consumption of disk I/O and network I/O. McCullough,
Agarwal, Chandrasekhar, Kuppuswamy, Snoeren, and
Gupta [26] evaluate the competence of predictive power
models for modern node architectures and show that lin-
ear regression models show prediction errors as high
as 150%. They suggest that direct physical measure-
ment of power consumption should be the preferred
approach to tackle the inherent complexities posed by
modern node architectures. O’Brien, Pietri, Reddy, Las-
tovetsky, and Sakellariou [27] survey the state-of-the-
art energy predictive models in HPC and present a case
study demonstrating the ineffectiveness of the dominant
PMC-based modeling approach for accurate energy pre-
dictions. Shahid, Fahad, Reddy, and Lastovetsky [28]
propose a novel property of PMCs called additivity,
which can be used to determine the subset of PMCs
that can potentially be used for reliable energy predic-
tive modeling. It is based on the experimental observa-
tion that the energy consumption of a serial execution
of two applications is the sum of energy consumptions
observed for the individual execution of each applica-
tion. A linear predictive energy model is consistent if

5



and only if its predictor variables are additive in the
sense that the vector of predictor variables for a serial
execution of two applications is the sum of vectors for
the individual execution of each application. The use
of non-additive PMCs in a model impairs its prediction
accuracy. Shahid, Fahad, Reddy, and Lastovetsky [29]
demonstrate that correlation with dynamic energy con-
sumption alone is not sufficient to provide good average
prediction accuracy of models but should be combined
with methods such as additivity that take into account
the physical significance of the predictor variables orig-
inating from fundamental laws such as energy conser-
vation of computing.

Our proposed dynamic energy model employs PMCs
that are based primarily on the property of additivity fol-
lowed by high positive correlation with dynamic energy
consumption. It reveals the cause behind the energy
nonproportionality and demonstrates the same trend as
the measured dynamic energy using system-level power
measurements based on power meters, which is consid-
ered to be the ground truth [24].

1.5. Summary of Contributions

The main contributions in this work are the following:

• We show that energy proportionality does not hold
true for multicore CPUs thereby affording an op-
portunity for bi-objective optimization for energy
and performance.

• We propose and study a novel application-level
method for bi-objective optimization of multi-
threaded data-parallel applications for energy and
performance. The method introduces a new di-
rection towards energy-optimal design of multi-
threaded data-parallel applications. Using four
highly optimized data-parallel applications, the
proposed method is shown to determine good
numbers of Pareto-optimal solutions (number of
threadgroups, number of threads per threadgroup)
of the applications providing the programmers bet-
ter trade-offs between energy and performance.

• To explain the discovered energy nonproportion-
ality, a qualitative dynamic energy model based on
linear regression and employing performance mon-
itoring counters (PMCs) as variables is proposed.
The model shows that the energy nonproportional-
ity on our experimental platforms for the two data-
parallel applications is due to disproportionately
high energy consumption by the data translation
lookaside buffer (dTLB) activity.

The rest of the paper is organized as follows. Section
2 presents terminology related to energy consumption.
Section 3 presents the related work. Section 4 describes
our solution method. Section 5 describes the first step of
our solution method for two data-parallel applications,
2D fast Fourier transform and dense matrix multiplica-
tion. Section 6 contains the experimental results. Sec-
tion 6.4 presents our dynamic energy model employing
PMCs as variables to explain the cause behind the en-
ergy nonproportionality on our experimental platforms.
Section 7 concludes the paper.

2. Terminology

There are two types of energy consumptions, static
energy, and dynamic energy. The total energy consump-
tion is the sum of dynamic and static energy consump-
tions. The static energy consumption is calculated by
multiplying the idle power of the platform (without ap-
plication execution) with the execution time of the ap-
plication. The dynamic energy consumption is calcu-
lated by subtracting this static energy consumption from
the total energy consumed by the platform during the
application execution. That is, if PS is the static power
consumption of the platform, ET is the total energy con-
sumption of the platform during the execution of an ap-
plication, which takes TE seconds, then the dynamic en-
ergy ED can be calculated as,

ED = ET − (PS × TE) (1)

We consider only the dynamic energy consumption
in our work for reasons below:

1. Although static energy consumption is a major
concern in embedded systems, it is becoming less
compared to the dynamic energy consumption due
to advancements in hardware architecture design in
HPC systems.

2. We target applications and platforms where dy-
namic energy consumption is the dominating en-
ergy dissipator.

3. Finally, we believe its inclusion can underestimate
the true worth of an optimization technique that
minimizes the dynamic energy consumption. We
elucidate using two examples from published re-
sults.

• In our first example, consider a model that
reports predicted and measured total energy
consumption of a system to be 16500J and

6



18000J. It would report the prediction error to
be 8.3%. If it is known that the static energy
consumption of the system is 9000J, then the
actual prediction error (based on dynamic en-
ergy consumptions only) would be 16.6% in-
stead.

• In our second example, consider two differ-
ent energy prediction models (MA and MB)
with same prediction errors of 5% for an ap-
plication execution on two different machines
(A and B) with same total energy consump-
tion of 10000J. One would consider both the
models to be equally accurate. But sup-
posing it is known that the dynamic energy
proportions for the machines are 30% and
60%. Now, the true prediction errors (using
dynamic energy consumptions only) for the
models would be 16.6% and 8.3%. There-
fore, the second model MB should be consid-
ered more accurate than the first.

A background on multi-objective optimization is pre-
sented in the supplemental [30]. In multi-objective op-
timization, there is no natural ordering in the objective
space because it is only partially ordered. Therefore
we must treat the concept of optimality differently from
single-objective optimization problem. The generally
used concept is Pareto-optimality. In this work, we con-
sider bi-objective optimization where dynamic energy
and performance are the objectives.

3. Related Work

We divide our literature review into the following cat-
egories:

• Software based energy predictive models for mul-
ticore CPUs;

• Surveys on energy efficiency in computing;

• Single-objective optimization methods for energy
and performance;

• Multi-objective system-level and application-level
optimization methods with energy or performance
or both as important objectives.

3.1. Energy Predictive Models of Computation
Software based energy predictive models emerged as

a predominant approach to predict the energy consumed
by a given platform during the execution of an applica-
tion. A vast majority of such models are linear and use

performance monitoring counters (PMCs) to predict the
energy consumption.

Bellosa [31] proposes an energy model based on per-
formance monitoring counters such as integer opera-
tions, floating-point operations, memory requests due to
cache misses, etc. that they believed to strongly corre-
late with energy consumption. Icsi and Martonosi [32]
employ access rates of the components determined us-
ing performance monitoring counters (PMCs) to model
component-level power consumption. Li and John [33]
employ instructions per cycle (IPC) as predictor vari-
able to model power consumption of the operating sys-
tem (OS). Lee and Brooks [34] propose regression mod-
els using performance events to predict power. A linear
model that is based on the utilization of CPU, disk, and
network is presented by Heath, Diniz, Horizonte, Car-
rera, and Bianchini [35]. A more complex power model
(Mantis) studied by Economou, Rivoire, Kozyrakis, and
Ranganathan [25] employs utilization metrics of CPU,
disk, and network components and hardware perfor-
mance counters for memory as predictor variables.

Fan, Weber, and Barroso [36] propose a simple linear
model that correlates power consumption of a single-
core processor with its utilization. Bertran, Gonzalez,
Martorell, Navaroo, and Ayguade [37] present a power
model that provides per-component power breakdown
of a multicore CPU. Basmadjian, Ali, Niedermeier, de
Meer, and Giuliani [38] model power consumption of
a server as sum of power consumption of its compo-
nents, the processor (CPU), memory (RAM), fans and
disk (HDD). Bircher and John [39] present an power
predictive model based on PMCs that capture interde-
pendence between subsystems such as CPU, disk, GPU
and so forth. Dargie [40] use the statistics of CPU uti-
lization (instead of PMCs) to model the relationship be-
tween the power consumption of multicore processor
and workload quantitatively. They demonstrate that the
relationship is quadratic for single-core processor and
linear for multicore processors.

Energy predictive models predominantly employ per-
formance monitoring counters (PMCs) as variables.
Haj-Yihia, Yasin, Asher, and Mendelson [41] pro-
pose a linear power predictive model for Intel Skylake
based CPUs based on selected PMCs that are highly
positively correlated with power consumption. Mair,
Hyang, and Eyers [42] present Manila, which is a power
model based on PMC space generated as densely pop-
ulated points gathered via a large number of synthetic
applications. Lastovetsky and Reddy [5] present an
application-level energy model where the dynamic en-
ergy consumption of a processor is represented by a dis-
crete function of problem size, which is shown to be

7



highly non-linear for data-parallel applications on mod-
ern multicore CPUs.

Unlike the energy predictive models surveyed in this
section, we propose a qualitative dynamic energy model
employing PMCs as variables that explains the cause
of energy nonproportionality in our experimental plat-
forms.

3.2. Surveys on Energy Efficiency in Computing
Kaxiras and Martonosi [43] survey the most impor-

tant architectural techniques that have been proposed
to reduce both static and dynamic power consump-
tions in processors and memory hierarchies. Bene-
dict [44] present a survey of various energy measure-
ment methodologies for HPC, Grid, and Cloud appli-
cations. Mobius, Dargie, and Schill [45] present a
survey of power consumption models for single-core
and multicore processors, virtual machines, and servers.
They conclude that regression-based approaches domi-
nate and that one prominent shortcoming of the these
models is that they use static instead of variable work-
loads for training the models.

Inacio and Dantes [46] present a literature survey of
works using workload characterization for performance
and energy efficiency improvement in HPC, cloud, and
big data environments. Orgerie, Assuncao, and Lefevre
[47] survey techniques for improving the energy effi-
ciency of computing and networking resources in large-
scale distributed systems. Tan, Kothapalli, Chen, Hus-
saini, Bissiri, Chen et al. [48] survey the research on
saving power and energy for HPC linear algebra appli-
cations. They construct a linear model of a HPC system
as a summation of power consumptions of all the nodes
in the system. The power consumption of a node is
modelled as the sum of all the major components (CPU,
GPU, RAM) of a node.

Mittal and Vettel [49] present a survey of research
works analysing and improving energy efficiency of
GPUs. In this survey, they also present works that com-
pare the energy efficiency of GPUs with other com-
puting systems such as CPUs, Cell processor, FPGA
etc. Dayarathna, Wen, and Fan [50] present an in-depth
survey on data center power modelling. They orga-
nize the power models based on two classifications: a).
hardware-centric, and b). software-centric.

O’Brien, Pietri, Reddy, Lastovetsky, and Sakellariou
[27] survey the state-of-the-art energy predictive mod-
els in HPC and present a case study demonstrating the
ineffectiveness of the dominant PMC-based modeling
approach for accurate energy predictions. In the case
study, they use 35 carefully selected PMCs (out of a
total of 390 available in the platform) in their linear

regression model for predicting dynamic energy con-
sumption. The authors show that the linear regression
models give prediction errors as high as 100%.

3.3. Energy Optimization Methods

There are three important categories dealing with en-
ergy optimization on multicore CPU platforms. The
software category contains research works that propose
shared resource partitioners. The two hardware cate-
gories concern research works that employ Dynamic
Voltage and Frequency Scaling (DVFS) and Dynamic
Power Management (DPM) and thermal management.
Zhuravlev, Saez, Blagodurov, Fedorova, and Prieto [51]
survey the prominent works in all the three categories.

Wang, Mishra, and Ranka [10], Cheng, Huang,
Huang, and Knoll [12] propose dynamic reconfigura-
tion of private caches and partitioning of shared caches
(last level cache, for example) to reduce the energy con-
sumption without hurting performance.

DVFS and DPM allow changing the frequencies of
the cores and to lower their power states when they are
idle. Considering the enormity of literature in this cat-
egory, we will cover only works that take into account
resource contention and thread-to-core mapping while
employing DVFS. Kadayif, Kandamir, and Kolcu [52]
exploit the heterogeneous nature of workloads executed
by different processors to set their frequencies so as to
reduce energy without impacting performance. Kondo,
Sasaki, and Nakamura [53], Watanabe, Kondo, Naka-
mura, and Nanya [54] employ DVFS to reduce resource
contention and energy consumption.

The main goal of thermal management algorithms
proposed by Yang, Zhou, Chrobak, Zhang, and Jin [13],
Ayoub and Rosing [14] is to find thread-to-core map-
pings (or even thread migration) to remove drastic varia-
tions in temperatures or thermal hotspots in the chip and
at the same time reduce the energy consumption with-
out impacting the performance. They employ as inputs
thermal models that are built using temperature mea-
surements provided by on-chip sensors. The algorithms
are chiefly employed at the OS level.

Asymmetry-aware schedulers have been proposed
for energy optimization on asymmetric multicore sys-
tems, which feature a mix of fast and slow cores,
high-power and low-power cores but that expose the
same instruction-set architecture (ISA). Fedorova, Saez,
Shelepov, and Prieto [55] propose a system-level sched-
uler that assigns sequential phases of an application to
fast cores and parallel phases to slow cores to maximize
the energy efficiency. Herbert, Garg, and Marculescu
[56] employ DVFS to exploit the core-to-core variations

8



from fabrication in power and performance to improve
the energy efficiency of the multicore platform.

In this work, we propose the first application-level
method for energy optimization that finds the opti-
mal configuration of the application minimizing the dy-
namic energy consumption during the execution of the
application rather than the optimal configuration of the
multicore CPU operating environment.

3.4. Performance Optimization Methods

There are three dominant approaches in this category.
First category contains research works [57, 58] that have
proposed contention-aware thread-level schedulers that
try to minimize performance losses due to contention
for on-chip shared resources.

The second category includes DRAM controller
schedulers that aim to efficiently utilize the shared re-
source, which is the DRAM memory system, and last
level cache partitioning that physically partition the
shared resources to minimize contention. DRAM con-
troller schedulers proposed by Ebrahimi, Miftakhut-
dinov, Fallin, Lee, Joao, Mutlu et al. [59], Jeong,
Yoon, Sunwoo, Sullivan, Lee, and Erez [60] improve
the throughput by ordering threads and prioritizing their
memory requests through DRAM controllers. Last level
cache partitioners proposed by Li, Lu, Ding, Zhang,
Zhang, and Sadayappan [61], Tam, Azimi, Soares, and
Stumm [62] explicitly partition the cache when the de-
fault cache replacement policies (such as least-recently-
used (LRU)) do not result in efficient execution of ap-
plications. These partitioners, however, must be used in
conjunction with schedulers that mitigate contention for
memory controllers and on-chip interconnects.

The final category includes research works (Tang,
Mars, Vachharajani, Hundt, and Soffa [63], Mars, Tang,
Hundt, Skadron, and Soffa [64]) that focus on thread-
level schedulers that exploit data sharing between the
threads to co-schedule them. A key building block in
the schedulers are performance models based on PMCs
that can predict performance loss due to co-scheduling
or migrating threads between cores.

3.5. Multi-Objective Optimization

In this section, we survey the state-of-the-art multi-
objective optimization methods.

3.5.1. System-level Methods
System-level multi-objective optimization methods

aim to optimize several objectives of the system or the
environment (for example: clouds, data centers, etc)
where the applications are executed.

Rong, Feng, Feng, and Cameron [65] present a run-
time system (CPU MISER) based on DVFS that pro-
vides energy savings with minimal performance degra-
dation by using a performance model. Huang and
Feng [66] propose an eco-friendly daemon that employs
workload characterization as a guide to DVFS to reduce
power and energy consumption with little impact on ap-
plication performance. Mezmaz, Melab, Kessaci, Lee,
Talbi, Zomaya et al. [67] propose a parallel bi-objective
genetic algorithm to maximize the performance and
minimize the energy consumption in cloud computing
infrastructures. The parameters used in their method
are the computation cost of a task and the communi-
cation costs between two tasks. The decision variable is
the supply voltage of the processor. Fard, Prodan, Bar-
rionuevo, and Fahringer [68] present a four-objective
case study comprising performance, economic cost, en-
ergy consumption, and reliability for optimization of
scientific workflows in heterogeneous computing envi-
ronments. The parameters are the computation speeds
of the processors and the bandwidths of the communica-
tion links connecting a pair of processors. The decision
variable is the task assignment or mapping. The energy
consumption of computations is modeled as cube-root
of clock frequency. Beloglazov, Abawajy, and Buyya
[69] propose heuristics that consider twin objectives of
energy efficiency and Quality of Service (QoS) for pro-
visioning data center resources. The decision variables
are the number of VMs and clock frequencies. The
energy consumption is modeled as a linear function of
CPU utilization. Kessaci, Melab, and Talbi [70] present
a multi-objective genetic algorithm that minimizes the
energy consumption, CO2 emissions and maximizes the
generated profit of a cloud computing infrastructure.
The parameters are the execution time of an applica-
tion, the number of processors used in the execution of
an application, and the deadline for completion of the
application. The decision variable is the arrival rate.

Durillo, Nae, and Prodan [71] propose a multi-
objective workflow scheduling algorithm that maxi-
mizes performance and minimizes energy consump-
tion of applications executing in heterogeneous high-
performance parallel and distributed computing sys-
tems. A machine is characterized using nine parameters
(from technology(nm) to TDP). They study the impact
of different decision variables: number of tasks, num-
ber of machines, DVFS levels, static energy, and types
of tasks. The execution time and energy consumption
are predicted using neural networks. Das, Kumar, Veer-
avalli, Bolchini, and Miele [72] propose task mapping
to optimize for energy and reliability on multiprocessor
systems-on-chip (MPSoCs) with performance as a con-

9



straint. Zhang and Chang [73] present a DVFS sched-
uler that makes sure the multiple user applications exe-
cuting on multicores in clouds meet their SLA require-
ment, which is the specific allowed performance loss.

Kolodziej, Khan, Wang, and Zomaya [74] propose
multi-objective genetic algorithms that aim to maximize
performance and energy consumption of applications
executing in green grid clusters and clouds. The per-
formance is modeled using computation speed of a pro-
cessor. The decision variable is the DVFS level. Vaib-
hav and Masha [75] present a runtime system that per-
forms both processor and DRAM frequency scaling and
demonstrate total energy savings with minimal perfor-
mance loss. Yuichi, Patki, Inoue, Aoyagi, Rountree,
Schulz et al. [76], Neha, Muller, and Rountree [77]
consider the fluctuations in performance arising from
manufacturing and thermal variations and propose ap-
proaches that take into account these variations to as-
sign jobs to machines, which have a specified power
budget. In our work, we consider the variations in
performance caused by severe resource contention and
NUMA inherent in modern multicore platforms during
the execution of highly multithreaded scientific data-
parallel applications. Sheikh, Ahmad, and Fan [78] pro-
pose task scheduler employing evolutionary algorithms
to optimize applications on multicore CPU platforms
for performance, energy, and temperature. Abdi, Gi-
rault, and Zarandi [79] propose multi-criteria optimiza-
tion where they minimize the execution time under three
constraints, the reliability, the power consumption, and
the peak temperature. DVFS is a key decision variable
in all of these research works.

3.5.2. Application-level Methods
Subramaniam and Feng [80] use multi-variable re-

gression to study the performance-energy trade-offs
of the high-performance LINPACK (HPL) benchmark.
They study performance-energy trade-offs using the
decision variables, number of threads and number of
processes. Marszalkowski, Drozdowski, and Marsza-
lkowski [? ] analyze the impact of memory hierar-
chies on time-energy trade-off in parallel computations,
which are represented as divisible loads. They repre-
sent execution time and energy by two linear functions
on problem size, one for in-core computations and the
other for out-of-core computations.

Lastovetsky and Reddy [5], Reddy and Lastovet-
sky [7] propose data partitioning algorithms that solve
single-objective optimization problems of data-parallel
applications for performance or energy on homoge-
neous clusters of multicore CPUs. They take as an in-
put, discrete performance and dynamic energy functions

with no shape assumptions and that accurately and re-
alistically account for resource contention and NUMA
inherent in modern multicore CPU platforms. Reddy
and Lastovetsky [6] propose a solution method to solve
bi-objective optimization problem of an application for
performance and energy on homogeneous clusters of
modern multicore CPUs. They demonstrate that the
method gives a diverse set of Pareto-optimal solutions
and that it can be combined with DVFS-based multi-
objective optimization methods to give a better set of
(Pareto-optimal) solutions. The methods target homo-
geneous HPC platforms. Chakraborti, Parthasarathy,
and Stewart [81] consider the effect of heterogeneous
workload distribution on bi-objective optimization of
data analytics applications by simulating heterogene-
ity on homogeneous clusters. The performance is rep-
resented by a linear function of problem size and the
total energy is predicted using historical data tables.
Khaleghzadeh, Fahad, Shahid, Reddy, and Lastovetsky
[23] propose a solution method solving the bi-objective
optimization problem on heterogeneous processors and
comprising of two principal components. The first com-
ponent is a data partitioning algorithm that takes as an
input discrete performance and dynamic energy func-
tions with no shape assumptions. The second compo-
nent is a novel methodology employed to build the dis-
crete dynamic energy profiles of individual computing
devices, which are input to the algorithm.

None of the state-of-the-art methods optimise for a
single multicore CPU processor. They all target either
homogeneous or heterogeneous platforms with multi-
ple multicore CPUs. Our proposed method is the first
application-level solution method for bi-objective opti-
mization of a data-parallel application for energy and
performance that targets a single multicore CPU.

4. Solution Method Solving Bi-objective Optimiza-
tion Problem on a Single Multicore CPU

In this section, we describe our solution method,
BOPPETG, for solving the bi-objective optimization
problem of a multithreaded data-parallel application on
multicore CPUs for performance and energy (BOPPE).
The method uses two decision variables, the number of
identical multithreaded kernels (threadgroups) and the
number of threads in each threadgroup. A given work-
load is always partitioned equally between the thread-
groups.

The bi-objective optimization problem (BOPPE) can
be formulated as follows: Given a multithreaded data-
parallel application of workload size n and a multicore
CPU of l cores, the problem is to find the Pareto-optimal

10



(a)

(b)

(c)

Figure 2: Decomposition of the matrices, A, B, and C, in our parallel matrix multiplication. (a). PMMTG-V: Matrices B and C are vertically
partitioned among the threadgroups. (b). PMMTG-H: Matrices A and C are horizontally partitioned among the threadgroups. (c). PMMTG-S: The
p threadgroups are arranged in a square grid of size

√
p ×
√

p. All the matrices are partitioned into squares among the threadgroups.

solutions optimizing execution time and dynamic en-
ergy consumption during the parallel execution of the
workload. Each solution is an application configuration
given by (threadgroups, threads per group).

The inputs to the solution method are the workload
size of the multi-threaded data-parallel application, n;
the number of cores in the multicore CPU, l; the mul-
tithreaded base kernel, mtkernel; the base power of the
multicore CPU platform, Pb. The outputs are the Pareto
front of objective solutions, Popt, and the optimal appli-
cation configurations corresponding to these solutions,
Copt. Each Pareto-optimal solution of objectives o is
represented by the pair, (so, eo), where so is the ex-

ecution time and eo is the dynamic energy. Associ-
ated with this solution is an array of application config-
urations, A(go, to), containing decision variable pairs,
(go, to), where go represents the number of threadgroups
each containing to threads.

The main steps of BOPPETG are as follows:
Step 1. Parallel implementation allowing (g,t) con-

figuration: Design and implement a data-parallel ver-
sion of the base kernel mtkernel and that can be exe-
cuted using g identical multithreaded kernels in parallel.
Each kernel is executed by a threadgroup containing t
threads. The workload n is divided equally between the
g threadgroups during the execution of the data-parallel

11



version. The data-parallel version should essentially al-
low its runtime configuration using number of thread-
groups and number of threads per group with the work-
load equally partitioned between the threadgroups.

Step 2. Initialize g and t: All the runtime configura-
tions, (g,t), where the product, g× t, is less than or equal
to the total number of cores (l) in the multicore platform
are considered. g← 1, t ← 1. Go to Step 3.

Step 3. Determine time and dynamic energy of
the (g,t) configuration of the application: The data-
parallel version composed in Step 1 is run using the (g,t)
configuration. Its execution time and dynamic energy
consumption are determined as follows: so = t f − ti,
eo = e f − Pb × so, where ti and t f are the starting and
ending execution times and e f is the total energy con-
sumption during the execution of the application. Go to
Step 4.

Step 4. Update Pareto front for (g,t): The solution
(so, eo) if Pareto-optimal is added to the Pareto front of
objective solutions, {Popt}, and existing member solu-
tions of the set that are inferior to it are removed. The
optimal application configurations corresponding to the
solution (so, eo) are stored in Copt. Go to Step 5.

Step 5. Test and Increment (g,t): If t < l, t ← t + 1,
go to Step 3. Set g← g+1, t ← 1. If g×t ≤ l, go to Step
3. Else return the Pareto front and optimal application
configurations given by {Popt,Copt} and quit.

In the following section, we illustrate the first step
of BOPPETG for dense matrix multiplication applica-
tion. The application of BOPPETG for implementing
the data-parallel version of 2D fast Fourier transform
(PFFTTG) is presented in the supplemental [30]. We
show in particular how BOPPETG can reuse highly op-
timized scientific kernels with careful design and devel-
opment of parallel versions of the application.

5. Parallel Matrix Multiplication

We illustrate the first step of our solution method
(BOPPETG) for implementing the data-parallel version
of dense matrix multiplication (PMMTG).

The PMMTG application computes the matrix prod-
uct (C = α×A×B+β×C) of two dense square matrices
A and B of size N×N. The application is executed using
p threadgroups, {P1, ..., Pp}. To simplify the exposition
of the algorithms, we assume N to be divisible by p.

There are three parallel algorithmic variants of
PMMTG. In PMMTG-V, the matrices B and C are parti-
tioned vertically such that each threadgroup is assigned
N
p of the columns of B and C as shown in the Figure 2a.
Each threadgroup Pi computes its vertical partition CPi

1 vo id *dgemm ( vo id * i n p u t )
2 {
3 i n t i = * ( i n t * ) i n p u t ;
4 o p e n b l a s s e t n u m t h r e a d s ( t ) ;
5 g o t o s e t n u m t h r e a d s ( t ) ;
6 o m p s e t n u m t h r e a d s ( t ) ;
7 i f ( i == 1)
8 {
9 cblas dgemm ( CblasRowMajor , CblasNoTrans ,

10 CblasNoTrans , N/ p , N, N, a lpha , A1 , N,
11 B , N, be t a , C1 , N) ;
12 }
13 . . .
14 i f ( i == p )
15 {
16 cblas dgemm ( CblasRowMajor , CblasNoTrans ,
17 CblasNoTrans , N/ p , N, N, a lpha , Ap , N,
18 B , N, be t a , Cp , N) ;
19 }
20 }
21

22 i n t main ( ) {
23 i n t row ;
24 # pragma omp p a r a l l e l f o r n u m t h r e a d s ( p* t )
25 f o r ( row = 0 ; row < N/ p ; row ++) {
26 memcpy(&A1 [ row*N] , &A[ row*N] , N* s i z e o f ( d ou b l e ) ) ;
27 . . .
28 memcpy(&Ap [ row*N] , &A[ ( p−1) *N*(N/ p ) +row*N] ,
29 N* s i z e o f ( d ou b l e ) ) ;
30 memcpy(&C1 [ row*N] , &C[ row*N] , N* s i z e o f ( d ou b l e ) ) ;
31 . . .
32 memcpy(&Cp [ row*N] , &C [ ( p−1) *N*(N/ p ) +row*N] ,
33 N* s i z e o f ( d ou b l e ) ) ;
34 }
35

36 p t h r e a d t t1 , . . . , t p ;
37 i n t i 1 = 1 , . . . , i p = p ;
38 p t h r e a d c r e a t e (& t1 , NULL, dgemm , &i 1 ) ;
39 . . .
40 p t h r e a d c r e a t e (& tp , NULL, dgemm , &i p ) ;
41 p t h r e a d j o i n ( tp , NULL) ;
42 . . .
43 p t h r e a d j o i n ( t1 , NULL) ;
44

45 # pragma omp p a r a l l e l f o r n u m t h r e a d s ( p* t )
46 f o r ( row = 0 ; row < N/ p ; row ++)
47 {
48 memcpy(&A[ row*N] , &A1 [ row*N] , N* s i z e o f ( d ou b l e ) ) ;
49 . . .
50 memcpy(&A[ ( p−1) *N*(N/ p ) +row*N] , &Ap [ row*N] ,
51 N* s i z e o f ( d ou b l e ) ) ;
52 memcpy(&C[ row*N] , &C1 [ row*N] , N* s i z e o f ( d ou b l e ) ) ;
53 . . .
54 memcpy(&C [ ( p−1) *N*(N/ p ) +row*N] , &Cp [ row*N] ,
55 N* s i z e o f ( d ou b l e ) ) ;
56 }
57 }

Figure 3: OpenBLAS implementation of parallel matrix multiplica-
tion using horizontal partitioning of matrices A and C (PMMTG-H).
The implementation employs p threadgroups of t threads each.

using the matrix product, CPi = α×A×BPi +β×CPi . In
PMMTG-H, the matrices A and C are partitioned hor-
izontally such that each threadgroup is assigned N

p of
the rows of B and C as shown in the Figure 2b. Each
threadgroup Pi computes its horizontal partition CPi us-
ing the matrix product, CPi = α × APi × B + β × CPi .
In PMMTG-S, the p threadgroups {P1, ..., Pp} are ar-
ranged in a square grid Qst, s ∈ [1,

√
p], t ∈ [1,

√
p].

12



The matrices A, B, and C are partitioned into equal
squares among the threadgroups as shown in the Fig-
ure 2c. In each matrix, each threadgroup Pi(= Qst)
is assigned a sub-matrix of size N

√
p ×

N
√

p and com-
putes its square partition CQst using the matrix product,
CQst = α ×

∑√p
k=1(Ask × Bkt) + β ×CQst . Ask is the square

block in matrix A located at (s, k). Bkt is the square
block in matrix B located at (k, t).

5.1. Implementation of PMMTG-H Based on Open-
BLAS DGEMM

We describe an OpenBLAS implementation of
PMMTG-H (Figure 3) here. The implementations of the
other PMMTG algorithms employing Intel MKL and
OpenBLAS are described in the supplemental [30].

The inputs to an implementation are: a). Matrices A,
B, and C of sizes N × N; b). Constants α and β; c) The
number of threadgroups, {P1, · · · , Pp}; d). The number
of threads in each threadgroup represented by t. The
output matrix, C, contains the matrix product.

The vertical partitions of A and C, {APi ,CPi}, i ∈
[1, p], assigned to the threadgroups, {P1, ..., Pp}, are
initialized in Lines 24-34. Then p pthreads repre-
senting the p threadgroups are created, each a mul-
tithreaded OpenBLAS DGEMM kernel executing t
OpenMP threads (Lines 36-43).The p threadgroups
compute the matrix product (Lines 1-20). The result is
gathered in the matrix C (Lines 45-56).

The implementations using Intel MKL differ from
those using OpenBLAS. In Intel MKL, the matrix
computation by a threadgroup is performed using an
OpenMP parallel region with t threads whereas the same
is done in OpenBLAS using a pthread.

6. Experimental Results and Discussion

In this section, we present our experimental results
for matrix multiplication (PMMTG) and 2D fast Fourier
transform (PFFTTG) employing our solution method.

To make sure the experimental results are reliable, we
follow a statistical methodology described in the sup-
plemental [30]. Briefly, for every data point in the func-
tions, the automation software executes the application
repeatedly until the sample mean lies in the 95% confi-
dence interval and a precision of 0.025 (2.5%) has been
achieved. For this purpose, Student’s t-test is used as-
suming that the individual observations are independent
and their population follows the normal distribution.
The validity of these assumptions is verified by plot-
ting the distributions of observations and using Pear-
son’s Test. The speed/time/energy values shown in the
graphical plots are the sample means.

Four multicore CPUs shown in the Table 1 and de-
scribed earlier are used in the experiments. Three plat-
forms {S1, S2, S4} have a power meter installed be-
tween their input power sockets and the wall A/C out-
lets. S1 and S2 are connected with a Watts Up Pro
power meter; S4 is connected with a Yokogawa WT310
power meter. S3 is not equipped with a power meter and
therefore is not employed in the experiments for single-
objective optimization for energy and bi-objective opti-
mization for energy and performance.

The power meter provides the total power consump-
tion of the server. It has a data cable connected to one
USB port of the server. A script written in Perl collects
the data from the power meter using the serial USB in-
terface. The execution of the script is non-intrusive and
consumes insignificant power. WattsUp Pro power me-
ters are periodically calibrated using the ANSI C12.20
revenue-grade power meter, Yokogawa WT310. The
maximum sampling speed of WattsUp Pro power me-
ters is one sample every second. The accuracy specified
in the data-sheets is ±3%. The minimum measurable
power is 0.5 watts. The accuracy at 0.5 watts is ±0.3
watts. The accuracy of Yokogawa WT310 is 0.1% and
the sampling rate is 100k samples per second.

HCLWattsUp API [82] is used to gather the read-
ings from the power meter to determine the dynamic
energy consumption during the execution of PMMTG
and PFFTTG applications. HCLWattsUp has no extra
overhead and therefore does not influence the energy
consumption of the application execution. The API is
described in the supplemental [30].

Fans are significant contributors to energy consump-
tion. On our platform, fans are controlled in two zones:
a) zone 0: CPU or System fans, b) zone 1: Peripheral
zone fans. There are 4 levels to control the speed of
fans:

• Standard: BMC control of both fan zones, with
CPU zone based on CPU temp (target speed 50%)
and Peripheral zone based on PCH temp (target
speed 50%)

• Optimal: BMC control of the CPU zone (target
speed 30%), with Peripheral zone fixed at low
speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed
50%), Peripheral zone fixed at 75%

• Full: all fans running at 100%

To rule out the contribution of fans in dynamic energy
consumption, we set the fans at full speed before execut-
ing the applications. When set at full speed, the fans run

13



Figure 4: Dynamic energy consumption for PMMTG employing
OpenBLAS DGEMM for different (g,t) configurations on S1. g is
the number of threadgroups and t is the number of threads per thread-
group.

constantly at ∼13400 rpm until they are set to a differ-
ent speed level. In this way, energy consumption due
to fans is included only in the static power consumption
of the platform. The temperature of our platform and
speeds of the fans (with Full setting) is monitored with
the help of Intelligent Platform Management Interface
(IPMI) sensors, both with and without the application
run. An insignificant difference in the speeds of fans is
found in both the scenarios.

6.1. Parallel Matrix-Matrix Multiplication
6.1.1. Energy Optimization on a Single Socket Multi-

core CPU
Fiqure 4 shows the dynamic energy consumptions

for PMMTG using OpenBLAS DGEMM of different
threadgroup combinations on a single-socket CPU (S1).
The base version corresponds to application configura-
tion employing one threadgroup with optimal number
of threads, which is 44 threads. The best combination
for sizes N=29696 and N=30720 is (g,t)=(22,1) where
g is the number of threadgroups and t is the number of
threads per threadgroup. It outperforms the base com-
bination by 20%. The best combination for N = 35328
is (g,t)=(1,22), which outperforms the base combination
by 23%. Furthermore, the average improvement (or en-
ergy savings) over the base combination for 41 tested
workload sizes in the range, 5120 ≤ N ≤ 35000, is 8%.

Fiqure 5 shows the dynamic energy consump-
tions for PMMTG using Intel MKL DGEMM. There
are three best combinations for each problem size,
(g,t)={(11,4),(22,2),(44,1)}. They outperform the base
combination by 35%. Furthermore, the average im-
provement over the base combination for 21 tested
workload sizes in the range, 5120 ≤ N ≤ 35000, is
35.7%.

Figure 5: Dynamic energy consumption for PMMTG employing Intel
MKL DGEMM for different (g,t) configurations on S1.

Figure 6: Dynamic energy consumption of PMMTG employing
OpenBLAS DGEMM for different (g,t) configurations on S2.

6.1.2. Energy Optimization on a Dual-socket Multicore
CPU

Figure 6 show the results for PMMTG based on
OpenBLAS DGEMM on S2 with three different work-
load sizes. There are four best combinations minimiz-
ing the dynamic energy consumption for workload size
16384, (g,t)={(2,24),(3,16),(6,8),(24,2)}. The energy
savings for these combinations compared with the best
base combination, (g,t)=(1,24), is around 21%. For the
workload sizes 17408 and 18432, the best combinations
are (12,4) and (4,12). The energy savings in comparison
with the best base combination, (g,t)=(1,24), for 17408
and (g,t)=(1,44) for 18432, are 15% and 18%. Fur-
thermore, the average improvement over the best base
combination for 19 tested workload sizes in the range,
5120 ≤ N ≤ 35000, is 10%.

Figure 7 show the results for PMMTG based on Intel
MKL DGEMM on S2. The best combination minimiz-
ing the dynamic energy consumption for workload size
28672 involves 12 threadgroups with 2 threads each.
The energy savings for this combination compared with
the best base combination, (1,24), is 10.5%. For the

14



Figure 7: Dynamic energy consumption of PMMTG employing Intel
MKL DGEMM for different (g,t) configurations on S2.

Figure 8: Performance of PMMTG application employing Open-
BLAS DGEMM for different (g,t) configurations on S1.

workload sizes 30720 and 31616, the best combinations
are (12,4) and (12,2). The energy savings in comparison
with the best base combination are 4% and 7%. Fur-
thermore, the average improvement over the best base
combination for 19 tested workload sizes in the range,
5120 ≤ N ≤ 35000, is 13%.

6.1.3. Performance Optimization on a Single Socket
Multicore CPU

Fiqure 8 shows the execution times of PMMTG using
OpenBLAS DGEMM for different threadgroup combi-
nations on a single-socket CPU (S1). The base version
corresponds to the application configuration employing
one threadgroup with optimal number of threads, which
is 44 threads. The best combination is (g,t)=(22,1) for
all the three workload sizes. It outperforms the base
combination by 20% for N=29696 and N=35328, and
about 11% for N=30720. Furthermore, the average per-
formance improvement over the base combination for
41 tested workload sizes in the range, 5120 ≤ N ≤

36000, is 7%. The starting problem size of 5120 is
chosen to ensure that the workload size exceeds the last
level cache.

Fiqure 9 shows the execution times of PMMTG using

Figure 9: Performance of PMMTG application employing Intel MKL
DGEMM for different (g,t) configurations on S1.

Figure 10: Comparision between the base and best versions for Intel
MKL DGEMM and OpenBLAS DGEMM on S3.

Intel MKL DGEMM. The best combinations (g,t) are
{(4,11),(2,22)} for all the three workload sizes. They
outperform the base combination by 6%. The average
performance improvement over the base combination
for 21 tested workload sizes in the range, 5120 ≤ N ≤
36000, is 5%.

6.1.4. Performance Optimization on a Dual-socket
Multicore CPU

Figure 10 shows the comparision between base and
best combinations for OpenBLAS DGEMM and Intel
MKL DGEMM on S3. The base version corresponds
to application configuration employing one threadgroup
with optimal number of threads.

Unlike the base version, the best combinations for
OpenBLAS DGEMM and Intel MKL DGEMM do not
have any performance variations (drops). The best com-
bination for Intel MKL DGEMM is 18 threadgroups
with 2 threads each. It outperforms the base version
by 8% on the average and the next best combination, 12

15



Figure 11: Dynamic energy consumption of PFFTTG employing
FFTW for different (g,t) configurations on S1.

threadgroups with 2 threads each, by 2.5%. Our solu-
tion method removed noticeable drops in performance
for workload sizes 16384, 20480, and 24576, with per-
formance improvements of 36.5%, 14.5% and 21.5%.

6.2. Parallel 2D Fast Fourier Transform

In this section, we use 2D fast Fourier transform
routines from two packages, FFTW-3.3.7 and Intel
MKL. The packages are installed with multithread-
ing, SSE/SSE2, AVX2, and FMA (fused multiply-
add) optimizations enabled. For Intel MKL FFT, no
special environment variables are used. Three plan-
ner flags, {FFTW ESTIMATE, FFTW MEASURE,
FFTW PATIENT} were tested. The execution times
for the flags {FFTW MEASURE, FFTW PATIENT}
are high compared to those for FFTW ESTIMATE. The
long execution times are due to the lengthy times to cre-
ate the plans because FFTW MEASURE tries to find
an optimized plan by computing many FFTs whereas
FFTW PATIENT considers a wider range of algorithms
to find a more optimal plan.

6.2.1. Energy Optimization on a Single Socket Multi-
core CPU

Figure 11 shows the dynamic energy comparision for
PFFTTG employing FFTW between base and best com-
binations for workload sizes, 31936, 32704, and 35648
on a single-socket CPU (S1). The best combination
(g, t)=(4,11) is the same for workload sizes, 31936 and
32704. The reductions in dynamic energy consumption
in comparison with the base combination, (g, t)=(1,44),
are 41% and 65%. For workload size 35648, the base
combination is the best and outperforms the next best
combination (g, t)=(2,22) by 5%. For Intel MKL FFT,
the base combination, (g,t)=(1,44), is the best.

6.2.2. Energy Optimization on a Dual-socket Multicore
CPU

Figures 12a, 12b show the results for PFFTTG em-
ploying FFTW on S4 for matrix sizes equal to N=30464
and N=32192. The minimum for dynamic energy
is located in {4,7,8} threadgroups with 14 threads in
each threadgroup for workload size (N=32192) and 12
threads in each threadgroup for workload size 30464.
The minimum for the workload size 30464 is achieved
for the combination, (g, t)=(8,12). The dynamic energy
consumption for this combination is 661 Joules. The
energy saving is around 30% in comparison with the
best combination of threads for one group (g, t)=(1,45)
whose dynamic energy consumption is 918 Joules. The
minimum for the workload size (N=32192) is achieved
for the combination, (g, t)=(4,14). The saving is around
35% in comparison with (g, t)=(1,16) where dynamic
energy is 2197 Joules.

6.2.3. Performance Optimization on a Single Socket
Multicore CPU

Figure 13 shows the results for PFFTTG employing
FFTW on a single-socket CPU (S1). The best com-
bination, (g, t)=(4,11), is the same for workload sizes,
N=31936 and N=32704. The improvements over the
base combination, (g, t)=(1,44), are 55% and 57%. For
matrix dimension, N=35648, the base combination is
the best and outperforms the next best combination,
(g, t)=(2,22), by 5%.

Figure 14 shows the results for PFFTTG employ-
ing Intel MKL FFT. There are three best combina-
tions, (g, t)=(2,22),(2,11),(4,11), for all the three work-
load sizes, where performances differ from each other
by less than 5%. Their improvement over the base com-
bination, (g, t)=(1,44), for N=18432 is 8%. For work-
load sizes, N=30720 and N=31616, the performance
improvements are 25% and 26%. Furthermore, the
average performance improvement over the best base
combination for 23 tested workload sizes in the range,
5120 ≤ N ≤ 37000, is 27%.

6.2.4. Performance Optimization on Dual-socket Mul-
ticore CPUs

All results in this section are represented by a 3D
surface represented by axes for performance or energy,
number of threadgroups (g) and the number of threads
in each threadgroup, t. The location of the minimum in
the surface is shown by the red dot.

Figure 15a shows the results of PFFTTG using
FFTW3.3.7 on S4 for matrix dimension N=30976. The
area with minimum execution time is located in the fig-
ure in the region containing {4,7,8} threadgroups with

16



(a)

(b)

Figure 12: (a). Energy profile of FFTW PFFTTG for different (g,t)
configurations on S4 for workload size N=30464. (b). Energy profile
of FFTW PFFTTG for different (g,t) configurations on S4 for work-
load size N=32192. Red dot represents the minimum.

10 threads in each group. The minimum is achieved for
the combination (g, t)=(7,10) with the execution time of
8 seconds. The speedup is around 100% in compari-
son with the best combination of threads for one group
(g, t)=(1,10) where the execution time is 16 seconds.

Figure 15b presents the results of PFFTTG using
FFTW3.3.7 on S3 for the matrix dimension N=17728.
The minimum is centred around number of threads-
groups equal to {4,7,8}. The minimum is achieved
for the combination, (g, t)=(4,16). The performance
improvement is 80% in comparison with (g, t)=(1,72),
which is the best combination for one group.

6.3. Bi-Objective Optimization for Dynamic Energy
and Performance

6.3.1. Single Socket Multicore CPU
Figure 16a shows the Pareto front for PMMTG em-

ploying Intel MKL DGEMM on S1 for workload size

Figure 13: Performance of PFFTTG employing FFTW for different
(g,t) configurations on S1.

Figure 14: Performance of PFFTTG employing Intel MKL FFT for
different (g,t) configurations on S1.

17



(a)

(b)

Figure 15: (a). Performance profile of FFTW PFFTTG for different
(g,t) configurations on S4 for workload size, N=30976. (b). Perfor-
mance profile of FFTW PFFTTG for different (g,t) configurations on
S3 for workload size, N=17728. Red dot represents the minimum.

32768. Optimizing for dynamic energy consumption
alone degrades performance by 27%, and optimizing for
performance alone increases dynamic energy consump-
tion by 30%. The average and maximum sizes of the
Pareto fronts for Intel MKL DGEMM are (2.3,3).

Figure 16b shows the Pareto front for PFFTTG based
on Intel MKL FFT on S1 for workload size 31744.
There are two Pareto-optimal solutions. Optimizing
for dynamic energy consumption alone degrades perfor-
mance by around 31%, and optimizing for performance
alone increases dynamic energy consumption by 87%.
The average and maximum sizes of the Pareto fronts for
Intel MKL FFT are (2.6,3).

No bi-objective trade-offs were observed for FFTW
and OpenBLAS applications. We will investigate two
lines of research in our future work. One is the influ-
ence of workload distribution; The other is the absence

(a)

(b)

Figure 16: (a). Pareto front of Intel MKL DGEMM PMMTG applica-
tion on S1 for workload size N=32768. (b). Pareto front of Intel MKL
FFT PFFTTG on S1 for workload size N=31744.

of bi-objective trade-offs for open-source packages such
as FFTW and OpenBLAS using a dynamic energy pre-
dictive model.

6.3.2. Dual-socket Multicore CPUs
In this section, we will focus on bi-objective opti-

mization on dual-socket CPUs, S2 and S4.
Figures 17a shows the Pareto fronts for PFFTTG

FFTW on S4 for workload size, N=30464. The max-
imum number of Pareto-optimal solutions is 11. The
optimization for dynamic energy consumption alone de-
grades performance by 49%, and optimizing for perfor-
mance alone increases dynamic energy consumption by
35%.

Figure 17b shows the Pareto front for PFFTTG em-
ploying Intel MKL FFT on S2 for workload size,
N=22208. Optimizing for dynamic energy consumption
alone degrades performance by 33%, and optimizing for
performance alone increases dynamic energy consump-
tion by 10%. The average and maximum sizes of the
Pareto fronts for FFTW and Intel MKL FFT are (3,11)
and (2.7, 3).

Figure 18a shows the Pareto front for PMMTG em-

18



(a)

(b)

Figure 17: (a). Pareto front of FFTW PFFTTG on S4 for workload
size, N=30464. (b). Pareto front of Intel MKL FFT PFFTTG on S4
for workload size, N=22208.

ploying Intel MKL DGEMM on S2 for workload size,
N=17408. Optimizing for dynamic energy consumption
alone degrades performance by 5.5%, and optimizing
for performance alone increases dynamic energy con-
sumption by 50.7%. The average and maximum sizes
of the Pareto fronts are (1.8, 4).

Figure 18b shows the Pareto front for PMMTG based
on OpenBLAS DGEMM on S2 for workload size,
N=17408. There are six Pareto-optimal solutions. Opti-
mizing for dynamic energy consumption alone degrades
performance by around 5%, and optimizing for perfor-
mance alone increases dynamic energy consumption by
20%. The average and maximum sizes of the Pareto
fronts are 2.4 and 5.

The execution time of building the four dimensional
discrete graph with dynamic energy and performance
as two objectives and the two decision variables can be
cost-prohibitive for its employment in dynamic sched-
ulers and self-adaptable data-parallel applications. We
will explore approaches to reduce this time in our future
work.

(a)

(b)

Figure 18: (a). Pareto front of Intel MKL DGEMM PMMTG ap-
plication on S2 for workload size, N=17408. (b). Pareto front of
OpenBLAS DGEMM PMMTG application on S2 for workload size,
N=17408.

6.4. Analysis Using Dynamic Energy and Performance
Models

In this section, we present an overview of popular
mainstream approaches for measurement of energy con-
sumption during an application execution. We then
propose a qualitative dynamic energy model employing
performance monitoring counters (PMCs) as variables.
The model reveals the cause behind the energy non-
proportionality in modern multicore CPUs. The model
along with the execution time of the application is used
to analyze the Pareto front determined by our solution
method on a dual-socket multicore platform.

6.4.1. Mainstream Energy Measurement Methods
There are three popular approaches to providing mea-

surement of energy consumption during an application
execution: (a) System-level physical measurements us-
ing external power meters, (b) Measurements using on-
chip power sensors, and (c) Energy predictive models.

While the first approach is demonstrated to be accu-
rate (by Konstantakos, Chatzigeorgiou, Nikolaidis, and
Laopoulos [83]), it can only provide the measurement at

19



a computer level and therefore lacks the ability to pro-
vide fine-grained device-level decomposition of the en-
ergy consumption of an application executing on several
independent computing devices in a computer.

The second approach based on on-chip power sensors
is now available in mainstream processors such as In-
tel and AMD Multicore CPUs, Nvidia GPUs, and Intel
Xeon Phis. There are vendor specific libraries to ac-
quire the power data from these sensors. For example,
Running Average Power Limit (RAPL) [84] can be used
to monitor power and control frequency (and voltage)
of Intel CPUs, and Nvidia NVIDIA Management Li-
brary (NVML) [85] and Intel System Management Con-
troller chip (SMC) [86] provide the power consumption
by Nvidia GPUs and Intel Xeon Phi respectively. While
the accuracy of GPU on-chip sensors is reported in the
NVML manual (±5%) [85], the accuracies of the other
sensors are not known. For the GPU and Xeon Phi on-
chip sensors, there is no information about how a power
reading is determined that would allow one to determine
its accuracy. For the CPU on-chip sensors, RAPL uses
separate voltage regulators (VR IMON) for both CPU
and DRAM. VR IMON is an analog circuit within volt-
age regulator (VR), which keeps track of an estimate of
the current [87]. There are two issues with these mea-
surements. First, how this estimate is determined. Sec-
ond, the accuracy of the estimates is not reported in the
vendor manual. Fahad, Shahid, Reddy, and Lastovetsky
[24] present the first comprehensive comparative study
of the accuracy of state-of-the-art on-chip power sen-
sors against system-level physical measurements using
external power meters, which is considered to be the
ground truth. They show that, owing to the nature of the
deviations of the energy measurements provided by on-
chip sensors from the ground truth, calibration can not
improve the accuracy of the on-chip sensors to an extent
that can favour their use in optimization of applications
for dynamic energy. We define calibration as a constant
adjustment (positive or negative value) made to the data
points in a dynamic energy profile of an application ob-
tained using a measurement approach (on-chip sensors
or energy predictive models) with the aim to increase its
accuracy or reduce its error against the ground truth.

The third approach based on software energy predic-
tive models emerged as a popular alternative to deter-
mine the energy consumption of an application. Energy
predictive models allow determination of fine-grained
decomposition of energy consumption during the exe-
cution of an application. A vast majority of such mod-
els are linear and employ performance monitoring coun-
ters (PMCs) as predictor variables. PMCs are special-
purpose registers provided in modern microprocessors

to store the counts of software and hardware activi-
ties. The acronym PMCs is used to refer to software
events, which are pure kernel-level counters such as
page-faults, context-switches, etc. as well as micro-
architectural events originating from the processor and
its performance monitoring unit called the hardware
events such as cache-misses, branch-instructions, etc.
The research works (Shahid, Fahad, Reddy, and Las-
tovetsky [28], Fahad, Shahid, Reddy, and Lastovetsky
[24]) are experimental proofs highlighting the inaccu-
racy of energy predictive models employing PMCs as
predictor variables and that are purely based on posi-
tive correlation with dynamic energy consumption and
how the accuracy of models can be improved using the
property of additivity to select the PMCs.

6.4.2. Energy Nonproportionality Detection Using Dy-
namic Energy and Performance Models

We propose a qualitative dynamic energy model em-
ploying performance monitoring counters (PMCs) as
variables to explain the discovered energy nonpropor-
tionality. The experimental platform S2 and the appli-
cation OpenBLAS-DGEMM is employed for the anal-
ysis. Likwid tool [88] is used to obtain the PMCs.
On this platform, it offers 164 PMCs, which are di-
vided into 28 groups (L2CACHE, L3CACHE, NUMA,
etc.). The groups are listed in the supplemental [30].
All the PMCs for each workload size executed using
different application configurations, (#threadgroups (g),
#threads per group (t)) are collected. Each PMC value
is the average for all the 24 physical cores. We ana-
lyzed the data to identify the major performance groups,
which are highly correlated with the dynamic energy
consumption. The highest correlation is contained in
the data provided by TLB DATA performance group.
This group provides data activity, such as load miss
rate, store miss rate and walk page duration, in L1 data
translation lookaside buffer (dTLB), a small specialized
cache of recent page address translations. If a dTLB
miss occurs, the OS goes through the page tables. If
there is a miss from the page walk, a page fault occurs
resulting in the OS retrieving the corresponding page
from memory. The duration of the page walk has the
highest positive correlation with dynamic energy con-
sumption based on our experiments. The PMCs asso-
ciated with the TLB DATA performance group are also
highly additive (as shown by Shahid, Fahad, Reddy, and
Lastovetsky [28]).

Non-negative multivariate regression is employed to
construct our model of dynamic energy consumption
based on the PMC data from dTLB. The model is shown
below:

20



(a)

(b)

Figure 19: (a). Measured (left) and predicted (right) dynamic energy consumption of OpenBLAS DGEMM on S2 for workload size, N=16384.
(b). Measured (left) and predicted (right) dynamic energy consumption of OpenBLAS DGEMM on S2 for workload size, N=17408.

Table 2: L1 dTLB PMC data for size 16384

Combination (g, t) Dynamic Energy (J) Time (sec) L1 dTLB load miss duration (Cyc) L1 dTLB store miss duration (Cyc)
(1,48) 824.2743 14.112 108.373 124.326
(4,12) 740.0211 14.177 113.515 105.363
(8,6) 729.1005 14.244 104.564 89.3753
(2,24) 802.6687 14.314 105.328 82.5185
(16,3) 750.6159 14.615 100.924 90.2733
(3,16) 631.3098 14.772 97.9180 76.1889
(6,8) 667.4856 14.818 96.8957 58.0210
(12,4) 528.0411 15.057 97.0492 52.8966
(24,2) 1352.141 15.875 100.106 82.7514
(48,1) 1719.012 18.685 111.902 85.9282

Table 3: L1 dTLB PMC data for size 17408

Combination (g, t) Dynamic Energy (J) Time (sec) L1 dTLB load miss duration (Cyc) L1 dTLB store miss duration (Cyc)
(4,12) 1320.0702 16.2478 105.961 122.191
(1,48) 1271.5506 16.3034 99.5398 63.7090
(8,6) 1266.3294 16.3166 95.7896 58.9096
(2,24) 1287.6882 16.4498 98.2180 74.6859
(16,3) 1250.5616 16.6824 95.2988 58.3551
(6,8) 1130.2412 16.9668 93.4336 47.9097
(3,16) 1052.0283 17.0187 90.5275 45.7483
(24,2) 1824.5795 18.0755 106.804 55.5686
(12,4) 1795.7680 20.5520 93.6595 46.5541
(48,1) 2164.1212 20.9868 96.6999 71.4943

Edynamic = β1 × T + β2 × L + β3 × S (2)
where β1 is the average CPU utilization, β2 and β3 are

21



the regression coefficients for the PMC data. T is the
execution time of the application, L is the time of page
walk caused by load miss and S is the time of page
walk caused by store miss in dTLB. The coefficients of
the model ({β1, β2, β3}) are forced to be non-negative
to avoid erroneous cases where large values for them
gives rise to negative dynamic energy consumption pre-
diction violating the fundamental energy conservation
law of computing.

To test this model, we use two workload sizes 16384
and 17408. The PMC data that is obtained for these
sizes and that is used to train the model is shown in the
tables 2 and 3. The rows of the tables are sorted in in-
creasing order of time. The blue colour in the tables
shows the rows that are in the Pareto front. The time of
page walk (last two columns, 4 and 5) is measured in
cycles. As can be seen from the tables, the dynamic en-
ergy decreases as the number of cycles decreases.There
is however a trade-off between the execution time of ap-
plication and the page walk time. For a Pareto-optimal
solution, a long execution time corresponds to smaller
number of load and store cycles and thereby less dy-
namic energy consumption.

Two dynamic energy models for the workload sizes
16384 (Table 2) and 17408 (Table 3) were constructed.
The coefficients for the workload size 16384 are {β1 =

253.680, β2 = 39.536, β3 = 13.647}. The coefficients
for the workload size 17408 are {β1 = 137.953, β2 =

12.564, β3 = 3.835}. We then predict the dynamic
energy consumption using the model and compare
with the dynamic energy measured using HCLWattsUp,
which is based on power meters and which we consider
to be the ground truth. The Figures 19a and 19b illus-
trate the comparison. The x axis represents the number
of a row in the Tables 2, 3. The modeled dynamic en-
ergy demonstrates the same trend as the measured dy-
namic energy using HCLWattsUp.

Kadayif, Nath, Kandemir, and Sivasubramaniam
[89], Karakostas, Gandhi, Cristal, Hill, McKinley, Ne-
mirovsky et al. [90] have studied TLB activity and
have found that the address translation using the TLB
consumes as much as 16% of the chip power on some
processors. The authors propose different strategies
to improve the reuse of TLB caches. Our solution
method employing threadgroups (or grouping using
multithreaded kernels) allows to fill the page tables
more evenly and reduce the duration of page walk re-
sulting in less dynamic energy consumption.

To summarize, our proposed dynamic model based
on variables reflecting TLB activity (the duration of
page walk) shows that the energy nonproportionality on
our experimental platforms for the data-parallel applica-

tions is due to the activity of the data translation looka-
side buffer (dTLB), which is disproportionately energy
expensive. This finding may encourage the chip design
architects to investigate and remove the nonproportion-
ality in these platforms. In our future work, we would
aim to identify other causes behind the lack of energy
proportionality by broadening the range of platforms
and applications.

7. Conclusion

The share of computing platforms in the total energy
consumption is rapidly increasing thereby making the
energy of computing the next grand technological chal-
lenge. Multicore processors are at the heart of modern
computing platforms, and their energy efficiency is criti-
cal for addressing the challenge of energy of computing.
Energy proportionality is the key design goal followed
by architects of modern multicore processors. One of
its implications is that optimization of an application for
performance will also optimize it for energy.

In this work, we experimentally demonstrated that
energy proportionality does not hold true for modern
multicore processors. Based on this discovery, we pro-
posed a novel application-level optimization method for
bi-objective optimization of multithreaded data-parallel
applications for energy and performance on a single
multicore processor. The method uses two decision
variables, the number of identical multithreaded ker-
nels (threadgroups) and the number of threads in each
threadgroup. A given workload is partitioned equally
between the threadgroups.

We demonstrated our method using four highly op-
timized multithreaded data-parallel applications, two-
dimensional fast Fourier transform written using Fastest
Fourier Transform in the West package and Intel Math
Kernel Library, and dense matrix multiplication writ-
ten using optimized open-source basic linear algebra
subprograms package and Intel Math Kernel Library,
on four modern multicore processors one of which is
a single socket multicore processor and the other three
dual-socket with increasing number of physical cores
per socket. We showed in particular that optimizing for
performance alone results in significant increase in dy-
namic energy consumption whereas optimizing for dy-
namic energy alone results in considerable performance
degradation and that our method determined good num-
ber of Pareto-optimal solutions.

Finally, we proposed a qualitative dynamic energy
model employing performance monitoring counters as
variables to explain the discovered energy nonpropor-
tionality and the Pareto-optimal solutions determined by

22



our solution method for modern multicore processors.
The model employs performance monitoring counters
that are selected primarily based on physical signifi-
cance originating from fundamental physical laws such
as conservation of energy of computing followed by
high positive correlation with energy. It showed that
the energy nonproportionality on our experimental plat-
forms for the two data-parallel applications is caused by
disproportionately high energy consumption by the data
translation lookaside buffer activity.

Our proposed method can be used by application soft-
ware developers to optimize their multithreaded appli-
cations on mainstream multicore processors for perfor-
mance and energy and by hardware architects to find en-
ergy disproportional hardware components and improve
their design.

The software implementations of the two parallel ap-
plications employing our optimization method are avail-
able at [91].

Acknowledgment

This publication has emanated from research con-
ducted with the financial support of Science Founda-
tion Ireland (SFI) under Grant Number 14/IA/2474. We
thank Roman Wyrzykowski and Lukasz Szustak for al-
lowing us to use their Intel servers, HCLServer03 and
HCLServer04.

References

[1] N. Jones, How to stop data centres from gobbling up the world’s
electricity, Nature 561 (2018) 163–166. doi:10.1038/d41586-
018-06610-y.

[2] A. Andrae, T. Edler, On global electricity usage of communi-
cation technology: Trends to 2030, Challenges 6 (1) (2015)
117–157. doi:10.3390/challe6010117.
URL http://dx.doi.org/10.3390/
challe6010117

[3] L. A. Barroso, U. Hölzle, The case for energy-proportional com-
puting, Computer (12) (2007) 33–37.

[4] R. Sen, D. A. Wood, Energy-proportional computing: A new
definition, Computer 50 (8) (2017) 26–33.

[5] A. Lastovetsky, R. Reddy, New model-based methods and algo-
rithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters, IEEE Transac-
tions on Parallel and Distributed Systems 28 (4) (2017) 1119–
1133.

[6] R. R. Manumachu, A. Lastovetsky, Bi-objective optimization
of data-parallel applications on homogeneous multicore clusters
for performance and energy, IEEE Transactions on Computers
67 (2) (2018) 160–177.

[7] R. Reddy Manumachu, A. L. Lastovetsky, Design of self-
adaptable data parallel applications on multicore clusters auto-
matically optimized for performance and energy through load
distribution, Concurrency and Computation: Practice and Expe-
rience 0 (0) e4958.

[8] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala,
S. Gobriel, Energy-efficient thread assignment optimization for
heterogeneous multicore systems, ACM Trans. Embed. Com-
put. Syst. 14 (1) (Jan. 2015).

[9] Y. G. Kim, M. Kim, S. W. Chung, Enhancing energy efficiency
of multimedia applications in heterogeneous mobile multi-core
processors, IEEE Transactions on Computers 66 (11) (2017)
1878–1889.

[10] W. Wang, P. Mishra, S. Ranka, Dynamic cache reconfiguration
and partitioning for energy optimization in real-time multi-core
systems, in: 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2011, pp. 948–953.

[11] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, M. Pri-
eto, Survey of scheduling techniques for addressing shared re-
sources in multicore processors, ACM Comput. Surv. 45 (1)
(Dec. 2012).

[12] G. Chen, K. Huang, J. Huang, A. Knoll, Cache partitioning
and scheduling for energy optimization of real-time mpsocs,
in: 2013 IEEE 24th International Conference on Application-
Specific Systems, Architectures and Processors, 2013, pp. 35–
41.

[13] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, L. Jin, Dynamic ther-
mal management through task scheduling, in: ISPASS 2008
- IEEE International Symposium on Performance Analysis of
Systems and software, 2008, pp. 191–201.

[14] R. Z. Ayoub, T. S. Rosing, Predict and act: Dynamic thermal
management for multi-core processors, in: Proceedings of the
2009 ACM/IEEE International Symposium on Low Power Elec-
tronics and Design, ISLPED ’09, ACM, 2009, pp. 99–104.

[15] T. Li, D. Baumberger, D. A. Koufaty, S. Hahn, Efficient operat-
ing system scheduling for performance-asymmetric multi-core
architectures, in: SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, 2007, pp. 1–11.

[16] E. Humenay, D. Tarjan, K. Skadron, Impact of process varia-
tions on multicore performance symmetry, in: 2007 Design, Au-
tomation Test in Europe Conference Exhibition, 2007, pp. 1–6.

[17] Intel® Math Kernel Library (Intel® MKL), Intel MKL FFT -
fast fourier transforms (2019).
URL https://software.intel.com/en-us/mkl

[18] Z. Xianyi, Openblas, an optimized blas library (2019).
URL http://www.netlib.org/blas/

[19] FFTW, Fastest fourier transform in the west (2019).
URL http://www.fftw.org/

[20] H. Khaleghzadeh, Z. Zhong, R. Reddy, A. Lastovetsky.,
ZZGemmOOC: Multi-GPU out-of-core routines for dense ma-
trix multiplization (2019).
URL https://git.ucd.ie/hcl/zzgemmooc.git

[21] H. Khaleghzadeh, Z. Zhong, R. Reddy, A. Lastovetsky, Out-of-
core implementation for accelerator kernels on heterogeneous
clouds, The Journal of Supercomputing 74 (2) (2018) 551–568.

[22] S. Khokhriakov, R. R. Manumachu, A. Lastovetsky, Perfor-
mance optimization of multithreaded 2d fast fourier transform
on multicore processors using load imbalancing parallel com-
puting method, IEEE Access 6 (2018) 64202–64224.

[23] H. Khaleghzadeh, M. Fahad, A. Shahid, R. Reddy, A. Las-
tovetsky, Bi-objective optimization of data-parallel applications
on heterogeneous hpc platforms for performance and energy
through workload distribution, CoRR abs/1907.04080 (2019).
arXiv:1907.04080.
URL http://arxiv.org/abs/1907.04080

[24] M. Fahad, A. Shahid, R. R. Manumachu, A. Lastovetsky, A
comparative study of methods for measurement of energy of
computing, Energies 12 (11) (2019). doi:10.3390/en12112204.
URL https://www.mdpi.com/1996-1073/12/11/
2204

23



[25] D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, Full-
system power analysis and modeling for server environments,
in: In Proceedings of Workshop on Modeling, Benchmarking,
and Simulation, 2006, pp. 70–77.

[26] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kup-
puswamy, A. C. Snoeren, R. K. Gupta, Evaluating the effective-
ness of model-based power characterization, in: Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’11, USENIX Association, 2011.

[27] K. O’Brien, I. Pietri, R. Reddy, A. Lastovetsky, R. Sakellariou,
A survey of power and energy predictive models in HPC sys-
tems and applications, ACM Computing Surveys 50 (3) (2017).
doi:10.1145/3078811.
URL http://doi.org/10.1145/3078811

[28] A. Shahid, M. Fahad, R. Reddy, A. Lastovetsky, Additivity: A
selection criterion for performance events for reliable energy
predictive modeling, Supercomput. Front. Innov.: Int. J. 4 (4)
(2017) 50–65.

[29] A. Shahid, M. Fahad, R. R. Manumachu, A. Lastovetsky, Im-
proving the accuracy of energy predictive models for multicore
CPUs using additivity of performance monitoring counters, in:
V. Malyshkin (Ed.), Parallel Computing Technologies, Springer
International Publishing, Cham, 2019, pp. 51–66.

[30] S. Khokhiakov, R. Reddy, A. Lastovetsky, HCLLIMB: Op-
timization of multithreaded matrix multiplication and 2d fast
fourier transform on multicore cpu processors using parallel
computing methods (2020).
URL https://csgitlab.ucd.ie/manumachu/
hcllimb/blob/master/docs/supplemental_r1.
pdf

[31] F. Bellosa, The benefits of event: driven energy accounting in
power-sensitive systems, in: Proceedings of the 9th workshop
on ACM SIGOPS European workshop: beyond the PC: new
challenges for the operating system, ACM, 2000.

[32] C. Isci, M. Martonosi, Runtime power monitoring in high-end
processors: Methodology and empirical data, in: Proceedings.
36th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2003. MICRO-36., 2003, pp. 93–104.

[33] T. Li, L. K. John, Run-time modeling and estimation of operat-
ing system power consumption, Sigmetrics Perform. Eval. Rev.
31 (1) (2003) 160–171.

[34] B. C. Lee, D. M. Brooks, Accurate and efficient regression mod-
eling for microarchitectural performance and power prediction,
Sigarch Comput. Archit. News 34 (5) (2006) 185–194.

[35] T. Heath, B. Diniz, B. Horizonte, E. V. Carrera, R. Bianchini,
Energy conservation in heterogeneous server clusters, in: 10th
ACM SIGPLAN symposium on Principles and practice of par-
allel programming (PPoPP), ACM, 2005, pp. 186–195.

[36] X. Fan, W.-D. Weber, L. A. Barroso, Power provisioning for a
warehouse-sized computer, in: 34th Annual International Sym-
posium on Computer architecture, ACM, 2007, pp. 13–23.

[37] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, E. Ayguade,
Decomposable and responsive power models for multicore pro-
cessors using performance counters, in: Proceedings of the
24th ACM International Conference on Supercomputing, ACM,
2010, pp. 147–158.

[38] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, G. Giuliani,
A methodology to predict the power consumption of servers in
data centres, in: Proceedings of the 2Nd International Confer-
ence on Energy-Efficient Computing and Networking, e-Energy
’11, ACM, 2011, pp. 1–10.

[39] W. L. Bircher, L. K. John, Complete system power estima-
tion using processor performance events, IEEE Trans. Comput.
61 (4) (2012) 563–577.

[40] W. Dargie, A stochastic model for estimating the power con-

sumption of a processor, IEEE Transactions on Computers
64 (5) (2015).

[41] J. Haj-Yihia, A. Yasin, Y. B. Asher, A. Mendelson, Fine-grain
power breakdown of modern out-of-order cores and its implica-
tions on skylake-based systems, ACM Trans. Archit. Code Op-
tim. (TACO) 13 (4) (2016) 56.

[42] J. Mair, Z. Huang, D. Eyers, Manila: Using a densely populated
pmc-space for power modelling within large-scale systems, Par-
allel Computing 82 (2019) 37–56.

[43] S. Kaxiras, M. Martonosi, Computer Architecture Techniques
for Power-Efficiency, 1st Edition, Morgan and Claypool Pub-
lishers, 2008.

[44] S. Benedict, Review: Energy-aware performance analysis
methodologies for hpc architectures-an exploratory study, J.
Netw. Comput. Appl. 35 (6) (Nov. 2012).

[45] C. Mobius, W. Dargie, A. Schill, Power consumption estima-
tion models for processors, virtual machines, and servers, IEEE
Transactions on Parallel and Distributed Systems 25 (6) (2014).

[46] E. C. Inacio, M. A. R. Dantas, A survey into performance and
energy efficiency in hpc, cloud and big data environments, Int.
J. Netw. Virtual Organ. 14 (4) (2014) 299–318.

[47] A.-C. Orgerie, M. D. d. Assuncao, L. Lefevre, A survey on
techniques for improving the energy efficiency of large-scale
distributed systems, ACM Comput. Surv. 46 (4) (2014) 47:1–
47:31.

[48] L. Tan, S. Kothapalli, L. Chen, O. Hussaini, R. Bissiri, Z. Chen,
A survey of power and energy efficient techniques for high per-
formance numerical linear algebra operations, Parallel Comput-
ing 40 (10) (2014) 559–573.

[49] S. Mittal, J. S. Vetter, A survey of methods for analyzing and
improving gpu energy efficiency, ACM Computing Surveys
(CSUR) 47 (2) (Jan. 2015).

[50] M. Dayarathna, Y. Wen, R. Fan, Data center energy consump-
tion modeling: A survey, IEEE Communications Surveys & Tu-
torials 18 (1) (2016) 732–794.

[51] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, M. Pri-
eto, Survey of energy-cognizant scheduling techniques, IEEE
Transactions on Parallel and Distributed Systems 24 (7) (2013)
1447–1464.

[52] I. Kadayif, M. Kandemir, I. Kolcu, Exploiting processor work-
load heterogeneity for reducing energy consumption in chip
multiprocessors, in: Proceedings Design, Automation and Test
in Europe Conference and Exhibition, Vol. 2, 2004, pp. 1158–
1163 Vol.2.

[53] M. Kondo, H. Sasaki, H. Nakamura, Improving fairness,
throughput and energy-efficiency on a chip multiprocessor
through dvfs, SIGARCH Comput. Archit. News 35 (1) (2007)
31–38.

[54] R. Watanabe, M. Kondo, H. Nakamura, T. Nanya, Power re-
duction of chip multi-processors using shared resource control
cooperating with dvfs, in: 2007 25th International Conference
on Computer Design, 2007, pp. 615–622.

[55] A. Fedorova, J. C. Saez, D. Shelepov, M. Prieto, Maximiz-
ing power efficiency with asymmetric multicore systems, ACM
Queue 7 (10) (2009) 30:30–30:45.

[56] S. Herbert, S. Garg, D. Marculescu, Exploiting process vari-
ability in voltage/frequency control, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 20 (8) (2012) 1392–
1404.

[57] A. Fedorova, M. Seltzer, M. D. Smith, Improving performance
isolation on chip multiprocessors via an operating system sched-
uler, in: Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, PACT ’07,
IEEE Computer Society, 2007, pp. 25–38.

[58] S. Zhuravlev, S. Blagodurov, A. Fedorova, Addressing shared

24



resource contention in multicore processors via scheduling, in:
Proceedings of the Fifteenth Edition of ASPLOS on Architec-
tural Support for Programming Languages and Operating Sys-
tems, ASPLOS XV, ACM, 2010, pp. 129–142.

[59] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, Y. N. Patt, Parallel application memory scheduling,
in: Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-44, ACM, 2011, pp.
362–373.

[60] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee,
M. Erez, Balancing dram locality and parallelism in shared
memory cmp systems, in: IEEE International Symposium on
High-Performance Comp Architecture, 2012, pp. 1–12.

[61] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong
Zhang, P. Sadayappan, Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real sys-
tems, in: 2008 IEEE 14th International Symposium on High
Performance Computer Architecture, 2008, pp. 367–378.

[62] D. K. Tam, R. Azimi, L. B. Soares, M. Stumm, Rapidmrc: Ap-
proximating l2 miss rate curves on commodity systems for on-
line optimizations, in: Proceedings of the 14th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIV, ACM, 2009, pp.
121–132.

[63] L. Tang, J. Mars, N. Vachharajani, R. Hundt, M. L. Soffa, The
impact of memory subsystem resource sharing on datacenter
applications, in: Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, ACM, 2011,
pp. 283–294.

[64] J. Mars, L. Tang, R. Hundt, K. Skadron, M. L. Soffa, Bubble-
up: Increasing utilization in modern warehouse scale comput-
ers via sensible co-locations, in: Proceedings of the 44th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-44, ACM, 2011, pp. 248–259.

[65] R. Ge, X. Feng, W.-c. Feng, K. W. Cameron, CPU MISER: A
performance-directed, run-time system for power-aware clus-
ters, 2007 International Conference on Parallel Processing,
IEEE Computer Society, 2007.

[66] S. Huang, W. Feng, Energy-efficient cluster computing via ac-
curate workload characterization, 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE Com-
puter Society, 2009.

[67] M. Mezmaz, N. Melab, Y. Kessaci, Y. Lee, E.-G. Talbi,
A. Zomaya, D. Tuyttens, A parallel bi-objective hybrid meta-
heuristic for energy-aware scheduling for cloud computing sys-
tems, Journal of Parallel and Distributed Computing 71 (11)
(2011) 1497 – 1508.

[68] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, T. Fahringer, A
multi-objective approach for workflow scheduling in heteroge-
neous environments, 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (Ccgrid), IEEE Com-
puter Society, 2012, pp. 300–309.

[69] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing, Future Generation Computer Systems 28 (5)
(2012) 755 – 768, special Section: Energy efficiency in large-
scale distributed systems.

[70] Y. Kessaci, N. Melab, E.-G. Talbi, A pareto-based metaheuristic
for scheduling HPC applications on a geographically distributed
cloud federation, Cluster Computing 16 (3) (2013) 451–468.

[71] J. J. Durillo, V. Nae, R. Prodan, Multi-objective energy-efficient
workflow scheduling using list-based heuristics, Future Genera-
tion Computer Systems 36 (2014) 221 – 236.

[72] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, A. Miele, Com-
bined dvfs and mapping exploration for lifetime and soft-error

susceptibility improvement in mpsocs, in: 2014 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2014,
pp. 1–6.

[73] Z. Zhang, J. M. Chang, A cool scheduler for multi-core sys-
tems exploiting program phases, IEEE Transactions on Com-
puters 63 (5) (2014).

[74] J. Kołodziej, S. U. Khan, L. Wang, A. Y. Zomaya, Energy effi-
cient genetic-based schedulers in computational grids, Concur-
rency: Practice and Experience 27 (4) (2015) 809–829.

[75] V. Sundriyal, M. Sosonkina, Joint frequency scaling of proces-
sor and DRAM, The Journal of Supercomputing 72 (4) (Apr
2016).

[76] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree,
M. Schulz, D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda,
M. Kondo, I. Miyoshi, Analyzing and mitigating the impact
of manufacturing variability in power-constrained supercomput-
ing, International Conference for High Performance Computing,
Networking, Storage and Analysis, ACM, 2015.

[77] N. Gholkar, F. Mueller, B. Rountree, Power tuning HPC jobs on
power-constrained systems, International Conference on Paral-
lel Architectures and Compilation, ACM, 2016.

[78] H. F. Sheikh, I. Ahmad, D. Fan, An evolutionary technique for
performance-energy-temperature optimized scheduling of paral-
lel tasks on multi-core processors, IEEE Transactions on Parallel
and Distributed Systems 27 (3) (2016) 668–681.

[79] A. Abdi, A. Girault, H. R. Zarandi, Erpot: A quad-criteria
scheduling heuristic to optimize execution time, reliability,
power consumption and temperature in multicores, IEEE Trans-
actions on Parallel and Distributed Systems (2019) 1–1.

[80] B. Subramaniam, W. C. Feng, Statistical power and performance
modeling for optimizing the energy efficiency of scientific com-
puting, IEEE/ACM Int’l Conference on Cyber, Physical and So-
cial Computing (CPSCom), 2010.

[81] A. Chakrabarti, S. Parthasarathy, C. Stewart, A pareto frame-
work for data analytics on heterogeneous systems: Implications
for green energy usage and performance, in: Parallel Processing
(ICPP), 2017 46th International Conference on, IEEE, 2017, pp.
533–542.

[82] HCL, HCLWattsUp: API for power and energy measurements
using WattsUp Pro Meter (2016).
URL http://git.ucd.ie/hcl/hclwattsup

[83] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, T. Laopou-
los, Energy consumption estimation in embedded systems, IEEE
Transactions on Instrumentation and Measurement 57 (4) (2008)
797–804.

[84] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann,
D. Rajwan, Power-Management architecture of the intel mi-
croarchitecture Code-Named sandy bridge, IEEE Micro 32 (2)
(2012) 20–27.

[85] Nvidia, Nvidia management library: NVML reference manual
(10 2018).
URL https://docs.nvidia.com/pdf/NVML_API_
Reference_Guide.pdf

[86] I. Corporation, Intel® xeon phi™ coprocessor system software
developers guide (06 2014).
URL https://software.intel.com/
sites/default/files/managed/09/07/
xeon-phi-coprocessor-system-software-developers-guide.
pdf

[87] C. Gough, I. Steiner, W. Saunders, Apress, 2015.
[88] J. Treibig, G. Hager, G. Wellein, Likwid: A lightweight

performance-oriented tool suite for x86 multicore environments,
in: 2010 39th International Conference on Parallel Processing
Workshops, IEEE, 2010, pp. 207–216.

[89] I. Kadayif, P. Nath, M. Kandemir, A. Sivasubramaniam, Re-

25



ducing data tlb power via compiler-directed address generation,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 26 (2) (2007) 312–324.

[90] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKin-
ley, M. Nemirovsky, M. M. Swift, O. S. Unsal, Energy-efficient
address translation, in: 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2016, pp.
631–643.

[91] S. Khokhiakov, R. Reddy, A. Lastovetsky, HCLLIMB: Op-
timization of multithreaded matrix multiplication and 2d fast
fourier transform on multicore cpu processors using parallel
computing methods (2020).
URL https://csgitlab.ucd.ie/manumachu/
hcllimb

26


