
Journal of Parallel and Distributed Computing 165 (2022) 1–16

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Model-based selection of optimal MPI broadcast algorithms for

multi-core clusters ✩

Emin Nuriyev a,∗, Juan-Antonio Rico-Gallego b, Alexey Lastovetsky a

a University College Dublin, Belfield, Dublin 4, Ireland
b University of Extremadura, Avd. Universidad s/n, 10003, Cáceres, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2021
Received in revised form 11 December 2021
Accepted 11 March 2022
Available online 23 March 2022

Keywords:
Message passing
Collective communication algorithms
Communication performance modeling
MPI
Multi-core clusters

The performance of collective communication operations determines the overall performance of MPI
applications. Different algorithms have been developed and implemented for each MPI collective
operation, but none proved superior in all situations. Therefore, MPI implementations have to solve the
problem of selecting the optimal algorithm for the collective operation depending on the platform, the
number of processes involved, the message size(s), etc. The current solution method is purely empirical.
Recently, an alternative solution method using analytical performance models of collective algorithms
has been proposed and proved both accurate and efficient for one-process-per-CPU configurations. The
method derives the analytical performance models of algorithms from their code implementation rather
than from high-level mathematical definitions, and estimates the parameters of the models separately
for each algorithm. The method is network and topology oblivious and uses the Hockney model for
point-to-point communications. In this paper, we extend that selection method to the case of clusters of
multi-core processors, where each core of the platform runs a process of the MPI application.
We present the proposed approach using Open MPI broadcast algorithms, and experimentally validate it
on three different clusters of multi-core processors, Grisou, Gros and MareNostrum4.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Message Passing Interface [1] (MPI) offers portable and
scalable performance on high performance computing (HPC) plat-
forms. Therefore, it has been dominantly used since its invention
in HPC applications. MPI proposes an execution model based on
processes deployed on the hardware resources of the HPC platform
and communicating using message passing primitives. Both point-
to-point and collective routines are defined in the MPI standard
with different semantics, including non-blocking, buffered and per-
sistent communication.

Collective routines involve a group of processes communicating
in an isolated context, and those collectives rely on the seman-

✩ This publication has emanated from research conducted with the financial sup-
port of Science Foundation Ireland (SFI) under Grant Number 14/IA/2474. This work
has been partially supported by HPC-Europa3 Transnational Access programme un-
der Grant Number HPC17M60Z5. Experiments presented in this paper were carried
out using the Grid’5000 experimental testbed, being developed under the INRIA
ALADDIN development action with support from CNRS, RENATER and several Uni-
versities as well as other funding bodies see https://www.grid5000 .fr.

* Corresponding author.
E-mail addresses: emin.nuriyev@ucdconnect.ie (E. Nuriyev), jarico@unex.es

(J.-A. Rico-Gallego), alexey.lastovetsky@ucd.ie (A. Lastovetsky).
https://doi.org/10.1016/j.jpdc.2022.03.012
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
tics of collective operations such as broadcast, gather, reduce and so
forth. A profiling study [34] reports that in average 80% of the total
execution time of MPI applications is consumed by MPI collec-
tive operations. That is why significant research efforts have been
invested in the design and implementation of efficient collective
algorithms aimed to improve the performance of collective op-
erations [44,35,5,4]. For example, Open MPI 3.1 [14] employs six
different algorithms to implement MPI_Bcast and five algorithms
to implement MPI_Allreduce. On a given platform, different algo-
rithms will be optimal depending on many factors including the
physical topology of the network, number of processes, message
sizes and so forth. Unfortunately, there is no single collective al-
gorithm optimal in all situations. Therefore, there exists a problem
of selection of the optimal algorithm for each call of a collective
routine, which normally depends on the platform, the number of
processes, the message size and so forth.

There are two ways how this selection can be made in the MPI
program. The first one, MPI_T interface [1], is provided by the MPI
standard and allows the MPI programmer to explicitly select the
collective algorithm from the list of available algorithms for each
collective call at runtime. It does not however solve the problem
of optimal selection but delegates its solution to the programmer.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2022.03.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.03.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://www.grid5000.fr
mailto:emin.nuriyev@ucdconnect.ie
mailto:jarico@unex.es
mailto:alexey.lastovetsky@ucd.ie
https://doi.org/10.1016/j.jpdc.2022.03.012
http://creativecommons.org/licenses/by/4.0/

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
The second one is transparent to the MPI programmer and pro-
vided by MPI implementations. It uses a simple decision function
in each collective routine, which is used to select the algorithm at
runtime. The decision function is empirically derived from exten-
sive testing on a dedicated system. For example, the most popular
MPI implementations, MPICH and Open MPI, for each collective
operation both use a simple decision routine selecting the algo-
rithm depending on the message size and number of processes
[40,14,13]. Listing 1 illustrates such a decision routine, showing the
Open MPI decision code for MPI_Bcast.

Listing 1 Open MPI decision function for MPI_Bcast.

i n t bcast_ intra_dec_f ixed (void ∗buff , i n t count , MPI_Datatype
∗datatype , i n t root , MPI_comm ∗comm)
{
const s i z e _ t small_message_size = 2048;
const s i z e _ t intermediate_message_size = 370728;
const double a_p16 = 3.2118e−6;
const double b_p16 = 8.7936;
const double a_p64 = 2.3679e−6;
const double b_p64 = 1.1787;
const double a_p128 = 1.6134e−6;
const double b_p128 = 2.1102;

i n t communicator_size ;
s i z e _ t message_size , dsize ;

communicator_size = MPI_comm_size (comm) ;
MPI_Type_size (datatype , &dsize) ;
message_size = dsize ∗ (unsigned long) count ;

i f ((message_size < small_message_size) | | (count <= 1)) {
return binomial_tree_bcast (. . .) ;
} e lse i f (message_size < intermediate_message_size) {
return s p l i t _ b i n a r y _ t r e e _ b c a s t (. . .) ;
} e lse i f (communicator_size < (a_p128 ∗ message_size + b_p128))

{
return chain_bcast (. . .) ;
} e lse i f (communicator_size < 13) {
return s p l i t _ b i n a r y _ t r e e _ b c a s t (. . .) ;
} e lse i f (communicator_size < (a_p64 ∗ message_size + b_p64)) {
return chain_bcast (. . .) ;
} e lse i f (communicator_size < (a_p16 ∗ message_size + b_p16)) {
return chain_bcast (. . .) ;
}
return chain_bcast (. . .) ;
}

The main advantage of this solution is its efficiency. The process
of selection of the algorithm is very fast and does not affect the
performance of the program. The main disadvantage of the state-
of-the-art decision functions is that they do not guarantee the
optimal selection in all situations. This is illustrated in Fig. 1 show-
ing results of experiments with Open MPI on two clusters. On one
of the clusters, the Open MPI broadcast routine selects non-optimal
algorithms for messages smaller than 512 KB. On the other clus-
ter, non-optimal algorithms are selected for messages larger than
256 KB. In both cases, this results in significant, multi-fold, perfor-
mance degradation of the MPI_Bcast operation for a wide range of
message sizes.

As a more accurate but equally efficient alternative to the use
of empirical decision functions, the use of analytical performance
models of collective algorithms for the selection process has been
considered. The first detailed study of this approach was conducted
by Pjevsivac-Grbovic et al. in [31]. However, this work as well as
other early works in that direction [8,40,7] were not successful.
The analytical models derived in these works were not able to ac-
curately compare the relative performance of collective algorithms.

Recently, the model-based approach was revisited, and a novel
method using analytical performance models for selection of opti-
2

Fig. 1. The selection accuracy of the Open MPI decision routine for the MPI_Bcast
collective operation on two Grid5000 clusters: Grisou (1a) and Gros (1b). Each data
point on the blue graphs gives the execution time of the best broadcast algorithm
for a given number of processes, P , and message size, m, available for selection
in Open MPI. Each data point on the red graphs gives the execution time of the
MPI_Bcast operation (in this case, the broadcast algorithm is automatically selected
at runtime using the Open MPI decision function). The number of processes, P ,
executing broadcasts, is fixed to 600. The message size varies from 16 KB to 4 MB.
The one-process-per-core configuration is used in the experiments.

mal collective algorithms was proposed and proved both accurate
and efficient for the one-process-per-CPU configuration of MPI ap-
plications [28]. The method proposes two innovations: (i) it de-
rives the analytical performance models of algorithms from their
implementation rather than from high-level mathematical defini-
tions, and (ii) it estimates the parameters of the models separately
for each algorithm. The first innovation results in much more de-
tailed and realistic models, while the second one further improves
their accuracy by tuning the model parameters, including the pa-
rameters of point-to-point communications, to the context of each
algorithm.

While proved to be accurate for one-process-per-CPU MPI ap-
plications, this method fails for one-process-per-core configura-
tions of MPI applications on modern multicore clusters. This is
illustrated in Fig. 2. The reason is that this method is network-
topology oblivious and uses the Hockney model [16] for point-to-
point communication modeling, resulting in analytical models of
collective algorithms that do not account for network congestion.
While the effects of network congestion are not very significant
for one-process-per-CPU MPI programs on modern platforms, they
become much more impactful for one-process-per-core configu-
rations. Therefore, to improve the selective accuracy of analytical
models of collective algorithms in this case, the network topology

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
Fig. 2. The selection accuracy of the method [28] in the case of one-process-per-core
Open MPI programs on the MareNostrum4 cluster. Each point on the blue graphs
gives the execution time of the best broadcast algorithm available for selection in
Open MPI. Each point on the red graphs gives the execution time of the broadcast
algorithm selected using the method [28].

and more accurate point-to-point communication models must be
considered.

In this paper, we revisit the model-based approach [28] and
propose several innovations significantly improving the selective
accuracy of analytical models to the extent that allows them to
be used for accurate selection of optimal broadcast algorithms for
one-process-per-core MPI applications on multi-core clusters. The
contributions of this work are as follows:

• A novel method for runtime selection of optimal collective
algorithms for collective communication operations in MPI ap-
plications running on multi-core clusters, based on analytical
performance models of the collective algorithms, and applica-
tion of this method to the Open MPI broadcast operation.

• Novel analytical performance models of the broadcast algo-
rithms implemented in Open MPI. The models are derived
from their implementation code and take into account the
structure of the target multi-core cluster by representing each
point-to-point transmission as a sequence of transfers via
shared memory and network channels.

• A novel method for estimation of the model parameters,
which finds them separately for each broadcast algorithm. The
method is based on a careful design of the communication
experiments, resulting in a system of linear equations with
model parameters as unknowns. According to the method, the
3

execution time of each experiment must be dominated by the
execution time of the corresponding broadcast algorithm.

• Experimental validation of the selection accuracy of the pro-
posed method on the MareNostrum4 and Grid5000 platforms.

The rest of the paper is organized as follows. Section 2 presents
related work on analytical performance modeling of the collective
algorithms, measurement of model parameters, and selection of
optimal collective algorithms. Section 3 describes broadcast algo-
rithms implemented in Open MPI. In section 4 we derive perfor-
mance models of broadcast algorithms implemented in Open MPI.
Section 5 describes the methodology of measurement of model pa-
rameters. Section 6 presents experimental validation on Grid5000
and MareNostrum4 clusters. Section 7 discusses limitations of the
work and how they can be mitigated. Section 8 concludes the pa-
per.

2. Related work

In this section, we first overview the state-of-the-art in ana-
lytical communication performance modeling and measurement of
model parameters (a more detailed survey can be found in [39]).
Then, we briefly discuss the use of analytical models in the selec-
tion problem.

2.1. Analytical performance models of MPI collective algorithms

All analytical models of collective algorithms use point-to-
point communication models as building blocks. The most popular
point-to-point communication models used in collective models
are the Hockney model [16], LogP [9], LogGP [3], PLogP [21] and
τ -Lop [38,36].

Hockney model represents a point-to-point message transmis-
sion in a homogeneous platform as T (m) = α + β · m, where m is
the size of the message, and α and β are the latency and inverse
bandwidth of the network respectively. The model parameters, α
and β , are assumed to have the same value for all algorithms,
message sizes and numbers of processes. This simple model has
been extensively used in modeling collective algorithms. Thakur
et al. [40] propose analytical performance models of several col-
lective algorithms for MPI_Allgather, MPI_Bcast, MPI_Alltoall, MPI_Re-
duce_scatter, MPI_Reduce, and MPI_Allreduce routines. Chan et al.
[8] build analytical performance models of Minimum-spanning
tree algorithms and Bucket algorithms for MPI_Bcast, MPI_Re-
duce, MPI_Scatter, MPI_Gather, MPI_Allgather, MPI_Reduce_scatter,
MPI_Allreduce collectives and later extend this work for multi-
dimensional mesh architecture in [7]. An analytical performance
model of a new reduction algorithm is proposed for a non-power-
of-two number of processes by Rabenseifner et al. [35].

Culler et al. [10] propose the LogP model with the parameters
L, the upper bound on the network latency, os , the overhead of
processor involving sending a message, or , the overhead of proces-
sor involving receiving a message, and g , the gap between consec-
utive message transmission. LogGP model extends LogP with the
parameter G representing the gap per byte in sending a message.
Kielmann et al. [21] propose the PLogP (Parametrized LogP) model.
PLogP defines model parameters, except for latency L, as functions
of message size, in order to improve accuracy.

A detailed study of the performance of collective operations
using the above analytical performance models (Hockney, Log-
P/LogGP, and PLogP) is conducted by Pjevsivac-Grbovic et al. [31].
They study the feasibility of selection of optimal collective algo-
rithms for barrier, broadcast, reduce and alltoall using their analyti-
cal performance models. Additionally, the splitted-binary broadcast
algorithm has been designed and analyzed with different perfor-
mance models in this work. The models used in the study were

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

built following the traditional approach using high-level mathe-
matical definitions of the collective algorithms. After experimental
validation of their modeling approach, the authors conclude that
the proposed models are not accurate enough for selection of op-
timal algorithms.

A general analytical performance model for tree-based broad-
cast algorithms with message segmentation has been proposed by
Patarasuk et al. [29]. Unlike traditional models, this model intro-
duces a new parameter, Maximum nodal degree of the tree. The
purpose of this model is restricted to theoretical comparison of dif-
ferent tree-based broadcast algorithms. Accurate prediction of the
execution time of the broadcast algorithms and methods for mea-
surement of the model parameters, including the maximal nodal
degree of the tree, are out of the scope of this work.

All the above models of collective algorithms are built using
their high-level theoretical description. The overall conclusion is
that, while these models can be used for analysis of theoretical
complexity of the algorithms, they are not accurate enough for the
task of selection of optimal collective algorithms [40], [31]. The
authors of [40], [31] also conclude that in order to improve the
accuracy of their analytical models, we have to assume that the
model parameters depend on the message size and the number of
processes.

Recently, analytical communication performance models, adapted
to current heterogeneous platforms, have been proposed. Las-
tovetsky et al. [26] propose the LM O point-to-point communi-
cation model based on Hockney model, Cameron et al. [6] ana-
lyze the performance of collective algorithms using a hardware-
parameterized model, logn P , which is based on the LogGP homo-
geneous model. The mLogn P model is a further extension of logn P
proposed by Tu et al. [41]. The τ -Lop model proposed by Rico-
Gallego et al. [37,38,36] includes the representation for concurrent
transmissions and hence allows for a more accurate modeling of
collective operations. These models include additional parameters
to represent concurrency in communication channels, memory
hierarchy and heterogeneity of communication channels. In this
work, we use τ -Lop to model the contribution of point-to-point
communications in the execution time of collective algorithms. The
τ -Lop model is briefly introduced in section 4.

In our approach, we stick to the assumption of independence
of model parameters on the message size and the number of
processes. Instead, we improve the accuracy of the models of
collective algorithms by deriving them from the implementation
code. This work is based on our previous research [28], where a
novel approach to the modeling of collective algorithms and to
the measurement of model parameters is proposed. Unlike the
traditional approaches, deriving analytical models of collective al-
gorithms from their high-level mathematical definitions, it derives
the models from their implementation code, taking into account
all important implementation details affecting the performance. In
addition, the approach relies on an elaborate method to measure
the model parameters using carefully designed communication ex-
periments involving all collective algorithms. Experimental results
showed that analytical models taking into account implementation
details of collective algorithms were able to compare the perfor-
mance of collective algorithms accurately [28]. However, that work
was limited to one-process-per-CPU configurations of MPI applica-
tions.

2.2. Measurement of model parameters

One use of analytical communication performance models is for
theoretical analysis of the complexity of collective algorithms. In
such purely theoretical studies, the authors do not pay much atten-
tion to methods of measurement of model parameters. However if
a model is intended for accurate prediction of the execution time
4

of the communication algorithm on each particular platform, and
if it aims to be reproducible, a well-defined experimental mea-
surement method of the model parameters will be as important
as the theoretical formulation of the model. Different measure-
ment methods may give significantly different values of the model
parameters and therefore either degrade or improve the model’s
prediction accuracy.

Existing measurement methods predominantly rely on point-
to-point communication experiments, which are used to obtain a
system of linear equations with model parameters as unknowns.
Hockney [16] presents a measurement method to find the α and
β parameters of the Hockney model based on a set of commu-
nication experiments consisting of point-to-point round-trips. The
sender sends a message of size m to the receiver, which immedi-
ately returns the message to the sender upon its receipt. The time
RT T (m) of this experiment is measured on the sender side and
estimated as RT T (m) = 2 · (α + m · β). These round-trip communi-
cation experiments for a wide range of message size m produce a
system of linear equations with α and β as unknowns. To find α
and β from this system, the linear least-squares regression is used.

Culler et al. [10] propose a method of measurement of param-
eters of the LogP model that relies on the Active Messages (AM)
protocol [12]. The method consists of four individual communi-
cation experiments for the four parameters of the model based
on sending/receiving zero-sized transmissions and round-trip time
messages. Kielmann et al. [21] extend that method of measure-
ment of parameters for their Parametrized LogP (PlogP) model. As
most of the parameters of PLogP are defined as functions of mes-
sage size, some communication experiments are repeated a range
of message sizes.

Hoefler et al. [17] develop a method to measure parame-
ters of the LogGP model. The building block of the method is a
parametrized round-trip function P RT T (N, d, m), which depends
on parameters N , the number of messages to send, d, the delay in
sending the messages, and m, the size of the messages. Properly
varying these parameters, the method obtains equations with the
LogGP model parameters as unknowns.

From this overview, we can conclude that the state-of-the-art
methods for measurement of parameters of communication per-
formance models are all based on point-to-point communication ex-
periments, which are used to derive a system of equations involving
model parameters as unknowns. An exception from this rule is a
method for measurement of parameters of the LMO heterogeneous
communication model [24,25]. LMO is a communication model of
a heterogeneous cluster, and the total number of its parameters
is significantly larger than the maximum number of independent
point-to-point communication experiments that can be designed
to derive a system of independent linear equations. To address this
problem and obtain the sufficient number of independent linear
equations involving model parameters, the method additionally in-
troduces simple collective communication experiments, each using
three processors and consisting of a one-to-two communication
operation (scatter) followed by a two-to-one communication op-
eration (gather). The experiments are implemented using the MPI-
Blib library [27]. This method however is not designed to improve
the accuracy of predictive analytical models of communication al-
gorithms.

Based on the idea developed in the LMO model, Rico-Gallego
et al. [38] propose a detailed method for measurement of pa-
rameters of the τ -Lop model on a multi-core cluster. For each
communication channel, shared memory or network, experimental
measurement of both oc(m) and Lc(m, τ) are designed separately.
For the transfer time (L), the method includes measurements ob-
tained from collective operations, such as broadcast, to improve
the accuracy of the resultant linear equation system.

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
In this work, we use carefully designed collective communication
experiments in the measurement method in order to improve the
predictive accuracy of analytical models of collective algorithms.

2.3. Selection of collective algorithms using machine learning
algorithms

Machine learning (ML) techniques have also been tried to solve
the problem of selection of optimal MPI algorithms.

In [30], applicability of the quadtree encoding method to this
problem is studied. The goal of this work is to select the best per-
forming algorithm and segment size for a particular collective on a
particular platform. The approach is based on the following steps.
(1) Collective algorithms are executed on a particular platform to
collect detailed performance data. (2) The decision map is built
for the collective on a particular platform by analyzing the perfor-
mance data. It is assumed that the decision map covers all message
and communicator sizes. (3) The quadtree is initialized using the
decision map. (4) The decision function source code is generated
from the initialized quadtree. For example, Linear tree, Binary tree,
Binomial tree, Split-Binary, and Chain tree broadcast algorithms are
profiled with a maximum of 50 processes. The experimental re-
sults show that mean performance penalty reaches 74% and 37%
and maximum performance penalty reaches 391% and 743% on dif-
ferent platforms respectively. While the study shows some level of
applicability of the quadtree encoding algorithm to the problem,
collection of detailed profiling data of collectives for all message
sizes and communicator sizes is a very expensive procedure. Be-
sides, for some message sizes and communicator sizes the penalty
of the decision function is too high. Taking into account that deci-
sion trees are considered weak learners [11], the decision function
will perform poorly on unseen data.

Applicability of the C4.5 algorithm to the MPI collective se-
lection problem is explored in [32]. The C4.5 algorithm [33] is a
decision tree classifier, which is employed to generate a decision
function, based on a detailed profiling data of MPI collectives. The
same steps are followed to build the decision tree using the C4.5
algorithm as in the quadtree encoding method presented above.
The same weaknesses are shared by the decision trees built by
the quadtree encoding algorithm and by the C4.5 algorithm. While
the accuracy of the decision function built by the C4.5 classifica-
tion algorithm is higher than that of the decision function built
by quadtree encoding algorithm, still, the performance penalty is
higher than 50%.

Most recently Hunold et al. [19] studied the applicability of six
different ML algorithms for selection of optimal MPI collective al-
gorithms. The basic idea of their approach is to create a regression
model for every collective algorithm that is available for a given
collective operation, predicting the execution time of the collec-
tive algorithm. The constructed regression models are then used
at run time to select the algorithm that minimizes the execution
time for unseen configurations. The ML algorithms employed to
build the regression models are Random Forests, Neural Networks,
Linear Regressions, XGBoost, K-nearest Neighbor, and generalized
additive models (GAM). The configuration is characterized by the
message size, the number of nodes, and the number of processes
per node. The approach is evaluated using MPI_Bcast, MPI_Allre-
duce and MPI_Alltoall collectives. In the experimental evaluation,
the number of nodes varies between 4 and 36, and the number
of processes per node varies between 1 and 32. The experimental
results show two things. First, it is very expansive and difficult to
build a regression model even for a relatively small cluster. There
is no clear guidance on how to do it to achieve better results. Sec-
ond, even the best regression models do not accurately predict the
fastest collective algorithm in most of the reported cases. More-
over, in many cases the selected algorithm performs worse than
5

the default algorithm, that is, the one selected by a simple native
decision function.

To the best of the authors’ knowledge, the works outlined in
this subsection are the only research done in MPI collective al-
gorithm selection using ML algorithms. The results show that the
selection of the optimal algorithm without any information about
the semantics of the algorithm yields inaccurate results. While the
ML-based methods treat a collective algorithm as a black box, we
derive its performance model from the implementation code and
estimate the model parameters using statistical techniques. The
limitations of the application of the statistical techniques (AI/ML)
to collective performance modeling and selection problem can be
found in a detailed survey [43].

3. Broadcast algorithms implemented in Open MPI

Open MPI architecture is based on software components,
plugged into the library kernel. A component provides function-
ality with specific implementation features. For instance, a collec-
tive component known as Tuned implements different algorithms
for each collective operation defined in MPI as a sequence of
point-to-point transmissions between the involved processes. A
communicator provides an isolated communication context for the
group of processes executing the collective operation. Processes in
a communicator are identified by an assigned rank integer number,
starting at 0.

In the broadcast operation (MPI_Bcast) a process called root
sends a message with the same data to all processes in the com-
municator. Messages can be segmented in transmissions. Segmen-
tation of messages is a common technique used for increasing the
communication parallelism by avoiding the rendezvous protocol,
and hence, improving the performance. It consists of dividing up
the message into smaller fragments called segments and sending
them in sequence.

Every algorithm implementing the broadcast in the Tuned com-
ponent defines a communication graph with a specific topology
between the P ranks in the communicator. Ranks are the nodes
in the graph, and they are mapped to the processes of the paral-
lel machine. The features and topology of the broadcast algorithms
implemented in Open MPI Tuned component are listed below:

• Flat tree algorithm. The algorithm employs a single level tree
topology shown in Fig. 3a where the root node has P − 1
children. The message is transmitted to child nodes without
segmentation.

• Chain tree algorithm. Each internal node in the topology has
one child (see Fig. 3b). The message is split into segments
and transmission of segments continues in a pipeline until the
last node gets the broadcast message. ith process receives the
message from the (i − 1)th process, and sends it to (i + 1)th
process.

• Binary tree algorithm. Unlike the chain tree, each internal pro-
cess has two children, and hence data is transmitted from each
node to both children (Fig. 3c). Segmentation technique is em-
ployed in this algorithm. For simplicity we assume that the
binary tree is complete, then P = 2H −1 where H is the height
of the tree, H = log2(P + 1).

• Split binary tree algorithm. The split binary tree algorithm
employs the same virtual topology as the binary tree (Fig. 3c).
As the name implies, the difference from the binary tree al-
gorithm is that the message is split into two halves before
transmission. After splitting the message, the right and left
halves of the message are pushed down into the right and left
sub-trees respectively. In an additional last phase, the left and
right nodes exchange in pairs their halves of the message to
complete the broadcast operation.

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
• K-Chain tree algorithm. The K-Chain virtual topology is em-
ployed in the algorithm (Fig. 3d). The root broadcasts the mes-
sage using segmentation to the child processes, and then the
child processes broadcast the message to their children in par-
allel. As the name implies, the virtual topology consists of K
chain tree virtual topology each of which is connected to root.
The height of K-chain tree is estimated as H = � P−1

K �. Last pro-
cess must wait for Hk−chain steps until it gets the broadcast
message. Rank of processes is mapped into K-Chain tree vir-

tual topology using following formula,
K−1∑
k=0

H−1∑
i=0

(H · k + i + 1)

• Binomial tree algorithm. The binomial tree topology is de-
termined according to the binomial tree definition [20]. The
algorithm employs balanced binomial tree (Fig. 3e). Unlike
the binary tree, the maximum nodal degree of the binomial
tree decreases from the root down to the leaves as follows:
�log2 P�, �log2 P� − 1, �log2 P� − 2, The height of the bino-
mial tree is the order of the tree, H = �log2 P�.

In the following section, we build performance models for the
broadcast algorithms described above.

4. Modeling of Open MPI broadcast algorithms on multi-core
cluster

We build new analytical performance models of broadcast algo-
rithms described in Section 3 for multi-core clusters. For point-to-
point communication modeling, we use the τ -Lop model.

τ -Lop takes into account the distinctive features of the com-
munication channels to represent a point-to-point transmission as
a sequence of transfers via shared memory or network. In this
approach, we use the τ -Lop model, that it estimates the time
of sending a point-to-point message in s transfers as T c

p2p(m) =
oc(m) +∑s

i=1 Lci (m), where c represents the communication chan-
nel, and the o and L parameters represent the overhead of the
communication protocol and the transfer time respectively. Hence,
τ -Lop considers a different representation for a message transmit-
ted through shared memory (c = 0) and network channel (c = 1).
For instance, through shared memory, MPI libraries default trans-
mission is through a shared intermediate buffer between sender
and receiver processes, hence two identical transfers (s = 2) are
needed to transmit the message, and previous expression reduces
to T 0

p2p(m) = o0(m) + 2L0(m). While, through a network, repre-
sentation depends on the network capabilities. For instance, in
an Ethernet network we consider two shared memory transfers,
from sender memory to NIC and from receiver NIC to destina-
tion memory, and a network transfer between NICs, as T 1

p2p(m) =
o1(m) + 2L0(m) + L1(m).

Most of the Open MPI broadcast algorithms are implemented
using message segmentation, except for the flat tree broadcast
algorithm. For segmented broadcast algorithms, we assume that
m = ns · ms , where ns and ms are the number of segments and the
segment size respectively. In this paper, we assume the same fixed
segment size in all segmented algorithms.

4.1. Flat tree algorithm

In Open MPI, the linear broadcast algorithm is implemented
using non-blocking send and blocking receive operations. The al-
gorithm transmits the whole message from the root to the leaves
without message segmentation. Because of non-segmented mes-
sage transmission and assuming the rendezvous protocol, each next
send only starts after the previous one has been completed. There-
fore, the execution time of the linear tree broadcast algorithm will
be equal to the sum of execution times of P − 1 send operations:
6

Fig. 3. Virtual topologies used by broadcast algorithms in Open MPI.

T B F T (P ,m) =
P−1∑
i=1

T ci
p2p(m), (1)

where T ci
p2p is the point-to-point communication time through a

channel ci , connecting the root and the i-th process, estimated us-
ing the τ -Lop model. In the rest of the paper, we use BFT to refer
to the blocking flat tree broadcast algorithm.

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

on-
Algorithm 1 Tree-based segmented broadcast algorithm.

if (rank == root) then
// Send segments to all children
for i ∈ 0..ns − 1 do

for child ∈ list of children do
MPI_Isend(segment[i], child, ...)

end for
MPI_Waitall(. . .)

end for
else if (intermediate nodes) then

for i ∈ 0..ns − 1 do
// Post receive and wait
MPI_Irecv(segment[i])
MPI_Wait(. . .)
// Send data to children
for child ∈ list of children do

MPI_Isend(segment[i], child, ...)
end for
MPI_Waitall(children)

end for
else if (leaf nodes) then

// Receive all segments from parent in a loop
for i ∈ 0..ns − 1 do

MPI_Irecv(segment[i], ...)
MPI_Wait(. . .)

end for
end if

Fig. 4. Cluster of two quad-core processors. Processes running on the same processor
use the shared-memory for point-to-point communications (green links). Processes
running on different processors use the network for point-to-point communications
(the red link).

Every time the Open MPI MPI_Bcast operation is invoked with
a specific root, an internal tree with the specific virtual topology
for the chosen algorithm is built, and then, the algorithm is exe-
cuted. This internal tree is used as a building block in tree-based
segmented broadcast algorithms implementing MPI_Bcast, namely,
in the binomial tree, binary tree, split binary tree, k-chain tree, and
chain tree broadcast algorithms (see Algorithm 1 for more details).
That tree algorithm is composed of flat trees using non-blocking
send and receive operations, which we refer to as Non-Blocking
Flat Trees (NBFTs).

As illustrated in Fig. 5, NBFT can use either one of the two
available channels for all point-to-point communications or both
of them. The number of network point-to-point communications,
C , in an NBFT can be calculated as follows,

C =
P−1∑
i=1

ci (2)

Obviously, 0 ≤ C ≤ P − 1. Therefore, the number of point-to-
point communications through shared memory in the NBFT will
be equal to P − C − 1. The time of message transmission through
a network channel is longer than through shared memory. In our
model, we assume that

T 1
p2p(m) = Q (m) · T 0

p2p(m), (3)

where Q (m) is a platform-dependent parameter representing the
ratio of delays of the communication channels (Q (m) > 1). We de-
note T c

N B F T (P , m) the execution time of an NBFT, which uses only
one channel, c, for all message transmissions. The execution time
7

of an arbitrary NBFT, T N B F T (P , C, m), which can use both available
channels, is modeled as follows,

T N B F T (P , C,m) ={
T 0

N B F T (P ,m), if C = 0

T 1
N B F T (C + � P−C−1

Q (m)
� + 1,m),otherwise.

(4)

Thus, in our model the execution time of any NBFT A using two
channels (shared memory (c = 0) and network (c = 1)) will be cal-
culated as the execution time of the NBFT B, which only uses the
network channel and is obtained from A by formal replacement of
each group of Q (m) shared-memory transmissions by one network
transmission.

It is evident from Algorithm 1 that NBFTs are only used in Open
MPI to transmit segments of the same fixed size, ms , which is
therefore not a variable in our model.

The execution time of the NBFT broadcasting a message of size
ms through channel c, T c

N B F T (P , ms), can be bounded as follows,

T c
p2p(ms) ≤ T c

N B F T (P ,ms) ≤ T c
B F T (P ,ms). (5)

The lower bound represents the case of purely parallel point-to-
point communications, while the upper bound - the case of purely
serial point-to-point communications.

From formula (1), we can derive

T c
B F T (P ,ms) =

P−1∑
i=1

T c
p2p(ms) = (P − 1) · T c

p2p(ms). (6)

Hence,

T c
p2p(ms) ≤ T c

N B F T (P ,ms) ≤ (P − 1) · T c
p2p(ms). (7)

Therefore, we approximate T c
N B F T (P , ms) as follows,

T c
N B F T (P ,ms) = γ c(P) · T c

p2p(ms), (8)

where γ c(P) is a parallelization factor, representing the increase in
the cost of P − 1 overlapping non-blocking transmissions, origi-
nating from the same root, of a segment of size ms through the
channel c in the NBFT, with respect to a single point-to-point
transmission (1 ≤ γ c(P) ≤ P − 1).

4.2. Binomial tree algorithm

In Open MPI, the binomial tree broadcast algorithm is segmentati
based and implemented as a combination of flat tree broadcast
algorithms using non-blocking send and receive operations, NBFTs.
Fig. 5 shows the broadcast binomial tree with eight processes
(P = 8) mapped to the cores of the cluster of two quad-core pro-
cessors shown in Fig. 4. It also details the stages of execution of the
binomial tree algorithm when the number of segments, ns = m

ms
,

is equal to 3. Each stage consists of parallel execution of several
NBFTs. Therefore, the execution time of each stage will be equal
to the maximum execution time of its NBFTs. We assume that the
stages of the algorithm are executed serially. Therefore, the total
execution time of the algorithm will be equal to the sum of the
execution times of its stages.

Open MPI employs the balanced binomial tree for the binomial
tree broadcast algorithm. The height of the balanced binomial tree
is equal to �log2 P�. Therefore, the algorithm will be completed in
�log2 P� + m

ms
− 1 stages. Thus, the time to complete the binomial

tree broadcast algorithm can be estimated as follows,

Tbinomial(P ,m,ms) =
�log2 P�+ m

ms
−1∑

max
ji

T N B F T
(

Piji , Ciji ,ms
)
,

(9)
i=1

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

-

Fig. 5. The topology and execution stages of the binomial broadcast algorithm em-
ploying the non-blocking flat tree (NBFT) broadcasts on a cluster of two quad-core
processors (P = 8) shown in Fig. 4. The message is split up into ns = 3 segments.
Each arrow in an NBFT represents transmission of a segment through a shared
memory (green) or network (red) channel. The number over the arrow gives the
index of the broadcast segment and ranges from 1 to 3. The execution time of each
stage is equal to the execution time of its longest NBFT, which is encircled in a
gray-colored oval.

Fig. 6. The topology and execution stages of the chain broadcast algorithm em-
ploying NBFT broadcasts on the cluster of two quad-core processors (P = 8) from
Fig. 4. The message is split up into ns = 3 segments. Each arrow in an NBFT repre-
sents transmission of a segment through a shared memory (green) or network (red)
channel. The number over the arrow is the index of the broadcast segment. The ex-
ecution time of each stage is equal to the execution time of its longest NBFT, which
is encircled in a gray-colored oval.

where Piji (1 ≤ Piji ≤ �log2 P�) is the number of nodes in the ji -
th N B F T running at i-th stage. The number of parallel NBFTs is
varying from stage to stage but upper bounded by 2 + (�log2 P� −
1) · (�log2 P� − 2).

4.3. Chain tree algorithm

In Open MPI, the chain tree algorithm is segmentation-based
and implemented using non-blocking point-to-point communica-
8

tion. While the height of the chain tree equals P −1, the algorithm
will be completed in P + m

ms
−2 stages, each consisting of a varying

number of concurrent NBFTs. All the NBFTs will have exactly two
nodes and therefore be equivalent to non-blocking point-to-point
communications. Fig. 6 illustrates the stages of execution of the
chain tree algorithm on the cluster of two quad-core processors
(Fig. 4) when the broadcast message is split into three segments
(ns = m

ms
= 3). Each stage consists of parallel execution of several

NBFTs. Therefore, the execution time of each stage will be equal
to the maximum execution time of its NBFTs. As we assume se-
quential execution of the stages, the total execution time of the
algorithm will be equal to the sum of the execution times of its
stages. Thus, the execution time of the chain tree algorithm can be
estimated as

Tchain(P ,m,ms) =
P+ m

ms
−2∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)
, (10)

where the number of nodes in the ji -th N B F T running at i-th
stage, Piji , is always equal to 2. The number of parallel NBFTs is
varying from stage to stage, starting from 1 for stage 1, incremen-
tally growing to P − 1 for middle stages, and then incrementally
decreasing to 1 for the last, (P + m

ms
− 2)-th, stage.

4.4. Binary tree algorithm

In Open MPI, the binary tree broadcast algorithm is segmentation
based and uses the balanced binary tree topology (see Fig. 3c). The
root broadcasts each segment to its children using the NBFT. Upon
receipt of the next segment, each internal node acts similarly. As
the height of the balanced binary tree is equal to �log2 P�, the
algorithm will be completed in �log2 P� + m

ms
− 1 stages, each con-

sisting of a varying number of concurrent NBFTs. Fig. 7 illustrates
the stages of execution of the binary tree algorithm on the cluster
of two quad-core processors (Fig. 4) when the broadcast message
is split into three segments (ns = m

ms
= 3). Each stage consists of

parallel execution of several NBFTs. Therefore, the execution time
of each stage will be equal to the execution time of its longest
NBFT. As we assume sequential execution of the stages, the ex-
ecution time of the algorithm will be equal to the sum of the
execution times of the stages. Therefore,

Tbinary(P ,m,ms) =
�log2 P�+ m

ms
−1∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)
, (11)

where the number of nodes in the ji -th N B F T running at the i-th
stage, Piji , is either 3 or 2. The number of parallel NBFTs is varying
from stage to stage, starting from 1 for stage 1 and reaching a
maximum of 2�log2 P� for middle stages.

4.5. K-chain tree algorithm

In Open MPI, the K -chain tree algorithm is implemented using
non-blocking communication and message segmentation. In the K -
chain tree, the root node has K (K > 1) children, while the internal
nodes have a single child each (Fig. 3d). As the height of the tree is
� P−1

K �, the algorithm takes � P−1
K � + m

ms
− 1 stages to complete. As

we assume sequential execution of the stages, the execution time
of the algorithm will be equal to the sum of the execution times
of the stages. Therefore,

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
Fig. 7. The topology and execution stages of the binary broadcast algorithm employ-
ing the non-blocking flat trees (NBFTs) broadcasts on the cluster of two quad-core
processors (P = 8) from Fig. 4. The message is split up into ns = 3 segments. Each
arrow in an NBFT represents transmission of a segment through the shared mem-
ory (green) or network (red) channel. The number over the arrow gives the index of
the broadcast segment. The execution time of each stage is equal to the execution
time of its longest NBFT, which is encircled in a gray-colored oval.

Tkchain(P ,m,ms) =
� P−1

K �+ m
ms

−1∑
i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)
, (12)

where the number of nodes in the ji -th N B F T running at the i-th
stage, Piji , is either K + 1 or 2. The number of parallel NBFTs is
varying from stage to stage, starting from 1 for stage 1 and reach-
ing a maximum of P − K − 1 for middle stages.

4.6. Split-binary tree algorithm

In Open MPI, the split-binary tree algorithm is segmentation-
based and implemented using blocking send and non-blocking re-
ceive routines. This is the difference from other segmented tree-
based broadcast algorithms which all use non-blocking standard-
mode send. However, because in Open MPI the segment size ms

is selected so that the blocking sends in the split binary tree will
be executed in the buffered mode, we approximate the execution
time of all flat tree broadcast algorithms in the split binary tree
algorithm by the execution time of an NBFT.

The split binary tree algorithm consists of two phases – for-
warding and exchange. In the first phase, the message of size m is
split into two equal parts in the root, which are then sent to the
left and right subtrees respectively using message segmentation.

After completion of the first phase, each node in the left subtree
contains the first half of the message and each node in the right
subtree – the second half of the message. Because of segmentation,
each node will receive m

2·ms
segments during the first phase.

As the balanced binary tree virtual topology is employed in the
split-binary tree algorithm, each node in the left subtree will have
a matching pair in the right subtree and vice versa. In the second
phase, each pair of matching nodes in the left and right subtrees
exchange their halves of the message. The execution time of the
split-binary tree broadcast will be equal to the sum of the exe-
cution times of the first and second phases. As the height of the
balanced binary tree is equal to �log2 P�, the first phase will be
completed in �log2 P� + m

2ms
− 1 stages. While in the second phase

each pair of matching nodes sends/receives message at the same
time, the execution time of the second phase will be equal to
max

ck
T ck

p2p

(m
2

)
where 1 ≤ k ≤ � P−1

2 � and ck ∈ {0, 1}. Thus, as we

assume sequential execution of stages at the forwarding phase, the
9

time to complete the split-binary tree algorithm can be estimated
as follows:

Tsplit_binary(P ,m,ms) =
�log2 P�+ m

2ms
−1∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)+

max
ck

{
T ck

p2p

(m

2

)}
, (13)

where the number of nodes in the ji -th N B F T running at the i-th
stage of the forwarding phase, Piji , is either 3 or 2. The number
of parallel NBFTs at the forwarding phase is varying from stage
to stage, starting from 1 for stage 1 and reaching a maximum of
2�log2 P� for middle stages.

5. Estimation of algorithm specific and platform dependent
model parameters

As presented in Section 4, the analytical models of the Open
MPI broadcast algorithms use the τ -Lop point-to-point model pa-
rameters, the ratio of delays of the communication channels Q (m),
and the parallelization factor γ c(P) as the model parameters. The
traditional state-of-the-art approach to estimation of model pa-
rameters would be to find these parameters from a number of
point-to-point communication experiments. Namely, the time of a
round-trip of a message of size m, RT T (m), is measured for a wide
range of m. From these experiments, a system of linear equations
with unknown model parameters is derived. Then, linear regres-
sion is applied to find model parameters.

This approach yields a unique single set of parameters for each
target platform. Unfortunately, with model parameters found this
way, not all our analytical formulas will be accurate enough to
be used for accurate selection of the best performing broadcast
algorithm. Using non-linear regression does not improve the sit-
uation as the function RT T (m) is typically near linear. Therefore,
we propose to estimate the model parameters separately for each
broadcast algorithm. More specifically, we propose to design a spe-
cific communication experiment for each broadcast algorithm, so
that the algorithm itself would be involved in the execution of
the experiment. Moreover, the execution time of this experiment
must be dominated by the execution time of this broadcast algo-
rithm. Then, we conduct a number of experiments on the target
platform for a range of numbers of processors and message sizes.
From those experiments, we can derive a sufficiently large num-
ber of equations with unknown model parameters, and then use
an appropriate solver to find their values.

Our approach to this problem is the following. We consider
γ c(P) and Q (m) platform-specific but algorithm-independent pa-
rameters and design a separate communication experiment for
their estimation. The values of γ c(P) and Q (m) found from this
experiment are then used as known constants in the algorithm-
specific systems of equations for the τ -Lop model parameters.
We present this approach in Sections 5.1 and 5.2. The motiva-
tion behind assuming γ c(P) and Q (m) algorithm-independent is
that otherwise they would appear in the derived equations as un-
knowns and make the equations non-linear.

5.1. Estimation of γ c(P) and Q (m)

The model parameter γ c(P) represents the increase in the cost
of the overlapping P − 1 non-blocking transmissions through the
NBFT with respect to a single point-to-point message transmis-
sion. The NBFT is only used for broadcasting of a segment in the
tree-based segmented broadcast algorithms. Thus, in the context of

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
Fig. 8. A system of M linear equations with o0, o1, L0 and L1 as unknowns, de-
rived from M communication experiments, each consisting of the execution of
the binomial tree broadcast algorithm, broadcasting a message of size mi (i =
1, ..., M) from the root to the remaining P − 1 processes, followed by the flat-
without-synchronization gather algorithm, gathering messages of size ms (segment
size) on the root. The execution times, Ti , of these experiments are measured on
the root.

Open MPI, the NBFT will always broadcast a message of size ms to
a relatively small number of processes.

According to Formula (8),

γ c(P) = T c
N B F T (P ,ms)

T c
p2p(ms)

= T c
N B F T (P ,ms)

T c
N B F T (2,ms)

, (14)

where P ∈ {2, ..., Pmax(c)
N B F T }. Pmax(1)

N B F T is the maximum number of the
processes communicating through the network channel in NBFTs.
Pmax(0)

N B F T is the maximum number of the processes communicating
through the shared memory channel where the NBFT only uses
the shared memory channel. Therefore, in order to estimate γ c(P),
we need a method for estimation of T c

N B F T (P , ms). We use the
following method:

• For each 2 ≤ P ≤ Pmax(c)
N B F T , we measure on the root the execu-

tion time θ c(P , N) of N successive calls of the NBFT separated
by barriers. The routine broadcasts a message of size ms .

• We estimate T c
N B F T (P , ms) as

T c
N B F T (P ,ms) = θ c(P , N)

N
.

The experimentally obtained discrete function
T c

N B F T (P ,ms)

T c
N B F T (2,ms)

is

used as a platform-specific but algorithm-independent estimation
of γ c(P).

Parameter Q (m) only appears in the analytical models of the
Open MPI broadcast algorithms in the context of NBFTs broadcast-
ing a segment of fixed size ms (see Section 4). Therefore, we only
need to estimate Q (ms). By definition T c

N B F T (2, ms) = T c
p2p(ms),

and using formula (3) we estimate Q (ms) as

Q (ms) = T 1
N B F T (2,ms)

T 0
N B F T (2,ms)

(15)

5.2. Estimation of algorithm specific model parameters

To estimate the model parameters for a given broadcast algo-
rithm, we design a communication experiment, which starts and
finishes on the root (in order to accurately measure its execution
time using the root clock), and involves the execution of the mod-
eled broadcast algorithm so that the total time of the experiment
would be dominated by the time of its execution. In this section,
we present the estimation of τ -Lop model parameters.

For all broadcast algorithms, the communication experiment
consists of a broadcast of a message of size m (where m is a
multiple of segment size ms), using the modeled broadcast al-
gorithm, followed by the flat-without-synchronization gather algo-
rithm. This algorithm works by gathering messages of size ms

on the root. The execution time of this experiment on P nodes,
Tcomm_experiment(P , m), can be estimated as follows,
10
Tcomm_experiment(P ,m) =
Tbcast(P ,m) + T f lat_gather(P ,ms). (16)

The execution time of the flat-without-synchronization gather
algorithm, gathering a segment of size ms on the root from P − 1
processes, is estimated as follows [28],

T f lat_gather(P ,m) =
P−1∑
i=1

T ci
p2p (ms) =

P−1∑
i=1

{
T 0

p2p(ms), if ci = 0

T 1
p2p(ms), if ci = 1

=

P−1∑
i=1

{
o0 + 2L0, if ci = 0

o1 + 2L0 + L1, if ci = 1
(17)

where o0, o1, L0 and L1 denote o0(ms), o1(ms), L0(ms) and L1(ms)

respectively. Thus, as {ci}P−1
i=1 are all knowns for the experimental

setup, T f lat_gather(P , m) is estimated as a linear function of un-
known τ -Lop model parameters o0, o1, L0 and L1.

To explain in detail the contribution of the broadcast algorithm
in the estimated time of the experiment, we assume the binomial
tree broadcast algorithm. Therefore, according to formulas (3), (4)
and (9), the execution time of the broadcast algorithm will be ex-
pressed as follows,

Tbcast(P ,m) = Tbinomial(P ,m) =
N∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
) =

N∑
i=1

max
ji

{
γ 0(Piji) · T 0

p2p(ms), if Ciji = 0

γ 1(P ◦
i j) · T 1

p2p(ms),otherwise
=

N∑
i=1

max
ji

{
γ 0(Piji

)

Q (ms)
· T 1

p2p(ms), if Ciji = 0

γ 1(P ◦
i ji

) · T 1
p2p(ms),otherwise

=

T 1
p2p(ms) ·

N∑
i=1

max
ji

{
γ 0(Piji

)

Q (ms)
, if Ciji = 0

γ 1(P ◦
i ji

),otherwise
=

(
o1 + 2L0 + L1

)
·

N∑
i=1

max
ji

{
γ 0(Piji

)

Q (ms)
, if Ciji = 0

γ 1(P ◦
i ji

),otherwise
(18)

where N is the number of execution stages of the algorithm,
N = �log2 P� + m

ms
− 1; Piji and Ciji are the number of nodes and

the number of network point-to-point communications in the ji -th

NBFT at i-th stage respectively; P ◦
i ji

= Ciji + � Piji − Ciji − 1

Q (ms)
�.

In this experiment, {Piji } and {Ciji } are all knowns. As pre-
sented in Section 5.1, γ c(P) and Q (ms) are algorithm-independent
parameters, which are estimated separately, before the estima-
tion of algorithm-specific τ -Lop parameters. Therefore, P ◦

i ji
= Ciji +

� Piji − Ciji − 1

Q (ms)
�,

γ 0(Piji
)

Q (ms)
and γ 1(P ◦

i ji
) are also all knowns for all i

and ji . Thus, like T f lat_gather(P , m), Tbcast(P , m) is also estimated
as a linear function of unknown τ -Lop model parameters o0, o1,
L0 and L1. Therefore, for each pair of (P , m), formula (16) will
yield one linear equation with unknown τ -Lop model parameters
of the form

Tcomm_experiment(P ,m) =
λ1 · o0 + λ2 · o1 + λ3 · L0 + λ4 · L1

(19)

where λ1, λ2, λ3 and λ4 are constants. By repeating this experi-
ment with different m, we obtain a system of linear equations for

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

Table 1
Estimated values of Pmax(1)

N B F T , Pmax(0)
N B F T and γ 1(P) on Grisou, Gros and MareNostrum4 clusters.

(a)

Cluster Pmax(1)
N B F T Pmax(0)

N B F T

Gros 7 3
Grisou 7 3
MareNostrum4 5 3

(b)

Number of processes (P) γ 1(P)

Grisou Gros MareNostrum4
3 1.114 1.084 1.145
4 1.219 1.170 1.290
5 1.283 1.254 1.435
6 1.451 1.339
7 1.540 1.424

Table 2
Estimated values of o1, L0 and L1 on the Grisou, MareNostrum4 and Gros clusters for Open MPI broadcast algorithms. o0 is equal to 0 in all clusters.

Broadcast algorithm o1, L0, L1(sec)

Grisou MareNostrum4 Gros

Linear tree 2.1 × 10−4, 2.1 × 10−4, 2.1 × 10−4 6.8 × 10−4, 6.7 × 10−4, 6.8 × 10−4 8.2 × 10−5, 8.2 × 10−5, 8.2 × 10−5

K-Chain tree 2.2 × 10−4, 4.1 × 10−5, 2.2 × 10−4 6.2 × 10−5, 1.2 × 10−5, 6.2 × 10−5 8.0 × 10−6, 1.1 × 10−5, 8.0 × 10−6

Chain tree 1.2 × 10−5, 2.0 × 10−5, 1.2 × 10−5 5.4 × 10−5, 5.8 × 10−6, 5.4 × 10−5 8.1 × 10−6, 1.3 × 10−5, 8.1 × 10−6

Split-binary tree 7.4 × 10−5, 3.5 × 10−4, 7.4 × 10−5 1.7 × 10−4, 2.1 × 10−5, 1.7 × 10−4 3.2 × 10−5, 9.3 × 10−6, 3.2 × 10−5

Binary tree 3.3 × 10−4, 3.0 × 10−4, 3.3 × 10−4 3.0 × 10−4, 7.5 × 10−5, 3.0 × 10−4 5.6 × 10−5, 9.7 × 10−6, 5.6 × 10−5

Binomial tree 9.7 × 10−5, 2.1 × 10−4, 9.7 × 10−5 7.9 × 10−5, 7.9 × 10−6, 7.9 × 10−5 1.9 × 10−5, 8.0 × 10−6, 1.9 × 10−5
o0, o1, L0 and L1 (Fig. 8). Each equation in this system is repre-
sented in the canonical form, λi1 · o0 + λi2 · o1 + λi3 · L0 + λi4 · L1 =
Ti, (i = 1, ..., M). Finally, we use the least-square regression to find
unknown model parameters. Similarly, we build systems of lin-
ear equations for other broadcast algorithms implemented in Open
MPI.

6. Experimental results and analysis

In this section, we present experimental validation of the pro-
posed approach to selection of optimal broadcast algorithms on
multi-core clusters.

6.1. Experimental setup and methodology

We validate our approach on three large scale clusters. Two
clusters, Grisou and Gros, are located in France and belong to the
Grid5000 experimental infrastructure. The third cluster, MareNos-
trum4, is hosted by Barcelona Supercomputing Center.

Grid5000 is the large-scale testbed with seven sites in Grenoble,
Luxembourg, Lyon, Nancy, Nantes, Rennes and Sophia. We run our
experiments on Grisou and Gros clusters of the Nancy site using
Open MPI 3.1. Grisou consists of 51 nodes each with 2 Intel Xeon
E5-2630 v3 CPUs (8 cores/CPU), 128 GiB RAM, interconnected via
10 Gbps Ethernet. Gros consists of 124 nodes each with Intel Xeon
Gold 5220 CPU (18 cores/CPU), 96 GiB RAM, interconnected via 25
Gbps Ethernet.

MareNostrum4 is a cluster based on Intel Xeon Platinum pro-
cessors from the Skylake generation in the Barcelona Supercom-
puting Center. It consists of 3456 nodes each with 2-socket Intel
Xeon Platinum 8160 CPU with 24 cores per socket, 96 GiB of main
memory 1.880 GB/core, interconnected via 10 Gbit Ethernet.

In our collective experiments, we use up to 38 nodes in Grisou,
up to 56 nodes in Gros, and up to 10 nodes in MareNostrum4. MPI
programs use the one-process-per-CPU-core configuration, and the
maximal total number of processes is 600 for Grisou, 1000 for Gros
and 480 for MareNostrum4. They utilize all CPU-cores in the nodes
used in experiments. The default serial mapping of MPI processes
to cores is used in all programs. The message segment size, ms ,
for segmented broadcast algorithms is set to 8 KB and is the same
in all experiments. This very segment size is commonly used for
segmented broadcast algorithms in Open MPI. Selection of optimal
segment size is out of the scope of this paper.
11
We follow a detailed methodology to make sure that the ex-
perimental results are reliable: 1) We make sure that the cluster
is fully reserved and dedicated to our experiments. 2) For each
data point in the execution time of collective algorithms, the sam-
ple mean is used, which is calculated by executing the application
repeatedly until the sample mean lies in the 95% confidence in-
terval and a precision of 0.025 (2.5%) has been achieved. We also
check that the individual observations are independent and their
population follows the normal distribution. For this purpose, MPI-
Blib tool [27] is used. As presented in Section 5.2, we design the
communication experiments using broadcast algorithms and the
flat-without-synchronization gather algorithm. Gathering the mes-
sage in the root enables us to measure the execution time of the
experiment using the root clock where it is started. The estimation
of the execution time is synchronized by the three MPI_Barrier.
The first MPI_Barrier is used before the loop where repetitions
start. The second is used directly before MPI_Bcast to make sure
that processes start the message transmission at the same time.
The last one is used directly after MPI_Bcast to make sure that all
processes received the message, then gather starts.

All results presented in the paper are reproducible. The MPI
code to run communication experiments and Python scripts to
train models is freely available from the UCD GitLab server [2].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

14.31 · o1 + 1012.31 · L0 + 14.31 · L1 = 0.0103169514

17.15 · o1 + 1015.15 · L0 + 17.15 · L1 = 0.010932707

22.85 · o1 + 1020.85 · L0 + 22.85 · L1 = 0.0121768391

34.24 · o1 + 1032.24 · L0 + 34.24 · L1 = 0.015099681

57.03 · o1 + 1055.03 · L0 + 57.03 · L1 = 0.0199503694

102.59 · o1 + 1100.59 · L0 + 102.59 · L1 = 0.0293413861

193.73 · o1 + 1191.73 · L0 + 193.73 · L1 = 0.0479402791

376.00 · o1 + 1374.00 · L0 + 376.00 · L1 = 0.0479402791

740.55 · o1 + 1738.55 · L0 + 740.55 · L1 = 0.1595142696

(20)

A system of linear equations built in Gros cluster using binomial tree broadcast
algorithm where P = 1000 and m ∈ [16K B, 4M B].

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

Table 3
Comparison of the model-based and Open MPI selections with the best performing MPI_Bcast algorithm. For each selected algorithm, its performance degradation
against the optimal one is given in braces.

P=450, Grisou

m (KB) Best Model-based (%) Open MPI (%)

16 f lat chain (24) split_binary (1568)
32 chain chain (0) split_binary (1211)
64 chain chain (0) split_binary (702)
128 chain chain (0) split_binary (1153)
256 chain chain (0) split_binary (1106)
512 chain chain (0) chain (0)
1024 chain chain (0) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=600, Grisou

m (KB) Best Model-based (%) Open MPI (%)

16 f lat chain (20) split_binary (1006)
32 chain chain (0) split_binary (744)
64 chain chain (0) split_binary (808)
128 chain chain (0) split_binary (792)
256 chain chain (0) split_binary (762)
512 chain chain (0) chain (0)
1024 chain chain (0) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=400, Gros

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary binary (1) split_binary (0)
32 split_binary binary (6) split_binary (0)
64 split_binary split_binary (0) split_binary (0)
128 split_binary split_binary (0) split_binary (0)
256 k − chain k − chain (0) split_binary (4)
512 k − chain k − chain (0) chain (67)
1024 k − chain k − chain (0) chain (76)
2048 k − chain k − chain (0) chain (62)
4096 k − chain k − chain (0) chain (42)

P=1000, Gros

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary binomial (1) split_binary (0)
32 split_binary split_binary (0) split_binary (0)
64 split_binary split_binary (0) split_binary (0)
128 split_binary split_binary (0) split_binary (0)
256 split_binary split_binary (0) split_binary (0)
512 split_binary split_binary (0) chain (97)
1024 split_binary k − chain (2) chain (570)
2048 k − chain k − chain (0) chain (73)
4096 k − chain k − chain (0) chain (66)

P=96, MareNostrum4

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary k − chain (3) split_binary (0)
32 k − chain k − chain (0) split_binary (4)
64 k − chain k − chain (0) split_binary (19)
128 k − chain k − chain (0) split_binary (40)
256 k − chain k − chain (0) split_binary (74)
512 k − chain k − chain (0) chain (9)
1024 chain k − chain (1) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=480, MareNostrum4

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary k − chain (84) split_binary (0)
32 k − chain k − chain (0) split_binary (92)
64 k − chain k − chain (0) split_binary (385)
128 k − chain k − chain (0) split_binary (719)
256 k − chain k − chain (0) split_binary (209)
512 k − chain k − chain (0) chain (31)
1024 k − chain k − chain (0) chain (21)
2048 k − chain k − chain (0) chain (49)
4096 k − chain k − chain (0) chain (49)
6.2. Experimental estimation of model parameters

Platform-specific but algorithm-independent model parameters
γ c(P) and Q (ms) are estimated first (and separately for each ex-
perimental cluster) following the methodology described in Sec-
tion 5.1.

The calculated values of Pmax(1)
N B F T and Pmax(0)

N B F T for our experimen-

tal setups are given in Table 1(a). γ 0(Pmax(0)
N B F T) is estimated 1 for all

the clusters. Q (ms) is estimated 6 for Grisou, 12 for Gros and 9
for MareNostrum4. The estimated values of γ 1(P) for P from 3 to
7 are given in Table 1.

Then, algorithm-specific τ -Lop model parameters are estimated
for each platform and each algorithm, following the method de-
scribed in Section 5.2. In the communication experiments, we use
600 processes on Grisou, 1000 processes on Gros, and 480 pro-
cesses on MareNostrum4. The message size, m, varies in the range
from 16 KB to 4 MB on all platforms. We use 9 different mes-
sage sizes for Open MPI broadcast algorithms, {mi}9

i=1, separated
by a constant step in the logarithmic scale, log2 mi+1 − log2 mi = 1.
Thus, for each broadcast algorithm, we obtain a system of 9 linear
equations with τ -Lop model parameters as unknowns (See (20)).
We use the Huber regressor [18] to find their values from the sys-
tem. The values of the parameters for each platform can be found
in Table 2. We can see that the values of model parameters do
vary depending on the broadcast algorithm. The results support
our original hypothesis that the average execution time of a point-
to-point communication will very much depend on the context of
the use of point-to-point communications in the algorithm. There-
fore, the estimated values capture more than just sheer network
12
characteristics. Despite the fact that the Split-binary tree and Bi-
nary tree broadcast algorithms use the same virtual topology, the
estimated time of a point-to-point communication is smaller in
the context of the Split-binary one. This can be explained by a
higher level of parallelism of the Split-binary algorithm, where a
significant part of point-to-point communications is performed in
parallel by a large number of independent pairs of processes from
the left and right subtrees. o0 has been estimated 0 in all clusters
because of the small size, 8 K, of the message segment transmitted
through a shared memory channel.

6.3. Accuracy of selection of optimal collective algorithms using the
constructed analytical performance models

The constructed analytical performance models of the Open
MPI broadcast algorithms are designed for the use in the MPI_Bcast
routines for efficient and accurate runtime selection of the optimal
algorithm, depending on the number of processes and the message
size. While the efficiency is evident from the low complexity of the
analytical formulas derived in Section 4, the experimental results
on the accuracy are presented in this section.

Fig. 9 shows the results of our experiments in three clus-
ters for MPI_Bcast. We present results of experiments with P ∈
{450, 500, 550, 600} in Grisou, with P ∈ {400, 600, 800, 1000} in
Gros and with P ∈ {96, 144, 336, 480} in MareNostrum4. Again,
the message size, m, varies in the range from 16 KB to 4 MB on
all platforms, and we use 9 different sizes, {mi}9

i=1, separated by
a constant step in the logarithmic scale, log2 mi+1 − log2 mi = 1.
The plots show the execution time of the broadcast operation as a

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

Fig. 9. Comparison of the selection accuracy of the Open MPI decision function and the proposed model-based method for MPI_Bcast. (9a - 9c), (9d - 9f) and (9g - 9i) present
performance of collectives on Grisou, Gros and MareNostrum4 clusters respectively.
function of the message size. Each data point on a green line shows
the performance of the algorithm selected by the Open MPI deci-
sion function for the given number of processes and message size.
Each point on a red line shows the performance of the algorithm
selected by our decision function, which uses the constructed ana-
lytical models. Each point on a blue line shows the performance of
the best broadcast algorithm for MPI_Bcast. Fig. 10 demonstrates
the accuracy of the model-based selection compared to the best
performance and Open MPI decision function for all message sizes
and the number of processes on three clusters.

Table 3 presents selections made for MPI_Bcast using the pro-
posed model-based runtime procedure and the Open MPI decision
function. For each message size m, the best performing algorithm,
the model-based selected algorithm, and the Open MPI selected al-
gorithm are given. For the latter two, the performance degradation
13
in percentages in comparison with the best performing algorithm
is also given.

It is evident from the results that for all message sizes but 16
KB, the model-based decision function selects either the optimal
(45 cases) or near-optimal (3) algorithm. The performance of the
near optimal algorithms is practically indistinguishable from that
of the optimal (the difference is 1%, 2% and 6% correspondingly).

In the case of 16 KB, on the Gros cluster it selects the near
optimal algorithms, which are practically as good as the optimal
(the difference in performance is only 1%). On the Grisou cluster,
the second best algorithm is selected with a moderate degrada-
tion of 20 − 24%. The second best algorithm is also selected on the
MareNostrum4 cluster with a degradation of 3 − 84%. Thus, the
inaccuracy of the model-based decision function for 16 KB exper-
iments is either minor or quite moderate. It can be explained by
the fact that we use linear regression to find the values of model

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16

Fig. 10. (10a), (10b) and (10c) present performance of MPI_Bcast on Grisou, Gros and MareNostrum4 clusters respectively. Blue, red and green surfaces present the best
performance of MPI_Bcast, model-based estimation and Open MPI decision function respectively.
parameters from the experimentally constructed systems of lin-
ear equations. Linear regression methods tend to prioritize larger
values in experimental data points over smaller ones when mini-
mizing the penalty of the fit. The Huber regressor [18], which we
use in our work, tries to mitigate this problem by increasing the
weight of smaller values but still follows the general trend. One
possible solution is to break the whole range of message sizes into
two segments, one for smaller messages and the other for larger
ones, and find model parameters separately for each segment.

The Open MPI selection is near optimal in 46% cases and causes
significant performance degradation in the remaining 54% cases
(up to 1106%, 570% and 719% on Grisou, Gros and MareNostrum4
clusters respectively).

The Open MPI decision function only uses three broadcast algo-
rithms (chain tree, split-binary tree and binomial tree) out of a total of
six implemented and available for selection (see Listing 1). For ex-
ample, the K-Chain tree broadcast algorithm, which is never used
by the Open MPI decision function, outperforms all the algorithms
on Gros in 38% cases, and on MareNostrum4 in 72% cases. In con-
trast to the Open MPI decision function, the model-based function
selects the K-Chain broadcast algorithm on Gros and MareNos-
trum4 platforms, when this algorithm is either the best or the
second best with a very small penalty of 1 − 2%.

7. Discussion

In this section, we briefly discuss some limitations of the pre-
sented work and their impact.

First, our approach assumes that collectives are implemented
through calls to point-to-point communication operations. We do
not consider MPI implementations that exploit hardware collective
support to perform certain collectives, for example, multicast, in
O(1).

Second, we assume that the segment size, ms , is fixed and the
same in all collective algorithms. This limitation can be eased by
making the segment size another decision variable with values
from a small discrete set, say, {8K , 16K , 32K , 64K , 128K }. For each
collective algorithm, we can build a separate model for each value
of the segment size and use the models at runtime to select the
fastest combination of the algorithm and segment size for each
collective operation.

Third, we assume that the values of model parameters, such as
o0, o1, L0 and L1 do not depend on the number of processes, P ,
executing the algorithm. While this assumption did not negatively
affect the selective accuracy of the models in our experimental se-
tups, it may not be the case for larger platforms, able to run tens
of thousands of MPI processes. For such platforms, one possible so-
lution could be to break the total range of the number of processes
14
into several segments and find the values of model parameters
separately for each segment. There are other, more general pos-
sible solutions, but in order to study any possible solution, regular
access to a large-scale platform is needed. Unfortunately, the au-
thors do not have such access.

8. Conclusion

In this paper, we proposed a model-based approach to auto-
matic selection of optimal algorithms for the MPI broadcast op-
eration on multi-core clusters, which proved to be both efficient
and accurate. We took into account the topology of the commu-
nication channels to build performance models. Communication
experiments are designed to estimate algorithmic and channel-
specific model parameters.

We also developed this approach into a detailed method and
applied it to Open MPI 3.1 and its MPI_Bcast operations. We ex-
perimentally validated this method on three different clusters and
demonstrated its accuracy and efficiency. These results suggest that
the proposed approach, based on analytical performance modeling
of collective algorithms, provides the solution of the problem of
accurate and efficient runtime selection of optimal algorithms for
MPI collective operations.

The target architecture for the presented method is a cluster of
multi-core processors. While this is the most common architecture
where MPI is used, there are other architectures such as hetero-
geneous clusters [23], [42] or Internet of Things [22], [15], where
MPI either is used or can be used in the future. Such platforms are
highly heterogeneous, represent a significant challenge for accurate
modeling of MPI collective algorithms and are out of the scope of
this paper. We consider this topic as future work.

CRediT authorship contribution statement

Emin Nuriyev: Data curation, Formal analysis, Investigation,
Methodology, Software, Validation, Visualization, Writing – origi-
nal draft, Writing – review & editing. Juan-Antonio Rico-Gallego:
Formal analysis, Investigation, Writing – original draft. Alexey
Lastovetsky: Conceptualization, Funding acquisition, Investigation,
Methodology, Project administration, Supervision, Validation, Writ-
ing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
References

[1] A Message-Passing Interface Standard, https://www.mpi -forum .org/.
[2] A tool to run MPI communication experiments and build performance models

presented in this paper, https://csgitlab .ucd .ie /emin .nuri /mpicollmodelling.
[3] A. Alexandrov, M.F. Ionescu, K.E. Schauser, C. Scheiman LogGP, Incorporating

long messages into the LogP model — one step closer towards a realistic model
for parallel computation, Tech. Rep., USA, 1995.

[4] M. Bernaschi, G. Iannello, M. Lauria, Efficient implementation of reduce-scatter
in MPI, J. Syst. Archit. 49 (3) (2003) 89–108, https://doi .org /10 .1016 /S1383 -
7621(03)00059 -6, parallel, Distributed and Network-based Processing - se-
lected papers from the 10th Euromicro Workshop, http://www.sciencedirect .
com /science /article /pii /S1383762103000596.

[5] J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby, Efficient algo-
rithms for all-to-all communications in multiport message-passing systems,
IEEE Trans. Parallel Distrib. Syst. 8 (11) (1997) 1143–1156, https://doi .org /10 .
1109 /71.642949.

[6] K.W. Cameron, R. Ge, Predicting and evaluating distributed communication per-
formance, in: SC’04: Proceedings of the 2004 ACM/IEEE Conference on Super-
computing, IEEE, 2004, p. 43.

[7] E. Chan, M. Heimlich, A. Purkayastha, R. van de Geijn, Collective communi-
cation: theory, practice, and experience: research articles, Concurr. Comput.,
Pract. Exp. 19 (13) (2007) 1749–1783.

[8] E.W. Chan, M.F. Heimlich, A. Purkayastha, R.A. van de Geijn, On optimizing
collective communication, in: 2004 IEEE International Conference on Cluster
Computing (IEEE Cat. No. 04EX935), 2004, pp. 145–155.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramo-
nian, T. von Eicken, LogP: towards a realistic model of parallel computation,
SIGPLAN Not. 28 (7) (1993) 1–12, https://doi .org /10 .1145 /173284 .155333.

[10] D. Culler, L.T. Liu, R.P. Martin, C. Yoshikawa, LogP performance assessment of
fast network interfaces, IEEE MICRO 16 (1) (1996) 35–43.

[11] T.G. Dietterich, E.B. Kong, Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms, Tech. Rep., Technical report, Department
of Computer Science, Oregon State University, 1995.

[12] T.v. Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser, Active messages: a mecha-
nism for integrated communication and computation, in: [1992] Proceedings
the 19th Annual International Symposium on Computer Architecture, 1992,
pp. 256–266.

[13] G.E. Fagg, J. Pjesivac-Grbovic, G. Bosilca, T. Angskun, J. Dongarra, E. Jeannot,
Flexible collective communication tuning architecture applied to Open MPI, in:
Euro PVM/MPI, 2006.

[14] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, T.S.
Woodall, Open MPI: goals, concept, and design of a next generation MPI imple-
mentation, in: D. Kranzlmüller, P. Kacsuk, J. Dongarra (Eds.), Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2004, pp. 97–104.

[15] T. Guo, K. Yu, M. Aloqaily, S. Wan, Constructing a prior-dependent graph for
data clustering and dimension reduction in the edge of AIoT, Future Gener.
Comput. Syst. 128 (2022) 381–394.

[16] R.W. Hockney, The communication challenge for MPP: Intel Paragon
and Meiko CS-2, Parallel Comput. 20 (3) (1994) 389–398, https://
doi .org /10 .1016 /S0167 -8191(06)80021 -9, http://www.sciencedirect .com /
science /article /pii /S0167819106800219.

[17] T. Hoefler, T. Schneider, A. Lumsdaine, LogGP in theory and practice – an
in-depth analysis of modern interconnection networks and benchmarking
methods for collective operations, Simul. Model. Pract. Theory 17 (9) (2009)
1511–1521, https://doi .org /10 .1016 /j .simpat .2009 .06 .007, Advances in System
Performance Modelling, Analysis and Enhancement, http://www.sciencedirect .
com /science /article /pii /S1569190X09000811.

[18] P.J. Huber, Robust estimation of a location parameter, in: Breakthroughs in
Statistics, Springer, 1992, pp. 492–518.

[19] S. Hunold, A. Bhatele, G. Bosilca, P. Knees, Predicting MPI collective communi-
cation performance using machine learning, in: 2020 IEEE International Con-
ference on Cluster Computing (CLUSTER), 2020, pp. 259–269.

[20] L.P. Huse, Collective communication on dedicated clusters of workstations,
in: European Parallel Virtual Machine/Message Passing Interface Users’ Group
Meeting, Springer, 1999, pp. 469–476.

[21] T. Kielmann, H.E. Bal, K. Verstoep, Fast measurement of LogP parameters for
message passing platforms, in: J. Rolim (Ed.), Parallel and Distributed Process-
ing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 1176–1183.

[22] E. Kristiani, C.-T. Yang, C.-Y. Huang, P.-C. Ko, H. Fathoni, On construction of
sensors, edge, and cloud (iSEC) framework for smart system integration and
applications, IEEE Int. Things J. 8 (1) (2020) 309–319.

[23] A. Lastovetsky, R. Reddy Heterompi, Towards a message-passing library for het-
erogeneous networks of computers, J. Parallel Distrib. Comput. 66 (2) (2006)
197–220.

[24] A. Lastovetsky, V. Rychkov, Building the communication performance model of
heterogeneous clusters based on a switched network, in: 2007 IEEE Interna-
tional Conference on Cluster Computing, 2007, pp. 568–575.
15
[25] A. Lastovetsky, V. Rychkov, Accurate and efficient estimation of parameters of
heterogeneous communication performance models, Int. J. High Perform. Com-
put. Appl. 23 (2) (2009) 123–139, https://doi .org /10 .1177 /1094342009103947.

[26] A. Lastovetsky, I. Mkwawa, M. O’Flynn, An accurate communication model of a
heterogeneous cluster based on a switch-enabled Ethernet network, in: 12th
International Conference on Parallel and Distributed Systems - (ICPADS’06),
vol. 2, 2006.

[27] A. Lastovetsky, V. Rychkov, M. O’Flynn MPIBlib, Benchmarking MPI communica-
tions for parallel computing on homogeneous and heterogeneous clusters, in:
A. Lastovetsky, T. Kechadi, J. Dongarra (Eds.), Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 227–238.

[28] E. Nuriyev, A. Lastovetsky, Efficient and accurate selection of optimal collective
communication algorithms using analytical performance modeling, IEEE Access
9 (2021) 109355–109373, https://doi .org /10 .1109 /ACCESS .2021.3101689.

[29] P. Patarasuk, A. Faraj, Xin Yuan, Pipelined broadcast on Ethernet switched clus-
ters, in: Proceedings 20th IEEE International Parallel Distributed Processing
Symposium, 2006.

[30] J. Pješivac-Grbović, G.E. Fagg, T. Angskun, G. Bosilca, J.J. Dongarra, MPI col-
lective algorithm selection and quadtree encoding, in: B. Mohr, J.L. Träff, J.
Worringen, J. Dongarra (Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006,
pp. 40–48.

[31] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G.E. Fagg, E. Gabriel, J.J. Dongarra,
Performance analysis of MPI collective operations, Clust. Comput. 10 (2) (2007)
127–143, https://doi .org /10 .1007 /s10586 -007 -0012 -0.

[32] J. Pješivac-Grbović, G. Bosilca, G.E. Fagg, T. Angskun, J.J. Dongarra, Decision trees
and MPI collective algorithm selection problem, in: A.-M. Kermarrec, L. Bougé,
T. Priol (Eds.), Euro-Par 2007 Parallel Processing, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007, pp. 107–117.

[33] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1993.

[34] R. Rabenseifner, Automatic profiling of MPI applications with hardware perfor-
mance counters, in: Recent Advances in Parallel Virtual Machine and Message
Passing Interface, in: Lecture Notes in Computer Science, vol. 1697, Springer
Berlin Heidelberg, 1999, pp. 35–42.

[35] R. Rabenseifner, J.L. Träff, More efficient reduction algorithms for non-power-
of-two number of processors in message-passing parallel systems, in: D. Kran-
zlmüller, P. Kacsuk, J. Dongarra (Eds.), Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004, pp. 36–46.

[36] J. Rico-Gallego, A.L. Lastovetsky, J.C.D. Martín, Model-based estimation of the
communication cost of hybrid data-parallel applications on heterogeneous
clusters, IEEE Trans. Parallel Distrib. Syst. 28 (11) (2017) 3215–3228, https://
doi .org /10 .1109 /TPDS .2017.2715809.

[37] J.-A. Rico-Gallego, J.-C. Díaz-Martín, τ -Lop: modeling performance of
shared memory MPI, Parallel Comput. 46 (2015) 14–31, https://doi .org /
10 .1016 /j .parco .2015 .02 .006, http://www.sciencedirect .com /science /article /pii /
S0167819115000447.

[38] J.-A. Rico-Gallego, J.-C. Díaz-Martín, A.L. Lastovetsky, Extending τ -lop to model
concurrent MPI communications in multicore clusters, Future Gener. Com-
put. Syst. 61 (2016) 66–82, https://doi .org /10 .1016 /j .future .2016 .02 .021, http://
www.sciencedirect .com /science /article /pii /S0167739X16300346.

[39] J.A. Rico-Gallego, J.C. Díaz-Martín, R.R. Manumachu, A.L. Lastovetsky, A survey
of communication performance models for high-performance computing, ACM
Comput. Surv. 51 (6) (Jan. 2019), https://doi .org /10 .1145 /3284358.

[40] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective communication
operations in MPICH, Int. J. High Perform. Comput. Appl. 19 (1) (2005) 49–66,
https://doi .org /10 .1177 /1094342005051521.

[41] B. Tu, J. Fan, J. Zhan, X. Zhao, Performance analysis and optimization of MPI
collective operations on multi-core clusters, J. Supercomput. 60 (1) (2012)
141–162.

[42] D. Valencia, A. Lastovetsky, M. O’Flynn, A. Plaza, J. Plaza, Parallel processing
of remotely sensed hyperspectral images on heterogeneous networks of work-
stations using HeteroMPI, Int. J. High Perform. Comput. Appl. 22 (4) (2008)
386–407.

[43] U. Wickramasinghe, A. Lumsdaine, A survey of methods for collective commu-
nication optimization and tuning, arXiv preprint, arXiv:1611.06334, 2016.

[44] J. Worringen, Pipelining and overlapping for MPI collective operations, in: 28th
Annual IEEE International Conference on Local Computer Networks, 2003. LCN
’03. Proceedings, 2003, pp. 548–557.

Emin Nuriyev is a PhD researcher at Heterogeneous Computing Lab-
oratory at the School of Computer Science, University College Dublin. He
received a BSc and MSc degrees in Applied Mathematics from the Baku
State University in 2005 and 2007 respectively. His main research inter-
ests include algorithms and models for High-Performance Computing.

https://www.mpi-forum.org/
https://csgitlab.ucd.ie/emin.nuri/mpicollmodelling
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibC789C17CAB545C4702F38A6476CB6D37s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibC789C17CAB545C4702F38A6476CB6D37s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibC789C17CAB545C4702F38A6476CB6D37s1
https://doi.org/10.1016/S1383-7621(03)00059-6
https://doi.org/10.1016/S1383-7621(03)00059-6
http://www.sciencedirect.com/science/article/pii/S1383762103000596
http://www.sciencedirect.com/science/article/pii/S1383762103000596
https://doi.org/10.1109/71.642949
https://doi.org/10.1109/71.642949
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib8A11E2F5F1672E9632A0EEB2D5E8C77Ds1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib8A11E2F5F1672E9632A0EEB2D5E8C77Ds1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib8A11E2F5F1672E9632A0EEB2D5E8C77Ds1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib3F65D6471D83FA95CF597861D2CB831Es1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib3F65D6471D83FA95CF597861D2CB831Es1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib3F65D6471D83FA95CF597861D2CB831Es1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2FE1A5B3E0AFC3D70E0F58B84F4CC56Es1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2FE1A5B3E0AFC3D70E0F58B84F4CC56Es1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2FE1A5B3E0AFC3D70E0F58B84F4CC56Es1
https://doi.org/10.1145/173284.155333
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib837722EA3BF82BDD45974A7E13D2A889s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib837722EA3BF82BDD45974A7E13D2A889s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib46771160BD6916B6F4F6A024AC3CD4BCs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib46771160BD6916B6F4F6A024AC3CD4BCs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib46771160BD6916B6F4F6A024AC3CD4BCs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib522170B59C544FD3D16BC3F76B5161C1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib522170B59C544FD3D16BC3F76B5161C1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib522170B59C544FD3D16BC3F76B5161C1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib522170B59C544FD3D16BC3F76B5161C1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibB8B064DC130BC677F26AAE9D2DC1C63As1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibB8B064DC130BC677F26AAE9D2DC1C63As1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibB8B064DC130BC677F26AAE9D2DC1C63As1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibD86A009A28CCD64DAE41E690A6814FFAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibD86A009A28CCD64DAE41E690A6814FFAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibD86A009A28CCD64DAE41E690A6814FFAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibD86A009A28CCD64DAE41E690A6814FFAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibD86A009A28CCD64DAE41E690A6814FFAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibD86A009A28CCD64DAE41E690A6814FFAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib6396AFA40D1634BDD78F635D939FCA83s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib6396AFA40D1634BDD78F635D939FCA83s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib6396AFA40D1634BDD78F635D939FCA83s1
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1016/S0167-8191(06)80021-9
http://www.sciencedirect.com/science/article/pii/S0167819106800219
http://www.sciencedirect.com/science/article/pii/S0167819106800219
https://doi.org/10.1016/j.simpat.2009.06.007
http://www.sciencedirect.com/science/article/pii/S1569190X09000811
http://www.sciencedirect.com/science/article/pii/S1569190X09000811
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibADE07E7F1ED414BB99487B7D5641758Fs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibADE07E7F1ED414BB99487B7D5641758Fs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib5CCC5B55A2F23140D503ED2BF7A7FE7Ds1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib5CCC5B55A2F23140D503ED2BF7A7FE7Ds1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib5CCC5B55A2F23140D503ED2BF7A7FE7Ds1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib20D2D93A7681765414568CAA5515B7FDs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib20D2D93A7681765414568CAA5515B7FDs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib20D2D93A7681765414568CAA5515B7FDs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib5BFFE886CD566753E42C3EC1A8F33157s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib5BFFE886CD566753E42C3EC1A8F33157s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib5BFFE886CD566753E42C3EC1A8F33157s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib940E48B26CE8E288616D4563DFD0AF9As1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib940E48B26CE8E288616D4563DFD0AF9As1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib940E48B26CE8E288616D4563DFD0AF9As1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib26C78B33D851E9D86283BFC3B26C9CBFs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib26C78B33D851E9D86283BFC3B26C9CBFs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib26C78B33D851E9D86283BFC3B26C9CBFs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibFB12A280F466A01E034AEB699F022963s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibFB12A280F466A01E034AEB699F022963s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibFB12A280F466A01E034AEB699F022963s1
https://doi.org/10.1177/1094342009103947
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib1E2817626E4285E98486F49026F208AAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib1E2817626E4285E98486F49026F208AAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib1E2817626E4285E98486F49026F208AAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib1E2817626E4285E98486F49026F208AAs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib53782427AB0AF6B004E785E1EFC6B1D7s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib53782427AB0AF6B004E785E1EFC6B1D7s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib53782427AB0AF6B004E785E1EFC6B1D7s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib53782427AB0AF6B004E785E1EFC6B1D7s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib53782427AB0AF6B004E785E1EFC6B1D7s1
https://doi.org/10.1109/ACCESS.2021.3101689
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib34F5C9845F952483B38E30F70290E6C0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib34F5C9845F952483B38E30F70290E6C0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib34F5C9845F952483B38E30F70290E6C0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib4623471D04F9161FE5E202B1671CC5A1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib4623471D04F9161FE5E202B1671CC5A1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib4623471D04F9161FE5E202B1671CC5A1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib4623471D04F9161FE5E202B1671CC5A1s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib4623471D04F9161FE5E202B1671CC5A1s1
https://doi.org/10.1007/s10586-007-0012-0
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib357D69B504ACA0B764BE5F89EA8B8686s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib357D69B504ACA0B764BE5F89EA8B8686s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib357D69B504ACA0B764BE5F89EA8B8686s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib357D69B504ACA0B764BE5F89EA8B8686s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibAF48B8B0058190567A5F2CA65FBFD82Cs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibAF48B8B0058190567A5F2CA65FBFD82Cs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2E6D0C6D5C3F4DDA5225B68F978FC017s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2E6D0C6D5C3F4DDA5225B68F978FC017s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2E6D0C6D5C3F4DDA5225B68F978FC017s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib2E6D0C6D5C3F4DDA5225B68F978FC017s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib771C6E328078A364460FAB7C7F8E0DBEs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib771C6E328078A364460FAB7C7F8E0DBEs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib771C6E328078A364460FAB7C7F8E0DBEs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib771C6E328078A364460FAB7C7F8E0DBEs1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib771C6E328078A364460FAB7C7F8E0DBEs1
https://doi.org/10.1109/TPDS.2017.2715809
https://doi.org/10.1109/TPDS.2017.2715809
https://doi.org/10.1016/j.parco.2015.02.006
https://doi.org/10.1016/j.parco.2015.02.006
http://www.sciencedirect.com/science/article/pii/S0167819115000447
http://www.sciencedirect.com/science/article/pii/S0167819115000447
https://doi.org/10.1016/j.future.2016.02.021
http://www.sciencedirect.com/science/article/pii/S0167739X16300346
http://www.sciencedirect.com/science/article/pii/S0167739X16300346
https://doi.org/10.1145/3284358
https://doi.org/10.1177/1094342005051521
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib3CE93F7498FCDD83B839D5FAF0D1F592s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib3CE93F7498FCDD83B839D5FAF0D1F592s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib3CE93F7498FCDD83B839D5FAF0D1F592s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibAEC77D3243336A083C878545E64B9EE0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibAEC77D3243336A083C878545E64B9EE0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibAEC77D3243336A083C878545E64B9EE0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bibAEC77D3243336A083C878545E64B9EE0s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib1523D69936CDA97CB1B6C136BD63CC42s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib1523D69936CDA97CB1B6C136BD63CC42s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib32E2A1CAB765CE8F614847A4D38AFC54s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib32E2A1CAB765CE8F614847A4D38AFC54s1
http://refhub.elsevier.com/S0743-7315(22)00069-7/bib32E2A1CAB765CE8F614847A4D38AFC54s1

E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
Juan-Antonio Rico-Gallego received the Computer Science Engineer-
ing degree and the PhD degree on Computer Science from the University
of Extremadura in 2002 and 2016 respectively. Formerly a software con-
sultant, he is an associate professor at the Dept. of Computer Systems En-
gineering of the University of Extremadura (Spain). His research interests
are in Performance Modeling and Analysis, MPI standard implementations
and applications and optimization of application on heterogeneous high
performance computing platforms with learning-based methods.

Alexey L. Lastovetsky received a Ph.D. degree from the Moscow Avi-
ation Institute in 1986, and a Doctor of Science degree from the Rus-
sian Academy of Sciences in 1997. His main research interests include
algorithms, models, and programming tools for high performance hetero-
geneous computing. He is currently Associate Professor in the School of
Computer Science at University College Dublin (UCD). At UCD, he is also
the founding Director of the Heterogeneous Computing Laboratory.
16

	Model-based selection of optimal MPI broadcast algorithms for multi-core clusters
	1 Introduction
	2 Related work
	2.1 Analytical performance models of MPI collective algorithms
	2.2 Measurement of model parameters
	2.3 Selection of collective algorithms using machine learning algorithms

	3 Broadcast algorithms implemented in Open MPI
	4 Modeling of Open MPI broadcast algorithms on multi-core cluster
	4.1 Flat tree algorithm
	4.2 Binomial tree algorithm
	4.3 Chain tree algorithm
	4.4 Binary tree algorithm
	4.5 K-chain tree algorithm
	4.6 Split-binary tree algorithm

	5 Estimation of algorithm specific and platform dependent model parameters
	5.1 Estimation of γc(P) and Q(m)
	5.2 Estimation of algorithm specific model parameters

	6 Experimental results and analysis
	6.1 Experimental setup and methodology
	6.2 Experimental estimation of model parameters
	6.3 Accuracy of selection of optimal collective algorithms using the constructed analytical performance models

	7 Discussion
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

