
Journal of Parallel and Distributed Computing 165 (2022) 1–16

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Model-based selection of optimal MPI broadcast algorithms for 

multi-core clusters ✩

Emin Nuriyev a,∗, Juan-Antonio Rico-Gallego b, Alexey Lastovetsky a

a University College Dublin, Belfield, Dublin 4, Ireland
b University of Extremadura, Avd. Universidad s/n, 10003, Cáceres, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2021
Received in revised form 11 December 2021
Accepted 11 March 2022
Available online 23 March 2022

Keywords:
Message passing
Collective communication algorithms
Communication performance modeling
MPI
Multi-core clusters

The performance of collective communication operations determines the overall performance of MPI 
applications. Different algorithms have been developed and implemented for each MPI collective 
operation, but none proved superior in all situations. Therefore, MPI implementations have to solve the 
problem of selecting the optimal algorithm for the collective operation depending on the platform, the 
number of processes involved, the message size(s), etc. The current solution method is purely empirical.
Recently, an alternative solution method using analytical performance models of collective algorithms 
has been proposed and proved both accurate and efficient for one-process-per-CPU configurations. The 
method derives the analytical performance models of algorithms from their code implementation rather 
than from high-level mathematical definitions, and estimates the parameters of the models separately 
for each algorithm. The method is network and topology oblivious and uses the Hockney model for 
point-to-point communications. In this paper, we extend that selection method to the case of clusters of 
multi-core processors, where each core of the platform runs a process of the MPI application.
We present the proposed approach using Open MPI broadcast algorithms, and experimentally validate it 
on three different clusters of multi-core processors, Grisou, Gros and MareNostrum4.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Message Passing Interface [1] (MPI) offers portable and 
scalable performance on high performance computing (HPC) plat-
forms. Therefore, it has been dominantly used since its invention 
in HPC applications. MPI proposes an execution model based on 
processes deployed on the hardware resources of the HPC platform 
and communicating using message passing primitives. Both point-
to-point and collective routines are defined in the MPI standard 
with different semantics, including non-blocking, buffered and per-
sistent communication.

Collective routines involve a group of processes communicating 
in an isolated context, and those collectives rely on the seman-
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tics of collective operations such as broadcast, gather, reduce and so 
forth. A profiling study [34] reports that in average 80% of the total 
execution time of MPI applications is consumed by MPI collec-
tive operations. That is why significant research efforts have been 
invested in the design and implementation of efficient collective 
algorithms aimed to improve the performance of collective op-
erations [44,35,5,4]. For example, Open MPI 3.1 [14] employs six 
different algorithms to implement MPI_Bcast and five algorithms 
to implement MPI_Allreduce. On a given platform, different algo-
rithms will be optimal depending on many factors including the 
physical topology of the network, number of processes, message 
sizes and so forth. Unfortunately, there is no single collective al-
gorithm optimal in all situations. Therefore, there exists a problem 
of selection of the optimal algorithm for each call of a collective 
routine, which normally depends on the platform, the number of 
processes, the message size and so forth.

There are two ways how this selection can be made in the MPI 
program. The first one, MPI_T interface [1], is provided by the MPI 
standard and allows the MPI programmer to explicitly select the 
collective algorithm from the list of available algorithms for each 
collective call at runtime. It does not however solve the problem 
of optimal selection but delegates its solution to the programmer.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The second one is transparent to the MPI programmer and pro-
vided by MPI implementations. It uses a simple decision function
in each collective routine, which is used to select the algorithm at 
runtime. The decision function is empirically derived from exten-
sive testing on a dedicated system. For example, the most popular 
MPI implementations, MPICH and Open MPI, for each collective 
operation both use a simple decision routine selecting the algo-
rithm depending on the message size and number of processes 
[40,14,13]. Listing 1 illustrates such a decision routine, showing the 
Open MPI decision code for MPI_Bcast.

Listing 1 Open MPI decision function for MPI_Bcast.

i n t bcast_ intra_dec_f ixed ( void ∗buff , i n t count , MPI_Datatype
∗datatype , i n t root , MPI_comm ∗comm)
{
const s i z e _ t small_message_size = 2048;
const s i z e _ t intermediate_message_size = 370728;
const double a_p16 = 3.2118e−6;
const double b_p16 = 8.7936;
const double a_p64 = 2.3679e−6;
const double b_p64 = 1.1787;
const double a_p128 = 1.6134e−6;
const double b_p128 = 2.1102;

i n t communicator_size ;
s i z e _ t message_size , dsize ;

communicator_size = MPI_comm_size (comm) ;
MPI_Type_size ( datatype , &dsize ) ;
message_size = dsize ∗ ( unsigned long ) count ;

i f ( ( message_size < small_message_size ) | | ( count <= 1) ) {
return binomial_tree_bcast ( . . . ) ;
} e lse i f ( message_size < intermediate_message_size ) {
return s p l i t _ b i n a r y _ t r e e _ b c a s t ( . . . ) ;
} e lse i f ( communicator_size < ( a_p128 ∗ message_size + b_p128 ) )

{
return chain_bcast ( . . . ) ;
} e lse i f ( communicator_size < 13) {
return s p l i t _ b i n a r y _ t r e e _ b c a s t ( . . . ) ;
} e lse i f ( communicator_size < ( a_p64 ∗ message_size + b_p64 ) ) {
return chain_bcast ( . . . ) ;
} e lse i f ( communicator_size < ( a_p16 ∗ message_size + b_p16 ) ) {
return chain_bcast ( . . . ) ;
}
return chain_bcast ( . . . ) ;
}

The main advantage of this solution is its efficiency. The process 
of selection of the algorithm is very fast and does not affect the 
performance of the program. The main disadvantage of the state-
of-the-art decision functions is that they do not guarantee the 
optimal selection in all situations. This is illustrated in Fig. 1 show-
ing results of experiments with Open MPI on two clusters. On one 
of the clusters, the Open MPI broadcast routine selects non-optimal 
algorithms for messages smaller than 512 KB. On the other clus-
ter, non-optimal algorithms are selected for messages larger than 
256 KB. In both cases, this results in significant, multi-fold, perfor-
mance degradation of the MPI_Bcast operation for a wide range of 
message sizes.

As a more accurate but equally efficient alternative to the use 
of empirical decision functions, the use of analytical performance 
models of collective algorithms for the selection process has been 
considered. The first detailed study of this approach was conducted 
by Pjevsivac-Grbovic et al. in [31]. However, this work as well as 
other early works in that direction [8,40,7] were not successful. 
The analytical models derived in these works were not able to ac-
curately compare the relative performance of collective algorithms.

Recently, the model-based approach was revisited, and a novel 
method using analytical performance models for selection of opti-
2

Fig. 1. The selection accuracy of the Open MPI decision routine for the MPI_Bcast 
collective operation on two Grid5000 clusters: Grisou (1a) and Gros (1b). Each data 
point on the blue graphs gives the execution time of the best broadcast algorithm 
for a given number of processes, P , and message size, m, available for selection 
in Open MPI. Each data point on the red graphs gives the execution time of the 
MPI_Bcast operation (in this case, the broadcast algorithm is automatically selected 
at runtime using the Open MPI decision function). The number of processes, P , 
executing broadcasts, is fixed to 600. The message size varies from 16 KB to 4 MB. 
The one-process-per-core configuration is used in the experiments.

mal collective algorithms was proposed and proved both accurate 
and efficient for the one-process-per-CPU configuration of MPI ap-
plications [28]. The method proposes two innovations: (i) it de-
rives the analytical performance models of algorithms from their 
implementation rather than from high-level mathematical defini-
tions, and (ii) it estimates the parameters of the models separately 
for each algorithm. The first innovation results in much more de-
tailed and realistic models, while the second one further improves 
their accuracy by tuning the model parameters, including the pa-
rameters of point-to-point communications, to the context of each 
algorithm.

While proved to be accurate for one-process-per-CPU MPI ap-
plications, this method fails for one-process-per-core configura-
tions of MPI applications on modern multicore clusters. This is 
illustrated in Fig. 2. The reason is that this method is network-
topology oblivious and uses the Hockney model [16] for point-to-
point communication modeling, resulting in analytical models of 
collective algorithms that do not account for network congestion. 
While the effects of network congestion are not very significant 
for one-process-per-CPU MPI programs on modern platforms, they 
become much more impactful for one-process-per-core configu-
rations. Therefore, to improve the selective accuracy of analytical 
models of collective algorithms in this case, the network topology 
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Fig. 2. The selection accuracy of the method [28] in the case of one-process-per-core 
Open MPI programs on the MareNostrum4 cluster. Each point on the blue graphs 
gives the execution time of the best broadcast algorithm available for selection in 
Open MPI. Each point on the red graphs gives the execution time of the broadcast 
algorithm selected using the method [28].

and more accurate point-to-point communication models must be 
considered.

In this paper, we revisit the model-based approach [28] and 
propose several innovations significantly improving the selective 
accuracy of analytical models to the extent that allows them to 
be used for accurate selection of optimal broadcast algorithms for 
one-process-per-core MPI applications on multi-core clusters. The 
contributions of this work are as follows:

• A novel method for runtime selection of optimal collective 
algorithms for collective communication operations in MPI ap-
plications running on multi-core clusters, based on analytical 
performance models of the collective algorithms, and applica-
tion of this method to the Open MPI broadcast operation.

• Novel analytical performance models of the broadcast algo-
rithms implemented in Open MPI. The models are derived 
from their implementation code and take into account the 
structure of the target multi-core cluster by representing each 
point-to-point transmission as a sequence of transfers via 
shared memory and network channels.

• A novel method for estimation of the model parameters, 
which finds them separately for each broadcast algorithm. The 
method is based on a careful design of the communication 
experiments, resulting in a system of linear equations with 
model parameters as unknowns. According to the method, the 
3

execution time of each experiment must be dominated by the 
execution time of the corresponding broadcast algorithm.

• Experimental validation of the selection accuracy of the pro-
posed method on the MareNostrum4 and Grid5000 platforms.

The rest of the paper is organized as follows. Section 2 presents 
related work on analytical performance modeling of the collective 
algorithms, measurement of model parameters, and selection of 
optimal collective algorithms. Section 3 describes broadcast algo-
rithms implemented in Open MPI. In section 4 we derive perfor-
mance models of broadcast algorithms implemented in Open MPI. 
Section 5 describes the methodology of measurement of model pa-
rameters. Section 6 presents experimental validation on Grid5000 
and MareNostrum4 clusters. Section 7 discusses limitations of the 
work and how they can be mitigated. Section 8 concludes the pa-
per.

2. Related work

In this section, we first overview the state-of-the-art in ana-
lytical communication performance modeling and measurement of 
model parameters (a more detailed survey can be found in [39]). 
Then, we briefly discuss the use of analytical models in the selec-
tion problem.

2.1. Analytical performance models of MPI collective algorithms

All analytical models of collective algorithms use point-to-
point communication models as building blocks. The most popular 
point-to-point communication models used in collective models 
are the Hockney model [16], LogP [9], LogGP [3], PLogP [21] and 
τ -Lop [38,36].

Hockney model represents a point-to-point message transmis-
sion in a homogeneous platform as T (m) = α + β · m, where m is 
the size of the message, and α and β are the latency and inverse 
bandwidth of the network respectively. The model parameters, α
and β , are assumed to have the same value for all algorithms, 
message sizes and numbers of processes. This simple model has 
been extensively used in modeling collective algorithms. Thakur 
et al. [40] propose analytical performance models of several col-
lective algorithms for MPI_Allgather, MPI_Bcast, MPI_Alltoall, MPI_Re-
duce_scatter, MPI_Reduce, and MPI_Allreduce routines. Chan et al. 
[8] build analytical performance models of Minimum-spanning 
tree algorithms and Bucket algorithms for MPI_Bcast, MPI_Re-
duce, MPI_Scatter, MPI_Gather, MPI_Allgather, MPI_Reduce_scatter, 
MPI_Allreduce collectives and later extend this work for multi-
dimensional mesh architecture in [7]. An analytical performance 
model of a new reduction algorithm is proposed for a non-power-
of-two number of processes by Rabenseifner et al. [35].

Culler et al. [10] propose the LogP model with the parameters 
L, the upper bound on the network latency, os , the overhead of 
processor involving sending a message, or , the overhead of proces-
sor involving receiving a message, and g , the gap between consec-
utive message transmission. LogGP model extends LogP with the 
parameter G representing the gap per byte in sending a message. 
Kielmann et al. [21] propose the PLogP (Parametrized LogP) model. 
PLogP defines model parameters, except for latency L, as functions 
of message size, in order to improve accuracy.

A detailed study of the performance of collective operations 
using the above analytical performance models (Hockney, Log-
P/LogGP, and PLogP) is conducted by Pjevsivac-Grbovic et al. [31]. 
They study the feasibility of selection of optimal collective algo-
rithms for barrier, broadcast, reduce and alltoall using their analyti-
cal performance models. Additionally, the splitted-binary broadcast 
algorithm has been designed and analyzed with different perfor-
mance models in this work. The models used in the study were 
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built following the traditional approach using high-level mathe-
matical definitions of the collective algorithms. After experimental 
validation of their modeling approach, the authors conclude that 
the proposed models are not accurate enough for selection of op-
timal algorithms.

A general analytical performance model for tree-based broad-
cast algorithms with message segmentation has been proposed by 
Patarasuk et al. [29]. Unlike traditional models, this model intro-
duces a new parameter, Maximum nodal degree of the tree. The 
purpose of this model is restricted to theoretical comparison of dif-
ferent tree-based broadcast algorithms. Accurate prediction of the 
execution time of the broadcast algorithms and methods for mea-
surement of the model parameters, including the maximal nodal 
degree of the tree, are out of the scope of this work.

All the above models of collective algorithms are built using 
their high-level theoretical description. The overall conclusion is 
that, while these models can be used for analysis of theoretical 
complexity of the algorithms, they are not accurate enough for the 
task of selection of optimal collective algorithms [40], [31]. The 
authors of [40], [31] also conclude that in order to improve the 
accuracy of their analytical models, we have to assume that the 
model parameters depend on the message size and the number of 
processes.

Recently, analytical communication performance models, adapted
to current heterogeneous platforms, have been proposed. Las-
tovetsky et al. [26] propose the LM O point-to-point communi-
cation model based on Hockney model, Cameron et al. [6] ana-
lyze the performance of collective algorithms using a hardware-
parameterized model, logn P , which is based on the LogGP homo-
geneous model. The mLogn P model is a further extension of logn P
proposed by Tu et al. [41]. The τ -Lop model proposed by Rico-
Gallego et al. [37,38,36] includes the representation for concurrent 
transmissions and hence allows for a more accurate modeling of 
collective operations. These models include additional parameters 
to represent concurrency in communication channels, memory 
hierarchy and heterogeneity of communication channels. In this 
work, we use τ -Lop to model the contribution of point-to-point 
communications in the execution time of collective algorithms. The 
τ -Lop model is briefly introduced in section 4.

In our approach, we stick to the assumption of independence 
of model parameters on the message size and the number of 
processes. Instead, we improve the accuracy of the models of 
collective algorithms by deriving them from the implementation 
code. This work is based on our previous research [28], where a 
novel approach to the modeling of collective algorithms and to 
the measurement of model parameters is proposed. Unlike the 
traditional approaches, deriving analytical models of collective al-
gorithms from their high-level mathematical definitions, it derives 
the models from their implementation code, taking into account 
all important implementation details affecting the performance. In 
addition, the approach relies on an elaborate method to measure 
the model parameters using carefully designed communication ex-
periments involving all collective algorithms. Experimental results 
showed that analytical models taking into account implementation 
details of collective algorithms were able to compare the perfor-
mance of collective algorithms accurately [28]. However, that work 
was limited to one-process-per-CPU configurations of MPI applica-
tions.

2.2. Measurement of model parameters

One use of analytical communication performance models is for 
theoretical analysis of the complexity of collective algorithms. In 
such purely theoretical studies, the authors do not pay much atten-
tion to methods of measurement of model parameters. However if 
a model is intended for accurate prediction of the execution time 
4

of the communication algorithm on each particular platform, and 
if it aims to be reproducible, a well-defined experimental mea-
surement method of the model parameters will be as important 
as the theoretical formulation of the model. Different measure-
ment methods may give significantly different values of the model 
parameters and therefore either degrade or improve the model’s 
prediction accuracy.

Existing measurement methods predominantly rely on point-
to-point communication experiments, which are used to obtain a 
system of linear equations with model parameters as unknowns. 
Hockney [16] presents a measurement method to find the α and 
β parameters of the Hockney model based on a set of commu-
nication experiments consisting of point-to-point round-trips. The 
sender sends a message of size m to the receiver, which immedi-
ately returns the message to the sender upon its receipt. The time 
RT T (m) of this experiment is measured on the sender side and 
estimated as RT T (m) = 2 · (α + m · β). These round-trip communi-
cation experiments for a wide range of message size m produce a 
system of linear equations with α and β as unknowns. To find α
and β from this system, the linear least-squares regression is used.

Culler et al. [10] propose a method of measurement of param-
eters of the LogP model that relies on the Active Messages (AM) 
protocol [12]. The method consists of four individual communi-
cation experiments for the four parameters of the model based 
on sending/receiving zero-sized transmissions and round-trip time 
messages. Kielmann et al. [21] extend that method of measure-
ment of parameters for their Parametrized LogP (PlogP) model. As 
most of the parameters of PLogP are defined as functions of mes-
sage size, some communication experiments are repeated a range 
of message sizes.

Hoefler et al. [17] develop a method to measure parame-
ters of the LogGP model. The building block of the method is a 
parametrized round-trip function P RT T (N, d, m), which depends 
on parameters N , the number of messages to send, d, the delay in 
sending the messages, and m, the size of the messages. Properly 
varying these parameters, the method obtains equations with the 
LogGP model parameters as unknowns.

From this overview, we can conclude that the state-of-the-art 
methods for measurement of parameters of communication per-
formance models are all based on point-to-point communication ex-
periments, which are used to derive a system of equations involving 
model parameters as unknowns. An exception from this rule is a 
method for measurement of parameters of the LMO heterogeneous 
communication model [24,25]. LMO is a communication model of 
a heterogeneous cluster, and the total number of its parameters 
is significantly larger than the maximum number of independent 
point-to-point communication experiments that can be designed 
to derive a system of independent linear equations. To address this 
problem and obtain the sufficient number of independent linear 
equations involving model parameters, the method additionally in-
troduces simple collective communication experiments, each using 
three processors and consisting of a one-to-two communication 
operation (scatter) followed by a two-to-one communication op-
eration (gather). The experiments are implemented using the MPI-
Blib library [27]. This method however is not designed to improve 
the accuracy of predictive analytical models of communication al-
gorithms.

Based on the idea developed in the LMO model, Rico-Gallego 
et al. [38] propose a detailed method for measurement of pa-
rameters of the τ -Lop model on a multi-core cluster. For each 
communication channel, shared memory or network, experimental 
measurement of both oc(m) and Lc(m, τ ) are designed separately. 
For the transfer time (L), the method includes measurements ob-
tained from collective operations, such as broadcast, to improve 
the accuracy of the resultant linear equation system.
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In this work, we use carefully designed collective communication 
experiments in the measurement method in order to improve the 
predictive accuracy of analytical models of collective algorithms.

2.3. Selection of collective algorithms using machine learning 
algorithms

Machine learning (ML) techniques have also been tried to solve 
the problem of selection of optimal MPI algorithms.

In [30], applicability of the quadtree encoding method to this 
problem is studied. The goal of this work is to select the best per-
forming algorithm and segment size for a particular collective on a 
particular platform. The approach is based on the following steps. 
(1) Collective algorithms are executed on a particular platform to 
collect detailed performance data. (2) The decision map is built 
for the collective on a particular platform by analyzing the perfor-
mance data. It is assumed that the decision map covers all message 
and communicator sizes. (3) The quadtree is initialized using the 
decision map. (4) The decision function source code is generated 
from the initialized quadtree. For example, Linear tree, Binary tree, 
Binomial tree, Split-Binary, and Chain tree broadcast algorithms are 
profiled with a maximum of 50 processes. The experimental re-
sults show that mean performance penalty reaches 74% and 37% 
and maximum performance penalty reaches 391% and 743% on dif-
ferent platforms respectively. While the study shows some level of 
applicability of the quadtree encoding algorithm to the problem, 
collection of detailed profiling data of collectives for all message 
sizes and communicator sizes is a very expensive procedure. Be-
sides, for some message sizes and communicator sizes the penalty 
of the decision function is too high. Taking into account that deci-
sion trees are considered weak learners [11], the decision function 
will perform poorly on unseen data.

Applicability of the C4.5 algorithm to the MPI collective se-
lection problem is explored in [32]. The C4.5 algorithm [33] is a 
decision tree classifier, which is employed to generate a decision 
function, based on a detailed profiling data of MPI collectives. The 
same steps are followed to build the decision tree using the C4.5 
algorithm as in the quadtree encoding method presented above. 
The same weaknesses are shared by the decision trees built by 
the quadtree encoding algorithm and by the C4.5 algorithm. While 
the accuracy of the decision function built by the C4.5 classifica-
tion algorithm is higher than that of the decision function built 
by quadtree encoding algorithm, still, the performance penalty is 
higher than 50%.

Most recently Hunold et al. [19] studied the applicability of six 
different ML algorithms for selection of optimal MPI collective al-
gorithms. The basic idea of their approach is to create a regression 
model for every collective algorithm that is available for a given 
collective operation, predicting the execution time of the collec-
tive algorithm. The constructed regression models are then used 
at run time to select the algorithm that minimizes the execution 
time for unseen configurations. The ML algorithms employed to 
build the regression models are Random Forests, Neural Networks, 
Linear Regressions, XGBoost, K-nearest Neighbor, and generalized 
additive models (GAM). The configuration is characterized by the 
message size, the number of nodes, and the number of processes 
per node. The approach is evaluated using MPI_Bcast, MPI_Allre-
duce and MPI_Alltoall collectives. In the experimental evaluation, 
the number of nodes varies between 4 and 36, and the number 
of processes per node varies between 1 and 32. The experimental 
results show two things. First, it is very expansive and difficult to 
build a regression model even for a relatively small cluster. There 
is no clear guidance on how to do it to achieve better results. Sec-
ond, even the best regression models do not accurately predict the 
fastest collective algorithm in most of the reported cases. More-
over, in many cases the selected algorithm performs worse than 
5

the default algorithm, that is, the one selected by a simple native 
decision function.

To the best of the authors’ knowledge, the works outlined in 
this subsection are the only research done in MPI collective al-
gorithm selection using ML algorithms. The results show that the 
selection of the optimal algorithm without any information about 
the semantics of the algorithm yields inaccurate results. While the 
ML-based methods treat a collective algorithm as a black box, we 
derive its performance model from the implementation code and 
estimate the model parameters using statistical techniques. The 
limitations of the application of the statistical techniques (AI/ML) 
to collective performance modeling and selection problem can be 
found in a detailed survey [43].

3. Broadcast algorithms implemented in Open MPI

Open MPI architecture is based on software components, 
plugged into the library kernel. A component provides function-
ality with specific implementation features. For instance, a collec-
tive component known as Tuned implements different algorithms 
for each collective operation defined in MPI as a sequence of 
point-to-point transmissions between the involved processes. A 
communicator provides an isolated communication context for the 
group of processes executing the collective operation. Processes in 
a communicator are identified by an assigned rank integer number, 
starting at 0.

In the broadcast operation (MPI_Bcast) a process called root
sends a message with the same data to all processes in the com-
municator. Messages can be segmented in transmissions. Segmen-
tation of messages is a common technique used for increasing the 
communication parallelism by avoiding the rendezvous protocol, 
and hence, improving the performance. It consists of dividing up 
the message into smaller fragments called segments and sending 
them in sequence.

Every algorithm implementing the broadcast in the Tuned com-
ponent defines a communication graph with a specific topology 
between the P ranks in the communicator. Ranks are the nodes 
in the graph, and they are mapped to the processes of the paral-
lel machine. The features and topology of the broadcast algorithms 
implemented in Open MPI Tuned component are listed below:

• Flat tree algorithm. The algorithm employs a single level tree 
topology shown in Fig. 3a where the root node has P − 1
children. The message is transmitted to child nodes without 
segmentation.

• Chain tree algorithm. Each internal node in the topology has 
one child (see Fig. 3b). The message is split into segments 
and transmission of segments continues in a pipeline until the 
last node gets the broadcast message. ith process receives the 
message from the (i − 1)th process, and sends it to (i + 1)th 
process.

• Binary tree algorithm. Unlike the chain tree, each internal pro-
cess has two children, and hence data is transmitted from each 
node to both children (Fig. 3c). Segmentation technique is em-
ployed in this algorithm. For simplicity we assume that the 
binary tree is complete, then P = 2H −1 where H is the height 
of the tree, H = log2(P + 1).

• Split binary tree algorithm. The split binary tree algorithm 
employs the same virtual topology as the binary tree (Fig. 3c). 
As the name implies, the difference from the binary tree al-
gorithm is that the message is split into two halves before 
transmission. After splitting the message, the right and left 
halves of the message are pushed down into the right and left 
sub-trees respectively. In an additional last phase, the left and 
right nodes exchange in pairs their halves of the message to 
complete the broadcast operation.
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• K-Chain tree algorithm. The K-Chain virtual topology is em-
ployed in the algorithm (Fig. 3d). The root broadcasts the mes-
sage using segmentation to the child processes, and then the 
child processes broadcast the message to their children in par-
allel. As the name implies, the virtual topology consists of K
chain tree virtual topology each of which is connected to root. 
The height of K-chain tree is estimated as H = � P−1

K �. Last pro-
cess must wait for Hk−chain steps until it gets the broadcast 
message. Rank of processes is mapped into K-Chain tree vir-

tual topology using following formula, 
K−1∑
k=0

H−1∑
i=0

(H · k + i + 1)

• Binomial tree algorithm. The binomial tree topology is de-
termined according to the binomial tree definition [20]. The 
algorithm employs balanced binomial tree (Fig. 3e). Unlike 
the binary tree, the maximum nodal degree of the binomial 
tree decreases from the root down to the leaves as follows: 
�log2 P�, �log2 P� − 1, �log2 P� − 2, .... The height of the bino-
mial tree is the order of the tree, H = �log2 P�.

In the following section, we build performance models for the 
broadcast algorithms described above.

4. Modeling of Open MPI broadcast algorithms on multi-core 
cluster

We build new analytical performance models of broadcast algo-
rithms described in Section 3 for multi-core clusters. For point-to-
point communication modeling, we use the τ -Lop model.

τ -Lop takes into account the distinctive features of the com-
munication channels to represent a point-to-point transmission as 
a sequence of transfers via shared memory or network. In this 
approach, we use the τ -Lop model, that it estimates the time 
of sending a point-to-point message in s transfers as T c

p2p(m) =
oc(m) +∑s

i=1 Lci (m), where c represents the communication chan-
nel, and the o and L parameters represent the overhead of the 
communication protocol and the transfer time respectively. Hence, 
τ -Lop considers a different representation for a message transmit-
ted through shared memory (c = 0) and network channel (c = 1). 
For instance, through shared memory, MPI libraries default trans-
mission is through a shared intermediate buffer between sender 
and receiver processes, hence two identical transfers (s = 2) are 
needed to transmit the message, and previous expression reduces 
to T 0

p2p(m) = o0(m) + 2L0(m). While, through a network, repre-
sentation depends on the network capabilities. For instance, in 
an Ethernet network we consider two shared memory transfers, 
from sender memory to NIC and from receiver NIC to destina-
tion memory, and a network transfer between NICs, as T 1

p2p(m) =
o1(m) + 2L0(m) + L1(m).

Most of the Open MPI broadcast algorithms are implemented 
using message segmentation, except for the flat tree broadcast 
algorithm. For segmented broadcast algorithms, we assume that 
m = ns · ms , where ns and ms are the number of segments and the 
segment size respectively. In this paper, we assume the same fixed 
segment size in all segmented algorithms.

4.1. Flat tree algorithm

In Open MPI, the linear broadcast algorithm is implemented 
using non-blocking send and blocking receive operations. The al-
gorithm transmits the whole message from the root to the leaves 
without message segmentation. Because of non-segmented mes-
sage transmission and assuming the rendezvous protocol, each next 
send only starts after the previous one has been completed. There-
fore, the execution time of the linear tree broadcast algorithm will 
be equal to the sum of execution times of P − 1 send operations:
6

Fig. 3. Virtual topologies used by broadcast algorithms in Open MPI.

T B F T (P ,m) =
P−1∑
i=1

T ci
p2p(m), (1)

where T ci
p2p is the point-to-point communication time through a 

channel ci , connecting the root and the i-th process, estimated us-
ing the τ -Lop model. In the rest of the paper, we use BFT to refer 
to the blocking flat tree broadcast algorithm.
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on-
Algorithm 1 Tree-based segmented broadcast algorithm.

if (rank == root) then
// Send segments to all children
for i ∈ 0..ns − 1 do

for child ∈ list of children do
MPI_Isend(segment[i], child, ... )

end for
MPI_Waitall(. . .)

end for
else if (intermediate nodes) then

for i ∈ 0..ns − 1 do
// Post receive and wait
MPI_Irecv(segment[i])
MPI_Wait(. . .)
// Send data to children
for child ∈ list of children do

MPI_Isend(segment[i], child, ... )
end for
MPI_Waitall(children)

end for
else if (leaf nodes) then

// Receive all segments from parent in a loop
for i ∈ 0..ns − 1 do

MPI_Irecv(segment[i], ... )
MPI_Wait(. . .)

end for
end if

Fig. 4. Cluster of two quad-core processors. Processes running on the same processor 
use the shared-memory for point-to-point communications (green links). Processes 
running on different processors use the network for point-to-point communications 
(the red link).

Every time the Open MPI MPI_Bcast operation is invoked with 
a specific root, an internal tree with the specific virtual topology 
for the chosen algorithm is built, and then, the algorithm is exe-
cuted. This internal tree is used as a building block in tree-based 
segmented broadcast algorithms implementing MPI_Bcast, namely, 
in the binomial tree, binary tree, split binary tree, k-chain tree, and 
chain tree broadcast algorithms (see Algorithm 1 for more details). 
That tree algorithm is composed of flat trees using non-blocking
send and receive operations, which we refer to as Non-Blocking 
Flat Trees (NBFTs).

As illustrated in Fig. 5, NBFT can use either one of the two 
available channels for all point-to-point communications or both 
of them. The number of network point-to-point communications, 
C , in an NBFT can be calculated as follows,

C =
P−1∑
i=1

ci (2)

Obviously, 0 ≤ C ≤ P − 1. Therefore, the number of point-to-
point communications through shared memory in the NBFT will 
be equal to P − C − 1. The time of message transmission through 
a network channel is longer than through shared memory. In our 
model, we assume that

T 1
p2p(m) = Q (m) · T 0

p2p(m), (3)

where Q (m) is a platform-dependent parameter representing the 
ratio of delays of the communication channels (Q (m) > 1). We de-
note T c

N B F T (P , m) the execution time of an NBFT, which uses only 
one channel, c, for all message transmissions. The execution time 
7

of an arbitrary NBFT, T N B F T (P , C, m), which can use both available 
channels, is modeled as follows,

T N B F T (P , C,m) ={
T 0

N B F T (P ,m), if C = 0

T 1
N B F T (C + � P−C−1

Q (m)
� + 1,m),otherwise.

(4)

Thus, in our model the execution time of any NBFT A using two 
channels (shared memory (c = 0) and network (c = 1)) will be cal-
culated as the execution time of the NBFT B, which only uses the 
network channel and is obtained from A by formal replacement of 
each group of Q (m) shared-memory transmissions by one network 
transmission.

It is evident from Algorithm 1 that NBFTs are only used in Open 
MPI to transmit segments of the same fixed size, ms , which is 
therefore not a variable in our model.

The execution time of the NBFT broadcasting a message of size 
ms through channel c, T c

N B F T (P , ms), can be bounded as follows,

T c
p2p(ms) ≤ T c

N B F T (P ,ms) ≤ T c
B F T (P ,ms). (5)

The lower bound represents the case of purely parallel point-to-
point communications, while the upper bound - the case of purely 
serial point-to-point communications.

From formula (1), we can derive

T c
B F T (P ,ms) =

P−1∑
i=1

T c
p2p(ms) = (P − 1) · T c

p2p(ms). (6)

Hence,

T c
p2p(ms) ≤ T c

N B F T (P ,ms) ≤ (P − 1) · T c
p2p(ms). (7)

Therefore, we approximate T c
N B F T (P , ms) as follows,

T c
N B F T (P ,ms) = γ c(P ) · T c

p2p(ms), (8)

where γ c(P ) is a parallelization factor, representing the increase in 
the cost of P − 1 overlapping non-blocking transmissions, origi-
nating from the same root, of a segment of size ms through the 
channel c in the NBFT, with respect to a single point-to-point 
transmission (1 ≤ γ c(P ) ≤ P − 1).

4.2. Binomial tree algorithm

In Open MPI, the binomial tree broadcast algorithm is segmentati
based and implemented as a combination of flat tree broadcast 
algorithms using non-blocking send and receive operations, NBFTs. 
Fig. 5 shows the broadcast binomial tree with eight processes 
(P = 8) mapped to the cores of the cluster of two quad-core pro-
cessors shown in Fig. 4. It also details the stages of execution of the 
binomial tree algorithm when the number of segments, ns = m

ms
, 

is equal to 3. Each stage consists of parallel execution of several 
NBFTs. Therefore, the execution time of each stage will be equal 
to the maximum execution time of its NBFTs. We assume that the 
stages of the algorithm are executed serially. Therefore, the total 
execution time of the algorithm will be equal to the sum of the 
execution times of its stages.

Open MPI employs the balanced binomial tree for the binomial 
tree broadcast algorithm. The height of the balanced binomial tree 
is equal to �log2 P�. Therefore, the algorithm will be completed in 
�log2 P� + m

ms
− 1 stages. Thus, the time to complete the binomial 

tree broadcast algorithm can be estimated as follows,

Tbinomial(P ,m,ms) =
�log2 P�+ m

ms
−1∑

max
ji

T N B F T
(

Piji , Ciji ,ms
)
,

(9)
i=1
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-

Fig. 5. The topology and execution stages of the binomial broadcast algorithm em-
ploying the non-blocking flat tree (NBFT) broadcasts on a cluster of two quad-core 
processors (P = 8) shown in Fig. 4. The message is split up into ns = 3 segments. 
Each arrow in an NBFT represents transmission of a segment through a shared 
memory (green) or network (red) channel. The number over the arrow gives the 
index of the broadcast segment and ranges from 1 to 3. The execution time of each 
stage is equal to the execution time of its longest NBFT, which is encircled in a 
gray-colored oval.

Fig. 6. The topology and execution stages of the chain broadcast algorithm em-
ploying NBFT broadcasts on the cluster of two quad-core processors (P = 8) from 
Fig. 4. The message is split up into ns = 3 segments. Each arrow in an NBFT repre-
sents transmission of a segment through a shared memory (green) or network (red) 
channel. The number over the arrow is the index of the broadcast segment. The ex-
ecution time of each stage is equal to the execution time of its longest NBFT, which 
is encircled in a gray-colored oval.

where Piji (1 ≤ Piji ≤ �log2 P�) is the number of nodes in the ji -
th N B F T running at i-th stage. The number of parallel NBFTs is 
varying from stage to stage but upper bounded by 2 + (�log2 P� −
1) · (�log2 P� − 2).

4.3. Chain tree algorithm

In Open MPI, the chain tree algorithm is segmentation-based 
and implemented using non-blocking point-to-point communica-
8

tion. While the height of the chain tree equals P −1, the algorithm 
will be completed in P + m

ms
−2 stages, each consisting of a varying 

number of concurrent NBFTs. All the NBFTs will have exactly two 
nodes and therefore be equivalent to non-blocking point-to-point 
communications. Fig. 6 illustrates the stages of execution of the 
chain tree algorithm on the cluster of two quad-core processors 
(Fig. 4) when the broadcast message is split into three segments 
(ns = m

ms
= 3). Each stage consists of parallel execution of several 

NBFTs. Therefore, the execution time of each stage will be equal 
to the maximum execution time of its NBFTs. As we assume se-
quential execution of the stages, the total execution time of the 
algorithm will be equal to the sum of the execution times of its 
stages. Thus, the execution time of the chain tree algorithm can be 
estimated as

Tchain(P ,m,ms) =
P+ m

ms
−2∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)
, (10)

where the number of nodes in the ji -th N B F T running at i-th 
stage, Piji , is always equal to 2. The number of parallel NBFTs is 
varying from stage to stage, starting from 1 for stage 1, incremen-
tally growing to P − 1 for middle stages, and then incrementally 
decreasing to 1 for the last, (P + m

ms
− 2)-th, stage.

4.4. Binary tree algorithm

In Open MPI, the binary tree broadcast algorithm is segmentation
based and uses the balanced binary tree topology (see Fig. 3c). The 
root broadcasts each segment to its children using the NBFT. Upon 
receipt of the next segment, each internal node acts similarly. As 
the height of the balanced binary tree is equal to �log2 P�, the 
algorithm will be completed in �log2 P� + m

ms
− 1 stages, each con-

sisting of a varying number of concurrent NBFTs. Fig. 7 illustrates 
the stages of execution of the binary tree algorithm on the cluster 
of two quad-core processors (Fig. 4) when the broadcast message 
is split into three segments (ns = m

ms
= 3). Each stage consists of 

parallel execution of several NBFTs. Therefore, the execution time 
of each stage will be equal to the execution time of its longest 
NBFT. As we assume sequential execution of the stages, the ex-
ecution time of the algorithm will be equal to the sum of the 
execution times of the stages. Therefore,

Tbinary(P ,m,ms) =
�log2 P�+ m

ms
−1∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)
, (11)

where the number of nodes in the ji -th N B F T running at the i-th 
stage, Piji , is either 3 or 2. The number of parallel NBFTs is varying 
from stage to stage, starting from 1 for stage 1 and reaching a 
maximum of 2�log2 P� for middle stages.

4.5. K-chain tree algorithm

In Open MPI, the K -chain tree algorithm is implemented using 
non-blocking communication and message segmentation. In the K -
chain tree, the root node has K (K > 1) children, while the internal 
nodes have a single child each (Fig. 3d). As the height of the tree is 
� P−1

K �, the algorithm takes � P−1
K � + m

ms
− 1 stages to complete. As 

we assume sequential execution of the stages, the execution time 
of the algorithm will be equal to the sum of the execution times 
of the stages. Therefore,



E. Nuriyev, J.-A. Rico-Gallego and A. Lastovetsky Journal of Parallel and Distributed Computing 165 (2022) 1–16
Fig. 7. The topology and execution stages of the binary broadcast algorithm employ-
ing the non-blocking flat trees (NBFTs) broadcasts on the cluster of two quad-core 
processors (P = 8) from Fig. 4. The message is split up into ns = 3 segments. Each 
arrow in an NBFT represents transmission of a segment through the shared mem-
ory (green) or network (red) channel. The number over the arrow gives the index of 
the broadcast segment. The execution time of each stage is equal to the execution 
time of its longest NBFT, which is encircled in a gray-colored oval.

Tkchain(P ,m,ms) =
� P−1

K �+ m
ms

−1∑
i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)
, (12)

where the number of nodes in the ji -th N B F T running at the i-th 
stage, Piji , is either K + 1 or 2. The number of parallel NBFTs is 
varying from stage to stage, starting from 1 for stage 1 and reach-
ing a maximum of P − K − 1 for middle stages.

4.6. Split-binary tree algorithm

In Open MPI, the split-binary tree algorithm is segmentation-
based and implemented using blocking send and non-blocking re-
ceive routines. This is the difference from other segmented tree-
based broadcast algorithms which all use non-blocking standard-
mode send. However, because in Open MPI the segment size ms

is selected so that the blocking sends in the split binary tree will 
be executed in the buffered mode, we approximate the execution 
time of all flat tree broadcast algorithms in the split binary tree 
algorithm by the execution time of an NBFT.

The split binary tree algorithm consists of two phases – for-
warding and exchange. In the first phase, the message of size m is 
split into two equal parts in the root, which are then sent to the 
left and right subtrees respectively using message segmentation.

After completion of the first phase, each node in the left subtree 
contains the first half of the message and each node in the right 
subtree – the second half of the message. Because of segmentation, 
each node will receive m

2·ms
segments during the first phase.

As the balanced binary tree virtual topology is employed in the 
split-binary tree algorithm, each node in the left subtree will have 
a matching pair in the right subtree and vice versa. In the second 
phase, each pair of matching nodes in the left and right subtrees 
exchange their halves of the message. The execution time of the 
split-binary tree broadcast will be equal to the sum of the exe-
cution times of the first and second phases. As the height of the 
balanced binary tree is equal to �log2 P�, the first phase will be 
completed in �log2 P� + m

2ms
− 1 stages. While in the second phase 

each pair of matching nodes sends/receives message at the same 
time, the execution time of the second phase will be equal to 
max

ck
T ck

p2p

(m
2

)
where 1 ≤ k ≤ � P−1

2 � and ck ∈ {0, 1}. Thus, as we 

assume sequential execution of stages at the forwarding phase, the 
9

time to complete the split-binary tree algorithm can be estimated 
as follows:

Tsplit_binary(P ,m,ms) =
�log2 P�+ m

2ms
−1∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
)+

max
ck

{
T ck

p2p

(m

2

)}
, (13)

where the number of nodes in the ji -th N B F T running at the i-th 
stage of the forwarding phase, Piji , is either 3 or 2. The number 
of parallel NBFTs at the forwarding phase is varying from stage 
to stage, starting from 1 for stage 1 and reaching a maximum of 
2�log2 P� for middle stages.

5. Estimation of algorithm specific and platform dependent
model parameters

As presented in Section 4, the analytical models of the Open 
MPI broadcast algorithms use the τ -Lop point-to-point model pa-
rameters, the ratio of delays of the communication channels Q (m), 
and the parallelization factor γ c(P ) as the model parameters. The 
traditional state-of-the-art approach to estimation of model pa-
rameters would be to find these parameters from a number of 
point-to-point communication experiments. Namely, the time of a 
round-trip of a message of size m, RT T (m), is measured for a wide 
range of m. From these experiments, a system of linear equations 
with unknown model parameters is derived. Then, linear regres-
sion is applied to find model parameters.

This approach yields a unique single set of parameters for each 
target platform. Unfortunately, with model parameters found this 
way, not all our analytical formulas will be accurate enough to 
be used for accurate selection of the best performing broadcast 
algorithm. Using non-linear regression does not improve the sit-
uation as the function RT T (m) is typically near linear. Therefore, 
we propose to estimate the model parameters separately for each 
broadcast algorithm. More specifically, we propose to design a spe-
cific communication experiment for each broadcast algorithm, so 
that the algorithm itself would be involved in the execution of 
the experiment. Moreover, the execution time of this experiment 
must be dominated by the execution time of this broadcast algo-
rithm. Then, we conduct a number of experiments on the target 
platform for a range of numbers of processors and message sizes. 
From those experiments, we can derive a sufficiently large num-
ber of equations with unknown model parameters, and then use 
an appropriate solver to find their values.

Our approach to this problem is the following. We consider 
γ c(P ) and Q (m) platform-specific but algorithm-independent pa-
rameters and design a separate communication experiment for 
their estimation. The values of γ c(P ) and Q (m) found from this 
experiment are then used as known constants in the algorithm-
specific systems of equations for the τ -Lop model parameters. 
We present this approach in Sections 5.1 and 5.2. The motiva-
tion behind assuming γ c(P ) and Q (m) algorithm-independent is 
that otherwise they would appear in the derived equations as un-
knowns and make the equations non-linear.

5.1. Estimation of γ c(P ) and Q (m)

The model parameter γ c(P ) represents the increase in the cost 
of the overlapping P − 1 non-blocking transmissions through the 
NBFT with respect to a single point-to-point message transmis-
sion. The NBFT is only used for broadcasting of a segment in the 
tree-based segmented broadcast algorithms. Thus, in the context of 
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Fig. 8. A system of M linear equations with o0, o1, L0 and L1 as unknowns, de-
rived from M communication experiments, each consisting of the execution of 
the binomial tree broadcast algorithm, broadcasting a message of size mi (i =
1, ..., M) from the root to the remaining P − 1 processes, followed by the flat-
without-synchronization gather algorithm, gathering messages of size ms (segment 
size) on the root. The execution times, Ti , of these experiments are measured on 
the root.

Open MPI, the NBFT will always broadcast a message of size ms to 
a relatively small number of processes.

According to Formula (8),

γ c(P ) = T c
N B F T (P ,ms)

T c
p2p(ms)

= T c
N B F T (P ,ms)

T c
N B F T (2,ms)

, (14)

where P ∈ {2, ..., Pmax(c)
N B F T }. Pmax(1)

N B F T is the maximum number of the 
processes communicating through the network channel in NBFTs. 
Pmax(0)

N B F T is the maximum number of the processes communicating 
through the shared memory channel where the NBFT only uses 
the shared memory channel. Therefore, in order to estimate γ c(P ), 
we need a method for estimation of T c

N B F T (P , ms). We use the 
following method:

• For each 2 ≤ P ≤ Pmax(c)
N B F T , we measure on the root the execu-

tion time θ c(P , N) of N successive calls of the NBFT separated 
by barriers. The routine broadcasts a message of size ms .

• We estimate T c
N B F T (P , ms) as

T c
N B F T (P ,ms) = θ c(P , N)

N
.

The experimentally obtained discrete function 
T c

N B F T (P ,ms)

T c
N B F T (2,ms)

is 

used as a platform-specific but algorithm-independent estimation 
of γ c(P ).

Parameter Q (m) only appears in the analytical models of the 
Open MPI broadcast algorithms in the context of NBFTs broadcast-
ing a segment of fixed size ms (see Section 4). Therefore, we only 
need to estimate Q (ms). By definition T c

N B F T (2, ms) = T c
p2p(ms), 

and using formula (3) we estimate Q (ms) as

Q (ms) = T 1
N B F T (2,ms)

T 0
N B F T (2,ms)

(15)

5.2. Estimation of algorithm specific model parameters

To estimate the model parameters for a given broadcast algo-
rithm, we design a communication experiment, which starts and 
finishes on the root (in order to accurately measure its execution 
time using the root clock), and involves the execution of the mod-
eled broadcast algorithm so that the total time of the experiment 
would be dominated by the time of its execution. In this section, 
we present the estimation of τ -Lop model parameters.

For all broadcast algorithms, the communication experiment 
consists of a broadcast of a message of size m (where m is a 
multiple of segment size ms), using the modeled broadcast al-
gorithm, followed by the flat-without-synchronization gather algo-
rithm. This algorithm works by gathering messages of size ms

on the root. The execution time of this experiment on P nodes, 
Tcomm_experiment(P , m), can be estimated as follows,
10
Tcomm_experiment(P ,m) =
Tbcast(P ,m) + T f lat_gather(P ,ms). (16)

The execution time of the flat-without-synchronization gather 
algorithm, gathering a segment of size ms on the root from P − 1
processes, is estimated as follows [28],

T f lat_gather(P ,m) =
P−1∑
i=1

T ci
p2p (ms) =

P−1∑
i=1

{
T 0

p2p(ms), if ci = 0

T 1
p2p(ms), if ci = 1

=

P−1∑
i=1

{
o0 + 2L0, if ci = 0

o1 + 2L0 + L1, if ci = 1
(17)

where o0, o1, L0 and L1 denote o0(ms), o1(ms), L0(ms) and L1(ms)

respectively. Thus, as {ci}P−1
i=1 are all knowns for the experimental 

setup, T f lat_gather(P , m) is estimated as a linear function of un-
known τ -Lop model parameters o0, o1, L0 and L1.

To explain in detail the contribution of the broadcast algorithm 
in the estimated time of the experiment, we assume the binomial 
tree broadcast algorithm. Therefore, according to formulas (3), (4)
and (9), the execution time of the broadcast algorithm will be ex-
pressed as follows,

Tbcast(P ,m) = Tbinomial(P ,m) =
N∑

i=1

max
ji

T N B F T
(

Piji , Ciji ,ms
) =

N∑
i=1

max
ji

{
γ 0(Piji ) · T 0

p2p(ms), if Ciji = 0

γ 1(P ◦
i j) · T 1

p2p(ms),otherwise
=

N∑
i=1

max
ji

{
γ 0(Piji

)

Q (ms)
· T 1

p2p(ms), if Ciji = 0

γ 1(P ◦
i ji

) · T 1
p2p(ms),otherwise

=

T 1
p2p(ms) ·

N∑
i=1

max
ji

{
γ 0(Piji

)

Q (ms)
, if Ciji = 0

γ 1(P ◦
i ji

),otherwise
=

(
o1 + 2L0 + L1

)
·

N∑
i=1

max
ji

{
γ 0(Piji

)

Q (ms)
, if Ciji = 0

γ 1(P ◦
i ji

),otherwise
(18)

where N is the number of execution stages of the algorithm, 
N = �log2 P� + m

ms
− 1; Piji and Ciji are the number of nodes and 

the number of network point-to-point communications in the ji -th 

NBFT at i-th stage respectively; P ◦
i ji

= Ciji + � Piji − Ciji − 1

Q (ms)
�.

In this experiment, {Piji } and {Ciji } are all knowns. As pre-
sented in Section 5.1, γ c(P ) and Q (ms) are algorithm-independent 
parameters, which are estimated separately, before the estima-
tion of algorithm-specific τ -Lop parameters. Therefore, P ◦

i ji
= Ciji +

� Piji − Ciji − 1

Q (ms)
�, 

γ 0(Piji
)

Q (ms)
and γ 1(P ◦

i ji
) are also all knowns for all i

and ji . Thus, like T f lat_gather(P , m), Tbcast(P , m) is also estimated 
as a linear function of unknown τ -Lop model parameters o0, o1, 
L0 and L1. Therefore, for each pair of (P , m), formula (16) will 
yield one linear equation with unknown τ -Lop model parameters 
of the form

Tcomm_experiment(P ,m) =
λ1 · o0 + λ2 · o1 + λ3 · L0 + λ4 · L1

(19)

where λ1, λ2, λ3 and λ4 are constants. By repeating this experi-
ment with different m, we obtain a system of linear equations for 
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Table 1
Estimated values of Pmax(1)

N B F T , Pmax(0)
N B F T and γ 1(P ) on Grisou, Gros and MareNostrum4 clusters.

(a)

Cluster Pmax(1)
N B F T Pmax(0)

N B F T

Gros 7 3
Grisou 7 3
MareNostrum4 5 3

(b)

Number of processes (P) γ 1(P )

Grisou Gros MareNostrum4
3 1.114 1.084 1.145
4 1.219 1.170 1.290
5 1.283 1.254 1.435
6 1.451 1.339
7 1.540 1.424

Table 2
Estimated values of o1, L0 and L1 on the Grisou, MareNostrum4 and Gros clusters for Open MPI broadcast algorithms. o0 is equal to 0 in all clusters.

Broadcast algorithm o1, L0, L1(sec)

Grisou MareNostrum4 Gros

Linear tree 2.1 × 10−4, 2.1 × 10−4, 2.1 × 10−4 6.8 × 10−4, 6.7 × 10−4, 6.8 × 10−4 8.2 × 10−5, 8.2 × 10−5, 8.2 × 10−5

K-Chain tree 2.2 × 10−4, 4.1 × 10−5, 2.2 × 10−4 6.2 × 10−5, 1.2 × 10−5, 6.2 × 10−5 8.0 × 10−6, 1.1 × 10−5, 8.0 × 10−6

Chain tree 1.2 × 10−5, 2.0 × 10−5, 1.2 × 10−5 5.4 × 10−5, 5.8 × 10−6, 5.4 × 10−5 8.1 × 10−6, 1.3 × 10−5, 8.1 × 10−6

Split-binary tree 7.4 × 10−5, 3.5 × 10−4, 7.4 × 10−5 1.7 × 10−4, 2.1 × 10−5, 1.7 × 10−4 3.2 × 10−5, 9.3 × 10−6, 3.2 × 10−5

Binary tree 3.3 × 10−4, 3.0 × 10−4, 3.3 × 10−4 3.0 × 10−4, 7.5 × 10−5, 3.0 × 10−4 5.6 × 10−5, 9.7 × 10−6, 5.6 × 10−5

Binomial tree 9.7 × 10−5, 2.1 × 10−4, 9.7 × 10−5 7.9 × 10−5, 7.9 × 10−6, 7.9 × 10−5 1.9 × 10−5, 8.0 × 10−6, 1.9 × 10−5
o0, o1, L0 and L1 (Fig. 8). Each equation in this system is repre-
sented in the canonical form, λi1 · o0 + λi2 · o1 + λi3 · L0 + λi4 · L1 =
Ti, (i = 1, ..., M). Finally, we use the least-square regression to find 
unknown model parameters. Similarly, we build systems of lin-
ear equations for other broadcast algorithms implemented in Open 
MPI.

6. Experimental results and analysis

In this section, we present experimental validation of the pro-
posed approach to selection of optimal broadcast algorithms on 
multi-core clusters.

6.1. Experimental setup and methodology

We validate our approach on three large scale clusters. Two 
clusters, Grisou and Gros, are located in France and belong to the 
Grid5000 experimental infrastructure. The third cluster, MareNos-
trum4, is hosted by Barcelona Supercomputing Center.

Grid5000 is the large-scale testbed with seven sites in Grenoble, 
Luxembourg, Lyon, Nancy, Nantes, Rennes and Sophia. We run our 
experiments on Grisou and Gros clusters of the Nancy site using 
Open MPI 3.1. Grisou consists of 51 nodes each with 2 Intel Xeon 
E5-2630 v3 CPUs (8 cores/CPU), 128 GiB RAM, interconnected via 
10 Gbps Ethernet. Gros consists of 124 nodes each with Intel Xeon 
Gold 5220 CPU (18 cores/CPU), 96 GiB RAM, interconnected via 25 
Gbps Ethernet.

MareNostrum4 is a cluster based on Intel Xeon Platinum pro-
cessors from the Skylake generation in the Barcelona Supercom-
puting Center. It consists of 3456 nodes each with 2-socket Intel 
Xeon Platinum 8160 CPU with 24 cores per socket, 96 GiB of main 
memory 1.880 GB/core, interconnected via 10 Gbit Ethernet.

In our collective experiments, we use up to 38 nodes in Grisou, 
up to 56 nodes in Gros, and up to 10 nodes in MareNostrum4. MPI 
programs use the one-process-per-CPU-core configuration, and the 
maximal total number of processes is 600 for Grisou, 1000 for Gros 
and 480 for MareNostrum4. They utilize all CPU-cores in the nodes 
used in experiments. The default serial mapping of MPI processes 
to cores is used in all programs. The message segment size, ms , 
for segmented broadcast algorithms is set to 8 KB and is the same 
in all experiments. This very segment size is commonly used for 
segmented broadcast algorithms in Open MPI. Selection of optimal 
segment size is out of the scope of this paper.
11
We follow a detailed methodology to make sure that the ex-
perimental results are reliable: 1) We make sure that the cluster 
is fully reserved and dedicated to our experiments. 2) For each 
data point in the execution time of collective algorithms, the sam-
ple mean is used, which is calculated by executing the application 
repeatedly until the sample mean lies in the 95% confidence in-
terval and a precision of 0.025 (2.5%) has been achieved. We also 
check that the individual observations are independent and their 
population follows the normal distribution. For this purpose, MPI-
Blib tool [27] is used. As presented in Section 5.2, we design the 
communication experiments using broadcast algorithms and the 
flat-without-synchronization gather algorithm. Gathering the mes-
sage in the root enables us to measure the execution time of the 
experiment using the root clock where it is started. The estimation 
of the execution time is synchronized by the three MPI_Barrier. 
The first MPI_Barrier is used before the loop where repetitions 
start. The second is used directly before MPI_Bcast to make sure 
that processes start the message transmission at the same time. 
The last one is used directly after MPI_Bcast to make sure that all 
processes received the message, then gather starts.

All results presented in the paper are reproducible. The MPI 
code to run communication experiments and Python scripts to 
train models is freely available from the UCD GitLab server [2].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

14.31 · o1 + 1012.31 · L0 + 14.31 · L1 = 0.0103169514

17.15 · o1 + 1015.15 · L0 + 17.15 · L1 = 0.010932707

22.85 · o1 + 1020.85 · L0 + 22.85 · L1 = 0.0121768391

34.24 · o1 + 1032.24 · L0 + 34.24 · L1 = 0.015099681

57.03 · o1 + 1055.03 · L0 + 57.03 · L1 = 0.0199503694

102.59 · o1 + 1100.59 · L0 + 102.59 · L1 = 0.0293413861

193.73 · o1 + 1191.73 · L0 + 193.73 · L1 = 0.0479402791

376.00 · o1 + 1374.00 · L0 + 376.00 · L1 = 0.0479402791

740.55 · o1 + 1738.55 · L0 + 740.55 · L1 = 0.1595142696

(20)

A system of linear equations built in Gros cluster using binomial tree broadcast 
algorithm where P = 1000 and m ∈ [16K B, 4M B].
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Table 3
Comparison of the model-based and Open MPI selections with the best performing MPI_Bcast algorithm. For each selected algorithm, its performance degradation 
against the optimal one is given in braces.

P=450, Grisou

m (KB) Best Model-based (%) Open MPI (%)

16 f lat chain (24) split_binary (1568)
32 chain chain (0) split_binary (1211)
64 chain chain (0) split_binary (702)
128 chain chain (0) split_binary (1153)
256 chain chain (0) split_binary (1106)
512 chain chain (0) chain (0)
1024 chain chain (0) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=600, Grisou

m (KB) Best Model-based (%) Open MPI (%)

16 f lat chain (20) split_binary (1006)
32 chain chain (0) split_binary (744)
64 chain chain (0) split_binary (808)
128 chain chain (0) split_binary (792)
256 chain chain (0) split_binary (762)
512 chain chain (0) chain (0)
1024 chain chain (0) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=400, Gros

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary binary (1) split_binary (0)
32 split_binary binary (6) split_binary (0)
64 split_binary split_binary (0) split_binary (0)
128 split_binary split_binary (0) split_binary (0)
256 k − chain k − chain (0) split_binary (4)
512 k − chain k − chain (0) chain (67)
1024 k − chain k − chain (0) chain (76)
2048 k − chain k − chain (0) chain (62)
4096 k − chain k − chain (0) chain (42)

P=1000, Gros

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary binomial (1) split_binary (0)
32 split_binary split_binary (0) split_binary (0)
64 split_binary split_binary (0) split_binary (0)
128 split_binary split_binary (0) split_binary (0)
256 split_binary split_binary (0) split_binary (0)
512 split_binary split_binary (0) chain (97)
1024 split_binary k − chain (2) chain (570)
2048 k − chain k − chain (0) chain (73)
4096 k − chain k − chain (0) chain (66)

P=96, MareNostrum4

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary k − chain (3) split_binary (0)
32 k − chain k − chain (0) split_binary (4)
64 k − chain k − chain (0) split_binary (19)
128 k − chain k − chain (0) split_binary (40)
256 k − chain k − chain (0) split_binary (74)
512 k − chain k − chain (0) chain (9)
1024 chain k − chain (1) chain (0)
2048 chain chain (0) chain (0)
4096 chain chain (0) chain (0)

P=480, MareNostrum4

m (KB) Best Model-based (%) Open MPI (%)

16 split_binary k − chain (84) split_binary (0)
32 k − chain k − chain (0) split_binary (92)
64 k − chain k − chain (0) split_binary (385)
128 k − chain k − chain (0) split_binary (719)
256 k − chain k − chain (0) split_binary (209)
512 k − chain k − chain (0) chain (31)
1024 k − chain k − chain (0) chain (21)
2048 k − chain k − chain (0) chain (49)
4096 k − chain k − chain (0) chain (49)
6.2. Experimental estimation of model parameters

Platform-specific but algorithm-independent model parameters 
γ c(P ) and Q (ms) are estimated first (and separately for each ex-
perimental cluster) following the methodology described in Sec-
tion 5.1.

The calculated values of Pmax(1)
N B F T and Pmax(0)

N B F T for our experimen-

tal setups are given in Table 1(a). γ 0(Pmax(0)
N B F T ) is estimated 1 for all 

the clusters. Q (ms) is estimated 6 for Grisou, 12 for Gros and 9
for MareNostrum4. The estimated values of γ 1(P ) for P from 3 to 
7 are given in Table 1.

Then, algorithm-specific τ -Lop model parameters are estimated 
for each platform and each algorithm, following the method de-
scribed in Section 5.2. In the communication experiments, we use 
600 processes on Grisou, 1000 processes on Gros, and 480 pro-
cesses on MareNostrum4. The message size, m, varies in the range 
from 16 KB to 4 MB on all platforms. We use 9 different mes-
sage sizes for Open MPI broadcast algorithms, {mi}9

i=1, separated 
by a constant step in the logarithmic scale, log2 mi+1 − log2 mi = 1. 
Thus, for each broadcast algorithm, we obtain a system of 9 linear 
equations with τ -Lop model parameters as unknowns (See (20)). 
We use the Huber regressor [18] to find their values from the sys-
tem. The values of the parameters for each platform can be found 
in Table 2. We can see that the values of model parameters do 
vary depending on the broadcast algorithm. The results support 
our original hypothesis that the average execution time of a point-
to-point communication will very much depend on the context of 
the use of point-to-point communications in the algorithm. There-
fore, the estimated values capture more than just sheer network 
12
characteristics. Despite the fact that the Split-binary tree and Bi-
nary tree broadcast algorithms use the same virtual topology, the 
estimated time of a point-to-point communication is smaller in 
the context of the Split-binary one. This can be explained by a 
higher level of parallelism of the Split-binary algorithm, where a 
significant part of point-to-point communications is performed in 
parallel by a large number of independent pairs of processes from 
the left and right subtrees. o0 has been estimated 0 in all clusters 
because of the small size, 8 K, of the message segment transmitted 
through a shared memory channel.

6.3. Accuracy of selection of optimal collective algorithms using the 
constructed analytical performance models

The constructed analytical performance models of the Open 
MPI broadcast algorithms are designed for the use in the MPI_Bcast 
routines for efficient and accurate runtime selection of the optimal 
algorithm, depending on the number of processes and the message 
size. While the efficiency is evident from the low complexity of the 
analytical formulas derived in Section 4, the experimental results 
on the accuracy are presented in this section.

Fig. 9 shows the results of our experiments in three clus-
ters for MPI_Bcast. We present results of experiments with P ∈
{450, 500, 550, 600} in Grisou, with P ∈ {400, 600, 800, 1000} in 
Gros and with P ∈ {96, 144, 336, 480} in MareNostrum4. Again, 
the message size, m, varies in the range from 16 KB to 4 MB on 
all platforms, and we use 9 different sizes, {mi}9

i=1, separated by 
a constant step in the logarithmic scale, log2 mi+1 − log2 mi = 1. 
The plots show the execution time of the broadcast operation as a 
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Fig. 9. Comparison of the selection accuracy of the Open MPI decision function and the proposed model-based method for MPI_Bcast. (9a - 9c), (9d - 9f) and (9g - 9i) present 
performance of collectives on Grisou, Gros and MareNostrum4 clusters respectively.
function of the message size. Each data point on a green line shows 
the performance of the algorithm selected by the Open MPI deci-
sion function for the given number of processes and message size. 
Each point on a red line shows the performance of the algorithm 
selected by our decision function, which uses the constructed ana-
lytical models. Each point on a blue line shows the performance of 
the best broadcast algorithm for MPI_Bcast. Fig. 10 demonstrates 
the accuracy of the model-based selection compared to the best 
performance and Open MPI decision function for all message sizes 
and the number of processes on three clusters.

Table 3 presents selections made for MPI_Bcast using the pro-
posed model-based runtime procedure and the Open MPI decision 
function. For each message size m, the best performing algorithm, 
the model-based selected algorithm, and the Open MPI selected al-
gorithm are given. For the latter two, the performance degradation 
13
in percentages in comparison with the best performing algorithm 
is also given.

It is evident from the results that for all message sizes but 16 
KB, the model-based decision function selects either the optimal 
(45 cases) or near-optimal (3) algorithm. The performance of the 
near optimal algorithms is practically indistinguishable from that 
of the optimal (the difference is 1%, 2% and 6% correspondingly).

In the case of 16 KB, on the Gros cluster it selects the near 
optimal algorithms, which are practically as good as the optimal 
(the difference in performance is only 1%). On the Grisou cluster, 
the second best algorithm is selected with a moderate degrada-
tion of 20 − 24%. The second best algorithm is also selected on the 
MareNostrum4 cluster with a degradation of 3 − 84%. Thus, the 
inaccuracy of the model-based decision function for 16 KB exper-
iments is either minor or quite moderate. It can be explained by 
the fact that we use linear regression to find the values of model 
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Fig. 10. (10a), (10b) and (10c) present performance of MPI_Bcast on Grisou, Gros and MareNostrum4 clusters respectively. Blue, red and green surfaces present the best 
performance of MPI_Bcast, model-based estimation and Open MPI decision function respectively.
parameters from the experimentally constructed systems of lin-
ear equations. Linear regression methods tend to prioritize larger 
values in experimental data points over smaller ones when mini-
mizing the penalty of the fit. The Huber regressor [18], which we 
use in our work, tries to mitigate this problem by increasing the 
weight of smaller values but still follows the general trend. One 
possible solution is to break the whole range of message sizes into 
two segments, one for smaller messages and the other for larger 
ones, and find model parameters separately for each segment.

The Open MPI selection is near optimal in 46% cases and causes 
significant performance degradation in the remaining 54% cases 
(up to 1106%, 570% and 719% on Grisou, Gros and MareNostrum4 
clusters respectively).

The Open MPI decision function only uses three broadcast algo-
rithms (chain tree, split-binary tree and binomial tree) out of a total of 
six implemented and available for selection (see Listing 1). For ex-
ample, the K-Chain tree broadcast algorithm, which is never used 
by the Open MPI decision function, outperforms all the algorithms 
on Gros in 38% cases, and on MareNostrum4 in 72% cases. In con-
trast to the Open MPI decision function, the model-based function 
selects the K-Chain broadcast algorithm on Gros and MareNos-
trum4 platforms, when this algorithm is either the best or the 
second best with a very small penalty of 1 − 2%.

7. Discussion

In this section, we briefly discuss some limitations of the pre-
sented work and their impact.

First, our approach assumes that collectives are implemented 
through calls to point-to-point communication operations. We do 
not consider MPI implementations that exploit hardware collective 
support to perform certain collectives, for example, multicast, in 
O(1).

Second, we assume that the segment size, ms , is fixed and the 
same in all collective algorithms. This limitation can be eased by 
making the segment size another decision variable with values 
from a small discrete set, say, {8K , 16K , 32K , 64K , 128K }. For each 
collective algorithm, we can build a separate model for each value 
of the segment size and use the models at runtime to select the 
fastest combination of the algorithm and segment size for each 
collective operation.

Third, we assume that the values of model parameters, such as 
o0, o1, L0 and L1 do not depend on the number of processes, P , 
executing the algorithm. While this assumption did not negatively 
affect the selective accuracy of the models in our experimental se-
tups, it may not be the case for larger platforms, able to run tens 
of thousands of MPI processes. For such platforms, one possible so-
lution could be to break the total range of the number of processes 
14
into several segments and find the values of model parameters 
separately for each segment. There are other, more general pos-
sible solutions, but in order to study any possible solution, regular 
access to a large-scale platform is needed. Unfortunately, the au-
thors do not have such access.

8. Conclusion

In this paper, we proposed a model-based approach to auto-
matic selection of optimal algorithms for the MPI broadcast op-
eration on multi-core clusters, which proved to be both efficient 
and accurate. We took into account the topology of the commu-
nication channels to build performance models. Communication 
experiments are designed to estimate algorithmic and channel-
specific model parameters.

We also developed this approach into a detailed method and 
applied it to Open MPI 3.1 and its MPI_Bcast operations. We ex-
perimentally validated this method on three different clusters and 
demonstrated its accuracy and efficiency. These results suggest that 
the proposed approach, based on analytical performance modeling
of collective algorithms, provides the solution of the problem of 
accurate and efficient runtime selection of optimal algorithms for 
MPI collective operations.

The target architecture for the presented method is a cluster of 
multi-core processors. While this is the most common architecture 
where MPI is used, there are other architectures such as hetero-
geneous clusters [23], [42] or Internet of Things [22], [15], where 
MPI either is used or can be used in the future. Such platforms are 
highly heterogeneous, represent a significant challenge for accurate 
modeling of MPI collective algorithms and are out of the scope of 
this paper. We consider this topic as future work.
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