Difference between revisions of "BLAS LAPACK ScaLAPACK"
From HCL
					
										
					
					 (New page: * Original http://www.netlib.org/blas/ http://www.netlib.org/lapack/ (Fortran) * ATLAS http://math-atlas.sourceforge.net/ (C, LAPACK is implemented partially) * MKL http://software.intel.c...)  | 
				Zhongziming (talk | contribs)   | 
				||
| (4 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| − | * Original http://www.netlib.org/blas/ http://www.netlib.org/lapack/ (Fortran)  | + | A de facto standard API for linear algebra [http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms BLAS]/[http://en.wikipedia.org/wiki/LAPACK LAPACK]  | 
| − | * ATLAS http://math-atlas.sourceforge.net/   | + | * Original http://www.netlib.org/blas/ http://www.netlib.org/lapack/ - implemented in Fortran. The libraries can be used in C/C++ (so called Fortran interface to BLAS/LAPACK).  | 
| − | * MKL http://software.intel.com/en-us/intel-mkl/  | + | * ATLAS http://math-atlas.sourceforge.net/ - provides a C interface to BLAS and partially LAPACK. Binary packages: libatlas-[base or platform name, for example sse2]  | 
| + | * MKL http://software.intel.com/en-us/intel-mkl/ - Intel implementation  | ||
| + | *ACML http://developer.amd.com/libraries/acml/pages/default.aspx  | ||
| + | *CUBLAS http://developer.nvidia.com/cublas  | ||
| − | + | Using the C interface is preferable. [http://www.inf.bv.tum.de/~heisserer/softwarelab04/doc/blas_report.pdf BLAS: overview, installation, usage]  | |
| + | |||
| + | = ScaLAPACK =  | ||
| + | http://www.netlib.org/scalapack/  | ||
Latest revision as of 11:04, 12 July 2012
A de facto standard API for linear algebra BLAS/LAPACK
- Original http://www.netlib.org/blas/ http://www.netlib.org/lapack/ - implemented in Fortran. The libraries can be used in C/C++ (so called Fortran interface to BLAS/LAPACK).
 - ATLAS http://math-atlas.sourceforge.net/ - provides a C interface to BLAS and partially LAPACK. Binary packages: libatlas-[base or platform name, for example sse2]
 - MKL http://software.intel.com/en-us/intel-mkl/ - Intel implementation
 - ACML http://developer.amd.com/libraries/acml/pages/default.aspx
 - CUBLAS http://developer.nvidia.com/cublas
 
Using the C interface is preferable. BLAS: overview, installation, usage