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Abstract 
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1. Main Concepts and Terms 
 

1.1 Purpose 
This document presents the design for an MPI performance revealing extensions interface 

(PERUSE). The extensions are intended to provide greater insight into the interactions between 
application software, system software, and message-passing middleware that take place in a 
parallel environment typical for supercomputer applications.  In particular, the interface is 
designed to operate with a subset of version 2 of the Message Passing Interface (MPI-2) [1, 2].  
1.2 Background 

This specification is an outgrowth from a proposed interface designed by MPI Software 
Technology Incorporated (http://www.mpi-softtech.com) [3]. 

In addition, the current specification reflects the thinking and direction of multiple 
institutions with a long history of commitment and use of MPI including Lawrence Livermore 
National Laboratory, Los Alamos National Laboratory, Sandia National Laboratory, Pallas, and 
MPI Software Technology Incorporated. A large number of PERUSE features presented in this 
document are based on a requirements gathering phase carried out among MPI users in the three 
ASC labs. 
1.3 Scope 

This document presents the specification of PERUSE, a conceptual design, definition of 
PERUSE API with C bindings, an example PERUSE C include header file, and a set of examples 
for demonstrating the used of PERUSE.  

After consideration, we have decided to release the first specification with a focus on 
MPI’s point-to-point message passing. The hope is that we will learn from both MPI 
implementations and parallel tools, and that the more complicated aspects of MPI (including 
MPI-IO, collectives, MPI one sided, dynamic MPI, and so on) will profit from these experiences. 
We do anticipate that PERUSE will be valuable for the study of MPI-IO, Collectives, and MPI-
1Sided usage and have included an initial strawman for how PERUSE might be extended in 
Appendix E (see section 12).  

PERUSE is intended to facilitate the development of parallel program development tools 
such as profiler tools and debugger tools; it is not intended to provide asynchronous extensions 
to MPI for user level applications. 
1.4 Definitions, Abbreviations, and Acronyms 
API: Application programmer’s interface. 
ASC: Advanced Simulation and Computing Program. A United States Department of Energy 
program created for science-based Stockpile Stewardship. 
Event callback: user-defined callback function registered with the MPI library 
Event callback activation window: Period during which event callbacks will be called when the 

MPI event of interest occurs. Note that PERUSE activation windows can be overlapping; 
more than one PERUSE window may be active at any given time. 

LANL: Los Alamos National Laboratory 
LAPI: Low-level Application Programming Interface: an active-message-type API for optimal 

communication through the IBM SP switch.  Provides reliable, unordered communication 
between all processes in the MPI world. 

LLNL: Lawrence Livermore National Laboratory 
MPI: Message Passing Interface. 
MPI-2: Extensions to the MPI standard. 
MPI I/O: An MPI extension allowing for the manipulation of files on different file systems. 
MSTI: MPI Software Technology Incorporated 
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PERUSE: MPI Performance examination and revealing unexposed state extension specification – 
the specified API. 

PERUSE Event: Internal MPI processing events of interest to PERUSE. 
PERUSE Implementation: interfaces, utilities, and mechanisms provided by an MPI 

implementation in order to support PERUSE. 
PERUSE User: software that uses the PERUSE interface.  
PERUSE Specification: the draft document that defines PERUSE (this document). 
PMPI: Profiling interface for MPI specified by the MPI standard. 
Portals: Low-level API providing reliable and ordered communication for various interconnects 

and machines including Myrinet/Cplant and Red Storm. 
Sandia: Sandia National Laboratories 
SMP: Symmetric multiprocessor. 

2. General Design Considerations 

2.1 Design objectives of PERUSE 
The main objective of PERUSE is to provide MPI application and performance tool 

developers with the capability to obtain low-level performance data unavailable through the 
standard MPI profiling interface in a non-intrusive manner. The PERUSE design provides an 
interface that suggests low processing overhead by allowing the user to collect data only for the 
MPI events that are of interest during the periods of program’s execution of user’s choice. This 
fine grain level of control minimizes unnecessary processing not relevant to the profiler’s goals. 
The fundamental design concept of PERUSE is the use of user callbacks for registering MPI 
processing events of interest. These events are related to the MPI internal processing of user 
requests for point-to-point message passing. (As explained earlier in section 1.3, although this 
original version of PERUSE focuses on message-passing it is anticipated that future versions of 
PERUSE will likely include events specific to file I/O, one sided communication, collectives, 
and so on.) The event callback design leaves data collection, metrics definition, and statistics 
processing to users, thus further reducing the processing overhead in the MPI library and the 
same time simplifying the implementation of PERUSE.  

It is not an objective of PERUSE to create an abstract model of MPI implementations or 
to force MPI libraries to comply with such a model and subsequently implement PERUSE 
against this model. Such an abstract model will not be useful in meeting the main objectives of 
PERUSE and may actually be counter-productive in terms of achieving these objectives. It is 
expected that certain MPI events defined in this specification (also referred to as PERUSE events 
hereinafter) will not be applicable to some MPI implementations either because the 
implementation mechanisms chosen by the specific libraries do not match the definition of the 
events or because implementing the callback mechanism for these events might be too intrusive.  

It is recognized that attempts to measure a given attribute of a program may perturb the 
program. As measurements become more intrusive, they may actually become less valuable. 
PERUSE expects that MPI libraries will provide only information which is both accurate and 
relevant to their architecture’s performance. The definition of PERUSE events is based on 
common MPI concepts; however, it is not expected that all MPI implementations will be able to 
supply relevant performance information for all concepts included in PERUSE. If an event 
suggests that the MPI library needs to create artificial constructs in order to present relevant 
performance data, it is best to not provide the particular event. PERUSE provides a portable 
ASCII string based query mechanism to allow users to query the MPI library implementations 
about which PERUSE events are supported. This mechanism will not cause compiler/link 
problems for applications that are written to utilize this mechanism. Also, it is suggested that the 
MPI libraries provide efficient mechanisms for running with and without PERUSE. This may be 
accomplished by different builds with and without PERUSE (e.g. debug and production 
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libraries), or by a dynamic implementation which is able to switch code paths. Quality MPI 
implementations will expose many PERUSE events, even such that are intrusive, but possibly 
still providing useful performance information without affecting the peak performance of the 
production library. 

The main objective of PERUSE can be summarized in the following statement: PERUSE 
presents non-portable MPI performance related information in a portable manner. 

2.2 Design concept 
The PERUSE design presented in this document is based on the use of user defined 

callback functions that are invoked by the MPI library when an event of interest to the PERUSE 
user occurs. A special callback registration facility is provided. Using this model, the application 
or the performance-monitoring tool, requests that the MPI library invoke a user registered 
callback at the places where the library performs operations related to the specific events. The 
section of this document that describes events definition provides more details on when the 

callbacks will be invoked.  
 
 

Main()

{

       initialize MPI;

       initialize PERUSE;

       initialize PERUSE event handles;

       register PERUSE events with My_callback_routine();

       activatePERUSE event handles;

       

       while (parallel tool is active) {

            do normal parallel tool stuff;

       }

       report statistics gathered by My_callback_routine();

}

My_callback_routine()

{

     get PERUSE event;

     switch (event)

    {

          update statistics based on event information

    }

}

       

PERUSE Pseudo code

(see Section 9.1.4 for corresponding example in C)
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2.3 Levels of support and compliance 
PERUSE support can be provided at different levels by its implementations. A portable 

mechanism for querying PERUSE about its level of support is provided. This mechanism is 
based on ASCII string queries. All PERUSE implementations must provide the full set of API 
functions, data types, and constants. The optional support refers only to the set of events that are 
supported by the implementation. Since the goal of PERUSE is to provide accurate and detailed 
performance information in a non-intrusive manner, MPI libraries that are unable to provide an 
event without significant performance or design impact are encouraged not to implement this 
event. 

PERUSE encourages MPI implementations to provide implementation specific events 
that are not included in the specification but can offer beneficial information to users. PERUSE 
provides a special discovery mechanism for querying all supported events in a portable manner, 
including the implementation-specific ones. If the MPI implementation provides 
implementation-specific events, it is the responsibility of this implementation to describe their 
meaning and intended way of use.  
2.4 Portability 

PERUSE facilitates both implementation and user-level portability. PERUSE allows 
implementations to chose the specific mechanisms for declarations of data types and constants so 
that providing PERUSE extensions by MPI vendors requires minimum structural changes and 
processing in the existing MPI libraries. User-level portability is similar to the user-level 
portability of the MPI standard – it is guaranteed by a standardized set of API function calls, data 
types, and constants. Also, in the same vein as mpi.h, PERUSE suggests that a header file named 
peruse.h is used by all implementers.  

This specification does not aim to provide binary interoperability, as this has not been 
among the goals of the MPI standard. The string names of PERUSE events can be represented 
with any NULL terminated string and are implementation dependent. One possible scheme that 
will improve the user level portability is if the strings correspond to the definitions of the event 
identifier constants, e.g., the string for PERUSE_COMM_POSTED_QUEUE_INSERT is 
“PERUSE_COMM_POSTED_QUEUE_INSERT”. 

PERUSE implementations are required to support all functions and data types of the API. 
The optional support is only related to the supported events. For increased portability, it is 
suggested that the user programs be written so that they use only the string based query 
mechanism for discovering what events are supported and obtaining the numerical event 
descriptor identifiers. This will also enable a portable use of non-standard, vendor-specific 
events. 
2.5 Intended audience 

The audience of this specification are providers of PERUSE implementations and 
developers of codes that utilize the PERUSE extensions. Such developers can be either MPI 
application designers or providers of MPI performance monitoring tools. 
2.6 Example uses of PERUSE 

Appendix B presents example MPI programs that utilize the PERUSE interface. These 
examples demonstrate the use of PERUSE and assist the reader in understanding the semantics 
and intended use of PERUSE and its concepts. 
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3. Main Concepts and Terms 
This section presents definitions and assumptions of the main concepts used in the design 

of PERUSE. These definitions and assumptions are based on the semantics of MPI as specified 
in the MPI standard. Of special interest to PERUSE are the issues related to message requests, 
message transfers, activation/initiation and completion of requests and transfers, message 
ordering and matching, and the two-sided model of the send/receive message-passing mode of 
communication defined by MPI. 
3.1 Message requests and message transfers 

For the purposes of PERUSE, a message request represents the specification of the work 
that the MPI library is requested to perform by the user process, specifically, the message 
(defined by its buffer address, size, and datatype), the communication operation (send or 
receive), the peer process (source or target), and the MPI communication space (defined by user 
tag and communicator). Message requests can be created by using non-blocking MPI calls 
(MPI_Isend, MPI_Irecv, MPI_Send_init, MPI_Recv_init) or blocking calls (MPI_Send, 
MPI_Recv). In the context of MPI-2, the definition of message request is extended to include file 
I/O operations and one-sided communication. The message request is also used for notification 
when the requested work is completed. The MPI library may use various internal mechanisms 
and protocols to perform the requested work, which eventually include an invocation of one or 
more data transfer operations that move the bytes of the requested message and possibly control 
packets associated with the MPI message protocols. These data transfer operations are provided 
by the underlying communication system software, such as TCP socket send() and recv() 
operations or memory copy operations in SMP configurations. PERUSE defines a message 
transfer as the collection of data transfers (one or more) that actually perform the physical 
transfer of the entire user message, not including control packets that might be used by the MPI 
library for implementing internal protocols and flow control schemes. For example, the control 
packets associated with rendezvous protocols are not considered part of the message transfer. 
Consequently, it is expected that for the PERUSE events that indicate request activation and 
message transfer initiation, the MPI library will make two distinct calls to the user-registered 
callbacks. The period of time between these calls will be equal to the period between the moment 
when the user activates the request and when the first data transfer that actually moves the first 
byte of the user message (not necessarily the byte with lowest memory address) is scheduled. If 
the MPI library needs to exchange control packets, which are likely performed by the same data 
transfer (byte movement) operations, these packets should not cause invocation of the PERUSE 
event that corresponds to message transfer initiation. 

The message request is an MPI concept whereas the data transfer (used for message 
transfers) is a generic concept that represents mechanisms provided by the underlying 
communication system software to move bytes of data from one location to another, regardless 
of the actual means of this movement. Completing a message request involves a message 
transfer (composed of one or more data transfers), ordering, matching, completion notification, 
other library processing, and possibly special protocols that may include additional data transfers 
(not counted as part of the message transfer). 
3.2 Request activation and message transfer initiation 

Activation of a message request is the moment when the user process executes an MPI 
call that suggests a communication operation, or according to the MPI terminology, the request 
becomes “active.” Examples of MPI calls, which activate messages include MPI_Recv, 
MPI_Irecv, MPI_Send, MPI_Isend, and MPI_Start. A number of PERUSE events refer to 
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initiation (start, beginning) and completion of message transfers. The meaning of these 
operations is limited only to what the MPI library can guarantee or “see.” For example, the 
beginning of a send message transfer for a TCP socket is the moment when the library calls the 
send() system call over the socket file descriptor. Clearly, the MPI library has no knowledge if 
the operating system will actually initiate the physical transfer over the network interface at the 
time the send() call is made or if the data will be buffered and the physical transfer will begin 
later. As the low-level communication information is generally unavailable to user level 
processes (the most common mode of MPI library use), PERUSE does not require that the MPI 
libraries provide hardware-specific information and all references to certain events and timings 
are only from standpoint of the MPI library. However, an MPI library with access to low-level 
hardware or firmware-related information is not restricted from providing such information. 

In line with the definition of message request and message transfer, message request 
activation and message transfer initiation are two distinct operations, possibly executed with a 
long period of time in between. Users expect that when they activate a message request, the 
message transfer associated with this request will be initiated as soon as possible. Thus, 
providing a mechanism for measurement of the length of the interval between message request 
activation and message transfer initiation can significantly benefit MPI user program 
performance analysis. 

For protocols that use “get” based data transfer primitives, the initiation of the send 
message transfer may be transparent to the sender process, so the MPI library may be unable to 
detect when the “get” operation is initiated by the receiver. In these cases, it is recommended that 
the library does not implement special mechanisms for providing the expected sender 
functionality at the receiver, which may involve additional processing and communication 
overhead. Therefore, it is recommended that the MPI library that uses “get” based 
communication primitives for message transfers do not implement the PERUSE events that 
indicate transfer initiation at the sender. The PERUSE callback mechanism offers an opportunity 
to performance mentoring tools to make inference about remote events and thus correlate 
activities on different MPI processes. These tools may be able to provide valuable performance 
data with global semantics, which is not available directly through the PERUSE API. 
3.3 Request completion, request completion notification, and transfer completion 

For the purposes of PERUSE, a distinction is made between request completion from 
standpoint of the MPI library and from standpoint of the user process (user process notification). 
Since MPI does not provide any asynchronous means of notification, all request completion 
notifications are done only when the user process specifically requests such notifications 
thorough the MPI_Wait and MPI_Test family of calls (or within blocking MPI calls). However, 
the library can effectively complete the message transfer associated with a given request before 
the user asks for notification. If the period between internal request completion and notification 
is long, the parallel algorithm designer may decide to check the status of the request of interest 
earlier or more frequently. PERUSE is designed to provide such detailed information. 

Message request completion and message transfer completion are distinct operations, 
similar to request activation and transfer initiation as described above. Request completion refers 
to the moment when the library internally marks a message request completed. Message transfer 
completion is the moment when the library has scheduled for sending the last byte of an outgoing 
message or has received the last byte of an incoming message. The MPI library can indicate 
request completion immediately after a message transfer has completed and often the two 
completions are equivalent with respect to time. However, in other designs, the MPI library may 
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not indicate completion of the request immediately after the completion of the message transfer, 
thus there may be a delay between transfer completion and request completion. 

For MPI libraries that use remote memory operations for indicating completion of 
message transfers (such as in the case when a memory flag is updated through a remote DMA 
operation), providing an accurate timing about transfer completion may require substantial 
processing overhead, similar to the one described above for the case of “get”-based protocols. In 
such cases, it is recommended that the MPI library forego implementing PERUSE events that 
facilitate measurements related to the message transfer completion timing. 
3.4 Message/Request queues 

The MPI standard defines the semantics of message ordering and of the matching of 
receive requests to sent messages (Section 3.5 of the MPI 1.1 standard). Messages are non-
overtaking. Thus, if a process sends two messages in the same communication domain to the 
same receiver, using the same message tag, the receiver must match them in the order that they 
were sent. The MPI standard does not mandate any particular order in which the message 
transfers will be actually completed after they are matched. If the receiver posts two receive 
requests with the same envelope, not using wild cards, the second request cannot be matched 
before the first one. These ordering and matching rules for sends and receives imply that the MPI 
library needs to maintain an internal order of the message requests. For the purposes of 
PERUSE, the mechanism that is generically used to represent this order is called a “message 
queue” or alternatively a “request queue”. PERUSE does not attempt to present an abstract 
model for implementing the message queues and the protocols for message transmission, and 
does not favor receiver based matching versus sender based matching. PERUSE provides the 
same queue concepts for both sender and receiver-based matching. 

Note that the “message queue” and “request queue” need not be implemented via any 
specific programmatic mechanism or data structure; it is only necessary that they preserve the 
ability to provide MPI ordering and matching semantics. Thus, PERUSE does not impose any 
specific architecture or programmatic approaches to the MPI implementations. Furthermore, 
PERUSE does not mandate whether the specific mechanisms that implement the 
message/request queues are global for the entire library, or on a per-communicator basis. Other 
implementations are also possible. (PERUSE provides a query mechanism to inform the user 
about the scope of the message queues.) Consequently, message and request queues used in 
PERUSE to represent the MPI ordering and matching semantics should not be confused with the 
actual implementation of these concepts. 
3.5 Expected (posted) and unexpected (early arrival) queues 

The MPI send/receive mode of communication (as opposed to the one-sided mode of 
communication defined in MPI-2) is a two-sided model. According to this model, the necessary 
(but not sufficient) condition for a message to be transferred from the sender to the receiver is 
that the sender activates a send request and the receiver activates a matching receive request. 
Since the sender provides the entire information about the message (including the content of the 
message) at the moment when the send request is activated, no message transfer can be initiated 
before the sender actually activates the send request. The MPI standard refers to this model as 
“push” two-sided communication. Both the send and receive requests have local semantics and 
the MPI standard does not impose any requirements in terms of temporal ordering of matching 
send and receive requests, thus allowing a send request to be activated at the sender before or 
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after a matching receive request is activated (posted) at the receiver12. According to the relative 
time at which the receiver posts a receive request and the time at which the sender posts the send 
request PERUSE defines two types of message/request queues related to the receiver process – 
expected (posted) and unexpected. Unexpected messages are sometimes called “early arrival” 
messages and are unexpected from standpoint of the MPI library – a message envelope sent by 
the sender process arrives prior to (earlier than) the matching receive request activation by the 
receiver. These unexpected messages are in fact “expected” from standpoint of the user program 
but not yet posted. 

The definition of the receive posted and unexpected queues is relevant to MPI libraries 
that perform the matching at the receiver process. PERUSE introduces a similar definition about 
expected and unexpected queues with respect to the sender process for MPI libraries that perform 
the matching at the sender process. Hybrid matching models are also possible.  

It is important to note that the above definition allows for two alternative models of MPI 
message protocol implementations – “pull” based and “push” based – and that PERUSE does not 
impose an implementation requirement of push, pull, or both models. Both of these message 
protocol models can support the MPI two-sided communication semantics correctly. According 
to the first model, the MPI library will inform the receiver about the envelope of the send 
message only after the send request has been posted, regardless of whether the matching receive 
request has been posted before or after the send request. According to the second model, the MPI 
library will notify the sender about the envelope of the expected message at the receiver process 
only after the receiver posts its receive request, regardless of whether the send request has been 
posted before or after the receive request. In this second model, the sender cannot initiate a 
message transfer before the receiver sends the message envelope. A third, hybrid model is also 
possible, and allowed by the PERUSE definition of expected and unexpected queues. For 
simplicity of the presentation, the following explanations are introduced only for the receiver 
based matching model. These explanations can also be related to the sender based matching 
without additional semantic changes. 

The expected (posted) receive queue defined by PERUSE contains requests that are 
posted by the receiver before the matching send requests have been posted (or more precisely, 
before the send message envelope have arrived at the receiver). The time that a receive request 
spends on the posted queue is the period between the moment when the user calls an MPI 
function for activation of a receive request (MPI_Recv, MPI_Irecv, or MPI_Start on a persistent 
receive request created by MPI_Recv_init) and the moment when the library receives a message 
envelope that matches the posted request. A possible analysis based on the duration of the time 
that a request spends on the posted queue may conclude that the particular request may have 
been completed earlier if the algorithm can allow the matching send message to be sent earlier.  

The unexpected message queue contains message envelopes (possibly also including the 
actual message data) of messages that have arrived before a matching receive request has been 
posted. The duration of time a message spends on the unexpected queue or the length of this 
queue may indicate to the MPI performance analyst that this particular process falls behind the 
other processes in the MPI job and is unable to process the incoming messages in a timely 
manner. This may indicate a performance and scalability bottleneck in the parallel system. Such 
critical information for a detailed performance analysis is unavailable through PMPI. 

                                                
1 This documents uses interchangeably the terms “post” and “activate” in relation to message requests. 
2 This does not apply to MPI_Rsend(). 
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4. EVENTS 
PERUSE events are one of the fundamental concepts of PERUSE. These events are 

connected to certain activities/phases of the internal MPI processing associated with user 
message requests. Examples of such events are the insertion/removal of requests into/from the 
posted or the unexpected request queues.  

This section of the document presents the events and their descriptions defined in this 
specification. In this version of the specification, only events related to point-to-point 
communication and request queue operations are provided. These events are registered with 
communication (MPI_Comm) objects. Collective operations events associated with MPI_Comm 
objects as well as events associated with MPI_File and MPI_Win are discussed in Appendix E 
and are subject of further clarification in subsequent versions of the specification. The diagram 
below illustrates possible events associated with an MPI_Send. Actual events and the time that 
the callback is expected will differ depending upon the MPI implementation. For example, the 
events and callback timing for an RDMA based system, shared memory based system, and tcp/ip 
based system will likely have differences. 

 

 
4.1 Association of events with requests 

In order to allow PERUSE users to make efficient use of the event callbacks, a 
mechanism for correlating events related to the same message requests is needed. In response to 
this need, PERUSE requires that the MPI library pass the same request identifier to the event 
callbacks when the callbacks are associated with the same message request. The identifier must 
be unique during the period between the creation of the request and its release. This uniqueness 
is necessary for PERUSE users to be able to relate measurements taken during the event callback 
invocations to the same internal request, thus allowing for the collection of valid performance 
data. There are no other requirements on the request identifier. 

PERUSE providers may elect to pass to PERUSE event callbacks the MPI_Request 
handles as the unique identifier, if the requests were created with calls to the non-blocking MPI 

Illustrating Possible Events from an MPI_Send
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API’s. However, this is not mandatory and the PERUSE implementation is free to choose any 
mechanism for generating unique identifiers as long as it meets the uniqueness requirement. 

It is important to note that PERUSE does not provide mechanisms for uniquely linking 
callback events to specific user level MPI API calls. Although clearly useful, such linking is not 
sufficiently supported by MPI’s API - MPI does not provide unique identifiers/handles for all 
user requests, as in the case with blocking MPI_Send and MPI_Recv. In order to assist PERUSE 
users in achieving such linking (if desired), PERUSE requires that the MPI libraries pass a 
request specification parameter to the event callbacks (see section 5.1.2 for more details). This 
parameter carries information about the input parameters passed to the MPI calls that the user 
made in order to create the particular message request.  
4.2 Scope of PERUSE events 

In its current version, all PERUSE events have local scope. Events with global scope may 
be able to also provide useful performance information. However, such events will require 
communication of control packets for the exchange of event-related information and facilities for 
handling such control communication. This is considered beyond the current scope and purpose 
of PERUSE but may be pursued in future efforts. Through its callback mechanism, PERUSE 
allows layered tools to be invoked by the library on the critical message processing path and 
possibly make correlation between events on remote processes. This approach could be 
successfully used for implementing global events. 
4.3 Point-to-point communication events  

Point-to-point events are intended to trace the phases of the execution of a user request 
from its creation to the user notification of its completion. The event definitions and descriptions 
are followed by a request processing flow diagram that specifies the sequence in time of the 
generation of these events.  

The events in this section are divided into two groups – (i) PERUSE_COMM_REQ 
events generated during activities associated with MPI processing of user requests and (ii) 
PERUSE_COMM_MSG events generated when an incoming message that will be used in point-
to-point matching with user requests arrives. The second type of events is not associated with 
any particular user request and will have a unique ID different from the request unique ID 
matched to the incoming message. The rationale for the second type of events is that these events 
can help PERUSE users to observe activities related to incoming messages and unexpected 
queues and discover processing or communication imbalances in the MPI jobs. For example, if 
the average time for a message spent in the unexpected queue is large, this may indicate to the 
MPI application designer that the observed process is falling behind possibly as a result of larger 
processing or communication load. The designer can then attempt to improve the load balance by 
altering the data distribution or communication pattern of the application algorithm. 

The two groups of events (REQ and MSG) are indicated with different line styles in the 
event diagram. The solid lines show transitions between REQ events and these events are 
associated with user requests. All events connected with solid lines will have the same unique 
request ID for the same user request. The dashed lines represent MSG events. They will have the 
same unique ID for the same incoming message, but it will be different then the unique ID of the 
request to which the message will be matched. 
4.3.1 Request and message event definition and description 
PERUSE_COMM_REQ_ACTIVATE This event indicates that the MPI library starts processing that 

would lead to the message transfer specified by the user request. 
This event will be generated by MPI_Start, MPI_Startall, 
MPI_Irecv, MPI_Isend as well as in MPI_Send and MPI_Recv.  



17 

Rationale. This event indicates to the PERUSE user that the MPI 
library has entered the critical message path. A time stamp here 
can be used as a mark to measure various time periods, such as 
ACTIVATE to XFER_BEGIN, or ACTIVATE to COMPLETE. 

PERUSE_COMM_REQ_MATCH_UNEX This event is generated when the MPI library matches a user 
request to an unexpected message.  
Rationale. This event can be used in determining the delay 
between the moment when the request is matched and the 
beginning of the message transfer. 

PERUSE_COMM_REQ_INSERT_IN_POSTED_Q The MPI library inserts a request in the posted request queue. No 
match was found to an unexpected message in the unexpected 
queue. 
Rationale: This event can be used to measure how long a request 
stayed in the posted queue before it was matched as well as the 
length of the posted queue.  

PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q The MPI library removes a request from the posted request queue 
as a result of successful matching to an incoming message.  This 
can be caused by MPI_Cancel(). 
Rationale: See 
PERUSE_COMM_REQ_INSERT_IN_POSTED_Q. 

PERUSE_COMM_REQ_XFER_BEGIN This event indicates that the MPI library has schedules the first 
data transfer associated with the message transfer specified by the 
user request. The message transfer may be composed of multiple 
data transfers. Control messages used by MPI library protocols 
are not counted as part of the message transfer. See sections 3.1 
and 3.2 for more detail. 
Rationale: This event can be used by PERUSE users to measure 
how long it took the MPI library to begin a message transfer after 
the user request was posted and started. Long delays can indicate 
that messages are not progressed in a timely fashion. If the library 
does not have an independent message progress engine, this may 
indicate that the user process may need to call the MPI library 
more frequently in order to help in the progress of the scheduled 
messages. 

PERUSE_COMM_REQ_XFER_END The callback is called with this event when the MPI library has 
scheduled the data transfer (with the last byte) of the user 
message for transmission with the underlying communication 
method. 
Rationale: MPI libraries commonly use specifically designed 
protocols for exchanging messages. Depending on the 
implementation of these protocols and the interaction between the 
user process and the MPI library, these protocols may not operate 
in a fashion that is expected by the user. This event, in 
collaboration with the XFER_BEGIN and REQ_START can give 
an indication of how quickly the messages are sent once the user 
posts a send request. 

PERUSE_COMM_REQ_COMPLETE The callback will be called when the MPI library marks the 
request completed for internal purposes. If the user can make a 
synchronization call, such as MPI_Wait to MPI_Test following 
this event, this synchronization call will succeed.  
Rationale: PMPI does not allow to check when the 
communication associated with a request is actually completed. 
Overly long times from completion to notification can indicate to 
the programmer that checks for completion can be made earlier 
or more frequently. 

PERUSE_COMM_REQ_NOTIFY The user process is notified about the request completion. The 
callback is called during a synchronization call, such as 
MPI_Wait and MPI_Test or before the library return from 
MPI_Send or MPI_Recv. 
Rationale: See PERUSE_COMM_REQ_COMPLETE 

PERUSE_COMM_MSG_ARRIVED This event is generated when the MPI library receives an 
incoming message from the communication layer, which will be 
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used for matching with user requests. Control messages or 
messages associated with one-sided communication and file I/O 
will not generate this event. 

PERUSE_COMM_MSG_INSERT_IN_UNEX_Q The MPI library inserts an unexpected (early arrival) message 
into the unexpected queue. The arriving message is not matched 
to a request in the posted queue.  
Rationale: This event can be used to measure how long a request 
stayed in the unexpected queue before it was matched as well as 
the length of the unexpected queue. 

PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q The MPI library removes a message from the unexpected 
message queue as a result of successful matching to a user 
request.  
Rationale: See 
PERUSE_COMM_MSG_INSERT_IN_UNEX_Q. 

PERUSE_COMM_MSG_MATCH_POSTED_REQ This event is generated when the MPI library matches an 
incoming message to a posted request. The message will not be 
inserted to the unexpected queue. 

 
4.3.2 Request and message event diagram 

 
 

 
 
4.4 Queue search events 

The queue events are intended for measurements of the internal processing overhead that 
the MPI libraries incur in operations related to request and message matching. Two categories of 
events are defined – events related to posted queues and events related to unexpected queues.  

 
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN This event is generated when the library begins a search in the 

posted queue for matching an incoming unexpected queue. 
Rationale: Using this event, users can observe the time spent on 
searching in the unexpected queue. This information may help 
to discover source of application communication optimization 
so that the size of the unexpected queues is reduced, thus 
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reducing the processing overhead associated with searching. 
PERUSE_COMM_SEARCH_POSTED_Q_END This event is generated when the MPI library finishes a search 

in the posted queue for matching of an incoming unexpected 
message. 
Rationale: See 
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN. 

PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN The event is generated when the library begins a search in the 
unexpected queue for matching a posted request to an 
unexpected message. This event together with 
PERUSE_COMM_SEARCH_UNEX_Q_END gives 
information about the processing overhead related to matching a 
posted request. This overhead will depend on the length of the 
unexpected queue. 
Rationale: Using this event, users can observe the time spent on 
searching in the unexpected queue. This information may help 
to discover source of application communication optimization 
so that the size of the unexpected queues is reduced, thus 
reducing the processing overhead associated with searching. 

PERUSE_COMM_SEARCH_UNEX_Q_END This event is generated when the MPI library finishes a search 
for matching in the unexpected queue.  
Rationale: See 
PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN. 

 

5. PERUSE API 
The PERUSE design offers a uniform and compact API (presented in section 5.2 and 

Appendix A) with an extensible structure that enables easy addition of new events. The small 
number of functions is intended to facilitate easy adoption by parallel development application 
tool developers. End users familiar with an asynchronous callback programming paradigm may 
find PERUSE useful for tuning studies, but we recommend parallel development tools when 
available. PERUSE is composed of a set of data types and constants and a set of function calls, 
forming the API of the interface. The PERUSE specification defines only C bindings.  
5.1 PERUSE types and constants 

PERUSE defines the following types –  
• peruse_event_h  
• peruse_comm_spec_t  
• peruse_comm_callback_f 
 

These types are defined in the peruse.h header file. The peruse_event_h type represents 
the PERUSE event handle. It is an opaque object that is intended to improve portability of the 
interface, to facilitate different compliant implementations, and to help users write portable 
layers on top of PERUSE. The actual type definition (typedef) is left to the implementers. The 
peruse_xxx_callback_f are the types for the user callback functions that are used for notifying the 
PERUSE user when events of interest occur. The peruse_xxx_spec_t types are used to provide to 
user callbacks information about the specific MPI operation that caused the invocation of the 
callback. Since the MPI standard does not provide a mechanism for explicit annotation of 
communication and I/O operations, this information can be used by the callbacks to make a 
correlation between the MPI library processing that caused the callback invocation and a specific 
user request. More discussion on this topic was presented in section 4.1. The fields in the 
peruse_xxx_spec_t types provide the values that the user passed to the MPI library when making 
the communication or I/O requests whose processing resulted in the callback invocation. 
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PERUSE also uses a number of constants whose declarations are left to the 
implementations. All constants must be of C integer types int or long. PERUSE constant 
declarations can be enumerations, C definitions, or constant declarations and will be listed in 
peruse.h. Variables of type int initialized during PERUSE_Init() are also permitted. However, in 
this case, the vendor should provide adequate documentation to explain any pertinent 
restrictions. Appendix A provides and example peruse.h C header file. Appendix D provides a 
list of the constants that must be supported by all PERUSE implementations. 
5.1.1 Event handles (peruse_event_h) 

PERUSE defines two separate terms for representing events – event descriptors and event 
handles. Event descriptors describe the events supported by PERUSE and their meaning. Event 
descriptors do not suggest any processing by the PERUSE-enabled MPI library. They are used 
for the creation of event handles of type peruse_event_h. The event handles represent objects 
that can be acted upon by the MPI library. The concept of an event handle is introduced in order 
to allow the user to associate an event descriptor with the context of MPI objects. The MPI 
object is a communicator (MPI_Comm). Operations on these objects result in communication or 
I/O activities, which are of interest to this specification. The association of an event descriptor 
with an MPI object resulting in an event handle is achieved through the invocation of the 
appropriate PERUSE_Event_comm_register() call. The prefix of the name of each event 
indicates with which MPI object this event is supposed to be registered. 

PERUSE event handles have two states: active and inactive. The term activation window 
is defined as the period during which event callbacks will be called when the MPI event of 
interest occurs. (Note that PERUSE activation windows can be overlapping; more than one 
PERUSE window may be active at any given time.) Event handles are inactive during the 
following periods of the handle lifecycle: 

• between handle initialization and opening of the handle activation window, and 
• between closing of the activation window and a subsequent activation of the window or 

handle release. 
The activation window of handle is opened with PERUSE_Event_activate() and closed 

with PERUSE_Event_deactivate(). The MPI library will not invoke callbacks for inactive event 
handles. Once the window of a handle is activated, the MPI library will start invoking the 
callback registered with the event handle at the locations where the library performs relevant to 
the event operations. If a given event handle is in its window of activation (i.e., it is activated), 
but the MPI library does not perform relevant operations, the callback will not be invoked.  

In summary, in order to cause the MPI library to invoke the event callback the user 
program must: 

• create an event handle for this event by providing a callback function and associating the 
event descriptor with the desired MPI object, 

• activate the event handle by calling PERUSE_Event_activate (), and 
• perform MPI activities that are related to the event in question. 

If a user creates event handles by attaching the same event descriptor to different MPI 
objects (for example, MPI_COMM_WORLD and a duplicate of it), the resulting event handles 
are independent and distinct and their activation windows will not be related in any way. As a 
result, the user can monitor the same event associated with different MPI objects. 

PERUSE allows users to create multiple event handles by attaching the one event 
descriptor to the same MPI object in different event registration calls. These handles are distinct 
and their activation windows will be also independent. For example, if an activation window of 
one of these event handles is opened, the activation windows of the rest are unaffected. The 
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PERUSE implementation will invoke the callbacks of all activated events in some order. Also, 
the user can register the same or different callback functions for these event handles. This 
functionality can be used by multithreaded user programs or by layered MPI libraries. These 
topics are discussed in more detail further in this document. 
5.1.2 User callbacks 

PERUSE provides a callback for the MPI object with which PERUSE events can be 
associated (MPI_Comm); the prototype for this callback is: 

 
typedef int (peruse_comm_callback_f)(peruse_event_handle event_h, MPI_Aint unique_id, 

peruse_comm_spec_t *spec, void *param); 
 
 
PERUSE callbacks are designed to represent an event-based model for data collection. 

This model assumes that the user process will perform the actual data collection and statistics 
processing. The user process can be an instrumented application or a performance-monitoring 
tool. The registration of user callbacks with event handles is achieved in the event handle 
constructors PERUSE_Event_xxx_register. The callbacks can be set to new values with 
PERUSE_Event_xxx_callback_set. When a new callback is set, the old callback is lost. 
Callbacks can be registered with PERUSE_Event_xxx_callback_set only while the handles are 
inactive. If the handles are active, callback registration will fail. The value of the currently 
registered callback can be obtained by PERUSE_Event_xxx_callback_get, which can be called 
on an event handle in both active and inactive state.  

The user callbacks are invoked when the MPI library performs activities relevant to the 
event represented by its event handle. The definition of PERUSE events specifies when events 
are generated by the MPI library. The constraints on the callback code are as follows: 

• When a callback is invoked, it is undefined if the MPI library is under a lock or not and 
the callback code should not make any assumptions about the lock state of the MPI 
library; 

• Callbacks should be prepared to be invoked from different threads when used with MPI 
implementations with independent progress engine using internal system threads; 

• Callbacks should be signal safe as some MPI libraries use signals for their progress 
engine and the callback can be invoked form within a signal handler; 

• Callbacks should not make any MPI library calls with the exception of MPI_Wtime() 
and MPI_Wtick(); 

• Callbacks should not hold any locks that are placed around MPI calls in the main code. 
• Callbacks should be limited to “read-only” operations on PERUSE handles. 
When a user defined callback is invoked, four parameters are passed to this callback (see 

the definition of the user callback prototypes): 
• event_handle  
• unique_id 
• spec  
• param  

The event_handle parameter is the event handle for the event that was registered with the 
specific MPI object. Using this handle, the callback can perform allowed operations on the 
handle, e.g., using PERUSE_Event_get call, the callback can obtain the event descriptor for 
event_handle. 
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The parameter unique_id is for providing user callbacks with the capability to associate 
different events for processing of the same request, message, or queue. This parameter is opaque 
and is implementation-dependent. User callbacks cannot make any assumptions about the actual 
values of the unique_id parameter. The scope of uniqueness of unique_id is defined in the 
following table, depending on the type of events generated. Once the ending event is generated, 
the value passed to unique_id can be reused by the library for a different request, message, or 
queue and the callback code needs to make appropriate adjustments in order to avoid correlation 
of unrelated events: 

Unique_id scope 
Beginning Event Ending Event 

PERUSE_COMM_REQ_ACTIVATE PERUSE_COMM_REQ_NOTIFY 
 
PERUSE_COMM_MSG_ARRIVED 

PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q 
or 
PERUSE_COMM_MSG_MATCH_POSTED_REQ 

PERUSE_COMM_SEARCH_POSTED_Q_BEGIN PERUSE_COMM_SEARCH_POSTED_Q_END 
PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN PERUSE_COMM_SEARCH_UNEX_Q_END 

 
The third callback parameter spec is a pointer to a peruse_xxx_spec_t structure that holds 

information related to the user request that caused the callback invocation. The memory for this 
structure is allocated and managed by the MPI library. The memory contents is guaranteed to be 
valid and consistent for the duration of the callback execution. Upon return from the callback, 
the MPI library can de-allocate the memory for the spec structure or can modify its contents.  

One of the fields of the spec structure is the handle to the MPI object with which the 
event handle was associated. This handle was also passed by the user in the user request that 
resulted in the callback invocation. The remaining fields of the spec structures contain the 
complete request specification in order to allow the code in the callback to correlate the 
particular callback invocation with a specific user request. The “operation” field has the 
following values PERUSE_SEND, PERUSE_RECV, PERUSE_PUT, PERUSE_GET, 
PERUSE_ACC, PERUSE_IO_READ, and PERUSE_IO_WRITE and indicates the type of 
communication or file I/O operation that caused the callback invocation. 

For example, if an event handle is registered by the following call: 
PERUSE_Event_comm_register(PERUSE_COMM_REQ_COMPLETE, MPI_COMM_WORLD,  

my_comm_callback, NULL, &my_event_h); 
and a subsequent call to:  

MPI_Recv(my_buf, 100, MPI_INT, 5, 1001, MPI_COMM_WORLD, &status); 
is made, the user callback my_comm_callback will be invoked when the request corresponding to 
the MPI_Recv call is marked for internal completion with the following values of its input 
parameters: 

event_h = my_event_h 
unique_id = <uid> 
spec = { 

comm = MPI_COMM_WORLD,  
buf = my_buf, 
count = 100 
datatype = MPI_INT 
peer = 5 
tag = 1001 
operation = PERUSE_RECV 
} 

param = NULL 
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The param callback parameter is the same parameter passed by the user when the 
callback was registered. Commonly, this parameter would be the address of some control 
structure that the callback can use in order to obtain context that might be necessary for its 
operation. It can also be used for exchanging information between the main user code and the 
callback. This parameter is meaningful only to the user code and is transparent to the MPI 
library. 

User callbacks are invoked by the PERUSE-enabled MPI library; hence, this library will 
also obtain the return values of the callbacks. If successful, user callbacks return 
MPI_SUCCESS.  All non-success returns are fatal with the MPI library simply reporting the 
error was returned by a PERUSE upcall and then cleanly bringing down the job. 

Note that while MPI Collectives are not included in this specification, collective calls 
may generate a point-to-point call back; this will depend on the implementation. 
5.2 PERUSE Function Calls 

This sub-section describes in detail the API function calls of PERUSE. The functions 
constituting the API are declared in the peruse.h header file (an example version of peruse.h is 
provide in Appendix A). Programs using PERUSE must include peruse.h. The API contains the 
following function groups: environment initialization, event handle registration, event handle 
manipulation, and user callback manipulation. A complete list of all PERUSE calls is provided in 
Appendix C. 

The return values of PERUSE function calls are defined in peruse.h. PERUSE functions 
can return error codes that indicate that an input MPI parameter is invalid. These return codes are 
semantically equivalent to the corresponding MPI_ERR_XXX error classes. For example, 
PERUSE_ERR_COMM indicates that if the input MPI_Comm argument was used in a standard 
MPI call, the MPI library would have returned an error of class MPI_ERR_COMM. The list of 
all PERUSE functions return values and their meaning is provided in Appendix D. 
 
5.2.1 PERUSE_Init 
Synopsis 

int PERUSE_Init() 
Input parameters 
 
Output parameters 
 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_MPI_INIT,  
Description 

Used for initialization of PERUSE library run-time infrastructure. Must be called before any other 
PERUSE function. Must be called after MPI_Init and before MPI_Finalize. 
 
PERUSE_Init may be called from multiple tools. 
 
PERUSE_ERR_MPI_INIT is returned if PERUSE_Init is called before MPI_Init or MPI_Finalize. It 
is advisable that the user calls PERUSE_Init before any MPI communication operations are 
initiated as the MPI library may perform communication-related activities that could interfere with 
the initialization of PERUSE. When multiple calls to MPI_Init are made, only the first initializes 
PERUSE – the others are equivalent to NOOP and return PERUSE_SUCCESS; 

5.2.2 PERUSE_Query_supported_events 
Synopsis 

int PERUSE_Query_supported_events(int *num_supported, char ***event_names, int **events); 
Input parameters 
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 n/a 
Output parameters 
 num_supported – number of supported events and size of the event_names array 
 event_names – an array of the string names of all supported events 
 events – an array of the event descriptor identifiers corresponding to the string names 
Return value 
 PERUSE_SUCCESS 
Description 

This function is intended to provide a portable way for determining what events are implemented 
by the particular PERUSE implementation. In conjunction with PERUSE_Query_event, by using 
this function, users can write fully portable programs. Also, this function enables vendors to 
provide implementation specific events that are not defined in the PERUSE specification. The 
event_names and events arrays are maintained internally by the implementation and are 
guaranteed to be valid between PERUSE_Init and MPI_Finalize. The caller does not allocate or 
free any space for these arrays. The function always returns PERUSE_SUCCESS. In the case 
when the implementation does not provide any events, num_supported is set to 0, and both 
event_names and events output parameters are set to NULL.  

 
5.2.3 PERUSE_Query_event 
Synopsis 

int PERUSE_Query_event(const char *event_name, int *event); 
Input parameters 
 event_name – NULL terminated string containing the name of an event 
Output parameters 
 event – event descriptor corresponding to event_name 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT 
Description 

This function is used for querying the PERUSE implementation about the support of the event 
described by event_name in a portable manner that will also facilitate vendor specific non-
standard extensions. If the event specified by event_name is supported, the function returns 
PERUSE_SUCCESS and the output parameter event contains the corresponding event 
descriptor, which can then be passed to event handle constructors. If the event is not supported, 
the function returns PERUSE_ERR_EVENT and event is set to PERUSE_EVENT_INVALID. Any 
NULL terminated string can be passed as input value of event_name. The actual strings are 
implementation dependent. Suggested values of the event_name are the names of the constants 
defined in the PERUSE header file and as presented in this specification. This will improve code 
portability. For example, a query for the availability of PERUSE_COMM_REQ_XFER_BEGIN will 
look as follows:  

rv = PERUSE_Query_event(“PERUSE_COMM_REQ_XFER_BEGIN”, &event).  
If the return value rv is PERUSE_SUCCESS, the value of event will be set to the event descriptor 
for the event in question, which can be passed to PERUSE functions that accept event 
descriptors as an input parameter.  
 

5.2.4 PERUSE_Query_event_name 
Synopsis 

int PERUSE_Query_event_name(int event, char **event_name); 
Input parameters 
 event – event descriptor corresponding 
Output parameters 
 event_name – a pointer to an internal string 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT 
Description 
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This function is used for obtaining the string name of the input event. If the event is supported by 
the PERUSE implementation a pointer to string name representation of event is returned in 
event_name. This function is opposite of PERUSE_Query_event. PERUSE_ERR_EVENT is 
returned if event is invalid. The output is a pointer to an internally to the MPI library maintained 
string. The caller does not allocate memory for event_name and should not free the pointer 
returned. The pointer is guaranteed to be valid between PERUSE_Init and MPI_Finalize. 

 
5.2.5 PERUSE_Query_environment 
Synopsis 

int PERUSE_Query_environment(int *env_size, char ***env) 
Input parameters 
 n/a 
Output parameters 
 env_size – number of elements in env 
 env – array of NULL terminated strings 
Return value 
 PERUSE_SUCCESS 
Description 

This function provides the environment variables and their values that affect the behavior of the 
MPI library. The MPI-specific environment is returned through the env output parameter as an 
array of NULL terminated strings. Each string is of the form <env_var>=<value>. The output 
parameter env_size specifies the number of elements in env. All strings in env are allocated 
internally by the MPI library during MPI_Init and are guaranteed to exist until MPI_Finalize is 
called. If no the MPI library does not use any environment variables, env_size is set to 0 and env 
to NULL. 

 
5.2.6 PERUSE_Query_queue_event_scope 
Synopsis 

int PERUSE_Query_queue_event_scope (int *scope) 
Input parameters 
 n/a 
Output parameters 
 scope – scope of queue events 
Return value 
 PERUSE_SUCCESS 
Description 

This function provides information about the scope of queue events. Some MPI implementations 
keep only one pair of queues for posted and unexpected messages. Providing information on a 
per-communicator basis for these implementations may be complex and performance intrusive. 
These libraries may elect to provide information only for the global queue pair. In this case, the 
return value of scope will be PERUSE_GLOBAL. If queue events are generated on a per-
communicator basis, the value of scope is set to PERUSE_PER_COMM. Other options are 
PERUSE_PER_TAG, PERUSE_PER_SOURCE and PERUSE_PER_PEER. 

 
5.2.7 PERUSE_Event_comm_register 
Synopsis 

int PERUSE_Event_comm_register(int event, MPI_Comm comm,  
peruse_comm_callback_t *callback_fn, void *param, peruse_event_h *event_h) 

Input parameters 
 event – event descriptor 
 comm – valid MPI communicator handle 
 callback_fn – user callback 
 param – user-specific data 
Output parameters 
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 event_h – inactive event handle 
Return value 

PERUSE_SUCCESS, PERUSE_ERR_EVENT, PERUSE_ERR_COMM, 
PERUSE_ERR_PARAMETER 

Description 
Used to create an event handle event_h related to an MPI communicator by associating the event 
descriptor event and communicator handle comm. The user callback callback_fn is registered 
with the output event handle. This callback function will be called when the MPI library performs 
an action that will affect the event described by event_h. If callback_fn is NULL, 
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_EVENT will be returned if the 
input event descriptor is invalid, and PERUSE_ERR_COMM if the comm handle is invalid. 
PERUSE_ERR_COMM indicates that the MPI library would have returned MPI_ERR_COMM 
class if the user code tried to reference comm in an MPI call. 
 
Note that PERUSE activation window permits overlap. 

 
5.2.8 PERUSE_Event_activate 
Synopsis 

int PERUSE_Event_activate(peruse_event_h event_h) 
Input parameters 
 event_h – event handle 
Output parameters 
 n/a 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

Opens an event activation window. The input event handle becomes active and the library will 
start invoking the user callback function registered with event_h every time that the library 
performs an activity which affects the event. If the input handle event_h has already been 
activated, the function will return PERUSE_SUCCESS. If PERUSE_EVENT_HANDLE_NULL is 
passed as an input parameter, the function returns PERUSE_ERR_EVENT_HANDLE. The return 
code PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is 
associated has been freed. 
 
In a multi-tool scenario, PERUSE_Event_activate has global scope (effects all tools). 

 
5.2.9 PERUSE_Event_deactivate 
Synopsis 

int PERUSE_Event_deactivate (peruse_event_h event_h) 
Input parameters 
 event_h – event handle 
Output parameters 
 n/a 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

Closes an event activation window. As a result, the input event handle becomes inactive and the 
library will stop calling the user callback registered with event_h. If the input event handle event_h 
is inactive, the function has no effect and will return PERUSE_SUCCESS. If 
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter, the function returns 
PERUSE_ERR_EVENT_HANDLE. The return code PERUSE_ERR_MPI_OBJECT is returned if 
the MPI object with which event_h is associated has been freed. 

 
5.2.10 PERUSE_Event_release 
Synopsis 
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int PERUSE_Event_release(peruse_event_h *event_h) 
Input parameters 
 event_h – event handle 
Output parameters 
 event_h – invalid event handle (PERUSE_EVENT_HANDLE_NULL) 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

Frees an active or inactive event handle and sets event_h to PERUSE_EVENT_HANDLE_NULL. 
Any subsequent uses of this event handle will lead to an error PERUSE_ERR_EVENT_HANDLE. 
If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter, the function returns 
PERUSE_ERR_EVENT_HANDLE. The return code PERUSE_ERR_MPI_OBJECT is returned if 
the MPI object with which event_h is associated has been freed. 

 
5.2.11 PERUSE_Event_get 
Synopsis 

int PERUSE_Event_get(peruse_event_h mh, int *event) 
Input parameters 
 Event_h – event handle 
Output parameters 
 event – event descriptor that was used for event handle creation 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

Performs a reverse lookup for discovering the event descriptor that was passed as an input 
parameter when the event_h event handle was created using the PERUSE_Event_xxx_register 
calls. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter, the function returns 
PERUSE_ERR_EVENT_HANDLE. The return code PERUSE_ERR_MPI_OBJECT is returned if 
the MPI object with which event_h is associated has been freed. 
 

5.2.12 PERUSE_Event_object_get 
Synopsis 

int PERUSE_Event_object_get(peruse_event_h mh, void **mpi_object) 
Input parameters 
 event_h – event handle 
Output parameters 
 mpi_object – an opaque handle of the MPI object to which this event handle is attached 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

At return, the output mpi_object parameter contains the handle of the MPI object that was used 
when the input event_h event handle was created. If PERUSE_EVENT_HANDLE_NULL is 
passed as an input parameter, the function returns PERUSE_ERR_EVENT_HANDLE. Since the 
type of the output parameter is void*, the caller must know what kind of MPI object is expected in 
order to perform appropriate type casting. It is the user’s responsibility to ensure the validity of the 
returned MPI handle. The returned handle is a copy of the original MPI handle passed to the 
specific PERUSE event initialization function. The return code PERUSE_ERR_MPI_OBJECT is 
returned if the MPI object with which event_h is associated has been freed. For more details, see 
the section that treats the relationship between MPI handles and PERUSE event handles. 

 
5.2.13 PERUSE_Event_comm_callback_set 
Synopsis 

int PERUSE_Event_comm_callback_set(peruse_event_h event_h,  
peruse_comm_callback_t *callback_fn, void *param) 

Input parameters 
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 event_h – event handle 
 callback_fn – user defined callback function 
 param – user specific parameter that will be passed to the callback function  
Output parameters 
 n/a 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_PARAMETER,  

PERUSE_ERR_MPI_OBJECT 
Description 

This function associates a user defined communicator callback_fn function with an inactive event 
handle event_h. The event_h and param input parameters will be passed to callback_fn when it is 
invoked. The old callback will be lost and only the callback registered with this call will be kept. If 
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or event_h is active, the 
function returns PERUSE_ERR_EVENT_HANDLE. If NULL is passed as callback_fn, 
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_MPI_OBJECT is returned if the 
MPI object with which event_h is associated has been freed. 
 

5.2.14 PERUSE_Event_comm_callback_get 
Synopsis 

int PERUSE_Event_comm_callback_get(peruse_event_h event_h,  
peruse_comm_callback_t **callback_fn, void **param) 

Input parameters 
 event_h – event handle 
Output parameters 
 callback_fn – user defined callback function 
 param – user specific parameter that was passed to the callback function  
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

This function obtains the user defined callback function that is associated with the event handle 
event_h. The value of the output parameter param is the one passed in by the user when the 
callback was registered. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or 
mh is active, the function returns PERUSE_ERR_EVENT_HANDLE. 
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has 
been freed. 
 

5.2.15 PERUSE_Event_propagate 
Synopsis 

int PERUSE_Event_propagate(peruse_event_h event_h, int mode) 
Input parameters 
 Event_h – event handle 
 mode – propagation mode of event handle when the MPI object is duplicated 
Output parameters 
 n/a  
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

This function sets a propagation mode of an inactive event handle event_h. The default 
propagation mode of all handles is 0 (false). This mode will remain unchanged unless is explicitly set by 
this function. If 1(true) is specified as input to this function, the callback registered with the event handle 
event_h will be propagated to MPI objects that are obtained as a result of duplication of the original MPI 
object with which the handle event_h was initially associated. If the propagation mode is turned on, the 
event handle callback will be invoked by operations performed on the duplicated MPI object in the same 
way as they are for the original MPI object. If PERUSE_EVENT_HANDLE_NULL is passed as an input 
parameter or event_h is active, the function returns PERUSE_ERR_EVENT_HANDLE. If event_h is 
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associated with an MPI object, which cannot be duplicated, the behavior of event_h and its callback will 
not be affected, i.e., PERUSE_Event_propagate is equivalent to NOOP in these cases. 
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has been 
freed.  
 
5.2.16 PERUSE_Lock 
Synopsis 

int PERUSE_Lock() 
Input parameters 
 n/a 
Output parameters 
 n/a  
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_LOCK, PERUSE_LOCK_NOT_GRANTABLE 
Description 

This function provides for mutual exclusion in multi-threaded MPIs. In multi-threaded MPIs, it’s 
use is required to guarantee correctness in the presence of multiple threads (e.g. updates on a linked 
list). If PERUSE_Lock has already been called by another thread, the calling thread blocks until the 
PERUSE Code mutex becomes available. This operation returns with the calling thread as its owner. 
Only lock free implementations of MPI_Wtime() and MPI_Wtick() are permitted within code segments 
guarded by PERUSE_Lock and PERUSE_Unlock. PERUSE_LOCK_NOT_GRANTABLE remains true 
during the scope (entire life) of the upcall that found it could not grant the lock.  
 

Advice to PERUSE users: A single "lock_not_grantable" leaves the state of the data 
from the tool dubious for the remainder of the job if the tool reacts by dropping the 
record. In such cases, the tool writer might want to set a flag of their own to record that 
fact.  This may safely be accomplished by a flag, Records_lost, that is statically initialized 
to FALSE which it sets to TRUE if there is a "lock_not_grantable" return. 
 
 

5.2.17   
 PERUSE_Unlock 

Synopsis 
int PERUSE_Unlock() 

Input parameters 
 n/a 
Output parameters 
 n/a  
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_LOCK 
Description 

This function releases the PERUSE code mutex. If a thread attempts to unlock a mutex that it has 
not locked or a mutex that is unlocked, an error will be returned.. MPI calls are prohibited within code 
segments guarded by PERUSE_Lock and PERUSE_Unlock. 

 
 

5.3 Semantics in multithreaded mode 
The definition of PERUSE suggests close interaction between the code that implements 

PERUSE and the main MPI library code. Therefore, it is expected that PERUSE will operate in 
the same multithreaded mode as the entire MPI library. The consequence of this definition is that 
if the MPI library is not thread safe, the code that implements PERUSE does not need to be 
either. Further, if the MPI library works in a thread-safe mode, providing thread-safe PERUSE 
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functionality will not require separate thread safety mechanisms inside the PERUSE 
implementation. The user code in the event callbacks will need to take the necessary precautions 
to protect user-level shared structures that can be accessed from callbacks within different 
threads when the MPI implementation uses internal system (service) threads. PERUSE defers the 
thread environment initialization and management to the MPI library. The code that uses 
PERUSE will inquire about the thread safety of the interface through the mechanisms provided 
by the MPI library, specifically the MPI_query_thread call. 

PERUSE provides the necessary mechanisms for multi-threaded MPI implementations 
through the PERUSE_Lock and PERUSE_Unlock functions. These calls provide a simple 
mechanism for guarding PERUSE internal code in a threaded MPI environment by mutexs. Note 
that only lock free implementations of MPI_Wtime() and MPI_Wtick() are permitted within code segments 
guarded by PERUSE_Lock and PERUSE_Unlock. 

For signals-based multi-threaded MPI implementations, the use of MPI_Lock() and 
MPI_Unlock() alone is insufficient as a safety mechanism; the PERUSE user (parallel tool 
developer) will need to augment MPI_Lock() and MPI_Unlock() usage with any of the other 
standard safety techniques employed in signals-based multi-threaded contexts. 

PERUSE does not maintain any special context for user threads. Similarly to MPI, the 
entire PERUSE functionality is defined on a per-process basis. This means that if a thread 
initializes an event handle, the PERUSE library will not distinguish whether the same or a 
different thread will subsequently manipulate the event handle. For example, one thread can 
initialize an event handle, a second thread can open the activation window of the handle, and a 
third thread can close the window and free the event. The user code is responsible for mitigating 
the access to the same event handle when there are both read and modify operations performed 
from different threads. 
5.4 PERUSE and layered libraries 

The experience of using PMPI has shown that in certain cases multiple layered MPI 
libraries can coexist and in such a scenario it is difficult to measure the performance of a specific 
layer without also including the effect of layers below. PERUSE has provisions that address this 
problem. First, there is no restriction on the number of calls to PERUSE_Init or their order. The 
only requirement is that PERUSE_Init is called after MPI_Init. This means that all layers can 
safely call PERUSE_Init without conflicts. PERUSE will be initialized by the first call and all 
others will be ignored. PERUSE does not need to be finalized, so this also enhances PERUSE 
behavior in multi-layered environment. 

Another PERUSE feature for support of layered libraries is the capability to indicate that 
if a PERUSE event handle is attached to a communicator (MPI_Comm) and this communicator 
is duplicated, the event and its window status will be propagated to the copy of the original 
communicator. The function that indicates that the event handle will have this behavior is 
PERUSE_Event_propagate. This function has an input parameter, which indicates the desired 
mode of handle propagation when the MPI object associated with the handle is duplicated. The 
values of the parameter can be PERUSE_TRUE or PERUSE_FALSE. 

It is expected that in layered libraries more than one user callback will need to be 
registered with a certain event at a time. Since PERUSE allows for multiple callbacks to be 
registered for a given {event, MPI object} pair, this enables different library layers to register 
their own callbacks without interfering with callbacks of other layers. The MPI library will 
invoke all registered callbacks in some undetermined order. 
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5.5 Querying PERUSE support options and MPI’s run-time environment 
PERUSE provides a set of PERUSE_Query_xxx functions that query different options 

related to PERUSE support capabilities and the MPI run-time environment. 
PERUSE_Query_supported_events is used to query the MPI library about all supported 
PERUSE events. PERUSE_Query_event  and PERUSE_Query_event_name are used for 
retrieving event identifiers and event string names 

PERUSE_Query_environment is intended to provide information about the MPI library 
run-time environment (environment variables) that affects the behavior of the MPI library. 
PERUSE_Query_queue_event_scope is intended to inform the user about the meaning of the 
queue-related event – whether they are on per communicator basis or are global for all 
communicators. This query is necessary to address MPI libraries that maintain only one global 
pair of queues for posted and unexpected requests.  
5.6 Relationship between MPI handles and PERUSE event handles 

PERUSE event handle constructors PERUSE_Event_xxx_register associate PERUSE 
events with MPI object handles by registering user PERUSE callbacks to the particular MPI 
object. Operations on PERUSE event handles are allowed only when the MPI handle associated 
with this event handle is valid, i.e., it is not released with MPI_Xxx_free. It is erroneous to use a 
PERUSE event handle after the associated MPI handle with this PERUSE event handle is 
released. The PERUSE calls should return PERUSE_ERR_MPI_OBJECT in such cases. It can be 
inferred from this definition of the MPI and PERUSE handle relationship that these associations 
are not treated as increments of the internal reference counts of the MPI objects. 

During event callback registration, the constructor functions can return an error code of 
the type PERUSE_ERR_COMM. These error codes indicate that the MPI library would have 
returned an error class MPI_ERR_XXX if the user code had tried to use the corresponding MPI 
handle in an MPI call. Hence, it can be assumed that the error codes PERUSE_ERR_XXX are 
mapped to the corresponding MPI_ERR_XXX error classes. 

6. External Interfaces 
6.1 Target operating systems and platforms 

The specification is intended to be independent of operating systems and hardware 
platforms. 
6.2 Language bindings 

At this stage, PERUSE provides only C bindings of its API. The C bindings of the API 
are shown in the example peruse.h file in Appendix A. 
6.3 Library versions 

The provider of PERUSE enabled MPI libraries could provide a debug and a production 
library. The debug library will implement the PERUSE interface while the production library 
will only provide dummy routines to satisfy unresolved externals. The goal is  to avoid any 
impact on codes that are run in production mode and are not subjected to performance 
evaluation. 
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8.  Appendix A: Example PERUSE  Header File (peruse.h) 
 
#ifndef _PERUSE_H_ 
#define _PERUSE_H_ 
#include <mpi.h> 
 
/* PERUSE type declarations */ 
typedef long peruse_event_h;    /* Opaque event handle */ 
typedef struct _peruse_comm_spec_t 
{ 
        MPI_Comm        comm; 
        void            *buf; 
        int             count; 
        MPI_Datatype    datatype; 
        int             peer; 
        int             tag; 
        int             operation; 
} peruse_comm_spec_t; 
 
 
 
typedef int (peruse_comm_callback_f)(peruse_event_h event_h, 
                MPI_Aint unique_id, peruse_comm_spec_t *spec, void *param); 
 
 
/* PERUSE constants */ 
enum 
{ 
        PERUSE_SUCCESS,                 /* success */ 
        PERUSE_ERR_INIT,                /* PERUSE initialization failure */ 
        PERUSE_ERR_GENERIC,             /* generic unspecified error */ 
        PERUSE_ERR_MALLOC,              /* memory-related error */ 
        PERUSE_ERR_EVENT,               /* invalid event descriptor */ 
        PERUSE_ERR_EVENT_HANDLE,        /* invalid event handle */ 
        PERUSE_ERR_PARAMETER,           /* invalid input parameter */ 
        PERUSE_ERR_MPI_INIT,            /* MPI has not been initializes */ 
        PERUSE_ERR_COMM,                /* MPI_ERR_COMM class */ 
PERUSE_ERR_MPI_OBJECT           /* error with associated MPI object */ 
 PERUSE_ERR_LOCK,   /* error associated with PERUSE_Lock() */ 
 PERUSE_ERR_UNLOCK,  /* error associated with PERUSE_Unlock() 
*/ 
 PERUSE_ERR_LOCK_NOT_GRANTABLE /* error: unable to grant PERUSE lock */ 
}; 
 
enum 
{ 
        PERUSE_EVENT_INVALID, 
 
        /* Point-to-point request events */ 
        PERUSE_COMM_REQ_ACTIVATE, 
        PERUSE_COMM_REQ_MATCH_UNEX, 
        PERUSE_COMM_REQ_INSERT_IN_POSTED_Q, 
        PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q, 
        PERUSE_COMM_REQ_XFER_BEGIN, 
        PERUSE_COMM_REQ_XFER_END, 
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        PERUSE_COMM_REQ_COMPLETE, 
        PERUSE_COMM_REQ_NOTIFY, 
        PERUSE_COMM_MSG_ARRIVED, 
        PERUSE_COMM_MSG_INSERT_IN_UNEX_Q, 
        PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q, 
        PERUSE_COMM_MSG_MATCH_POSTED_REQ, 
 
        /* Queue events */ 
        PERUSE_COMM_SEARCH_POSTED_Q_BEGIN, 
        PERUSE_COMM_SEARCH_POSTED_Q_END, 
        PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN, 
        PERUSE_COMM_SEARCH_UNEX_Q_END, 
 
        /* Collective events */ 
        /* IO events */ 
        /* One-sided events */ 
        PERUSE_FIRST_CUSTOM_EVENT 
}; 
 
/* Scope of message queues */ 
enum 
{ 
        PERUSE_PER_COMM, 
   PERUSE_PER_TAG, 
   PERUSE_PER_SOURCE, 
        PERUSE_GLOBAL 
};  
 
enum 
{ 
        PERUSE_SEND, 
        PERUSE_RECV, 
        PERUSE_PUT, 
        PERUSE_GET, 
        PERUSE_ACC, 
        PERUSE_IO_READ, 
        PERUSE_IO_WRITE 
}; 
 
#define PERUSE_EVENT_HANDLE_NULL ((peruse_event_h)0) 
 
/* 
 * I. Environment 
 */ 
/* PERUSE initialization */ 
int PERUSE_Init(); 
 
/* Query all implemented events */ 
int PERUSE_Query_supported_events( 
                int     *num_supported, 
                char    ***event_names, 
                int     **events); 
 
/* Query supported events */ 
int PERUSE_Query_event(const char *event_name, int *event); 
 
/* Query event name */ 
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int PERUSE_Query_event_name(int event, char **event_name); 
 
/* Get environment variables that affect MPI library behavior */ 
int PERUSE_Query_environment(int *env_size, char ***env); 
 
/* Queryig the scope of queue metircs - global or per communicator */ 
int PERUSE_Query_queue_event_scope(int *scope); 
 
/* Acquire PERUSE code mutex */ 
int PERUSE_Lock(); 
 
/* Release PERUSE code mutex */ 
int PERUSE_Unlock(); 
 
 
/* 
 * II. Events objects initialization and manipulation 
 */ 
/* Initialize event associated with an MPI communicator */ 
int PERUSE_Event_comm_register( 
                int                     event, 
                MPI_Comm                comm, 
                peruse_comm_callback_f  *callback_fn, 
                void                    *param, 
                peruse_event_h          *event_h); 
 
 
/* Start collecting data (activate event) */ 
int PERUSE_Event_activate(peruse_event_h event_h); 
 
/* Stop collecting data (deactivate event) */ 
int PERUSE_Event_deactivate(peruse_event_h event_h); 
 
/* Free event handle */ 
int PERUSE_Event_release(peruse_event_h *event_h); 
 
/* Set a new comm callback */ 
int PERUSE_Event_comm_callback_set( 
                peruse_event_h          event_h, 
                peruse_comm_callback_f  *callback_fn, 
                void                    *param); 
 
 
/* Get the current comm callback */ 
int PERUSE_Event_comm_callback_get( 
                peruse_event_h          event_h, 
                peruse_comm_callback_f  **callback_fn, 
                void                    **param); 
 
 
 
/* Obtain event descriptor from a event handle (reverse lookup) */ 
int PERUSE_Event_get(peruse_event_h event_h, int *event); 
 
/* Obtain MPI object associated with event handle */ 
int PERUSE_Event_object_get(peruse_event_h event_h, void **mpi_object);  
 



36 

/* Propagation mode */ 
int PERUSE_Event_propagate(peruse_event_h event_h, int mode); 
  
#endif
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9. Appendix B: PERUSE Examples 
9.1 Examples of instrumented user MPI programs 
9.1.1 Using environment, event, and queue event scope queries 
#include <stdio.h> 
#include <stdlib.h>  
#include "mpi.h" 
#include "peruse.h" 
 
char *ename[] = 
{ 
        "PERUSE_COMM_REQ_ACTIVATE", 
        "PERUSE_COMM_REQ_MATCH_UNEX", 
        "PERUSE_COMM_REQ_INSERT_IN_POSTED_Q", 
        "PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q", 
        "PERUSE_COMM_REQ_XFER_BEGIN", 
        "PERUSE_COMM_REQ_XFER_END", 
        "PERUSE_COMM_REQ_COMPLETE", 
        "PERUSE_COMM_REQ_NOTIFY", 
        "PERUSE_COMM_MSG_ARRIVED", 
        "PERUSE_COMM_MSG_INSERT_IN_UNEX_Q", 
        "PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q", 
        "PERUSE_COMM_MSG_MATCH_POSTED_REQ", 
        NULL 
}; 
 
int main(int argc, char **argv) 
{ 
        int eid, *eids; 
        char **env, **names; 
        int rv, size, i, scope = -1, n_sup; 
 
        MPI_Init(&argc, &argv); 
        PERUSE_Init(); 
        PERUSE_Query_environment(&size, &env); 
        printf("Number of env. variables: %d\n", size); 
        for(i = 0; i < size; i++) 
                printf("%s\n", env[i]); 
 
        PERUSE_Query_supported_events(&n_sup, &names, &eids); 
        printf("Number of supported events: %d\n", n_sup); 
        for(i = 0; i < n_sup; i++) 
                printf("%s=%d\n", names[i], eids[i]); 
 
        PERUSE_Query_queue_event_scope(&scope); 
        printf("SCOPE=%s\n", (scope == PERUSE_PER_COMM) ? 
                "PER_COMM" : "GLOBAL"); 
 
        for(i = 0; ename[i] != NULL; i++) 
        { 
                rv = PERUSE_Query_event(ename[i], &eid); 
                printf("event=%s, event ID=%d is %s\n", 
                        ename[i], eid, 
                        (rv == PERUSE_SUCCESS) ? "supported":"unsupported"); 
 
        } 
 
        MPI_Finalize(); 
 
        return 0; 
} 
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9.1.2 Using callbacks 
#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "peruse.h" 
 
#define NUM_MSG 100 
#define MSG_SIZE 160 
 
typedef struct 
{ 
        int num_stamps; 
        double time; 
        double max; 
} measure_t; 
 
typedef struct _hash_elem_t 
{ 
        MPI_Aint key; 
        double stamp; 
        struct _hash_elem_t *next; 
} hash_elem_t; 
 
hash_elem_t *HashGetElem(MPI_Aint key) 
{ 
        hash_elem_t *h_elem; 
        /* Use some hash function to find an existing element with key 
         * in the hash table or allocate a new element */ 
        return h_elem; 
} 
 
int callback_unex(peruse_event_h event_h, MPI_Aint unique_id, 
                        peruse_comm_spec_t *cs, void *param) 
{ 
        measure_t *mt = (measure_t *)param; 
        char *event_name; 
        int event; 
        double t; 
        hash_elem_t *helem; 
 
        PERUSE_Event_get(event_h, &event); 
        PERUSE_Query_event_name(event, &event_name); 
        printf("Callback called for event %s\n", event_name); 
 
        helem = HashGetElem(unique_id); 
        switch(event) 
        { 
        case PERUSE_COMM_MSG_INSERT_IN_UNEX_Q: 
                helem->stamp = MPI_Wtime(); 
                break; 
 
        case PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q: 
                t = MPI_Wtime() - helem->stamp; 
                mt->time += t; 
                if(t > mt->max) 
                        mt->max = t; 
                mt->num_stamps++; 
                break; 
 
        default: 
                printf("Unexpected event in callback\n"); 
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                return MPI_ERR_INTERN; 
        } 
        return MPI_SUCCESS; 
} 
 
int msg[MSG_SIZE]; 
 
int main(int argc, char **argv) 
{ 
        peruse_event_h e_unex_insert, e_unex_remove; 
        int rv, size, i, rank, stat; 
        MPI_Comm wrld = MPI_COMM_WORLD; 
        MPI_Status status; 
        MPI_Request r[NUM_MSG]; 
        measure_t unex = {0, 0.0, 0.0}; 
 
        MPI_Init(&argc, &argv); 
        MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
        rv = PERUSE_Init(); 
        if(rv != PERUSE_SUCCESS) 
        { 
                printf("Error in PERUSE_Init: rv=%d\n", rv); 
                fflush(stdout); 
                exit(1); 
        } 
 
        /* HashTableSetup(); */ 
        if(rank == 0) 
        { 
                /* Interested only in rank 0 */ 
                PERUSE_Event_comm_register(PERUSE_COMM_MSG_INSERT_IN_UNEX_Q, 
                        wrld, callback_unex, &unex, &e_unex_insert); 
                PERUSE_Event_comm_register(PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q, 
                        wrld, callback_unex, &unex, &e_unex_remove); 
                PERUSE_Event_activate(e_unex_insert); 
                PERUSE_Event_activate(e_unex_remove); 
 
                for(i = 0; i < NUM_MSG; i++) 
                        MPI_Irecv(msg, MSG_SIZE, MPI_INT, 1, 0, wrld, &r[i]); 
 
                MPI_Send(NULL, 0, MPI_INT, 1, 0, wrld); 
 
                for(i = 0; i < NUM_MSG; i++) 
                        MPI_Wait(&r[i], &status); 
 
                PERUSE_Event_deactivate(e_unex_insert); 
                PERUSE_Event_deactivate(e_unex_remove); 
 
                printf("Number of measurements: %d\n", unex.num_stamps); 
                printf("Average time in unexpected queue: %f sec\n", 
                                unex.time / unex.num_stamps); 
                printf("maximum time in unexpected queue: %f sec\n", 
                                unex.max); 
                PERUSE_Event_release(&e_unex_insert); 
                PERUSE_Event_release(&e_unex_remove); 
        } 
        else if (rank == 1) 
        { 
                for(i = 0; i < NUM_MSG; i++) 
                { 
                        MPI_Send(msg, MSG_SIZE, MPI_INT, 0, 0, wrld); 
                        if(i == NUM_MSG / 2) 
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                                MPI_Recv(NULL, 0, MPI_INT, 0, 0, wrld, &status); 
                } 
        } 
 
        MPI_Finalize(); 
        /* HashTableCleanup(); */ 
 
        return 0; 
} 
 

9.1.3 Using queue events 
#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "peruse.h" 
 
#define NUM_MSG         100 
#define MSG_SIZE        160 
#define NUM_Q_EVENTS    4 
 
int qevents[NUM_Q_EVENTS] = 
{ 
        PERUSE_COMM_SEARCH_POSTED_Q_BEGIN, 
        PERUSE_COMM_SEARCH_POSTED_Q_END, 
        PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN, 
        PERUSE_COMM_SEARCH_UNEX_Q_END 
}; 
 
double time_in_unex_q = 0.0, time_in_posted_q = 0.0; 
 
int callback(peruse_event_h event_h, MPI_Aint unique_id, 
                        peruse_comm_spec_t *cs, void *param) 
{ 
        int event; 
 
        PERUSE_Event_get(event_h, &event); 
        switch(event) 
        { 
        case PERUSE_COMM_SEARCH_POSTED_Q_BEGIN: 
                /* Take a time stamp for unique_id */ 
                break; 
 
        case PERUSE_COMM_SEARCH_POSTED_Q_END: 
                /* Take a time stamp for unique_id, substract 
                 * previous time stamp, and add to time_in_posted_q */ 
                break; 
 
        case PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN: 
                /* Take a time stamp for unique_id */ 
                break; 
 
        case PERUSE_COMM_SEARCH_UNEX_Q_END: 
                /* Take a time stamp for unique_id, substract 
                 * previous time stamp, and add to time_in_unex_q */ 
                break; 
 
        default: 
                printf("Unexpected event\n"); 
                return MPI_ERR_INTERN; 
        } 
 
        return MPI_SUCCESS; 
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} 
 
int msg[MSG_SIZE]; 
 
int main(int argc, char **argv) 
{ 
        peruse_event_h eh[NUM_Q_EVENTS]; 
        int rv, size, i, rank, stat; 
        MPI_Comm wrld = MPI_COMM_WORLD; 
        MPI_Status status; 
        MPI_Request r[NUM_MSG]; 
 
        MPI_Init(&argc, &argv); 
        MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
        rv = PERUSE_Init(); 
        if(rv != PERUSE_SUCCESS) 
        { 
                printf("Error in PERUSE_Init: rv=%d\n", rv); 
                fflush(stdout); 
                exit(1); 
        } 
 
        rv = PERUSE_SUCCESS; 
        for(i = 0; i < NUM_Q_EVENTS; i++) 
                rv |= PERUSE_Event_comm_register(qevents[i], wrld, 
                        callback, NULL, &eh[i]); 
 
        if(rv != PERUSE_SUCCESS) 
        { 
                printf("Cannot register events\n"); 
                fflush(stdout); 
                MPI_Finalize(); 
                exit(1); 
        } 
 
        MPI_Barrier(wrld); 
 
        if(rank == 0) 
        { 
                for(i = 0; i < NUM_Q_EVENTS; i++) 
                        PERUSE_Event_activate(eh[i]); 
 
                for(i = 0; i < NUM_MSG; i++) 
                        MPI_Irecv(msg, MSG_SIZE, MPI_INT, 1, 0, wrld, &r[i]); 
 
                MPI_Send(NULL, 0, MPI_INT, 1, 0, wrld); 
 
                for(i = 0; i < NUM_MSG; i++) 
                        MPI_Wait(&r[i], &status); 
 
                for(i = 0; i < NUM_Q_EVENTS; i++) 
                        PERUSE_Event_deactivate(eh[i]); 
        } 
        else if (rank == 1) 
        { 
                for(i = 0; i < NUM_MSG; i++) 
                { 
                        MPI_Send(msg, MSG_SIZE, MPI_INT, 0, 0, wrld); 
                        if(i == NUM_MSG / 4) 
                                MPI_Recv(NULL, 0, MPI_INT, 0, 0, wrld, &status); 
                } 
        } 
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        for(i = 0; i < NUM_Q_EVENTS; i++) 
                PERUSE_Event_release(&eh[i]); 
 
        MPI_Finalize(); 
 
        return 0; 
} 

9.1.4 Counting posted and unexpected receives 
#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "peruse.h" 
 
#define QEVENTS (4) 
 
/* Queue events */ 
char *qevents[QEVENTS] = 
{ 
        "PERUSE_COMM_REQ_INSERT_IN_POSTED_Q", 
        "PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q", 
        "PERUSE_COMM_MSG_INSERT_IN_UNEX_Q", 
        "PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q" 
}; 
 
/* Declaration of a type for collecting statistics */ 
typedef struct _measure_t 
{ 
        int unex_num; 
        int unex_len; 
        int unex_max_len; 
        int unex_ave_len; 
        int posted_num; 
        int posted_len; 
        int posted_max_len; 
        int posted_ave_len; 
} measure_t; 
 
measure_t *darr; 
int np, my_rank; 
 
/* Callback for collecting statistics */ 
int qcallback(peruse_event_h eh, MPI_Aint unique_id, 
                        peruse_comm_spec_t *spec, void *param) 
{ 
        double t; 
        int event; 
        measure_t *mt; 
 
        PERUSE_Event_get(eh, &event); 
        mt = &darr[spec->peer]; /* get the data element for the peer */ 
 
        switch(event) 
        { 
        case PERUSE_COMM_REQ_INSERT_IN_POSTED_Q: 
                mt->posted_num++; 
                mt->posted_len++; 
                if(mt->posted_len > mt->posted_max_len) 
                        mt->posted_max_len = mt->posted_len; 
                mt->posted_ave_len = 
                        ((mt->posted_num - 1) * mt->posted_ave_len + 
                                mt->posted_len) / mt->posted_num; 
                break; 
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        case PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q: 
                mt->posted_len--; 
                break; 
 
        case PERUSE_COMM_MSG_INSERT_IN_UNEX_Q: 
                mt->unex_num++; 
                mt->unex_len++; 
                if(mt->unex_len > mt->unex_max_len) 
                        mt->unex_max_len = mt->unex_len; 
                mt->unex_ave_len = 
                        ((mt->unex_num - 1) * mt->unex_ave_len + 
                                mt->unex_len) / mt->unex_num; 
                break; 
 
        case PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q: 
                mt->unex_len--; 
                break; 
 
        default: 
                printf("Unexpected event in callback\n"); 
                return MPI_ERR_INTERN; 
        } 
 
        return MPI_SUCCESS; 
} 
 
void UserMpiProcessing(){} 
 
int main(int argc, char **argv) 
{ 
        int i, rv, eid[QEVENTS]; 
        peruse_event_h eh[QEVENTS]; 
 
        MPI_Init(&argc, &argv); 
        MPI_Comm_size(MPI_COMM_WORLD, &np); 
        MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
 
        /* Initialize PERUSE */ 
        rv = PERUSE_Init(); 
        if(rv != PERUSE_SUCCESS) 
        { 
                printf("Unable to initialize PERUSE\n"); 
                return 1; 
        } 
 
        darr = (measure_t *)calloc(np, sizeof(measure_t)); 
        /* Initialize queue event handles and activate them */ 
        for(i = 0; i < QEVENTS; i++) 
        { 
                PERUSE_Query_event(qevents[i], &eid[i]); 
                PERUSE_Event_comm_register(eid[i], MPI_COMM_WORLD, qcallback, 
                                                NULL, &eh[i]); 
                PERUSE_Event_activate(eh[i]); 
        } 
 
        /* User code subjected to PERUSE evaluation */ 
        UserMpiProcessing(); 
 
        /* Deactivate event handles and free them */ 
        for(i = 0; i < QEVENTS; i++) 
        { 
                PERUSE_Event_deactivate(eh[i]); 
                PERUSE_Event_release(&eh[i]); 
        } 
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        /* Report results */ 
        for(i = 0; i < np; i++) 
        { 
                printf("===== Peer rank: %d =====\n", i); 
                printf("number of unexpected messages: %d\n", 
                                        darr[i].unex_num); 
                printf("max unexpected queue length: %d\n", 
                                        darr[i].unex_max_len); 
                printf("ave unexpected queue length: %d\n", 
                                        darr[i].unex_ave_len); 
                printf("number of posted receives    : %d\n", 
                                        darr[i].posted_num); 
                printf("max posted queue length: %d\n", 
                                        darr[i].posted_max_len); 
                printf("ave posted queue length: %d\n", 
                                        darr[i].posted_ave_len); 
        } 
        free(darr); 
 
        return 0; 
} 
 

9.2 Example performance profiler code 
#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "peruse.h" 
 
#define NUM_REQ_EVENTS  (12) 
 
/* Events for the occurrence of which the profiler will be notified */ 
char *comm_events[NUM_REQ_EVENTS] = 
{ 
        "PERUSE_COMM_REQ_ACTIVATE", 
        "PERUSE_COMM_REQ_MATCH_UNEX", 
        "PERUSE_COMM_REQ_INSERT_IN_POSTED_Q", 
        "PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q", 
        "PERUSE_COMM_REQ_XFER_BEGIN", 
        "PERUSE_COMM_REQ_XFER_END", 
        "PERUSE_COMM_REQ_COMPLETE", 
        "PERUSE_COMM_REQ_NOTIFY", 
        "PERUSE_COMM_MSG_ARRIVED", 
        "PERUSE_COMM_MSG_INSERT_IN_UNEX_Q", 
        "PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q", 
        "PERUSE_COMM_MSG_MATCH_POSTED_REQ" 
}; 
 
/* Declaration of a type for collecting statistics */ 
/* The statistics are accumulated over all communicators */ 
typedef struct _req_estamp_t 
{ 
        double req_activate; 
        double req_match_unex; 
        double req_posted_q_in; 
        double req_posted_q_out; 
        double req_xfer_begin; 
        double req_xfer_end; 
        double req_complete; 
        double req_notify; 
        double msg_arrived; 
        double msg_unex_q_in; 
        double msg_unex_q_out; 
        double msg_match_posted; 
} req_estamp_t; 
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typedef struct _pevent_t 
{ 
        int eid; 
        peruse_event_h *eh_arr; 
} pevent_t; 
 
typedef struct _measure_t 
{ 
        char *name; 
        int num; 
        double ave; 
        double max; 
        double len; 
} measure_t; 
 
 
/* Define metrics of interest based on the pre-defined events */ 
enum 
{ 
        T_REQ_ACTIVATE_TO_MATCH = 0, 
        T_REQ_ACTIVATE_TO_XFER_BEGIN, 
        T_XFER_BEGIN_TO_END, 
        T_COMPLETE_TO_NOTIFY, 
        T_ACTIVATE_TO_NOTIFY, 
        T_IN_UNEX_Q, 
        N_POSTED_Q_LEN, 
        N_UNEX_Q_LEN, 
        NUM_METRICS 
}; 
 
char *metric_names[] = { 
        "T_REQ_ACTIVATE_TO_MATCH", "T_REQ_ACTIVATE_TO_XFER_BEGIN", 
        "T_XFER_BEGIN_TO_END", "T_COMPLETE_TO_NOTIFY", "T_ACTIVATE_TO_NOTIFY", 
        "T_IN_UNEX_Q", "N_POSTED_Q_LEN","N_UNEX_Q_LEN", NULL}; 
 
/* Hash Table for request unique_id */ 
#define HASH_TABLE_SIZE 256 
#define HASH_FUNC(_key_) ((_key_) % HASH_TABLE_SIZE) 
 
typedef struct _hash_elem_t 
{ 
        MPI_Aint key; 
        req_estamp_t stamp; 
        struct _hash_elem_t *next; 
} hash_elem_t; 
 
int HashTableSetup(); 
void HashTableCleanup(); 
req_estamp_t *HashTableFindOrInsert(MPI_Aint key); 
void HashTableRemove(MPI_Aint key); 
 
int InitiEvents(MPI_Comm comm, peruse_comm_callback_f *callback); 
int CleanupEvents(int comm_idx); 
void ComputeTimeMetric(measure_t *mt, double time); 
void ComputeCounterMetric(measure_t *mt); 
void print_stat(measure_t *mt); 
 
int np, my_rank, num_comms = 0; 
MPI_Comm *comm_arr = NULL; 
pevent_t events[NUM_REQ_EVENTS]; 
measure_t metrics[NUM_METRICS]; 
hash_elem_t **HashTable; 
 
/* Callback for collecting statistics */ 
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int comm_callback(peruse_event_h event_h, MPI_Aint unique_id, 
                        peruse_comm_spec_t *spec, void *param) 
{ 
        measure_t *mt; 
        req_estamp_t *estamp; 
        int event; 
        double t; 
 
        /* Assume that we are only interested in point to point 
         * communication to/from remote ranks */ 
        if(spec->peer == my_rank) 
                return MPI_SUCCESS; 
 
        PERUSE_Event_get(event_h, &event); 
        estamp = HashTableFindOrInsert(unique_id); 
        switch(event) 
        { 
        case PERUSE_COMM_REQ_ACTIVATE: 
                estamp->req_activate = PMPI_Wtime(); 
                break; 
 
        case PERUSE_COMM_REQ_MATCH_UNEX: 
                estamp->req_match_unex = PMPI_Wtime(); 
                mt = &metrics[T_REQ_ACTIVATE_TO_MATCH]; 
                t = estamp->req_match_unex - estamp->req_activate; 
                ComputeTimeMetric(mt, t); 
                break; 
 
        case PERUSE_COMM_REQ_INSERT_IN_POSTED_Q: 
                estamp->req_posted_q_in = PMPI_Wtime(); 
                mt = &metrics[N_POSTED_Q_LEN]; 
                ComputeCounterMetric(mt); 
                break; 
 
        case PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q: 
                estamp->req_posted_q_out = PMPI_Wtime(); 
                mt = &metrics[N_POSTED_Q_LEN]; 
                mt->len--; 
                break; 
 
        case PERUSE_COMM_REQ_XFER_BEGIN: 
                estamp->req_xfer_begin = PMPI_Wtime(); 
                mt = &metrics[T_REQ_ACTIVATE_TO_XFER_BEGIN]; 
                t = estamp->req_xfer_begin - estamp->req_activate; 
                ComputeTimeMetric(mt, t); 
                break;  
 
        case PERUSE_COMM_REQ_XFER_END: 
                estamp->req_xfer_end = PMPI_Wtime(); 
                mt = &metrics[T_XFER_BEGIN_TO_END]; 
                t = estamp->req_xfer_end - estamp->req_xfer_begin; 
                ComputeTimeMetric(mt, t); 
                break; 
 
        case PERUSE_COMM_REQ_COMPLETE: 
                estamp->req_complete = PMPI_Wtime(); 
                break; 
 
        case PERUSE_COMM_REQ_NOTIFY: 
                estamp->req_notify = PMPI_Wtime(); 
                mt = &metrics[T_COMPLETE_TO_NOTIFY]; 
                t = estamp->req_notify - estamp->req_complete; 
                ComputeTimeMetric(mt, t); 
                mt = &metrics[T_ACTIVATE_TO_NOTIFY]; 
                t =  estamp->req_notify - estamp->req_activate; 
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                ComputeTimeMetric(mt, t); 
                break; 
 
        case PERUSE_COMM_MSG_ARRIVED: 
                estamp->msg_arrived = PMPI_Wtime(); 
                break; 
 
        case PERUSE_COMM_MSG_INSERT_IN_UNEX_Q: 
                estamp->msg_unex_q_in = PMPI_Wtime(); 
                mt = &metrics[N_UNEX_Q_LEN]; 
                ComputeCounterMetric(mt); 
                break; 
 
        case PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q: 
                estamp->msg_unex_q_out = PMPI_Wtime(); 
                mt = &metrics[T_IN_UNEX_Q]; 
                t = estamp->msg_unex_q_out - estamp->msg_unex_q_in; 
                ComputeTimeMetric(mt, t); 
                mt = &metrics[N_UNEX_Q_LEN]; 
                mt->len--; 
                break; 
 
        case PERUSE_COMM_MSG_MATCH_POSTED_REQ: 
                estamp->msg_match_posted = PMPI_Wtime(); 
                break; 
 
        default: 
                printf("Unexpected event in callback\n"); 
                return MPI_ERR_INTERN; 
        } 
 
        /* If the event is last for teh request, release the hash element */ 
        if(event == PERUSE_COMM_REQ_NOTIFY || 
           event == PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q || 
           event == PERUSE_COMM_MSG_MATCH_POSTED_REQ) 
        { 
                HashTableRemove(unique_id); 
        } 
 
        return MPI_SUCCESS; 
}  
 
/* Profiler functions */ 
int MPI_Init(int *argc, char ***argv) 
{ 
        int i, rv, eid; 
        peruse_event_h eh; 
 
        PMPI_Init(argc, argv); 
        PMPI_Comm_size(MPI_COMM_WORLD, &np); 
        PMPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
 
        /* Initialize PERUSE */ 
        rv = PERUSE_Init(); 
        if(rv != PERUSE_SUCCESS) 
        { 
                printf("Unable to initialize PERUSE\n"); 
                return MPI_ERR_INTERN; 
        } 
 
        HashTableSetup(); 
        memset(metrics, 0, NUM_METRICS * sizeof(measure_t)); 
        for(i = 0; i < NUM_METRICS; i++) 
                metrics[i].name = metric_names[i]; 
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        /* Query PERUSE to see if the events of interest are supported */ 
        for(i = 0; i < NUM_REQ_EVENTS; i++) 
                PERUSE_Query_event(comm_events[i], &events[i].eid); 
 
        return InitEvents(MPI_COMM_WORLD, comm_callback); 
} 
 
int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm) 
{ 
        int rv; 
 
        rv = PMPI_Comm_create(comm, group, newcomm); 
        if(rv != MPI_SUCCESS) 
                return rv; 
 
        return InitEvents(*newcomm, comm_callback); 
} 
 
int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm) 
{ 
        int rv; 
 
        rv = PMPI_Comm_dup(comm, newcomm); 
        if(rv != MPI_SUCCESS) 
                return rv; 
 
        return InitEvents(*newcomm, comm_callback); 
}  
 
int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm) 
{ 
        int rv; 
 
        rv = PMPI_Comm_split(comm, color, key, newcomm); 
        if(rv != MPI_SUCCESS) 
                return rv; 
 
        return InitEvents(*newcomm, comm_callback); 
} 
 
int MPI_Comm_free(MPI_Comm *comm) 
{ 
        int i, comm_idx, rv; 
        MPI_Comm cm = *comm; 
 
        rv = PMPI_Comm_free(comm); 
        if(rv != MPI_SUCCESS) 
                return rv; 
 
        for(i = 0; i < num_comms; i++) 
                if(cm == comm_arr[i]) 
                        comm_idx = i; 
        return CleanupEvents(comm_idx); 
} 
 
int MPI_Finalize() 
{ 
        int i; 
 
        /* Deactivate event handles and free them for all comms */ 
        for(i = 0; i < num_comms; i++) 
                CleanupEvents(i); 
 
        for(i = 0; i < NUM_REQ_EVENTS; i++) 
        { 
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                if(events[i].eid == PERUSE_EVENT_INVALID) 
                { 
                        printf("Event %s not supported\n", comm_events[i]); 
                        continue; 
                } 
                free(events[i].eh_arr); 
        } 
 
        /* Print stiatistics for all metrics */ 
        for(i = 0; i < NUM_METRICS; i++) 
                print_stat(&metrics[i]); 
 
        HashTableCleanup(); 
        free(events); 
        free(comm_arr); 
 
        return PMPI_Finalize(); 
}  
 
/* Support functions */ 
int InitEvents(MPI_Comm comm, peruse_comm_callback_f *callback) 
{ 
        int i; 
        peruse_event_h eh; 
 
        /* Initialize event handles with comm and activate them */ 
        num_comms++; 
        comm_arr = (MPI_Comm *)realloc(comm_arr, num_comms * sizeof(MPI_Comm)); 
        comm_arr[num_comms - 1] = comm; 
        for(i = 0; i < NUM_REQ_EVENTS; i++) 
        { 
                PERUSE_Event_comm_register(events[i].eid, comm, 
                                                callback, NULL, &eh); 
                events[i].eh_arr = (peruse_event_h *)realloc(events[i].eh_arr, 
                                        num_comms * sizeof(peruse_event_h)); 
                events[i].eh_arr[num_comms - 1] = eh; 
                PERUSE_Event_activate(eh); 
        } 
 
        return MPI_SUCCESS; 
} 
 
int CleanupEvents(int comm_idx) 
{ 
        int i; 
 
        for(i = 0; i < NUM_REQ_EVENTS; i++) 
        { 
                PERUSE_Event_deactivate(events[i].eh_arr[comm_idx]); 
                PERUSE_Event_release(&events[i].eh_arr[comm_idx]); 
        } 
} 
 
void ComputeTimeMetric(measure_t *mt, double time) 
{ 
        if(time > mt->max) 
                mt->max = time; 
        mt->ave = (mt->num * mt->ave + time) / (mt->num + 1); 
        mt->num++; 
} 
 
void ComputeCounterMetric(measure_t *mt) 
{ 
        mt->len++; 
        if(mt->len > mt->max) 
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                mt->max = mt->len; 
        mt->ave = (mt->num * mt->ave) / (mt->num + 1); 
        mt->num++; 
} 
 
void print_stat(measure_t *mt) 
{ 
        printf("metric: %s\n", mt->name); 
        printf("        number of measurements: %d\n", mt->num); 
        printf("        average               : %f\n", mt->ave); 
        printf("        maximum               : %f\n", mt->max); 
}  
 
/* Hash Table interface */ 
int HashTableSetup() 
{ 
        HashTable = (hash_elem_t **)calloc( 
                        HASH_TABLE_SIZE, sizeof(hash_elem_t *)); 
        return (HashTable) ? 1 : 0; 
} 
 
void HashTableCleanup() 
{ 
        int i; 
        hash_elem_t *he, *oe; 
 
        for(i = 0; i < HASH_TABLE_SIZE; i++) 
        { 
                for(he = HashTable[i]; he != NULL; ) 
                { 
                        oe = he; 
                        he = he->next; 
                        free(oe); 
                } 
        } 
        free(HashTable); 
} 
 
req_estamp_t *HashTableFindOrInsert(MPI_Aint key) 
{ 
        hash_elem_t *he, *pe = NULL; 
        int idx = HASH_FUNC(key); 
 
        for(he = HashTable[idx]; he != NULL && he->key != key; ) 
        { 
                pe = he; 
                he = he->next; 
        } 
        if(he != NULL && he->key == key) 
                return &he->stamp; 
 
        /* Did not find the entry; make a new one */ 
        he = (hash_elem_t *)calloc(1, sizeof(hash_elem_t)); 
        he->key = key; 
        if(pe == NULL) 
                HashTable[idx] = he; 
        else 
                pe->next = he; 
 
        return &he->stamp; 
} 
 
void HashTableRemove(MPI_Aint key) 
{ 
        hash_elem_t *he, *pe = NULL; 
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        int idx = HASH_FUNC(key); 
 
        for(he = HashTable[idx]; he != NULL && he->key != key; ) 
        { 
                pe = he; 
                he = he->next; 
        } 
        if(he == NULL)  /* Not found */ 
                return; 
        if(pe == NULL) 
                HashTable[idx] = NULL; 
        else 
                pe->next = NULL; 
 
        free(he); 
} 
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10. Appendix C: PERUSE API FUNCTIONS 
 

PERUSE_Init 
PERUSE_Query_supported_events 
PERUSE_Query_event 
PERUSE_Query_event_name 
PERUSE_Query_environment 
PERUSE_Query_queue_event_scope 
PERUSE_Event_comm_register 
PERUSE_Event_activate 
PERUSE_Event_deactivate 
PERUSE_Event_release 
PERUSE_Event_comm_callback_set 
PERUSE_Event_comm_callback_get 
PERUSE_Event_get 
PERUSE_Event_object_get 
PERUSE_Eventpropagate 
PERUSE_Lock 
PERUSE_Unlock 
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11. Appendix D: PERUSE CONSTANTS 
 
PERUSE_SUCCESS            /* Error code: success */ 
PERUSE_ERR_INIT           /* Error code: PERUSE initialization failure */ 
PERUSE_ERR_GENERIC        /* Error code: generic unspecified error */ 
PERUSE_ERR_MALLOC         /* Error code: memory-related error */ 
PERUSE_ERR_EVENT         /* Error code: invalid event descriptor */ 
PERUSE_ERR_EVENT_HANDLE  /* Error code: invalid event handle */ 
PERUSE_ERR_PARAMETER      /* Error code: invalid input parameter */ 
PERUSE_ERR_MPI_INIT       /* Error code: MPI has not been initializes */ 
PERUSE_ERR_COMM           /* Error code: MPI_ERR_COMM class */ 
PERUSE_ERR_MPI_OBJECT     /* Error code: error with associated MPI object */ 
PERUSE_ERR_LOCK      /* Error code: error associated with PERUSE_Lock */ 
PERUSE_ERR_UNLOCK     /* Error code: error associated with PERUSE_Unlock */ 
PERUSE_ERR_LOCK_NOT_GRANTABLE /* Error code: unable to grant PERUSE lock */ 
 
PERUSE_COMM_REQ_ACTIVATE 
PERUSE_COMM_REQ_MATCH_UNEX 
PERUSE_COMM_REQ_INSERT_IN_POSTED_Q 
PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q 
PERUSE_COMM_REQ_XFER_BEGIN 
PERUSE_COMM_REQ_XFER_END 
PERUSE_COMM_REQ_COMPLETE 
PERUSE_COMM_REQ_NOTIFY 
PERUSE_COMM_MSG_ARRIVED 
PERUSE_COMM_MSG_INSERT_IN_UNEX_Q 
PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q 
PERUSE_COMM_MSG_MATCH_POSTED_REQ 
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN 
PERUSE_COMM_SEARCH_POSTED_Q_END 
PERUSE_COMM_SEARCH_UNEX_QUEUE_BEGIN 
PERUSE_COMM_SEARCH_UNEX_Q_END 
PERUSE_FIRST_CUSTOM_EVENT 
 
PERUSE_PER_COMM 
PERUSE_PER_TAG 
PERUSE_PER_SOURCE 
PERUSE_GLOBAL 
 
PERUSE_SEND 
PERUSE_RECV 
PERUSE_PUT 
PERUSE_GET 
PERUSE_ACC 
PERUSE_IO_READ 
PERUSE_IO_WRITE 
 
PERUSE_EVENT_HANDLE_NULL 
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12. Appendix E: PROPOSED ADDITIONS TO PERUSE RETAINED FOR 
FUTURE VERSIONS 

12.1  Collective communication metrics (MPI_Comm) 
PERUSE attempts to provide additional detail in MPI collective operations. Some of the 

PERUSE metrics refer to individual send and receive operations. These operations are the 
primitive point-to-point or collective operations (if available) supported by the underlying low-
level communication infrastructure. Such operations are TCP sockets send() and recv(), SMP 
memory copy in and out, LAPI_Put and LAPI_Get, VipPostSend and VipPostRecv, etc. If a 
collective algorithm can be implemented with only one underlying primitive operation, such as a 
shared memory barrier, than the count of primitive operations for the corresponding MPI 
operation MPI_Barrier() will be one. By basing the definition on the number of primitive 
operations used to implement an MPI collective operations, PERUSE strives to be more generic. 
For example, an alternative definition based on the count of MPI point-to-point operations might 
not be appropriate for some MPI implementations as they may provide collective operations that 
are not layered on top of the MPI point-to-point calls. PERUSE does not associate any 
interpretation of the performance capabilities of the MPI collective operations based on the 
number of primitive communication operations. A very efficient algorithm may use a larger 
number of primitive operations ordered or pipelined in a manner that results in a better overall 
performance. PERUSE collective metrics only provide information about the number of the 
primitive transfers – the interpretation is left to the MPI library or performance tool developers.  

If the implementation of the collective operations in the MPI library is based on point-to-
point MPI operations and PERUSE requests or queue metrics are activated, the MPI library will 
collect performance data for these metrics for the collective operations as well. The definition of 
the request and queue metrics does not distinguish on the bases of who the initiator of the 
operations is – whether the user is calling directly point-to-point operations, or the library 
implements collective communication or is performing other control MPI-level communication. 
An alternative definition is possible, according to which of the point-to-point metrics are not 
affected by collective operations. This alternative is not covered in this version of the 
specification. 

 
PERUSE_COMM_N_SENDS Number of individual primitive send operations associated with 

a collective operation. The measurement (counter update) is 
made before every primitive send operation executed in the 
collective operation. 
Rationale: Collective algorithms can be implemented by MPI 
libraries in many different ways. This metric gives an indication 
of the level of participation of the particular process in 
collective operations by counting the number of send primitive 
operations. On some platforms, this metric can be used for 
finding a more appropriate allocation of processes to processors 
so that the number of primitive send operations is minimized. 

PERUSE_COMM_N_RECVS Number of individual primitive receive operations associated 
with a collective operation. The measurement (counter update) 
is made before every primitive receive operation executed in the 
collective operation. 
Rationale: Collective algorithms can be implemented by MPI 
libraries in many different ways. This metric gives an indication 
of the level of participation of the particular process in 
collective operations by counting the number of receive 
primitive operations. On some platforms, this metric can be 
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used for finding a more appropriate allocation of processes to 
processors so that the number of primitive receive operations is 
minimized. 

PERUSE_COMM_T_BTWN_OPS Time between primitive send or receive operations associated 
with a collective operation, if more than one primitive operation 
is executed by the process. This metric gives an indication about 
the progress of individual transfers associated with collective 
operations. The time stamps are taken at the same locations as 
the PERUSE_COMM_N_SENDS and 
PERUSE_COMM_N_RECVS metrics. 
Rationale: This statistics can be used to infer information about 
the progress of send and receive messages, possibly 
intermediate ones. This information can help detect issues with 
the implementation of collective operations or with scheduling 
of the individual primitive transfers. 

 
 

12.2 Parallel IO metrics (MPI_File) 
PERUSE provides a set of parallel file I/O metrics. In regards to these metrics, the term 

disk access or I/O operation refers to the operating system read and write operations, as 
observed by the MPI library. If a user level file system with OS-bypass is used instead, the I/O 
operations will be those calls made to the OS-bypass library that initiated file read and write 
operations. This definition is consistent with the definition of the message transfer initiation 
specified above. A readv operation is considered one primitive operation similar to the primitive 
collective operations counted in the MPI collective operations metrics. One possible alternative 
definition would reflect the actual physical writes and reads to/from the storage medium. 
However, this information is generally available only through the operating system and the disk 
drivers. Since the MPI library is most frequently implemented as a user-level library, this second 
definition is impractical.  

The I/O cached bytes are those bytes that the MPI library caches internally, possibly for 
performance purposes, and not the bytes that the operating system buffers. Shipped bytes 
represent data that the MPI implementation transfers to other processes that might perform the 
actual disk I/O operations. Shipped bytes are introduced because PERUSE metrics have local 
semantics and some MPI I/O optimizations might result in a situation where a process that has 
received an MPI_File_write/read() request may actually perform only communication operations 
to other processes (on the same or on different machines). Finally, immediate bytes are the bytes 
that the MPI library directly writes/reads using the operating system I/O calls or the user-level 
library I/O calls. 
 

PERUSE_FILE_N_DISK_ACCESSES_PER_IOREQ Number of disk accesses associated with an IO request. The 
non-contiguous I/O access pattern of the parallel application can 
be specified with a single MPI-IO read/write call by setting 
appropriate file views. Based on the algorithm used in the 
implementation, the non-contiguous file access pattern could be 
accomplished using a single or multiple disk accesses. This 
metric finds the total number of disk accesses involved in the 
processing of an I/O request. The measurement is made before 
each primitive I/O operation related to accessing a file. 
Rationale: This metric gives an indication about the actual 
implementation of I/O in the MPI library and may help 
designers of I/O applications create more efficient type maps for 
reducing the number of disk accesses. 

PERUSE_FILE_N_SHIPPED_BYTES Number of bytes sent/received over the network as opposed to 
written/read into/from a file for an I/O request. In collective I/O, 
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MPI libraries can implement optimizations for reducing the total 
number of disk accesses by re-organizing the user buffers. This 
metric shows the number of bytes that are sent/received to/from 
other processes along the lines of these optimizations. The 
measurement is taken after the last “shipped” byte associated 
with the I/O request is sent/received. 
Rationale: Using this information, users can observe the 
behavior of the MPI library in selecting the optimal disk access 
decisions. Designers can develop more efficient decisions for 
distributing the data among processes. 

PERUSE_FILE_N_ACCESS_BYTES Number of bytes actually written/read to/from disk for an I/O 
request. In collective I/O, MPI libraries can implement 
optimizations for reducing the total number of disk accesses by 
re-organizing the user buffers. This metric shows the number of 
bytes that are actually written/read to/from disk. The 
measurement is taken after the last “accessed” byte associated 
with the I/O request is written/read. 
Rationale: Using this information, users can observe the 
behavior of the MPI library in selecting the optimal disk access 
decisions. Designers can develop more efficient decisions for 
distributing the data among processes. 

PERUSE_FILE_N_TEMP_FILES Number of temporary files. Depending on the nature of the I/O 
request, certain number of temporary files are generated to store 
the intermediate results. These temporary files may be deleted 
after the successful completion of the I/O requests. This metric 
reports the number of temporary files that are created during the 
course of an MPI-I/O operation. The measurement is taken 
before the creation of every temporary file. 
Rationale: If a large number of temporary files are used by the 
MPI I/O implementation, this may lead to unexpected delays 
and negative impact on performance. This metric can provide 
information for detecting such situations. 

PERUSE_FILE_T_IOREQ_ACCESS Time spent on accessing the I/O system beginning with the 
initiation of the I/O request to its completion. This metric 
measures the total time for an  I/O request spent on performing 
one or more disk accesses. The completion of the I/O request 
may also involve other operations, such as buffer agglomeration 
and communication for global buffer reorganization. The first 
time stamp is taken before the first disk access. The second time 
stamp is taken after the last disk access is completed.  
Rationale: This metric measures the actual time spent on disk 
accesses. Using this information the user might be able to 
estimate the efficiency of the I/O operation and get an 
understanding about the overhead activities. 

PERUSE_FILE_T_GET_SHARED_POINTER Time for obtaining shared file pointer. File access using shared 
file pointers is an atomic file operation and only one process can 
possess the shared file pointer at a single instance of time. 
Hence, when other processes need to perform shared file access 
operations, they need to wait until the process holding the 
shared file pointer relinquishes the file pointer. The first time 
stamp is taken before the attempt for obtaining the shared file 
pointer. The second time stamp is taken after the shred file 
pointer is obtained. 
Rationale: Using this information designers of I/O programs 
that use shared lock may be able to develop algorithms with 
better scheduling of I/O activities so obtaining the shared lock 
does not become a source of unnecessary synchronization 
overhead.  

PERUSE_FILE_T_FIRST_PHASE_IN_SPLIT_IO Time spent in the first phase of split I/O. Split I/O is an 
asychronous version of the collective I/O operations. In split 
I/O, the I/O operation is asynchronously commenced during the 
MPI_XXX_Begin() call and completed using the 
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MPI_XXX_End() call. This metric measures the actual time 
spent on all I/O related activities, including disk accesses and 
internal communication in the first phase. The first time stamp 
is taken before the first I/O or communication activity. The 
second time stamp is taken after the last I/O or communication 
activity. 
Rationale: The information provided by this metric can be used 
for understanding when the actual I/O activities take place – 
during the first phase, during the second phase, or 
asynchronously between the two phases. 

PERUSE_FILE_T_SECOND_PHASE_IN_SPLIT_IO Time spent in the second phase of split I/O. This metric 
measures the actual time spent on I/O and communication 
activities in the second phase of the split-collective I/O. The 
first time stamp is taken before the first I/O or communication 
activity. The second time stamp is taken after the last I/O or 
communication activity. 
Rationale: The information provided by this metric can be used 
for understanding of when the actual I/O activities take place – 
during the first phase, during the second phase, or 
asynchronously between the two phases. 

 

12.2.1 PERUSE_Event_file_register 
Synopsis 

int PERUSE_Event_file_register(int event, MPI_File file,  
peruse_file_callback_t *callback_fn, void *param, peruse_event_h * event_h) 

Input parameters 
 event – event descriptor 
 file – valid MPI file handle 
 callback_fn – user callback 
 param – user-specific data 
Output parameters 
 event_h – inactive event handle 
Return value 

PERUSE_SUCCESS, PERUSE_ERR_EVENT, PERUSE_ERR_FILE, 
PERUSE_ERR_PARAMETER 

Description 
Used to create an event handle event_h related to an MPI file object by associating the event 
descriptor event and file handle file. The user callback callback_fn is registered with the output 
event handle. This callback function will be called when the MPI library performs an action that 
will affect the event described by event_h. If callback_fn is NULL, PERUSE_ERR_PARAMETER 
will be returned. PERUSE_ERR_EVENT will be returned if the input event descriptor is invalid, 
and PERUSE_ERR_FILE if the file handle is invalid. PERUSE_ERR_FILE indicates that the MPI 
library would have returned MPI_ERR_FILE class if the user code tried to reference file in an MPI 
call. 
 

12.2.2 PERUSE_Event_file_callback_set 
Synopsis 

int PERUSE_Event_file_callback_set(peruse_event_h event_h,  
peruse_file_callback_t *callback_fn, void *param) 

Input parameters 
 event_h – event handle 
 callback_fn – user defined callback function 
 param – user specific parameter that will be passed to the callback function  
Output parameters 
 n/a 
Return value 
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 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_PARAMETER, 
 PERUSE_ERR_MPI_OBJECT 
Description 

This function associates a user defined file callback_fn function with an inactive event handle 
event_h. The event_h and param input parameters will be passed to callback_fn when it is 
invoked. The old callback will be lost and only the callback registered with this call will be kept. If 
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or event_h is active, the 
function returns PERUSE_ERR_EVENT_HANDLE. If NULL is passed as callback_fn, 
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_MPI_OBJECT is returned if the 
MPI object with which event_h is associated has been freed. 
 

12.2.3  PERUSE_Event_file_callback_get 
Synopsis 

int PERUSE_Event_file_callback_get(peruse_event_h event_h,  
peruse_file_callback_t **callback_fn, void **param) 

Input parameters 
 event_h – event handle 
Output parameters 
 callback_fn – user defined callback function 
 param – user specific parameter that was passed to the callback function  
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENTHANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

This function obtains the user defined callback function that is associated with the event handle 
event_h. The value of the output parameter param is the one passed in by the user when the 
callback was registered. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or 
event_h is active, the function returns PERUSE_ERR_EVENT_HANDLE. 
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has 
been freed. 
 
 

12.2.4 File Related Items to be incorporated in peruse.h 
typedef struct _peruse_file_spec_t 
{ 
        MPI_File        file; 
        void            *buf; 
        int             count; 
        MPI_Datatype    datatype; 
        MPI_Offset      offset; 
        int             operation; 
} peruse_file_spec_t; 
 
typedef int (peruse_file_callback_f)(peruse_event_h event_h, 
                MPI_Aint unique_id, peruse_file_spec_t *spec, void *param); 
 
/* Initialize event associated with an MPI file */ 
int PERUSE_Event_file_register( 
                int                     event, 
                MPI_File                file, 
                peruse_file_callback_f  *callback_fn, 
                void                    *param, 
                peruse_event_h          *event_h); 
 
/* Set a new file callback */ 
int PERUSE_Event_file_callback_set( 
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                peruse_event_h          event_h, 
                peruse_file_callback_f  *callback_fn, 
                void                    *param); 
 
 
 
 

 
12.2.5 MPI File code example 
#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "peruse.h" 
 
#define FMETRICS        9 
#define DATA_SIZE       (64 * 1024) 
#define FNAME           "peruse_file" 
 
char *fmetrics[FMETRICS] = 
{ 
        "PERUSE_FILE_N_DISK_ACCESSES_PER_IOREQ", 
        "PERUSE_FILE_N_CACHED_BYTES", 
        "PERUSE_FILE_N_SHIPPED_BYTES", 
        "PERUSE_FILE_N_IMMEDIATE_BYTES", 
        "PERUSE_FILE_N_TEMP_FILES", 
        "PERUSE_FILE_T_IOREQ_COMPLETION", 
        "PERUSE_FILE_T_GET_SHARED_POINTER", 
        "PERUSE_FILE_T_FIRST_PHASE_IN_SPLIT_IO", 
        "PERUSE_FILE_T_SECOND_PHASE_IN_SPLIT_IO", 
}; 
 
typedef struct _measure_t 
{ 
        int n_measure; 
        int count; 
        double stamp; 
        double total_time; 
        double ave_time; 
        double max_time; 
} measure_t; 
 
measure_t fdata[FMETRICS]; 
 
int file_callback(peruse_metric_h mh, int mstate, long count_val, 
                        peruse_file_spec_t *fspec, void *param) 
{ 
        measure_t *ft = (measure_t *)param; 
        double t; 
 
        switch(mstate) 
        { 
        case PERUSE_TIME_BEGIN: 
                ft->stamp = MPI_Wtime(); 
                break; 
 
        case PERUSE_TIME_END: 
                t = MPI_Wtime() - ft->stamp; 
                ft->total_time += t; 
                if(t > ft->max_time) 
                        ft->max_time = t; 
                ft->ave_time = (ft->n_measure * ft->ave_time + t) / 
                                        (ft->n_measure + 1); 
                ft->n_measure++; 
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                break; 
 
        case PERUSE_COUNTER: 
                ft->count += count_val; 
                ft->n_measure++; 
                break; 
 
        default: 
                printf("Unexpected metric type\n"); 
                return MPI_ERR_INTERN; 
        } 
 
        return MPI_SUCCESS; 
} 
 
void UserFileIoCode(){} 
 
int main(int argc, char **argv) 
{ 
        peruse_metric_h mh[FMETRICS]; 
        int rv, size, i, rank, mid; 
        MPI_File file; 
        MPI_Info info; 
        char fname[MPI_MAX_OBJECT_NAME]; 
 
        MPI_Init(&argc, &argv); 
        MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
        rv = PERUSE_Init(); 
        if(rv != PERUSE_SUCCESS) 
        { 
                printf("Error in PERUSE_Init: rv=%d\n", rv); 
                fflush(stdout); 
                exit(1); 
        } 
 
        MPI_Info_create(&info); 
        MPI_Info_set(info, "data_access", "NON_BLOCKING"); 
        sprintf(fname, "%s.%d\n", FNAME, rank); 
 
        MPI_File_open(MPI_COMM_WORLD, fname, 
                MPI_MODE_CREATE | MPI_MODE_RDWR | MPI_MODE_DELETE_ON_CLOSE, 
                info, &file); 
 
        for(i = 0; i < FMETRICS; i++) 
        { 
                memset(&fdata[i], 0, sizeof(measure_t)); 
                mh[i] = PERUSE_METRIC_HANDLE_NULL; 
                PERUSE_Query_metric(fmetrics[i], &mid); 
                if(mid == PERUSE_METRIC_INVALID)        /* not supported */ 
                        continue; 
                PERUSE_Metric_file_init(mid, file, file_callback, 
                                                &fdata[i], &mh[i]); 
                PERUSE_Metric_start(mh[i]); 
        } 
 
        /* User code with file I/O operations begin here */ 
        UserFileIoCode(); 
 
        for(i = 0; i < FMETRICS; i++) 
        { 
                if(mh[i] == PERUSE_METRIC_HANDLE_NULL) 
                        continue; 
                PERUSE_Metric_stop(mh[i]); 
                PERUSE_Metric_free(&mh[i]); 
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        } 
 
        MPI_File_close(&file); 
        MPI_Finalize(); 
 
        return 0; 
} 
 

12.3 One sided communication (MPI_Win) 
PERUSE_WIN_T_BTWN_REQ_AND_XFER Time between request submission and data transfer start. One-

sided communication is non-blocking. The actual delivery of 
data is not required to happen before the access epoch is closed. 
This metric provides information about the delay between the 
user requests for one-sided communication and the moment 
when the library actually initiates the transfer. The first time 
stamp is taken when the one-sided request is submitted. The 
second time stamp is taken when the library initiates the transfer 
of the first byte of the user buffer. Control packets related to 
internal packets are not counted as part of the user buffer. 
Rationale: Thie metric provides information about the progress 
of the non-blocking one-sided communication operations. 
Although the standard allows the library to delay the 
communication until the access epoch is closed, user programs 
may need a better understanding of the behavior and the policies 
of the MPI library for completing the one-sided requests. 

PERUSE_WIN_T_XFER Time between transfer initiation and completion. This metric 
measures the actual time for transmitting the one-sided message, 
possibly accounting for special protocols and overheads that the 
MPI library may introduce. The first time stamp is taken before 
the first byte of the user buffer is scheduled for transfer. The 
second time stamp is taken after the last byte of the user 
message is scheduled for transfer. 
Rationale: Similarly to the non-blocking send requests, the MPI 
libraries may have message progress engines are unable to move 
messages independently and the user process may need to call 
the library frequently in order to ensure timely progress. This 
metric can help users understand the behavior of the MPI library 
and modify their program to use better the capabilities of the 
MPI library. 

 
 

12.3.1 PERUSE_Event_win_register 
Synopsis 

int PERUSE_Event_win_register(int event, MPI_Win win,  
peruse_win_callback_t *callback_fn, void *param, peruse_event_h *event_h) 

Input parameters 
 event – event descriptor 
 win – valid MPI window handle 
 callback_fn – user callback 
 param – user-specific data 
Output parameters 
 event_h – inactive event handle 
Return value 

PERUSE_SUCCESS, PERUSE_ERR_EVENT, PERUSE_ERR_WIN, 
PERUSE_ERR_PARAMETER 

Description 
Creates a event handle event_h related to an MPI window object by associating the event 
descriptor event and window handle win. The user callback callback_fn is registered with the 
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output event handle. This callback function will be called when the MPI library performs an action 
that will affect the event described by event_h. If callback_fn is NULL, 
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_EVENT will be returned if the 
input event descriptor is invalid, and PERUSE_ERR_WIN if the win handle is invalid. 
PERUSE_ERR_WIN indicates that the MPI library would have returned MPI_ERR_WIN class if 
the user code tried to reference win in an MPI call. 
 
 

12.3.2  PERUSE_Eevent_win_callback_set 
Synopsis 

int PERUSE_Event_win_callback_set(peruse_event_h event_h,  
peruse_win_callback_t *callback_fn, void *param) 

Input parameters 
 event_h – event handle 
 callback_fn – user defined callback function 
 param – user specific parameter that will be passed to the callback function  
Output parameters 
 n/a 
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_PARAMETER, 
 PERUSE_ERR_MPI_OBJECT 
Description 

This function associates a user defined window callback_fn function with an inactive event handle 
event_h. The event_h and param input parameters will be passed to callback_fn when it is 
invoked. The old callback will be lost and only the callback registered with this call will be kept. If 
PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or mh is active, the function 
returns PERUSE_ERR_EVENT _HANDLE. If NULL is passed as callback_fn, 
PERUSE_ERR_PARAMETER will be returned. PERUSE_ERR_MPI_OBJECT is returned if the 
MPI object with which event_h is associated has been freed. 
 

12.3.3 PERUSE_Event_win_callback_get 
Synopsis 

int PERUSE_Event_win_callback_get(peruse_event_h mh,  
peruse_win_callback_t **callback_fn, void **param) 

Input parameters 
 event_h – event handle 
Output parameters 
 callback_fn – user defined callback function 
 param – user specific parameter that was passed to the callback function  
Return value 
 PERUSE_SUCCESS, PERUSE_ERR_EVENT_HANDLE, PERUSE_ERR_MPI_OBJECT 
Description 

This function obtains the user defined callback function that is associated with the event handle 
event_h. The value of the output parameter param is the one passed in by the user when the 
callback was registered. If PERUSE_EVENT_HANDLE_NULL is passed as an input parameter or 
event_h is active, the function returns PERUSE_ERR_EVENT_HANDLE. 
PERUSE_ERR_MPI_OBJECT is returned if the MPI object with which event_h is associated has 
been freed. 
 

12.3.4 Win related info to be included in peruse.h 
typedef struct _peruse_win_spec_t 
{ 
        MPI_Win         win; 
        void            *o_buf; 
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        int             o_count; 
        MPI_Datatype    o_datatype; 
        void            *t_buf; 
        int             t_count; 
        MPI_Datatype    t_datatype; 
        MPI_Op          acc_op; 
        int             peer; 
        int             operation; 
} peruse_win_spec_t; 
 
typedef int (peruse_win_callback_f)(peruse_event_h event_h, 
                MPI_Aint unique_id, peruse_win_spec_t *spec, void *param); 
 
/* Initialize event associated with an MPI window */ 
int PERUSE_Event_win_register( 
                int                     event, 
                MPI_Win                 win, 
                peruse_win_callback_f   *callback_fn, 
                void                    *param, 
                peruse_event_h          *event_h); 
 
 
/* Set a new win callback */ 
int PERUSE_Event_win_callback_set( 
                peruse_event_h          event_h, 
                peruse_win_callback_f   *callback_fn, 
                void                    *param); 
 
 
 
 

 
 

 
 

 
12.4 Improved Tracking of MPI Objects 

 
The initial specification of PERUSE does not provide efficient mechanisms for uniquely 

linking callback events to specific user level MPI API calls. (A somewhat obtuse mechanism is 
described in section 5.1.2) An efficient mechanism could be incorporated  by exposing an 
additional status field within MPI messages, but such an implementation requires an exposed 
change to MPI (which violates one of PERUSE’s goals). This item is therefore placed in the 
“Extensions for Future Consideration” appendix with the thought that if the MPI forum 
reconvenes, this topic could be addressed.  

This could also be used to help distinguish between point-to-point messages and 
collective messages. 

The following provides two mechanisms that illustrate how the MPI unique id could be 
employed by PERUSE (currently there is no way for callback routines to get user-defined names 
because only MPI_Wtick and MPI Wtime are allowed within a callback  - can this be expanded 
to MPI_get_comm_name?): 
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1. User-defined names from MPI_(Win,Comm)_set_name routines. Knowing the user-
defined names for MPI objects enables performance tools to display this name to facilitate user's 
understanding of performance data, because they can more easily associate a performance 
measurement with a particular MPI object.   

2. MPI implementation given unique identifiers for MPI objects.  If a user-defined name 
is not given to an MPI object, then a performance tool can display a unique identifier for that 
object instead.  It is not sufficient to use the MPI object handle in the MPI function call 
arguments to identify and differentiate between MPI objects, because an MPI implementation 
may use pointers as the handles for MPI Objects. Because of this, the value of the MPI object 
handle may not be equal across processes. A performance tool, such as Paradyn, may detect new 
MPI objects by looking at the values of the arguments in the MPI function calls. If it sees two 
distinct values, it may erroneously determine that there are two new MPI objects.  It would be 
helpful if there were a portable way to get this unique identifier for MPI objects from the MPI 
implementation. 

 
Here are two ways to provide this functionality: 
1. Add query functions to the interface to provide additional information about MPI 

objects. 
    Here's an example of what I mean for communicators: 
    struct _peruse_comm_t *    PERUSE_Query_Comm_info(MPI_Comm comm); 
    where 
    typedef struct _peruse_comm_t{ 
 MPI_Comm comm; 
 char *  name;         //user-defined name 
 int  unique_id;  //MPI implementation given unique id for comm 
    } peruse_comm_t; 
 
2. Instead of providing just the handle to the MPI object in the peruse_xxx_spec_t type, 

use a PERUSE defined type that has more information. For example: 
    _peruse_comm_spec_t{ 
 peruse_comm_t pcomm;  // where _peruse_comm_t is as it is defined above 
   void *   buf; 
 int   count; 
 .....  // continued as in the PERUSE specification 
   } 
 
 

12.5  Information wanted for support of dynamic process creation 
1. A notification of a spawn start and spawn end. This will be useful if a tool is interested 

in knowing how much time is spent in spawning operations and to notify the tool that new 
processes are now part of the application. 

2. Information about those new processes, such as PID, image name, and the node it runs 
on. This information is needed so that the tool can find and possibly attach to the new processes 
to measure their performance. 

 
This functionality could be provided in the following way: 
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Add two new events: 
PERUSE_SPAWN_START 
PERUSE_SPAWN_END 
 
Add two new functions: 
PERUSE_Event_spawn_callback_set 
PERUSE_Event_spawn_callback_get 
 
Add a new datatype for the callback fuctions: 
typedef struct _peruse_spawn_spec_t{ 
 _peruse_comm_t  *p_comm; 
 char    ** argv; 
 int   maxprocs; 
 MPI_Info  info; 
 int   root; 
 _peruse_comm_t *p_intercomm;   //or MPI Comm 
 int   ** array_of_errcodes; 
 _peruse_process_t * list_of_processes; 
} peruse_spawn_spec_t; 
 
Add a new datatype to provide information about processes: 
typedef struct _peruse_process_t{ 
 int PID; 
 char * image_name; 
 char * node_name; 
 int  peruse_process_id; // a unique id for a process within peruse 
} peruse_process_t; 
 
 

12.6 Information wanted for remote memory access 
1. Notification of events pertaining to transfer of data by and synchronization of RMA 

operations.  This will help a performance tool give more detailed timing information about RMA 
operations.  It may help the user decide on a synchronization method, a particular data transfer 
routine, or determine the placing of synchronization routines within their code.  For example, it 
might be helpful if a performance tool could show a user that the RMA data transfer was actually 
complete long before the synchronization routine was called to end the epoch. 

 
Support for this could be provided by addition of new events and new operations. 
These four events will give a performance tool information about data transfer routines: 
 
PERUSE_WIN_REQ_ACTIVATE       - RMA operation initiated by the user 
PERUSE_WIN_REQ_XFER_BEGIN     - transfer of data for RMA operation begins 
PERUSE_WIN_REQ_XFER_END       - transfer of data for RMA operation ends 
PERUSE_WIN_REQ_COMPLETE       - the operation is complete with respect to 

the definition for the particular 
synchronization method being used. For 
example, if lock/unlock synchronization 
is used, then this event will occur when 
the data transfer is complete at both the 
origin and the target processes, as that 
is how complete is defined for 
lock/unlock synchronization in the MPI 
standard.  Another way to define this 
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would be to say that this event would 
occur when a synchronization operation 
called for the data transfer operation 
would not block. 

 
The next two events will give a performance tool information about RMA synchronization 

routines.  From these the tool will know that a synchronization operation has occurred and how 
long it took to execute. 

PERUSE_WIN_SYNC_BEGIN   - the synchronization routine in the user 
application begins 

PERUSE_WIN_SYNC_END - the synchronization routine in the user 
application ends 

 
Add new operations so that the tool can differentiate between different 

kinds of RMA synchronization: 
PERUSE_WIN_FENCE 
PERUSE_WIN_START 
PERUSE_WIN_COMPLETE 
PERUSE_WIN_POST 
PERUSE_WIN_WAIT 
PERUSE_WIN_LOCK 
PERUSE_WIN_UNLOCK 
 
 

12.7 Information wanted for MPI-I/O 
A user-friendly name for MPI File objects to display in the user interface.  The standard 

allows an MPI implementation dependent format for the filename argument given to the 
MPI_File_open routine.  In addition to containing the name of the file, it could also contain 
information such as a hostname, or a username and password.  The standard does not supply an 
MPI_File_set_name routine.  Perhaps implementers of the MPI Standard could supply the actual 
name of the file through the PERUSE interface.  This way, the performance tool would have an 
MPI implementation independent way to get this information. 

 
 
 

12.8 Information wanted for Control Packets 
 
The initial specification of PERUSE does not provide sufficient mechanisms to 

distinguish control packets (such as the rendezvous control packet) from user data. This 
information is of use to parallel tool developers. 

 
 
 

12.9 Additional Language Bindings 
 
Additional language bindings may be desirable (e.g. python, java, …). 

 


