

Non-intrusive and Incremental
Evolution of Grid Programming Systems

by

Xin Zuo

A Thesis submitted to the
National University of Ireland, Dublin

for the degree of Ph. D.
in the

College of Engineering, Mathematical and Physical Sciences

March 2011

School of Computer Science and Informatics
Under the supervision of
 Dr. Alexey Lastovetsky

ACKNOWLEDGEMENTS

With no doubt, the work on this thesis has been the most challenging and interesting

project undertaken so far. Generally, I would like to thank all the people involved in

this thesis, to have at the same time provided me the means to work and enough

freedom to do a “real” PhD.

I am thankful to my supervisor Dr. Alexey Lastovetsky for his guidance, patience,

and encouragement. Without him this thesis will never come to an existence.

I would like to thank the University College Dublin (UCD), Computer Science and

Informatics School for providing me with the opportunity to learn, facilities to

perform my research, and a motivating environment that carried me forward

through my course work. I would like to express my special gratitude to the

Computer Science Administrative Department for their resourcefulness and

invaluable help throughout the course of my research.

I must also thank the Heterogeneous Computing Laboratory group members. My

special gratitude goes to Ravi Reddy, Brett Becker, and Thomas Brady for their

collaboration and invaluable discussions and for their understanding and

encouragement.

Finally, I thank my parents and my wife Ying Liu to have supported me in some

difficult moments.

 3

Contents

Section Page

Part I Approach for Evolution of Grid Programming Systems 9

Chapter 1 Introduction 10

1.1 Software Features between Industry and Community 10

1.2 Software Development of High Performance Computing 13

1.2.1 Context 13

1.2.2 Motivation of Research and General Objectives 18

1.3 Outline of the thesis 21

Chapter 2 Analysis and Approach Statement 22

2.1 Analysis of GridPRC Related Programming System 22

2.1.1 GridRPC 23

2.1.2 Evolution of GridRPC Related Software 24

2.2 Non-intrusive and Incremental Approach 25

2.2.1 Definition of Features 25

2.2.2 Approach Comparison 27

2.3 Summary of Research 29

Part II Case Study and Generic Implementation 31

Chapter 3 Enabling Direct Communications in NetSolve 32

3.1 Introduction 32

3.1.1 NetSolve 32

3.1.2 Enable direct communications between remote servers 34

3.2 Related Works 36

3.3 Design of software component 37

 4

3.3.1 Structure of Software Component 38

3.3.2 Client-side and Server-side Programs 40

3.3.3 Analysis of Designed Software Component 41

Chapter 4 Implementation of NI-Connect in NetSolve 45

4.1 Overview 45

4.2 NI-Connect Modules 45

4.2.1 Client API & Argument Parser 46

4.2.2 Server Connector 49

4.2.3 Job Name Server (JNS) 51

4.3 Installation and Deployment 51

4.4 Case study: matrix multiplications 53

4.5 Contribution 58

Chapter 5 Generic Implementation of Non-intrusive and Incremental Approach 59

5.1 Targets of Generic Approach 59

5.2 Principles and Standards 60

5.3 Generic Structure of Software Component 62

5.4 Libraries and Components 64

5.4.1 Client-side Functions 64

5.4.2 Server-side Functions 65

5.4.3 Job Name Server (JNS) 66

5.5 Practices and Challenges 67

Part III Application and Experiments 69

Chapter 6 NI-Connect:Conduct the Real-World Applications 70

6.1 Overview 70

6.2 Algorithms and Network Resources 71

 5

6.3 Genetic Crossover in Protein Tertiary Structure Prediction 72

6.3.1 Introduction and Analysis 72

6.3.2 Optimize communication structure by using NI-Connect 73

6.3.3 Results and Conclusion 74

6.4 Image Processing Using Sequential Algorithms 74

6.4.1 Introduction and Analysis 75

6.4.2 Optimize communication structure by using NI-Connect 76

6.4.3 Results and Conclusion 77

6.5 Matrix chain product problem in general scientific computations 78

6.5.1 Introduction and Analysis 78

6.5.2 Optimize communication structure by using NI-Connect 79

6.5.3 Results and Conclusion 80

Chapter 7 Large-Scale Experiments on Heterogeneous Grid Networks 82

7.1 Objective 82

7.2 Using NI-Connect in Heterogeneous Network 82

7.2.1 Homogeneous and Heterogeneous Computing 82

7.2.2 Comparison of Experimental Results 83

7.2.3 Case Study 85

7.3 Large-scale Experiments in Grid 5000 88

7.3.1 Grid 5000 89

7.3.2 Experimental Results 90

Conclusion and Perspectives 93

Chapter 8 Summary and Future Work 94

8.1 Context 94

8.2 Results and Discussion 96

 6

8.2.1 Contributions of the Thesis 96

8.2.2 Possible Improvements 97

8.2.3 Towards a Complete Development Frame for the approach 98

Appendixes 100

Appendix A: User Manual of NI-Connect 100

Appendix B: Core function of NI-Connect 105

Bibliography 114

 7

List of Figures

Figure 2.1 GridRPC model ... 23

Figure 3.1 Overview of NetSolve System .. 34

Figure 3.2 Enabling Direct Communication between remote servers 35

Figure 3.3 Architecture of the supplementary software component..................................... 38

Figure 4.1 Structure of software component NI-Connect .. 46

Figure 4.2 Experimental results of matrix multiplication ... 55

Figure 4.3 Experimental Results in Heterogeneous Network .. 57

Figure 5.1 Original GridRPC Model .. 62

Figure 5.2 Generic Non-intrusive and Incremental Approach Model 63

Figure 6.1 Synchronous and asynchronous models for PSA/Gac .. 72

Figure 6.2 Bridge communications between NetSolve servers .. 73

Figure 6.3 Enabling direct communications between NetSolve servers 73

Figure 6.4 Simple Linear Combination Filtering ... 75

Figure 6.5 Communication structure of linear combination filtering 76

Figure 6.6 Standard binary tree method used for matrix chain product problem. 78

Figure 6.7 Bridge communications for matrix chain product computation. 79

Figure 6.8 Enabling direct communications for matrix chain product computation. 80

Figure 7.1 Experimental results in both homogeneous and heterogeneous network. 84

Figure 7.2 Performing matrix chain product without NI-Connect enabled. 87

Figure 7.3 Performing matrix chain product with NI-Connect enabled. 87

Figure 7.4 Network Overview of Grid 5000. ... 88

Figure 8.1 Structure of NI-Manager ... 98

 8

List of Tables

Table 4.1 Comparison of different communication Approaches ... 54

Table 6.1 Installation and specifications of computational nodes .. 71

Table 6.2 Experiment of Genetic Crossover in Protein Tertiary Structure Prediction. 74

Table 6.3 Experiment of Image Processing using Sequential Algorithms 77

Table 6.4 Experiment of Matrix Chain Product ... 80

Table 7.1 Installation and specifications of heterogeneous servers 86

Table 7.2 Experimental results of using NI-Connect in heterogeneous network 88

Table 7.3 Computing Resources to perform experiments using NI-Connect 91

Table 7.4 Experiment results on Grid 5000 platform ... 92

 9

Part I

Approach for Evolution of Grid

Programming Systems

 10

Chapter 1

Introduction

1.1 Software Features between Industry and Community

1.2 Software Development of High Performance Computing

 1.2.1 Introduction

 1.2.2 Motivation of Research and General Objectives

1.3 Outline of the thesis

1.1 Software Features between Industry and Community

Both universities and businesses began to produce programs to do certain computing

tasks when the first computers were sold out in the early 1960s. Since then the

computer markets grow fast in both hardware and software areas. In the 21st century

the IT industry now involves about thousands of companies and communities with

millions of developers and researchers. In the area of software development, lots of

successful products have been developed by both industries and communities. One of

most famous software is Windows Operating System [Mic] developed by the

company Microsoft. By contrast, community developers have produced Linux OS

[Acc86], one of the most prominent examples of free and open source [Osi] software

collaboration. Although the functions are quite similar between Windows and Linux,

there are differences in many aspects. This is also considered as the general

differences of software development between industries and communities. These

differences are described from followings aspects:

Usage & Driven: The purpose of software development in industry is to achieve

financial success and is mostly driven by investors. It provides services to companies

and personals in many different areas such as financial, entertainment, scientific, etc.

For example, Windows is widely accepted everywhere and has millions of software

packages that run under it. While the software development running by communities

normally don’t enjoy nearly the same marketing or development budget that industry

 11

have. In fact, the developers from communities and academic are commonly credited

as founding the Open Source Software movement, which is the idea that software can

be made better through the free sharing of its source code. In this philosophy,

programmers often volunteer their time to develop software for free. The software

developed by communities are normally used by personals or communities, but

sometimes are used for commercial purpose or extended by industry developers.

Besides these, there are also some projects that are driven by government or

organization, and both community and industry take part in the development of

software, or one side is mainly responsible for the development.

Ownership: Generally, the software developed by industries is much stricter in

governing the usage or redistribution of software than the software developed by

communities. Ownership of most Industry software remains with the software

publisher and the end-user must pay fees and accept the software license to use the

software at all. Also, software companies often make special agreements with large

businesses and government entities that include support contracts and specially

drafted warranties, including an extensive list of activities which are restricted such

as: reverse engineering simultaneous use of the software by multiple users, and

publication of benchmarks or performance tests. On the other side, software

developed by communities are mostly with a free license, which means the ownership

of a particular copy of the software does not remain with the software publisher.

Instead, ownership of the copy is transferred to the end-user. As a result, the end-user

is, by default, afforded all rights granted by copyright law to the copy owner.

Additionally, a free software license typically grants to the end-user extra rights,

which would otherwise be reserved by the software publisher. An example of Free

Software license is the GNU General Public License (GPL) [GNU] which gives the

end-user significant permission but not entirely free of obligations for the end-user.

For instance, any modifications made and redistributed by the end-user must include

the source code for these, and the end-user is not allowed to re-assert the removed

copyright restrictions back over their derivative work. Another example of free

software licenses are the BSD license [BSD], which essentially grant the end-user

permission to do anything they wish with the source code in question, including the

right to take the code and use it as part of closed-source software or software released

under a proprietary software license.

 12

Development: Although both Industry and Community are targeting to make

software development predictable, controllable, and manageable, software isn’t

usually developed that way. But it can be improved to get very closed in that way.

Compared to communities, industry companies have put huge resources into it such as

staff recruitment, software testing, etc. The industries always try to get the best fit

developers through agent or their own human resources apartment, while the

communities are usually teamed up by different level of developers and researchers

from different networks. The commercial products developed by industries are

relatively more stable and secure than the software developed by community. There

are many software testers who have certain qualifications and certificates involves in

quality assurance of commercial products, while for the software developed by

communities most testers are volunteers or end-users who is doing testing only for

their own purpose, which is not covering the test of all aspects for software. However,

it doesn’t mean that the qualities of all community software are worse, for example

GNOME [GNO] is considered as one of best graphical user interface that runs on top

of a computer operating system. Commercial software products usually have very

good and quick support compared to the software developed by communities for some

obviously reason someone is paid to do so. Although there are lots of help available

on the internet and there are many self-motivated forums that can help to use the

software developed by community, there are few qualified support available. For

example, you have to figure out on your own how to install and use applications

without sabotaging your data and hardware. The most case would be that you may

find an annoying bug in an application that you need assistance with, but you may not

get it for months or without paying someone to fix it.

Management: On the industry side, in most IT company software development

process may involve many departments, including marketing, engineering, research

and development, and general management. Usually there is a certain methodology

used to structure, plan, and control the process of software development. Each of the

available methodologies is best suited to specific kinds of projects based on various

technical, organizational, project and team considerations. On the community side,

management of software development varies depending on the project as well. Some

small projects just simply have a development team only, and developers within the

 13

team may do a job of management at the same time. For some big projects which

involve many community developers they have a good strategy to manage the

software development. GNOME is as an example again they have a regular release

cycle and a disciplined community structure. It gives freedom to developers free to

develop any modules or component for GNOME, but for integration into next release

of GNOME the new add-ins have to be voted by community members of GNOME.

There are a few projects developed by community having as strong management as

industry companies have. For example, MPI [GL][SOW95] - A Message Passing

Interface Standard which establish a practical, portable, efficient, and flexible

standard for message passing. The project was led by University of Tennessee,

Knoxville, Tennessee with participation from over 40 organizations. The project

was well managed by the group from University of Tennessee and was developed by

researchers from different communities. In the area of high performance computing, it

is widely used as a standard and extended into many different implementations by

both industry and community.

1.2 Software Development of High Performance Computing

1.2.1 Context

High Performance Computing (HPC) is most commonly associated with computing

used for scientific research, such as problems involving quantum physics, weather

forecasting, molecular modelling, space technology, etc. Both Universities and

Companies have made significant contribution to the development of hardware and

software for High Performance Computing for more than 50 years. Today companies

and researchers are using the hardware mostly designed and produced by industries,

while the software running on top of the machines are implemented using the

approaches mostly from the effort of community’s research. Regarding hardware

development for High performance computing, the power of super computing system

doubles about every 1.2 years while the performance of single computer doubles

approximately every two years according to Moore’s Law [Com03]. Moreover,

different architectures are designed for super computers to achieve performance and

stability, such as a) massively parallel computers and clusters running proprietary

software, (b) proprietary clusters running standard software, and (c) Grid clusters built

from commodity hardware and software. Today, a list of the most powerful

 14

high-performance computers can be found on the TOP500 [Top500] list measured by

the High Performance Linpack (HPL) benchmark [DLP03] published by community.

As a consequence, hardware became less and less costly, but software became more

and more complicated and multifarious. Regarding software development for high

performance computing, community have made main contribution for software

development of high performance computing. The followings are techniques widely

used in the past:

• High Performance Fortran (HPF) [KR][Lov93]

• Message Passing Interface (MPI)

• Open Multi-Processing (OpenMP) [OMP]

• Grid Computing [Gra05]

High Performance Fortran (HPF) is an extension of Fortran 90 with constructs that

support parallel computing. Its original FORTRAN was the first high level

programming language (software) invented by John Backus for IBM in 1954, and

released commercially in 1957 which is still used today for programming scientific

and mathematical applications. The primary design goal of HPF was 1) to support the

data parallel programming style, 2) to achieve top performance on MIMD and SIMD

machines with non-uniform memory access costs, 3) to support code tuning on

various architectures. The first discussions on a High Performance Fortran standard

were started at Super Computing ’91 and the detailed work began in March 1992 with

a group of approximately 40 people. The HPF was officially published by the High

Performance Fortran Forum (HPFF) as the HPF Specification v1.0 in May 1993. The

development group contained members from industry, universities and United States

government laboratories. There is official connection with recognized standards

bodies for HPFF, but work on FORTRAN standardization is undertaken by the ANSI

X3J3 committee which is effectively under directions from an international group

WG5. The development work on HPF was quite active then, soon the FORTRAN 95

was published incorporated several HPF capabilities. In response, the HPFF again

convened and published the HPF 2.0 Report. But while some vendors did incorporate

HPF into their compilers in the 1990s, some aspects proved difficult to implement and

of questionable use. Since then, most vendors and users have moved to

 15

OpenMP-based parallel processing. However HPF continues to have influence and

remains the top language in scientific and industrial programming, of course it has

constantly been updated. Like other software developed by communities the software

license of HPF is like BSD license, it’s free to use and quite flexible to be extended.

Message Passing Interface (MPI) is a specification for an API that allows many

computers to communicate with one another. It is a language-independent

communications protocol used to program parallel computers. The goal of the

Message Passing Interface simply stated is to develop a widely used standard for

writing message-passing programs. The main advantages of establishing a message

passing standard are portability and ease of use. Its main features generally includes:

1) Allow efficient communication, 2) Allow for implementations that can be used in a

heterogeneous environment, 3) can be implemented on many vendor’s platforms, 4)

Semantics of the interface should be language independent. The design of MPI sought

to make use of the most attractive features of a number of existing message-passing

systems rather than selecting one of them and adopting it as the standard. Thus, MPI

has been strongly influenced by work at the IBM T. J. Watson Research Center

[BK92][BKR92], Intel’s NX/2 [Pie88], Express [PCP92], nCUBE’s Vertex [Ncu92],

etc. A preliminary draft proposal known as MPI1 was put forward by Dongarra,

Hempel, Hey, and Walker in November 1992. The draft MPI standard was presented

at the Supercomputing 93 conference in November 1993. The development of MPI is

organized by MPI forum, involving about 60 people from 40 organizations mainly

from the United States and Europe. Most of the major vendors of concurrent

computers were involved in MPI, along with researchers from universities,

government laboratories, and industry. MPI forum was not officially set up, it is

constituted together with meetings and emails during the development of MPI. The

membership of MPI forum is open to all members of the high performance computing

community. The MPI project is well managed by MPI forum all the time, at the

beginning to achieve the goal the MPI working group met every 6 weeks for two days

throughout the first 9 months until the releasing of the alpha version. Also, annual

conference EuroMPI [EM10] has been held since 1994 related to the research and

development of MPI standard. The implementation language for MPI is different in

general from the language or languages it seeks to support at runtime. Most MPI

implementations are done in a combination of C, C++ and assembly language. Both

 16

industries and communities have implemented software based on MPI standard. The

initial implementation was MPICH [MPICH], from Argonne National Laboratory and

Mississippi State University. After that, most supercomputer companies of the early

1990s like IBM had built commercialized implementations just based on MPICH,

instead of building their own version from the start to the end. Other implementations

developed by community are such as LAM/MPI [SL03], OpenMPI [DM98]. So far, a

couple of versions for MPI standard have been built. MPI-1 is the original version,

where single group operations are most prevalent. MPI-1 emphasizes message passing

and has a static runtime environment. MPI-2.1 (MPI-2, completed in 1996), which

includes features such as parallel I/O, dynamic process management and remote

memory operations. MPI-2 specifies over 500 functions and provides language

bindings for ANSI C, ANSI Fortran (Fortran90), and ANSI C++ [Ian95]. The MPI-3

[MPI3] standard is currently under development and it is scheduled to be ratified by

the end of 2010. The new standard will tackle a variety of issues, including 1) remote

memory access for one processor to write to another processor’s memory, 2) fault

tolerance to respond to a problem without crashing the application, and 3)

non-blocking collectives for simplifying and improving communication within an

application. Today after many years’ development MPI is widely accepted by both

industry and community, and remains the dominant model used in high-performance

computing.

OpenMP (Open Multi-Processing) is an application programming interface that

supports multi-platform shared memory multiprocessing programming. It specifies a

collection of compiler directives, library routines, and environment variables that can

be used to specify shared-memory parallelism in C, C++ and FORTRAN programs.

This functionality collectively defines the specification of the OpenMP Application

Program Interface (OpenMP API). This specification provides a model for parallel

programming that is portable across shared memory architectures from different

vendors. The goal of OpenMP includes 1) Standardization: Provide a standard among

a variety of shared memory architectures/platforms, 2) Lean and Mean: Establish a

simple and limited set of directives for programming shared memory machines, 3)

Ease of Use: Provide capability to incrementally parallelize a serial program, unlike

message-passing libraries which typically require an all or nothing approach, 4)

Portability: Supports Fortran (77, 90, and 95), C, and C++. The first OpenMP API

 17

specifications were published by the OpenMP Architecture Review Board (ARB) for

Fortran 1.0 in October 1997 [CDK01]. One year later, ARB released the C/C++

standard. In the year of 2000 version 2.0 of the FORTRAN specifications were

released. In 2002, version 2.0 of the C/C++ specifications was released. Until 2005, a

combined C/C++/Fortran specification was released in 2005. The latest version 3.0

was released in May, 2008, which is the current version of the API specifications

including the concept of tasks and the task construct. OpenMP has been implemented

in compilers by both industry and community. For example, the commercial

implementations are like Sun Studio compilers, Intel Fortran and C/C++ versions

Compilers, IBM XL C/C++ Compiler. The open-source compilers are like The

Fortran, C and C++ compilers and GCC (GNU Compiler Collection) [GCC] compiler.

GCC is one of most successful implementation based on OpenMP. It has been

adopted as the standard compiler by most other modern Unix-like computer operating

systems, including GNU/Linux, the BSD family and Mac OS X. Nowadays it is

ported to a wide variety of processor architectures and is widely deployed as a tool in

commercial, proprietary and closed source software development environments.

There is often some confusion between OpenMP and MPI. From a programmer's

standpoint, MPI is a library that contains message passing routines. OpenMP, on the

other hand, is a set of compiler directives that tell an OpenMP enabled compiler what

portions of the program can be run as threads. Thus the main difference can be

considered as threads against messages. OpenMP is developed for use by the

high-performance computing community and it works best in programming styles that

have loop-heavy code working on shared arrays of data.

Grid Computing originated in the early 1990s as a metaphor for making computer

power as easy to access as an electric power grid in Ian Foster's and Carl Kesselman's

seminal work, "The Grid: Blueprint for a new computing infrastructure" [FK04]. In

contrast to the traditional notion of a supercomputer, which has many processors

connected by a local high-speed computer bus, Grid Computing is a special type of

parallel computing that relies on complete computers connected to a network by a

conventional network interface, such as Ethernet. The definition of Grids is

environments that enable software applications to integrate instruments, displays,

computational and information resources that are managed by diverse organizations in

widespread locations. Grid computing appears to be a promising trend for three

 18

reasons 1) make more cost-effective use of a given amount of computer resources, 2)

solve problems that can't be approached without an enormous amount of computing

power, 3) the resources of many computers can be cooperatively and perhaps

synergistically managed as a collaboration toward a common objective. So far, there

are many Grid projects worldwide, which are hierarchically categorized as core

middleware, integrated Grid systems, user-level middleware, and applications driven

efforts [Buy02]. (a) There are different kinds of Grid core middleware such as Globus

Toolkit [FK97], gLite [Gli], and UNICORE [Uni], which provide uniform and secure

environment for accessing remote computational and storage resources. (b) Integrated

Grid systems are like GridSolve/NetSolve [ICL][CD97][ACD02][ICLG] and NINF

[TNS03], which are programming and runtime system for accessing

high-performance libraries and resources transparently. (c) User-level middleware

includes Schedulers and Programming Environments, ex: Condor-G [FTF01], a grid

job processing system; MPICH-G [KTF03], MPI implementation on Globus. (d)

Applications and application-driven Grid efforts are these examples: European Data

Grid [EDG] used for high energy physics, earth observation, biology; IPG

implemented by NASA for aerospace [IPG]; Earth System Grid by LLNL, ANL

&NCAR for climate modelling [ESG]; etc. At the moment wide-area high

performance distributed computing has been a popular application of the Grid.

Besides this, there are also a large number of other applications that can benefit from

the Grid.

1.2.2 Motivation of Research and General Objectives

In this thesis, a further analysis respecting the software development of High

Performance Grid Computing is given for following reasons:

• In past ten years, the grid computing phenomenon is a hot topic that has

captured the interest of many technology organizations, from academic

researchers to community developers. This technique radically changes the

economics of High Performance computing. There are many scientific

research and real-world applications have been benefit from the Grid.

• In the area of Grid Computing, communities have done a plenty research and

development works which made main contribution in this area. Compared to

 19

the other High performance computing techniques such as HPF, MPI,

OpenMP, industries only show interests instead of putting resources and

efforts into it. As a result, the projects development related to grid computing

are totally driven by community and most grid computing software are

developed by community.

• Although the size of Grid computing community is quite big, within

community the groups and organisations are loosely connected. It causes that

the software development of the Grid Computing projects commonly have a

few issues, which are generally the same to the issues of software

development on the community side in the aspects of development,

management, etc.

Nowadays, High Performance Grid Programming Systems have reached a certain

level of maturity. It allows scientific programmers to develop reliable Grid

applications. The systems are quite easy to install and use. They also demonstrate high

level of stability and reliability achieved over years of testing and maintenance. On

the other hand, the constantly growing number of users and applications results in the

need of further development of such systems in terms of functionality and quality.

Traditionally, addition of a new feature to a Grid programming system is achieved by

changing the code of the system and producing its new version. This new version of

the system has to replace the previous one in order to enable Grid applications with

new features. This original approach to the evolution of Grid programming systems

has two serious disadvantages. Firstly, the change of the system’s code may introduce

bugs resulting in the situation when some applications, which have been developed,

tested and successfully executed with the previous version of the system, will not run

properly with the new one. Secondly, the new version of the system has to replace the

old version systems on all computers of the Grid in order to support the development

and execution of applications enabled with the new feature. Such simultaneous and

total replacement can have very high organizational overhead and sometimes be

simply unrealistic as different computers on the Grid are managed and administered

by independent and, very often, loosely connected users. Hence, our research focuses

on establishing a new approach to address these issues. The approach we propose and

study in this thesis is to introduce a new feature by implementing a supplementary

software component running on top of the existing grid programming system. In this

 20

way, the new feature is added to the grid programming system non-intrusively and

incrementally. Non-intrusiveness means that the original system does not change and

the new feature is provided by a supplementary software component working on the

top of the system. Increment means that the software component does not have to be

installed on all computers to enable applications with the new feature. It can be done

incrementally, and the new feature will be enabled in part.

The main objective of the presented research is to prove this concept by picking a

typical Grid programming system and a particular feature, which this system is

lacking, and adding this feature to the system in the described way. As this project is

performed in the context of high performance computing, both the system and the

feature should be relevant to high performance computing in Grid environments. To

achieve our research target, particularly we worked on a case that present software

component enabling NetSolve applications with direct communications between

remote tasks. NetSolve is positioned as a one of most popular programming system

for scientific researchers to develop reliable Grid applications on global networks.

The grid feature adding into NetSolve is enabling direct communications between

remote servers, which is also widely recognized as a major issue in Grid

Programming Systems by community. In our research work, the software component

NI-Connect has been designed and implemented in a non-intrusive and incremental

way. Generic design principles are also proposed. It can be re-used for developing

non-intrusive and incremental software component for other Grid programming

system to enable new features. At last based on the implementation of enabling

direction communications between remote servers in NetSolve, we present real-world

applications with different communication structures and demonstrate the

performance improvement achieved due to the use the software component for

elimination of bridge communications on both local network and large-scale Grid

environment. This thesis also reviews the use of approach in heterogeneous

communication networks, which are typical for real-life Grid environments, than in

artificially designed homogeneous ones.

 21

1.3 Outline of the thesis

Chapter 2 describes the approach for Evolution of Grid Programming System in

details. Chapter 3 studies on the selected grid programming system and the feature

that is used to test the approach. Chapter 4 gives the implementation of software

component NI-Connect for the targeted system and the selected feature. Chapter 5

proposes generic design principles of software component for general grid

programming systems. Chapter 6 presents the experiment results of using NI-connect

to conduct the real-world applications. Chapter 7 presents large-scale experiments on

heterogeneous grid networks. Chapter 8 concludes the thesis and presents ideas for

future work.

 22

Chapter 2

Analysis and Approach Statement

2.1 Analysis of GridRPC Related Programming System

 2.1.1 GridRPC

 2.1.2 Evolution of GridRPC Related Software

2.2 Non-intrusive and Incremental Approach

 2.2.1 Definition of Features

 2.2.2 Approach Comparison

2.3 Summary of Research

2.1 Analysis of GridPRC Related Programming System

To demonstrate the approach for evolution of Grid Programming System we choose

one of High Performance Grid Programming Systems named NeSolve. There are

three reasons why we select NetSolve system in our research. First, it is considered to

be one of best programming systems in the grid environment to perform high

performance computing tasks. Second, NetSolve allows scientific programmers to

develop reliable Grid applications and gain non-performance-related benefits, like

ease of development and control of the application. Third, NetSolve has most

influential in the appearance of GridRPC [SNM02] model, which represents to be a

basic and standard mechanism for grid computing. This is also the most important

reason why we select NetSolve as our targeted Grid Programming System. In our

research, we choose to investigate the Non-intrusive and Incremental approach for

evolution of NetSolve system with new grid feature. As a result, the approach can be

applied to any Grid Programming Systems related to GridRPC model, such as

GridSolve, Ninf-G and DIET [INR] [CD06] because these Grid Programming

Systems share as same as design principles of NetSolve and actually just have slightly

different APIs. In this chapter we start to introduce our research work by describing

GridRPC and investigating the proposed approach for evolution of GridRPC software

in different aspects.

 23

2.1.1 GridRPC

In a general application, a called procedure runs in the same computing resources and

results are returned to the calling procedure. When the client side calls a procedure

which runs on the different servers and the results are sent back to the client, we

consider it as a distributed environment with a client and server running on different

computing resources. This is called a remote procedure call (RPC) [BN84] and forms

the basis for RPC programming. The GridRPC API is an extension of RPC to

standardize and implement a portable and simple remote procedure call (RPC)

mechanism in the grid environment. It is a standard promoted by the Open Grid

Forum which extends the traditional RPC for the Grid environment. A GridRPC

system processes each GridRPC task call by first performing dynamic resource and

task discovery, then mapping the task to a server and then executing the task on the

mapped server. Since each GridRPC task call consists of these operations (discovery,

mapping and execution) and each GridRPC task is processed individually, the

GridRPC model imposes the restriction that these three operations are atomic and

cannot be separated. As a result, each task has to be mapped separately and

independently of other tasks of the application. . Recent results of GridRPC system

performance analysis [ML09] indicate that GridRPC model achieves better

performance for those data parallel applications are not representative. Figure 2.1

shows the structure of GridRPC model.

Figure 2.1 GridRPC model

 24

The research work related to GridRPC model such as GridSolve and NINF-G shows

that client access to existing grid computing systems can be unified via a common

API, and computational tasks are proven to be solved. The GridRPC programming

model is easier than the RPC one since the programmers do not need to specify the

server to execute the task and the stub for each remote task. Furthermore, GridRPC

extends RPC since it adds asynchronous remote task calls. Currently, various Grid

middleware systems implement the GridRPC model, such as GridSolve, Ninf-G and

DIET.

2.1.2 Evolution of GridRPC Related Software

Nowadays, high performance Grid programming systems have reached a certain level

of maturity. Scientific researchers and programmers can develop reliable Grid

applications by using systems such as NetSolve/GridSolve and Ninf-G, DIET. The

software developed by using GridRPC model is quite easy to install and use. They

also demonstrate high level of stability and reliability achieved over years of testing

and maintenance. On the other hand, the constantly growing number of users and

applications results in the need of further development of such systems in terms of

functionality and quality.

Traditionally, addition of a new feature to a GridRPC system is achieved by changing

the code of the system and producing its new version. For example,

NetSolve/GirdSolve provide new features and enhancements by releasing new version

of software [News]. The new version of the system has to replace the previous one

in order to enable Grid applications with the new feature. This original approach to

the evolution of GridRPC systems are considered to have three serious disadvantages.

• The change of the system’s code may introduce bugs resulting in the

situation when some applications, which have been developed, tested and

successfully executed with the previous version of the system, will not run

properly with the new one.

• The new version of the system has to replace the old version on all computers

of the Grid in order to support the development and execution of applications

 25

enabled with the new feature. Such simultaneous and total replacement can

have very high organizational overhead and sometimes be simply unrealistic

as different computers on the Grid are managed and administered by

independent and, very often, loosely connected users.

• Since the research and development of GridRPC System are mainly carried

out by community, the support and update of most GridRPC software are not

as professional as commercial software products usually are. It may take

months for users to get a new version with bug fixed and new feature added,

or even longer time. It heavily depends on the management of each GridRPC

projects and users can do few things unless they find another approach to

satisfy their requirements, ex: a light-weighted external component.

Thus, our research focuses on developing a new approach, that in a way without these

issues, to enable new features in an existing Grid programming system.

2.2 Non-intrusive and Incremental Approach

In chapter 2.1, we have analyzed the evolution of GridRPC related software. The

result shows that the traditional approach to enabling the existing RPC-based Grid

Programming System with new features is considered to have two disadvantages:

• Intrusive, that is, the code of the system has to be changed in order to add

the feature; Re-configuration and re-compilation are needed for original

system.

• Non-incremental, that is, to make the system functional with the new feature,

the modified system has to be installed on all the computers that are supposed

to participate in the execution of applications.

Correspondingly, we formulated a new approach to enable an existing Grid system

with a new feature. Its main difference from traditional ones is that it is Non-intrusive

and Incremental.

2.2.1 Definition of Features

 26

In this section, we formally define the key features of our approach.

Definition of Non-intrusiveness:

• The original RPC-based grid programming system does not change,

including client-side APIs and library, server-side programs and all existing

server procedures.

• The new features are provided by a supplementary software component

working on the top of the system. The software component on both

client-side and server-side are running actually as external processes to

original grid programming system.

• Original system does not need re-compilation or re-installation. This applies

to all grid nodes. If the re-compilation and re-installation of original grid

programming systems are performed, it does not impact with supplementary

software component.

• Supplementary software component does not affect original system and make

no changes to grid environment. It can be enabled or disabled at any time.

Any changes made to the supplementary software components have nothing

to do with original grid programming system.

Definition of Increment:

• The supplementary software component does not have to be installed on all

computers to enable applications with the new features. It means the new

features can be enabled partly in the grid environment.

• To enable applications with the new features. It can be done incrementally,

step by step. All original grid programming systems are working as usual for

all grid applications at the same time.

• The new features can be enabled in part, with the completeness dependent on

how many nodes participating in the execution of the application have been

upgraded with the supplementary software component.

 27

Next, we will compare the difference between proposed approach and original

approach for evolution of grid programming systems.

2.2.2 Approach Comparison

Compared to original approach, the non-intrusive and incremental approach is

designed to achieve three general benefits. First, to establish a more robust way for

evolution of existing grid programming system, this reduces the risk of crashing other

grid resources. Second, minimize the development effort involved so that

programmers can easily add new features to existing grid programming system. Third,

new features can be easily extended to all grid nodes depends on how many nodes

participating in the execution of the application which have enabled software

component. Following paragraphs will describe the differences between original

approach and non-intrusive and incremental approach in details.

To add new functionalities or features, Grid Programming Systems traditionally

release a new version of the software to achieve the changes. The whole process

includes changing of software code, linked library, documentation, and other support

materials, etc. The testing and quality assurances of new version also need to be

carried out in the grid environment. The bugs produced by updating current grid

programming system can be from many different aspects. For example, the existing

grid application is not compatible with new API/IDL [IDL] or some applications may

need to be tweaked to take full advantage of the new model. Even the client-server

interaction functions may not be working on gird nodes which are installed different

versions of Grid programming system. There are also various reasons for not fixing

bugs such as the developers often don't have time or it is not economical to fix all

non-severe bugs. Or sometimes the changes to the code required to fix the bug could

be large, expensive, or delay finishing the project. Like any other part of engineering

management, bug management must be conducted carefully and intelligently. It could

have unintended consequences, especially in grid environment. While in our research,

the non-intrusive and incremental approach we proposed is able to eliminate all these

disadvantages. It is done as simple as that the original system is not changed at all if

we add new features non-intrusively. Programmers do not need to worry about bugs

produced by original system when they develop supplementary software component.

 28

The testing works are also relatively less. As a fact in this case evolution of software

can be considered as a separate project which is related to the original system,

including design, develop and testing. The difference is that the developers have to be

familiar with original grid programming systems and have knowledge with certain

level of technical details.

By analyzing the original approach to enabling new features to existing grid

programming system, we also discovered that there are large amount of programming

effort. If one of components of Grid Programming System switches to new

technology, there are many related works such as re-deployment, re-configuration on

all grid nodes. And testing/QA for new version of Grid Programming System

normally cost a huge amount of resources. For external linked API/Library, there are

certain extension works involved. Because technologies evolve quickly, the

development cost will be kept increasing based on the current model of upgrading

Grid programming system. Beside this, there are also some other issues to consider

when determine technical feasibility such as performance, ease of learning, Scalability,

third-party support for related products and relationships to Grid Middleware

[LHP04]. Since our research is focusing on the grid programming systems in the area

of high performance computing, researchers would like to add new features to

existing system as easy as they can and what they really care about is the amount of

development work involved. If both intrusive and non-intrusive approach works, for

their own research purpose they normally choose the easier one. As a fact, the

non-intrusive and incremental approach can reduce the development effort involved

compared with original approach. The design is relatively simple compared with

changing original system. Because it is realistic that external developers develop a

supplementary software component rather than starting a project together with the

developers who developed original grid programming systems. In this case the

management of the project is easier. And the testing will only be for supplementary

software component, not including every part of original systems. And to apply the

changes to grid environments by using the non-intrusive and incremental approach,

the amount of works are quite flexible as it is not necessary to change every grid

systems for adding new feature. While the original approach have to do so, which

involves certain amount of works.

 29

Since one of key properties of grid environment is heterogeneous, the original method

to add new features to existing Grid Programming System appears to raise issues in

two aspects. Firstly, management of grid resources are not compatible between

different versions of grid applications, which means all old version system on the grid

node must be replaced with new version to make the whole grid functional. Secondly,

the communications between grid nodes which installed different versions of grid

programming systems are disabled. This will affect the performance of grids as for

computational task not all grid resources are able to be part of computations. Different

versions of grid programming systems may have different APIs and functions, this

does not allow the evolution of grid programming system to be done one by one, or

partly deployed. But with using the non-intrusive and incremental approach, all grid

programming systems are able to perform computation for the tasks and the features

can be enabled partly. The difference is that for those grid nodes who have not added

new feature, they can still work perfectly just without new feature enabled because

every grid programming system is not changed at all. Actually, non-intrusive and

incremental software component can be installed on any accessible grid nodes by

system administrators. In this case, non-intrusive and incremental approach suits grid

environments well compared with original approach.

As we have described, the non-intrusive and incremental approach for evolution of

grid programming systems we proposed has many advantages compared with original

approach. It is more reasonable to provide this new approach for evolution of Grid

Programming System.

2.3 Summary of Research

Based on proposed approach concept, our research is to prove the feasibility of

Non-intrusive and Incremental approach, and to demonstrate the performance by

enabling new features on existing Grid Programming System. As a result, our

research including following works:

• Investigate selected GridRPC related grid programming system and

particular features which is added to the grid programming system. In

particular, we analysis one of widely used Grid Programming System which

 30

is NetSolve, and a specific feature that is to enable direct communications

between remote tasks.

• Design supplementary software component for selected grid programming

system with added grid feature.

• Based on the design, implement software component for NetSolve to enable

direct communications and present the details of the implementation.

• Propose generic principles and APIs for implementation of non-intrusive and

incremental software component, which is used to add new grid features to

any existing Grid Programming Systems.

• Present experiments for real-world applications with different

communication structures.

• Present experiments on large-scale grid environments with heterogeneous

networks.

The next two parts of this thesis will present the details of above summaries.

 31

Part II

Case Study and Generic Implementation of

Non-intrusive and Incremental Approach

 32

Chapter 3

Enabling Direct Communication in NetSolve

3.1 Introduction

 3.1.1 NetSolve

 3.1.2 Enable direct communications between remote servers

3.2 Related Works

3.3 Design of Software Component

 3.3.1 Structure of Software Component

 3.3.2 Client-side and Server-side Programs

 3.3.3 Analysis of Designed Software Component

3.1 Introduction

Our research work is to demonstrate the feasibility of non-intrusive and incremental

approach for evolution of Grid Programming System. To prove the concept, we pick a

particular Grid Programming system which is NetSolve, and a particular feature

adding to target system is enabling direct communication between remote tasks. As

this project is performed in the context of high performance computing, both the

system and the feature we select are relevant to high performance computing in Grid

environments. In this chapter, the design of software component for NetSolve is

described so that direct communications can be enabled between servers in a

non-intrusive and incremental way [LZZ06].

3.1.1 NetSolve

The NetSolve project, is developed at the University of Tennessee and Oak Ridge

National Laboratory, allows users to access computational resources, such as

hardware and software, distributed across the network. There are two reasons why we

select NetSolve as targeted Grid Programming System. Firstly, NetSolve is positioned

as a Grid Programming system related to GridRPC model for grid environment.

 33

Secondly, NetSolve is one of most popular systems which are used in the area of High

Performance Grid Computing. Besides, at the end of year 2005 GridSolve was

released by the Innovative Computing Laboratory (ICL) of the University of

Tennessee who developed NetSolve as well. Because GridSolve and NetSolve are

quite similar and in fact GridSolve is highly evolved from NetSolve, there is no

difference to prove the concept of our non-intrusive and incremental approach by

using any of these two Grid Programming Systems. While our research projects

started in 2004, the design and implementation of non-intrusive and incremental

software component for NetSolve have already been developed. In this thesis we still

select NetSolve as targeted research Grid Programming System for our research work.

Generally, NetSolve deals with the situation when some components of the

application cannot be provided by the user and are only available on remote

computers. To program a NetSolve application, the user writes a NetSolve client

program, which is any program (say, in C or Fortran [For]) with calls to the NetSolve

client interface. Each call specifies the name of the remote task to be performed,

pointers to the data on the user's computer required by the task, and pointers to

locations on the user's computer where the results will be stored. When the program

runs, a NetSolve call will result in a task to be executed on a remote computer. The

NetSolve programming system is responsible for selection of the remote computer to

perform the task, transferring input data from the user's computer to the remote

computer, and delivering output data from the remote computer to the user's one.

NetSolve is designed to solve computational science problems in a distributed

environment. The Netsolve system integrates network resources and provides a

desktop application interface. The intent of Netsolve is to hide parallel processing

complexity from user applications and deliver parallel processing power to desktop

users. A Netsolve server can use any scientific package to provide its computational

software. All component communications use TCP/IP. Netsolve provides resource

discovery, fault tolerance, and load balancing. The Netsolve system follows the

service Grid model with hierarchical cell-based machine organization. The

NetSolve-agents act as an information repository and maintain the record of resources

available in the network. As a new node comes up, information such as its location

 34

and its services are sent to the NetSolve agent. The Figure 3.1 shows the overview of

NetSolve System.

Figure 3.1 Overview of NetSolve System

3.1.2 Enable direct communications between remote servers

In this thesis, we have selected NetSolve as our targeted Grid Programming System to

investigate non-intrusive and incremental approach. For the grid feature adding into

NetSolve, we choose enabling direct communications between remote servers. This

feature is widely recognized as a major issue in GridRPC systems by community. As

a result, our case study will demonstrate both feasibility of our approach and

performance of selected grid feature added into Grid Programming System. Compared

to direct communication, the definition of unnecessary bridge communications is that

output data of remote tasks are typically sent back to the client upon completion of

each remote task even if the data are only needed as input for some other remote tasks.

In this thesis, our approach is using a lightweight supplementary software component

that enables direct communication between remote tasks in NetSolve in a

non-intrusive and incremental way, without recompilation or reinstallation of the

 35

original NetSolve programming system. The Figure 3.2 shows how to enable direct

communication in NetSolve.

In the figure, we have two tasks, A and B, to be performed on remote nodes. The

output of task A is the input of task B. In NetSolve, the output of procedure A has to

be sent back to the client machine and stored there, and then transferred together with

input B to another server. This causes unnecessary communications. To enable direct

communication between procedure A and procedure B, the data are just transferred

between the remote servers. The implementation of the NI-Connect will introduce

handler to parse the parameters which will be presented in next Chapter. So upon

invocation of NI-Connect, The use of handler tells procedure B to get the input from

the server where Output A is located directly, instead of getting data from the client’s

machine. Thus in this way, the direct communication is enabled between remotes

servers in NetSolve.

Figure 3.2 Enabling Direct Communication between remote servers

 36

3.2 Related Works

To enable direct communications between remote servers, a few projects have

implemented the function to solve the problem. We will describe the method they use

and compare to our non-intrusive and incremental method one by one.

NINF is a remote computing infrastructure built as a component of the Asia Pacific

Grid [Apg]. The latest release of NINF is an implementation of Grid RPC using

Globus. These two systems share the similar motivation, design and protocol, as well

as the similar problems, one of which is Bridge Communication. Both systems allow

the user to invoke a procedure on the remote server. Ninf employs the Grid RPC

specification. NetSolve uses its own API and also provides the port for other systems

(Grid RPC, Matlab, Octave [Oct], Mathematica, etc.). Being constructed on the

similar principles, NINF and NetSolve have a lot of similarities in their APIs. To

alleviate the problem of bridge communication, NetSolve introduces the mechanism

called Request Sequencing. The mechanism imposes a number of restrictions on the

sequence of remotely called tasks, the most restrictive of which is that all the tasks

have to be performed on the same computing node [AAB02].

Another effort to enable direct communications between remote servers is the

Logistical Computing and Internetworking (LoCI) [BAB02]. LoCI provides facility to

schedule the data storage at a place ‘close’ to the receiver. Although it is sufficient, the

goal of building a complete network storage system makes LoCI over-heavy for our

purpose.

One similar work to improve communication features for Grid environments is an

extension of ProActive Groups [BB05], which provides a mechanism to optimize Grid

environments. Based on IP multicast, changes are in internal behaviours and thus earn

high performance communication for grid computing systems.

The REDGRID project [DJ04] is the closest to our approach sharing the similar idea

behind its design. The main difference is that REDGRID is built into NetSolve. It

requires re-compilation and re-installation of the modified NetSolve on all involved

computing nodes to enable direct communication. Also the REDGRID’s design is not

 37

extendable and relies on the NetSolve architecture, and it looks like that a certain

amount of work is needed to port REDGRID to other GridRPC-based systems.

SmartGridSolve [BKL06][BG08][BDG09] is one of recent works of mapping tasks in

Grid Programming System for high performance computing, which is an extension of

GridSolve. In GridSolve each task in an application is mapped individually and

independently of other tasks of the application. This model supports the minimization

of the execution time of each individual task of the application rather than the

minimization of the execution time of the whole application. SmartGridSolve allows

tasks to be mapped collectively and therefore supports the minimization of the

execution time of a group of tasks collectively. There are a number of advantages of

mapping tasks collectively. When mapping tasks individually, the communication

load and computation of a single task are only considered. However when tasks are

mapped collectively the communication load and computation load of multiple tasks

can be considered together. In addition the relationships between tasks can be

considered such as the order of tasks and data dependencies between tasks. The

SmartGridSolve model is designed to be both incremental and interoperable with the

underlying GridRPC middleware. It is incremental to the GridRPC model which

means a SmartGridSolve client application can be executed on a standard GridRPC

network where all servers can only communicate with the client. Furthermore, a

SmartGridSolve application can be executed on a network consisting of both GridRPC

enabled servers and SmartGridSolve enabled servers (Smart Servers) that can

communicate with each other. It is interoperable with GridRPC model which means

that if the SmartGridSolve extension is installed, the application programmer has the

option to implement their application using the GridRPC model or the

SmartGridSolve model. As a result of these interoperability and incremental features

SmartGridSolve is both upward and downward compatible with the GridRPC model.

3.3 Design of software component

Our research is to formulate a new approach to enable an existing Grid system with a

new feature. The key features of our approach for evolution of Grid Programming

System are Non-intrusiveness and Increment, the supplementary software component

 38

to enable direct communications between remote servers in NetSolve needs to be

designed and functioning in a non-intrusive and incremental way. Hence in our

research, the design of software component is following two major design principles

which are non-intrusiveness and increment. In this section, we will describe the

design of non-intrusive and incremental software component for NetSolve to enable

direct communications between remote servers in details.

3.3.1 Structure of Software Component

The proposed software component consists of three parts: Client API & Argument

Parser, Server Connector and Job Name Service (JNS). Client API is for client-side

programmers to use, it provides a uniform interface for the client to make remote

procedure calls. Server Connector is on the server side, which is a proxy program

responsible for interacting with clients and other Server Connectors to enable direct

communications. Job Name Service (JNS) is responsible for registration of a

procedure upon its invocation during RPC call. Figure 3.3 depicts the architecture of

the non-intrusive and incremental software component designed for NetSolve to

enable direct communications between remote servers.

Figure 3.3 Architecture of the supplementary software component

 39

Following steps shows how a grid application is performed in a grid environment

where non-intrusive and incremental software component are installed on several grid

nodes.

Step 1: Scientific researchers use Client API to program the computing task and

specify the data resources which are going to be transferred to other grid resources.

It’s same to the way of programming in the original grid programming system.

But programmers can specify the data dependencies for the computational tasks.

Step 2: Client API passes the description of the task to the Argument Parser,

which communicate with grid resources to collect the resource information to run

the task. The information includes the deployment of the grid applications in the

grid which perform the task, the list of servers which have new features enabled,

the performance of all available servers. Then Job Name Server generates the job

list for each allocated server.

Step 3: Before the task is started to execute, Argument Parser register the

information collected from grid resource to the Job Name Server. Then client API

uses the information on the Job Name Server to invoke the Server Connector of

NI-Connect to function.

Step 4: All Server Connectors invoked start to connect to the Job Name Server to

retrieve the jobs list of their own. Based on the jobs list retrieved, Server

Connectors communicate with client or other servers to require the data source to

perform the scheduled task on each server. Direct communications can be enabled

between remote servers through server connectors.

Step 5: With completion of data transaction, grid computing servers perform the

execution of the task submitted by Server Connector and return the result to the

Server Connector.

Step 6: All Server Connectors repeat the process until all of their jobs on the Job

Name Server are completed. And the final result will be return to the client.

 40

As we can see in the above steps, a remote task can be executed on the remote servers

by using non-intrusive and incremental software component to enable direct

communications. Next, based on the design of software component, we will present

more details about functionalities of software component enabling direct

communications in NetSolve on both client-side and server-side.

3.3.2 Client-side and Server-side Programs

On the client side,

• Client API provides a uniform interface for the client to make remote

procedure calls. Despite the modification on the remote side, the wrapper

API allows the calls to be made in the same manner. The only difference is in

the arguments. We parse the list of argument to construct the handler array.

For each argument, the relevant communication information is generated. For

each input argument, which is a variable storing real data, the local IP

address and the port number are used as such communication info. If this

input argument is a handler, then a request is sent to the JNS to get the IP

address and the port number of the remote resource and this information is

used as communication info for this handler.

• For each output argument, which is a variable storing real data, the client

wrapper function will set up a socket to download output data from

computational servers. If this output argument is a handler, the re-turned

result information from computational servers is sent to JNS and registered.

In the future, other computational tasks can require the data source

information from JNS and use the obtained information to get real data. A

handler contains the data source/target’s IP address and the port number,

which will be used to send/receive data. In this sense, upon making a call to

NetSolve, this is actually only a handler array which is transferred to the

remote server. For example, in the wrapper function for mynetsl(), if the

client cannot find any server, which has both Server Connector and the

requested remote procedure, it will still run properly by using calls to the

original netsl() functions.

On the server side,

 41

• A proxy program called Server Connector is responsible for interacting with

clients and other Server Connectors to enable direct communications. The

Server Connector has two main functions. The first one is to pass handler

information between clients and servers. This allows servers to know how to

get the data by setting up direct communications. The second function is the

extraction of the handlers’ information and using it to download needed data

through direct communication. After all needed data have been acquired, the

Server Connector calls the procedure to re-submit to the local host to perform

computations that the user exactly requested for. There is no difference in the

way the client and computational servers download the result of the

computations. The Server Connector firstly returns the result’s

communication information to the client. Then it sets up a socket waiting for

the client or the server to connect in to download the result of computations.

• All the other I/O data transfer is managed by the Server Connector. In

particular, the data transfer between the client and the server is performed

with help of the client-side JNS. The algorithm of selection of the fastest

server among all available servers is the same as the one implemented in the

NetSolve agent program.

3.3.3 Analysis of Designed Software Component

To investigate how the designed software component to enable direct communications

in NetSolve in a non-intrusive and incremental way, an analysis of principles based on

the design is presented in following two parts.

Non-intrusiveness analysis:

• Original NetSolve programming system is not changed at all. Developers

needn’t to make any changes to the original grid programming system when

they deploy supplementary software component on both client-side and

server-side. It does NOT need re-compilation or re-installation of the original

NetSolve servers. The server connector on the server-side is running as a new

process individually which can be easily stopped by server administrator.

• All server-side procedures which are already deployed on the NetSolve

server do not need to be changed as well. This allows other procedure

 42

developers to develop their own applications as usual. After the

supplementary software component is enabled on the server-side, any new

procedure can be added to NetSolve in the way as same as before.

• Client API & Argument Parser, Server Connector and Job Name Service are

all built on top of original NetSolve systems. If any of these three parts stop

working, what happened is that the new features of supplementary software

component are not available anymore. But it will not affect the original

NetSolve systems in all aspects. Rather than vice versa, if NetSolve process

is stopped, the supplementary software component no longer function

anymore.

• Client programmer can either use designed Client API & Argument Parser or

original NetSolve API to write his/her own client program. But with designed

Client API & Argument Parser, client can specify the data dependency of all

input in order to enable direct communications between remote servers. If

client programmers use original NetSolve API to design tasks, there is no

issue. In this case, supplementary software component is not invoked at all

and as a result the new feature is not enabled. For compilation of programs,

there is no difference between two choices.

• The relationship between Server Connector and Original NetSolve system is

that the Server Connector re-submits the task to the local NetSolve server

after all the necessary data are successfully received. NetSolve system

regards Server Connector as a NetSolve procedure, just like all other

procedures deployed on the server side. Regarding the interaction between

Server Connector and NetSolve system, Server Connector can be considered

as a client to the original NetSolve server.

• Server Connectors receive input data from and send output data to other

servers to reduce un-necessary communications. Original NetSolve systems

are not involved in the process at all. Server Connector is designed as a part

of software component to enable new features, without Server Connector the

original NetSolve systems are not able to enable direct communications

between remote servers.

• Job Name Service is set up on the client side. Compared with NetSolve agent,

the design and functionalities are quite similar in Job Name Server. It

 43

contains all information about every handler. Handler registrations are done

during the execution of the wrapper functions implementing the Client

programs on the client side. There is no communication between JNS and

Original NetSolve systems. Job Name Server can only be accessed by

internal functions within the supplementary software component.

Increment analysis:

• The supplementary software component does not have to be installed on all

servers. As what shows in Figure 3.3, not all NetSolve servers have installed

the Server Connector. All Server Connectors can communicate with each

other to enable direct communications between NetSolve Servers where

supplementary software component has installed and enabled. Server

Connector is the only part of supplementary software components on the

server-side, both installation and un-installation of Server Connector can be

easily done by server administrators.

• After installation of software component on the server-side, server

administrators can enable Server Connectors incrementally, step by step.

Server Connectors can be easily disabled after enabled if users want to cancel

the new features which added to NetSolve system. On the client side,

programmers only need to install and use the Client API & Argument Parser

to develop computational task. There is a chance that if there is no Server

Connectors enabled but client programmers still use designed Client API and

Argument Parser to program remote tasks, in this case the remote tasks can

still be executed in the way which is same to the process of performing

remote tasks in original NetSolve system.

• To perform a remote task on the NetSolve Servers, required library has to be

installed on the NetSolve Servers. This is the same in the original NetSolve

system. But direct communications can only be enabled between servers

which have Server Connectors installed. It doesn’t mean that the servers

whose have not Server Connectors installed won’t be able to perform the

remote task. Actually they are still able to execute remote tasks if they have

required library, just not be able to enable direct communications.

 44

• Direct communications can be enabled not only between remote servers, but

also on the same server. If the input data is already on the computational

NetSolve server, Server Connector can simply pass the data to the NetSolve

procedure to perform the computation instead of sending data back to the

client and get the same data back again. In this case sometimes even there is

only one NetSolve server with supplementary software component installed

and enabled, the direct communications can still happen.

The analysis of Non-intrusiveness and Increment shows the design of software

component theoretically is able to enable direct communications between NetSolve

servers. Next chapter we will present the implementation of software component

enabling direct communication in NetSolve in details.

 45

Chapter 4

NI-Connect: Implementation of Software Component

4.1 Overview

4.2 NI-Connect Modules

 4.2.1 Client API & Argument Parser

 4.2.2 Server Connector

 4.2.3 Job Name Server (JNS)

4.4 Installation and Deployment

4.5 Case Study: matrix multiplications

4.6 Contribution

4.1 Overview

In last chapter, we select NetSolve as targeted Grid Programming System and

enabling direct communications as new feature adding to NetSolve. We also

presented the design and principles of supplementary software component which is

used to add new features to existing Grid Programming system. As a result, we have

implemented the software component NI-Connect for NetSolve to enable direct

communications between remote servers. In this chapter, we will present the

implementation of NI-Connect in details together with a case study. Installation and

deployment of NI-Connect on both client and server side are also discussed.

4.2 NI-Connect Modules

The software component NI-Connect consists of three modules: Client API &

Argument Parser, Server Connector and Job Name Service (JNS). In Figure 4.1 it

shows the structure and communication model of NI-Connect:

 46

Figure 4.1 Structure of software component NI-Connect

Following sections will describe the different modules of NI-Connect in details.

4.2.1 Client API & Argument Parser

Client API provides a uniform interface for the client to make remote procedure calls.

Despite the modification on the remote side, the wrapper API allows calls to be made

in the same manner. The only difference is in the arguments. Same as the technique

employed in NetSolve, we parse the calling parameter to construct the handler array

and perform the data transfer. By checking each Arguments with a loop,

communication information for each input and output data is generated. When input

Arguments are variables which store real data, local ip and port number are given as

data’s communication info. Else if they are handlers, then requests are sent to JNS to

get resource’s ip and port number used for data’s communication info. When output

Arguments are variables which store real data, then client will set up sockets to

download result data from computational servers. Else if they are handlers, the

returned result information from computational servers are sent to JNS and registered

there. So that in the future other computational tasks can request data source

 47

information from JNS then use the requested info from JNS to acquire real data. A

handler contains the data source/target’s address and port number, which will be used

to send/receive data. In this sense, upon making a call to NetSolve, this is actually

only a handler array which is transferred to the remote server. All the other I/O data

transfer is managed by the procedure itself. The API mynetsl() is summarized as

follows:

Int mynetsl(ProcName,ArgList) {

// get list of Netsolve servers
server_list = my_NS_config();
for (i=0;i<number_of_servers;i++) {
 server_info[i]=get_info(servers_list);
}

// get list of problems for each server
for (i=0;i<number_of_servers;i++) {
 prob_list[i]=my_NS_problmes(server_info[i]);
}

// select servers which has installed
// our component and the problem “ProcName”
// is in the list of that server’s problems list
servers_available= myselect(server_info, prob_list);

// if there is at least one server satisfy the two
// conditions described above
if (servers_available != NULL)
 {

// select fastest server from available servers
server_best=select_fastest(servers_available);

// generate communication information
// for all Arglist by checking input
// arguments’ type
if LOCAL RESOURCE {

 // allocate local ip and port number
local ip and port -> ArgList_info;
}

else if HANDLER {
// get ip and port number from JNS
 ArgList_info= myRequest(handler);;

}

// make Netsolve non-blocking assignment call
// and invoke server-side wrapper

 48

err=netslnb_assignment(“server_best:connector”, ProcName,
ArgList_info);

// set up socket waiting for computational
// server to connect in to download local
// input data described by Arglist_info.
for (i=0;i<ArgNum;i++) {

mysocket_wait(data_input[Arg_num]);
}

// waiting until result info is returned
result_info = mysocket_wait();

// receive result data from server or
// submit its info to JNS
if LOCAL RESULT {

result = mysocket_get(result_info);
}

else if HANDLER {
myRegister(result_info);
}

}
// else if there is no available server satisfy the two
// conditions described above
else
 {

// connect to JNS to request new variables
// (corresponding to handlers) information which
// is created by previous computation.
hdl_info=myRequest(ArgList);

// create a new ArgList by checking ArgList,
// hdl_info and PDF, also new memory allocated
// variables are created instead of handler to
 // store the data in the function.

 new_ArgList = mycreate(ArgList, getPDF());

 // use original netslnb function to submit task
 err=netsl(ProcName, new_ArgList);

 // register new variables’ info to JNS
myRegister(new_ArgList);
}

}

In mynetsl(), if the client can’t find any server which both has installed our component

and has the request function, it will still run properly by using original netsl calling

 49

functions. In particular the data transfer between the client and the server is performed

as well with the help of client-side JNS. To select a fastest server among all available

servers, the algorithms we use is absolutely same to the one implemented in the

NetSolve agent program.

For the client side to run a remote task, originally the servers are selected by the

NetSolve agent who is located on one of remote servers. The default setting is to use

netsolve.cs.utk.edu. System administrator can re-configure it by editing the file

“server_config” to replace netsolve.cs.utk.edu with specified agent (say

my.machine.net). The commands are as follows:

UNIX> setenv NETSOLVE_AGENT my.machine.net

UNIX> $NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_agent

In the wrapper library for Client API & Argument Parser, to enable direct

communications between remote servers a NetSolve agent will be picked from one of

remote servers which have Server Connector installed. The picked agent will work the

same way and have full functionalities compared with original NetSolve agent. Only

one NetSolve agent can be running on a given machine at a given time. The new agent

is responsible for registrations of NetSolve servers wanting to participate in the

NetSolve system. After servers are registered, client programs can contact this agent

and have requests serviced by one or more of the registered servers to enable direct

communications between NetSolve Servers. Currently this process is typically done

manually by system administrator. Next step is to implement an algorithm to select a

NetSolve agent automatically from one of remote NetSolve servers which have new

feature enabled, and investigate how to pick the best agent to execute the remote task.

It is one of future development work for this research topic.

4.2.2 Server Connector

On the server side, a proxy program called connector is responsible for interacting

with clients and other servers to enable direct communication. The connector is

consists of two parts. One is dedicated to pass handlers information between all clients

and servers. This lets servers know how to get the data directly. The other part is

 50

responsible for extracting handlers’ information and using it to download needed data

through direct communication. After all needed data are acquired, it calls the NetSolve

functions to perform computation that the user exactly request for.

To send finished computation results to the client or other servers. There is no

difference for either client or another computational server to download the result. The

server firstly returns result information including IP and port to the client, then waits

sockets which acquire its own IP and unique port number to connect in to download

result. That connect-in socket could be from a client or any other computational server.

This means that the server just passes the result when accepting a legal connection.

The pseudo code for connector() can be summarized as follows:

int connector(ProcName, ArgList_info) {
// check the ArgList_info

// get all input source information by
// extracting ArgList_info
source_info = extract(ArgList_info);

// set up sockets to download all input
// data by using input source information
for (i=0;i<ArgNum;i++) {

mysocket_get(source_info[Arg_num]);
}

// call our computational function which
// user want to compute result
result = call(ProcName,input1,input2,…);

// fill result_info with server’s ip and port
// number
local ip and port -> result_info;

// return result_info to client
mysocket_send(result_info);

// set up socket waiting for client or another computational
// server to download result
mysocket_wait(result);
}

 51

4.2.3 Job Name Server (JNS)

Any procedure registers itself on a dedicated Job Name Service (JNS) upon its

invocation. Other procedures may send requests to the JNS to search for this registered

procedure. JNS is set up on the client side automatically. During the execution of the

application, it contains all information about every handler. Only client has the

permission to register or access a handler on the JNS. There is no communication and

interaction between JNS and computational servers. Handler publication is made by

calling jobPublish(Handler, dataInfo), and jobQuery(Handler, dataInfo) is used for

searching. In the prototype version of the system, we use the following format to label

a specific job:

<jobAddr>

Handler= "hdlA"

dataInfo[0] = "csa004b3pc2.ucd.ie" // ip

dataInfo[1] = 2919 // port number

dataInfo[2] = 100 // matrix size

dataInfo[3] = 2 // requested times

dataInfo[4] = 0 // broadcast type

……

</jobAddr>

In this example, Handler contains the name of the handler used in the function

prototype. The array dataInfo specifies the data’s location, data’s format details and

transaction mode. This information allows the job to be uniquely identified in the

network. Different jobs can use the JNS to publish themselves, search others, and

exchange data. Also, the JNS is designed as a system-independent system on the client

side, so that it can be applied to different RPC-based systems and not influenced by

any fault or crash on the server side.

4.3 Installation and Deployment

To use NI-Connect, on the client side, programmer should install the wrapper API and

compile the client program with the wrapper library. Our wrapper API allows the

 52

programmers to explicitly specify the dataflow among remote tasks. So they only

need to slightly modify their client code, but the principle is quite easy: just replace

the input/output arguments with handlers and pass the handlers as the input/ output

data. During the initial configuration of Client API & Argument Parsers, note that

services/tasks does not need re-compilation when NetSolve system has been

configured with enabled Server Connect software component.

The steps of installation of our software component are summarized as follows:

• Run configure program to create a directory named “dc” at the root of

NetSolve root directory.

• Install library files including mynetsl.c, mynetsl.h to the dc directory.

• Build lib files for Wrapper API:

% gcc –Wall –g –c –o libmynetsl.o mynetsl.c –I$NETSOLVE_ROOT/include

% ar rcs libmynetsl.a libmynetsl.o

More details are given in Appendix A.

To enable direct communication in the grid environment on the server side, the

procedure programmers should do nothing to enable direct communications. They

develop their procedures as usual. The supplementary software component has no

effect on both existing procedures and newly added procedures.

For server administrator, on each grid node they need to register the software

component as a new problem file to NetSolve. No re-installation and re-compilation to

NetSolve itself are needed. The only work is to set up Job Name Service to enable

tasks to locate each other. And the software component does not have to be installed

on all nodes simultaneously. It can be used to enable direct communications between

remote tasks incrementally. It allows for remote calls both to tasks enabled and to

tasks not enabled within the framework of the same application.

 53

4.4 Case study: matrix multiplications

To demonstrate the approach, this section presents a case study which enables direct

communication in NetSolve in a non-intrusive and incremental way. The case, namely

matrix multiplication, uses two remote servers to perform three matrix multiplications,

and the client, agent and servers all are in the same Ethernet segment. In this case,

there are eight remote servers to perform eight matrix multiplications. The

interconnecting network is based on 100 Mbit Ethernet with a switch enabling parallel

communications between computers. The client code WITH bridge communications

looks as follows:

/* Compute matrix multiplications */

mynetsl("matmul ()", matA, matB, matC, n);

mynetsl("matmul ()", matC, matD, matE, n);

mynetsl("matmul ()", matE, matF, matG, n);

mynetsl("matmul ()", matG, matH, matI, n);

mynetsl("matmul ()", matI, matJ, matK, n);

mynetsl("matmul ()", matK, matL, matM, n);

mynetsl("matmul ()", matM, matN, matO, n);

mynetsl("matmul ()", matO, matP, matQ, n);

The client code with direct communications is as follows:

/* Compute matrix multiplications */

mynetsl("matmul ()", matA, matB, hdlC, n);

mynetsl("matmul ()", hdlC, matD, hdlE, n);

mynetsl("matmul ()", hdlE, matF, hdlG, n);

mynetsl("matmul ()", hdlG, matH, hdlI, n);

mynetsl("matmul ()", hdlI, matJ, hdlK, n);

mynetsl("matmul ()", hdlK, matL, hdlM, n);

mynetsl("matmul ()", hdlM, matN, hdlO, n);

mynetsl("matmul ()", hdlO, matP, matQ, n);

 54

Parameter n is the dimension of matrices. matA, matB, matC, matD, matE, matF,

matG, matH, matI, matJ matK, matL, matM, matN, matO, matP and matQ are matrix

data. hdlC, hdlE, hdlG, hdlI, hdK, hdlM and hdlO are handlers, which are used to

eliminate bridge communication. In the experiments, we only measure the

communication time of trails.

In this case there are three trails for matrix of different sizes. Experimental results are

presented in Table 4.1.

Size
Trail 1 Trail 2 Trail 3 Average Speedu

p B D B D B D B D

1000 38.3 28.7 39.5 29.2 38.6 29.1 38.8 29 25.2%

2000 155.5 115.7 151.2 113 153.4 110 153.4 112.9 26.4%

3000 342.9 238 345 255 340.8 260 342.9 251 26.8%

4000 607 428 604 436 611 450 607 438 27.8%

5000 920 691 923 671 908 636 917 666 27.4%

6000 1354 901 1379 1005 1402 1094 1378 1000 27.4%

7000 1840 1391 1810 1392 1895 1321 1848 1368 26.0%

8000 2460 1773 2395 1810 2453 1853 2436 1812 25.6%

9000 3069 2349 3095 2298 3023 2205 3062 2284 25.4%

10000 3563 2670 3810 2894 3750 2845 3708 2803 24.4%

Table 4.1 Comparison of different communication Approaches

Figure 4.2(a) shows the communication time as a function of matrix size. Figure 4.2(b)

shows the speedup of the application with direct communications.

 55

(a)

 (b)

* bridge communication x direct communication

Figure 4.2 Experimental results of matrix multiplication

(a) Time elapsed for both communication types when all communication links have

the same bandwidth, 100Mb per sec. (b) Speedup due to the use of direct

communications for the homogeneous communication network.

 56

As expected, the communication cost is visibly reduced by using direct

communications. In the experiments, seven communication bridges are eliminated

among twenty four communications. So, the theoretical speedup is 7/24 = 29.2%. The

obtained experimental speedup ranges from 24% to 27%, which is close to the

theoretical value. We can also see that the experimental results are similar to the

REDGRID ones, which range from 18% to 28%. In the Table 4.1 experiment data is

given to show the speedup for different ratio of eliminated bridge communication,

while we choose same matrix size 10000 for each case. The result of experiments

shows that the speedup using new approach is crescent while the ratio of eliminated

bridge communication is increasing. If the network interconnecting the computers is

based on same bandwidth connection, limit value of speed up is as follows:

%3.333/1)
3
1(lim ==

×
−

∞>− n
n

n

If communication links connecting remote computers are much faster than

communication links connecting the remote computers and the client computer, the

speedup due to elimination of bridge communications will be much higher. To

corroborate it, we design another experiment. We manually make all bridge

communications be performed at the rate of 10 Mbit per second. For the direct

communications between remote servers, we still use 100 Mbit Ethernet

interconnecting network. Figure 4.3(a) shows the communication time for this

configuration of the communication network. Figure 4.3(b) presents the speedup of

the application with direct communications over the one with bridge communications

in this case. The experimental speedup is around 54% when the ratio of eliminated

bridge communications is 2/9. Thus, much higher speedup can be achieved in

heterogeneous communication networks, which are more typical for real-life Grid

environments than in artificially designed homogeneous ones.

 57

(a)

 (b)

■ bridge communication ▲ direct communication

Figure 4.3 Experimental Results in Heterogeneous Network

(a) Time elapsed for both communication types when communication client and

servers is at the rate of 10 Mb per sec, and communication between servers is at the

rate of 100 Mbit per sec. (b) Speedup due to the use of direct communications for the

heterogeneous communication network.

 58

4.5 Contribution

The main advantages of the approach we have showed in this chapter are as follows:

• The approach is non-intrusive, requiring no changes in the enabled

programming system.

• It does NOT need recompilation or reinstallation of the Grid programming

system.

• The approach is incremental by nature allowing direct communication

enabled for remote tasks, and to be freely mixed in a single application.

• Programmers are given the ability to explicitly specify the data flow in their

code.

• Finally the experimental results of case study have shown that the

performance of Grid applications can be significantly improved by using our

supplementary software component.

It is proved in this chapter that a selected Grid Programming System NetSolve can be

enabled with new feature in a non-intrusive and incremental way. Next, we will study

how to apply the approach to different RPC-based Grid programming systems.

 59

Chapter 5

Generic Implementation of Non-intrusive and Incremental

Approach

5.1 Targets of Generic Approach

5.2 Principles and Standards

5.3 Generic Structure of Software Component

5.4 Libraries and Components

 5.4.1 Client-side Functions

 5.4.2 Server-side Functions

 5.4.3 Job Name Server (JNS)

5.5 Practices and Challenges

5.1 Targets of Generic Approach

In Chapter 4, a supplementary software component NI-Connect has been implemented

for case study which enables direct communication in NetSolve in a non-intrusive and

incremental way. The Non-intrusive and Incremental approach for evolution of Grid

Programming Systems is proved feasible. The experimental results show higher

performance to run the applications on several computational servers by performing a

series of matrix multiplication. As a result, the feasibility and performance of our

approach is demonstrated with targeted Grid Programming System and particular

feature. Next, we formulate principles and standards for generic implementation of

non-intrusive and incremental approach for general Grid Programming Systems to

enable new features. The research work in this chapter is to achieve following

targets:

• Formulate the principles and standards to generate generic software

component for all GridRPC-based grid programming systems.

• Design a generic non-intrusive and incremental structure to enable new

features in GridRPC-based grid programming system.

 60

• List the libraries and components that can be easily re-used for generic

implementation of Non-intrusive and Incremental approach.

5.2 Principles and Standards

Same to the NI-Connect, the features of generic software component are

Non-intrusiveness and Increment. Non-intrusiveness means that the original system

does not change and the new feature is provided by a supplementary software

component working on the top of the system. Increment means that the software

component does not have to be installed on all computers to enable applications with

the new feature. It can be done incrementally, and the new feature will be enabled in

part. The implementation of generic software component is based on client-server

model as well, which consists of three parts: local development library, JNS

components, and add-on servers with control functions.

Local Development Library: It is used to develop client-side calling procedure in the

grid programming system. It provides a uniform interface for the client user to make

remote procedure calls. Client API & Argument Parser which is already developed in

NI-Connect is major part of local development library. Despite the modification on

the remote side, the API allows the calls to be made in the same manner. The only

difference is in the arguments that can be not only variables storing real data but also

handlers. Like in NetSolve, we parse the list of arguments to construct the handler

array. For each argument, the relevant communication information is generated. For

each input argument, which is a variable storing real data, the local IP address and the

port number are used as such communication information. If this input argument is a

handler, then a request is sent to the JNS to get the IP address and the port number of

the remote resource and this information is used as communication information for

this handler. For each output argument, which is a variable storing real data, the client

wrapper function will set up a socket to download output data from computational

servers. If this output argument is a handler, the returned result information from

computational servers is sent to JNS and registered there.

Job Name Service (JNS) component: It is responsible for registration of a procedure

upon its invocation during RPC call. As same to the JNS that we have developed for

 61

NI-Connect, for the other generic software component to enable new features for

GridRPC-based system the functions are absolutely same. Each task running in the

remote servers called through NI-Connect Client API are registered on the local name

server. Other procedures may send requests to the JNS to search for the registered

procedure. JNS is set up on the client side automatically upon each task is scheduled.

During the execution of the application, it contains all information about every

handler. Only the client has the permission to register or access job registration

information which includes application definition class, grid resources running the

task, etc. There is no direct communication and interaction between JNS and

computational servers. Because JNS is designed as a system-independent system on

the client side, it can be applied to different RPC-based systems and not influenced by

any fault or crash on the server side.

Add-on Servers and Control functions: Server Connector in NI-Connect is an

implementation for NetSolve to enable direct communications. It is on the server side,

which is a proxy program responsible for interacting with clients and other Server

Connectors to enable direct communications. For generic non-intrusive and

incremental software component, it is quite similar with extensions of control and

management functions. Add-on Server consists of three main parts. The first part is to

pass handler information between clients and servers. This allows servers to know

how to get the data without bridge communication. The second part is the extraction

of the handlers’ information and using it to download needed data through direct

communication. After all the needed data have been acquired, the Server Connector

calls the procedure to re-submit to the local host to perform computations that the user

exactly requested for. There is no difference in the way the client and computational

servers download the result of the computations. The third part is management

interface for administrator to enable the new features on the server side. It allows

administrator to easily switch the status of server connector by start or kill the process

running on the servers.

The use of generic software component to enable new features in GridRPC-based

Programming System should follow the standards below:

 62

• Programmers have to install the wrapper API and Job Name Service on the

client side and then compile the client program with the wrapper library.

• The wrapper API allows the programmers to explicitly specify the dataflow

between remote tasks. They only need to slightly modify their client code.

• The procedure developers should do nothing to enable new features. They

develop their procedures as usual. The generic software component has no

effect on both existing procedures and newly added procedures.

• To enable or disable the new features on the server side, the server

administrator needs to install an add-on Servers. No reinstallation and

re-compilation of either GridRPC system itself or registered application

procedures are needed.

5.3 Generic Structure of Software Component

Figure 5.1 Original GridRPC Model

The original GridRPC model typically consists of three parts: Client, Registry and

Service. It is shown in Figure 5.1. On the client side, in order for a task to be available

on a server, a programmer has to define the specific information that describes various

aspects of the remote task. Each server of the Grid environment registers its tasks

available in a Registry. This involves the servers sending the task’s information to the

Registry. The Registry is an abstract term that could indicate a single entity or several

 63

entities, which works as a resource discovery. On the server side, once a particular

task-to-server mapping has been established by initialising a task handle, all GridRPC

task calls using that function handle will be executed on the server specified in that

binding. Each GridRPC task call gets processed individually, where each task is

discovered (task look-up) and executed separately from all the other tasks in the

application.

Figure 5.2 Generic Non-intrusive and Incremental Approach Model

Compared to original GridRPC model, generic software component is implemented in

a non-intrusive and incremental way based on GridRPC model. It is shown in Figure

5.2. Generic Non-intrusive and incremental approach has following features:

• Client does not communicate with server directly. Services on the server side

are called through add-on servers. If add-on servers are not enabled on the

grid nodes, the original grid remote procedure call will be invoked.

• Client submits remote procedure calls to add-on servers through API &

Argument Parser. The programs are developed using development library on

the client side.

 64

• Add-on servers are registered as a server-side application on the original

Registry in the GridRPC system. By contrast, all services are registered on

Job Name Server.

• Client looks up Job Name Server for the information of all computational

tasks and receives the result from computational server directly.

• Add-on Servers look up Job Name Server for the information of all

computational tasks and manage computing tasks.

• New features are added into the GridRPC system in a form that adding

extended functions to the add-on servers.

• Add-on servers on different gird nodes can communicate with each other

directly. Those GridRPC servers without add-on servers enabled can only

communicate with client.

Generic software component is built on top of GridRPC system and there is no change

at all in the original Grid Programming System.

5.4 Libraries and Components

In this section it lists major available APIs and component which are implemented

during the development of NI-Connect. All these functions can be re-used for

implementation of other generic software component to enables new features to

GridRPC system in a non-intrusive and incremental way.

5.4.1 Client-side Functions

array ni_client_parse (string[] $process_array, int $parse_mode)

ni_client_parse() returns parsed calling parameter from handler array.

$process_array: application name and handler array

$parse_mode: 0 - disable all features, 1- enable new features

string ni_client _lookup (string $handler)

ni_client_lookup() returns the details for the specific handler.

$handler: client defined handler to describe tasks

 65

int ni_client _register (string $task, string[] $list_server_info)

ni_client_register() register specific task on Job Name Server.

$task: computational task to run on the grid environment.

$list_server_info: list of servers’ information which are performing tasks.

int ni_client_connect (string $add_on_server, int port)

ni_client_connect () set up connection to add-on server using ip address and port

number.

$add_on_server: information of add-on server

$port: port number to connect to add-on server

data ni_client_collect (string list_server_info, int $block)

ni_client_collect() returns output data from list of add-on servers.

$list_server_info: list of servers’ information which are performing tasks.

$block: 0 - non-block mode, 1 - block mode.

int ni_client_close (string $task)

ni_client_close() stop/clear all computations for the specific task.

$task: computational task to run on the grid environment.

5.4.2 Server-side Functions

string[] ni_server_discover (string $task)

ni_server_discover() returns list of servers’ info which can perform specific task.

$task: computational task to run on the grid environment.

string ni_server_lookup (string $handler)

ni_server_lookup() returns the details for the specific handler from JNS.

$handler: client defined handler to describe tasks

 66

int ni_server_register (string $task, string $server_info)

ni_server_register() register add-on server and specific task on Job Name Server.

$task: computational task to run on the grid environment.

$server_info: one of add-on’s servers’ information.

int ni_server_listen (conn $connection, string $server_info)

ni_server_listen() set up listen thread on the add-on server for incoming connection

$connection: listening thread for incoming connection.

$server_info: one of add-on’s servers’ information.

int ni_server_comm (string[] list_server_info, data[] $data, string $task)

ni_server_comm() setup communications between add-on servers.

$list_server_info: list of servers’ information which are performing tasks.

$data: data needed for finishing computations of task.

$task: computational task to run on the grid environment.

data ni_server_return (string $task, int $sync)

ni_server_return() returns output data from add-on server to client.

$task: computational task to run on the grid environment.

$sync: 0 - synchronies mode, 1 – asynchronies mode.

int ni_server_op (time $sec)

ni_server_op() turn on/off add-on server on the grid node.

$sec: action delayed seconds.

5.4.3 Job Name Server (JNS)

string[] ni_jns_retrieve ()

ni_jns_retrieve() list all tasks registered on Job Name Server.

int ni_jns_insert (string $task)

 67

ni_jns_insert() insert a new task records into Job Name Server.

$task: computational task to run on the grid environment.

int ni_jns_update (string $task)

ni_jns_update() update an existing task records on Job Name Server.

$task: computational task to run on the grid environment.

int ni_jns_remove (string $task)

ni_jns_remove() delete an existing task records on Job Name Server.

$task: computational task to run on the grid environment.

5.5 Practices and Challenges

To generically implement non-intrusive and incremental software component for Grid

Programming Systems to enable new features, we have formulated principles and

standards, described the structure of developing generic software component, and

roughly listed the available development libraries and functions. For the programmers

who get into detailed development of generic software component, there are a few

practices tips and possible challenges listed below:

• Most new features can be easily implemented within generic software

component in a non-intrusive and incremental way by borrowing the existing

APIs either from the targeted Grid Programming Systems, or using libraries

and functions developed in our research work.

• Most work for building generic software component should be implementing

new features based on current model since the non-intrusive and incremental

approach is to minimize the development work for the users.

• There is possibility that the targeted Grid Programming System release a new

version which certain amount of related work for the software component

need to be done.

• Different Grid Programming Systems are deployed on different grid nodes,

where sometimes the ranges of blocked ports are different. To avoid this

 68

firewall-like problem, developers will need to develop flexible programs to

automatically skip the difficulties.

• Last, make sure to achieve better quality of generic software component, as a

result testing is needed.

Next part of thesis will focus more on the experiments and applications in different

cases. Performance analysis is also discussed by using Non-intrusive and Increment

Approach to add new features for Grid Programming System.

 69

Part III

Application and Experiments

 70

Chapter 6

Real-world Applications with Different Commutation

Structures

6.1 Overview

6.2 Algorithms and Network Resources

6.3 Genetic Crossover in Protein Tertiary Structure Prediction System

 6.3.1 Introduction and Analysis

 6.3.2 Optimize communication structure by using NI-Connect

 6.3.3 Results and Conclusion

6.4 Image Processing Using Sequential Algorithms

 6.4.1 Introduction and Analysis

 6.4.2 Optimize communication structure by using NI-Connect

 6.4.3 Results and Conclusion

6.5 Matrix chain product problem in general scientific computations

 6.5.1 Introduction and Analysis

 6.5.2 Optimize communication structure by using NI-Connect

 6.5.3 Results and Conclusion

6.1 Overview

This thesis reports on experiments with three typical scientific NetSolve applications

having different communication structures: (i) protein tertiary structure prediction, (ii)

image processing using sequential algorithms, and (iii) the matrix chain product. The

presented experimental results show that the performance of these Grid applications

can be easily and significantly improved by using the proposed supplementary

software component [ZL07].

.

 71

6.2 Algorithms and Network Resources

Currently, we have a prototype implementation of the software component. It is

interesting to point out that despite all of the above discussions assume NetSolve as

the target, none in the implementation relies on this particular system. This makes

sense to apply the same approach on other Grid RPC systems. Since we provide the

inter-job communication as external function, a side-effect is that it is possible for the

client to connect the calls of different Grid RPC. To prove that our approach can

improve the performance of RPC-based Grid programming systems in the area of

scientific research by using our supplementary software component, a series of

real-world computing application need to be tested and analyzed. In this paper, we

have selected three typical applications with different communication structures. Our

software component is used for these applications to enable direct communications in

a Non-Intrusive and Incremental way. Experimental environment is an

interconnecting network based on 100 Mbit Ethernet with a switch enabling parallel

communications between servers in School of Computer Science and Informatics in

University College Dublin. The specifications of the servers are shown in Table 6.1.

Table 6.1 Installation and specifications of computational nodes

Name Architecture Cpu
(Mhz)

Main
Memory (mb)

Cache
(kb)

Relative speed
(mxm)

Pg1cluster01 Linux 2.6.8 - 1.521
smp Intel(R) EON™ 2048 1024 512 341

Pg1cluster02 Linux 2.6.8 - 1.521
smp Intel(R) EON™ 2048 1024 512 341

Pg1cluster03 Linux 2.6.8 - 1.521
smp Intel(R) EON™ 2048 1024 512 341

Csultra01 SunOS 5.8 sun4u sparc
SUNW, Ultra-5_10 440 512 2048 175

Csultra02 SunOS 5.8 sun4u sparc
SUNW, Ultra-5_10 440 512 2048 100

Csultra03 SunOS 5.8 sun4u sparc
SUNW, Ultra-5_10 440 512 2048 100

Csultra04 SunOS 5.8 sun4u sparc
SUNW, Ultra-5_10 440 512 2048 100

Csultra05 SunOS 5.8 sun4u sparc
SUNW, Ultra-5_10 440 512 2048 100

 72

6.3 Genetic Crossover in Protein Tertiary Structure Prediction

Protein tertiary structure prediction systems are proposed for progress of the

bioinformatics which is mainly performed by the protein energy minimization.

However, large-scale computing environment would be valuable for this system. In

the system, Parallel Simulated Annealing using Genetic Crossover (PSA/GAc)

[HMO00] is a minimization engine. To use the grid resource, NetSolve is a basic tool

and implementations are already prepared [TAH04] to improve the computing

performance. Their approach has reduced critical overhead due to large

communication delay over the Internet by using asynchronous Crossover model. But

bridge communication still exists and these un-necessary communications can be

eliminated by using our software component.

6.3.1 Introduction and Analysis

Figure 6.1 shows both synchronous and asynchronous Master-slave models for

Genetic Crossover in protein tertiary structure prediction system. Figure 6.2 depicts

how bridge communications occurs between NetSolve servers while performing

Genetic Crossovers.

Figure 6.1 Synchronous and asynchronous models for PSA/Gac

 73

Figure 6.2 Bridge communications between NetSolve servers

6.3.2 Optimize communication structure by using NI-Connect

Figure 6.3 depicts how to enable direct communications between NetSolve servers

while performing Genetic Crossovers.

Figure 6.3 Enabling direct communications between NetSolve servers

 74

6.3.3 Results and Conclusion

By enabling direct communication using our Non-Intrusive and Incremental

Approach, Genetic Crossovers is executed between servers directly. The original

approach must depend on client-side. Direct communication is enabled between

Server 1 and Server 2, and between Server 3 and Server 4. Simulated Annealing is

executed on each server separately. So the exchanging data is not returned to the

client while direct communication is enabled. This reduces communication links

between the client and servers. Figure 6.3 shows that communication links are

reduced from 8 to 4 by using our software component in NetSolve.

Table 6.2 shows experimental results of three trails with different sizes of protein. It

gives communication time of the original NetSolve application using bridge

communications and the modified application employing direct communications. The

average communication speedup due to elimination of bridge communications is

around 43%.

Protein

Size (kb)

Trail 1 Trail 2 Trail 3 Average
Speedup

B D B D B D B D

1000 50 30 51 30 53 31 52 30 45%

2000 106 62 108 63 108 62 107 62 42%

3000 175 98 170 100 178 105 174 101 42%

Table 6.2 B – Bridge communication time (in seconds); D – Direct

communication time (in seconds).

6.4 Image Processing Using Sequential Algorithms

So far, image and video processing software has been predominantly written for

conventional (sequential) desktop computers and embedded digital signal processors

(DSPs), which implement a wide range of operations [WRS98] such as smoothing,

sharpening, noise reduction, etc. These applications usually have a tremendous

potential for parallelism but unfortunately, existing techniques are not adequate for

 75

compiling sequential multimedia programs to such parallel architectures. Therefore,

some researchers focus on extracting the essential computations and data dependency

to ensure that each computation has the data it requires [BW02] [CAS95]. Our

research aims to optimize communications of data transaction for sequential

multimedia operations. The method is to enable direct communications for sequential

image processing by using our supplementary software component. For experiments,

we chose an example, which is Simple Linear Combination Filtering [Slc]. Linear

combination filtering functions are taken from Image Processing Library 98 [IPL98].

6.4.1 Introduction and Analysis

Figure 6.4 Simple Linear Combination Filtering

(a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of

(a) and (b)]; (d) Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; (e)

Product of (b) and (d); (f) Space-variant enhancement [sum of (a) and (e)].

 76

For image enhancement, linear combination filtering can blur smooth parts of an

image while sharpening areas that contain detail. The reason for this combination is

that blurring reduces noise, but degrades edges and image detail while sharpening

enhances edges and detail but makes noise more visible. Figure 6.4 displays the

example pictures of simple linear combination filtering. Figure 6.5 depicts how bridge

communications between the client and NetSolve servers are replaced by direct

communications between NetSolve servers while performing linear combination

filtering functions in this case.

Figure 6.5 Communication structure of linear combination filtering

6.4.2 Optimize communication structure by using NI-Connect

To eliminate un-necessary communications between the client and the servers while

performing linear combination filtering, we select two servers to perform linear

combination filtering functions in parallel:

Server 1:

• Laplacian of image (a);

• Spatially invariant high-pass filtering, sum of image (a) and image (b);

 77

Server 2:

• Mask image, Sobel gradient of image (a) smoothed by a 5x5 box filter;

• Product of image (b) and image (d);

• Space-variant enhancement, sum of image (a) and image (e);

Direct communications are enabled between the servers by transferring image (b)

from Server 1 to Server 2 directly. Those images, which will be used as input for

other image processing functions, will NOT be returned to the client. This reduces

bridge communications between the client and servers. We can see that in Figure 3

communication links are reduced from ten to five by using our software component.

Only necessary images (a), (c) and (f) will be on the client side.

6.4.3 Results and Conclusion

We experimented with the linear combination filtering application for pictures of

different sizes. Table 6.3 shows experimental results of three trails with matrix of

different sizes. The results show that the average communication speedup is around

50%. This is due to the fact that six communication bridges were eliminated and one

direct communication was established between two servers.

Picture Size

(kb)

Trail 1 Trail 2 Trail 3 Average
Speedup

B D B D B D B D

1000 60 29 60 29 61 29 60 29 51%

2000 125 61 122 62 125 63 124 62 50%

3000 195 97 209 98 203 98 200 98 51%

Table 6.3 B – Bridge communication time (in seconds); D – Direct

communication time (in seconds)

 78

6.5 Matrix chain product problem in general scientific computations

Given N matrices A1, A2, …, An of size N × N, the matrix chain product problem is

to compute A1 × A2 × … × An. The matrix chain product is an important

computational kernel that is used in computing the characteristic polynomial,

determinant, rank, and inverse of a matrix, in solving graph theory problems, and in

general scientific computations [Lk01][Lk02]. In the thesis, we have manipulated a

sequential matrix multiplication by enabling direct communication in a non-Intrusive

and incremental way. The approach proved that the performance can be significantly

improved by using our supplementary software component in NetSolve. In this paper,

our goal is to demonstrate our approach can even improve the performance of matrix

chain product computation problems in general scientific computations.

6.5.1 Introduction and Analysis

Figure 6.6 Standard binary tree method used for matrix chain product problem.

In Figure 6.6, it shows how the product of A1, A2, …, A8 can be obtained by using

the standard binary tree method. The leaves are input matrices A1, A2, …, A8, and

the root task of the tree computes the final result A12345678. Figure 5 depicts how

bridge communications between the client and NetSolve servers are replaced by direct

communications between NetSolve servers for matrix chain product computation,

where six communication bridges were eliminated among the total fourteen. In figure

6.7, it describes bridge communication during computation of matrix chain product.

 79

In this experiment, we select four servers to perform matrix chain product

computation in parallel:

Server 1: - perform A1 × A2;

Server 2: - perform A3 × A4, A12 × A34;

Server 3: - perform A5 × A6;

Server 4: - perform A7 × A8, A56 × A78, A1234 × A5678;

Figure 6.7 Bridge communications between NetSolve servers for matrix chain

product computation.

6.5.2 Optimize communication structure by using NI-Connect

Direct communication is enabled between these four servers by directly transferring

output A12 from Server 1 to Server 2, output A56 from Server 3 to Server 4, output

A1234 from Server 2 to Server 4. These output matrices will NOT be returned to the

client. This reduces bridge communications between the client and servers.

Communication links are reduced from 14 to 8 by using our software component in

 80

NetSolve. Only required result matrix A12345678 is returned to the client side. Figure

6.8 describes how to enable the direct communication in the structure of matrix chain

product.

Figure 6.8 Enabling direct communications between NetSolve servers for matrix

chain product computation.

6.5.3 Results and Conclusion

Matrix

Size

Trail 1 Trail 2 Trail 3 Average
Speedup

B D B D B D B D

1000 102 66 101 67 103 67 102 67 38%

2000 210 132 220 136 212 138 214 135 36%

3000 335 220 315 226 310 216 320 221 31%

Table 6.4 B – Bridge communication time (in seconds); D – Direct

communication time (in seconds)

 81

In our experiments we select different sizes of matrix for computation. Table 6.4

shows experimental results of three trails with different sizes of picture. The

experimental results show that communication time is reduced by around 35%, where

6 communication bridges are eliminated among 14 communications. This

significantly improves the performance of matrix chain product computation by using

our Non-Intrusive and Incremental Approach to enable direct communications in

NetSolve.

In this chapter, by using the supplementary software component to enable direct

communications in NetSolve the average speed up for selected real-world scientific

applications are within the range of 30% to 50%. This experimental result does not

indicate that general real-world scientific applications can achieve similar benefits.

The experimental results we get in this thesis are based on selected networks which

are described in table 6.1. The servers to run experiments have relative high

performance of computing power rather than inter-connected communication speed.

Also, the computation time and communication time for selected scientific

applications have same order of magnitude. As a result, such experiment environment

can have significant impact showing the benefits of enabling direct communications

between remote NetSolve servers.

 82

Chapter 7

Large-scale Experiments on Heterogeneous Grid

Environment

7.1 Objective

7.2 Using NI-Connect in Heterogeneous Network

 7.2.1 Homogeneous and Heterogeneous Computing

 7.2.2 Comparison of Experimental Results

7.3 Large-scale Experiments in Grid 5000

 7.3.1 Grid 5000

 7.3.2 Experimental Results

7.1 Objective

One feature of our approach is increment. It means that the supplementary software

component does not have to be installed on all computers to enable applications with

direct communications. In this case, direct communications can only happen between

those computing nodes, where our supplementary software component is installed.

Non-enabled computing nodes can only communicate with the client. The speedup of

a NetSolve application due to the use of our software component depends on how

large the fraction of computing nodes with enabled direct communications in the

overall set of computing nodes used by the application is.

7.2 Using NI-Connect in Heterogeneous Network

This section presents experiments to investigate the use of NI-Connect in

heterogeneous networks.

7.2.1 Homogeneous and Heterogeneous Computing

There are three main issues determining the classification which are the hardware, the

communication layer, and the software (operating system, compiler, compiler options).

 83

Any differences in these areas can potentially affect the behaviour of the application.

As a result, the definition of homogeneous computing environment is:

• The hardware of each processor guarantees the same storage representation

and the same results for operations on floating point numbers.

• Communication layer guarantees the exact transmittal of the floating point

value between processors.

• The software on each processor also guarantees the same storage

representation and the same results for operations on floating point numbers.

By contrast, we can then make the obvious definition that a heterogeneous computing

environment is one that is not homogeneous. The requirements for a homogeneous

computing environment are quite stringent and are frequently not met in networks of

workstations, or PCs, even when each computer in the network is the same model.

The recent availability of advanced-architecture computers has had a significant

impact on all spheres of scientific computation. In the last 50 years, a rapid change of

vendors, architectures, technologies and the usage of systems has been seen in the

field of scientific computing. Despite all these changes the evolution of performance

on a large scale however seems to be a very steady and continuous process [DL06].

So far, two things remain consistent in the realm of computational science: i) there is

always a need for more computational power than we have at any given point, and ii)

we always want the simplest, yet most complete and easy to use interface to our

resources. In recent years, much attention has been given to the area of Grid

Computing. The analogy is to that of the electrical power grid. The ultimate goal is

that one day we are able to plug any and all of our resources into this Computational

Grid to access other resources without worry, as we do our appliances into electrical

sockets today.

7.2.2 Comparison of Experimental Results

In this experiment, there are six computing servers for computation. We manually

change the number of computing nodes enabled with direct communications. Figure

7.1 (a) shows that the average communication speedup for our three applications

 84

grows linearly while the number of computing servers with direct communication

enabled increases from 0 to 6.

(a)

(b)

Figure 7.1 Experimental results of three applications in both homogeneous and

heterogeneous network.

 85

(a) Speedup for the three applications increases linearly with the increase of the

number of computing servers with direct communication enabled from 0 to six (‘o’ –

the matrix chain product; ‘.’ – Genetic crossover; ‘*’ – Image processing using

sequential algorithms). (b) Speedups for the matrix chain product. (‘*’ –

homogeneous network; ‘o’ – heterogeneous network).

If communication links connecting remote computers are much faster than

communication links connecting the remote computers and the client computer, the

speedup due to elimination of bridge communications will be much higher. In our

next experiment, we manually set all bridge communications to perform at the speed

of 10 Mbit per second. For direct communications between remote servers, we still

use 100 Mbit Ethernet interconnecting network. Figure 7.1 (b) presents the average

communication speedup of performing matrix chain computations with direct

communications on both homogeneous and heterogeneous networks. The

experimental speedup for the heterogeneous network is around 54% when the ratio of

eliminated bridge communications is 2/9. Thus, much higher speedup can be achieved

in heterogeneous communication networks, which is typical for real-life Grid

environments, than in artificially designed homogeneous ones.

7.2.3 Case Study

In this section, it presents the case study of using NI-Connect to enable direct

communication in NetSolve in heterogeneous Network. In our next experiment, we

use four computing servers for computation. We manually change the number of

computing nodes enabled with direct communications. The servers’ details are shown

in Table 7.1.

The servers which are used to perform computation are considered as a heterogeneous

network for following reasons:

• Geographic location. There are two servers (Server 1 & Server 2) in the same

local network. Server 3 is located in the same place which is University

College Dublin but belongs to a different network. Server 4 is located in

University of Tennessee in the United States.

 86

• Operating System. There are two types of known operating system among

there servers. Server 1 and Server 3 are running on the Debian linux 3.0.

Server 2 is running on the Fedora Core 4.

• Processors and Hardware. These servers include single processor and

multi-processors. The performance of the servers varies on either CPU power

or memory size.

NetSolve Servers Software Component

Server 1 (http://csserver.ucd.ie) Installed

Server 2 (http://cssa.ucd.ie) Installed

Server 3 (http://pg1cluser01.ucd.ie) Installed

Server 4 (http://netsolve.cs.utk.edu) NOT Installed

Table 7.1 Installation and specifications of heterogeneous servers

The application which is used to run on the grid programming system is Matrix Chain

Product. In Figure 7.2 it shows the bridge communication structure of performing

matrix chain product with the size of eight. As we can see, there are 14

communication links totally. By using NI-Connect to enable direct communications in

NetSolve, communication links can be reduced to 9. There are totally 5 links are

removed by enabling direct communications. In Figure 7.3, it shows the

communication structure of enabling direct communication in NetSolve by

performing matrix chain product with the size of eight. Table 7.2 shows experimental

results of three trails with different sizes of matrix. The results show that the average

communication speedup is around 48%. This significantly improves the performance

of matrix chain product computation by using our Non-Intrusive and Incremental

Approach to enable direct communications in a heterogeneous network.

http://csserver.ucd.ie/�
http://cssa.ucd.ie/�
http://pg1cluser01.ucd.ie/�
http://netsolve.cs.utk.edu/�

 87

Figure 7.2 Communication structure of performing matrix chain product

without NI-Connect enabled.

Figure 7.3 Communication structure of performing matrix chain product with

NI-Connect enabled.

 88

Picture Size

(kb)

Trail 1 Trail 2 Trail 3 Average
Speedup

B D B D B D B D

1000 65 34 64 34 65 35 65 34 48%

2000 130 74 132 70 135 73 133 72 46%

3000 225 107 213 108 233 103 222 105 47%

Table 7.2 B – Bridge communication time (in seconds); D – Direct

communication time (in seconds)

7.3 Large-scale Experiments in Grid 5000

This section presents the experiment of using NI-Connect in a larger Grid

environment which is Grid 5000 in France.

Figure 7.4 Network Overview of Grid 5000.

 89

7.3.1 Grid 5000

The Grid’5000 project of the French ACI GRID incentive is launched in 2003 and the

first phase of the project Grid 5000 platform is opened to users in 2005. INRIA is

currently focusing on further develop till the year of 2011 [Gri][BCC06].

The basic design concepts of Grid 5000 are as follows:

• Large-Scale and distributed

• 1/3 heterogeneous and 2/3 homogenous hardware resources

• Dedicated network links between sites

• Isolate Grid5000 from the rest of the Internet

• Let packets fly inside Grid5000 without limitation

• Deep reconfiguration mechanism for experiments on all layers of the software

• User has full control of the reserved experimental resources

Grid 500 is a nation-wide grid including 9 sites in France and 1 site in Brazil. They

are Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia, Toulouse and

Porto Alegre (Brazil). In figure 7.4, it shows the network overview of Grid 5000.

There are 4792 cores within 9 sites. The families of CPU include AMD Opteron

(78%), Inter Xeon EMT 64 (22%), MonoCore (41%), DualCore (46%), QuadCore

(13%). All servers in Grid 5000 are bi-processors. Its high performance networks

include Myrinet 2000 (222 cards), Myrinet 10G (423 cards) and InfiniBand 10G (161

cards).

Grid 5000’s software stack is flexible to use for different type of users:

• Standard tools (e.g. ssh, openldap, ganglia, squid, mediawiki, bugzilla, ...)

• Tools dedicated to Grid’5000, developed and supported by teams loosely

related to Grid’5000 technical staff (OAR, taktuk, GRUDU) and now under

the maintenance of the technical staff (kadeploy)

• User contributed tools, sometimes hosted on the grid5000-code project on

gforge.inria.fr (e.g. oargrid, katapult, kanon)

 90

In Grid 5000, OAR [OAR] is the resource manager used to allocate resources to users

for their experiments. The resource manager creates jobs for users, which are

basically an execution time on a set of resources. Grid’5000 features 1 OAR resource

manager per site. OAR features include:

• Interactive jobs: I want resources now for a bunch of time

• Advanced reservations: I want resources at that date/time for that duration

• Batch jobs: I want my job to run by itself with this script

• Best effort jobs: I use many resources but accept to release them at any time

• Deploy jobs: I want to be granted to deploy a customized OS environment and

have full access to the resources

• Powerful resource filtering/matching: I want only quad core machines with

more than 8GB of RAM located on the same network equipment

7.3.2 Experimental Results

To perform the experiments on Grid 5000, again we choose NetSolve as targeted Grid

Programming System and the particular feature is enabling direct communication

between remote tasks. The first goal of this experimental series is to check the

feasibility of NI-Connect and to measure several aspects related to the usage of the

software component. Measurements include:

• Non-intrusiveness. The original NetSolve system in Grid 5000 does not

change and the new features are provided by NI-Connect working on the top

of the system. Correspondingly, all applications not requiring new feature

which is enabling direct communications will only use the basic original

software and will be developed and executed in the same way in the original

and modified systems.

• Increment: It means that NI-Connect does not have to be installed on all

computers to enable applications with the new features. It can be done

incrementally, step by step, and the new feature that enabling direct

communications will be enabled in part, with the completeness dependent on

 91

how many nodes in Grid 5000 participating in the execution of the

application have been upgraded with the supplementary software component.

The second goal of this experimental series is to evaluate the behaviour of NI-Connect.

For this goal we will configure our applications so that the amount of time spent in

computation is small in regards to the time spent on communication.

In this experiment we choose to perform numerical algorithm to solve large-scale

linear algebra applications. Particularly we study the eigen-problem with large sparse

matrices. In order to compare the result of enabling direct communications, we deploy

NI-Connect on server computing resources and provide new mechanisms to run the

applications.

In table 7.3, it gives the general information of the computing resources in Grid 5000

to run the experiments:

Nodes involved 200

Sites involved 3

Minimum wall time 8h

Batch Mode No

CPU bound Yes

Memory bound Yes

Storage bound Yes

Interlink bound Yes

Tools used NetSolve, NI-Connect

Table 7.3 Computing Resources to perform experiments using NI-Connect

In table 7.4, it gives several trails of experimental results of running eigen-problem on

grid 5000 platform. The matrix is the pde1000000 from Matrix market [MM].

 92

 Trail 1 Trail 2 Trail 3

Matrix Size 500000 400000 300000

Computed eigen values 10 20 30 40 50 12 18 24 30 36 42 15 25 35 45 50

Executed tasks 148 120 115

Number of total tasks 4006 5068 3124

Number of worker nodes 45 35 40

Execution time (B) 8550 9006 6542

Execution time (D) 4200 5003 3502

Table 7.4 Experiment results of performing experiments using NI-Connect to

enable direct communications on Grid 5000 platform

The experimental results show that total execution time is reduced by around 45%,

This significantly improves the performance of solving eigen-problem with large

sparse matrices. Thus, by using NI-Connect to enable direct communications in

NetSolve on Grid 5000 platform it demonstrate the advantages of the Non-Intrusive

and Incremental Approach for the Evolution of Grid Programming System.

 93

Conclusion and Perspectives

 94

Chapter 8

Conclusion

8.1 Context

8.2 Results and Discussion

 8.2.1 Contributions of the Thesis

 8.2.2 Possible Improvements

 8.2.3 Towards a Complete Development Frame for the approach

8.1 Context

This thesis advocates a non-intrusive and incremental approach to enable existing

Grid programming systems with new features. There are two keywords describing the

approach which are Non-intrusiveness and Increment. Non-intrusiveness means that

the original system does not change and the new features are provided by a

supplementary software component working on the top of the system.

Correspondingly, all applications not requiring those new features will only use the

basic original software and be developed and executed in the same way both in the

original and modified systems. Increment means that the supplementary software

component does not have to be installed on all computers to enable applications with

the new features. It can be done incrementally, step by step, and the new features will

be enabled in part, with the completeness dependent on how many nodes participating

in the execution of the application have been upgraded with the supplementary

software component.

To demonstrate the approach, in particular we work on a case that presents software

component enabling NetSolve applications with direct communications between

remote tasks. The target grid programming system is NetSolve, which is positioned as

a programming system for high performance distributed computing on global

networks based on GridRPC. And the feature which is added into the grid

programming system is direct communication between remote tasks. The new feature

 95

deals with the situation when we use the output data of remote tasks. The function is

typically used to sent back the completed data to the client upon completion of each

remote task even if the data are only needed as input for some other remote tasks,

resulting in so-called bride communications when data between remote tasks are sent

through the client machine. In our research work, we have developed software

component NI-Connect and carried out the experiment to estimate the feasibility and

the performance of the method based on the selected case. The software component

NI-Connect consists of three parts: Client API & Argument Parser, Server Connector

and Job Name Service (JNS). Client API & Argument Parser provides a uniform

interface for the client to make remote procedure calls. Despite the modification on

the remote side, the wrapper API allows the calls to be made in the same manner. The

only difference is that the arguments can be not only variables storing real data but

also handlers. Server Connector is responsible for interacting with clients and other

Server Connectors to enable direct communications. Job Name Service (JNS) is

used for registration of procedure upon its invocation during RPC call. Other

procedures may send requests to the JNS to search for registered procedure. JNS is set

up on the client side automatically.

After a study on targeted grid programming system and selected feature, we formulate

principles and standards for generic implementation of non-intrusive and incremental

approach to enable new grid features to general Grid Programming Systems. In this

part, generic non-intrusive and incremental structure has been presented and libraries

and components are proposed, which can be easily re-used for generic implementation

of Non-intrusive and Incremental approach by other programmers.

Lastly, based on the implementation of enabling direction communications between

remote servers in NetSolve, we present another three typical scientific applications

with different communication structures and demonstrate the performance

improvement achieved due to the use the software component for elimination of

bridge communications. Those typical scientific NetSolve applications have different

communication structures, which are: (i) protein tertiary structure prediction, (ii)

image processing using sequential algorithms, and (iii) the matrix chain product. The

experimental results show that the performance of NetSolve applications could be

significantly and easily improved by using our software component. In this thesis it

 96

also presents experiments that the uses of NI-Connect in heterogeneous networks. It

proves that there is much higher speedup can be achieved in heterogeneous

communication networks, which are typical for real-life Grid environments, than in

artificially designed homogeneous ones. Finally, we prove the feasibility of the

approach by running experiment of using NI-Connect in a large-scale Grid

environment which is Grid 5000 in France.

8.2 Results and Discussion

We have demonstrated that the evolution of grid programming system can be

implemented in a non-intrusive and incremental way. Below, we present more

precisely the contributions of this work and other choice of methodology.

8.2.1 Contributions of the Thesis

There are a few contributions we expect the scientific researchers and programmers

can benefits from, which are listed as following paragraph.

The Design of Non-Intrusive and Increment Model: In the view of software

engineering, the update of the software involves many issues the same as evolution of

grid programming system. By using non-intrusive and increment model, it not only

improves the process of updating software, but also benefits the software application

running on the grid environment. For example, in order to update a web based

software on the latest grid-like platform “Cloud” [Ama][AFG09][Wa07]. Software

developers can implement a cooperating application within the same cloud that

handles the issues of current web services without changing the codes of original

deployed class, database tables, etc. And this also can be applied to the web services

those belong to different cloud, which the updating can be done incrementally. We

expect the uses of the non-intrusive and increment approach in the area of IT industry

in the future.

Software component NI-Connect and API: In the area of grid computing system,

by using NI-Connect and developed API, scientific researchers and programmers can

easily implement the application to execute on the remote servers. This gives the

 97

flexibility in the coding levels for network discovery, task discovery, application

mapping and data distribution. The API is already fully developed for the

programmers to use or extend. And the software component NI-Connect is currently

compatible with NetSolve grid programming system.

Enabling direct communications between remote tasks: For the tasks running in

the grid environment, data dependency is an important aspect regarding the

performance of the application. The feature we have added to the grid programming

system in this thesis significantly improves the performance of grid application by

reducing the un-necessary communication links. Unfortunately, the dependency of

most grid applications is quite strict, whereas it proves the feature that enabling direct

communications is useful. In this thesis there are three typical real-world applications

demonstrating that the better performance can be achieved by using NI-Connect. This

feature can be applied to other application which have similar communication model

to improve the performance of the application in the grid programming system.

8.2.2 Possible Improvements

There are a few improvements can be done for the development of the non-intrusive

and incremental approach.

• Currently, the implement of NI-Connect is for NetSolve Grid programming

system. In the future, it is can be easily extended to other grid programming

system as well, such as GridSolve, NINF-G, DIET grid programming

system. By doing so, the features can be added to these grid programming

system in a non-intrusive and incremental way.

• In this thesis, we have implemented NI-Connect to add the feature which is

enabling direct communications to the existing grid programming system. It

is durable to add other feature to the grid programming system in the same

way that is non-intrusive and incremental. The other possible features could

be added into current grid programming system are like broadcasting, fault

tolerance and task monitoring, etc.

 98

• In the case study which is enabling direct communications between remote

servers, the NetSolve agent is configured manually by system administrator.

One of future development for this project is to implement an algorithm to

select a NetSolve agent automatically from one of remote NetSolve servers

which have new feature enabled, and investigate how to pick the best agent

to execute the remote task.

8.2.3 Towards a Complete Development Frame for the approach

Based on this thesis, we would like to propose a possible work that create framework

for the development of Non-intrusive and Incremental approach in the future. In

Figure 8.1, it shows the structure of proposed project NI-Manager.

Figure 8.1 Structure of NI-Manager

 99

The project should involve following parts:

• Library of API & Argument Parsers: The library is based on the API &

Arguments Parsers already developed for use in NetSolve. It can be added

incrementally with slightly modification for use of other Grid Programming

System such as GridSolve, NINF-G and DIET. The library is sited on the

client side and can be easily included by programmers using grid

programming system to develop tasks. For the grid application developers,

they don’t need to change anything to make their applications available to new

API.

• Unified Server Connector: In NetSolve, Server Connector is responsible for

interacting with clients and other Server Connectors to enable direct

communications. This is not applied to other grid programming system. Thus

a unified Server Connector need to be developed for use of different grid

programming system. The unified Server Connector can interact with the

clients’ request that is the function called within the library of NI-Connect API.

It can also communicate with other Unified Server Connector those are set up

on different grid programming system.

• Framework of Feature Management: In this thesis, one feature we added to

the existing grid programming system is enabling direct communications

between remote tasks. In the future in order to add more features to the grid

programming system in a non-intrusive and incremental way, a framework of

feature management would be necessary to implement as a module inside

NI-Connect. This allows programmers to easily add, remove and manage the

features added to grid programming system through NI-Connect in

non-intrusive and incremental way.

 100

Appendixes

Appendix A: User Manual of NI-Connect

Non-intrusive and incremental evolution of Grid programming systems Project,

Heterogeneous Computing Laboratory (HCL), School of computer Science and

Informatics, University College Dublin

PROGRAMMING ENVIRONMENT

The software component for NetSolve to enable direct communications is installed

and run on following linux workstations:

Red Hat Linux 3.3.3-7, gcc version 3.3.3 20040412;

Fedora Core 2.6.11-1.1369_FC4, gcc version 4.0.0 20050519;

REQUIREMENTS

The version of NetSolve which our software component is added and tested on is

NetSolve 2.0.

Important:

1. To use our software component, GPG option must be disabled.

2. Direct communications uses port 6234.

DOWNLOAD

The Software Component can be downloaded from http://hcl.ucd.ie. A recent version

can also be downloaded from following links:

ORGANIZATION OF SOFTWARE COMPONENT

Source codes:

 101

Client wrapper API: mynetsl.c ; mynetsl.h ;

Server Connector: serverConnector.c; serverConnector.h; serverSetup.c;

INSTALLATION

[On the server side]

To install our software component to a netsolve server, the steps of installation are as

follows:

1) Create a directory named “Dc” at the root of NetSolve root directory.

2) Copy files serverConnector.c, serverConnector.h, serverSetup.c to the Dc directory.

3) Build Obj file for Server Connector:

$gcc –Wall –g –c serverSetup.c –o serverSetup.o –I$NETSOLVE_ROOT/include

–I$NETSOLVE_ROOT/Dc

4) Link it to the NetSolve Library:

$gcc –g –o serverSetup serverSetup.o –L. –lserverConnector

–L$NETSOLVE_ROOT/Dc –lnetsolve –L$NETSOLVE_ROOT/lib/i686_pc_linux_gnu

5) Run the server Connector:

$./serverSetup

[On the client side]

To enable direct communications, the steps of installation of our software component

are as follows:

1) Create a directory named “Dc” at the root of NetSolve root directory.

2) Copy files mynetsl.c ; mynetsl.h to the Dc directory.

 102

3) Build lib files for Wrapper API:

$gcc –Wall –g –c –o libmynetsl.o mynetsl.c –I$NETSOLVE_ROOT/include

$ar rcs libmynetsl.a libmynetsl.o

APPLICATION TUTORIAL

This tutorial shows how to enable direct communications by using the software

component. The example is performing matrix operations. Files can be downloaded

from: http://hcl.ucd.ie/

This includes:

o libmatmul.c - contains the function which should perform the calculation

o matmul.idl - a file which describes how the problem should be included into the

NetSolve repository

o myprog.c - an example program which invokes the NetSolve function Instructions:

1. Building the Library

NetSolve provides all functions through statically linked libraries. Execute the

following steps on the server to build libmatmul.a

$ gcc -c libmatmul.c

$ ar rc libmatmul.a libmatmul.o

2. Installing the Problem to the NetSolve Repository

To invoke a new function from the NetSolve client you have to add the function to the

problems list in a NetSolve server and recompile the server. Perform the following

steps to include 'matmul' o create a problem description file with

http://hcl.ucd.ie/�

 103

$ $NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/idltopdf matmul.idl

which generates the file matmul.pdf

• copy the file matmul.pdf to the problems subdirectory in your NetSolve directory

• edit the file "server_config" in your NetSolve directory and add the following line

in the "@PROBLEMS:" section:

./problems/matmul.pdf

• to rebuild the server, you have to set an environment variable which points to the

directory of the previously created library (required by the problems definition

file); depending on you shell execute

$ export NSMATMUL_LIB=/path/to/libmatmul

or

$ setenv NSMATMUL_LIB /path/to/libmatmul

• Afterwards rebuild the server with the command in your NetSolve directory

$ make server

3. Invoking the Function via NetSolve

The file myprog.c demonstrates how to invoke the function calc via NetSolve in

C. the original NetSolve calling is like:

Info = netsl(“matmul()”, metA, metB, metC);

Info = netsl(“matmul()”, metC, metD, metE);

 104

To enable direct communication, our wrapper API mynetsl() and handlers are used:

Info = mynetsl(“matmul()”, matA, matB, hdlC);

Info = mynetsl(“matmul()”, hdlC, matD, matE);

To build an application program, the command of using our library is as follows:

$gcc -Wall –g –c myprog.c myprog.o –I$NETSOLVE_ROOT/include

–I$NETSOLVE_ROOT/Dc

$gcc –g –o myprog myprog.o –L. –lmynetsl –L$NETSOLVE_ROOT/Dc –lnetsolve

–L$NETSOLVE_ROOT/lib/i686_pc_linux_gnu

Invoking myprog uses 2 arguments:

• matrix size: integer with the dimension of the used matrix

• mode: 1 - blocking call , 2 - non-blocking call

 105

Appendix B: Core function of NI-Connect

mynetsl() : C Interface to the NetSolve

1 int mynetsl(char *nickname,...)
2 {
3 va_list argptr;
4 char * buf;
5 /* Getting the problem's nickname */
6 va_start(argptr,nickname);
7 buf = strdup(nickname);
8 return mynetslX(buf, argptr, NS_CALL_FROM_C, NS_BLOCK,

NS_NOASSIGNMENT);
9 }

10 int mynetslX (char *buf, va_list arglist,int language, int blocking,

int assignment)
11 {
12 return mynetslX_common (buf, 1, arglist, NULL, language, blocking,

assignment);
13 }

14 int mynetslX_common (char *pname, int mode_valist, va_list arglist,
 void **arglist_arr, int language, int blocking,
 int assignment)
15 {
16 int i, len;
17 int request_id;
18 int status;
19 void **tmp_output_ptr;
20 int elapsed;
21 NS_Node *act_node = 0;
22 NS_ProblemDesc *pd;
23 char *nickname, *serverhostname;
24 char *buf;

25 if(!pname) {
26 ns_errno = NetSolveBadProblemName;
27 return ns_errno;
28 }

29 buf = strdup(pname);

30 #if defined(DEBUG)

31 ns_printinfo();

32 fprintf(stderr, "Processing a Client Request: language = %d,

""blocking = %d, assignment = %d\n", language, blocking, assignment);

33 #endif
34 printf("%s", "finished.00\n");
35 /* find a slot for the request */
36 request_id = 0;
37 while(requests[request_id] != NULL)
38 {

 106

39 request_id++;
40 if (request_id == NB_MAX_REQUESTS)
41 {
 ns_errno = NetSolveTooManyPendingRequests;
 free(buf);
 return ns_errno;
42 }
43 }

44 if(!proxy_pid){
45 if(netslinit(NULL) < 0){
 free(buf);
 return ns_errno;
46 }
47 }

48 #if defined(DEBUG)
49 ns_printinfo();
50 fprintf(stderr, "Setting Default Client Major ...\n");
51 #endif
52 /*== Initializing the major ==*/
53 if(language == NS_CALL_FROM_C)
54 setMajorDefault("Row");
55 else
56 setMajorDefault("Col");

57 #if defined(DEBUG)
58 ns_printinfo();
59 fprintf(stderr, "Stripping ̀ (` and ̀)` from problemname %s ...\n",
 buf);
60 #endif
61 /*== Stripping off the parenthesis ==*/
62 len = strlen(buf);
63 if ((buf[len-2] != '(') ||
 (buf[len-1] != ')'))
64 {
65 #if defined(DEBUG)
66 ns_printinfo();
67 fprintf(stderr, "There is a bad problem name...\n"); fflush(stderr);
68 #endif
69 free(buf);
70 ns_errno = NetSolveBadProblemName;
71 return ns_errno;
72 }
73 buf[len-2] = '\0';

74 #if defined(DEBUG)
75 ns_printinfo();
76 fprintf(stderr, "Extracting the problem name [and

serverhostname] ...\n");
77 fflush(stderr);
78 #endif

79 if(assignment)
80 {
81 /* Extracting the nickname, serverhostname */
82 serverhostname = strtok(buf,":");
83 nickname = strtok(NULL,"\0");

84 if ((serverhostname == NULL)||
 (nickname == NULL))

 107

85 {
 free(buf);
 return NetSolveBadProblemName;
86 }
87 }
88 else{
89 nickname = buf;
90 serverhostname = NULL;
91 }

92 /*== Getting the problem descriptor ==*/
93 status = netsolveInfo(nickname, &pd);
94 if (status == -1) {
95 free(buf);
96 return ns_errno;
97 }

98 /* general variables */
99 int n;

100 /* variables for blocking calls */
101 //int info;
102 double alpha, beta;
103 double *mat;
104 double *vec;

105 n = 100;
106 srand(time(NULL));

107 /* --blocking calls example--------- */
108 /* creating matrix & vector */
109 mat = calloc(n*n, sizeof(double));
110 for (i=0; i<n*n; i++)
 mat[i] = (double) (10.0*rand()/RAND_MAX);
111 vec = calloc(n, sizeof(double));
112 for (i=0; i<n; i++)
 vec[i] = (double) (10.0*rand()/RAND_MAX);
113 alpha = 1.0;
114 beta = 0.0;

115 /* blocking call to NetSolve test netsl in mynetsl: done */

116 /* write message to stdout */
117 printf("%s", "finished\n");

118 /* gets the server name of an appropriate server */
119 /* make it assignment */
120 NS_RequestDesc *rd_getServer;
121 rd_getServer = CP_sendJobRequest(pd,0,0,-666);
122 serverhostname = strtok(rd_getServer->hostname, "\0");
123 //fprintf(stdout, rd_getServer->IPaddr);
124 //free(rd_getServer);
125 assignment = 1;

126 #if defined(DEBUG)
127 ns_printinfo();
128 fprintf(stderr, "Problem name: %s\n", nickname);

 108

129 if(assignment){
130 ns_printinfo();
131 fprintf(stderr, "Assigned Server: %s\n", serverhostname);
132 }
133 #endif

134 #if defined(WIN32)
135 /*== Initialize WinSock ==*/
136 if ((!WinSockInit()))
137 {
138 ns_errno = NetSolveNetworkError;
139 free(buf);
140 return ns_errno;
141 }
142 #endif /* WIN32 */

143 #if defined(DEBUG)
144 ns_printinfo();
145 fprintf (stderr, "Getting Problem Descriptor via netsolveInfo()\n");
146 #endif

serverConnector() : C Interface to the NetSolve

1 typedef struct {
2 NS_ServerDesc *my_self; /* The server's own descriptor */
3 NS_LinkedList *problems; /* The problem linked list */
4 NS_LinkedList *agents; /* The agent linked list */
5 NS_AgentDesc *master; /* The master descriptor */
6 char *scratch_path; /* The scratch area */
7 char *Condor_path; /* Possible Condor path */
8 int Condor_nb; /* Possible # of Condor procs */
9 char *MPI_path; /* Possible mpirun path */
10 int nb_MPInodes; /* Possible Number of MPI nodes*/
11 char* MPInodefile; /* Possible MPI node file */
12 int workload_manager_pid; /* PID of the workload manager */
13 #ifdef HBM
14 int hbmlm_pid; /* PID of the HBM hbmlm */
15 #endif
16 char *netsolve_root_path; /* $NETSOLVE_ROOT */
17 NS_Statistics *statistics; /* statistics */
18 NS_ScaLAPACKGlobal Scalapack_global; /* globals for ScaLAPACK */
19 int nb_problems; /* number of problems */
20 int sock; /* Listening socket descriptor */
21 char *log_file; /* file for message logging */
22 char *config_file; /* file for message logging */
23 char *ip_address; /* IP-Address of the server */
24 #ifdef KERBEROS5
25 krb5_principal server;
26 krb5_keytab keytab;
27 krb5_context context;
28 char *users_file;
29 int require_auth; /* true if authentication required */
30 #endif
31 } NS_myGlobal;

 109

32 NS_myGlobal myglobal;
33 int myinitMySelf();
34 int myserver_init(int argc,char **argv);

35 /*
36 Main routine. Does nothing but calling the initialization routine
37 and waiting for a network connection
38 */

39 int main(int argc,char **argv)
40 {

41 // test
42 /* general variables */
43 int n,i;

44 /* variables for blocking calls */
45 //int info;
46 double alpha, beta;
47 double *mat;
48 double *vec;

49 n = 100;
50 int info;
51 srand(time(NULL));

52 /* --blocking calls example--------- */
53 /* creating matrix & vector */
54 mat = calloc(n*n, sizeof(double));
55 for (i=0; i<n*n; i++)
56 mat[i] = (double) (10.0*rand()/RAND_MAX);
57 vec = calloc(n, sizeof(double));
58 for (i=0; i<n; i++)
59 vec[i] = (double) (10.0*rand()/RAND_MAX);
60 alpha = 1.0;
61 beta = 0.0;

62 /* blocking call to NetSolve test netsl in mynetsl: done */
63 info = netsl("matmul()",mat,vec,n);

64 /* error handling for blocking call */
65 if (info <0) {

netslerr(info);
exit(0);

66 }

67 int sockfd, newsockfd, portno, clilen;
68 char buffer[256];
69 struct sockaddr_in serv_addr, cli_addr;
70 //int n;

71 sockfd = socket(AF_INET, SOCK_STREAM, 0);
72 if (sockfd < 0)

error("ERROR opening socket");
73 bzero((char *) &serv_addr, sizeof(serv_addr));
74 portno = atoi(argv[1]);
75 serv_addr.sin_family = AF_INET;
76 serv_addr.sin_addr.s_addr = INADDR_ANY;

 110

77 serv_addr.sin_port = htons(portno);
78 printf("%s", "finished.03\n");
79 if (bind(sockfd, (struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0)
error("ERROR on binding");

80 printf("%s", "finished.04\n");
81 listen(sockfd,5);
82 printf("%s", "finished.05\n");
83 clilen = sizeof(cli_addr);
84 newsockfd = accept(sockfd,

(struct sockaddr *) &cli_addr,
&clilen);

85 printf("%s", "finished.06\n");
86 if (newsockfd < 0)

error("ERROR on accept");
87 bzero(buffer,256);
88 n = read(newsockfd,buffer,255);
89 if (n < 0) error("ERROR reading from socket");
90 printf("Here is the message: %s\n",buffer);
91 n = write(newsockfd,"I got your message",18);
92 if (n < 0) error("ERROR writing to socket");

93 NS_Communicator *comm;
94 int tag;

95 comm = acceptTransaction(newsockfd);

96 if (recvInt(comm,&tag) == -1)
97 {

netsolvePerror("");
endTransaction(comm);
return -1;

98 }

99 if (sendInt(comm, &tag) == -1)
100 {
101 endTransaction(comm);

printf("%s", "finished3333\n");
102 return -1;
103 }

printf("%s", "test1\n");

104 NS_ProblemDesc *pd, *pd_new;
105 pd = recvProblemDesc(comm);
106 //pd_new->input_objects = (void

**)calloc(pd->nb_input_objects,sizeof(void*));
107 pd_new->output_objects = (void

**)calloc(pd->nb_output_objects,sizeof(void*));
108 pd->output_objects = pd_new->output_objects;
109 //pd->input_objects = pd_new->input_objects;

110 if (pd == NULL) {
111 netsolvePerror("");
112 return;
113 }
114 // comm send object
115 /* receiveing the objects */
116 NS_Object **list = pd->input_objects;
117 int nb = pd->nb_input_objects;
118 char buffer2[256];

 111

119 //int i;

120 for (i=0;i<nb;i++)
121 {
122 /* do initializations */
123 switch(list[i]->object_type)
124 {
125 case NETSOLVE_MATRIX:

list[i]->attributes.matrix_attributes.m = -1;
list[i]->attributes.matrix_attributes.n = -1;
list[i]->attributes.matrix_attributes.l = -1;
list[i]->attributes.matrix_attributes.major = -1;
list[i]->attributes.matrix_attributes.ptr = NULL;
list[i]->attributes.matrix_attributes.d = NULL;
break;

126 case NETSOLVE_SPARSEMATRIX:
list[i]->attributes.sparsematrix_attributes.m = -1;
list[i]->attributes.sparsematrix_attributes.n = -1;
list[i]->attributes.sparsematrix_attributes.major = -1;
list[i]->attributes.sparsematrix_attributes.f = -1;
list[i]->attributes.sparsematrix_attributes.rc_ptr = NULL;
list[i]->attributes.sparsematrix_attributes.rc_index = NULL;
list[i]->attributes.sparsematrix_attributes.ptr = NULL;
list[i]->attributes.sparsematrix_attributes.d = NULL;
break;

127 case NETSOLVE_VECTOR:
list[i]->attributes.vector_attributes.m = -1;
list[i]->attributes.vector_attributes.ptr = NULL;
break;

128 case NETSOLVE_SCALAR:
list[i]->attributes.scalar_attributes.ptr = NULL;
break;

129 case NETSOLVE_STRING:
list[i]->attributes.string_attributes.ptr = NULL;
break;

130 case NETSOLVE_STRINGLIST:
list[i]->attributes.stringlist_attributes.strings = NULL;
list[i]->attributes.stringlist_attributes.m = -1;
break;

131 case NETSOLVE_FILE: /* Create a file name */
sprintf(buffer2,"fileinput%d",i);
list[i]->attributes.file_attributes.filename =
strdup(buffer2);
break;

132 case NETSOLVE_PACKEDFILES: /* Create a file name */
sprintf(buffer2,"packedfileinput%d",i);
list[i]->attributes.packedfiles_attributes.defaultprefix =
strdup(buffer2);
list[i]->attributes.packedfiles_attributes.filenames = NULL;
list[i]->attributes.packedfiles_attributes.m = -1;
break;

133 case NETSOLVE_UPF: /* Create a file name */
134 #if (defined(VIEW) || defined(DEBUG))

logIt("There should not be any UPF here !!!\n");
135 #endif

return -1;
break;

136 default: /* Nothing to so */
break;

137 }

 112

138 /* receive the object from the net */
139 if (recvObject(comm,list[i]) == -1)
140 {
141 netsolvePerror("recvObject()");
142 return -1;
143 }
144 }

145 int blocking = 1;
146 int assignment = 0;
147 char *serverhostname = NULL;
148 int request_id = 0;
149 int elapsed, status;

printf("%s", pd->name);
printf("%d", pd->input_objects[0][3]);
printf("%s", "test4\n");

150 status = submit_problem(blocking, assignment, serverhostname, pd,

a. pd->input_objects, pd->output_objects,
&elapsed, request_id);

151 printf("%s", "finished.0\n");
152 return 1;

153 NS_Socket_type sock;

154 /* Initialize the server */

155 listen(myglobal.sock,MAX_CONNECTIONS);

156 printf("%s", "finished.01\n");

157 while(1)
158 {
159 //printf("%s", "finished.02\n");
160 if ((sock = myacceptConnection(myglobal.sock)) == -1)
161 {
162 //fprintf("%d",sock);
163 //printf("%s", "finished.11\n");
164 continue;
165 }
166 printf("%s", "finished.03\n");
167 //processMessage(sock);
168 fflush(stderr);
169 fflush(stdout);
170 }
171 }

172 /*
173 acceptConnection()
174 */
175 NS_Socket_type myacceptConnection(NS_Socket_type listening_socket)
176 {
177 struct sockaddr_in addr; /* INET socket address */
178 int addrlen; /* address length */
179 NS_Socket_type sock;

180 addrlen = sizeof(addr);
 printf("%s", "accpeptconnection.1\n");

 113

181 sock = accept(listening_socket,
(struct sockaddr *)&addr,&addrlen);

182 printf("%s", "acceptconnection.02\n");
183 while(sock < 0 && errno == EINTR){

184 sock = accept(listening_socket,

(struct sockaddr *)&addr,&addrlen);
185 }
186 if (sock >= 0) printf("%s", "finished.05\n");
187 return sock;
188 }

 114

Bibliography
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

[AAB02] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K.

Seymour, K. Sagi, Z. Shi, S.Vadhiyar: “Users’ Guide to NetSolve

V1.4.1”. Innovative Computing Dept. Technical Report ICL-UT-02-05,

University of Tennessee, Knoxville, TN (2002)

[Acc86] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young.

``Mach: A New Kernel Foundation for UNIX Development,'' roceedings

of the Summer 1986 USENIX Conference, June 1986.

[ACD02] D. Arnold, H. Casanova, J. Dongarra. “Innovation of the NetSolve Grid

Computing System”. Concurrency: Practice and Experience,

14(13-15):1457-1479, 2002.

[AFG09] M. Armbrust, A. Fox, R. Griffith, Anthony D. Joseph, Randy H. Katz.

“Above the Clouds: A Berkeley View of Cloud Computing”.

UCB/EECS-2009-28, Publisher: EECS Department, University of

California, Berkeley, Pages: 07-013

[Ama] Amazon Web Services - Simple Storage Service

(S3). http://aws.amazon.com/

[Apg] Asia Pacific Grid: http://www.apgrid.org/

B

[BAB02] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Dongarra, T.

Moore, G. Obertelli, J. Plank, M. Swany, S. Vadhiyar, R. Wolski,

http://aws.amazon.com/�
http://www.apgrid.org/�

 115

“Middleware for the use of storage in communication. Parallel

Computing”, Volume 28, Issue 12, December 2002

[BB05] L. Baduel and F. Baude. “Effective and Efficient Communication in

Grid Computing with an Extension of ProActive Groups”, International

Parallel and Distributed Processing Symposium (April 2005).

[BCC06] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y.

Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet,

B. Quetier, O. Richard, E.-G. Talbi, I. Touche. “Grid'5000: A Large

Scale And Highly Reconfigurable Experimental Grid Testbed”, in:

International Journal of High Performance Computing Applications,

November 2006, vol. 20, no 4, p. 481–494.

[BDG09] T. Brady, J. Dongarra, M. Guidolin, A. Lastovetsky, and K. Seymour,

“SmartGridRPC: The new RPC model for high performance Grid

computing”, University College Dublin, pp. 55, 10/2009

[BG08] T. Brady, M. Guidolin, and A. Lastovetsky, "Experiments with

SmartGridSolve: Achieving Higher Performance by Improving the

GridRPC Model", The 9th IEEE/ACM International Conference on Grid

Computing, Tsukuba, Japan, Sep 29 - Oct 1, 2008

[BK92] V. Bala and S. Kipnis. Process group: “a mechanism for the coordination

of and communication among processes in the Venus collective

communication library”. Technical report, IBM T. J. Watson Research

Center, October 1992.

[BKL06] T. Brady, E. Konstantinov, A. Lastovetsky, "SmartNetSolve: High

Level Programming System for High Performance Grid Computing",

Proceedings of the 20th International Parallel and Distributed Processing

Symposium (IPDPS 2006), Rhodes Island, Greece, IEEE Computer

Society, 25-29 April 2006

 116

[BKR92] V. Bala, S. Kipnis, L. Rudolph and Marc Snir. “Designing efficient,

scalable, and portable collective communication libraries”. Technical

report, IBM T. J. Watson Research Center, October 1992

[BN84] A. Birrell and B. Nelson, “Implementing remote procedure calls,” ACM

Transactions on Computer Systems (TOCS), vol. 2, no. 1, pp. 39–59,

1984

[BSD] BSD License. http://www.linfo.org/bsdlicense.html

[Buy02] Rajkumar Buyya, "Economic-based Distributed Resource Management

and Scheduling for Grid Computing", PhD Thesis, Monash University,

Melbourne, Australia, April 12, 2002

[BW02] L. Baumstark, L. Wills, “Exposing data-level parallelism in sequential

image processing algorithms”, Proc. Of the 9th Working Conference on

Reverse Engineering, pp. 245- 54, 2002.

C

[CAS95] L. Cordella, A. d'Acierno, C. De Stefano. “Mapping schemes for

sequential image processing algorithms”. Proc. of CAMP'95, pp. 184 -

189, 1995.

[CD97] H.Casanova, J.Dongarra. “NetSolve: A Network Server for Solving

Computational Science Problems”. The International Journal of

Supercomputer Applications and High Performance Computing,

11(3):212-223, 1997.

[CD06] E. Caron and F. Desprez. “DIET: A Scalable Toolbox to Build Network

Enabled Servers on the Grid”, International Journal of High Performance

Computing Applications, 20(3):335-352, 2006

http://www.linfo.org/bsdlicense.html�

 117

[CDK01] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon,

Parallel programming in OpenMP, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, 2001

[Com03] Computer Science and Telecommunications Board (CSTB). The Book:

 “The future of supercomputing an interim report”. 2003.

D

[DJ04] F. Desprez, E. Jeannot. “Improving the gridrpc model with data

persistence and redistribution”, In: International Symposium on Parallel

and Distributed Computing in association with HeteroPar (2004)

[DL06] J. Dongarra and A. Lastovetsky, "An Overview of Heterogeneous High

Performance and Grid Computing", Engineering the Grid: Status and

Perspective: American Scientific Publishers, February 2006

[DLP03] J. DONGARRA, P. LUSZCZEK, A. PETITET, The LINPACK

benchmark: Past, present, and future. Concurrency and Computation:

Practice and Experience 15, 1-18. 2003

[DM98] L. Dagum, R. Menon, and S. Inc, “OpenMP: an industry standard API

for shared-memory programming,” IEEE Computational Science &

Engineering, vol. 5, no. 1, pp. 46–55, 1998

E

[EDG] The European DataGrid

Project. http://eu-datagrid.web.cern.ch/eu-datagrid/

[EM10] EuroMPI 2010, The 17th EuroMPI

conference. http://www.eurompi2010.org

[ESG] Earth System Grid (ESG). http://www.earthsystemgrid.org

http://eu-datagrid.web.cern.ch/eu-datagrid/�
http://www.eurompi2010.org/�
http://www.earthsystemgrid.org/�

 118

F

[FK04] I. Foster, C. Kesselman. The Book: “The Grid 2: Blueprint for a New

Computing Infrastructure”. 2004.

[FK97] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure

toolkit,” International Journal of High Performance Computing

Applications, vol. 11, no. 2, p. 115, 1997

[For] FORTRAN: a general-purpose, procedural, imperative programming

language. http://www.fortran.com/

[FTF01] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G:

A Computation Management Agent for Multi-Institutional Grids",

Proceedings of the Tenth IEEE Symposium on High Performance

Distributed Computing (HPDC10) San Francisco, California, August 7-9,

2001

G

[GCC] GCC, the GNU Compiler Collection. http://gcc.gnu.org/

[GL] W. Gropp and E. Lusk, Message Passing Interface

(MPI) http://www.mcs.anl.gov/mpi/

[Gli] gLite: middleware for grid computing. http://glite.web.cern.ch/glite/

[GNO] GNOME: The Free Software Desktop Project. http://www.gnome.org/

[GNU] GNU General Public License. http://www.gnu.org

[Gra05] L. Grandinetti, “Grid Computing: The New Frontier of High Performance

Computing”, 2005.

http://www.fortran.com/�
http://gcc.gnu.org/�
http://www.mcs.anl.gov/mpi/�
http://glite.web.cern.ch/glite/�
http://www.gnome.org/�
http://www.gnu.org/�

 119

[Gri] Grid5000: a large scale nation wide infrastructure for Grid

research. https://www.grid5000.fr

H

[HCL] Heterogeneous Computing Laboratory, http://hcl.ucd.ie

[HMO00] T. Hiroyasu, M. Miki, M. Ogura, "Parallel Simulated Annealing using

Genetic Crossover", Proc. of the IASTED Int’l Conference on Parallel

and Distributed Computing Systems, pp.145-150, 2000.

I

[Ian95] F, Ian. Designing and Building Parallel Programs. Addison-Wesley

ISBN 0201575949, chapter 8 Message Passing Interface, 1995

[ICL] Innovative Computing Laboratory, University of Tennessee.

NetSolve. http://icl.cs.utk.edu/netsolve/

[ICLG] Innovative Computing Laboratory, University of Tennessee.

GridSolve. http://icl.cs.utk.edu/gridsolve/

[IDL] Interface Definition

Language: http://www.eecs.wsu.edu/~mckinnon/./idl-adm.pdf

[INR] INRIA : The french national institute for research in computer science

and control. DIET. http://graal.ens-lyon.fr/~diet/

[IPG] NASA Information Power Grid (IPG)

Infrastructure. http://www.ipg.nasa.gov

[IPL98] Image Processing Library 98: http://www.mip.sdu.dk/ipl98/

https://www.grid5000.fr/�
http://hcl.ucd.ie/�
http://icl.cs.utk.edu/netsolve/�
http://icl.cs.utk.edu/gridsolve/�
http://www.eecs.wsu.edu/~mckinnon/idl-adm.pdf�
http://graal.ens-lyon.fr/~diet/�
http://www.ipg.nasa.gov/�

 120

K

[KR] K. Kennedy of Rice University. High Performance

FORTRAN. http://hpff.rice.edu/

[KTF03] N. T. Karonis, B. Toonen, I. Foster. “MPICH-G2: A Grid-enabled

implementation of the Message Passing Interface”. Department of

Computer Science, Northern Illinois University, DeKalb, IL 60115,

USA, 2003

L

[LHP04] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M. Livny, L. Guy, M.

Barroso, P. Buncic, Z. Kunszt, A. Di Meglio, A. Aimar, A. Edlund, D.

Groep, F. Pacini, M. Sgaravatto, O. Mulmo. “Middleware for the next

generation Grid infrastructure” Computing in High Energy Physics and

Nuclear Physics 2004, Interlaken, Switzerland, 27 Sep - 1 Oct 2004,

pp.826

[Lk01] K. Li, "Fast and Scalable Parallel Algorithms for Matrix Chain Product

and Matrix Powers on Distributed Memory Systems," Procs. of the 15th

International Parallel and Distributed Processing Symposium (IPDPS'01),

2001

[Lk02] K. Li, "Fast and Scalable Parallel Algorithms for Matrix Chain Product

and Matrix Powers on Reconfigurable Pipelined Optical Buses", Journal

of Information Science and Engineering 18, 713-727, 2002

[Lov93] D. B. Loveman, “High Performance Fortran,” IEEE Parallel &

Distributed Technology: Systems & Applications, vol. 1, no. 1, pp.

25-42, February, 1993.

[LZZ06] A. Lastovetsky, X. Zuo, P. Zhao. “A Non-intrusive and Incremental

Approach to Enabling Direct Communications in RPC-Based Grid

http://hpff.rice.edu/�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lastovetsky:Alexey_L=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhao:Peng.html�

 121

Programming Systems”. Proc, of the 2006 Int’l Conference on

Computational Science. pp 1008-1011.

M

[Mat] Matlab. http://www.mathworks.com/products/matlab/

[Mic] Microsoft Corporation. http://www.microsoft.com

[ML09] Guidolin, M., and A. Lastovetsky, "Grid-Enabled Hydropad: a Scientific

Application for Benchmarking GridRPC-Based Programming Systems",

The 23rd IEEE International Parallel and Distributed Processing

Symposium, Rome, Italy, May 25 - 29, 2009

[MM] Matrix Market. http://math.nist.gov/MatrixMarket/

[MPI3] MPI 3.0 Standardization

Effort. http://meetings.mpi-forum.org/MPI_3.0_main_page.php

[MPICH] MPICH-A Portable Implementation of

MPI http://www.mcs.anl.gov/research/projects/mpich2/

[Mys] MySQL Database: http://www.mysql.com/

N

[Ncu92] nCUBE Corporation. nCUBE 2 Programmers Guide. December, 1990.

[News] NetSolve/GridSolve news. http://icl.cs.utk.edu/netsolve/news/index.html

O

http://www.mathworks.com/products/matlab/�
http://www.microsoft.com/�
http://math.nist.gov/MatrixMarket/�
http://meetings.mpi-forum.org/MPI_3.0_main_page.php�
http://www.mcs.anl.gov/research/projects/mpich2/�
http://www.mysql.com/�

 122

[OAR] Tutorial for Grid 5000 and

OAR http://mescal.imag.fr/membres/yiannis.georgiou/grid5000_tutorial.

html

[Oct] Octave: a high-level language, primarily intended for numerical

computations. http://www.gnu.org/software/octave/

[OMP] OpenMP: API specification for parallel

programming. http://openmp.org

[Osi] Open Source Initiative. http://www.opensource.org/

P

[PCP92] Parasoft Corporation, Pasadena. CA. Express User's Guide. 1992.

[Pie88] Paul Pierce. The NX/2 operating system. In Proceedings of the Third

Conference on Hypercube Concurrent Computers and Applications.

pages 384-390. ACM Press, 1988.

R

[RW04] J. Des Rivières, J. Wiegand, IBM Software Group, Ottawa, Ontario.

“Eclipse: a platform for integrating development tools”.IBM Systems

Journal,Volume 43, Issue 2, Pages: 371-383,2004, ISSN:0018-8670

S

[SL03] J. Squyres and A. Lumsdaine, “A Component Architecture for

LAM/MPI”, Springer Berlin / Heidelberg, Volume 2840/2003

[Slc] Simple Linear Combination

Filtering: http://www.adires.com/05/Project/LinCom.shtml

http://mescal.imag.fr/membres/yiannis.georgiou/grid5000_tutorial.html�
http://mescal.imag.fr/membres/yiannis.georgiou/grid5000_tutorial.html�
http://www.gnu.org/software/octave/�
http://openmp.org/�
http://www.opensource.org/�
http://www.adires.com/05/Project/LinCom.shtml�

 123

[Sm77] M. Schwartz, “Computer Communications Network Design and

Analysis”, Prentice Hall PTR, Upper Saddle River, NJ, 1977

[SNM02] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H.

Casanova, “Overview of GridRPC: A remote procedure call api for grid

computing,” Lecture notes in computer science, pp. 274–278, 2002.

[SOW95] M. Snir, S. Otto, D. Walker, J. Dongarra, and S. Huss-Lederman, “MPI:

The complete reference”. MIT Press Cambridge, MA, USA, 1995.

[Sub] Subversion: An open-source revision control

system. http://subversion.apache.org

T

[TAH04] Y. Tanimura, K. Aoi, T. Hiroyasu, M. Miki, Y. Okamamoto and J.

Dongarra. “Implementation of Protein Tertiary Structure Prediction

System with NetSolve,” Proc, of the 7th Int’l Conference on High

Performance Computing and Grid in Asia Pacific Region, pp. 320–327,

2004

[TNS03] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, S. Matsuoka,

“Ninf-G: A reference implementation of RPC-based programming

middleware for Grid computing”. Journal of Grid Computing, 1(1):

41-51, 2003.

[Top500] Top 500 Super Computers. http://www.top500.org/

U

[Uni] UNICORE: Uniform Interface to Computing

Resources. http://www.unicore.eu/

W

http://subversion.apache.org/�
http://www.top500.org/�
http://www.unicore.eu/�

 124

[Wa07] A. Weiss, “Computing in the clouds”, Net Worker, v.11 n.4, p.16-25,

December 2007

[Wol] Wolfram Research of Champaign, Illinois.

Mathematica. http://www.wolfram.com/products/mathematica

[WRS98] J. Worley, T. Robey, K. Shuldberg. “Image Processing Operations”,

Khoral Research, Inc., April 28, 1998.

Z

[ZL07] X. Zuo, A. Lastovetsky, "Experiments with a Software Component

Enabling NetSolve with Direct Communications in a Non-Intrusive and

Incremental Way", Proceedings of the 21st International Parallel and

Distributed Processing Symposium (IPDPS 2007), Long Beach,

California, USA, IEEE Computer Society, 26-30 March 2007

http://www.wolfram.com/products/mathematica�

	Part I
	Chapter 1
	1.1 Software Features between Industry and Community
	1.2 Software Development of High Performance Computing
	1.2.1 Context
	1.2.2 Motivation of Research and General Objectives

	1.3 Outline of the thesis

	Chapter 2
	2.1 Analysis of GridPRC Related Programming System
	2.1.1 GridRPC
	2.1.2 Evolution of GridRPC Related Software

	2.2 Non-intrusive and Incremental Approach
	2.2.1 Definition of Features
	2.2.2 Approach Comparison

	2.3 Summary of Research

	Part II
	Chapter 3
	3.1 Introduction
	3.1.1 NetSolve
	3.1.2 Enable direct communications between remote servers

	3.2 Related Works
	3.3 Design of software component
	3.3.1 Structure of Software Component
	3.3.2 Client-side and Server-side Programs
	3.3.3 Analysis of Designed Software Component

	Chapter 4
	4.1 Overview
	4.2 NI-Connect Modules
	4.2.1 Client API & Argument Parser
	4.2.2 Server Connector
	4.2.3 Job Name Server (JNS)

	4.3 Installation and Deployment
	4.4 Case study: matrix multiplications
	4.5 Contribution

	Chapter 5
	5.1 Targets of Generic Approach
	5.2 Principles and Standards
	5.3 Generic Structure of Software Component
	5.4 Libraries and Components
	5.4.1 Client-side Functions
	5.4.2 Server-side Functions
	5.4.3 Job Name Server (JNS)

	5.5 Practices and Challenges

	Part III
	Chapter 6
	6.1 Overview
	6.2 Algorithms and Network Resources
	6.3 Genetic Crossover in Protein Tertiary Structure Prediction
	6.3.1 Introduction and Analysis
	6.3.2 Optimize communication structure by using NI-Connect
	6.3.3 Results and Conclusion

	6.4 Image Processing Using Sequential Algorithms
	6.4.1 Introduction and Analysis
	6.4.2 Optimize communication structure by using NI-Connect
	6.4.3 Results and Conclusion

	6.5 Matrix chain product problem in general scientific computations
	6.5.1 Introduction and Analysis
	6.5.2 Optimize communication structure by using NI-Connect
	6.5.3 Results and Conclusion

	Chapter 7
	7.1 Objective
	7.2 Using NI-Connect in Heterogeneous Network
	7.2.1 Homogeneous and Heterogeneous Computing
	7.2.2 Comparison of Experimental Results
	7.2.3 Case Study

	7.3 Large-scale Experiments in Grid 5000
	7.3.1 Grid 5000
	7.3.2 Experimental Results

	Conclusion and Perspectives
	Chapter 8
	8.1 Context
	8.2 Results and Discussion
	8.2.1 Contributions of the Thesis
	8.2.2 Possible Improvements
	8.2.3 Towards a Complete Development Frame for the approach

	Appendixes
	Appendix A: User Manual of NI-Connect
	Appendix B: Core function of NI-Connect

	Bibliography

