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ABSTRACT 
 
 The paper presents the SmartGridRPC model, an extension of the GridRPC model, which 
aims to achieve higher performance.  The traditional GridRPC provides a programming 
model and API for mapping individual tasks of an application in a distributed Grid 
environment, which is based on the client-server model characterised by the star network 
topology.  SmartGridRPC provides a programming model and API for mapping a group of 
tasks of an application in a distributed Grid environment, which is based on the fully 
connected network topology.  The SmartGridRPC programming model and API, its 
implementation in SmartGridSolve and its performance advantages over the GridRPC 
model are outlined in this paper.   In addition, experimental results using a real-world 
application are also presented. 
 
 
1. INTRODUCTION 
 

The remote procedure call (RPC) paradigm [1] is widely used in distributed computing.  It 
provides a   straightforward procedure for executing parts of an application on a remote 
computer.  To execute a RPC, the application programmer does not need to learn a new 
programming language but merely uses the RPC API.  Using the API the application 
programmer specifies the remote task to be performed, the server to execute the task, the location 
of the input data on the user’s computer required by the task and the location on the user’s 
computer where the results will be stored. The execution of the remote call involves transferring 
input data from the user’s computer to the remote computer, executing the task on the remote 
server and delivering output data from the remote computer to the user’s one.  

GridRPC [2] is a standard promoted by the Open Grid Forum, which extends the traditional 
RPC. GridRPC differs from the traditional RPC in that the programmer does not need to specify 
the server to execute the task. When the programmer does not specify the server, the middleware 
system, which implements the GridRPC API, is responsible for finding the remote executing 
server.  When the program runs, each GridRPC call results in the middleware mapping the call to 



a remote server and then the middleware is responsible for the execution of that task on the 
mapped server.  Another difference is that GridRPC is a stubless model, meaning that client 
programs do not need to be recompiled when services are changed or added.  This facilitates the 
creation of interfaces from interactive environments like Matlab, Mathematica, and IDL.  A 
number of Grid middleware systems have recently become GridRPC compliant including 
GridSolve [3], Ninf-G [4] and DIET [5]. 

This simple extension to the RPC however has some limitations affecting the performance of 
Grid applications. When using the traditional GridRPC to execute tasks remotely, the mapping 
and execution of the task is one atomic operation, which cannot be separated.  As a result, each 
task is mapped separately and independently of other tasks of the application. 

Another important aspect of the GridRPC model is its communication model. The 
communication model of GridRPC is based on the client-server model or star network topology. 
This means that a task can be executed on any of the servers and inputs/outputs can only traverse 
the client-server links. 

Mapping tasks individually on to the star network results in mapping solutions that are far 
from optimal.  If tasks are mapped individually, the mapping heuristic is unable to take into 
account any of the tasks that follow the task being mapped.  Consequently, the mapping heuristic 
does not have the ability to optimally balance the load of computation and communication.  
Another consequence of mapping tasks in this way is that dependencies between tasks are not 
known at the time of mapping.  Therefore this approach forces bridge communication. Bridge 
communication occurs when the output of one task is required as an input to another task.  In this 
case, using the traditional GridRPC model, the output of the first task must be sent back to the 
client and the client then subsequently sends it to the server executing the second task when it is 
called.   

Also, since dependencies are not known and the network is based on the client-server model, 
it is impossible to employ any parallelism of communication between the tasks in the group.  For 
example, this can be implemented if there is a dependency between two tasks and the destination 
task is not executed in parallel or immediately after the source task.  In theory, this dependent 
data could be sent to the destination task in parallel with any computation or communication on 
any other machine (client or other servers) which happens in the intervening time.  However, 
since tasks are mapped individually on to a star network, this parallelism of communication 
cannot be realized using the GridRPC model. 

In this paper, we propose an enhancement of the traditional GridRPC model, which would 
allow a group of tasks to be mapped collectively on to a fully connected network.  This would 
remove each of the limitations of the GridRPC model already described.  The SmartGridRPC 
model has extended the GridRPC model to support collective mapping of a group of tasks by 
separating the mapping of tasks from their execution.    This allows the group of tasks to be 
mapped collectively and then executed collectively. 

In addition, the traditional client-server model of GridRPC has been extended so that the 
group of tasks can be collectively executed on to a network topology, which is fully connected.  
This is a network topology where all servers can communicate directly or servers can cache their 
outputs locally.  

There are a number of advantages of mapping tasks collectively on to a fully connected 
network.  When mapping tasks individually, the communication and computation load of a 
single task are only considered.  However, when tasks are mapped collectively, the 



communication and computation load of multiple tasks can be considered together and therefore 
this load can be better distributed over the fully connected network.  In addition, the relationships 
between tasks can also be considered such as the data dependencies between tasks.  This allows 
bridge communication to be eliminated by mapping these dependencies on to virtual links 
connecting servers.  As a result, servers can send data directly to other servers and therefore do 
not need to send it via the client.  Eliminating bridge communication can significantly decrease 
the overall communication time of an application and hence improve the overall performance of 
the application because communication is often the more time consuming phase in a RPC 
context. 

In addition, this may also eliminate memory paging on the client, which would otherwise 
occur when storing intermediate data.  Also, since dependencies between tasks are known, it 
means that remote communication of one task can be parallelized with other computation and 
communication in the group. 

The client-server model of GridRPC results in a communication network, which has a star 
topology.   Therefore, in this case for any given mapping of a group of tasks to remote servers 
there will be only one communication path between any pair of servers that could be considered 
when mapping.  This path consists of two communication links connecting the servers with the 
client machine. Any other path connecting the two servers obviously results in higher 
communication cost. 

However, if the communication network is fully connected, then there will be multiple 
independent paths connecting the servers and each of these paths can be considered when 
mapping. In other words, for each mapping of a group of tasks to remote servers in a star 
communication network there is only one fixed communication scheme that can be employed. 
However, when a group of tasks are mapped on a fully connected network there are many 
communication schemes to choose from.  These communication schemes may employ direct 
communication, server broadcast, client broadcast or caching.  Therefore, the mapping of a 
group of tasks on a fully connected network not only involves the mapping of tasks to servers but 
also the mapping of the dependencies between tasks on to the communication paths of the 
network. This increases the mapping solution space and allows for further optimization to be 
achieved by choosing the optimal paths for data to traverse between servers.  This increase of the 
solution space means that the mapping heuristics implemented in the SmartGridRPC model have 
more potential of finding a more optimal solution than the mapping heuristics inherent in 
implementations using the standard GridRPC model. 

GridSolve is a middleware system that implements the GridRPC model.  It enables users to 
solve complex scientific tasks remotely on distributed resources.  GridSolve emphasises ease-of-
use for the user and includes resource monitoring, mapping and service-level fault tolerance.  In 
addition to providing Fortran and C clients, GridSolve enables SCEs (such as Matlab) to be used 
as clients, so domain scientists can use Grid resources from within their preferred environments. 

SmartGridSolve [6] is an extension of GridSolve, which makes the GridSolve middleware 
compliant with the SmartGridRPC model.  SmartNetSolve [7] was previously implemented to 
make the NetSolve [8] middleware, which was the predecessor of GridSolve, compliant with the 
SmartGridRPC model. 

The SmartGridSolve extension is interoperable with GridSolve.  Therefore, if GridSolve is 
installed with the SmartGridSolve extension, the user can choose whether to implement an 
application using the standard GridRPC model or the extended SmartGridRPC model.  In 



addition, SmartGridSolve is incremental to the GridSolve system.  Therefore, if the 
SmartGridSolve extension is installed only on the client side, the system will be extended to 
allow for collective mapping.  If SmartGridSolve is installed on the client side and on only some 
of the servers in the network, the system will be extended to allow for collective mapping on a 
partially connected network. If it is installed on all servers, the system will be extended to allow 
for collective mapping on the fully connected network. 

The paper is outlined as follows.  Section 2 gives the motivation of GridRPC and 
SmartGridRPC models.  Section 3 outlines research papers, which are related to the 
SmartGridRPC model.  The GridRPC programming model and API are described in Section 4.  
The SmartGridRPC model and API are described in Section 5.  Section 6, describes the 
implementation of the GridRPC model in GridSolve and Section 7 describes the implementation 
of the SmartGridRPC model in SmartGridSolve.  Section 8 outlines the Hydropad application, 
which is an astrophysics application we used to benchmark the GridRPC model and the 
SmartGridRPC model.  Section 9 gives experimental results, which compare the GridRPC model 
with the SmartGridRPC model using the Hydropad application as a benchmark.  The paper 
concludes with Section 10. 
 
 
2. MOTIVATION 
 
2.1. Motivation: GridRPC model 
  
The following are some of the key benefits of implementing GridRPC enabled applications: 

• Improved performance of applications. 
• Solution of larger scale applications. 
• More control over applications. 
• Solution of hardware specific applications.  
• Portability. 
• Easy and powerful development of applications. 

 
Improved performance of applications:  The performance related benefits include the 

potential for faster solution of a problem of a given size and solution of problems of larger sizes.  
There are two main reasons for this.  Firstly, if parts of the code can be executed in parallel on 
remote servers then the GridRPC model allows us to implement their parallel execution on 
remote servers. This parallelisation will decrease the computation time of the application.  

Secondly, if the Grid environment contains machines more powerful than the client machine, 
then remote execution of the tasks of this application on these more powerful machines will also 
decrease the computation time of the application.  

However, this decrease of the computation time does not come for free. The application will 
pay the communication cost due to remote execution of the tasks. If communication links 
connecting the client machine and the remote servers are relatively slow, than the acceleration of 
computations may be compensated by the communication cost resulting in the total execution 
time of the application being higher than its sequential execution on the client machine. 

Solution of large scale applications:  The GridRPC model provides a solution for 
applications, which cannot be executed on a client machine due to their strong demands on the 



resources (memory, disk space etc.) of the client machine.  In this case, GridRPC provides a 
means to allocate these demands to remote servers in the Grid environment.  For example, the 
execution of parts of a memory intensive application on remote servers could eliminate heavy 
paging that would otherwise occur on the client machine. 

More control over the application:  In some cases, applications that could be executed in a 
Grid environment could potentially be executed in a high performance computer (HPC) system. 
Unfortunately, in a HPC system, where applications are executed in batch mode, the user will not 
have much control over the execution. Grid-enabled applications allow the user to have a high 
control over its execution because, although the tasks are being computed in remote servers, the 
main component of the application is running on the client machine. This can be important for 
applications that need a direct interaction with the data produced. For a given application it 
would be possible for a user to see intermediate results of the application.  Furthermore, while 
the user/client is checking these results, they could decide on the fly to change some parameters 
of the application or restart the application. 

Solution of hardware-specific applications:  Some applications have a task that is 
inherently remote.  For example, a task could be a proprietary pre-compiled binary, which has 
been compiled for a specific architecture, or a task may be tuned or tweaked to execute more 
efficiently on a specific type of hardware such as an FPGA. 

Furthermore, a task could require interaction with a resource that can only interface with a 
particular machine such as a telescope, video camera, microscope etc.  In such cases, an 
environment that allows the resources (including software) to be used on a particular computer is 
needed. 

Portability:  Since a Grid-enabled application comprises of a client application and server-
side compiled executables, the client application can be easily ported, compiled and executed on 
a new machine in the Grid environment.  This does not require the recompilation of server-side 
task executables, which could make up a large proportion of the application.  Also, client 
implementations can be ported to different environments and languages easily since language-
specific stub generators are not required.   This also enables many effortless cross-language 
calling scenarios (e.g. C to Fortran, Matlab to C, etc.). 

An easy and powerful development paradigm:  Any task, which has been developed for 
remote execution on GridRPC enabled application can be easily reused in other Grid 
applications. This situation can reduce the programmer’s effort on developing a Grid application. 
For example, the programmer can use already existing tasks that they would not have the time or 
skill to write. 
  
2.2. Motivation: SmartGridRPC model 
 

SmartGridRPC model share the same benefits of the GridRPC model.  In addition, the 
following are the key benefits of implementing a SmartGridRPC enabled application over a 
GridRPC enabled application: 

• Improved balancing of computation load. 
• Reduced volume of communication. 
• Improved balancing of communication load. 
• Increased parallelism of communication. 
• Reduced memory usage and paging. 



 
Improved mapping of computation load: In GridRPC, tasks get mapped individually on to 

a client-server network. This could result in poor load balancing of computation.  Since tasks get 
mapped individually, it is impossible to balance the load of computation of a group of tasks, 
which are executing in parallel.  If tasks are mapped individually, each task will be mapped 
without the knowledge of any of the subsequent parallel tasks.  This means that if a large task 
follows a smaller task, the mapping heuristic will give priority to the smaller task over the larger 
task.   

This is because when the smaller task is mapped, the mapping heuristic cannot take into 
account that a larger task will be executing in parallel. Therefore, it maps the smaller task to the 
faster server as this will yield the lowest execution time for this individual task. When the 
mapping heuristic maps the larger task, it will assign it to the next fastest server as the fastest 
server is busy executing the previous task. This is poor load balancing of computation. 

However, if you implement the collective mapping of the SmartGridRPC model, then the 
computation load can be better distributed over the network.  In this case, if both tasks can be 
mapped collectively then the larger task would be mapped to the faster server and the smaller to 
the slower server. This improved balancing of the computation load will increase the 
performance of the execution of these parallel tasks. 

Reduced volume of communication:  Since the GridRPC model maps tasks individually on 
to a client-server network, the model forces bridge communication between tasks.  This occurs 
because dependencies are not known between tasks and data can only traverse the client-server 
links.  As a result, the source task can only send the dependent data to the destination task via the 
client.  This requires two communication steps: - the first from the source task to the client and 
the second from the client to destination task. However, this can be eliminated with the 
SmartGridRPC model, where tasks can be mapped collectively on to a network, which is fully 
connected.  Since tasks are mapped collectively, dependencies between tasks are known.  These 
dependencies can then be mapped on to virtual links connecting the source server to the 
destination server, which is only one communication step.  Therefore, the overall volume of 
communication over the network will be reduced, which would result in improved application 
performance.  

Moreover, if the source task and destination task are both executing on the same server then 
this output could be cached to the local file system or cached in memory, which would further 
reduce the overall communication on the network and increase the performance of the 
application. 

Improved mapping of communication load: Since the GridRPC model is based on the 
client-server model, communication can only be mapped to client server links. This may result in 
the client links becoming heavily loaded. 

SmartGridRPC can increase the performance of an application by better distribution of 
communication load over the network.  When tasks are mapped collectively, the volume of 
communication of each task in the group of tasks is known.  Since the sizes of inputs and outputs 
of each task are known and this communication is mapped onto a network, which is fully 
connected, this communication can be better distributed over the fully connected network. This 
improved load balancing of communication will result in improved overall communication times 
and hence improved application performance. 



Increased parallelism of communication: In much the same way that the GridRPC model 
improves on the RPC model with the parallelism of computation; the SmartGridRPC improves 
on the GridRPC model with the parallelism of communication.                

With the GridRPC model, the parallelism of communication is limited to the sending of inputs 
to a non-blocking task, which is an asynchronous operation. 

With the SmartGridRPC model any communication on one machine can be done in parallel 
with computation or communication on any other.  This asynchronous communication is only 
achievable since the dependencies between tasks are known prior to the execution of the group 
due to the collective mapping.   

This parallelism of communication can be advantageous if a task executing on one server has 
a dependency on another task, which will be executed on another server, and the destination task 
is not executed immediately after the source task.  In this case, this communication can be done 
asynchronously.  This means that the server initiates the communication but does not wait for it 
to finish.  Therefore, this communication can be done in parallel with any other computation or 
any communication on any other machine (client or servers), which happens in the intervening 
time.   

In addition, this parallelism of communication can be beneficial if the client broadcasts an 
argument to more than one task, which is to be executed on different machines.  If any of the 
tasks are not executing immediately after the communication, then the communication to these 
tasks can be done in parallel with any computation on the client machine and computation or 
communication on any other server, which happens in the intervening time.  The same is true for 
server broadcast communication. 

This parallelism of communication reduces overall communication times and thus improves 
the overall performance of the group of tasks executing on the fully connected network. 

Reduced memory usage and paging:  The direct communication between servers and the 
data caching that SmartGridRPC model implements mean that intermediate results do not have 
to be sent back to the client.  This minimizes the amount of memory used on the client.  This 
could eliminate any paging on the client, which would otherwise occur.   This elimination of 
paging would considerably increase the performance of an application. 
 
 
3.  RELATED RESEARCH 
 

This section examines those systems, which implement the GridRPC model (i.e. GridSolve, 
Ninf-G, DIET ) and their predecessors (i.e. NetSolve and Ninf), and will focus on the papers, 
which mostly relate to our research,  specifically those papers, which fall into the following 
categories: 

• Papers presenting extensions, which extend the client-server model to implement direct 
communication between servers or data persistence. 

• Papers presenting extensions, which extend the system so that a group of tasks can be 
collectively mapped. 

These papers will be presented in chronological order and we will outline the limitations of 
each approach in comparison with the SmartGridRPC model. 

Both NetSolve and Ninf, the predecessors to the GridSolve and Ninf-G system, were started 
at roughly the same time.  The projects were both started in 1994 and were first released in 1995.  



These systems were designed to resolve the difficulty of performing computational science 
problems over loosely connected geographically disperse networks.  The computational libraries, 
which the most common computational problems use, may be highly optimized for only certain 
platforms and do not provide a convenient interface to other computer systems.  Other libraries 
demand considerable programming effort from the user, who may not have the time to learn the 
required programming techniques.  The resolution of these issues was the motivation behind both 
projects.   These systems were called Network Enabled Server (NES) or Problem Solving 
Environment (PSE) systems and employed a RPC-style model to perform remote computations. 

In 1999, task farming [9] was introduced to NetSolve.  The farming feature of NetSolve 
allowed a certain class of tasks, called farming jobs, to be processed collectively.  A farming job 
fell into the class of embarrassingly parallel programs, for which it is very clear how to partition 
the jobs for parallel programming environments.  While these tasks were processed collectively, 
they were not mapped collectively.  Each task was individually mapped but computation loads of 
subsequent tasks were dynamically adjusted at run-time based on previous task response times. 
The limitations of task farming are:  

• It can only be implemented for a certain class of application. 
• Tasks are mapped individually and therefore the mapping heuristic cannot take advantage 

of characteristics of the group such as data dependencies. 
• Conditional statements cannot exist in the scope of the task farming job. 
• Client computation cannot exist in the scope of the task farming job 
• The group of tasks is called as one atomic call, therefore intermediate results cannot be 

viewed or analysed. 
 

In 2000, task sequencing [10] was introduced to NetSolve. Using the task sequencing API a 
group of tasks could be processed collectively so that data dependencies could be analysed.  This 
group of task is subsequently mapped on to a single server and if any data dependencies exist, 
the data would be stored locally and not sent back to the client. Therefore, using this API data 
persistency could be implemented and therefore if dependencies exist, bridge communication 
could be eliminated.   
The limitations of task sequencing are: 

• The group of tasks can only be mapped to a single server. 
o This computation load could be better distributed over a number of servers. 
o There may not be a server in the environment that can execute all tasks. 

• Conditional statements, such as for, if, while, are forbidden between tasks. 
• Client computation cannot exist in the scope of the task sequencing job. 

 
In 2001, data transfers between servers were introduced to NetSolve [11].  This was achieved 

with an added function to the API, which allowed the user to explicitly outline data 
dependencies.   If there are two tasks, which have a data dependency and are executing on 
different servers, this data would be stored in the source server when it finished execution and 
then the destination server would pull the argument from that server when it is called for 
execution.  
The limitations to this approach are: 

• Tasks are mapped individually. 
• Push communication cannot be implemented when tasks are mapped individually.  



o Increased communication times since communication cannot be done in parallel 
with computation or other communication. 

• The user has to explicitly specify dependencies. 
o More labour intensive. 
o More prone to error. 

 
This feature was later implemented in the GridRPC model in the GridSolve system [12], 

DIET [13] and NINF-G [14] and had the same limitations.  
In July 2002, the DIET system was launched, which implemented an architecture where the 

scheduler/agent is scattered across a hierarchy of Local Agents and Master Agents.  The 
motivation for this architecture was that it was more scalable and solved the problem of 
bottlenecks in a centralised agent/scheduler when many clients try to access several servers.  In 
addition, the DIET system employed direct communication between servers and data 
persistency.  Where a dependency existed between tasks, this output would remain on the source 
server.  When the destination task is called for execution, this data would be pulled from the 
source server.  If the source server is the same as the destination server this output would be 
stored and retrieved locally (data persistency).   
The limitations of this approach are:  

• Tasks are mapped individually. 
• Push communication cannot be implemented when tasks are mapped individually 

o Increased communication times since communication cannot be done in parallel 
with computation or other communication. 
 

In 2002, Distributed Storage Interface (DSI) [15] was implemented in NetSolve.   The DSI 
was another feature that attempted to minimize data movement in the NetSolve middleware.  
With DSI, data could be stored in the storage depots, which are close to servers, which require 
the data.  Instead of having multiple transmissions of the same data, DSI allows the transfer of 
data once from the client to storage depot.   A data handle is then used to retrieve only the 
relevant portions of the stored data when running computations. This reduced communication 
times but again did not change how tasks are fundamentally mapped. 

Also in 2002 the Global Grid Forum (now known as the Open Grid Forum) standardized the 
RPC mechanism for Grid computing with the GridRPC programming model and API [2].  This 
was implemented in NetSolve [16] and Ninf-G [4].  Ninf-G is the second generation of Ninf and 
was implemented on top of the Globus toolkit [17].  The Globus toolkit provides a reference 
implementation of standard protocols and it deploys Globus Security Infrastructure so that all the 
components of Ninf-G are protected properly.  In 2003, GridSolve, which is the second 
generation of NetSolve, was released and provided full support for the GridRPC model.      

In 2005, the GridRPC model was implemented in DIET [5].  This paper also introduced the 
Data Tree Manager (DTM).  The DTM allows data to be left on a server after computation and 
then retrieved from another server during its computation.  This paper described how JUXMEM 
(Juxtaposed memory) could be used in the DIET system to allow servers to share memory data.  
Both the DTM and JUXMEM avoided multiple transmissions of the same data from a client to a 
server but again tasks could only be processed and mapped individually.    
The limitations to this approach are: 

• Tasks are mapped individually. 



• Push communication is not implemented. 
 

SmartNetSolve was designed in 2004, implemented in 2005 and was first presented in [7] in 
April 2006.  SmartNetSolve is the predecessor to SmartGridSolve.  SmartNetSolve allowed a 
group of tasks to be collectively mapped and collectively executed on a fully connected network.  
The initial design allowed the user to give a description of the group of tasks and then at run-time 
this description would be used to generate a task graph.  This task graph and a graph of the 
network were used to generate a mapping solution, which was then in turn used to execute the 
tasks on the fully connected network.  Initially, the description of the task graph was given using 
an XML file, which was read at run-time.  A new language, Application Definition Language 
(ADL) [18], was also being designed to make this more user friendly for the user. 

In September 2006, distributed task sequencing was developed for the GridRPC model [19].  
A new function was introduced that allows direct data transfer between servers when executing a 
task sequencing job in a Grid environment.  This meant that multiple servers could be used and 
not just a single server as was originally a restriction of task sequencing.   
The limitations of this approach are: 

• Tasks were not mapped collectively. 
• Conditional statements cannot exist in the scope of the task sequencing job. 
• Client computation cannot exist in the scope of the task sequencing job. 
• Push communication is not implemented. 

 
In October 2006, the special agent called MADAG was implemented in DIET, which handled 

workflow submissions [20].   The user gives a description of this workflow using an XML file 
including the values of any arguments (i.e. element values of vectors, matrices, etc).  Using the 
DIET API, the user references the file, which has the DAG description.  This is used to create a 
DAG or task graph, which is submitted to the MADAG agent, which is responsible for scheduling 
the DAG.   This is implemented for the DIET API and has not yet been implemented for the 
GridRPC model and API.  This implementation does not follow the RPC style of calling each 
task in the application.  Instead, the application calls a function that submits the entire task graph 
as a single entity.   
The limitations to this approach are: 

• Since this approach does not follow the GridRPC model, intermediate results cannot be 
sent back to the client. 

• The task graph has to be known at compile time.  Therefore, no conditional statements can 
exist and initial values of input matrices, vectors etc. have to be known before run-time. 

• Client computation cannot exist between tasks. 
• It is not user friendly as it can be difficult and time consuming to write the XML 

description of a task graph. 
• Writing XML files to generate task graphs is more prone to error than if the task graphs 

were automatically generated by the system. 
      

Since this initial design of MADAG system, a GUI has been developed, which has made it 
more user friendly [21].  However, this is also prone to error due to the fact that the application 
programmer has to outline the task graph and in addition it is still more labour intensive than if 
the task graph was automatically generated. 



In late 2006, work began on SmartGridSolve and the SmartGridRPC model to address the 
limitations described above.  This was presented in 2008 [6].   
4. GRIDRPC PROGRAMMING MODEL AND API 
 

The aim of the GridRPC model is to provide a standardized, portable and simple 
programming interface for Remote Procedure Call.  It intends to unify client access to existing 
Grid computing systems (such as GridSolve, Ninf-G, DIET and OmniRPC).   This is done by 
providing a single standardized, portable and simple programming interface for Remote 
Procedure Call (figure 1). 

 
 

Middleware
GridRPC Model/API

Application 
 
 
  

Figure 1: Overview of GridRPC model/API 
 

This standardisation provides portability of the programmers’ source code across all GridRPC 
implemented platforms.   Since the GridRPC model specifies the API and the programming 
model but does not dictate the implementation details of the servers, which will execute the 
remote procedure call, there may be multiple different middleware implementation of the 
GridRPC model, in which the source code could be executed on.  
 
4.1. Design of the GridRPC programming model 
   

The functions presented in this section are shared by all the implementations of the GridRPC 
model.  However the mechanics of these functions differ in each implementation.   

Register discovery: The servers of the Grid environment register the tasks, which they can 
execute with a “registry”.  This involves sending information such as how the client should 
interface with the task and what type of arguments the server expects when the task is called (the 
calling sequence).  In this paper, the registry will be an abstract term for the entity/entities, which 
stores the information about the registered tasks and the underlying network.  This may be a 
single entity, such as the Agent in GridSolve, or several entities such as the MDS (or LDIF), 
running on servers in Ninf-G, or the Global Agents and Local Agents, running in the DIET 
system.  

Run-time of client application:  When the GridRPC call grpc_function_handle_default is 
invoked, the client contacts the registry to look-up a desired task and receives a handle, which is 
used by the client to interface with the remote task.     A task handle is a small structure that 
describes various aspects of the task and its arguments such as: 

• The task name (dgesv, dgemm etc.) 
• The object types of the arguments (scalars, vectors, matrices etc.) 
• The data type of the arguments (integer, float, double, complex etc) 
• Whether the arguments are inputs or outputs. 

 



The client then uses the handle to call the task, which eventually returns the results.  Each 
GridRPC call gets processed individually, where each task is discovered (task look-up) and 
executed separately from all the other tasks in the application. 

Currently a task is discovered by explicitly asking the registry for a known function through a 
string look-up.  For applications, which are run using the GridSolve middleware, the discovery 
mechanism is done via the GridSolve agent.  In Ninf -G, discovery is done via the Globus MDS, 
which runs on each server, and in DIET discovery is done via the Global Agent.  The GridRPC 
model does not dictate the mechanics of resource discovery since different underlying GridRPC 
implementations may use vastly different protocols. 

GridSolve and DIET are GridRPC systems that can perform dynamic mapping of tasks.     
Discovery for dynamic mapping also involves discovery of performance models, which are used 
by the mapping heuristics.  The performance models for DIET are the FAST prediction tool [5], 
CORI [21] and NWS [5].  The performance models for GridSolve are described in section 6.3. 
 
4.2. GridRPC: API and semantics 
 

Now we will introduce the fundamental objects and functions of the GridRPC API and 
explain their syntax and semantics.   

The two fundamental objects in the GridRPC model are the task handles and the session IDs. 
The task handle represents a mapping from a task name to an instance of that task on a particular 
server. 

Once a particular task-to-server mapping has been established by initializing a task handle, all 
GridRPC calls using that task handle will be executed on the server specified in that binding.   In 
GridRPC systems, which perform dynamic resource discovery and mapping, it is possible to 
delay the selection of the server until the task is called.  In this case, resource discovery and 
mapping is done when the GridRPC task call is invoked with this initialized handle.  In theory, 
there is more chance to choose a “better” server in this way, since at the time of invocation more 
information regarding the task and network is known, such as the size of input/outputs, 
complexity of task and dynamic performance of client-server links. 

The two types of GridRPC task call functions are blocking calls and non-blocking calls.  The 
grpc_call function makes a blocking remote procedure call with a variable number of arguments.  
This means the function does not return until the task has completed and the client has received 
all outputs from the server.   

The grpc_call_async function makes a non-blocking remote procedure call with a variable 
number arguments.  When this call is invoked, the remote task and data transfer of the input are 
initiated and the function returns.  This means that either the client computation or server 
computation can be done in parallel with the grpc_call_async call.     

The grpc_wait function waits for the result of the asynchronous call with the supplied session 
ID. The grpc_wait_all function waits for all preceding asynchronous calls. 
 
 
 
 
 
 



 
 
 
4.3 GridRPC: A GridRPC application 
 
Table 1 is a simple application, which uses the GridRPC API.   
 

Table 1: GridRPC model – Example application.   
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main() 
{ 
    int N; 
    int M; 
    double A[N*N], B[N*N], C[N*N]; 
    double D[M*M], E[M*M], F[M*M], G[M*M]; 
 
    grpc_function_handle_t h1, h2, h3; 
    grpc_session_t s1, s2; 
    grpc_initialize(argv[1]); 
     
    /* initialize */ 
    char * hndl_str= “bind_server_at_call_time”; 
     
    grpc_function_handle_init(&h1, hndl_str,"mmul/mmul"); 
    grpc_function_handle_init(&h2, hndl_str, "mmul/mmul");  
    grpc_function_handle_init(&h3, hndl_str, "mmul/mmul");  
     
    N=getNSize(); 
    initMatA(N, A);  initMatB(N, B); 
    if(grpc_call_asnc(&h1,&s1, N, A, B, C)!= GRPC_NO_ERROR) {
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
    } 
 
    M=getMSize();       
    initMatD(M, D);  initMatD(M, E); 
    if(grpc_call_async(&h2, &s2, M, D, E, F)!=GRPC_NO_ERROR){
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
    } 
 
    grpc_wait(s1); 
    grpc_wait(s2); 
 
    if (grpc_call(&h3, M, C , F, G) != GRPC_NO_ERROR) { 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
    } 
 
    grpc_function_handle_destruct(&h1); 
    grpc_function_handle_destruct(&h2); 
    grpc_function_handle_destruct(&h3); 
    ... 
    grpc_finalize(); 
} 
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tasks are executing in parallel with this task and the computation load of the tasks executing in 
parallel.   

Consider the following scenario - M is initialized to 1000 and N is initialized to 100.  
Therefore, the computational load of the first task will be far less than that of the second task.  In 
this circumstance, when the system maps the function handle h1, it will map this to the fastest 
server as this will yield the lowest execution time for this task.  Then, when the system maps the 
function executing handle h2, it will map it to the second fastest server as the fastest server is 
currently heavily loaded with the first task. This is poor load balancing of computation and will 
affect the overall performance of the parallel execution of both tasks. 

In addition, since tasks are processed individually in the GridRPC model, it is impossible for 
systems, which implement this model, to know the dependencies between tasks.  Since 
dependencies between tasks are not known and the communication model of GridRPC model is 
based on the client-server model, bridge communication between remote tasks is forced. With 
the GridRPC model, this dependent argument would have to be sent from the source task to the 
destination task via the client, which is two communication steps.  This necessity for the client to 
buffer intermediate data may also cause memory paging on the client.   In this application, the 
third task, h3, is dependent on argument F from the second task h2 and argument C from task h1.  
In this case, the only way to send F from the server executing h2 and C from the server executing 
h1 to the server executing h3 is via the client, which is two communication steps.  Mapping tasks 
individually in this application has forced bridge communication and increased the amount of 
memory used on the client.  This will affect the overall volume of communication and may cause 
paging on the client, which would significantly affect the performance of the application.  In 
addition, since tasks are mapped individually on to a star network, parallelism of remote 
communication cannot be employed.  In this case, if dependencies were known, argument C 
could be sent from the server executing h1 to the server executing h3 in parallel with 
computation and communication of task h2 (permitting that task h2 has been assigned a different 
server than h3). 

From this application, it is evident that the potential for higher performance applications 
would be increased if we could map tasks collectively as a group on to a network, which is fully 
connected. This is the premise of the SmartGridRPC model. 
 
 
5.  SMARTGRIDRPC PROGRAMMING MODEL AND API 
 

The aim of the SmartGridRPC model is to enhance the GridRPC model by providing 
functionality for collective mapping of a group of tasks on a fully connected network.   

The SmartGridRPC programming model is designed so that when it is implemented it is 
interoperable with the existing GridRPC implementation (figure 2).  Therefore, if any 
middleware has been extended to be made SmartGridRPC compliant, the application 
programmer has the option whether their application is implemented for the SmartGridRPC 
model, where tasks are mapped collectively on to a fully connected network or for the standard 
GridRPC model, where tasks are mapped individually on to a client-server star network. 

In addition, the SmartGridRPC model is designed so that when it is implemented it is 
incremental to the GridRPC system.  Therefore, if the SmartGridRPC model is installed only on 
the client side, the system will be extended to allow for collective mapping.  If the 
SmartGridRPC model is installed on the client side and on only some of the servers in the 



network, the system will be extended to allow for collective mapping on a partially connected 
network. If it is installed on all servers, the system will be extended to allow for collective 
mapping on the fully connected network. 
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SmartGridRPC GridRPC  

Application 
 
 
 
 

Figure 2: Overview of SmartGridRPC model/API 
 
5.1. SmartGridRPC programming model 
 

The SmartGridRPC model provides an API, which allows the application programmer to 
specify a block of code, in which a group of GridRPC task calls should be mapped collectively.  
Then, when the application is run, the specified group of tasks in this block of code is processed 
collectively and each operation in the GridRPC call is separated and done collectively for all 
tasks in the group. Namely, all tasks in the group are discovered collectively, mapped 
collectively and executed collectively on the fully connected network.  In the discovery phase, 
performance models are generated for estimating the execution time of the group of tasks on the 
fully connected network.  In the mapping phase, the performance models are used by the 
mapping heuristic to generate a mapping solution for the group of tasks.  In the execution phase, 
the group of tasks is executed on the fully connected network according to the mapping solution 
generated. 

In the context of this paper, a performance model is any structure, function, parameter etc., 
which are used to estimate the execution time of tasks in the distributed environment.  The 
SmartGridRPC performance model refers to performance models, which are used to estimate the 
time of executing a group of tasks on the fully connected network.   The GridRPC performance 
model refers to performance models, which are used to estimate the execution time of an 
individual task on a star network.  A mapping heuristic is an algorithm, which aims to generate a 
mapping solution that satisfies a certain criterion, for example, minimum completion time, 
minimum perturbation etc.  The SmartGridRPC mapping heuristics refer to mapping heuristics, 
which map a group of tasks on to a fully connected network.  The GridRPC mapping heuristics 
refer to mapping heuristics which map an individual task on to a client-server network.  
Furthermore, a mapping solution is a structure, which outlines how tasks should be executed on 
the distributed network.  The SmartGridRPC mapping solution outlines both a task-to-server 
mapping of each task in the group to a server in the network and the communication operations 
between the tasks in the group.  The GridRPC mapping solution outlines the server list, which 
specifies where the called task should be executed, and the backup servers which should execute 
the task should the execution fail. 

The collective mapping of the SmartGridRPC model allows the mapping heuristics to 
estimate the execution time of more mapping solutions than if these tasks were mapped 
individually and therefore have higher potential of finding a more optimal solution.     

The job of generating the performance models is divided between the different components of 
GridRPC architecture (i.e. client, server and registry).  The components may only be capable of 
constructing part of the performance model required to estimate the groups’ execution time.  



Therefore, the registry accumulates these parts from the different components and generates the 
required performance models.   

There are numerous methods for estimating the execution time of the group of tasks on a fully 
connected network so the implemented performance models are not specified in the 
SmartGridRPC model.  Examples of performance models would be the ones currently 
implemented in SmartGridSolve, which have extended the performance models used in 
GridSolve (section 6.3).  In the future, SmartGridSolve will implement performance models such 
as the Functional Performance Model, which is described in [22][23]. Other possible 
implementations could include the Network Weather Service [24], the MDS directories (Globus, 
Ninf) [4] and the Historical Trace Manager (GridSolve) [25].  In general, in the SmartGridRPC 
model, the performance models are used to estimate: 

• The execution time of a task on a server. 
• The execution time of multiple tasks on a server and the affect the execution each task has 

on the other (perturbation). 
• The communication time of sending inputs and outputs between client and server. 
• The communication time of sending inputs and outputs between different servers. 

 
Mapping heuristics implement a certain methodology that uses these performance models to 

generate a mapping solution, which satisfies a certain criterion.  Examples of mapping solutions 
include the greedy mapping heuristic and the exhaustive mapping heuristics, which have been 
currently implemented in SmartGridSolve. There has been extensive research done in the area of 
mapping heuristics [26] so this is not the focus of our study.  

The following sections describe the programming model of SmartGridRPC in the 
circumstance where the performance models are generated on the registry and the group of tasks 
is mapped by a mapping heuristic on the registry.  However, the SmartGridRPC model could 
have an alternative implementation. These performance models could be generated on the client 
and the group of tasks could also be mapped by a mapping heuristic on the client.  This may be a 
more suitable model for systems, such as Ninf-G, which have no central daemon like the 
GridSolve Agent or the DIET Global Agent. 

The SmartGridRPC map function separates the GridRPC call operations into three distinct 
phases so they can be done for all tasks collectively: 

• Discovery phase – The registry discovers all the performance models necessary for 
estimating the execution time of the group of tasks on a fully connected network. 

• Mapping phase – The mapping heuristic uses the performance models to generate a 
mapping solution for the group of tasks. 

• Execution phase - The group of tasks is executed on the fully connected network according 
to the mapping solution. 

 
Register discovery:  The servers provide the part of the performance model, which would 

facilitate the modeling of the execution of its available tasks on the underlying network. This 
partial model can either be automatically generated by the server or has to be explicitly specified 
or both.  This partial model will be referred to as the server PM. 

As previously mentioned, the SmartGridRPC model does not specify how to implement the 
server PM as there are many possible implementations.  Exactly when the server’s PM is sent to 



the registry is also not specified by the SmartGridRPC model as this would depend on the type of 
performance model implemented.  

But for example, the server PM could be sent to the registry upon registration and then 
updated after a certain event has occurred (i.e. when the CPU load or communication load has 
changed beyond a certain threshold) or when a certain time interval has elapsed. Or it may be 
updated during the run-time of the application when actual running times of tasks are used to 
build the performance model.  It is suffice to say that the server PM is updated on the registry 
and is stored there until it is required during the run-time of a client application. 

Client application run-time:  The client also provides a part of the performance model, 
which is sent to the registry during the run-time of the client application.  This will be referred to 
as the client PM.  This part of the performance model is application-specific such as the list of 
tasks in the group, their order, the dependencies between tasks and the values of the arguments in 
the calling sequences.  In addition, the client PM specifies the performance of the client-server 
links.  

In order to determine the parts of the performance model of the group of tasks, which are 
application-specific, each task, which has been requested to be mapped collectively, will be 
iterated through twice.      On the first iteration, each GridRPC task call is discovered but not 
executed.  This is the discovery phase. After all tasks in the group are discovered, the client 
determines the performance of the client-server links and sends the client PM to the registry.  
The registry then generates the performance models based on the stored server PM and the client 
PM.  Based on these performance models, the mapping heuristic generates a mapping solution. 
This is the mapping phase. On the second iteration through the group of tasks, each task is then 
executed according to the mapping solution generated. This is the execution phase. This 
approach of iterating twice through the group tasks to separate the discovery, mapping and 
execution of tasks into three distinct phases is the basis that allows the SmartGridRPC model to 
collectively map and then collectively execute a group of tasks.   

The run-time map function, grpc_map, is part of the SmartGridRPC API and allows the 
application programmer to specify a group of GridRPC calls to map collectively.   

This is done by using a set of parenthesis, which follows the map function, to specify a block 
of code, which consists of the group of GridRPC task calls that should be mapped collectively: -  
 
  grpc_map(char * mapping_heuristic_name){ 
    ... 
    //group of GridRPC calls to map collectively 
    ... 
  } 
 

When this function is called, the code and GridRPC task calls within the parenthesis of the 
function are iterated through twice as previously described. 

Discovery phase:  On the first iteration through the group of tasks, each GridRPC task call 
within the parenthesis is discovered but not executed so therefore all tasks in the group can be 
discovered collectively.  This is different to the GridRPC model, which only allows a single task 
to be discovered at any one time.  The client can therefore look up and retrieve handles for all 
tasks in the group at the same time.  In addition to sending the handles, the registry also sends 
back a list of all the servers that can execute each task.  The client then determines the 
performance of the client-server links to the servers in the list.  The client may only determine 



the performance of some of these links, depending on how many servers are in this list, or may 
not determine the performance of any of the links if the arguments being sent over the links are 
small.  Exactly how the client determines the performance of these links is not specified by the 
SmartGridRPC model.   This could be implemented using NWS sensors, ping-pong benchmarks, 
MDS directory or any other conceivable method for determining the performance of 
communication links. 

The client now sends the client PM to the registry. The client PM specifies the order of tasks 
in the group, their dependencies and the values of each argument in the calling sequence of each 
task and the performance of the client-server links.  This does not involve sending non-scalar 
arguments, such as matrices or vectors, but just the pointer value as this will be used to 
determine the dependencies between tasks.  The registry then uses the server PM and client PM 
to generate the performance models for estimating the time of executing a group of tasks on the 
fully connected network.  These performance models are then used in the mapping phase to 
generate a mapping solution. 

Mapping Phase:  Based on the performance models, the mapping heuristic then produces a 
mapping solution, which satisfies a certain criterion, for example, minimizing the execution time 
of tasks.   The implemented mapping heuristic is chosen by the application programmer using the 
SmartGridRPC API. 

There is an extensive number of possible mapping heuristics that could be implemented and 
therefore the mapping heuristics implemented are not bound by the SmartGridRPC model.  
However, the SmartGridRPC framework allows different mapping heuristics and different 
performance models to be added and therefore provides an ideal framework for testing and 
evaluating these performance models and mapping heuristics. 

Execution Phase:  The execution phase occurs on the second iteration through the group of 
tasks.  In this phase, each GridRPC call is executed according to the mapping solution generated 
by the mapping heuristic on the previous iteration.  The mapping solution not only outlines the 
task-to-server mapping but also the remote communication operations between the tasks in the 
group. 
 
5.2. SmartGridRPC: API and semantics 
 

The SmartGridRPC API allows a user to specify a group of tasks that should be mapped 
collectively on a fully connected network.  The SmartGridRPC map function is used for 
specifying the block of code, which consists of the group of GridRPC tasks calls that is to be 
mapped collectively. 

When the grpc_map function is called, the code within its parenthesis will be iterated through 
twice as previously described in section 5.1.   After the first iteration through the group of tasks, 
the mapping heuristic specified by the parameter “mapping_heuristic_name” of the grpc_map 
function generates a mapping solution. 

The mapping solution outlines a task to server mapping and also the communication 
operations between tasks.    These communication operations include: 
- Client-server communication 

o Standard GridRPC communication 
- Server-server communication 

o Server sends a single argument to another server 
- Client broadcasting 



o Client sends a single argument to multiple servers. 
- Server broadcasting 

o Server sends a single argument to multiple servers. 
- Server caching 

o Server stores an argument locally for future tasks. 
 
As a result, the network may have: 
• A fully connected topology - where all the servers are SmartGridSolve enabled servers 

(SmartServers), which can communicate directly with each other. 
• A partially connected topology – where only some of the servers are SmartServers, which can 

communicate directly. The standard servers can only communicate with each other via the 
client. 

• A star connected topology – where all servers are standard servers and they can only 
communicate with each other via the client. 

 
During the second iteration through the code, the tasks will be executed according to the 

generated mapping solution.      
The SmartGridRPC model also requires a method for identifying code that will be executed 

on the client.  There are many possible approaches, which could be implemented to identify 
client code.  For example, a preprocessor approach could be used to identify the client code 
transparently.  Where the client code cannot be identified, we provide a grpc_local function call, 
which the application programmer can use to explicitly specify client computation: -   
 
  grpc_map(char * mapping_heuristic_name){ 
 
     //reset variables which have been updated  
     // during the discovery phase 
 
     grpc_local(list of arguments){ 
      //code to ignore when generating task graph 
     } 
     ... 
     // group of tasks to map collectively 
     ... 
  } 
 

The grpc_local function is used to specify the code block that should be ignored during the 
first iteration through the scope of grpc_map.  The function is also used to specify remote 
arguments that are required locally.  This information is used to determine when arguments will 
be sent back to client and also facilitates the generation of the task graph.    

Any segment of client code that is not part of the GridRPC API should be identified using this 
function.  There is one exception to this rule, when the client code directly affects any aspect of 
the task graph.   For example, if a variable is updated on the client that determines which remote 
tasks get executed or the size of inputs/outputs of any task, then the operations on this variable 
should not be enclosed by the grpc_local function.   If any variables or structures are updated 
during the task discovery cycle then they should be restored to their original values before the 
execution cycle begins. 



5.3. SmartGridRPC: A SmartGridRPC application 
 

Table 2 is the SmartGridRPC implementation of the GridRPC application in section 4.3.  
There is only one extra call required to make this application SmartGridRPC enabled, which is 
the grpc_map function.  In this example, the user has specified that all three tasks should be 
mapped collectively. 
 

Table 2: SmartGridRPC model – Example application. 
 

 main() 
{ 
    int N=getNSize(); 
    int M=getMSize(); 
 
    double A[N*N], B[N*N], C[N*N]; 
    double D[M*M], E[M*M], F[M*M], G[M*M 
    grpc_function_handle_t h1, h2, h3; 
    grpc_session_t s1, s2; 
    grpc_initialize(argv[1]); 
     
    /* initialize */ 
    initMatA(N, A);  initMatB(N, B);  
    initMatD(M, D);  initMatD(M, E);  
     
 
    grpc_function_handle_default(&h1, "mmul/mmul"); 
    grpc_function_handle_default(&h2, "mmul/mmul");  
    grpc_function_handle_default(&h3, "mmul/mmul");  
 
    grpc_map(“greedy_map”){     
      if(grpc_call_asnc(&h1,&s1,N,A,B,C)!= GRPC_NO_ERROR) { 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
      } 
      if(grpc_call_async(&h2, &s2,M,D,E,F)!=GRPC_NO_ERROR){ 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
      } 
      grpc_wait(s1); 
      grpc_wait(s2); 
 
      if (grpc_call(&h3,M,C ,F,G) != GRPC_NO_ERROR){ 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
      } 
 
 
   } 

    grpc_function_handle_destruct(&h1); 
    grpc_function_handle_destruct(&h2); 
    grpc_function_handle_destruct(&h3); 
    ... 
    grpc_finalize(); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Let us consider the same simple scenario as in section 4.3, where task h2 has a larger 
computational load than h1 and the underlying network consists of two servers, which have 
different performances.  In this case, since all tasks are mapped together, the SmartGridRPC 
model will improve the load balancing of computation by assigning task h2 to the faster server 
and h1 to the slower. 

In addition, task h3 has a dependency on the argument F, which is an output of task h2, and 
argument C, which is an output of task h1.  Since the tasks are mapped as a group and therefore 
dependencies can be considered, this dependency can be mapped on to the virtual link 
connecting the servers executing both tasks, which will reduce the communication load.  Or if 
the tasks are executing on the same server, then the output can be cached and retrieved from the 
same server, which would further reduce the communication load and further increase the overall 
performance of the group of tasks.  

Also, since no intermediate results are sent back to the client, the amount of memory utilised 
on the client will be reduced and this will reduce the risk of paging on the client.  This prevention 
of paging could also considerably reduce the overall execution time of the group of tasks. 



In addition, since dependencies are known and the network is fully connected, the remote 
communication of argument C from server, executing task h1, to server executing task h2, could 
be done in parallel with the communication and computation of h2. 
 
 
6. IMPLEMENTING THE GRIDRPC MODEL IN GRIDSOLVE 
 

The GridSolve agent, which is the focal point of the GridSolve system, has the responsibility 
of performing discovery and mapping of tasks.  The GridSolve agent is implementation of the 
registry entity, which was outlined in the section 4 of the paper.     

In order to map a task on the client-server network, the agent must discover performance 
models, which can be used to estimate the execution time of individual tasks on different servers 
on the network.  These performance models include functions for each task, which calculate the 
computation/communication load of tasks, and parameters, which specify the dynamic 
performance of the network.  These performance models are sent from each server in the 
network to the agent before run-time of the client application (Agent discovery).   
 
6.1. GridSolve: Agent discovery 
 

The section outlines the GridSolve implementation of the “Register discovery” part of the 
GridRPC model outlined in section 4.1.  The agent maintains a list of all available servers and 
their registered tasks.  This list is incremented when each new server registers with the agent.  In 
addition, the agent stores performance models required to estimate the execution time of 
available tasks on the servers.  This includes the dynamic performance of each server and 
functions/parameters, which are used to calculate the computational/communication load of 
tasks.   These performance models are implemented by executing the LINPACK benchmark on 
each server when they are started, running the CPU load monitor on the server and using 
descriptions of the task provided by the person that installed the task to generate functions for 
calculating the computation and communication load of the tasks (figure 3).   
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 be configured to maintain a history of execution times and use a 
orithm to predict future execution times.  At run-time of the client 



application, when each GridRPC task call is invoked, these performance models are used to 
estimate the execution time of the called task on each server.   

 
6.2. Run-time GridRPC task call 
 

In practice, from the user’s perspective the mechanism employed by GridSolve makes the 
GridRPC task call fairly transparent. However, behind the scenes a typical GridRPC task call 
involves the following operations: 

• The discovery operation. 
• The mapping operation. 
• The execution operation. 

 
The discovery operation:  When the GridRPC call is invoked, the client queries the agent for 

an appropriate server that can execute the desired function.  The agent returns a list of available 
servers, ranked in order of suitability. 

This ranked list is sorted based only on task computation times.   Normally, the client would 
simply submit the service request to the first server on the list, but if specified by the user it is 
resorted according to its overall computation and communication time.  If this is specified, the 
bandwidth from the client to the top few servers is measured.  This is done using a simple 32KB 
ping-pong benchmark.   The time required to do the measurement will depend on the number of 
servers, which have the requested task, and the bandwidth and latency from the client to those 
servers. When the data is relatively small, the measurements are not performed because it would 
take less time to just send the data than it would take to do the measurements.  Also, since a 
given service may be available on many servers, the cost of measuring network speed to all of 
them could be prohibitive.  Therefore, the number of servers to be measured is limited to those 
with the highest computational performance. 

The mapping operation:  As previously described, the agent sends a server list, which is 
ordered according to their estimated computation time. 

In GridSolve, there is a number of mapping heuristics, which can be employed to generate the 
mapping solution.   Among the mapping heuristics is the minimum completion time (MCT) 
mapping heuristic, which bases its execution time on the performance models and the dynamic 
network performance of each server outlined in section 6.3.  Also included are a set of mapping 
heuristics that rely on the other performance model in GridSolve called the Historical Trace 
Manager (HTM). 

The execution operation: The client attempts to contact the first server from the list. It sends 
the input data to the server, the server then executes the task on behalf of the client and returns 
the results.  If at any point the execution fails, the client automatically moves down the list of 
servers. 
 
6.3. GridSolve: Performance models 
 

The performance models of GridSolve are used by the mapping heuristics to estimate the 
execution time of individual tasks on a client-server network.  In GridSolve, the performance 
models can be used to estimate: 

• The execution time of a task on a server. 



• The communication time of sending inputs and outputs between client and server. 
• The perturbation that one task has on another. 

 
The mapping heuristics use these performance models to estimate the time of different 

possible task-to-server mapping solutions and choose the mapping solution, which most satisfies 
a certain criterion.  

The performance models of GridSolve specify the dynamic performance of each server and 
the dynamic performance of the client-server links.  They also specify the computation load and 
communication load of the called task.  When a task is called for execution, the computation load 
and dynamic performance of a server is used to estimate the task’s computation time.  The 
communication load and dynamic performance of the client-server links are used to estimate the 
task’s communication time. 

The dynamic performance of a server is parameterized by the number of floating point 
operations per second (flop/sec) that the server can perform.  It is obtained by first determining 
the static performance of each server by running a sequential benchmark on each server (figure 
3).  This sequential benchmark is the LINPACK benchmark, which is executed on each server 
when it is started.  The benchmark times the execution of a routine, which solves a dense system 
of linear equations.  This benchmark is close to the peak performance rate of the server.  There is 
a “CPU load monitor” on each server, which continually monitors the CPU load.  When this 
CPU load changes beyond a certain threshold or if a certain time interval has elapsed (~5mins), 
then this CPU load is sent to the agent. To get the dynamic performance (p) of the server, the 
agent uses this updated CPU load to scale the value for the server’s peak performance (P).  The 
dynamic performance of a server is calculated as follows: 
 

 
 

- where p is the dynamic performance of the server, w is the current CPU load, P is the peak 
performance (benchmark) of the server and n is the number of processors on the server. 

The dynamic performance of a client-server link is parameterized by its bandwidth (bw), 
which is the number of bytes per second (bytes/sec) that can traverse the link.  It is obtained 
using the ping-pong benchmarks.  Using these benchmarks the bandwidth of the link can be 
calculated as follows:  
 

 
 

- where the PING_PACKET_SIZE is 32 KB and PING_TIME is the time it takes to send the 
packet between the client and server.  

In addition, the performance model includes functions for calculating computation and 
communication load of tasks.  These functions are generated from the task description of each 
task, which is provided by the person who writes or installs a task.  They are written in a 
language called the GridSolve Interface Definition Language (IDL).   With this language, the 
task writer/installer provides a specification of the calling sequence of the task.  This 
specification describes the data type of each argument (integer, float, double etc.), the object type 
of each argument (scalar, vector, or matrix) and whether each argument is an input, an output or 



an input-output.   Table 3 shows the IDL description of the DGESV task, which is a LAPACK 
routine that solves .     The IDL description specifies that the first two arguments of 
the calling sequence are input scalar integers.  The third argument of the calling sequence is an 
input-output, which is a matrix of doubles.  The fourth argument is an output scalar argument. 
The fifth argument is an output vector of integers and the sixth is an input-output matrix of 
doubles. The seventh is a scalar integer input and the eight is a scalar output integer.  This 
specification of the calling sequence is used to generate functions for calculating both the 
computation load and the communication load of the task. 
 

Table 3: IDL specification of DGESV task 
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SUBROUTINE dgesv( 
  IN int N,  
  IN int NRHS, 
  INOUT double A[LDA][N], 
  IN int LDA, 
  OUT int IPIV[N], 
  INOUT double B[LDB][NRHS], 
  IN int LDB, 
  OUT int INFO) 
 
"This solves Ax=b using LAPACK" 
LANGUAGE = "FORTRAN" 
LIBS = "$(LAPACK_LIBS) $(BLAS_LIBS)" 
COMPLEXITY = "2.0*pow(N,3.0)*(double)NRHS" 
MAJOR="COLUMN 
scription of the task is a “string” formula that is used in conjunction 
 the calling sequence to generate a function for calculating the 
k.  This formula is denoted in the IDL file as the “COMPLEXITY” 
ula for the DGESV task is: 

    

tion with the specified calling sequence in table 3 generates a function 
tational load as a multiplication of 2 by the first argument cubed 
gument of the calling sequence. 
values of these arguments are known, this function can be used to 

 load of task.  The computation load is measured in the number of 
which the task will execute.  An example of the calling sequence of 
s follows:   

  grpc_callሺ&degesv_handle,400,100, A, 800, IPIV, B, 400,INFOሻ  

e computation load would be: 

 



The communication load of a task can be calculated using the following formulas in 
conjunction with the specified calling sequence in the IDL specification:  
 

 
 

In these formulas, the DATA_TYPE variable specifies whether the argument type is a double, 
integer, float etc.  And the rows and cols variables are the dimensions of the matrix/vector.  The 
get_elem_size function returns the size of bytes of the specified DATA_TYPE (double, integer 
etc.).     

The formula for calculating matrix argument size in conjunction with the specification of the 
calling sequence in table 3 would generate a function that outlines that the communication load 
of argument A of the DGESV task can be calculated by multiplying the fourth argument (LDA) 
in the calling sequence by the first argument (N) in the calling sequence by the size of a double 
(e.g. 8 bytes).  At run-time, when the values of these arguments are known, this function can be 
used to calculate the communication load of argument A of the DGESV task.   

However, in some instances, the platform of the sending machine must be known to 
determine this communication load.  One of the problems with C and C++ is that the built in data 
types such as int and long int are platform dependent.  There is nothing in the standard to say 
how many bytes each data type occupies beyond some basic ordering.  For example, long int 
must use at least as many bytes as int (but could be the same).   Table 4 outlines the number of 
bytes of different data types on different platforms. 
 

Table 4: Size of datatypes on different platforms 
 

OS ARCH Size of 
int 

Size of 
long int 

Size of 
double 

LINUX x86 4 bytes 4 bytes 8 bytes 
LINUX x86-64 4 bytes 8 bytes 8 bytes 
Windows x86 4 bytes 4 bytes 8 bytes 
Windows x86-64 4 bytes 4 bytes 8 bytes 
MAC OS X x86 4 bytes 4 bytes 8 bytes 
MAC OS X x86-64 4 bytes 8 bytes 8 bytes 

 
For this reason the get_elem_size function also takes an architecture identifier as a parameter.  

For the calling sequence outlined previously for the DGESV task, the communication load of 
non-scalar arguments on a 32bit Intel machine running LINUX OS would be: 
 

 
 

 
 

 
 

 
 

 
 

 
 



From these performance models, it is possible to estimate both the communication time and 
computation time of individual tasks on the client-server network.  These performance models 
are used by the mapping heuristics to generate a mapping solution.  
 
 
6.4. GridSolve: Mapping heuristics 
 

There have been several mapping heuristics implemented in GridSolve.  Each task is mapped 
when it is called for execution and therefore each task is mapped individually on the client-server 
network.   The following mapping heuristics have been implemented:  

• Minimum Completion Time.  
• HTM - Minimum Completion Time. 
• HTM - Minimum Perturbation.  
• HTM - Minimum Sum Flow. 
• HTM – Minimum Length. 

 
The Minimum Completion Time (MCT) maps the individual task based on the performance 

models described in 6.3. 
All the HTM mapping heuristics generate mapping solutions based on the Historical Trace 

Manager (HTM) performance model. When a new task arrives, the HTM simulates the execution 
of the task on each server.  Using the HTM information, the heuristic has an estimation of 
finishing time of each task running on each server. This is used to consider the perturbation that 
tasks induce on each other and compute the ‘best’ server according to the main objective of that 
heuristic.   

When a task has completed the server sends a message to the agent that the task has 
completed and this information is used by the HTM to correct what has been simulated and 
improve the quality of future predictions.  
 
 
7. SMARTGRIDSOLVE: IMPLEMENTING SMARGRIDRPC IN GRIDSOLVE 
 
7.1. SmartGridSolve: Agent discovery 
  

This section presents the SmartGridSolve implementation of the “register discovery” part of 
SmartGridRPC model outlined in section 5.1.   In addition to registering services, the servers 
also send the server PM.  The server PM makes up part of the performance model used for 
estimating the execution time of the server’s available tasks on the fully connected network.  
This along with the client PM is used to generate a performance model, which is used by the 
mapping heuristics to produce mapping solutions. 

Currently, the server PM of SmartGridSolve extends that of GridSolve, which comprises of 
functions for calculating the computation load and communication load and parameters for 
calculating the dynamic performance of the servers and client-server links. This is described in 
section 6.3.  

However, the network discovery of GridSolve is extended to also discover the dynamic 
performance of each link connecting SmartServers.   These are those servers, which can 
communicate directly with each other or store/receive data from their local cache.  The dynamic 



performance of the server-server links are taken periodically using the same 32KB ping-pong 
technique used by GridSolve.   

To achieve backward compatibility and to give server administrators full control over how the 
server operates a server, which has the SmartGridSolve extension enabled, may be also started as 
a standard GridSolve server.    
As a result, the network may have: 

• A fully connected topology. 
• A partially connected topology. 
• A star connected topology. 

 
Also to minimize the volume of data transferred around the network, each SmartServer is 

given an ID.  Each SmartServer then only sends ping-pong messages to those SmartServers that 
have an id that is less than their own.  This prevents the performance of the same communication 
link being measured twice.  Once determined, these values are sent to the agent to update the 
server PM.  The server PM is stored on the registry and updated either periodically (every 5 
minutes) or when the CPU load monitor records a change, which exceeds a certain threshold.  
This server PM is then used to generate the performance models during the run-time of a client 
application. 
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The client then uses the list of servers to perform the ping-pong benchmark on each of the 
links from the client to each server that can execute a task in the group of tasks.  Subsequent to 
this, the client will send the client PM, which is a structure that specifies application-specific 
information such as the list of tasks, the calling sequence and the dependencies between the 
tasks.  In addition it specifies the performances of each client-server link.   

The agent can now generate all the performance models necessary for estimating the 
execution time of the group of tasks on the fully or partially connected network.  In 
SmartGridSolve, these performance models consist of a task graph, a network graph and 
functions for estimating computation and communication times. 

The task graph specifies the order of tasks, their synchronisation (whether they are executed 
in sequence or parallel), the dependencies between tasks, the load of computation and 
communication of each task in the group. 

The network graph specifies the performance of each server in the network and the 
communication links of the fully connected, partially connected or star network.   These 
performance models will be used by the mapping heuristics in the mapping phase to generate a 
mapping solution for the group of tasks.   

Mapping Phase:  The mapping heuristic produces a mapping solution graph based on the 
task graph, the network graph and the functions for estimating computation and communication 
time. The mapping heuristics currently implemented in SmartGridSolve are: 

• Exhaustive mapping heuristic. 
• Random walk mapping heuristic. 
• Greedy mapping heuristic. 

 
The mapping solution generated by these heuristics is then used in the execution phase to 

determine how the group of tasks should be executed on the network.  
Execution Phase: This execution phase occurs on the second iteration through the group of 

tasks.  In this phase, each called GridRPC call is executed according to the mapping solution 
generated by the mapping heuristic.  The mapping solution not only outlines the task-to-server 
mapping but also the communication operations between the tasks in the group.  

In addition to the standard GridRPC communication, the mapping solution can use the 
following communication operations: 

• Server-server communication. 
• Client broadcasting. 
• Server broadcasting. 
• Server caching. 

 
7.3. SmartGridSolve performance models 
 

This section presents the performance models, which are currently implemented in 
SmartGridSolve.  The performance models are used by the mapping heuristics to estimate the 
execution times of different mappings of the group of tasks on the network.  This involves both 
estimating the computation time of tasks of the application on the servers of the network and also 
estimating the communication time of sending inputs/outputs over the network. The accuracy of 
these performance models affects the ability of the mapping heuristics to generate optimal 
mapping solutions.   



 
7.3.1. Network graph 
 

The network graph is a representation of the performance of the servers and communication 
links of the fully connected, partially connected or star network.  If SmartGridSolve is installed 
only on the client side, this structure will represent a star network where no servers can 
communicate directly. With this network topology, the application programmer may only benefit 
from improved mapping of tasks to servers.  If some of the servers are SmartServers then this 
structure will represent a partially connected network.  With this network topology, the 
application programmer may also benefit from improved mapping of communication.  If all 
servers are SmartServers, the network will be fully connected. With this network topology, the 
application programmer will benefit from the full potential of improved mapping of 
communication. 

The graph specifies the performance of each server and also the performance of each link 
connecting it with the client.  Where there are two or more servers in the network that are 
SmartServers, the graph will include links which specify the performance of the link between 
these servers. 
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7.3.2. Task graph 
 

The task graph is the representation of the mapped group of tasks.  The task graph specifies 
the order of tasks, their synchronisation (whether they are executed in sequence or parallel), the 
dependencies between tasks, the load of computation and communication of each task in the 
group. 

Figure 6 illustrates a task graph, which represents 5 tasks, where task 0 and task 1 are 
executed in sequence and then task 2, task 3 and task 4 are executed in parallel.  The task graph 
has three sets of nodes, the task nodes, the client node and the argument nodes.  Each task node 
is represented by a rectangle node and is weighted by its computation load (flop).   Each input 
and output non-scalar argument (matrix, vector etc.) is represented by a circle shaped node and is 
weighted by communication load (bytes).   

The functions for calculating the computation load of each task in the group are generated 
using the formulas specified by the person that wrote or installed the task in conjunction with the 
specification of the tasks calling sequence in the IDL description (table 3).  This is part of the 
server PM, which is sent from each server to the agent prior to the execution of the client 
application.   

Then at run-time, the calling sequence of each task in the group is discovered collectively and 
these calling sequences are sent as part of the client PM to the agent.  The functions of the server 
PM and the calling sequences of the client PM can be used to determine the computation load of 
each task in the group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The task graph 
 

The functions for calculating the communication load of each non-scalar argument in the 
group are generated using the functions for calculating argument sizes in section 6.3 in 



conjunction with information on the tasks calling sequence in the IDL description (table 3).  This 
is part of the server PM.   

At run-time, the calling sequences of the tasks in the group are discovered collectively and are 
sent to the agent as part of the client PM.  Then, the communication load functions of the server 
PM and the calling sequence of the client PM are used to determine the communication load of 
each non-scalar argument in the group. 

The dependencies between tasks are determined by examining the pointers of non-scalar 
arguments of the calling sequence of each task (which is outlined in the client PM) and using the 
IDL description (which is outlined in the server PM) to determine whether they are inputs or 
outputs. 

The links in the graph represent the data-flow between tasks.  There are two types of data-
flow dependencies, the input data-flow dependency and output data-flow dependency.   

Input dependencies occur when a task has a dependency on an input of another task.   This is 
specified in the task graph by a link from an input argument node of one task pointing to another 
task node.  If multiple tasks require the same input argument then a link will emanate from this 
argument node to each dependant task node.  In this case the mapping heuristics can choose a 
mapping solution, which broadcasts the input argument of the source task from the client to each 
of the servers of the destination tasks. 

Output dependencies occur when a task has a dependency on an output of another task.  This 
is specified in the task graph by a link from an output argument node of one task pointing to 
another task node.  If multiple tasks require the same output argument, then a link will emanate 
from this argument to each dependant task.  In this case, mapping heuristics can choose a 
mapping solution, which broadcasts the argument from the source task to each of the servers of 
the destination tasks.         
 
7.4. Mapping heuristics 
 

The problem of optimally mapping a group tasks on to a fully connected network has been 
proved to be NP-complete, thus requiring the development of heuristic techniques for practical 
usage.  SmartGridSolve currently has a number of mapping heuristics implemented to optimize 
searching through possible mapping solutions (the solution space).   

In order to reduce mapping times, the current mapping heuristics implemented in 
SmartGridSolve do not consider all possible mapping solutions due to large number of possible 
solutions in the solution space.   Instead, for each task-to-server mapping, the mapping heuristics 
consider only a single communication scheme, the communication scheme that has the lowest 
number of communication steps.  In the future with improved optimization heuristics a greater 
number of communication schemes could be considered. 

When considering only a single communication scheme, the number of possible mapping 
solutions can be significant even when there are only a few tasks and servers.  For a given set of 
tasks and servers, the number of task-to-server mappings when only a single communication 
scheme is considered will be: 

 
    

 
 



For each task-to-server mapping, the mapping heuristic can consider the following number of 
communication schemes.   
 

     
 

This represents the number of communication schemes when there are more than one server 
in the network (servers) and at least one dependency in the group of tasks (num.dep).  Otherwise, 
there is only a single communication scheme that needs to be considered. 

Therefore, the total number of solutions for a given group of tasks with one or more 
dependencies on a fully connected network with more than one server will be:  
 

 
 

This sums the number of task-to-server mappings and the number of possible communication 
schemes for each task to server mapping. 

To demonstrate the significant increase when considering multiple communication schemes, 
consider the following example.  A group of 10 tasks, which have 10 dependencies between the 
tasks, are mapped on to a network of 5 servers.  In this circumstance, the number of possible 
task-to server mappings would be nearly 1 billion when considering only a single 
communication scheme.  Then, when considering the number of possible communication 
schemes, the number of possible mapping solutions would increase to in excess of 1 trillion. 
Considering that it roughly takes one second to simulate 10,000 solutions on Pentium 4 3.2 GHz 
CPU it is unfeasible to consider multiple communication schemes for each task-to-server 
mapping.   

Therefore, for each possible task-to-server mapping the current mapping heuristics 
implemented in SmartGridSolve consider a single communication scheme.  This is the 
communication scheme, which minimizes the number of communication steps between tasks.   

If there is a dependency between two tasks, which have been assigned to different 
SmartServers, the only communication path that is considered is the one, which connects both 
servers directly.  If there is a dependency between two tasks and both have been assigned the 
same SmartServer, then the communication scheme will outline that this output should be cached 
locally on the server.  If there is a dependency between two tasks and either has been assigned to 
a server that is not a SmartServer, the only communication path that will be considered is the one 
that connects both servers via the client.  

Therefore, the mapping heuristics of SmartGridSolve will generate at most serverstasks 
mapping solutions graphs.  
 
7.4.1. Mapping solution graph 
 

A mapping solution graph is a structure, which outlines both the task-to-server mapping of the 
group of tasks and the communication scheme between the tasks in the group.  In addition, the 
mapping solution graph outlines the estimated computation time of each task on their assigned 
server and the estimated communication time of each task dependency on their assigned 
communication path.   



Since only a single communication scheme is considered, a mapping solution can be 
generated from the task graph, the network graph and only a single task-to-server assignment 
vector (table 5).  The index of each vector element corresponds to a task in the task graph and 
each vector element corresponds to a server in the network graph. 

The task-to-server vector in table 5 specifies that task 0 of the task graph is assigned to server 
0 of the network graph, task 1 is assigned server 0, task 2 is assigned to server 1, task 3 is 
assigned to server 2 and task 4 is assigned to server 0. 
 

                           Table 5 -  Task-to-server assignment vector 
 

0 0 1 2 0 
 

Figure 7 shows a mapping solution graph for the task-to-server assignment vector in table 5 
and the task graph in figure 6 and the network graph in figure 5.  

When the mapping solution graph for this task-to-server vector is generated, the 
communication scheme chosen would be the one which minimizes the number of 
communication steps between the tasks.  The communication scheme in figure 7 minimizes the 
communication steps for the given assignment vector in table 5.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The mapping solution graph 
 

This communication scheme implements each type of communication transactions, which can 
be employed in the SmartGridRPC model:  

• Direct server-server communication. 
• Client broadcasting. 
• Server broadcasting.  
• Server caching of inputs. 



• Server caching of outputs. 
 

The mapping solution outlines direct server-server communication of argument 3 from 
server 0 to server 1 after task 0 has executed.  This argument is subsequently used on server 1 
for the execution of task 2.  It outlines server broadcast communication of argument 4 from 
server 0 to server 1 and server 2 after task 0 has executed.  This argument is subsequently used 
on server 1 for execution of task 2 and on server 2 for the execution of task 3.  It outlines client 
broadcast communication of argument 0 from the client to server 0 and server 1 before the 
execution of task 0.  It outlines the server caching of input argument 2 on server 0 before the 
execution of task 0 as this argument.  This argument is subsequently used on the same server by 
task 4. It outlines the server caching of output argument 5 on server 0 after the execution of 
task 0.  This argument is subsequently used on the same server by task 4. 

The estimated time of each of these remote communication transactions is calculated by 
dividing the communication load of the argument outlined in the task graph in figure 6 and the 
bandwidth of the communication link outlined in the network graph in figure 5.  For example the 
direct server-server communication of argument 3 is estimated to take 60 seconds, which is 
calculated by dividing the communication load of 600MB by the link speed, which is 10MB/sec. 

The estimated time of the caching transactions are based on a naïve assumption that disk 
speed is 50MB/sec.  For example, the caching of input argument 2 takes 10 seconds, which is 
calculated by dividing the argument size of this argument which is outlined in the task graph 
which is 500MB by the disk speed which is 50MB/sec.  In the future, benchmarks could be used 
to determine a more accurate disk speed for each machine.   

The estimated time for computation is calculated by dividing the computation load of the task, 
outlined in the task graph, and the server performance speed, outlined in the network graph.  For 
example, the computation time for task 0 is 160seconds, which is calculated by dividing the 
computation load of 4000MFlops by the server speed, which is 25MFlops/second. 

However, not every task in the group contributes to the overall execution time of the group of 
tasks.  Parallelism of computation has been employed between tasks 2, task 3 and task 4 and 
therefore only the task that takes the longest time of all three contributes to the total execution 
time of all three.  In this mapping solution, the time saved due to parallelism of computation is: 
 

 
  

The SmartGridRPC model also permits the parallelism of communication.  Any 
communication may be done in parallel with other computation/communication in the group.   
This is advantageous when there is a dependency between two tasks and the destination task is 
not executed in parallel or immediately after the source tasks.  In this case, the dependent data 
can be sent to the destination task in parallel with any computation or communication on any 
other machine (client and servers), which happens in the intervening time. 

For example, each of the communication transactions from server 0 after the execution of task 
0 can be done in parallel with other computation and communication.   This is because the tasks 
that require the arguments, task 2, task 3 and task 4- are not executed in parallel or immediately 
after task 0.  Therefore, these communication transactions can be done in parallel with the 
computation of task 1 on server 0 or any computation on the client. 



Moreover, broadcast communication from the client can also be done in parallel with other 
computation/communication that happens in the intervening time.   The sending of argument 0 
from the client to server 1 can be done in parallel with: 

• The computation of task 0 on server 0. 
• All the communication transactions from server 0 that happen after task 0 has executed. 
• The computation of task 1 on server 0.  
• The broadcast of argument 6 after the execution of task 1. 
• Any computation on the client which happens in the intervening time. 

 
Therefore, the time saved due parallelism of communication will be: 
 

 
 

 
 

  
 

In addition to specifying a more advantageous communication scheme, the mapping solution 
will outline a more advantageous computation scheme (i.e. task-to-server mapping).  Since the 
mapping heuristics can consider all tasks in the group collectively, it can better distribute the 
load of parallel computation over the servers.  Because the computations of all tasks in the group 
are considered collectively, the mapping heuristic is able to balance the load of the computation 
of the three parallel tasks.  It therefore assigns task 4, which has the highest computation load, to 
the fastest sever (server 0) and task 2, which has the lowest computation load, to the second 
slowest server (server 1).  If these were mapped individually in the GridRPC model, they could 
be mapped in reverse order as individual mapping gives priority to tasks in the order they are 
mapped.   

In this example, the amount of time saved by employing parallelism of computation is 
 and the amount of time saved by employing parallelism of communication is 

415.5 seconds. 
The time saved due to this parallelism of computation and communication does not contribute 

to the overall group time and therefore would not be included in the calculation for the total 
execution time for the group. 
 

 
 

 
 

  
 

This example has outlined that the mapping heuristics of the SmartGridRPC model have more 
potential of finding a better mapping solution due to collective mapping and employing the 
SmartGridRPC communication model, which permits parallel remote communication.   
 
 



7.5. Communication model 
      

The communication model of SmartGridSolve is based on the fully connected network.  This 
extends the GridRPC communication model, so that in addition to client-server communication, 
the following communication transactions can be employed: 
- Server-server communication 

o Server sends a single argument to another server. 
- Server broadcasting 

o Server sends a single argument to multiple servers. 
- Client broadcasting 

o Client sends a single argument to multiple servers. 
- Server caching 

o Server stores an argument locally for future tasks. 
 

To apply a communication scheme, which employs any of these transactions, the client and 
the servers must be able to identify where to send and receive arguments of each task.  To 
achieve this functionality, the communication scheme of the group of tasks is stored in 
communication structures, which specify the communication required for each task in the group.  
When each task is called for execution, a communication structure is created for that task, which 
is based on the mapping solution outlined by the mapping heuristic.    They are subsequently 
used by the client to determine where to send the inputs of each task and where to receive 
outputs of each task.  In addition, the client sends the communication structure to other servers if 
they are involved in any remote communication.  The servers use the structure to determine 
whether to send their inputs/outputs to remote destinations, to cache them locally or to send them 
back to the client.  If arguments are sent remotely, the structure specifies which servers to send it 
to and the filename of where arguments should be stored.  If the argument is received remotely it 
specifies the filename where the argument should be read from.  These filenames are unique for 
each argument that is sent remotely. 

To demonstrate how the communication model of SmartGridSolve operates using these 
communication structures, we will consider what communication operations occur if task 0 of 
the mapping solution in figure 7 was called for execution. 

Firstly, the communication transactions, which are initiated before the execution of task 0, 
will be described.  These communication transactions are illustrated in figure 8.  When task 0 is 
called for execution, the client generates a communication structure for this task based on the 
mapping solution.  The client then interprets this communication structure, which specifies that 
argument 0, argument 1 and argument 2 should be sent to server 0.  In addition to sending these 
arguments to the server, the client also sends the communication structure.       

The server interprets it and deciphers what to do with the inputs arguments prior to the 
execution of the task and the output arguments after the execution of the task.  In this case, it 
outlines that input argument 2 should be cached locally in a specified file as it is required by task 
4. This operation is done asynchronously, which means that remote computation/communication 
(on the client or other server) can be done in parallel with this operation. 

The communication structure also outlines that argument 0 should be sent to server 1.  This is 
again done asynchronously and so computation on the client or communication/computation on 
any other server can be done in parallel with this communication.  In addition to sending the 



argument, the client also sends the communication structure for this argument, which outlines 
that the argument should be stored locally in the file specified.   

It should be noted that arguments can also be stored to memory and it is the server 
administrator’s responsibility to choose which method of storage is implemented on the server.   
If this is the case, every argument is stored in a buffer/array, which is given a unique identifier 
similar to that of the filename if it was stored in cache.   
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When the destination tasks, which require these remote arguments, are called for execution, 
the client will send a communication structure outlining that arguments should be received 
locally from a file and it will specify the file name where the argument is stored. 
 
 
7.6. Fault tolerance 
 

The grpc_map_ft function in SmartGridSolve is a fault tolerant version of the grpc_map 
function:   
 
grpc_map_ft(char * mapping_heuristic_name){ 
  ... 
  // group of tasks to map collectively 
  ... 
 
} 
 

This is the same as grpc_map function, except that the mapping solution generated does not 
implement server-server communication.  The mapping solution outlines a task to server 
mapping and a communication scheme, which only implements communication between client 
and server.  The communication scheme may implement: 
- Client-server communication 

o Standard GridRPC communication. 
- Client broadcasting 

o Client sends a single argument to multiple servers. 
 

If any server that is part of the mapping solution fails, the tasks mapped to that server will be 
mapped to the next server, which is estimated to give lowest execution time for that task. 

Although, no direct server communication or caching is implemented when this function is 
called, the performance of a group of tasks can be increased due to improved load balancing of 
computation and client broadcast. 

In the future, we plan to introduce a fault-tolerant method of mapping a group of tasks, which 
will remove this restriction on remote communication.  
 
 
8. SMARTGRIDRPC BENCHMARK APPLICATION: THE EVOLUTION OF A 
CLUSTER OF GALAXIES  
 

A typical numerical simulation needs a lot of computational power and memory footprint to 
solve a physical problem with a high accuracy. A single hardware platform that has enough 
computational power and memory to handle problems of high complexity is not easy to access.  
Grid computing provides an easy way to gather computational resources, whether local or 
geographically separated, that can be pooled together to solve large problems. 

A scientific application that obviously benefits from the use of GridRPC consists of tasks with 
high computational loads and low communication loads. These applications, which are the best 
suited to run on a Grid environment, are not representative of many real-life scientific 
applications. Unfortunately they are typically chosen, or artificially created, to test and show the 



performance of GridRPC middleware systems. We believe that to justify the use of GridRPC for 
a wide range of applications, we should not use an extremely suitable application as a benchmark 
but a real life application that shows the eventual limits and benefits of the GridRPC middleware 
systems tested. 

In this section, we present Hydropad [27][28], a real-life astrophysics application that 
simulates the evolution of clusters of galaxies in the Universe.  This application is composed of 
tasks that have a balanced ratio between computation and communication. Hydropad requires 
high processing resources because it has to simulate an area comparable to the dimension of the 
Universe.  

The cosmological model, which this application is based on, has the assumption that the 
universe is composed of two different kinds of matter. The first is baryonic matter, which is 
directly observed and forms all bright objects. The second is dark matter, which is theorised to 
account for most of the gravitational mass in the Universe. The evolution of this system can only 
be described by treating both components at the same time, looking at all of their internal 
processes, while their mutual interaction is regulated by a gravitational component.  Figure 10 
shows an example of a typical output generated by Hydropad.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Example of Hydropad output 
 

The dark matter computation can be simulated using N-Body methods [29]. This method 
utilises the interactions between a large number, Np, of collision-less particles. These particles, 
subjected to gravitational forces, can simulate the process of the formation of galaxies. The 
accuracy of this simulation depends on the quantity of particles used. Hydropad utilises a 
Particle-Mesh (PM) N-Body algorithm, which has a linear computational cost and depends on 
the number of particles, O(Np).  In the first part this method transforms the particles, through an 
interpolation, into a grid of density values.  Afterwards the gravitational potential is calculated 
from this density grid. In the last part the particles are moved depending on the gravitational 
forces of the cell where they were located.  

The baryonic matter computation utilises a Piecewise-Parabolic-Method (PPM) Hydro-
dynamic algorithm [30]. This is a higher order method for solving partial differential equations. 
PPM reproduces the formation of pressure forces and the heating and cooling processes gen-
erated by the baryonic component during the formation of galaxies. For each time step of the 
evolution, the fluid quantities of the baryonic matter are estimated over the cells of the grid by 
using the gravitational potential. The density of this matter is then retrieved and used to calculate 
the gravitational forces for the next time step. The accuracy of this method depends on the 



number of cells of the grid used, Ng, and its computational cost is linear O(Ng). The application 
computes the gravitational forces, needed in the two previous algorithms, by using the Fast-
Fourier-Transform (FFT) method to solve the Poisson equation. This method has a 
computational cost of O(Ng logNg). All the data, used by the different components in Hydropad, 
are stored and manipulated in three-dimensional grid-like structures. In the application, the 
uniformity of these base structures permits easy interaction between the different methods.   

Figure 11 shows the workflow of the Hydropad application. It is composed of two parts: the 
initialisation of the data and the main computation. The main computation of the application 
consists of a number of iterations that simulate the discrete time steps used to represent the 
evolution of the universe from the Big Bang to present time. This part consists of three tasks: the 
gravitational task (FFT method), the dark matter task (PM method) and the baryonic matter task 
(PPM method). For every time step in the evolution of the universe, the gravitational task 
generates the gravitational field using the density of the two matters calculated in the previous 
time step. Hence the dark and baryonic tasks use the newly produced gravitational forces to 
calculate the movement of the matter that happens during this time step. Then the new density is 
generated and the lapse of time in the next time step is calculated from it. It is possible to see in 
figure 11 that the dark matter task and baryonic matter task are independent of each other.  
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physical variables, such as force or pressure, are stored in vectors, with the size depending on the 
given number of grid cells, Ng. In a typical simulation the number of particles is of the order of 
billions, while the number of cells in a grid can be over 1024 for each grid side. Given that for 
the values of  Ng = 128

3 
and Np = 106 the total amount of memory used in the application is 

roughly 500MB, the memory demand to run a typical simulation is very high.   
 
 
8.1. GridRPC implementation of Hydropad  
 

Hydropad was originally a sequential Fortran code, which we upgraded this program to take 
advantage of the GridRPC API and to work with the GridSolve middleware. Table 6 shows the 
original Hydropad code of the main loop, written in the C language. Three functions, grav, dark, 
and bary, are called in this loop to perform the three main tasks of the application. In addition, at 
the first iteration of this loop, a special task, initvel is called to initialise the velocities of the 
particles. The dark and baryonic tasks compute the general velocities of the respective matter. At 
each iteration, these velocities are used by a local function, timestep, to calculate the next time 
step of the simulation. The simulation will continue until this time becomes equal to the present 
time of the universe, tsim = tuniv . 
 

Table 6: Hydropad evolve loop 
 

t_sim=0 

while(t_sim<t_univ) { 

grav(phi,phiold,rhoddm,rhobm,...); 

if(t_sim==0){ 

initvel(phi,...); 

} 

dark(xdm,vdm,...,veldm);.. 

bary(nes,phi,...,velbm); 

timestep(veldm,velbm,...,t_step); 

t_sim+=t_step; 
} 

 
 
  
 
 
 
 
 
 
 
 
 
 

The GridRPC implementation of Hydropad application uses the APIs grpc_call and 
grpc_call_async to execute respectively a blocking and an asynchronous remote call of the 
Fortran functions. The first argument of both APIs is the handler of the task executed; the second 
is the session ID of the remote call while the following arguments are the parameters of the task. 
Furthermore, the code uses the method grpc_wait to block the execution until the chosen, 
previously issued, asynchronous request has completed. When the program runs, the GridSolve 
middleware maps each grpc_call and grpc_call_async functions singularly to a remote server. 
Then, the middleware communicates the data from the client computer to the chosen server and 
then executes the task remotely. At the end of the task execution, the data is communicated back 
to the client. In the blocking call method, the client cannot continue the execution until the task is 
finished and all the outputs have been returned. Instead, in the asynchronous method, the client 
does not wait for the task to finish and proceeds immediately to execute the next code. The 
output of the remote task is retrieved when the respective wait call function is executed. 



Table 7 outlines the GridRPC implementation of the main loop of Hydropad that simulates 
the evolution of the universe. At each iteration of the loop, the first grpc_call results in the 
gravitational task being mapped and then executed. When this task is completed, the client 
proceeds to the next call, which is a non-blocking call of the dark matter task. This call returns 
after the task is mapped and its execution is initiated. Then, the baryonic matter call is executed 
in the same way. Therefore, the baryonic and dark matter tasks are executed in parallel. After 
this, the client waits for the outputs of both these parallel tasks using the grpc_wait calls. 
 

Table 7: Hydropad implementation in GridRPC 
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t_sim=0; 
while(t_sim<t_total) { 
  grpc_call(grav_hndl,phiold,...); 
  if(t_sim==0){  
    grpc_call(initvel_hndl,phi,...);  
  } 
  grpc_call_async(dark_hndl,&sid_dark,x1,...);
  grpc_call_async(bary_hndl,&sid_bary,n,...); 
 
  /* wait for non blocking calls */ 
  grpc_wait(sid_dark);  
  grpc_wait(sid_bary); /* to finish */ 
  timestep(t_step,...); 
  t_sim+=t_step; 

} 

lementation of Hydropad  

shows the modifications required to implement Hydropad for the 
he only minor difference between the GridRPC code in table 7 and the 
ble 8 is the addition of: the grpc_map block and grpc_local condition. 
GridRPC API. 

Table 8: Hydropad implementation in  
SmartGridRPC 
 
 

t_sim=0; 
while(t_sim<t_univ) { 
  grpc_map("greedy_map"){ 
    grpc call(grav_hndl,phiold,...); 
    if(t_sim==0){  
      grpc_call(initvel_hndl,phi,...); } 
      grpc_call_async(dark_hndl,&sid_dark,x1,.);
      grpc_call_async(bary_hndl,&sid_bary,n,..);
    
      /* wait for non blocking call */ 
      grpc_wait(sid_dark);  
      grpc_wait(sid_bary);  
 
      grpc_local(){ 
        timestep(t_step,...); 
        t_sim+=t_step; 
      } 
    } 
  } 
}



The specified mapping heuristic, in this case the greedy mapping heuristic, generates a 
mapping solution for this group of tasks based on these performance models.  On the second 
iteration through the group of tasks the group is executed according to the mapping solutions 
generated.  

The grpc_local function is used by the application programmer to indicate when a local 
computation is executed. At run time, on the first discovery iteration, the code within this 
conditional statement is not executed. This is to avoid computing local executions when 
generating a performance model for the group of remote tasks.  However, if a local computation 
directly affects the performance model of the group of remote tasks, then the grpc_local function 
should not be used.  This would be the case a local computation affects whether certain remote 
tasks get executed or affects the size of computation of tasks.  If this were the case, then the local 
computation should be executed during discovery and any structures, variables etc. that have 
changed values should be reset back to their original values before the beginning of execution. 

On the second iteration, during the execution phase all the code in grpc_map function is 
executed normally (i.e. the local computation is also executed).  The mapping in the code of 
table 8 is performed at every iteration of the main loop; this can generate a good mapping 
solution if the Grid environment is not a stable one. This would be the case if there are other 
applications’ tasks running on the Grid servers. If the Grid environment is dedicated, where only 
one application executes at a time, a better mapping solution may be generated if the area to map 
contains more tasks, i.e. two or more loop cycles. A simple solution could be including an inner 
loop within the grpc_map code block (table 9). The application programmer could increase the 
number of tasks mapped together by increasing the number of iterations of the inner loop. 

Figure 12 is a task graph generated for only two cycles of the evolution step.  It is also 
possible to map a significantly larger number of evolution steps, by increasing the value of the 
nb_evolutions variable in table 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Task graph for two evolution steps 

 
This type of coarse mapping would be more favourable on a distributed environment, which is 

highly stable, for example, a distributed environment that consisted of dedicated servers or 
servers that are idle.  However, if the environment is highly changeable, which would be the case 
if the distributed environment consisted of workstations currently being used, then it might be 



more advantageous to have a higher frequency of mappings.  It may also be necessary to increase 
the frequency of mappings, if the task graph is altered as a result of the execution of one of the 
remote tasks in the task graph.  For example, this may be the case if there is a conditional 
statement in the group of tasks that is based on an output of a remote task in the group (task A).  
If this conditional statement determines whether another remote task (task B) gets executed then 
the shape of the task graph depends on the output of task A.  When the shape of a task graph is 
determined by the outputs of a remote task in the group then it is important to increase the 
frequency of mappings and perform mappings whenever the task graph is altered.  To ensure the 
shape of the task graph is accurate in the aforementioned case, the task graph should be 
generated and mapped every time task A is executed. 

It is also possible to make this mapping frequency more dynamically adaptive.  In table 9, the 
value assigned to the variable nb_steps indicates how many evolution steps should be mapped 
collectively at the next point of execution of the application.   This value can be fine-tuned 
during the execution of the application to determine the optimal number of evolutions to map as 
a group.  In this example, the value for nb_steps is updated and fine-tuned using an evaluation 
function func.   This may be a function that changes the value of the variable nb_steps based on 
an evaluation of the performances of previous executions of collective mappings. 

 
 

Table 9: Dynamically determining the optimal group size to map 
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t_sim=0; 
while(t_sim<t_univ) { 
  nb_steps=func(..); //assign dynamically 
  for(i=0;(i<nb_steps)&(t_sim<t_univ);i++){ 
    grpc_map("greedy_map"){ 
      grpc call(grav_hndl,phiold,...); 
      if(t_sim==0){  
        grpc_call(initvel_hndl,phi,...); } 
        grpc_call_async(dark_hndl,&sid_dark,..); 
        grpc_call_async(bary_hndl,&sid_bary,..); 
    
        /* wait for non blocking call */ 
        grpc_wait( sid_dark);  
        grpc_wait( sid_bary);  
 
        grpc_local(){ 
          timestep(t_step,...); 
          t_sim+=t_step; 
        } 
      } 
    } 
  } 

} 

used to find the optimal mapping for an application on any given 
Once determined, this optimal number can then be assigned statically 
tion of the application on this environment without the need for an 

where the environment is highly changeable, this optimal number of 
ghout the execution of the application and therefore it may be more 
dynamic update of nb_steps variable at run-time. 



 
9. EXPERIMENTAL RESULTS 

 
In the experiments performed in this section, we use three different implementations of 

Hydropad: the original sequential version, the GridSolve version and the SmartGridSolve 
version. For each version, we present the average computation time of one evolution step and the 
memory footprints of the application on the client machine. In the first part of this section, we 
compare the GridSolve version versus the local sequential version. Then, in the second part we 
compare the SmartGridSolve version of Hydropad versus both GridSolve and the local one.  
Furthermore, in the second part we will focus on the performance improvement of each of the 
key benefits of the SmartGridRPC model over the GridRPC model, which were introduced in 
section 2.2. 

The hardware configuration used in the experiments consists of three machines: a client and 
two remote servers, S1 and S2.  The two servers are heterogeneous, however, they have similar 
performance, respectively 498 and 531 MFlops, and they have equal amount of main memory, 
1GB each. The bandwidth of the communication link between the two servers is 1Gb/s.  The 
client machine, C, is a computer with low hardware specifications, 248MFlops of performance. 
The client to server connection varies depending on the experimental setup.  We use two setups, 
C1 with a 1Gb/s connection and C100 with a 100Mb/s communication link. For each conducted 
experiment, table 10 shows the initial problem parameters and the corresponding data sizes (the 
total memory used during the execution of Hydropad on a single machine).  The quantity of 
memory available in the client machine varies as well depending on the experimental setup. We 
use two configurations: C-1 with 1GB of memory, which is large enough to avoid paging, and C-
256 with 256MB of memory, that undergo paging for larger problems. 
 

Table 10: Input values and problem sizes for the Hydropad experiments 
 

Problem 
ID 

Np Ng Data Size 

P1 1203 603 73MB 
P2 1403 803 142MB 
P3 1603 803 176MB 
P4 1403 1003 242MB 
P5 1603 1003 270MB 
P6 1803 1003 313MB 
P7 2003 1003 340MB 
P8 2203 1203 552MB 
P9 2403 1203 624MB 

 
 
 
9.1. Experiments with the GridSolve version of Hydropad 
 

Table 11 shows the results obtained by local computation and by GridSolve version of 
Hydropad using C1-1 as the client machine which has a fast network connection and large 
quantity of memory.   
 



Table 11: Experimental results using client C1-1 that has 1Gb/s network link to the servers. 
 

 Local GridSolve 
P. ID Time Step Time Step Sp v Local 

P1 14.12s 9.40s 1.50 
P2 29.90s 18.38s 1.63 
P3 34.84s 20.82s 1.67 
P4 52.04s 30.81s 1.69 
P5 54.06s 32.00s 1.69 
P6 58.56s 36.81s 1.59 
P7 66.29s 37.22s 1.78 
P8 102.03s 67.04s 1.52 
P9 114.83s 112.05s 1.02 

 
One can see that the GridSolve version is faster than the local sequential computation. The 

speedup obtained is constantly over 1.50, which is due to the parallel execution of the two tasks 
and the use of servers with greater performance than the client machine. The fluctuation in 
speedup obtained by GridSolve depends on the varying ratio of data size used by the two parallel 
tasks for different problem sizes.   Furthermore, it should also be noted, that the speedup 
achieved on P9 is significantly lower due to paging on the server.  This is caused by the fact that 
the GridRPC model maps both tasks to the same server and therefore causes paging on it. 

Table 12 shows the results obtained by the GridSolve version when the client machine used, 
C100-256, has a slow client-to-servers connection of 100Mb/s and only 256MB of memory 
available.  This hardware configuration simulates a common situation that can happen in real 
life.  A user has access only to a slow client machine with low hardware specification, which is 
not suitable to perform large simulations, and wants to use a powerful Grid environment through 
a relatively slow network link.  Table 12 also presents the scale of paging that occurs on the 
client machine during the executions.  One can see that for the local computation the paging is 
taking place when the problem size is equal or greater than the machine main memory, 256MB.  
 
Table 12: Experimental results using client C100-256 that has 100Mb/s network link to the 

servers and 256MB of memory. 
 

 Local GridSolve 
PD Time 

Step 
Paging Time Step Paging Sp v 

Local
P1 14.32s No 20.26s No 0.71 
P2 30.05s No 38.75s No 0.78 
P3 35.78s No 48.65s No 0.74 
P4 55.57s Light 60.48s No 0.92 
P5 62.13s Light 66.43s No 0.94 
P6 84.33s Yes 76.76s Light 1.10 
P7 128.22s Yes 93.74s Yes 1.37 
P8 231.56s Heavy 150.03s Heavy 1.54 
P9 279.52s Heavy 183.45s Heavy 1.52 

 
The GridSolve version is slower than the local computation when the client machine is not 

paging. This is happening because there is a large amount of data communication between tasks.  



So for this configuration, the time spent communicating the data compensates for the time gained 
by computing tasks remotely.  However, as the problem size gets larger and the client machine 
starts paging, the GridSolve version becomes faster than the local computation, even in the case 
of slow communication between the client and server machines.  This trend is also seen in figure 
13.  For the GridSolve version, the paging is occurring later than for the local version, when the 
problem size is around 310MB, as shown in table 12.  The GridRPC implementation can save 
memory due to the temporary data allocated remotely in the tasks and consequently increase the 
problem size that will not cause the paging.  Furthermore, in the sequential local execution, the 
paging is taking place during a task computation, while for the GridSolve version the paging 
occurs during a remote task data communication.  Hence, for the GridSolve version of 
Hydropad, the paging on the client machine does not negatively affect the execution time of the 
application. 

 
 
Figure 13: Evolution time step of the local and GridSolve computation on client C100-256  

 
In these experiments, “light” paging means that paging is occurring only in some task calls 

and the amount of paging is approximately 10% of the main memory (approx. 25MB).  
“Normal” paging means that paging is occurring on almost every task call and the amount of 
paging is approximately 40% of the main memory (approx. 100MB).  “Heavy” paging means 
that all task calls cause a memory page and almost 100% of the main memory is paged (approx. 
256MB). 

 
 
9.2. Experiments with the SmartGridSolve version of Hydropad 
 

In the first experiment of this section, we use the same hardware configuration of table 12.  
The client machine used, C100-256, has a slow client-to-servers connection of 100Mb/s and only 
256MB of memory available.  As previously mentioned, this is a common situation.  Table 13 
shows the results obtained by the SmartGridSolve version for this configuration. This table 
shows that the SmartGridSolve version is much faster than the GridSolve and the sequential 
versions. The speedup is around three times that of GridSolve, figure 14, and the speedup versus 
the local sequential version is over 4 in the case of larger problems.  
 



Table 13: Experimental results using client C100-256 that has 100Mb/s network link to the 
servers and 256MB of memory 

 
 Local GridSolve SmartGridSolve 

PD Tim
e 

Step 

Paging Time Step Paging Sp v 
Local 

Time Step Paging Sp v 
Local 

SpvGS 

P1 14.3
2s 

No 20.26s No 0.71 7.31 No 1.96 2.77 

P2 30.0
5s 

No 38.75s No 0.78 15.06 No 2.00 2.57 

P3 35.7
8s 

No 48.65s No 0.74 16.36 No 2.19 2.97 

P4 55.5
7s 

Light 60.48s No 0.92 28.06 No 1.98 2.16 

P5 62.1
3s 

Light 66.43s No 0.94 27.54 No 2.26 2.41 

P6 84.3
3s 

Yes 76.76s Light 1.10 27.78 No 3.04 2.76 

P7 128.
22s 

Yes 93.74s Yes 1.37 30.81 Light 4.16 3.04 

P8 231.
56s 

Heavy 150.03s Heavy 1.54 48.04 Light 4.82 3.12 

P9 279.
52s 

Heavy 183.45s Heavy 1.52 60.74 Light 4.60 3.02 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Execution times of the GridSolve and SmartGridSolve version of Hydropad on 

client C100-256  
 

These performances improvements are due to the key features of the SmartGridRPC model: 
improved mapping, improved data movement and reduced memory usage.  In the next 
experiments of this section, we show the benefits introduced by each feature by using specific 
hardware configurations and setup. 

Computational load experiments.     One important feature of SmartGridRPC is the superior 
mapping system that permits to have an improved balancing of computational load of tasks 
compared to standard GridRPC.  In the underlying experiments, we compare the average 
computation time of one evolution step achieved by the GridSolve version versus the 
SmartGridSolve version of Hydropad, where SmartGridSolve  is set up to utilize the same 
network topology of GridSolve (star-network), i.e. without direct server-to-server 
communication and server-caching.   Consequently, the performance gains obtained by the 
SmartGridSolve version are due only to the improved mapping method.  In these experiments, 
we use C1-1 as the client machine.  This machine has a high speed network connection of 1Gb/s 
to the servers.  Table 14 shows that the SmartGridSolve version of Hydropad is faster than the 
GridSolve version.   
 



Table 14: Experimental results using only star-network topology (i.e. no direct server-to-
server communication) and client C1-1 that has 1Gb/s network link to the servers 

 
 GridSolve SmartGridSolve 

P. ID Time Step Time Step Sp v GS 
P1 9.40s 7.09s 1.33 
P2 18.38s 15.27s 1.20 
P3 20.82s 16.17s 1.29 
P4 30.81s 29.02s 1.06 
P5 32.00s 28.99s 1.10 
P6 36.81s 29.88s 1.23 
P7 37.22s 30.88s 1.21 
P8 67.04s 52.05s 1.29 
P9 112.05 53.35s 2.10 

Despite Hydropad having only two parallel tasks, the collective mapping of SmartGridRPC 
can produce a faster execution time than the individual task mapping of GridRPC.  The baryonic 

task is computationally far larger than the dark matter one, CbmبCdm.  When a GridRPC 

system goes to map these two tasks, it does so without the knowledge that they are part of a 
group to be executed in parallel.  Its only goal is to minimize the execution time of an individual 
task as it is called by the application.  If the smaller dark matter task is called first, it will be 
mapped to the fastest available server.  With the fastest server occupied, the larger baryonic task 
will then be mapped to a slower server and the overall execution time of the group of tasks will 
be sub-optimal.  As previously mentioned, in some cases, both tasks will be mapped to the same 
server, which would also increase the total execution time and would cause paging on the server, 
as happened for problem P9.  

Communication load experiments.    As mentioned before, another primary improvement of 
SmartGridSolve is its communication model, use of which minimizes the amount of data 
movement between the client and servers.  This advantage is most prominent when the client 
connection to the Grid environment is slow.  Table 15 shows the results obtained by the 
SmartGridSolve version of Hydropad using C100-1 as the client machine which has a slow 
network connection of 100Mb/s.  One can see that the SmartGridSolve version is much faster 
than the GridSolve versions.  The increase of speed is over twice that of GridSolve, which is 
primarily due to the improved communication model of SmartGridSolve. 

Furthermore, one can see that the timing results obtained by SmartGridSolve in table 15 are 
similar to those obtained in table 14.  This shows that when the client-server links are slow and 
there is direct communication (table 15) it is similar to when the client links are fast and there is 
no direct communication (table 14).   This shows that the SmartGridRPC model allows the 
mapping heuristic to generate solutions, which effectively minimize the communication load on 
the networks link. 

 
 

 



Table 15: Experimental results using client C100-1 that has 100Mb/s network link to the 
servers 

 GridSolve SmartGridSolve 
P. ID Time Step Time Step Sp v GS 

P1 19.97s 7.24s 2.76 
P2 38.73s 15.17s 2.55 
P3 48.20s 16.24s 2.97 
P4 61.59s 29.42s 2.09 
P5 66.26s 28.91s 2.29 
P6 78.16s 29.73s 2.63 
P7 93.20s 31.25s 2.99 
P8 140.53s 50.20s 2.80 
P9 174.14 53.02s 3.28 

 
Memory usages experiments.     In the following experiments, we utilize the client machine 

C1-256, that has a high speed network connection of 1Gb/s to the servers and has 256MB of 
main memory.  Table 16 shows the average computation time of one evolution step achieved by 
the local computation, by the GridSolve version and by the SmartGridSolve version of 
Hydropad.  Table 16 also presents the scale of paging that occurs on the client machine during 
the various executions.   

 
Table 16: Experimental results using client C1-256 that has 1Gb/s network link to the 

servers and 256MB of memory 
 

 Local GridSolve SmartGridSolve 

PD Time 
Step 

Paging Time Step Paging Sp v Local Time Step Paging Sp v Local SpvGS 

P1 14.3s No 8.6s No 1.67 7.0s No 2.02 1.21 

P2 30.0s No 18.4s No 1.63 14.4s No 2.08 1.27 

P3 35.7s No 20.1s No 1.77 15.8s No 2.26 1.27 

P4 55.5s Light 31.3s No 1.77 27.5s No 2.02 1.14 

P5 62.1s Light 33.7s No 1.84 28.1s No 2.21 1.20 

P6 84.3s Yes 42.3s Light 1.99 
 

28.8s No 2.92 1.47 

P7 128s Yes 63.1s Yes 2.03 30.0s Light 4.27 2.10 

P8 231s Heavy 109.3s Heavy 2.12 46.6s Light 4.96 2.34 

P9 279s Heavy 144.3s Heavy 1.94 55.13 Light 5.07 2.62 

 
One can see that for the SmartGridSolve experiments the paging on the client machine is less 

penalizing than in the GridSolve and local experiments.  A secondary advantage of the direct 
server to server communication implemented in SmartGridSolve is that the quantity of memory 
used on the client machine is lower than that of the GridSolve version.  Furthermore, in 
SmartGridSolve, the memory paging is happening only when data has to be sent to the server. 
Hence, it happens only at the beginning and at the end of a group of tasks execution. This 
minimizes the impact of paging on the overall execution of the group of tasks.  
 



 
 

Figure 15: Execution times of the GridSolve and SmartGridSolve version of Hydropad 
when the client machine C1-256 has 256MB of memory 

 
Therefore, the SmartGridSolve version of Hydropad can execute larger problems without the 

paging having a serious impact on the execution time.  One can see that the computation time of 
the evolution steps in table 16 is similar to that of table 14 and 15. 
The speedup of SmartGridSolve over GridSolve,  is increasing as the problem gets larger due to 
paging on the client.  This trend is also seen in Figure 15.  

 
 

 
 

Figure 16: Execution times of the GridSolve and SmartGridSolve version of Hydropad 
when the client machines are C1-1 and C100-256 

 
 
The new features of SmartGridRPC have also a secondary benefit. As previously mentioned, 

SmartGridSolve obtains similar results when the client memory and the client-to-server link are 
largely different.  Consequently, the hardware configuration of the client has less impact on the 



application performance than in the case of GridRPC.  Figure 16 shows this trend.  We compare 
the results obtained by GridSolve and SmartGridSolve version of Hydropad when the two 
configurations of the client used are the optimal one, C1-1, and the worst one, C100-256. It is 
possible to see that in the case of GridSolve the performance change dramatically depends on the 
hardware used while for SmartGridSolve the performance is similar. 
 
10. CONCLUSION 
 

In this paper, we have presented the SmartGridRPC model, which is an extension to the 
GridRPC model which aims to achieve higher performance.  The SmartGridRPC model extends 
the GridRPC model, which maps tasks individually on to a star network, to provide functionality 
for collective mapping of tasks on a fully connected network.  This functionality can be achieved 
using only two simple calls which are part of the SmartGridRPC API.  The SmartGridSolve 
model has shown that mapping heuristics can improve the performance of an application by:  

• Improving the load balancing of computation 
• Improving the load balancing of communication 
• Reducing the overall volume of communication 
• Reduced memory usage on the client (reduce paging) 
• Parallelism of communication. 

 
We also outlined an implementation of the SmartGridRPC model in SmartGridSolve which is 

an extension to the GridSolve middleware which implements the GridRPC model.  It described a 
possible implementation of the performance models which are used to simulate the different 
executions of the group of tasks on the fully connected network.  

We also gave an experimental evaluation of the SmartGridRPC model in comparison with the 
GridRPC model using a real-life astrophysics application called Hydropad.  This application 
simulates the evolution of clusters of galaxies in our universe from the beginning of time till 
present.  The reason this application was chosen to benchmark both models was that it is an 
application which is not well suited to be implemented in Grid environments and consequently it 
can show the eventual limits and benefits of the two models tested.  The experiments show a 
significant speedup when the application was executed using the SmartGridRPC model over the 
GridRPC model. The experiments section demonstrated the performance increase achieved by 
using the SmartGridRPC model and highlights the key benefits of the SmartGridRPC model. A 
speedup of 1.29 was achieved due to improved mapping of computation on to servers of the 
network.  A speedup of 2.89 was achieved due to improved mapping of communication on to 
servers of the network.  And a speedup of 2.62 was achieved due a decrease of memory usage 
and paging on the client. 
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