
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 1

Supplementary File - A Novel Data-Partitioning
Algorithm for Performance Optimization of

Data-Parallel Applications on Heterogeneous
HPC Platforms

Hamidreza Khaleghzadeh, Ravi Reddy, and Alexey Lastovetsky, Member, IEEE

F

This supplementary file contains the supporting mate-
rials of the TPDS manuscript, “A Novel Data-Partitioning
Algorithm for Performance Optimization of Data-Parallel
Applications on Heterogeneous HPC Platforms”. They are:

• Experimental methodology followed to obtain speed
functions.

• Use case containing matrix-vector multiplication on a
homogeneous cluster of Intel Xeon Phi co-processors.

• Load balancing and load imbalancing algorithms.
• Comparison of actual and simulated execution times.
• Using HPOPTA for data partitioning on simulated

clusters of heterogeneous nodes.
• Description of the helper functions used in the algo-

rithm, HPOPTA.
• Correctness and complexity proofs of HPOPTA.

1 EXPERIMENTAL METHODOLOGY TO BUILD THE
PERFORMANCE FUNCTIONS

We followed the methodology described below to make sure
the experimental results are reliable:

• The server is fully reserved and dedicated to these
experiments during their execution. We also made
certain that there are no drastic fluctuations in the
load due to abnormal events in the server by moni-
toring its load continuously for a week using the tool
sar. Insignificant variation in the load was observed
during this monitoring period suggesting normal
and clean behaviour of the server.

• Our heterogeneous application is executed simulta-
neously on all the three abstract processors, CPU,
GPU and Xeon Phi. To obtain a data point in the
speed functions, the application is repeatedly exe-
cuted until the sample means of execution times for

• H. Khaleghzadeh, R. Reddy and A. Lastovetsky are with the School of
Computer Science, University College Dublin, Belfield, Dublin 4, Ireland.
E-mail: hamidreza.khaleghzadeh@ucdconnect.ie,
ravi.manumachu@ucd.ie, alexey.lastovetsky@ucd.ie

all the abstract processors lie in the 95% confidence
interval and a precision of 0.025 (2.5%) has been
achieved. For this purpose, Student’s t-test is used
assuming that the individual observations are inde-
pendent and their population follows the normal dis-
tribution. We verify the validity of these assumptions
by plotting the distributions of observations.

The function MeanUsingT test, shown in Algorithm
1, describes the execution of an application app to satisfy
the statistical confidence. For each data point in the speed
functions, the function is invoked to repeatedly execute the
application app until one of the following three conditions
is satisfied:

1) The maximum number of repetitions (maxReps)
have been exceeded (Line 3).

2) The sample means of all devices fall in the confi-
dence interval (or the precision of measurement eps
has been achieved) (Lines 9-12).

3) The elapsed time of the repetitions of application
execution has exceeded the maximum time allowed
(maxT in seconds) (Lines 13-15).

So, for each data point, the function MeanUsingT test is
invoked and the sample means tcpu, tgpu, and tphi are
returned at the end of invocation. The input minimum and
maximum number of repetitions, minReps and maxReps,
differ based on the problem size solved. For small problem
sizes (32 ≤ n ≤ 1024), these values are set to 10000 and
100000 respectively. For medium problem sizes (1024 < n ≤
5120), these values are set to 100 and 1000. For large problem
sizes (n > 5120), these values are set to 5 and 50. The values
of maxT , cl, and eps are respectively set to 3600, 0.95, and
0.025. The heterogeneous application, app, returns the times
elapsed by computational kernels on CPU, GPU and Xeon
Phi whenever finishes its execution (Line 4). The execution
times are stored in arrays execcpu, execgpu and execphi.

The helper function, CalAccuracy, Algorithm 2, returns
1 if the sample mean of execution times (inArray) lies in the
95% confidence interval (cl) and a precision of 0.025 (eps =
2.5%) has been achieved. Otherwise, it returns 0.

0000–0000/00/$00.00 c© 2018 IEEE Published by the IEEE Computer Society



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 2

If the precision of measurement is not achieved before
the maximum number of repeats have been completed, we
increase the number of repetitions and also the maximum
elapsed time allowed. However, we observed that condition
(2) is always satisfied before the other two in our experi-
ments.

Algorithm 1 Function Determining the Mean of an Experi-
mental Run using Student’s t-test.
1: procedure MEANUSINGTTEST(app,minReps,maxReps,

maxT, cl, accuracy,
repsOut, clOut, timeOut, accuracyOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run, maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, repsOut ∈ Z>0

The elapsed time, etimeOut ∈ R>0

The mean execution times, tcpu, tgpu, tphi ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: (execcpu[reps], execgpu[reps], execphi[reps])← EXECUTE(app)
5: sumcpu+ = execcpu[reps]
6: sumgpu+ = execgpu[reps]
7: sumphi+ = execphi[reps]
8: if reps > minReps then
9: stopcpu ← CALACCURACY(cl, reps+ 1, execcpu, eps)

10: stopgpu ← CALACCURACY(cl, reps+ 1, execgpu, eps)
11: stopphi ← CALACCURACY(cl, reps+ 1, execphi, eps)
12: stop← stopcpu ∧ stopgpu ∧ stopphi

13: if max{sumcpu, sumgpu, sumphi} > maxT then
14: stop← 1
15: end if
16: end if
17: reps← reps+ 1
18: end while
19: repsOut← reps;
20: etimeOut← max{sumcpu, sumgpu, sumphi}
21: tcpu ←

sumcpu
reps ; tgpu ←

sumgpu
reps ; tphi ←

sumphi
reps

22: end procedure

Algorithm 2 Algorithm calculating accuracy
1: function CALACCURACY(cl, reps, Array, eps)
2: clOut← fabs(gsl cdf tdist Pinv(cl, reps− 1))

× gsl stats sd(ObjArray, 1, reps)
/ sqrt(reps)

3: if clOut× reps
sum < eps then

4: return 1
5: end if
6: return 0
7: end function

2 MATRIX-VECTOR MULTIPLICATION ON HOMOGE-
NEOUS CLUSTER OF INTEL XEON PHI PROCESSORS

In this section, we consider the execution of a matrix-vector
multiplication application executing the highly optimized
multi-threaded Intel MKL DGEMV routine in a homoge-
neous cluster of six nodes where each node contains two
Intel Xeon Phi accelerators. So, altogether, there are twelve
identical Xeon Phi co-processors. The specification of the ac-
celerator is shown in the Table 1. The application multiplies
a dense matrix of size N ×N with a vector of size N . Figure
1 shows the performance profiles of the application for all
the twelve accelerators. The application runs on all cores of
each Intel Xeon Phi co-processor. These profiles were built
simultaneously to take into account resource contention.

2 2 2 2

2 2 2 2

Fig. 1. Speeds of Intel MKL DGEMV application for twelve Intel Xeon
Phi SE10/7120 series coprocessors.

TABLE 1
Specification of the Intel Xeon Phi coprocessor SE10/7120 series.

Technical Specifications Intel Xeon Phi SE10/7120 series
No. of processor cores 61
Base frequency 1333 MHz
Total main memory 15 GB GDDR5
L2 cache size 30.5 MB
Memory bandwidth 352 GB/sec
Memory clock 2750000 kHz
TDP 300 W
Idle Power 98 W

The figure also shows the zoomed speed function between
two arbitrarily chosen points in the speed functions.

To make sure that the experimental results are reliable,
we follow the experimental methodology described earlier.
It contains the following main steps: 1) We make sure the
platform is fully reserved and dedicated to our experiments
and is exhibiting clean and normal behaviour by monitoring
its load continuously for a week. 2) For each data point
in the speed functions of an application, the sample mean
is used, which is calculated by executing the application
repeatedly until the sample mean lies in the 95% confidence
interval and a precision of 0.025 (2.5%) has been achieved.
For this purpose, Student’s t-test is used assuming that the
individual observations are independent and their popula-
tion follows the normal distribution. We verify the validity
of these assumptions by checking the density plots of the
observations.

From the figure, we can observe the following:

• It is evident that the shapes violate the assumptions



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 3

on shape of FPMs. Therefore, load balancing data
partitioning algorithms based on FPMs may not re-
turn optimal solutions.

• Although all the Xeon Phi co-processors are identical,
their speed functions demonstrate different shapes
with noteworthy variations. The average of the vari-
ations is 7%. Therefore, due to the inherent nature
of the platforms today, even in a homogeneous en-
vironment, one must use heterogeneous workload
distribution for optimal performance. In this case,
using an average discrete speed function as input to
data partitioning algorithm as done in [1] may not be
optimal. Therefore, the new model-based methods
proposed in [1], [2] cannot be used since they con-
sider all identical processors and take a single speed
function as an input.

3 LOAD BALANCING AND LOAD IMBALANCING
ALGORITHMS

In this section, we explain what we mean by load balancing
algorithms and load imbalancing algorithms. HPOPTA is a
load imbalancing algorithm. Having said this, if the optimal
workload distribution load balances the application, then
HPOPTA finds it.

We define a load balancing algorithm as one that deter-
mines the workload distribution where the problem sizes
allocated to the processors are proportional to their speeds.
The intuition behind load balancing is that balancing the
application improves its performance in the following man-
ner: a balanced application does not waste processor cycles
on waiting at points of synchronization and data exchange,
maximizing this way the utilization of the processors and
minimizing the computation time.

Lastovetsky et al. [1] present a formal study of load
balancing. In this work, they show that in order to guar-
antee that the balanced configuration of the application will
execute the workload of size n faster than any unbalanced
configuration, the speed functions si(x), characterizing the
performance profiles of the processors, should satisfy the
condition:

∀∆x > 0 :
si(x)

x
≥ si(x+ ∆x)

x+ ∆x

The speed si(x) is calculated as x
ti(x)

, where ti(x) is the
execution time of the workload of size x on processor i.
This condition means that the increase of the workload, x,
will never result in the decrease of the execution time.

However, in this work, we show that this condition is
violated by the performance profiles of the data-parallel
applications executing on modern HPC platforms.

HPOPTA is designed to deal with the shapes of perfor-
mance profiles where the condition is no longer satisfied.
We call such an algorithm, load imbalancing algorithm, where
it determines the optimal workload distribution that mini-
mizes the execution time of computations of a data-parallel
application but which does not load balance the application.

We illustrate using an example. Consider a platform
consisting of four abstract processors (p = 4) with speed
functions presented in Section 4. Let the workload size
to be solved be equal to 31 (n = 31). In this example,

load balanced solution is {(2, 13), (11, 13), (9, 13), (9, 13)}
and the load balanced execution time therefore is 13.
However, the optimal solution found by HPOPTA is
{(9, 3), (9, 3), (7, 1), (6, 2)} with the optimal execution time
of 3. It is obvious that the optimal solution does not balance
the load between processors.

4 COMPARISON OF ACTUAL AND SIMULATED EX-
ECUTION TIMES

In the introduction section, when we present the modelling
of the three abstract processors in our applications, we
mention that while performance models are built where the
data points for the same problem size are obtained simul-
taneously, during the actual execution of the data-parallel
application using the workload distribution determined by
our data partitioning algorithm, the problem sizes executed
by the abstract processors can be different. This is because
different processors can be allocated different problem sizes
by our heterogeneous data partitioning algorithm. Later
in Experimental analysis of HPOPTA, we evaluated our
algorithm and extracted the execution times from the per-
formance profiles.

In this section, we experimentally show that the execu-
tion times of these problem sizes simultaneously would not
differ significantly from those present in the performance
models. We experiment with Matrix Multiplication and 2D
FFT, configured for execution on HCLServer as explained in
the introduction section. We compare the execution times
of solutions returned by HPOPTA with actual execution
times on HCLServer. To obtain the actual results, a parallel
application is executed where each processor is allocated
the problem size given by HPOPTA, and its parallel execu-
tion time is measured. To obtain the actual experimental
results, we have followed the experimental methodology
explained in this supplemental. Since HPOPTA considers all
the possible combinations of workload distributions, even
combinations where one or more processors are allocated
problem size of zero, the number of processors used in the
experiment ranges from 1 to 3.

We create an experimental data set for Matrix Multipli-
cation whose data points ranges from 642 to 800002 with
step size of 642. Figure 2 shows the execution time of Matrix
Multiplication on HCLServer when executed using HPOPTA
(HPOPTA Actual T ime) with the simulated execution
time (HPOPTA Simulation T ime).

To analyse FFT, the experimental data set includes data
points ranging from 162 to 640002 with step size of 162.
Figure 3 compares actual with simulated execution times
for FFT.

From the figures, one can see that the differences be-
tween simulated results and actual execution time are in-
significant.

5 USING HPOPTA FOR DATA PARTITIONING
ON SIMULATED CLUSTERS OF HETEROGENEOUS
NODES

In this section, to study the performance improvements
given by HPOPTA at scale, we simulated clusters consisting
of 8, 16, · · · , 256 HCLServer nodes, where each node has



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 4

2 2 2 2 2 2 2 2

Fig. 2. Comparison of actual with simulated execution times for Matrix
Multiplication on HCLServer.

2 2 2 2 2 2 2

Fig. 3. Comparison of actual with simulated execution times for 2D FFT
on HCLServer.

three abstract processors and therefore the total number
of heterogeneous abstract processors range from 24 to 768.
We conduct experiments that are a combination of actual
measurements conducted on HCLServer and simulations for
clusters containing replicas of HCLServer. The actual mea-
surements include the construction of time functions, which
are input to HPOPTA (refer section “Data Partitioning on
Hybrid Server” in the manuscript). The simulations contain
the execution of HPOPTA to determine workload distribu-
tions, which allow us to calculate the parallel execution
times of computations in the data-parallel applications and
consequently the speedups demonstrated by HPOPTA.

HPOPTA requires as input, the time function of each
abstract processor in the simulated cluster. Since all nodes
are identical, we build the time functions for one node,
HCLServer, and then use them for all nodes in the simulated
cluster. For example, for a simulated cluster consisting of 8
HCLServer nodes, the input to HPOPTA will consist of 24
(3× 8) time functions.

We now examine HPOPTA on simulated clusters of het-
erogeneous nodes using the same data parallel applications,
Matrix Multiplication and FFT.

5.1 Matrix Multiplication
For each simulated cluster, we execute DGEMM using a test
data set whose data points ranges from (p3 × 64 × 100)2

to (p × 64 × 700)2 with step size of 642. The obtained
results show that HPOPTA gives the minimum, average,

and maximum percentage improvements of 0, 14, and 261
percent respectively in comparison with FPM.

We choose the same problem sizes 4736, 28672, and 44800
to obtain relative speeds for CPM workload distribution.
The average percentage improvements of HPOPTA over
CPM are 122, 106, and 82 percent respectively.

5.2 FFT

To analyse FFT, the experimental data set include data
points ranging from (p3 × 16 × 100)2 to (p × 16 × 1500)2

with step size of 162. The obtained results show HPOPTA
gives the minimum, average and maximum percentage of
improvement of 0, 43, 513 percent respectively in compari-
son with FPM.

We choose the same problem sizes 4320, 13824, and 24000
to obtain relative speeds for CPM workload distribution.
The average percentage of improvement of HPOPTA over
CPM are 301, 164 and 129 percent respectively.

5.3 Discussion

We observed almost the same percentage of improvement
for different cluster sizes for both DGEMM and FFT. It
can be concluded that the performance improvement is
independent of p assuming the cost of communications is
not taken into account.

There is a strong correlation between average perfor-
mance improvements and the average variations in speed
functions. Furthermore, the maximum performance im-
provement cannot exceed the maximum variation in the
speed functions. In our experiments, all nodes in simulated
clusters are identical and their speed functions consequently
will be identical. Thus, average and maximum performance
improvements of a simulated cluster consisting of identical
nodes are not related to the number of nodes but related
to the shapes of speed functions which are identical for all
nodes.

We would like to mention that the study and incorpora-
tion of cost of communications is a significant body of work
and is therefore out of scope of this paper. It is the focus of
our current research.

In addition, the number of abstract processors in the
optimal solution determined by HPOPTA is often less than
p. For example, in a cluster of eight HCLServer nodes, the
optimal solution for FFT for matrix size 304× 304 uses just
one GPU while the other 23 abstract processors are given
zero problem size. For FFT for matrix size 25552×25552 the
optimal workload distribution uses 21 abstract processors
leaving one CPU and two Xeon Phis unused.

5.4 Hierarchical Two-level Workload Distribution

In Section 5, we used HPOPTA for optimal workload distri-
bution in a cluster of identical hybrid nodes. As HPOPTA
is oblivious of the regular structure of the underlying plat-
form, in order to find an optimal solution for a cluster of h
nodes it had to analyse 3× h time functions. In this section,
we present an hierarchical workload distribution algorithm,
HiPOPTA, which combines HPOPTA and POPTA [2] to find
an optimal solution for a cluster of h identical nodes only



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 5

using c + 1 time functions instead of c × h, where c is the
number of heterogeneous processors in one node.

HiPOPTA first distributes workload between identical
nodes (Inter-node workload distribution) using POPTA. The
input to it is a whole speed function of a node constructed
using HPOPTA. The assigned problem size to each node is
then distributed between the processing elements of each
node (Intra-node workload distribution) using HPOPTA.

We explain the steps of HiPOPTA using a cluster of
HCLServer nodes:

• Building speed function of whole HCLServer us-
ing HPOPTA: For each workload size, we run the
heterogeneous application on HCLServer using the
HPOPTA workload distribution and measure its par-
allel execution time. The resulting speed function
characterizes the performance of HCLServer as a
whole. Since all the nodes in the simulated clus-
ter are identical, their speed functions will be the
same, too. Figures 14 and 16 respectively show the
speed functions of Matrix Multiplication and 2D FFT
of whole HCLServer. In Section “Data Partitioning
on Hybrid Server” in the manuscript, we have ex-
plained in detail how these speed functions are built
for HCLServer.

• Inter-node workload distribution: We use the whole
HCLServer speed function to distribute workload
between the nodes of the simulated cluster. Since
all nodes are identical, we can use POPTA [2], an
algorithm to find optimal workload distribution on
homogeneous platforms, for finding the optimal work-
load distribution between nodes.

• Intra-node workload distribution: HPOPTA is then
applied inside each node to divide the assigned
workload between CPU, GPU, and Xeon Phi of this
node so that the execution time remains minimum.
The intra-node workload distributions can be de-
termined by running HPOPTA on the nodes of the
cluster in parallel.

To evaluate HiPOPTA, we repeat experiments from Sec-
tion 5. We use Matrix Multiplication and FFT with the
same experimental data sets as explained in Section 5. As
expected, the resulting execution times of the distributions
returned by HiPOPTA are the same as the ones obtained in
the section 5 using plain HPOPTA.

The reason behind the use of two-level partitioning is the
reduction in theoretical and practical complexity for finding
optimal distributions on large scale clusters. Assume a clus-
ter involving h identical nodes where each node consists of
c processors. Therefore, the cluster totally comprises c × h
processors (p = c × h). Let cardinality of time functions
be m where c >> m and h >> m. We first calculate the
time complexity of HiPOPTA. There are h identical nodes
and therefore POPTA finds the optimal inter-node distribu-
tion with the time complexity of O(h2) [2]. Optimal intra-
node workload distributions are then found using parallel
executions of HPOPTA on h nodes with time complexity
of O(c3). Therefore, the total theoretical complexity will
be equal to O(h2 + c3). The theoretical complexity of the
non-hierarchical partitioning is O(p3), which is equal to
O(c3 × h3). Therefore, HiPOPTA is O( c

3×h3

h2+c3 ) times faster

than the non-hierarchical one. In addition, the hierarchical
workload distribution allows parallel computations to find
optimal distribution.

HiPOPTA always returns an optimal distribution. In-
deed, according to [2], POPTA finds an optimal workload
distribution between identical compute nodes represented
by their speed function. Assuming that the speed function
of a node reflects the fastest speed of execution of any
given workload, it will find a globally optimal distribution.
However, by construction, the speed function of a node as
a whole found locally by HPOPTA does give the fastest
possible speed of execution for any workload given to the
node. Note that since there may be more than one opti-
mal distribution, distributions returned by HiPOPTA and
HPOPTA may be different. However, their execution times
will be always the same.

6 HELPER ROUTINES CALLED IN HPOPTA
6.1 Function GetTime
The function GETTIME(Ti, w) returns the execution time of
workload size w from the time function Ti (Algorithm 3).
It returns 0 when input workload size w is 0. If there is no
match for w in the time function Ti, the function returns −1.

Algorithm 3 Algorithm Finding the execution Time of a
Given Problem Size
1: function GETTIME(Ti, w)
2: if w = 0 then
3: return 0
4: end if
5: for all j = 0; j < |Ti|; j++ do
6: if xij = w then
7: return tij
8: end if
9: end for

10: return −1
11: end function

6.2 Function SizeThresholdCalc
The Algorithm 4 shows the pseudocode of the function
SizeThresholdCalc which calculates the size threshold array.
The function determines the size threshold of Lp−1 by
finding the greatest work-size in time function Tp−1 whose
execution time is less than τ (Lines 2-7). Then, it calculates
σi, i ∈ [0, p− 2] where σi is the summation of σi+1 with the
greatest work-size in time function Ti whose execution time
is less than τ (Lines 9-17).

It is supposed the all time functions in T are sorted in
non-decreasing order of execution times.

6.3 Function Cut
The function Cut returns TRUE if work size w is greater than
the passed size threshold σ (Algorithm 5).

6.4 Structure of matrix Mem
Two dimensional array Mem is used to save found so-
lution for the visited nodes in the solution tree. It just
memorizes the solution found on levels {L1, · · · , Lp−2}.
Consider the memory cell Mem[i][w]. The memory cell



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 6

Algorithm 4 Algorithm Determining Size Thresholds
1: function SIZETHRESHOLDCALC(p, T, τ )
2: sizemax ← 0
3: for all j = 0; GETTIME(Tp−1, x(p−1) j ) < τ ; j++ do
4: if sizemax < x(p−1) j then
5: sizemax ← x(p−1) j

6: end if
7: end for
8: σp−1 ← sizemax

9: for all i = p− 2; i ≥ 0; i−− do
10: sizemax ← 0
11: for all j = 0; GETTIME(Tj , xij ) < τ ; j++ do
12: if sizemax < xij then
13: sizemax ← xij

14: end if
15: end for
16: σi ← σi+1 + sizemax

17: end for
18: return σ
19: end function

Algorithm 5 Algorithm Cutting Search Tree using the Size
Threshold
1: function CUT(w, σ)
2: if w > σ then
3: return TRUE
4: end if
5: return FALSE
6: end function

saves the distribution of workload size w between proces-
sors {Pi, · · · , Pp−1}. The saved information in Mem[i][w] is
composed of the following three fields:

• tmem: Mem[i][w].tmem is the parallel execution time
of the distribution found for workload size w at level
Li on processors {Pi, · · · , Pp−1}. tmem is initialized
by constant NE. IfMem[i][w].tmem equals to NE,
there is no saved solution for workload w at level Li.

• idxlast:Mem[i][w].idxlast is the index of the last data
point in the time function Ti which has been exam-
ined. This data field helps HPOPTA to resume from
where it was interrupted by Backtrack. In addition,
idxlast is used to label a memory cell as Finalized.
If idxlast equals to constant FI , the memory cell
contains an optimal solution and therefore it is a
Finalized memory cell.

• xmem: Mem[i][w].xmem is the workload size as-
signed to Pi by the saved distribution.

6.5 Function ReadMemory
Algorithm 6 illustrates the function ReadMemory. Let w be
workload size. First, Mem[c][w] is accessed to read the
last saved solution (Algorithm 6, Line 2). According to the
retrieved values for tmem and idxlast, the following cases
are considered:

• NOT SOLUTION: This case occurs when there is no
saved execution time in memory (tmem is NE), and
the result has been finalized (idxlast is FI). It means
that there is no solution for w on processor Pc (Lines
4-5).

• SOLUTION: This occurs when there is a final-
ized solution for workload w between proces-
sor {Pc, · · · , Pp−1}. Dcur = {dcur[0], · · · , dcur[c −
1], · · · , dcur[p − 1]} contains the solution where
dcur[i], ∀i ∈ [c, p− 1] are retrieved from the memory.
However, if the execution time of the saved solution

is greater than τ (tmem > τ ) the saved solution is ig-
nored and NOT SOLUTION is returned (Algorithm
6, Lines 6-15).

• SOLUTION RESUME: This case is similar to the
case SOLUTION, however in this case the solution
is not finalized. The solution which has been al-
ready saved in Mem is first extracted into dcur
to be processed by ProcessSolution. In addition, it
sets idx to idxlast retrieved from Mem. It makes
HPOPTA Kernel resume the process from the idxlast-
th data point instead of starting from the beginning
of Tc (Lines 16-23).

• RESUME: This condition happens when either there
is already no solution to distribute the workload
w between processor {Pc, · · · , Pp−1}, and idxlast
points to the index where the processing work was
interrupted by backtracking, or idxlast points to the
data point stored in Mem[c][w].xmem (Lines 24-27).

Algorithm 6 Algorithm Retrieving Solution from Memory
1: function READMEMORY(w, p, c, τ, T,Dcur,Mem, idx)
2: 〈tmem, idxlast, xmem〉 ←Mem[c][w]
3: if idxlast = FI then
4: if tmem = NE then
5: return NOT SOLUTION
6: else
7: if tmem < τ then
8: dcur[c]← xmem

9: dcur[i]←Mem[i][w −
∑i−1

j=c dcur[j]].xmem,

10: ∀i ∈ [c+ 1, p− 2]
11: dcur[p− 1]← w −

∑p−2
i=c dcur[i]

12: return SOLUTION
13: end if
14: return NOT SOLUTION
15: end if
16: else if idxlast 6= FI then
17: if tmem 6= NE ∧ tmem < τ ∧ xc idxlast

6= xmem then
18: dcur[c]← xmem

19: dcur[i]←Mem[i][w−
∑i−1

j=c dcur[j]].xmem, ∀i ∈ [c+1, p−2]

20: dcur[p− 1]← w −
∑p−2

i=c dcur[i]
21: idx← idxlast

22: return SOLUTION RESUME
23: end if
24: if idxlast 6= NE then
25: idx← idxlast

26: return RESUME
27: end if
28: end if
29: return DUMMY
30: end function

6.6 Function ProcessSolution
The routine ProcessSolution (Algorithm 7) is invoked after
finding a solution. At the beginning, it saves the solution
into Mem (Lines 5-14). If midx was set to a positive integer,
it means that some parts of solution from Pmidx

to Pp−1 was
retrieved from Mem. If the execution time of the solution
is less than current τ then Dopt, array σ and τ are updated
(Lines 20-23). However, in case the execution time of current
solution is equal to τ then Dopt will be updated by current
solution if the number of idle processors (processors with
allocated problem size of zero) in current solution is greater
than that of Dopt (Lines 24-38).

6.7 Function Save
Algorithm 8 illustrates the function Save which is responsi-
ble to memorize the solution found for workload size w on



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 7

Algorithm 7 Algorithm Processing the Found Solution
1: function PROCESSSOLUTION(p, T, τ, σ, bk,Dcur,Mem,midx, Dopt)
2: sumsize ← dcur[p− 1]
3: tmax ← GETTIME(Tp−1, dcur[p− 1])
4: idxmax ← p− 1
5: for i = p− 2, i ≥ 1, i−− do
6: if GETTIME(Ti, dcur[i]) ≥ tmax then
7: tmax ← GETTIME(Ti, dcur[i])
8: idxmax ← i
9: end if

10: sumsize ← sumsize + dcur[i]
11: if sumsize 6= 0 ∧ i < midx then
12: SAVE(i, sumsize, tmax, dcur[i],Mem)
13: end if
14: end for
15: if GETTIME(T0, dcur[0]) ≥ tmax then
16: tmax ← GETTIME(T0, dcur[0])
17: idxmax ← 0
18: end if
19: bk← idxmax

20: if τ > tmax then
21: τ ← tmax

22: Dopt ← Dcur

23: σ← SIZETHRESHOLDCALC(p, T, τ )
24: else if τ = tmax then
25: proccur ← 0
26: proclast ← 0
27: for i = 0, i < p, i+ + do
28: if dcur[i] 6= 0 then
29: proccur + +
30: end if
31: if dopt[i] 6= 0 then
32: proclast + +
33: end if
34: end for
35: if proccur < proclast then
36: Dopt ← Dcur

37: end if
38: end if
39: end function

processors Pi, · · · , Pp−1. tmax is parallel execution time of
the solution and d is the size of workload assigned to Pi.
The function will not update a memory cell if the newly
found distribution has greater parallel execution time than
the execution time of the saved solution.

Algorithm 8 Algorithm Storing Solution into Matrix Mem

1: function SAVE(i, w, tmax, d,Mem)
2: if Mem[i][w].tmem < tmem then
3: Mem[i][w]← 〈tmax,−, d〉
4: end if
5: end function

6.8 Function Backtrack
Algorithm 9 shows the pseudocode of Backtrack which is
called by HPOPTA Kernel to make decision if the process
backtracks to the upper node or not. The function returns
TRUE in case a backtracking should be done. In addition,
this function performs memory finalization.

6.9 Function MakeFinal
Algorithm 10 illustrates the function MakeFinal which is re-
sponsible to finalize the memory cell mem. It sets idxlast to
the constant value FI . The finalized memory cell contains
the optimal distribution.

7 CORRECTNESS PROOF OF HPOPTA
Proposition. 5.1. The algorithm HPOPTA always returns a
distribution of the workload of size n between p heterogeneous
processors that minimizes its parallel execution time.

Algorithm 9 Algorithm Implementing Backtracking and
Matrix Mem Cell Finalization
1: function BACKTRACK(w, c, bk, idx, tcur, τ,Mem, isMem)
2: if bk < c then
3: if isMem = TRUE then
4: return TRUE
5: end if
6: if tcur = τ then
7: Mem[c][w].idxlast ← FI
8: else
9: Mem[c][w].lastindex ← idx

10: end if
11: return TRUE
12: else if bk = c then
13: bk← NULL
14: Mem[c][w].idxlast ← FI
15: return TRUE
16: else
17: bk← NULL
18: return FALSE
19: end if
20: end function

Algorithm 10 Algorithm Finalizing a Matrix Mem cell
1: function MAKEFINAL(mem)
2: mem.idxlast ← FI
3: end function

Proof. To find a distribution of workload n between pro-
cessors {P0, · · · , Pp−1} that minimizes its execution time,
the straightforward approach is to examine all possible
distributions using the full search tree. This approach has
however exponential complexity. Instead, HPOPTA only
builds and explores a small fraction of the full search
tree. To achieve this, it applies two specific operations,
Cut and Backtrack, that remove subtrees of the full search
tree without their construction and exploration. Therefore,
the correctness of HPOPTA will be proved if we show
that no subtree removed by HPOPTA from consideration
contains a solution, superior to the one eventually returned
by HPOPTA.

Cut: During execution of HPOPTA, this operation re-
moves a subtree, growing from a node at level Li, only if
the workload w associated with this node is greater than σi.
Remember that σi represents the maximum workload that
can be executed in parallel by processors {Pi, · · · , Pp−1}
faster than in τ time units, and τ is the execution time
of the fastest solution found so far. Therefore, the parallel
execution time of any solution in the removed subtree
cannot be less than τ and hence less than the time of the
globally fastest solution.

Backtrack: This operation is only applied when
during its execution HPOPTA finds a solution
{x0, x1, · · · , xk, · · · , xp−1} such that maxp−1i=0 ti(xi) =
tk(xk) = τ . We know two facts:

1) The parallel execution time of any solution in the
subtree with the root xk cannot be less than τ .
Therefore, this subtree can be ignored.

2) HPOPTA arranges nodes at each level of the search
tree in non-decreasing order of their execution
times. Therefore, all nodes at level Lk that follow
the node xk will have execution times greater than
or equal to tk(xk).

From these facts we can conclude that construction and
examination of the subtrees, which would grow from the
node xk and the following nodes at level Lk of the search



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 8

tree, will not result in a distribution with the execution time
less than τ and can be ignored by backtracking to level
Lk−1. End of Proof.

8 COMPLEXITY OF HPOPTA
Lemma 8.1. The complexity of HPOPTA Kernel is O(m3 ×
p3).

Proof. HPOPTA Kernel expands a search tree recursively.
Thus, its time complexity can be expressed in terms of
the number of recursive invocations of HPOPTA Kernel. We
formulate the number of recursive calls in each level of the
search tree using a trivial example.

Consider a workload size w is executed on a platform
consisting of 5 heterogeneous processors (p = 5). Suppose
the time function of each processor contains 2 data points
(m = 2) where t(x) = {(∆x, t(∆x)), (2∆x, t(2∆x))}, and
∆x ∈ N is the minimum granularity of workload sizes
in time functions. It should be mentioned that there is no
assumption about the value of ∆x and therefore it can
be used without loss of generality. For sake of simplicity,
we assume that the execution time increases as worksize
increases in a time function. That is, the data points in time
functions are visited in increasing order of work-size. This
assumption does not make the proof less general. However,
it makes finding the formula for complexity less difficult.

Figure 4 shows the search tree of this example. Since
we are looking for an upper bound for time complexity of
HPOPTA Kernel, we consider w greater than 8∆x, which
is the maximum workload size subtracted from w in the
Figure. For the sake of simplicity, only Save technique is
considered. Other optimizations, Cut and Backtrack, are not
applied. In the Figure, nodes highlighted in red have already
been expanded in the same level and the solutions for
them are retrieved from the matrix Mem instead of node
expansions.

The number of recursive calls in each level of tree can be
calculated as follows:

C#(L) =

{
L×m+ 1 0 ≤ L < p− 1

C#(p− 2)× (m+ 1) L = p− 1

where L represents level number in the tree.
Therefore, C#(L) is equal to:

C#(L) =

{
L×m+ 1 0 ≤ L < p− 1

m2 × p− 2×m2 +m× p−m+ 1 L = p− 1

That is, the total number of recursive calls of
HPOPTA Kernel is

∑p−1
L=0(C#(L)) which has order of

O(m× p2 +m2 × p).
In addition, the number of nodes in each level whose

results are retrieved from matrix Mem is equal to:

Memory#(L) = (C#(L− 1)− 1)×m
= (m2)× (L− 1),

1 ≤ L ≤ p− 2

Solutions can be found by using the memory. To retrieve
saved results, the function ReadMemory is required to access
up to p − 2 elements from Mem. That is, the complexity

of ReadMemory is O(p). We know HPOPTA Kernel accesses
the matrix Mem for levels 1 to p − 2. Therefore, the cost
of all ReadMemory invocations to find solutions is equal to∑p−2
L=1(Memory#(L)×O(p)), which is equal toO(m2×p3).
In addition, there are solutions found in the last level of

the tree (For instance level L4 in the Figure 4). For these
solutions, HPOPTA Kernel accesses tp−1(x) with the time
complexity of O(m) to find the execution time of the given
workload to Pp−1. The number of nodes in the level Lp−1
is equal to C#(p − 1) nodes. That is, the cost of finding
solutions in last level of tree is O(m3 × p).

Once a solution is found, ProcessSolution is invoked and
it has complexity ofO(m×p). In the worst case, it is invoked
in each leaf of the tree, either after each call of ReadMemory
or after finding a solution in level Lp−1. Therefore, total
complexity associated with all ProcessSolution calls is bound
to (C#(p−1)+

∑p−2
L=1Memory#(L))×O(m×p) = O(m3×

p3).
The worst time complexity of HPOPTA Kernel can there-

fore can be summarized as follows:

Complexity(HPOPTA Kernel) =

O(recursive calls of HPOPTA Kernel) + O(ReadMemory calls)+
O(finding solutions in Lp−1) + O(ProcessSolution calls).

which equals:

Complexity(HPOPTA Kernel) =

O(m× p2 +m2 × p)+
O(m2 × p3)+

O(m3 × p) +O(m3 × p3)

= O(m3 × p3).

Proposition. 5.2. The complexity of HPOPTA is O(m3 × p3).

Proof. HPOPTA consists of following main steps:

• Sorting: There are p discrete time functions with
cardinality of m. The complexity to sort all of them
in the non-decreasing order of execution times is
O(p×m× log2m).

• Finding load–equal distribution and initialization
of time threshold: This step has complexity O(p).

• Finding size thresholds: To find size threshold for a
given level Li, i ∈ [0, p − 1], all data points, existing
in ti(x), with execution times less than or equal with
τ should be examined. This has complexity of O(m).
Therefore, finding p size thresholds has a complexity
of O(p×m).

• Memory initialization: In this step, all (n+1)×(p−2)
cells of Mem are initialized with the complexity of
O(n× p).

• Kernel invocation: According to the lemma 8.1, the
complexity of this step is O(m3 × p3).

Therefore, the time complexity of HPOPTA equals the
summation of all these steps, which is equal to O(m3 × p3).

End of Proof.

Proposition. 5.3. The total memory used by the algorithm is
O(p× (m+ n)).

Proof. HPOPTA uses memory to store following informa-
tion:



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 9

w

w − 2∆x

w − 4∆x

w − 6∆x

w − 8∆x 0
w − 8∆x

w − 7∆x 0
w − 7∆x

w − 6∆x 0
w − 6∆x

0

∆x
2∆x

w − 5∆x

w − 4∆x

0

∆x

2∆
x

w − 3∆x

w − 2∆x

0

∆x

2∆
x

w −∆x

w − 3∆x

w − 5∆x

w − 7∆x 0
w − 7∆x

w − 6∆x 0
w − 6∆x

w − 5∆x 0
w − 5∆x

0

∆x
2∆x

w − 4∆x

w − 3∆x

0

∆x

2∆
x

w − 2∆x

w −∆x

0

∆x

2∆
x

w

w − 2∆x

w − 4∆x

w − 6∆x 0
w − 6∆x

w − 5∆x 0
w − 5∆x

w − 4∆x 0
w − 4∆x

0

∆x
2∆x

w − 3∆x

w − 2∆x

0

∆x

2∆
x

w −∆x

w − 3∆x

w − 5∆x 0
w − 5∆x

w − 4∆x 0
w − 4∆x

w − 3∆x 0
w − 3∆x

0

∆x
2∆x

w − 2∆x

w −∆x

0

∆x

2∆
x

w

w − 2∆x

w − 4∆x 0
w − 4∆x

w − 3∆x 0
w − 3∆x

w − 2∆x 0
w − 2∆x

0

∆x
2∆x

w −∆x

w − 3∆x 0
w − 3∆x

w − 2∆x 0
w − 2∆x

w −∆x 0
w −∆x

0

∆x
2∆x

w

w − 2∆x 0
w − 2∆x

w −∆x 0
w −∆x

w 0
w

0

∆x

2∆x

0

∆x

2∆
x

0

∆x

2∆
x

0

∆
x

2∆
x

Fig. 4. The execution of HPOPTA for a sample set of time functions (p = 5), each contains 2 data points. The memorization technique is only
considered to reduce the full search space of solutions. The other optimizations, time threshold, size threshold, and backtracking, are not applied.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 10

• time functions: There are p discrete time functions
with cardinality of m stored in p×m cells.

• Dcur : This array stores the workload sizes assigned
to each processor by the current solution. That is, this
is an array of size p cells.

• Dopt: This array stores the workload sizes assigned
to each processor by the optimal solution found so
far. That is, this is an array of size p cells.

• Mem: This is a matrix consisting of (p− 2)× (n+ 1)
cells.

Thus, total memory cells used by HPOPTA is equal to
m× p+ 2× p+ (p− 2)× (n+ 1) u O(p× (m+ n)).

End of Proof.

ACKNOWLEDGEMENTS

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland
(SFI) under Grant Number 14/IA/2474.

REFERENCES

[1] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based
optimization of EULAG kernel on Intel Xeon Phi through load
imbalancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 3, pp. 787–797, 2017.

[2] A. Lastovetsky and R. Reddy, “New model-based methods and al-
gorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, 2017.

Hamidreza Khaleghzadeh is a PhD researcher
at Heterogeneous Computing Laboratory at the
School of Computer Science, University College
Dublin. He got his BSc and MSc degrees in
Computer Engineering (software) in 2007 and
2011, respectively. He ranked as a 2nd posi-
tion holder in his MS program. His main re-
search interests include performance and en-
ergy consumption optimization in massively het-
erogeneous systems, high performance hetero-
geneous systems, energy efficiency, and paral-

lel/distributed computing.

Ravi Reddy Manumachu received a B.Tech
degree from I.I.T, Madras in 1997 and a PhD
degree from the School of Computer Science,
University College Dublin in 2005. His main re-
search interests include high performance het-
erogeneous computing, high performance linear
algebra, parallel computational fluid dynamics
and finite element analysis.

Alexey Lastovetsky received a PhD degree
from the Moscow Aviation Institute in 1986, and
a Doctor of Science degree from the Russian
Academy of Sciences in 1997. His main re-
search interests include algorithms, models, and
programming tools for high performance hetero-
geneous computing. He has published over a
hundred technical papers in refereed journals,
edited books, and international conferences. He
authored the monographs Parallel computing on
heterogeneous networks (Wiley, 2003) and High

performance heterogeneous computing (Wiley, 2009).


