
SmartGridRPC: A New RPC Model for High

Performance Grid Computing and its

Implementation in SmartGridSolve

Thomas Brady

B.Sc. Hons., M.Sc.

The thesis is submitted to University College Dublin

for the degree of Doctor of Philosophy

Head of Department: Joe Carthy

Supervisor of Research: Dr. Alexey Lastovetsky

School of Computer Science and Informatics,

College of Engineering, Matematical and Physical Sciences,

University College Dublin.

June 2009

I would like to dedicate this thesis to my mother for her help,

support and encouragement throughout my whole studies, without

which this thesis would have never been written.

Acknowledgements

I would like to thank my supervisor Alexey Lastovetsky for his guid-

ance, advice, support and enthusiasm throughout my research. He

was available at all times to offer valuable discussion and guidance

which helped shape the research presented in this thesis. I would also

like to thank Jack Dongarra and Keith Seymour for their valuable

discussions, colloboration and support in this project.

I would like to thank the other postgraduates in the HCL laboratory,

Brett, Robert, Michele, Maureen, Ravi, Xin and Vladimir. I would

like to thank Robert and Michele for their discussions and advice

during the implementation of SmartGridSolve. I would also like to

thank Robert for always being willing to proof read my papers and I

would like to thank Brett for his work setting up the cluster.

I would like to thank Science Foundation Ireland for their financial

support with my grant funding.

Finally I would like to thank all my friends and family, in particular

my mother, for their constant support and motivation.

Abstract

This thesis presents the SmartGridRPC model, an extension of the

GridRPC model, which aims to achieve higher performance.

The traditional GridRPC model provides an API and model for map-

ping individual tasks of an application in a distributed Grid envi-

ronment which is based on the client-server model or star network

topology.

The SmartGridRPC model provides an API and model for mapping

a group of tasks of an application in a distributed Grid environment

which is based on the fully connected network topology.

The SmartGridRPC programming model/API, its implementation

and its performance advantages over the GridRPC model are out-

lined in this thesis. In addition experimental results using a real-world

application are also presented.

Contents

1 Introduction 1

2 Motivation 8

2.1 Motivation: GridRPC model . 8

2.2 Motivation: SmartGridRPC model 10

3 Related research 14

4 GridRPC programming model and API 21

4.1 Design of the GridRPC programming model 22

4.2 GridRPC : API and semantics . 23

4.3 GridRPC : A GridRPC application 24

5 SmartGridRPC programming model and API 27

5.1 Design of the SmartGridRPC programming model 28

5.2 SmartGridRPC: API and semantics 33

5.3 SmartGridRPC: A SmartGridRPC application 35

6 GridSolve: Implementation of the GridRPC model 38

6.1 GridSolve: Agent discovery . 38

6.2 Run-time GridRPC task call . 39

6.3 GridSolve: Performance models 41

6.4 GridSolve: Mapping heuristic . 46

7 SmartGridSolve: Implementation of the SmartGridRPC model 48

7.1 SmartGridSolve: Agent discovery 48

iv

CONTENTS

7.2 Run-time of client application . 49

7.3 SmartGridSolve performance models 52

7.3.1 Network graph . 52

7.3.2 Task graph . 53

7.4 Mapping Solution Graph . 56

7.5 Communication model . 62

7.6 Fault tolerance . 65

8 SmartGridRPC benchmark application: The evolution of a clus-

ter of galaxies 66

8.1 GridRPC implementation of Hydropad 70

8.2 SmartGridRPC implementation of Hydropad 71

9 Experimental results 77

9.1 Experiments with the GridSolve version of Hydropad 78

9.2 Experiments with the SmartGridSolve version of Hydropad 80

10 Conclusion 88

10.1 Contributions . 92

A Appdx A - SmartGridSolve Manual 96

A.1 Using SmartGridSolve . 96

A.2 SmartGridSolve API . 97

A.2.1 The grpc map() function 97

A.2.2 The grpc map ft() function 98

A.2.3 The grpc local() function 100

B Appdx B - Hydropad Manual 103

B.1 Introduction to Hydropad . 103

B.2 Installing Hydropad . 104

References 116

v

List of Figures

4.1 Overview GridRPC model and API 21

5.1 Overview SmartGridRPC model and API 28

6.1 GridSolve - Agent discovery . 40

7.1 SmartGridSolve - Agent discovery 50

7.2 SmartGridSolve - The network graph 53

7.3 SmartGridSolve - The task graph 55

7.4 SmartGridSolve - The mapping solution graph 57

7.5 Communication transactions of task 0 of the mapping solution in

figure 7.4, which happen prior to the execution of task 0. 64

7.6 Communication transactions of task 0 of the mapping solution in

figure 7.4, which happen subsequent to the execution of task 0. . . 64

8.1 Example of Hydropad output . 67

8.2 Overview of the Hydropad application 69

8.3 Task graph for two evolution steps 74

9.1 Evolution time step of the local and GridSolve computation on

client C100-256 . 81

9.2 Execution times of the GridSolve and SmartGridSolve version of

Hydropad on client C100-256 . 81

9.3 Execution times of the GridSolve and SmartGridSolve version of

Hydropad when the client machine C1-256 has 256MB of memory 86

vi

LIST OF FIGURES

9.4 Execution times of the GridSolve and SmartGridSolve version of

Hydropad when the client machines are C1-1 and C100-256 87

10.1 SmartGridSolve extensions . 94

vii

Chapter 1

Introduction

The idea of distributed computing has been around for years. What distinguishes

Grid computing from typical distributed computing or cluster computing is that

Grids tend to be more loosely coupled, heterogeneous, and geographically dis-

persed [1].

A Grid programming model can be present in many different forms, for ex-

ample: a language, a library API, or a tool with extensible functionality [2].

The following are common Grid programming models:

• RPC model [3] (GridRPC [4], Java RMI [5]).

• Shared state models (javaspaces [6], publish/subscribe [7]).

• Message Passing Models (MPI [8]).

• Hybrid Models (OpenMP/MPI [9], OmniRPC [10], MPI).

• Peer-to-peer (JXTA [11]).

• Grid API (Globus Toolkit [12], GAT [13], SAGA [14]).

• Application frameworks (Cactus [15], GridSphere [16]).

• Component models (Corba [17], CoG [18], Legion [19]).

• Web service model (OGSA [20]).

1

The remote procedure call (RPC) programming model [21] is the premier

model for executing scientific applications in a distributed environment. Improv-

ing the performance of this programming model in the Grid environment is the

focus of the thesis.

RPC provides a straightforward procedure for executing parts of an applica-

tion on a remote computer. To execute a RPC, the application programmer does

not need to learn a new programming language but merely uses the RPC API.

Using the API the application programmer specifies the remote task to be per-

formed, the server to execute the task, the location of the input data on the user’s

computer required by the task and the location on the user’s computer where the

results will be stored. The execution of the remote call involves transferring input

data from the user’s computer to the remote computer, executing the task on the

remote server and delivering output data from the remote computer to the user’s

one.

GridRPC is a standard promoted by the Open Grid Forum which extends

the traditional RPC for the Grid environment. A number of Grid middleware

systems are GridRPC compliant including GridSolve [22], Ninf-G [23] and DIET

[24].

A GridRPC system processes each GridRPC task call by first performing

dynamic resource and task discovery, then mapping the task to a server and then

executing the task on the mapped server. Since each GridRPC task call consists

of these operations (discovery, mapping and execution) and each GridRPC task

is processed individually, the GridRPC model imposes the restriction that these

three operations are atomic and cannot be separated. As a result, each task has to

be mapped separately and independently of other tasks of the application. Given

that the model has the restriction that tasks have to be mapped individually and

independently, the model can only support the minimization of the execution

time of each individual task of the application rather than the minimization of

the execution time of the whole application.

Another important aspect of the GridRPC model is its communication model.

The communication model of GridRPC is based on the client-server model or star

network topology. This means that tasks can be executed on any of the servers

and inputs/outputs can only traverse the client-server links.

2

Mapping tasks individually on to star network results in mapping solutions

that are far from optimal. If tasks are mapped individually, the mapping heuris-

tic is unable to take into account any of the tasks that follow the task being

mapped. Consequently, the mapping heuristic does not have the ability to opti-

mally balance the load of computation and communication. Another consequence

of mapping tasks in this way is that dependencies between tasks are not known

at the time of mapping. Therefore this approach forces bridge communication.

Bridge communication occurs when the output of one task is required as an input

to another task. In this case, using the traditional GridRPC model, the output

of the first task must be sent back to the client and the client then subsequently

sends it to the server executing the second task when it is called.

Also, since dependencies are not known and the network is based on the client-

server model, it is impossible to employ any parallelism of communication between

the tasks in the group. For example, this could be implemented if there is a

dependency between two tasks and the destination task is not executed in parallel

or immediately after the source task. In theory, this dependent data could be sent

to the destination task in parallel with any computation or communication on

any other machine (client or other servers) which happens in the intervening time.

But since tasks are mapped individually on to a star network, this parallelism of

communication cannot be realized using the GridRPC model.

In this thesis, we propose an enhancement of the traditional GridRPC model

which would allow a group of tasks to be mapped collectively on to a fully con-

nected network. This would remove each of the limitations of the GridRPC

model already described. The SmartGridRPC model has extended the GridRPC

model to support collective mapping of a group of tasks by separating the map-

ping of tasks from their execution. This allows the group of tasks to be mapped

collectively and then executed collectively.

In addition the traditional client-server model of GridRPC has been extended

so that the group of tasks can be collectively executed on a network topology

which is fully connected. This is a network topology where all servers can com-

municate directly or servers can cache their outputs locally.

There are a number of advantages of mapping tasks collectively on to a fully

connected network. When mapping tasks individually, the communication load

3

and computation load of a single task are only considered. However when tasks

are mapped collectively the communication load and computation load of multiple

tasks can be considered together and therefore this load can be better distributed

over the fully connected network. In addition the relationships between tasks

can also be considered such as the data dependencies between tasks. This allows

bridge communication to be eliminated by mapping these dependencies on to vir-

tual links connecting servers. As a result, servers can send data directly to other

servers and therefore do not need to send it via the client. Eliminating bridge

communication can significantly decrease the overall communication time of an

application and hence improve the overall performance of the application because

communication is often the more time consuming phase in an RPC context.

In addition, this may also eliminate memory paging on the client which would

otherwise occur when bridge communication is forced and intermediate results

are stored on the client. Also since dependencies between tasks are known, it

means that remote communication of one task can be parallelized with other

computation and communication in the group.

Consequently, the mapping heuristic can improve the performance of that group

by:

• more effectively balancing the load of computation of the group of tasks;

• more effectively balancing the load of communication of the group of tasks;

• reducing the overall volume of communication of the group by eliminating

bridge communication either by caching or direct data transfers between

servers;

• reducing memory usage and paging;

• increasing the parallelism of communication.

The client-server model of GridRPC results in a communication network which

has a star topology. Therefore in this case for any given mapping of a group of

tasks to remote servers there will be only one communication path between any

pair of servers that should be considered when mapping. This path consists of

two communication links connecting the servers with the client machine. Any

4

other path connecting the two servers obviously results in higher communication

cost.

However, if the communication network is fully connected, then there will be

multiple independent paths connecting the servers and each of these paths can

be considered when mapping. In other words, for each mapping of a group of

tasks to remote servers in a star communication network there is only one fixed

communication scheme that can be employed. However, when a group of tasks is

mapped on a fully connected network there are many communication schemes to

choose from. These communication schemes may employ direct communication,

server broadcast, client broadcast or caching. Therefore the mapping of a group

of tasks on a fully connected network not only involves the mapping of tasks to

servers but also the mapping of the dependencies between tasks on to the com-

munication paths of the network. This increases the mapping solution space and

allows for further optimization to be achieved by choosing the optimal paths for

data to traverse between servers. This increase of the solution space means that

the mapping heuristics implemented in the SmartGridRPC model have more po-

tential of finding a closer to optimal solution than the mapping heuristics inherent

in implementations using the standard GridRPC model.

GridSolve, is a middleware system that implements the GridRPC model. It

enables users to solve complex scientific tasks remotely on distributed resources.

GridSolve emphasises ease-of-use for the user and includes resource monitoring,

mapping and service-level fault tolerance. In addition to providing Fortran and

C clients, GridSolve enables Scientific Computing Enironments (SCEs) such as

Matlab to be used as clients, so domain scientists can use Grid resources from

within their preferred environments.

SmartGridSolve [25] is an extension of GridSolve, which makes the GridSolve

middleware compliant with the SmartGridRPC model. SmartNetSolve [26] was

previously implemented to make the NetSolve [27] middleware, which was the

predecessor of GridSolve, compliant with the SmartGridRPC model.

The SmartGridSolve extension is interoperable with GridSolve. Therefore if

GridSolve is installed with the SmartGridSolve extension, the user can choose

whether to implement an application using the standard GridRPC model or the

extended SmartGridRPC model. In addition SmartGridSolve is incremental to

5

the GridSolve system. Therefore if the SmartGridSolve extension is installed only

on the client side, the system will be extended to allow for collective mapping.

If SmartGridSolve is installed on the client side and on only some of the servers

in the network, the system will be extended to allow for collective mapping on

a partially connected network. If it is installed on all servers, the system will be

extended to allow for collective mapping on the fully connected network.

The high level design of the SmartGridRPC model was inspired by both the

design of mpC [28] and HeteroMPI [29]. SmartGridRPC uses the same approach

of using the performance model of the application and the performance model of

the executing heterogeneous network to optimally map the application on to the

underlying heterogeneous network.

The contributions of this work include:

The design and concept of the SmartGridRPC model and API: The

goal of the SmartGridRPC API was to allow an application programmer to eas-

ily trasform their existing GridRPC enabled applications into SmartGridRPC

enabled application. Therefore an application programmer with a few simple

changes can easliy benefit from all the performance enhancements of the Smart-

GridRPC model.

The SmartGridRPC model was designed so that it is both incremental and

interoperable with the underlying GridRPC middleware. It is incremental mean-

ing that if the exension is installed, the application programmer has the choice

whether to implement their application using the SmartGridRPC model or the

GridRPC model. It is interoperable in that a SmartGridRPC enabled client ap-

plication can be executed on a network consisting of both standard GridRPC

servers and SmartGridRPC enabled servers.

The design and implementation of SmartGridSolve: The GridSolve

middle was extended to be SmartGridRPC compliant and this extension is called

SmartGridSolve. The implementation of SmartGridSoilve requires extensions to

the following aspects of GridSolve:

• Network Discovery.

• Task Discovery.

6

• Mapping Heuristics.

• Execution model.

Details of this implementation will be described in this thesis to demonstrate

how a developer of a GridRPC middleware can extend their middleware so that

it is SmartGridRPC enabled.

The thesis is outlined as follows. Chapter 2 gives the motivation of GridRPC

and SmartGridRPC model. Chapter 3 outlines research papers which are re-

lated to the SmartGridRPC model. The GridRPC programming model and API

is described in chapter 4. The SmartGridRPC model and API is described in

chapter 5. Chapter 6, describes the implementation of the GridRPC model in

GridSolve and chapter 7 describes the implementation of the SmartGridRPC

model in SmartGridSolve. Chapter 8 outlines the Hydropad application, which

is an astrophysics application used to benchmark the GridRPC model and the

SmartGridRPC model. Chapter 9 gives experimental results which compare the

GridRPC model with the SmartGridRPC model using the Hydropad application

as a benchmark. The thesis will conclude with chapter 10.

7

Chapter 2

Motivation

2.1 Motivation: GridRPC model

The following are some of the key benefits of implementing GridRPC enabled

applications:

• Improved performance of applications.

• Solution of large scale applications.

• More control over applications.

• Solution of hardware specific applications.

• Portability.

• Easy and powerful development of applications.

Improved performance of applications: The performance related bene-

fits include the potential for faster solution of a problem of a given size and solu-

tion of problems of larger sizes . There are two main reasons for this. Firstly, if

parts of the code can be executed in parallel on remote servers then the GridRPC

model allows one to implement their parallel execution on remote servers. This

parallelisation will decrease the computation time of the application. Secondly, if

the Grid environment contains machines that are more powerful than the client

machine, then remote execution of the tasks of this application on these more

8

2.1 Motivation: GridRPC model

powerful machines will also decrease the computation time of the application.

However, this decrease of the computation time is not without cost. The appli-

cation will pay the communication cost due to remote execution of the tasks. If

the communication links connecting the client machine to the server machines are

relatively slow, then the communication cost may be more than the increased per-

formance of computation, resulting in the total execution time of the application

being higher than its sequential execution on the client machine.

Solution of large scale applications: The GridRPC model provides a

solution for applications which cannot be executed on a client machine due to

their strong demands on the resources (memory, disk space etc.). In this case

GridRPC provides a means to allocate these demands to remote servers in the

Grid environment. For example, the remote execution of parts of a memory

intensive application on remote servers could eliminate heavy paging that would

otherwise occur on the client machine.

More control over applications: In some cases, applications that could

be executed in a Grid environment could potentially be executed in a high per-

formance computer (HPC) system. Unfortunately in a HPC system, where appli-

cations are executed in batch mode, the user will not have much control over the

execution. Grid-enabled applications allow the user to have a high control over its

execution because, although the tasks are being computed in remote servers, the

main component of the application is running on the client machine. This can be

important for applications that need a direct interaction with the data produced.

For a given application it would be possible for a user to see intermediate results

of the application. Furthermore, while the user/client is checking these results,

they could decide to change some parameters of the application or restart the

application.

Solution of hardware-specific applications: Some applications have a

task that is inherently remote. For example, a task could be a proprietary pre-

compiled binary which has been compiled for a specific architecture or a task may

be tuned or tweaked to execute more efficiently on a specific type of hardware

such as FPGA. Furthermore a task could require interaction with a resource that

can only interface with a particular machine such as a telescope, video camera,

9

2.2 Motivation: SmartGridRPC model

microscope etc. In such cases, an environment that allows the resources (including

software) to be used on a particular computer is needed.

Portability: Since a GridRPC enabled application comprises of a client

application and server-side compiled executables, the client application can be

easily ported, compiled and executed on a new machine in the Grid environment.

This does not require the recompilation of server-side task executables, which

could make up a large proportion of the application.

An easy and powerful development paradigm: Any task which has been

developed for remote execution for one GridRPC enabled application can be easily

reused for other Grid applications. This situation can reduce the programmers

effort on developing a Grid application. For example the programmer can use

already existing tasks that they would not have the time or skill to write.

2.2 Motivation: SmartGridRPC model

The following are some of the key benefits of SmartGridRPC enabled applications

over GridRPC enabled applications:

• Improved balancing of computation load.

• Reduced volume of communication.

• Improved balancing of communication load.

• Increased parallelism of communication.

• Reduced memory usage and paging.

Improved balancing of computation load: In GridRPC tasks get mapped

individually on to a client server network. This could result in poor load balancing

of computation. Since tasks get mapped individually, it is impossible to balance

the load of computation of a group of tasks which are executing in parallel. If

tasks are mapped individually, each task will be mapped without the knowledge

of any of the subsequent parallel tasks. This means that if a large task follows

a smaller task, the mapping heuristic will give the smaller task priority over

10

2.2 Motivation: SmartGridRPC model

the larger task. This is because when the smaller task is mapped, the mapping

heuristic cannot take into account that a larger task will be executing in parallel.

Therefore it maps the smaller task to the faster server as this will yield the lowest

execution time for this individual task. And when the mapping heuristic maps

the larger task, it will assign it to the next fastest server as the fastest server is

busy executing the previous task. This is poor load balancing of computation.

However if you implement the collective mapping of the SmartGridRPC model,

then the computation load can be better distributed over the network. In this

case, if both tasks can be mapped collectively then the larger task would be

mapped to the faster server and the smaller to the slower server. This improved

balancing of the computation load will increase the performance of both tasks

executing in parallel.

Reduced volume of communication: Since the GridRPC model maps

tasks individually on to a client-server network, the model forces bridge commu-

nication between tasks. This occurs because dependencies are not known between

tasks and data can only traverse the client-server links. As a result the source

task can only send the dependent data to the destination task via the client. This

requires two communication steps, the first from the source task to the client and

the second from the client to destination task. However this can be eliminated

with the SmartGridRPC model, where tasks can be mapped collectively on to

a network which is fully connected. Since tasks are mapped collectively, depen-

dencies between tasks are known. These dependencies can then be mapped on

to virtual links connecting the source server to the destination server, which is

only one communication step. Therefore the overall volume of communication

required to be sent over the network will be reduced which would result in im-

proved application performance. Moreover if the source task and destination task

are both executing on the same server then this output could be cached to the

local file system or cached in memory which would further reduce the overall

communication on the network and increase the performance of the application.

Improved balancing of communication load: Since the GridRPC model

is based on the client-server model, communication can only be mapped to client-

server links. This may result in the client-server links becoming heavily loaded.

11

2.2 Motivation: SmartGridRPC model

SmartGridRPC can increase the performance of an application by better distri-

bution of the communication load over the network. When tasks are mapped

collectively, the volume of communication of each task in the group of tasks is

known. Since the sizes of inputs and outputs of each task are known and this

communication is mapped onto a network which is fully connected, this communi-

cation can be better distributed over the fully connected network. This improved

load balancing of communication will result in improved overall communication

times and hence improved application performance.

Increased parallelism of communication: In much the same way that the

GridRPC model improves on the RPC model with the parallelism of computation;

the SmartGridRPC improves on the GridRPC model with the parallelism of

communication. With the GridRPC model, the parallelism of communication is

limited to the sending of inputs to a non-blocking task which is an asynchronous

operation. With the SmartGridRPC model any communication on one machine

can be done in parallel with computation or communication on any other. This

asynchronous communication is only achievable since the dependencies between

tasks are known prior to the execution of the group due to the collective mapping.

This parallelism of communication can be advantageous if a task executing on one

server has a dependency on another task which will be executed on another server

and the destination task is not executed immediately after the source task. In

this case, this communication can be done asynchronously. This means that the

server initiates the communication but does not wait for it to finish. Therefore

this communication can be done in parallel with any other computation or any

communication on any other machine (client or servers) which happens in the

intervening time. In addition this parallelism of communication can be beneficial

if the client broadcasts an argument to more than one task which is to be executed

on different machines. If any of the tasks are not executing immediately after the

communication, then the communication to these tasks can be done in parallel

with any computation on the client machine and computation or communication

on any other server which happens in the intervening time. The same is true

for server broadcast communication. This parallelism of communication reduces

overall communication times and thus improves the overall performance of the

group of tasks executing on the fully connected network.

12

2.2 Motivation: SmartGridRPC model

Reduced memory usage and paging: The direct communication be-

tween servers and the data caching that the SmartGridRPC model implements

means that intermediate results do not have to be sent back and stored on the

client. This minimizes the amount of memory used on the client and the volume

of communication necessary between client and server. This could eliminate pag-

ing on the client that would otherwise occur. This elimination of paging would

considerably increase the performance of an application.

13

Chapter 3

Related research

This section examines those systems which implement the GridRPC model (Grid-

Solve, Ninf-G, DIET) and their predecessors (i.e. NetSolve and Ninf) and will

focus on the papers which mostly relate to our research. Specifically those papers

which fall into the following categories:

• papers presenting extensions to the client-server model which implement

direct communication between servers or data persistence.

• papers presenting extensions which extend the system so that a group of

tasks can be collectively mapped.

These papers will be presented in chronological order and we will outline the

limitations of each approach in comparison with the SmartGridRPC model.

Both NetSolve [30] and Ninf [31], the predecessor to the GridSolve and Ninf-G

system, were started at roughly the same time. The projects were both started in

1994 and were first released in 1995. These systems were designed to resolve the

difficulty of performing computational science problems over loosely connected

geographically disperse networks. The computational libraries that the most

common computational problems use may be highly optimized for only certain

platforms and do not provide a convenient interface to other computer systems.

Other libraries demand considerable programming effort from the user, who may

not have the time to learn the required programming techniques. The resolution

of these issues was the motivation behind both projects. These systems were

14

called Network Enabled Server (NES) or Problem Solving Environment (PSE)

systems and employed a RPC-style model to perform remote computations.

In 1999, task farming [32] was introduced to NetSolve. The farming feature

of NetSolve allowed a certain class of tasks called farming jobs to be processed

collectively. A farming job fell into the class of embarrassingly parallel programs

for which it is very clear how to partition the jobs for parallel programming en-

vironments. While these tasks were processed collectively they were not mapped

collectively. Each task was individually mapped but computation loads of sub-

sequent tasks were dynamically adjusted at run-time based on previous task re-

sponse times.

The limitations of task farming are:

• It can only be implemented for a certain class of application where tasks

do not have dependencies and can run independently (e.g. embarassingly

parallel applications).

• Tasks are mapped individually and therefore the mapping heuristic cannot

take advantage of characteristics of the group such as data dependencies.

• Conditional statements cannot exist in the scope of the task farming job.

• Client computation cannot exist in the scope of the task farming job.

• The group of tasks is called as one atomic call, therefore intermediate results

cannot be viewed or analysed.

In 2000, task sequencing [33] was introduced to NetSolve. Using the task

sequencing API a group of tasks could be processed collectively so that data

dependencies could be analysed. This group of tasks is subsequently mapped on

to a single server and if any data dependencies exist, the data would be stored

locally and not sent back to the client. Therefore, using this API data persistency

could be implemented and therefore if dependencies exist, bridge communication

could be eliminated.

The limitations of task sequencing are:

• The group of tasks can only be mapped to a single server.

15

– This computation load could be better distributed over a number of

servers.

– There may not be a server in the environment that can execute all

tasks.

• Conditional statements such as for, if and while are forbidden between tasks.

• Client computation cannot exist in the scope of the task sequencing job.

In 2002, data transfers between servers were introduced to NetSolve [34]. This

was achieved with an added function to the API that allowed the user to explicitly

outline data dependencies. If there are two tasks which have a data dependency

and are executing on different servers, this data would be stored in the source

server when it finished execution and then the destination server would pull the

argument from that server when it is called for execution.

The limitations to this approach are:

• Tasks are mapped individually.

• Push communication cannot be implemented when tasks are mapped indi-

vidually. A push transfer is a transfer of data where the source server ini-

tiates the communication from the source server to the destination server.

This can be done in parallel with other computation or communication in

the group of tasks. This is because it can be transferred asynchronously

as the source server and destination server are not required to wait for the

transaction to complete before doing other work. In addition the client is

not required to wait and therefore can perform local computation, client-

server communication or initate other remote computation or communica-

tion. This can significantly increases the amount of parallelism in a given

group of tasks.

A pull data transfer is a transfer of data where the destination server re-

quests the data and it is then sent from the source server to the destination

server. This cannot be done asynchronously as the destination task has to

wait to receive the data before it can begin execution. Also if the destination

task is a blocking task, client or remote computation and communication

16

cannot be parallelised with this data transfer. However using push commu-

nication they can be overlapped.

• The user has to explicitly specify dependencies.

– More labour intensive.

– More prone to error.

This feature was later implemented in the GridRPC model in the GridSolve

system [35], DIET [36] and NINF-G [37] and had the same limitations.

In July 2002, the DIET system was launched which implemented an archi-

tecture where the scheduler/agent is scattered across a hierarchy of Local Agents

and Master Agents. The motivation for this architecture was it was more scal-

able and solved the problem of bottlenecks in a centralised agent/scheduler when

many clients try to access several servers. In addition the DIET system employed

direct communication between servers and data persistency. Where a dependency

existed between tasks this output would remain on the source server. When the

destination task is called for execution this data would be pulled from the source

server. If the source server is the same as the destination server this output would

be stored and retrieved locally (data persistency).

The limitations of this approach are:

• Tasks are mapped individually.

• Push communication cannot be implemented when tasks are mapped indi-

vidually

• Increased communication times since communication cannot be done in

parallel with computation or other communication.

In 2002, Distributed Storage Infrastructure (DSI) [38] was implemented in

NetSolve. The DSI was another feature that attempted to minimize data move-

ment in the NetSolve middleware. With DSI, data could be stored in storage

depots which are close to servers which require the data. Instead of having multi-

ple transmissions of the same data, DSI allows the transfer of data once from the

client to a storage depot. A data handle is then used to retrieve only the relevant

17

portions of the stored data when running computations. This reduced communi-

cation times but again did not change how tasks are fundamentally mapped.

Also in 2002 the Global Grid Forum (now known as the Open Grid Forum)

standardized the RPC mechanism for Grid computing with the GridRPC pro-

gramming model and API [4]. This was implemented in NetSolve [39] and Ninf-G

[23]. Ninf-G is the second generation of Ninf and was implemented on top of the

Globus toolkit [40]. The Globus toolkit provides a reference implementation of

standard protocols and it deploys Globus Security Infrastructure so that all the

components of Ninf-G are protected properly. In 2003 GridSolve which is the

second generation of NetSolve was released and provided full support for the

GridRPC model.

In 2005, the GridRPC model was implemented in DIET [24]. This paper

also introduced the Data Tree Manager (DTM). The DTM allows data to be

left on a server after computation and then retrieved by another server during

its computation. This paper described how JUXMEM (Juxtaposed memory)

could be used in the DIET system to allow servers to share memory data. Both

the DTM and JUXMEM avoided multiple transmissions of the same data from a

client to a server but again tasks could only be processed and mapped individually.

The limitations to this approach are:

• Tasks are mapped individually.

• Push communication is not implemented.

SmartNetSolve was designed in 2004, implemented in 2005 and was first pre-

sented in [26] in April 2006. SmartNetSolve is the predecessor to SmartGridSolve.

SmartNetSolve allowed a group of tasks to be collectively mapped and collectively

executed on a fully connected network. The initial design allowed the user to give

a description of the group of tasks and then at run-time this description would

be used to generate a task graph. This task graph and a graph of the network

were used to generate a mapping solution which was then used to execute the

tasks on the fully connected network. Initially, the description of the task graph

was given using an XML file which was read at run-time. A new language, Ap-

plication Definition Language (ADL) [41], was also designed to make this more

user friendly.

18

In May 2006, a non-intrusive and incremental approach for enabling direct

communication in NetSolve was introduced [42]. The software component was

non-intrusive which meant that the software component is supplementary, work-

ing on top of the original system and therefore the original code base was not

altered. It was incrementental which meant that the software component does

not have to be installed on all computers to enable applications with the new

feature.

The limitations to this approach are:

• Tasks are mapped individually.

• Push communication cannot be implemented when tasks are mapped indi-

vidually.

• Increased communication times since communication cannot be done in

parallel with computation or other communication.

• The user has to explicitly specify dependencies.

– More labour intensive.

– More prone to error.

In September 2006, distributed task sequencing was developed for the GridRPC

model [43]. A new function was introduced that allows direct data transfer be-

tween servers when executing a task sequencing job in a Grid environment. This

meant that multiple servers could be used and not just a single server as was

originally a restriction of task sequencing.

The limitations of this approach are:

• Tasks were not mapped collectively.

• Conditional statements cannot exist in the scope of the task sequencing job.

• Client computation cannot exist in the scope of the task sequencing job.

• Push communication is not implemented.

19

In October 2006, the special agent called MADAG was implemented in DIET

which handled workflow submissions [44]. The user gives a description of this

workflow using an XML file including the values of any arguments (i.e. element

values of vectors, matrices, etc). Using the DIET API, the user references the file

which has the DAG description. This is used to create a DAG or task graph which

is submitted to the MADAG agent which is responsible for scheduling the DAG.

This is implemented for the DIET API and has not yet been implemented for the

GridRPC model and API. This implementation does not follow the RPC style of

calling each task in the application. Instead, the application calls a function that

submits the entire task graph as a single entity.

The limitations to this approach are:

• Since this approach does not follow the GridRPC model, intermediate re-

sults cannot be sent back to the client.

• The task graph has to be known at compile time. Therefore no conditional

statements can exist and initial values of input matrices, vectors etc. have

to be known before run-time.

• Client computation cannot exist between tasks.

• It is not user friendly as it can be difficult and time consuming to write the

XML description of a task graph.

• Writing XML files to generate task graphs is more prone to error than if

the task graphs were automatically generated by the system.

Since this initial design of MADAG system, a GUI has been developed which

has made it more user friendly [45]. However this is also prone to error due to

the fact that the application programmer has to outline the task graph and in

addition it is still more labour intensive than if the task graph was automatically

generated. In late 2006, work began on SmartGridSolve and the SmartGridRPC

model to address the limitations described above. This was presented in 2008

[25].

20

Chapter 4

GridRPC programming model

and API

The aim of the GridRPC model is to provide a standardized, portable and simple

programming interface for remote procedure call (figure 4.1). It intends to unify

client access to existing Grid computing systems (such as GridSolve, Ninf-G and

DIET).

Figure 4.1. Overview GridRPC model and API

This standardisation provides portability of the programmers’ source code

across all GridRPC implemented platforms. Since the GridRPC model specifies

the API and the programming model but does not dictate the implementation

details of the servers which will execute the remote procedure call, there may be

multiple different middleware implementations of the GridRPC model on which

the source code could be executed.

21

Chapter3/Chapter3Figs/EPS/overview_gridrpc.eps

4.1 Design of the GridRPC programming model

4.1 Design of the GridRPC programming model

The functions presented in this section are shared by all the implementations of

the GridRPC model. However the mechanics of these functions differ in each

implementation.

Registry discovery: The servers of the Grid environment register the tasks

which they can execute with a registry. This involves sending information such

as how the client should interface with the task and what type of arguments the

server expects when the task is called (the calling sequence). In this thesis the

registry will be an abstract term for the entity/entities which store the information

about the registered tasks and the underlying network. This may be a single

entity such as the Agent in GridSolve or several entities such as the MDS [46] (or

LDIF [47]), running on servers in Ninf-G or the Global Agents and Local Agents

running in the DIET system.

Run-time of client application: When the GridRPC call is invoked, the

client contacts the registry to look-up a desired task and receives a handle which

is used by the client to interface with the remote task. A task handle is a small

structure that describes various aspects of the task and its arguments such as:

• The task name.

• The object types of the arguments (scalars, vectors, matrices etc.).

• The data type of the arguments (integer, float, double, complex etc).

• Whether the arguments are inputs or outputs.

The client then uses the handle to call the task which eventually returns

the results. Each GridRPC call gets processed individually, where each task is

discovered (task look-up) and executed separately from all the other tasks in the

application.

Currently a task is discovered by explicitly asking the registry for a known

function through a string look-up. For applications which are run using the

GridSolve middleware, the discovery mechanism is done via the GridSolve agent.

In Ninf -G, discovery is done via the Globus MDS which runs on each server and

22

4.2 GridRPC : API and semantics

in DIET discovery is done via the Global Agent. The GridRPC model does not

dictate the mechanics of resource discovery since different underlying GridRPC

implementations may use vastly different protocols.

GridSolve and DIET are GridRPC systems that can perform dynamic map-

ping of tasks. Discovery for dynamic mapping also involves discovery of per-

formance models which are used by the mapping heuristics. The performance

models for DIET are the FAST prediction tool [24], CORI [24] and NWS [48].

The performance models for GridSolve are described in section 6.3.

4.2 GridRPC : API and semantics

We introduce the fundamental objects and functions of the GridRPC API and

explain their syntax and semantics.

There are two fundamental objects in the GridRPC model, the task handles

and the session IDs. The task handle represents a mapping from a task name to

an instance of that task on a particular server.

Once a particular task-to-server mapping has been established by initializing

a task handle, all GridRPC calls using that task handle will be executed on the

server specified in that binding. In GridRPC systems which perform dynamic

resource discovery and mapping, it is possible to delay the selection of the server

until the task is called. In this case, resource discovery and mapping is done

when the GridRPC task call is invoked with this initialized handle. In theory

there is more chance to choose a ”better” server in this way, since at the time

of invocation more information regarding the task and network is known, such

as the size of input/outputs, complexity of task and dynamic performance of

client-server links.

There are two types of GridRPC task call functions: blocking and non-

blocking calls. The grpc call() function makes a blocking remote procedure call

with a variable number of arguments. This means the function does not return

until the task has completed and the client has received all outputs from the

server.

The grpc call async() function makes a non-blocking remote procedure call

with a variable number of arguments. When this call is invoked, the remote task

23

4.3 GridRPC : A GridRPC application

and data transfer of the input is initiated and the function returns. This means

that either the client computation or server computation can be done in parallel

with the grpc call async() call.

The grpc wait() function waits for the result of the asynchronous call with

the supplied session ID. The grpc wait all() function waits for all preceding asyn-

chronous calls.

4.3 GridRPC : A GridRPC application

Table 4.1 is a simple application which uses the GridRPC API. It comprises

of three task handles and three corresponding remote calls. The task handles

are set up so that the remote call is bound to a server at call time by passing

“bind server at call time”1 as a parameter. This string could be substituted with

a server host name or the user could assign it to the default server by calling

grpc function handle default().

The task “mmul” takes four arguments, the size of the matrices, the two input

matrices and the one output matrix. In this application the size of the matrices

are not known prior to run-time as they can only be established by executing the

local functions (initMatA and initMatB). Therefore, it is impossible for a user to

decide which servers to assign which tasks since the size of inputs and outputs and

complexity is not known until the application is run. This is a difficult decision

even if the size of the matrices are known before run-time as the performance of

underlying networks is dynamic and difficult to predict in Grid environments.

It is also impossible for a dynamic GridRPC system such as GridSolve, which

can discover resources and map tasks at run-time, to optimally map the tasks

in this application. This is due to the current GridRPC model only permitting

a single task to be processed at any time. Therefore, when the system maps

the GridRPC task call executing handle h1 it has no knowledge of what tasks

are executing in parallel with this task and the computation load of the tasks

executing in parallel.

1This special string is a GridSolve-specific workaround to enable lazy binding in GridRPC

24

4.3 GridRPC : A GridRPC application

Table 4.1. Hydropad evolve loop

main()

{

int N;

int M;

double A[N*N], B[N*N], C[N*N];

double D[M*M], E[M*M], F[M*M], G[M*M];

grpc_function_handle_t h1, h2, h3;

grpc_session_t s1, s2;

grpc_initialize(argv[1]);

/* initialize */

char * hndl_str= "bind_server_at_call_time";

grpc_function_handle_init(&h1, hndl_str,"mmul/mmul");

grpc_function_handle_init(&h2, hndl_str, "mmul/mmul");

grpc_function_handle_init(&h3, hndl_str, "mmul/mmul");

N=getNSize();

initMatA(N, A); initMatB(N, B);

if(grpc_call_asnc(&h1,&s1, N, A, B, C)!= GRPC_NO_ERROR) {

fprintf(stderr, "Error in grpc_call\n");

exit(1);

}

M=getNSize();

initMatD(M, D); initMatD(M, E);

if(grpc_call_async(&h2, &s2, M, D, E, F)!=GRPC_NO_ERROR){

fprintf(stderr, "Error in grpc_call\n");

exit(1);

}

grpc_wait(s1);

grpc_wait(s2);

if (grpc_call(&h3, M, C , F, G) != GRPC_NO_ERROR) {

fprintf(stderr, "Error in grpc_call");

exit(1);

}

grpc_function_handle_destruct(&h1);

grpc_function_handle_destruct(&h2);

grpc_function_handle_destruct(&h3);

...

grpc_finalize();

}

Consider the following scenario - M is initialized to 1000 and N is initialized to

100. Therefore the computational load of the first task will be far less than that of

the second task. In this circumstance when the system maps the function handle

h1 it will map this to the fastest server as this will yield the lowest execution

time for this task. Then when the system maps the function executing handle h2

it will map it to the second fastest server as the fastest server is currently heavily

loaded with the first task. This is poor load balancing of computation and will

affect the overall performance of both tasks executing in parallel.

In addition since tasks are processed individually in the GridRPC model, it

25

4.3 GridRPC : A GridRPC application

is impossible for systems which implement this model to know the dependencies

between tasks. Since dependencies between tasks are not known and the commu-

nication model of the GridRPC model is based on the client-server model, bridge

communication between remote tasks is forced. With the GridRPC model this

dependent argument would have to be sent from the source task to the destination

task via the client which is two communication steps. This necessity for the client

to buffer intermediate data may also cause memory paging on the client. In this

application, the third task h3 is dependent on argument F from the second task

h2 and argument C from task h1. In this case, the only way to send F from the

server executing h2 and C from the server executing h1 to the server executing h3

is via the client, which is two communication steps. Mapping tasks individually in

this application has forced bridge communication. Since intermediate results are

sent back to the client, this will also increase the amount of memory used on the

client. As a result, the overall volume of communication will increase and there

may be paging on the client, which would significantly affect the performance of

the application. In addition, since tasks are mapped individually on to a star

network, parallelism of remote communication cannot be employed. In this case

if dependencies were known, argument C could be sent from the server executing

h1 to the server executing h3 in parallel with computation and communication

of task h2 (permitting that task h2 has been assigned a different server than h3).

From this application it is evident that the potential for higher performance

applications could be increased if we can map tasks collectively as a group on to

a network which is fully connected. This is the premise of the SmartGridRPC

model.

26

Chapter 5

SmartGridRPC programming

model and API

The aim of the SmartGridRPC model is to enhance the GridRPC model by pro-

viding functionality for collective mapping of a group of tasks on a fully connected

network.

The SmartGridRPC programming model is designed so that when it is imple-

mented it is interoperable with the existing GridRPC implementation (figure 5.1).

Therefore, if any middleware has been extended to be made SmartGridRPC com-

pliant, the application programmer has the option whether their application is

implemented for the SmartGridRPC model, where tasks are mapped collectively

on to a fully connected network or for the standard GridRPC model, where tasks

are mapped individually on to a client-server star network.

In addition, the SmartGridRPC model is designed so that when it is im-

plemented it is incremental to the GridRPC system. Therefore, if the Smart-

GridRPC model is installed only on the client side, the system will be extended

to allow for collective mapping. If the SmartGridRPC model is installed on the

client side and on only some of the servers in the network, the system will be

extended to allow for collective mapping on a partially connected network. If

it is installed on all servers, the system will be extended to allow for collective

mapping on the fully connected network.

27

5.1 Design of the SmartGridRPC programming model

Figure 5.1. Overview SmartGridRPC model and API

5.1 Design of the SmartGridRPC programming

model

The SmartGridRPC model provides an API, which allows the application pro-

grammer to specify a block of code, in which a group of GridRPC task calls

should be mapped collectively. Then, when the application is run, the specified

group of tasks in this block of code is processed collectively and each operation

in the GridRPC call is separated and done collectively for all tasks in the group.

Namely, all tasks in the group are discovered collectively, mapped collectively

and executed collectively on the fully connected network. In the discovery phase,

performance models are generated for estimating the execution time of the group

of tasks on the fully connected network. In the mapping phase, the performance

models are used by the mapping heuristic to generate a mapping solution for the

group of tasks. In the execution phase, the group of tasks is executed on the fully

connected network according to the mapping solution generated.

In the context of this thesis, a performance model is any structure, func-

tion, parameter etc., which is used to estimate the execution time of tasks in

the distributed environment. The SmartGridRPC performance model refers to

performance models, which are used to estimate the time of executing a group of

tasks on the fully connected network. The GridRPC performance model refers

to performance models, which are used to estimate the execution time of an in-

dividual task on a star network. A mapping heuristic is an algorithm, which

aims to generate a mapping solution that satisfies a certain criterion, for exam-

ple, minimum completion time. The SmartGridRPC mapping heuristics refer to

mapping heuristics that map a group of tasks on to a fully connected network.

The GridRPC mapping heuristics refer to mapping heuristics which map an in-

28

Chapter4/Chapter4Figs/overview_smartgridrpc.eps

5.1 Design of the SmartGridRPC programming model

dividual task on to a client-server network. Furthermore, a mapping solution

is a structure, which outlines how tasks should be executed on the distributed

network. The SmartGridRPC mapping solution outlines both a task-to-server

mapping of each task in the group to a server in the network and the communica-

tion operations between the tasks in the group. The GridRPC mapping solution

outlines the server list, which specifies where the called task should be executed,

and the backup servers which should execute the task should the execution fail.

The job of generating the performance models is divided between the differ-

ent components of the GridRPC architecture (i.e. client, server and registry).

The components may only be capable of constructing part of the performance

model required to estimate the groups execution time. Therefore, the registry ac-

cumulates these parts from the different components and generates the required

performance models.

There are numerous methods for estimating the execution time of the group

of tasks on a fully connected network so the implemented performance models are

not specified in the SmartGridRPC model. Examples of performance models are

the ones currently implemented in SmartGridSolve, which have extended the per-

formance models used in GridSolve (section 6.3). In the future, SmartGridSolve

will implement performance models such as the Functional Performance Model,

which is described in [49] [50]. Other possible implementations could include the

Network Weather Service [51], the MDS directories (Globus, Ninf) [23] and the

Historical Trace Manager (GridSolve) [52]. In general, in the SmartGridRPC

model, the performance models are used to estimate:

• The execution time of a task on a server.

• The execution time of multiple tasks on a server and the affect the execution

of each task has on the other (perturbation).

• The communication time of sending inputs and outputs between client and

server.

• The communication time of sending inputs and outputs between different

servers.

29

5.1 Design of the SmartGridRPC programming model

Mapping heuristics implement a certain methodology that uses these perfor-

mance models to generate a mapping solution, which satisfies a certain crite-

rion. Examples of mapping solutions include the greedy mapping heuristic and

the exhaustive mapping heuristics, which have been currently implemented in

SmartGridSolve. There has been extensive research done in the area of mapping

heuristics [53] so this is not the focus of our study.

The following sections describe the programming model of SmartGridRPC in

the circumstance where the performance models are generated on the registry and

the group of tasks is mapped by a mapping heuristic on the registry. However,

the SmartGridRPC model could have an alternative implementation. These per-

formance models could be generated on the client and the group of tasks could

also be mapped by a mapping heuristic on the client. This may be a more suit-

able model for systems, such as Ninf-G, which have no central daemon like the

GridSolve Agent or the DIET Global Agent.

Registry discovery: The servers provide the part of the performance model,

which would facilitate the estimation of the execution time of its available tasks on

the underlying network. This partial model can either be automatically generated

by the server or has to be explicitly specified or both. This partial model will

be referred to as the server PM. This part of the performance model is server

specific such as the performance of the server and its communication links and a

partial model of its available tasks.

As previously mentioned, the SmartGridRPC model does not specify how

to implement the server PM as there are many possible implementations. Ex-

actly when the server PM is sent to the registry is also not specified by the

SmartGridRPC model as this would depend on the type of performance model

implemented.

But for example, the server PM could be sent to the registry upon registration

and then updated after a certain event has occurred (i.e. when the CPU load or

communication load has changed beyond a certain threshold) or when a certain

time interval has elapsed. Or it may be updated during the run-time of the

application when actual running times of tasks are used to build the performance

model. Suffice it to say that the server PM is updated on the registry and is

stored there until it is required during the run-time of a client application.

30

5.1 Design of the SmartGridRPC programming model

Client application run-time: The client also provides a part of the per-

formance model, which is sent to the registry during the run-time of the client

application. This will be referred to as the client PM. This part of the perfor-

mance model is application-specific such as the list of tasks in the group, their

order, the dependencies between tasks and the values of the arguments in the

calling sequences. In addition, the client PM specifies the performance of the

client-server links.

In order to determine the part of the performance model that is application-

specific, each task that has been requested to be mapped collectively will be

iterated through twice. On the first iteration, each GridRPC task call is dis-

covered but not executed. This is the discovery phase. After all tasks in the

group are discovered, the client determines the performance of the client-server

links and sends the client PM to the registry. The registry then generates the

performance models based on the stored server PM and the client PM. Based on

these performance models, the mapping heuristic generates a mapping solution.

This is the mapping phase. On the second iteration through the group of tasks,

each task is then executed according to the mapping solution generated. This is

the execution phase. This approach of iterating twice through the group tasks to

separate the discovery, mapping and execution of tasks into three distinct phases

is the basis that allows the SmartGridRPC model to collectively map and then

collectively execute a group of tasks.

The run-time map function, grpc map(), is part of the SmartGridRPC API

and allows the application programmer to specify a group of GridRPC calls to

map collectively.

This is done by using a set of parenthesis, which follows the map function, to

specify a block of code, which consists of the group of GridRPC task calls that

should be mapped collectively.

grpc_map(char * mapping_heuristic_name){

...

//group of GridRPC calls to map collectively

...

}

31

5.1 Design of the SmartGridRPC programming model

When this function is called, the code and GridRPC task calls within the

parenthesis of the function are iterated through twice as previously described.

Discovery phase: On the first iteration through the group of tasks, each

GridRPC task call within the parenthesis is discovered but not executed so all

tasks in the group can be discovered collectively. This is different to the GridRPC

model, which only allows a single task to be discovered at any one time. The

client can therefore look up and retrieve handles for all tasks in the group at

the same time. In addition to sending the handles, the registry also sends back

a list of all the servers that can execute each task. The client then determines

the performance of the client-server links to the servers in the list. The client

may only determine the performance of some of these links, depending on how

many servers are in this list, or may not determine the performance of any of the

links if the arguments being sent over the links are small. Exactly how the client

determines the performance of these links is not specified by the SmartGridRPC

model. This could be implemented using NWS sensors, ping-pong benchmarks,

MDS directory or any other conceivable method for determining the performance

of communication links.

The client now sends the client PM to the registry. The client PM speci-

fies the order of tasks in the group, their dependencies and the scalar values of

each argument in the calling sequence of each task and the performance of the

client-server links. This does not involve sending non-scalar arguments, such as

matrices or vectors, but just the pointer value as this will be used to determine

the dependencies between tasks. The registry then uses the server PM and client

PM to generate the performance models for estimating the time of executing a

group of tasks on the fully connected network. These performance models are

then used in the mapping phase to generate a mapping solution.

Mapping Phase: Based on the performance models, the mapping heuristic

produces a mapping solution, which satisfies a certain criterion, for example,

minimizing the execution time of tasks. The mapping heuristic is specified by

the application programmer using the SmartGridRPC API.

There is an extensive number of possible mapping heuristics that could be im-

plemented and therefore the mapping heuristics implemented are not bound by

32

5.2 SmartGridRPC: API and semantics

the SmartGridRPC model. However, the SmartGridRPC framework allows dif-

ferent mapping heuristics to be added and therefore provides an ideal framework

for testing and evaluating these mapping heuristics.

Execution Phase: The execution phase occurs on the second iteration

through the group of tasks. In this phase, each GridRPC call is executed accord-

ing to the mapping solution generated by the mapping heuristic on the previous

iteration. The mapping solution not only outlines the task-to-server mapping but

also the remote communication operations between the tasks in the group.

5.2 SmartGridRPC: API and semantics

The SmartGridRPC API allows a user to specify a group of tasks that should

be mapped collectively on a fully connected network. The SmartGridRPC map

function is used for specifying the block of code, which consists of the group

of GridRPC task calls that is to be mapped collectively. When the grpc map()

function is called, the code within its parenthesis will be iterated through twice as

previously described in section 5.1. After the first iteration through the group of

tasks, the mapping heuristic specified by the parameter mapping heuristic name

of the grpc map() function generates a mapping solution.

The mapping solution outlines a task to server mapping and also the commu-

nication operations between tasks. These communication operations include:

• Client-server communication.

– Standard GridRPC communication.

• Server-server communication.

– Server sends a single argument to another server.

• Client broadcasting.

– Client sends a single argument to multiple servers.

• Server broadcasting.

– Server sends a single argument to multiple servers.

33

5.2 SmartGridRPC: API and semantics

• Server caching.

– Server stores an argument locally for future tasks.

As a result, the network may have:

• A fully connected topology - where all the servers are SmartGridSolve en-

abled servers (SmartServers), which can communicate directly with each

other.

• A partially connected topology - where only some of the servers are Smart-

Servers, which can communicate directly. The standard servers can only

communicate with each other via the client.

• A star connected topology - where all servers are standard servers and they

can only communicate with each other via the client.

During the second iteration through the code, the tasks will be executed

according to the generated mapping solution. The SmartGridRPC model also

requires a method for identifying code that will be executed on the client. There

are many possible approaches, which could be implemented to identify client

code. For example, a preprocessor approach could be used to identify the client

code transparently. Where the client code cannot be identified, we provide a

grpc local() function call, which the application programmer can use to explicitly

specify client computation.

grpc_map(char * mapping_heuristic_name){

//reset variables which have been updated

// during the discovery phase

grpc_local(list of arguments){

//code to ignore when generating task graph

}

...

// group of tasks to map collectively

34

5.3 SmartGridRPC: A SmartGridRPC application

...

}

The grpc local() function is used to specify the code block that should be

ignored during the first iteration through the scope of grpc map(). The function is

also used to specify remote arguments that are required locally. This information

is used to determine when arguments will be sent back to the client and also

facilitates the generation of the task graph.

Any segment of client code that is not part of the GridRPC API should be

identified using this function. There is one exception to this rule, when the client

code directly affects any aspect of the task graph. For example, if a variable

is updated on the client that determines which remote tasks get executed or

determines the size of inputs/outputs of any task, then the operations on this

variable should not be enclosed by the grpc local() function. If any variables

or structures are updated during the task discovery cycle then they should be

restored to their original values before the execution cycle begins.

5.3 SmartGridRPC: A SmartGridRPC applica-

tion

Table 5.1 is the SmartGridRPC implementation of the GridRPC application in

section 4.3. There is only one extra call required to make this application Smart-

GridRPC enabled, which is the grpc map() function. In this example, the user

has specified that all three tasks should be mapped collectively using the greedy

mapping heuristic.

Let us consider the same simple scenario as in section 4.3, where task h2

has a larger computational load than h1 and the underlying network consists of

two servers, which have different performances. In this case, since all tasks are

mapped together, the SmartGridRPC model will improve the load balancing of

computation by assigning task h2 to the faster server and h1 to the slower.

In addition, task h3 has a dependency on the argument F, which is an output

of task h2, and argument C, which is an output of task h1. Since the tasks are

mapped as a group and therefore dependencies can be considered, this dependency

35

5.3 SmartGridRPC: A SmartGridRPC application

Table 5.1. SmartGridRPC model - Example application
main()

{

int N=getNSize();

int M=getMSize();

double A[N*N], B[N*N], C[N*N];

double D[M*M], E[M*M], F[M*M], G[M*M];

grpc_function_handle_t h1, h2, h3;

grpc_session_t s1, s2;

grpc_initialize(argv[1]);

/* initialize */

initMatA(N, A); initMatB(N, B);

initMatD(M, D); initMatD(M, E);

grpc_function_handle_default(&h1, "mmul/mmul");

grpc_function_handle_default(&h2, "mmul/mmul");

grpc_function_handle_default(&h3, "mmul/mmul");

grpc_map("greedy_map"){

if(grpc_call_asnc(&h1,&s1,N,A,B,C)!= GRPC_NO_ERROR) {

fprintf(stderr, "Error in grpc_call\n");

exit(1);

}

if(grpc_call_async(&h2, &s2,M,D,E,F)!=GRPC_NO_ERROR){

fprintf(stderr, "Error in grpc_call\n");

exit(1);

}

grpc_wait(s1);

grpc_wait(s2);

if (grpc_call(&h3,M,C ,F,G) != GRPC_NO_ERROR){

fprintf(stderr, "Error in grpc_call\n");

exit(1);

}

}

grpc_function_handle_destruct(&h1);

grpc_function_handle_destruct(&h2);

grpc_function_handle_destruct(&h3);

...

grpc_finalize();

}

can be mapped on to the virtual link connecting the servers executing both tasks,

which will reduce the communication load. Or if the tasks are executing on the

same server, then the output can be cached and retrieved from the same server,

which would further reduce the communication load and further increase the

overall performance of the group of tasks.

Also, since no intermediate results are sent back to the client, the amount

of memory utilised on the client will be reduced and this will reduce the risk of

paging on the client. This prevention of paging could also considerably reduce

the overall execution time of the group of tasks.

36

5.3 SmartGridRPC: A SmartGridRPC application

In addition, since dependencies are known and the network is fully connected,

the remote communication of argument C from the server executing task h1 to

the server executing task h2, could be done in parallel with the communication

and computation of h2.

37

Chapter 6

GridSolve: Implementation of

the GridRPC model

The GridSolve agent, which is the focal point of the GridSolve system, has the

responsibility of performing discovery and mapping of tasks. The GridSolve agent

is an implementation of the registry entity, which was outlined in section 4 of this

thesis.

In order to map a task on the client-server network, the agent must discover

performance models, which can be used to estimate the execution time of individ-

ual tasks on different servers on the network. These performance models include

functions for each task, which calculate the computation and communication load

of tasks, and parameters, which specify the dynamic performance of the network.

These performance models are sent from each server in the network to the agent

before run-time of the client application (Agent discovery).

6.1 GridSolve: Agent discovery

This section outlines the GridSolve implementation of the “Registry discover”

part of the GridRPC model outlined in section 4.1. The agent maintains a list of

all available servers and their registered tasks. This list is incremented when each

new server registers with the agent. In addition, the agent stores performance

models required to estimate the execution time of its available tasks on the servers.

This includes the dynamic performance of each server and functions/parameters,

38

6.2 Run-time GridRPC task call

which are used to calculate the computational and communication load of tasks.

These performance models are implemented by executing the LINPACK bench-

mark [54] on each server when they are started, running the CPU load monitor on

the server and using descriptions of the task provided by the person that installed

the task to generate functions for calculating the computation and communication

load of the tasks (figure 6.1).

The LINPACK benchmark is a measure of a system’s floating point computing

power. It measures how fast a computer solves a dense N by N system of linear

equations Ax = b, which is a common task in engineering. The solution is obtained

by Gaussian elimination with partial pivoting, with 2/3N3 + 2N2 floating point

operations. The result is reported in millions of floating point operations per

second (MFLOP/s).

The CPU load monitors determines the CPU load of the server machine via the

UNIX uptime utility. The CPU load monitor updates the dynamic performance

of the server whenever the CPU load significantly changes or when certain time

interval elapses [55].

At run-time of the client application, when each GridRPC task call is invoked,

these performance models are used to estimate the execution time of the called

task on each server.

6.2 Run-time GridRPC task call

In practice, from the user’s perspective the mechanism employed by GridSolve

makes the GridRPC task call fairly transparent. However, behind the scenes a

typical GridRPC task call involves the following operations:

• The discovery phase.

• The mapping phase.

• The execution phase.

The discovery phase: When the GridRPC call is invoked, the client queries

the agent for an appropriate server that can execute the desired function. The

agent returns a list of available servers, ranked in order of suitability.

39

6.2 Run-time GridRPC task call

Figure 6.1. GridSolve - Agent discovery

40

Chapter5/Chapter5Figs/EPS/GridSolve_Agent_Discovery.eps

6.3 GridSolve: Performance models

This ranked list is sorted based only on task computation times. Normally,

the client would simply submit the service request to the first server on the

list, but if specified by the user it is resorted according to its computation and

communication time. If this is specified, the bandwidth from the client to the top

few servers is measured. This is done using a simple 32KB ping-pong benchmark.

The time required to do the measurement will depend on the number of servers,

which have the requested task, and the bandwidth and latency from the client

to those servers. When the data is relatively small, the measurements are not

performed because it would take less time to just send the data than it would take

to do the measurements. Also, since a given service may be available on many

servers, the cost of measuring network speed to all of them could be prohibitive.

Therefore, the number of servers to be measured is limited to those with the

highest computational performance.

The mapping phase: As previously described, the agent sends a server list,

which is ordered according to their estimated computation time.

In GridSolve, there is a number of mapping heuristics, which can be employed

to generate the mapping solution. Among the mapping heuristics is the minimum

completion time (MCT) mapping heuristic, which bases its execution time on the

performance models and the dynamic network performance of each server outlined

in section 6.3. Also included are a set of mapping heuristics that rely on the other

performance model in GridSolve called the Historical Trace Manager (HTM) [?].

The execution phase: The client attempts to contact the first server from

the list. It sends the input data to the server, the server then executes the task

on behalf of the client and returns the results. If at any point the execution fails,

the client automatically moves down the list of servers.

6.3 GridSolve: Performance models

The performance models of GridSolve are used by the mapping heuristics to

estimate the execution time of individual tasks on a client-server network. In

GridSolve, the performance models can be used to estimate:

• The execution time of a task on a server.

41

6.3 GridSolve: Performance models

• The communication time of sending inputs and outputs between client and

server.

• The perturbation that one task has on another.

The mapping heuristics use these performance models to estimate the time

of different possible task-to-server mapping solutions and choose the mapping

solution, which most satisfies a certain criterion.

The performance models of GridSolve specify the dynamic performance of

each server and the dynamic performance of the client-server links. They also

specify the computation load and communication load of the called task. When

a task is called for execution, the computation load and dynamic performance

of a server is used to estimate the task’s computation time. The communication

load and dynamic performance of the client-server links are used to estimate the

task’s communication time.

The dynamic performance of a server is parameterized by the number of float-

ing point operations per second (flop/sec) that the server can perform. It is ob-

tained by first determining the static performance of each server by running a

sequential benchmark on each server (figure 6.1). This sequential benchmark is

the LINPACK benchmark, which is executed on each server when it is started.

The benchmark times the execution of a routine, which solves a dense system of

linear equations. This benchmark is close to the peak performance rate of the

server (P). There is also a “CPU load monitor” on each server, which continu-

ally monitors the CPU load (w). When this CPU load changes beyond a certain

threshold or if a certain time interval has elapsed (approx. 5mins), then this

CPU load is sent to the agent. To get the dynamic performance (p) of the server,

the agent uses this updated CPU load to scale the value for the servers peak

performance (P). The dynamic performance of a server is calculated as follows:

p =
P × n
w

100
+ 1

(6.1)

- where p is the dynamic performance of the server, w is the current CPU

load, P is the peak performance (benchmark) of the server and n is the number

of processors on the server.

42

6.3 GridSolve: Performance models

The dynamic performance of a client-server link is parameterized by its band-

width (bw), which is the number of bytes per second (bytes/sec) that can traverse

the link. It is obtained using the ping-pong benchmarks. Using these benchmarks

the bandwidth of the link can be calculated as follows:

bw =
PING PACKET SIZE

PING TIME
(6.2)

- where the PING PACKET SIZE is 32 KB and PING TIME is the time it

takes to send the packet between the client and server.

In addition, the performance model includes functions for calculating com-

putation and communication load of tasks. These functions are generated from

the task description of each task, which is provided by the person who writes

or installs a task. They are written in a language called the GridSolve Interface

Definition Language (IDL). With this language, the task writer/installer provides

a specification of the calling sequence of the task. This specification describes the

data type of each argument (integer, float, double etc.), the object type of each

argument (scalar, vector, or matrix) and whether each argument is an input, an

output or an input-output. Table 6.1 shows the IDL description of the DGESV

task, which is a LAPACK [56] routine that solves:

A ∗ X = B (6.3)

The IDL description specifies that the first two arguments of the calling sequence

are input scalar integers. The third argument of the calling sequence is an input-

output matrix of doubles. The fourth argument is an output scalar argument.

The fifth argument is an output vector of integers and the sixth is an input-output

matrix of doubles. The seventh is a scalar integer input and the eight is a scalar

output integer. This specification of the calling sequence is used to generate

functions for calculating both the computation load and the communication load

of the task.

Included in the IDL description of the task is a “string” formula that is used in

conjunction with the specification of the calling sequence to generate a function

for calculating the computation load of a task. This formula is denoted in the

43

6.3 GridSolve: Performance models

Table 6.1. IDL Description of DGESV task

SUBROUTINE dgesv(
IN int N,
IN int NRHS,
INOUT double A[LDA][N],
INOUT int LDA,
OUT int IPIV[N],
INOUT double B[LDB][NRHS],
IN int LDB,
OUT int INFO)

“This solves Ax=b using LAPACK”
LANGUAGE=“FORTRAN”
LIBS=“$(LAPACK LIBS) $(BLAS LIBS)”
COMPLEXITY= “2.0*pow(N,3.0)*(double)NRHS”
MAJOR= “COLUMN”

IDL file as the “COMPLEXITY” parameter. The string formula for the DGESV

task is:

dgesvflop = 2 ∗ N3 ∗ NRHS (6.4)

This formula in conjunction with the specified calling sequence in table 6.1

generates a function that describes the computational load as a multiplication of

2 by the first argument cubed multiplied by the second argument of the calling

sequence.

At run-time, when the values of these arguments are known, this function

can be used to calculate the computation load of task. The computation load is

measured in the number of floating operations (flop), which the task will execute.

An example of the calling sequence of the DGESV task could be as follows:

grpc call(°esv handle, 400, 100, A, 800, IP IV, B, 400, INFO) (6.5)

For this calling sequence the computation load would be:

dgesvflop = 2 ∗ 4003 ∗ 100 = 12800 ∗ 106F lop = 12800MFlop (6.6)

44

6.3 GridSolve: Performance models

The communication load of a task can be calculated using the following for-

mulas in conjunction with the specified calling sequence in the IDL specification:

arg size(matrix) = rows ∗ cols ∗ get elem size(arch, DATA TY PE) (6.7)

arg size(vector) = rows ∗ get elem size(arch, DATA TY PE) (6.8)

In these formulas, the DATA TYPE variable specifies whether the argument

type is a double, integer, float etc. And the rows and cols variables are the

dimensions of the matrix/vector. The get elem size() function returns the size of

bytes of the specified DATA TYPE (double, integer etc.).

The formula for calculating matrix argument size in conjunction with the

specification of the calling sequence in table 6.1 would generate a function that

outlines that the communication load of argument A of the DGESV task can

be calculated by multiplying the fourth argument (LDA) in the calling sequence

by the first argument (N) in the calling sequence by the size of a double (e.g. 8

bytes). At run-time, when the values of these arguments are known, this function

can be used to calculate the communication load of argument A of the DGESV

task.

However, in some instances, the platform of the sending machine must be

known to determine this communication load. One of the problems with C and

C++ is that the built in data types such as int and long int are platform depen-

dent. There is nothing in the standard to say how many bytes each data type

occupies beyond some basic ordering. For example, long int must use at least

as many bytes as int (but could be the same). Table 6.2 outlines the number of

bytes of different data types on different platforms.

For this reason the get elem size() function also takes an architecture identifier

as a parameter. For the calling sequence outlined in equation 6.5 for the DGESV

task, the communication load of non-scalar arguments on a 32bit Intel machine

running LINUX OS would be:

Abytes = LDA ∗ N ∗ get elem size(LINUX 86, DOUBLE) (6.9)

45

6.4 GridSolve: Mapping heuristic

Table 6.2. Size of datatypes on different platforms

OS Arch Size of int Size of long int Size of double

LINUX x86 4 bytes 4 bytes 8 bytes

LINUX x86-64 4 bytes 8 bytes 8 bytes

Windows x86 4 bytes 4 bytes 8 bytes

Windows x86-64 4 bytes 4 bytes 8 bytes

MAC OS X x86 4 bytes 4 bytes 8 bytes

MAC OS X x86-64 4 bytes 8 bytes 8 bytes

Abytes = 800 ∗ 400 ∗ 8 = 256 ∗ 104Bytes = 2.44MBytes (6.10)

IPIVbytes = N ∗ get elem size(LINUX 86, INTEGER) (6.11)

IPIVbytes = 400 ∗ 4Bytes = 1600Bytes = 0.00153MBytes (6.12)

Bbytes = LDB ∗ NRHS ∗ get elem size(LINUX 86, DOUBLE) (6.13)

Bbytes = 400 ∗ 100 ∗ 8 = 320000Bytes = 0.30518MBytes (6.14)

From these performance models, it is possible to estimate both the commu-

nication time and computation time of individual tasks on the client-server net-

work. These performance models are used by the mapping heuristics to generate

a mapping solution.

6.4 GridSolve: Mapping heuristic

There have been several mapping heuristics implemented in GridSolve. Each

task is mapped when it is called for execution and therefore each task is mapped

individually on the client-server network. The following mapping heuristics have

been implemented:

• Minimum Completion Time.

46

6.4 GridSolve: Mapping heuristic

• HTM - Minimum Completion Time.

• HTM - Minimum Perturbation.

• HTM - Minimum Sum Flow.

• HTM - Minimum Length.

The Minimum Completion Time (MCT) maps the individual task based on

the performance models described in 6.3.

All the HTM mapping heuristics generate mapping solutions based on the

Historical Trace Manager (HTM) performance model. When a new task arrives,

the HTM simulates the execution of the task on each server. Using the HTM

information, the heuristic has an estimation of the finishing time of each task

running on each server. This is used to consider the perturbation that tasks

induce on each other and compute the best server according to the main objective

of that heuristic.

When a task has completed the server sends a message to the agent that the

task has completed and this information is used by the HTM to correct what has

been simulated and improve the quality of future predictions.

47

Chapter 7

SmartGridSolve: Implementation

of the SmartGridRPC model

7.1 SmartGridSolve: Agent discovery

This section presents the SmartGridSolve implementation of the “registry dis-

covery” part of the SmartGridRPC model outlined in section 5.1. In addition to

registering services, the servers also send the server PM. The server PM makes

up part of the performance model used for estimating the execution time of

the server’s available tasks on the fully connected network. This along with the

client PM is used to generate a performance model, which is used by the mapping

heuristics to produce mapping solutions.

Currently, the server PM of SmartGridSolve extends that of GridSolve, which

comprises of functions for calculating the computation load and communication

load and parameters for calculating the dynamic performance of the servers and

client-server links. This is described in section 6.3.

However, the network discovery of GridSolve is extended to also discover the

dynamic performance of each link connecting SmartServers. These are those

servers, which can communicate directly with each other and store/receive data

in their local cache. The dynamic performance of the server-server links are

taken periodically using the same 32KB ping-pong technique used by GridSolve

(figure 7.1).

48

7.2 Run-time of client application

To achieve backward compatibility and to give the server administrators full

control over how the server operates, a SmartServer may be also started as a

standard GridSolve server.

As a result, the network may have:

• A fully connected topology.

• A partially connected topology.

• A star connected topology.

Also to minimize the volume of data transferred around the network, each

SmartServer is given an ID. Each SmartServer only sends ping-pong messages

to those SmartServers that have an id that is less than their own. This prevents

the performance of the same communication link being measured twice. Once

determined, these values are sent to the agent to update the server PM. The server

PM is stored on the registry and updated either periodically (every 5 minutes) or

when the CPU load monitor records a change, which exceeds a certain threshold.

This server PM is then used to generate the performance models during the

run-time of a client application.

7.2 Run-time of client application

This section presents the SmartGridSolve implementation of the “Client applica-

tion run-time” part of SmartGridRPC model outlined in section 5.1. Each phase

of the SmartGridRPC run-time map function (grpc map()) will be described.

Discovery phase: On the first iteration through the group of tasks, each

GridRPC task call (grpc call()) within the parenthesis is discovered but not exe-

cuted. This involves discovering the name of each task and the calling sequence

of each task, which involves discovering the pointers to the non-scalar arguments

(such as matrices, vectors etc.) and the values of the scalar arguments.

After the first iteration through the group, the client contacts the agent and

looks up the group of tasks, which involves sending the agent a list of the task

names.

49

7.2 Run-time of client application

Figure 7.1. SmartGridSolve - Agent discovery

The agent then creates a handle for each instance of a task. The agent sends

back the group of handles, one for each task. In addition, for each handle it sends

a list of servers, which can execute each task.

The client then uses the list of servers to perform the ping-pong benchmark

on each of the links from the client to each server that can execute a task in

the group of tasks (figure 7.1). Subsequent to this, the client sends the client

PM, which is a structure that specifies application-specific information such as

the list of tasks, the calling sequence and the dependencies between the tasks. In

addition it specifies the performance of each client-server link.

The agent can now generate all the performance models necessary for estimat-

ing the execution time of the group of tasks on the fully or partially connected

network. In SmartGridSolve, these performance models consist of a task graph,

a network graph and functions for estimating computation and communication

times.

The task graph specifies the order of tasks, their synchronisation (whether

they are executed in sequence or parallel), the dependencies between tasks, the

load of computation and communication of each task in the group.

50

Chapter6/Chapter6Figs/agent_discovery.eps

7.2 Run-time of client application

The network graph specifies the performance of each server in the network

and the communication links of the fully connected, partially connected or star

network. These performance models will be used by the mapping heuristics in

the mapping phase to generate a mapping solution for the group of tasks.

Mapping Phase: The mapping heuristic produces a mapping solution graph

based on the task graph, the network graph and the functions for estimating

computation and communication time. The mapping heuristics currently imple-

mented in SmartGridSolve are:

• Exhaustive mapping heuristic.

• Random walk mapping heuristic.

• Greedy mapping heuristic

The mapping solution generated by these heuristics is then used in the ex-

ecution phase to determine how the group of tasks should be executed on the

network. Mapping heuristics are not the focus of this thesis as there has been

extensive research done in this area. However, the above heuristics have been im-

plemented in SmartGridSolve and it is possible to choose which mapping heuristic

you want to use to generate a mapping solution for a given application. It is also

possible to use other existing or your own mapping heuristic by implementing

them into in the SmartGridSolve system.

Execution Phase: This execution phase occurs on the second iteration

through the group of tasks. In this phase, each GridRPC call is executed accord-

ing to the mapping solution generated by the mapping heuristic. The mapping

solution not only specifies the task-to-server mapping but also the communication

operations between the tasks in the group. In addition to the standard GridRPC

communication, the mapping solution can use the following communication op-

erations:

• Server-server communication.

• Client broadcasting.

• Server broadcasting.

• Server caching

51

7.3 SmartGridSolve performance models

7.3 SmartGridSolve performance models

This section presents the performance models, which are currently implemented

in SmartGridSolve. The performance models are used by the mapping heuristics

to estimate the execution times of different mappings of the group of tasks on

the network. This involves both estimating the computation time of tasks of the

application on the servers of the network and also estimating the communication

time of sending inputs and outputs over the network. The accuracy of these per-

formance models affects the ability of the mapping heuristics to generate optimal

mapping solutions.

7.3.1 Network graph

The network graph is a representation of the performance of the servers and com-

munication links of the fully connected, partially connected or star network. If

SmartGridSolve is installed only on the client side, this structure will represent

a star network where no servers can communicate directly. With this network

topology, the application programmer may only benefit from improved mapping

of tasks to servers. If some of the servers are SmartServers then this structure will

represent a partially connected network. With this network topology, the appli-

cation programmer may also benefit from improved mapping of communication.

If all servers are SmartServers, the network will be fully connected. With this

network topology, the application programmer will benefit from the full potential

of improved mapping of communication.

The graph specifies the performance of each server and also the performance

of each link connecting it with the client. Where there are two or more servers

in the network that are SmartServers, the graph will include links which specify

the performance of the link between these servers.

Figure 7.2 illustrates a network graph, which represents three SmartServers

and one standard server. Each circle node in the graph represents a server and

is weighted by its dynamic performance, which is measured in floating point

operations per second (flop/sec). The single diamond shaped node represents the

client. Each link connecting nodes represents a “virtual communication link” and

is weighted by its dynamic performance (bandwidth), which is measured in the

52

7.3 SmartGridSolve performance models

Figure 7.2. SmartGridSolve - The network graph

number of bytes per second (bytes/sec), which can traverse the link. All four

servers have links connecting them to the client but only SmartServers have links

connecting them to other SmartServers. In figure 7.2, the servers S0, S1 and

S2 are SmartServers and therefore have links connecting them with each other

and also to the client. Server S3 is a server, which was started without direct

communication enabled. If GridSolve has been compiled with the SmartGridSolve

extension, a server administrator has the option whether the server is started with

direct communication enabled or disabled.

The performance of the servers and communication links are calculated using

the equations outlined in section 6.3.

7.3.2 Task graph

The task graph is the representation of the mapped group of tasks. The task graph

specifies the order of tasks, their synchronisation (whether they are executed in

sequence or parallel), the dependencies between tasks, the load of computation

and communication of each task in the group.

Figure 7.3 illustrates a task graph, which represents 5 tasks, where task 0 and

53

Chapter6/Chapter6Figs/network_graph.eps

7.3 SmartGridSolve performance models

task 1 are executed in sequence and then task 2, task 3 and task 4 are executed in

parallel. The task graph has three sets of nodes, the task nodes, the client node

and the argument nodes. Each task node is represented by a rectangle node and

is weighted by its computation load (flop). Each input and output non-scalar

argument (matrix, vector etc.) is represented by a circle shaped node and is

weighted by its communication load (bytes).

The functions for calculating the computation load of each task in the group

are generated using the formulas specified by the person that wrote or installed

the task in conjunction with the specification of the tasks calling sequence in the

IDL description (table 6.1). This is part of the server PM, which is sent from

each server to the agent prior to the execution of the client application. Then at

run-time, the calling sequence of each task in the group is discovered collectively

and these calling sequences are sent as part of the client PM to the agent. The

functions of the server PM and the calling sequences of the client PM can be

used to determine the computation load of each task in the group.

The functions for calculating the communication load of each non-scalar ar-

gument in the group are generated using the functions for calculating argument

sizes in section 6.3 in conjunction with information on the tasks calling sequence

in the IDL description (table 6.1). This is part of the server PM. At run-time, the

calling sequences of the tasks in the group are discovered collectively and are sent

to the agent as part of the client PM. Then, the communication load functions of

the server PM and the calling sequence of the client PM are used to determine

the communication load of each non-scalar argument in the group.

The dependencies between tasks are determined by examining the pointers of

non-scalar arguments of the calling sequence of each task (which is specified in the

client PM) and using the IDL description (which is specified in the server PM) to

determine whether they are inputs or outputs. The links in the graph represent

the data-flow between tasks. There are two types of data-flow dependencies, the

input data-flow dependency and output data-flow dependency.

Input dependencies occur when a task has a dependency on an input of another

task. This is specified in the task graph by a link from an input argument node of

one task pointing to another task node. If multiple tasks require the same input

argument then a link will emanate from this argument node to each dependent

54

7.3 SmartGridSolve performance models

Figure 7.3. SmartGridSolve - The task graph

55

Chapter6/Chapter6Figs/task_graph.eps

7.4 Mapping Solution Graph

task node. In this case the mapping heuristics can choose a mapping solution,

which broadcasts the input argument of the source task from the client to each

of the servers of the destination tasks.

Output dependencies occur when a task has a dependency on an output of

another task. This is specified in the task graph by a link from an output argu-

ment node of one task pointing to another task node. If multiple tasks require

the same output argument, then a link will emanate from this argument to each

dependent task. In this case, mapping heuristics can choose a mapping solution,

which broadcasts the argument from the source task to each of the servers of the

destination tasks.

7.4 Mapping Solution Graph

The mapping heuristics of SmartGridSolve generate a mapping solution based

on the task graph and the performance model of the fully connected network.

A mapping solution graph is a structure, which outlines both the task-to-server

mapping of the group of tasks and the communication scheme between the tasks

in the group. In addition, the mapping solution graph outlines the estimated

computation time of each task on their assigned server and the estimated com-

munication time of each task dependency on their assigned communication path.

Figure 7.4 shows an example of mapping solution graph that could be gener-

ated based on the task graph in figure 7.3 and the network graph in figure 7.2.

This communication scheme in this mapping solution implements each type of

communication transaction, which can be employed in the SmartGridRPC model:

• Direct server-server communication.

• Client broadcasting.

• Server broadcasting.

• Server caching of inputs.

• Server caching of outputs.

56

7.4 Mapping Solution Graph

Figure 7.4. SmartGridSolve - The mapping solution graph

57

Chapter6/Chapter6Figs/mapping_solution.eps

7.4 Mapping Solution Graph

The mapping solution outlines direct server-server communication of

argument 3 from server 0 to server 1 after task 0 has executed. This argument

is subsequently used on server 1 for the execution of task 2. It outlines server

broadcast communication of argument 4 from server 0 to server 1 and server

2 after task 0 has executed. This argument is subsequently used on server 1 for

execution of task 2 and on server 2 for the execution of task 3. It outlines

client broadcast communication of argument 0 from the client to server 0

and server 1 before the execution of task 0. It outlines the server caching of

input argument 2 on server 0 before the execution of task 0. This argument is

subsequently used on the same server by task 4. It outlines the server caching

of output argument 5 on server 0 after the execution of task 0. This argument

is subsequently used on the same server by task 4.

The estimated time of each of these remote communication transactions is cal-

culated by dividing the communication load of the argument outlined in the task

graph in figure 7.3 and the bandwidth of the communication link outlined in the

network graph in figure 7.2. For example the direct server-server communication

of argument 3 is estimated to take 60 seconds, which is calculated by dividing

the communication load of 600MB by the link speed, which is 10MB/sec.

The estimated time of the caching transactions are based on a näıve assump-

tion that the disk speed is 50MB/sec. For example, the caching of input argument

2 takes 10 seconds, which is calculated by dividing the argument size of this ar-

gument which is outlined in the task graph which is 500MB by the disk speed

which is 50MB/sec. In the future, benchmarks could be used to determine a more

accurate disk speed for each machine.

The estimated time for computation is calculated by dividing the computation

load of the task, outlined in the task graph, and the server performance speed,

outlined in the network graph. For example, the computation time for task 0 is

160 seconds, which is calculated by dividing the computation load of 4000MFlops

by the server speed, which is 25MFlops/second.

However, not every task in the group contributes to the overall execution time

of the group of tasks. Parallelism of computation has been employed between

tasks 2, task 3 and task 4 and therefore only the task that takes the longest time

58

7.4 Mapping Solution Graph

of all three contributes to the total execution time of all three. In this mapping

solution, the time saved due to parallelism of computation is:

par.comp.time = t(t2, s1) + t(t3, s2) = 1333.3 + 1500 = 2833.3seconds (7.1)

The SmartGridRPC model also permits the parallelism of communication.

Any communication transaction may be done in parallel with other computa-

tion/communication in the group. This is advantageous when there is a depen-

dency between two tasks and the destination task is not executed in parallel or

immediately after the source tasks. In this case, the dependent data can be sent

to the destination task in parallel with any computation or communication on

any other machine (client and servers), which happens in the intervening time.

For example, each of the communication transactions from server 0 after

the execution of task 0 can be done in parallel with other computation and

communication. This is because the tasks that require the arguments, task 2,

task 3 and task 4 - are not executed in parallel or immediately after task 0.

Therefore, these communication transactions can be done in parallel with the

computation of task 1 on server 0 or any computation on the client.

Moreover, broadcast communication from the client can also be done in paral-

lel with other computation/communication that happens in the intervening time.

The sending of argument 0 from the client to server 1 can be done in parallel

with:

• The computation of task 0 on server 0.

• All the communication transactions from server 0 that happen after task 0

has executed.

• The computation of task 1 on server 0.

• The broadcast of argument 6 after the execution of task 1.

• Any computation on the client which happens in the intervening time.

59

7.4 Mapping Solution Graph

Therefore, the time saved due parallelism of communication will be:

par.comm.time = t(cl → a0 → s1) + t(s0 → a2 → s0) + t(s0 → a0 → s1)

+ t(s0 → a4 → s1) + t(s0 → a4 → s2) + t(s0 → a5 → s0)

= 200 + 10 + 60 + 80 + 53.3 + 12

= 415.3seconds (7.2)

In addition to specifying a more advantageous communication scheme, the

mapping solution will outline a more advantageous computation scheme (i.e. task-

to-server mapping). Since the mapping heuristics can consider all tasks in the

group collectively, it can better distribute the load of parallel computation over

the servers. Because the computations of all tasks in the group are considered

collectively, the mapping heuristic is able to balance the load of the computation

of the three parallel tasks. It therefore assigns task 4, which has the highest

computation load, to the fastest sever (server 0) and task 2, which has the lowest

computation load, to the second slowest server (server 1). If these were mapped

individually in the GridRPC model, they could be mapped in reverse order as

individual mapping gives priority to tasks in the order they are mapped.

In this example, the amount of time saved by employing parallelism of compu-

tation is 2833.3 seconds and the amount of time saved by employing parallelism

of communication is 415.3 seconds.

The time saved due to this parallelism of computation and communication

does not contribute to the overall group time and therefore would not be included

in the calculation for the total execution time for the group.

60

7.4 Mapping Solution Graph

group.time = t(cl → a0 → s0) + t(cl → a1 → s0) + t(cl → a2 → s0)

+ t(t0, s0) + t(s0 → a6 → cl) + t(cl → a7 → s0)

+ t(t1, s0) + t(s0 → a8 → sl) + t(s0 → a8 → s2)

+ t(t4, s0) + t(s1 → a9 → cl)

= 160 + 140 + 100 + 160 + 40 + 20 + 4000 + 20 + 13.3 + 4

+ 2800 + 75 + 166.7 + 140

= 7839seconds (7.3)

This example has outlined that the mapping heuristics of the SmartGridRPC

model have more potential of finding a better mapping solution due to collec-

tive mapping and employing the SmartGridRPC communication model, which

permits parallel remote communication.

61

7.5 Communication model

7.5 Communication model

The communication model of SmartGridSolve is based on the fully connected

network. This extends the GridRPC communication model, so that in addition

to client-server communication, the following communication transactions can be

employed:

• Server-server communication.

• Server broadcasting.

• Client broadcasting.

• Server caching.

To apply a communication scheme, which employs any of these transactions,

the client and the servers must be able to identify where to send and receive

arguments of each task. To achieve this functionality, the communication scheme

of the group of tasks is stored in communication structures, which specify the

communication required for each task in the group. When each task is called for

execution, a communication structure is created for that task, which is based on

the mapping solution outlined by the mapping heuristic. They are subsequently

used by the client to determine where to send the inputs of each task and where to

receive the outputs of each task. In addition, the client sends the communication

structure to other servers if they are involved in any remote communication. The

servers use the structure to determine whether to send their inputs/outputs to

remote destinations, to cache them locally or to send them back to the client.

If arguments are sent remotely, the structure specifies which servers to send it

to and the filename of where arguments should be stored. If the argument is

received remotely it specifies the filename where the argument should be read

from. These filenames are unique for each argument that is sent remotely.

To demonstrate how the communication model of SmartGridSolve operates

using these communication structures, we will consider what communication op-

erations occur if task 0 of the mapping solution in figure 7.4 was called for exe-

cution.

62

7.5 Communication model

Firstly, the communication transactions, which are initiated before the execu-

tion of task 0, will be described. These communication transactions are illustrated

in figure 7.5. When task 0 is called for execution, the client generates a com-

munication structure for this task based on the mapping solution. The client

then interprets this communication structure, which specifies that argument 0,

argument 1 and argument 2 should be sent to server 0. In addition to sending

these arguments to the server, the client also sends the communication structure.

The server interprets it and deciphers what to do with the input arguments

prior to the execution of the task and the output arguments after the execution

of the task. In this case, it outlines that input argument 2 should be cached

locally in a specified file as it is required by task 4. This operation is done

asynchronously, which means that remote computation/communication (on the

client or other server) can be done in parallel with this operation.

The communication structure also outlines that argument 0 should be sent

to server 1. This is again done asynchronously and so computation on the client

or communication/computation on any other server can be done in parallel with

this communication. In addition to sending the argument, the client also sends

the communication structure for this argument, which outlines that the argument

should be stored locally in the file specified. It should be noted that arguments

can also be stored to memory and it is the server administrator’s responsibility

to choose which method of storage is implemented on the server.

After task 0 has finished executing, the communication structure is used by the

server to determine what should be done with the output arguments (figure 7.6).

The communication structure specifies that argument 5 should be cached

locally in a specified file as it is required by task 4. In addition, argument 3 and

argument 4 are sent to server 1 and argument 4 is sent to server 2. In these

transactions, the communication structure is also sent so the destination servers

know the files names to store the arguments.

Once again, these remote transactions happen asynchronously and therefore

if there is any computation/communication on any machine (client or server),

then this will be done in parallel with this communication.

When the destination tasks, which require these remote arguments, are called

for execution, the client will send a communication structure outlining that ar-

63

7.5 Communication model

Figure 7.5. Communication transactions of task 0 of the mapping solution in figure 7.4, which

happen prior to the execution of task 0.

Figure 7.6. Communication transactions of task 0 of the mapping solution in figure 7.4, which

happen subsequent to the execution of task 0.

64

Chapter6/Chapter6Figs/comm_model_1.eps
Chapter6/Chapter6Figs/comm_model_2.eps

7.6 Fault tolerance

guments should be received locally from a file and it will specify the file name

where the argument is stored.

7.6 Fault tolerance

The grpc map ft() function in SmartGridSolve is a fault tolerant version of the

grpc map() function:

grpc_map_ft(char * mapping_heuristic_name){

...

//group of GridRPC calls to map collectively

...

}

This is the same as grpc map() function, except that the mapping solution

generated does not implement server-server communication. The mapping so-

lution specifies a task to server mapping and a communication scheme, which

only implements communication between client and server. The communication

scheme may implement:

• Client-server communication

– Standard GridRPC communication.

• Client broadcasting

– Client sends a single argument to multiple servers.

If any server that is part of the mapping solution fails, the tasks mapped to

that server will be mapped to the next server, which is estimated to give lowest

execution time for that task.

Although, no direct server communication or caching is implemented when

this function is called, the performance of a group of tasks can be increased due

to improved load balancing of computation and client broadcasting.

In the future, we plan to introduce a fault-tolerant method of mapping a group

of tasks, which will remove this restriction on remote communication.

65

Chapter 8

SmartGridRPC benchmark

application: The evolution of a

cluster of galaxies

A typical numerical simulation needs a lot of computational power and memory

footprint to solve a physical problem with a high accuracy. A single hardware

platform that has enough computational power and memory to handle problems

of high complexity is not easy to access. Grid computing provides an easy way to

gather computational resources, whether local or geographically separated, that

can be pooled together to solve large problems.

A scientific application that obviously benefits from the use of GridRPC con-

sists of tasks with high computational loads and low communication loads. These

applications, which are the best suited to run on a Grid environment, are not rep-

resentative of many real-life scientific applications. Unfortunately they are typi-

cally chosen, or artificially created, to test and show the performance of GridRPC

middleware systems. We believe that to justify the use of GridRPC for a wide

range of applications, we should not use an extremely suitable application as a

benchmark but a real life application that shows the eventual limits and benefits

of the GridRPC middleware systems tested.

In this chapter, we present Hydropad [57] [58], a real-life astrophysics appli-

cation that simulates the evolution of clusters of galaxies in the Universe. This

application is composed of tasks that have a balanced ratio between computation

66

and communication. Hydropad requires high processing resources because it has

to simulate an area comparable to the dimension of the Universe.

The cosmological model, which this application is based on, has the assump-

tion that the Universe is composed of two different kinds of matter. The first

is baryonic matter, which is directly observed and forms all bright objects. The

second is dark matter, which is theorised to account for most of the gravitational

mass in the Universe. The evolution of this system can only be described by

treating both components at the same time, looking at all of their internal pro-

cesses, while their mutual interaction is regulated by a gravitational component.

Figure 8.1 shows an example of a typical output generated by Hydropad.

Figure 8.1. Example of Hydropad output

The dark matter computation can be simulated using N-Body methods [59].

This method utilises the interactions between a large number, Np, of collision-

less particles. These particles, subjected to gravitational forces, can simulate the

process of the formation of galaxies. The accuracy of this simulation depends on

the quantity of particles used. Hydropad utilises a Particle-Mesh (PM) N-Body

algorithm, which has a linear computational cost and depends on the number of

particles, O(Np). In the first part this method transforms the particles, through

an interpolation, into a grid of density values. Afterwards the gravitational po-

67

Chapter7/Chapter7Figs/hydropad_output.eps

tential is calculated from this density grid. In the last part the particles are

moved depending on the gravitational forces of the cell where they were located.

The baryonic matter computation utilises a Piecewise-Parabolic-Method (PPM)

Hydrodynamic algorithm [60]. This is a high order method for solving partial

differential equations. PPM reproduces the formation of pressure forces and the

heating and cooling processes generated by the baryonic component during the

formation of galaxies. For each time step of the evolution, the fluid quantities of

the baryonic matter are estimated over the cells of the grid by using the gravita-

tional potential. The density of this matter is then retrieved and used to calculate

the gravitational forces for the next time step. The accuracy of this method de-

pends on the number of cells of the grid used, Ng, and its computational cost

is linear O(Ng). The application computes the gravitational forces, needed in

the two previous algorithms, by using the Fast-Fourier-Transform (FFT) method

to solve the Poisson equation. This method has a computational cost of O(Ng

logNg). All the data, used by the different components in Hydropad, are stored

and manipulated in three-dimensional grid-like structures. In the application, the

uniformity of these base structures permits easy interaction between the different

methods.

Figure 8.2 shows the workflow of the Hydropad application. It is composed

of two parts: the initialisation of the data and the main computation. The main

computation of the application consists of a number of iterations that simulate

the discrete time steps used to represent the evolution of the Universe from the

Big Bang to present time. This part consists of three tasks: the gravitational

task (FFT method), the dark matter task (PM method) and the baryonic matter

task (PPM method). For every time step in the evolution of the Universe, the

gravitational task generates the gravitational field using the density of the two

matters calculated in the previous time step. Hence the dark and baryonic tasks

use the newly produced gravitational forces to calculate the movement of the

matter that happens during this time step. Then the new density is generated

and the lapse of time in the next time step is calculated from it. It is possible to see

in figure 8.2 that the dark matter task and baryonic matter task are independent

of each other.

68

Figure 8.2. Overview of the Hydropad application

The initialisation part is also divided into two independent tasks. The main

characteristic of dark matter initialisation is that the output data is generated

by the external application, a module of the package COSMICS [61]. Given the

initial parameters as an input, this module generates the position and velocity

of the particles that will be used in the N-Body method. The output data is

stored in two files where information has to be read by the application during the

initialisation part. Like the main application, grafic has a high memory footprint.

An important characteristic of Hydropad is the difference in computational

and memory load of its tasks. Despite both algorithms being linear, the com-

putational load of the baryonic matter component is far greater than the dark

matter one, Cbm >> Cdm , when the number of particles is equal to the number

of cells in the grid, Np = Ng. Furthermore, the quantity of data used by the dark

matter computation is greater than the baryonic matter one, Ddm >> Dbm.

As previously indicated, Hydropad utilises three dimensional grid structures

to represent the data. In the application code, these grids are represented as

vectors. In the case of the dark matter component, the application stores the

position and velocity in three vectors for each particle, one for each dimension.

The size of these vectors depends on the number of particles, Np, chosen to run

on the simulation. For the gravitational and baryonic components, the different

physical variables, such as force or pressure, are stored in vectors, with the size

depending on the given number of grid cells, Ng. In a typical simulation the

69

Chapter7/Chapter7Figs/hydropad_struct.eps

8.1 GridRPC implementation of Hydropad

number of particles is of the order of billions, while the number of cells in a grid

can be over 1024 for each grid side. Given that for the values of Ng = 1283 and

Np = 103 the total amount of memory used in the application is roughly 500MB,

the memory demand to run a typical simulation is very high.

8.1 GridRPC implementation of Hydropad

Hydropad was originally a sequential Fortran code, which was upgraded to take

advantage of the GridRPC API and to work with the GridSolve middleware.

Table 8.1 shows the original Hydropad code of the main loop, written in the C

language. Three functions, grav, dark, and bary, are called in this loop to perform

the three main tasks of the application. In addition, at the first iteration of this

loop, a special task, initvel is called to initialise the velocities of the particles.

The dark and baryonic tasks compute the general velocities of the respective

matter. At each iteration, these velocities are used by a local function, timestep,

to calculate the next time step of the simulation. The simulation will continue

until this time becomes equal to the present time of the Universe, tsim = tuniv .

Table 8.1. Hydropad evolve loop

70

Chapter7/Chapter7Figs/hydropad_evolve.eps

8.2 SmartGridRPC implementation of Hydropad

The GridRPC implementation of Hydropad application uses the APIs grpc call()

and grpc call async() to execute respectively a blocking and an asynchronous re-

mote call of the Fortran functions. The first argument of both APIs is the handler

of the task executed; the second is the session ID of the remote call while the fol-

lowing arguments are the parameters of the task. Furthermore, the code uses the

method grpc wait() to block the execution until the chosen, previously issued,

asynchronous request has completed. When the program runs, the GridSolve

middleware maps each grpc call() and grpc call async() functions singularly to

a remote server. Then, the middleware communicates the data from the client

computer to the chosen server and then executes the task remotely. At the end of

the task execution, the data is communicated back to the client. In the blocking

call method, the client cannot continue the execution until the task is finished

and all the outputs have been returned. Instead, in the asynchronous method,

the client does not wait for the task to finish and proceeds immediately to execute

the next code. The output of the remote task is retrieved when the respective

wait call function is executed.

Table 8.2 outlines the GridRPC implementation of the main loop of Hydropad

that simulates the evolution of the Universe. At each iteration of the loop, the

first grpc call() results in the gravitational task being mapped and then executed.

When this task is completed, the client proceeds to the next call, which is a non-

blocking call of the dark matter task. This call returns after the task is mapped

and its execution is initiated. Then, the baryonic matter call is executed in the

same way. Therefore, the baryonic and dark matter tasks are executed in parallel.

After this, the client waits for the outputs of both these parallel tasks using the

grpc wait() calls.

8.2 SmartGridRPC implementation of Hydropad

The code in table 8.3 shows the modifications required to implement Hydropad

for the SmartGridRPC model. The only minor difference between the GridRPC

code in table 8.2 and the SmartGridRPC code in table 8.3 is the addition of: the

grpc map() block and grpc local() condition. These belong to the SmartGridRPC

API.

71

8.2 SmartGridRPC implementation of Hydropad

Table 8.2. Hydropad implementation in GridRPC

On the first iteration through the map block each task is discovered. The

specified mapping heuristic, in this case the greedy mapping heuristic, generates

a mapping solution for this group of tasks. On the second iteration through

the group of tasks the group is executed according to the mapping solutions

generated.

The grpc local() function is used by the application programmer to indicate

when a local computation is executed. At run time, on the first discovery itera-

tion, the code within this conditional statement is not executed. This is to avoid

computing local executions when generating a performance model for the group

of remote tasks. However, if a local computation directly affects the performance

model of the group of remote tasks, then the grpc local() function should not

be used. This would be the case if a local computation affects whether certain

remote tasks get executed or affects the size of computation of tasks. If this were

the case, then the local computation should be executed during discovery and

any structures, variables etc. that have changed values should be reset back to

their original values before the beginning of execution.

On the second iteration, during the execution phase all the code in grpc map()

function is executed normally (i.e. the local computation is also executed). The

mapping in the code of table 8.3 is performed at every iteration of the main while

72

Chapter7/Chapter7Figs/gridrpc_impl_hydropad.eps

8.2 SmartGridRPC implementation of Hydropad

Table 8.3. Hydropad implementation in SmartGridRPC

loop. Generating frequent mapping solutions like this can generate good mapping

solutions if the Grid environment is not a stable one. This would be the case if

there are other application tasks running on the Grid servers or if other users are

using machines on the Grid. If the Grid environment is dedicated, where only one

application executes at a time, a better mapping solution may be generated if the

area to map contains more tasks, i.e. two or more loop cycles. A simple solution

could be including an inner loop within the grpc map() code block (table 8.4).

The application programmer could increase the number of tasks mapped together

by increasing the number of iterations of the inner loop.

Figure 8.3 is a task graph generated for only two cycles of the evolution step.

It is also possible to map a significantly larger number of evolution steps, by

increasing the value of the nb steps variable in table 8.4.

This type of coarse mapping would be more favourable on a distributed en-

vironment, which is highly stable, for example, a distributed environment that

consisted of dedicated servers or servers that are idle. However, if the environment

is highly changeable, which would be the case if the distributed environment con-

sisted of workstations currently being used, then it might be more advantageous

73

Chapter7/Chapter7Figs/table_8.eps

8.2 SmartGridRPC implementation of Hydropad

Figure 8.3. Task graph for two evolution steps

74

Chapter7/Chapter7Figs/task_graph_2_ev.eps

8.2 SmartGridRPC implementation of Hydropad

to have a higher frequency of mappings. It may also be necessary to increase

the frequency of mappings, if the task graph is altered as a result of the execu-

tion of one of the remote tasks in the task graph. For example, this may be the

case if there is a conditional statement in the group of tasks that is based on

an output of a remote task in the group (task A). If this conditional statement

determines whether another remote task (task B) gets executed then the shape

of the task graph depends on the output of task A. When the shape of a task

graph is determined by the outputs of a remote task in the group then it is im-

portant to increase the frequency of mappings and perform mappings whenever

the task graph is altered. To ensure the shape of the task graph is accurate in

the aforementioned case, the task graph should be generated and mapped every

time task A is executed.

It is also possible to make this mapping frequency more dynamically adaptive.

In table 8.4, the value assigned to the variable nb steps indicates how many

evolution steps should be mapped collectively at the next point of execution

of the application. This value can be fine-tuned during the execution of the

application to determine the optimal number of evolutions to map as a group. In

this example, the value for nb steps is updated and fine-tuned using an evaluation

function func(). This may be a function that changes the value of the variable

nb steps based on an evaluation of the performances of previous executions of

collective mappings.

This approach can be used to find the optimal mapping for an application on

any given distributed environment. Once determined, this optimal number can

then be assigned statically for each subsequent execution of the application on

this environment without the need for an evaluation function.

However, in the case where the environment is highly changeable, this optimal

number of evolutions may vary throughout the execution of the application and

therefore it may be more beneficial to maintain this dynamic update of nb steps

variable at run-time.

75

8.2 SmartGridRPC implementation of Hydropad

Table 8.4. Dynamically determining the optimal group size to map

76

Chapter7/Chapter7Figs/table_9.eps

Chapter 9

Experimental results

In the experiments performed in this section, we use three different implemen-

tations of Hydropad: the original sequential version, a GridSolve version and

a SmartGridSolve version. For each version, we present the average computa-

tion time of one evolution step and the memory footprints of the application on

the client machine. In section 9.1, we compare the GridSolve version versus the

local sequential version. Then, in section 9.2 we compare the SmartGridSolve

version of Hydropad versus both GridSolve and the local one. Furthermore, in

section 9.2 we focus on the performance improvement of each of the key benefits

of the SmartGridRPC model over the GridRPC model, which were introduced in

section 2.2.

The hardware configuration used in the experiments consists of three ma-

chines: a client and two remote servers, S1 and S2. The two servers are heteroge-

neous. However, they have similar performance, respectively 498 and 531 MFlops,

and they have equal amount of main memory, 1GB each. The bandwidth of the

communication link between the two servers is 1GB/s. The client machine, C,

is a computer with low hardware specifications, 248MFlops of performance. The

client to server connection varies depending on the experimental setup. We use

two setups, C1 with a 1GB/s connection and C100 with a 100MB/s communi-

cation link. For each conducted experiment, table 9.1 shows the initial problem

parameters and the corresponding data sizes (the total memory used during the

execution of Hydropad on a single machine). The quantity of memory available

in the client machine varies as well depending on the experimental setup. We

77

9.1 Experiments with the GridSolve version of Hydropad

use two configurations: C1-1 with 1GB of memory, which is large enough to

avoid paging, and C-256 with 256MB of memory, that undergo paging for larger

problems.

Table 9.1. Input values and problem sizes for the Hydropad experiments
Problem ID Np Ng Data Size

P1 1203 603 73MB

P2 1403 803 142MB

P3 1603 803 176MB

P4 1403 1003 242MB

P5 1603 1003 270MB

P6 1803 1003 313MB

P7 2003 1003 340MB

P8 2203 1203 552MB

P9 2403 1203 624MB

9.1 Experiments with the GridSolve version of

Hydropad

Table 9.2 shows the results obtained by the local sequential version and by the

GridSolve version of Hydropad using C1-1 as the client machine which has a fast

network connection and a large quantity of memory.

Table 9.2. Experimental results using client C1-1 that has 1GB/s network link to the servers.

Local GridSolve Local vs GS

P. ID Time Step Time Step Sp

P1 14.12s 9.40s 1.50

P2 29.90s 18.38s 1.63

P3 34.84s 20.82s 1.67

P4 52.04s 30.81s 1.69

P5 54.06s 32.00s 1.69

P6 58.56s 36.81s 1.59

P7 66.29s 37.22s 1.78

P8 102.03s 67.04s 1.52

P9 114.83s 112.05s 1.02

78

9.1 Experiments with the GridSolve version of Hydropad

One can see that the GridSolve version is faster than the local sequential

computation. The speedup obtained is over 1.50 for all problem sizes except for

P9. This speedup is due to the parallel execution of the two tasks and the use

of servers with greater performance than the client machine. The fluctuation in

speedup obtained by GridSolve depends on the varying ratio of data size used by

the two parallel tasks for different problem sizes. Furthermore, it should also be

noted, that the speedup achieved on P9 is significantly lower due to paging on

the server. This is caused by the fact that the GridRPC model maps both tasks

to the same server and therefore causes paging on it.

Table 9.3 shows the results obtained by the GridSolve version when the client

machine used, C100-256, has a slow client-to-servers connection of 100MB/s and

only 256MB of memory available. This hardware configuration simulates a com-

mon situation that can happen in real life. A user has access only to a slow client

machine with low hardware specification, which is not suitable to perform large

simulations, and wants to use a powerful Grid environment through a relatively

slow network link. Table 9.3 also presents the scale of paging that occurs on the

client machine during the executions. One can see that for the local computation

the paging is taking place when the problem size is equal to or greater than the

machine main memory, 256MB.

In these experiments, “light” paging means that paging is occurring only in

some task calls and the amount of paging is approximately 10% of the main

memory (approx. 25MB). “Normal” paging means that paging is occurring on

almost every task call and the amount of paging is approximately 40% of the

main memory (approx. 100MB). “Heavy” paging means that all task calls cause

a memory page and almost 100% of the main memory is paged (approx. 256MB).

The GridSolve version is slower than the local computation when the client

machine is not paging. This is happening because there is a large amount of

data communication between tasks. So for this configuration, the time spent

communicating the data compensates for the time gained by computing tasks

remotely. However, as the problem size gets larger and the client machine starts

paging, the GridSolve version becomes faster than the local computation, even

in the case of slow communication between the client and server machines. This

trend is also seen in figure 9.1. For the GridSolve version, the paging is occurring

79

9.2 Experiments with the SmartGridSolve version of Hydropad

Table 9.3. Experimental results using client C100-256 that has 100MB/s network link to the servers

and 256MB of memory.

(a) Local (b) GridSolve

P.ID Time Step Paging Time Step Paging Sp v Local

P1 14.32s No 20.26s No 0.71

P2 30.05s No 38.75s No 0.78

P3 35.78s No 48.65s No 0.74

P4 55.57s Light 60.48s No 0.92

P5 62.13s Light 66.43s No 0.94

P6 84.33s Yes 76.76s Light 1.10

P7 128.22s Yes 93.74s Yes 1.37

P8 231.56s Heavy 150.03s Heavy 1.54

P9 279.52s Heavy 183.45s Heavy 1.52

later than for the local version, when the problem size is around 310MB, as

shown in table 9.3. The GridRPC implementation can save memory due to the

temporary data allocated remotely in the tasks and consequently increasing the

problem size will not cause paging. Furthermore, in the sequential local execution,

the paging is taking place during a local task computation, while for the GridSolve

version the paging occurs during a remote task data communication. Hence, for

the GridSolve version of Hydropad, the paging on the client machine does not

negatively affect the execution time of the application.

9.2 Experiments with the SmartGridSolve ver-

sion of Hydropad

In the first experiment of this section, we use the same hardware configuration

of table 9.3. The client machine used, C100-256, has a slow client-to-servers

connection of 100MB/s and only 256MB of memory available. As previously

mentioned, this is a common situation. Table 9.4 shows the results obtained

by the SmartGridSolve version for this configuration. This table shows that the

SmartGridSolve version is much faster than the GridSolve and the sequential

versions. The speedup is around three times that of GridSolve (figure 9.2) and

the speedup versus the local sequential version is over 4 in the case of larger

problems.

80

9.2 Experiments with the SmartGridSolve version of Hydropad

Figure 9.1. Evolution time step of the local and GridSolve computation on client C100-256

Figure 9.2. Execution times of the GridSolve and SmartGridSolve version of Hydropad on client

C100-256

81

Chapter8/Chapter8Figs/figure_13.eps
Chapter8/Chapter8Figs/figure_14.eps

9.2 Experiments with the SmartGridSolve version of Hydropad

Table 9.4. Experimental results using client C100-256 that has 100MB/s network link to the servers

and 256MB of memory

(a) Local (b) GridSolve

P.ID Time Step Paging Time Step Paging Sp v Local

P1 14.32s No 20.26s No 0.71

P2 30.05s No 38.75s No 0.78

P3 35.78s No 48.65s No 0.74

P4 55.57s Light 60.48s No 0.92

P5 62.13s Light 66.43s No 0.94

P6 84.33s Yes 76.76s Light 1.10

P7 128.22s Yes 93.74s Yes 1.37

P8 231.56s Heavy 150.03s Heavy 1.54

P9 279.52s Heavy 183.45s Heavy 1.52

(c) SmartGridSolve

P.ID Time Step Paging Sp v Local Sp v GS

P1 7.31s No 1.96 2.77

P2 15.06s No 2.00 2.57

P3 16.36s No 2.19 2.97

P4 28.06s No 1.98 2.16

P5 27.54s No 2.26 2.41

P6 27.78s No 3.04 2.76

P7 30.81s Light 4.16 3.04

P8 48.04s Light 4.82 3.12

P9 60.74s Light 4.06 3.02

These performance improvements are due to the key features of the Smart-

GridRPC model: improved mapping, improved data movement and reduced

memory usage. In the next experiments of this section, we show the benefits

introduced by each feature by using specific hardware configurations and setup.

Computational load experiments. One important feature of SmartGridRPC

is the superior mapping system that permits improved balancing of computa-

tional load of tasks compared to standard GridRPC. In the underlying experi-

ments, we compare the average computation time of one evolution step achieved

by the GridSolve version versus the SmartGridSolve version of Hydropad, where

SmartGridSolve is set up to utilize the same network topology of GridSolve (star-

network), i.e. without direct server-to-server communication and server-caching.

Consequently, the performance gains obtained by the SmartGridSolve version are

due only to the improved mapping method. In these experiments, we use C1-1 as

the client machine. This machine has a high speed network connection of 1GB/s

82

9.2 Experiments with the SmartGridSolve version of Hydropad

to the servers. Table 9.5 shows that the SmartGridSolve version of Hydropad is

faster than the GridSolve version.

Table 9.5. Experimental results using only star-network topology (i.e. no direct server-to-server

communication) and client C1-1 that has 1GB/s network link to the servers

GridSolve SmartGridSolve GS vs SmartGS

P. ID Time Step Time Step Sp

P1 9.40s 7.09s 1.33

P2 18.38s 15.27s 1.20

P3 20.82s 16.17s 1.29

P4 30.81s 29.02s 1.06

P5 32.00s 28.99s 1.10

P6 36.81s 29.88s 1.23

P7 37.22s 30.88s 1.21

P8 67.04s 50.05s 1.29

P9 112.05s 53.35s 2.10

Despite Hydropad having only two parallel tasks, the collective mapping of

SmartGridRPC can produce a faster execution time than the individual task

mapping of GridRPC. The baryonic task is computationally far larger than the

dark matter one, Cbm >> Cdm. When a GridRPC system maps these two tasks,

it does so without the knowledge that they are part of a group to be executed in

parallel. Its only goal is to minimize the execution time of an individual task as

it is called by the application. If the smaller dark matter task is called first, it

will be mapped to the fastest available server. With the fastest server occupied,

the larger baryonic task will then be mapped to a slower server and the overall

execution time of the group of tasks will be sub-optimal. As previously mentioned,

in the case of problem P9, both tasks were mapped to the same server, which

increased the total execution time and caused paging on the server.

Communication load experiments. As mentioned before, another pri-

mary improvement of SmartGridSolve is its communication model, use of which

minimizes the amount of data movement between the client and servers. This

advantage is most prominent when the client connection to the Grid environment

is slow. Table 9.5 shows the results obtained by the SmartGridSolve version of

83

9.2 Experiments with the SmartGridSolve version of Hydropad

Hydropad using C100-1 as the client machine, which has a slow network connec-

tion of 100MB/s. One can see that the SmartGridSolve version is much faster

than the GridSolve versions. The increase of speed is over twice that of GridSolve,

which is primarily due to the improved communication model of SmartGridSolve.

Furthermore, one can see that the timing results obtained by SmartGridSolve

in table 9.5 are similar to those obtained in table 9.6. This shows that when the

client-server links are slow and there is direct communication (table 9.5), it is

similar to when the client links are fast and there is no direct communication (ta-

ble 9.6). This shows that the SmartGridRPC model allows the mapping heuristic

to generate solutions, which effectively minimize the communication load on the

network link.

Table 9.6. Experimental results using client C100-1 that has 100MB/s network link to the servers

GridSolve SmartGridSolve GS vs SmartGS

P. ID Time Step Time Step Sp

P1 19.97s 7.24s 2.76

P2 38.73s 15.17s 2.55

P3 48.20s 16.24s 2.97

P4 61.59s 29.42s 2.09

P5 66.26s 28.91s 2.29

P6 78.16s 29.73s 2.63

P7 93.20s 31.25s 2.99

P8 140.53s 50.20s 2.80

P9 174.14s 53.02s 3.28

Memory usages experiments. In the following experiments, we utilize the

client machine C1-256, that has a high speed network connection of 1GB/s to the

servers and has 256MB of main memory. Table 9.7 shows the average computa-

tion time of one evolution step achieved by the local sequential version, by the

GridSolve version and by the SmartGridSolve version of Hydropad. Table 9.7

also presents the scale of paging that occurs on the client machine during the

various executions.

One can see that for the SmartGridSolve experiments the paging on the client

machine is less penalizing than in the GridSolve experiments and local experi-

84

9.2 Experiments with the SmartGridSolve version of Hydropad

Table 9.7. Experimental results using client C1-256 that has 1GB/s network link to the servers and

256MB of memory

(a) Local (b) GridSolve

P.ID Time Step Paging Time Step Paging Sp v Local

P1 14.32s No 8.6s No 1.67

P2 30.05s No 18.4s No 1.63

P3 35.78s No 20.1s No 1.77

P4 55.57s Light 31.3s No 1.77

P5 62.13s Light 33.7s No 1.84

P6 84.33s Yes 42.3s Light 1.99

P7 128.22s Yes 63.1s Yes 2.03

P8 231.56s Heavy 109.3s Heavy 2.12

P9 279.52s Heavy 144.3s Heavy 1.94

(c) SmartGridSolve

P.ID Time Step Paging Sp v Local Sp v GS

P1 7.0s No 2.02 1.21

P2 14.4s No 2.08 1.27

P3 15.8s No 2.26 1.27

P4 27.5s No 2.02 1.14

P5 28.1s No 2.21 1.20

P6 28.8s No 2.92 1.47

P7 30.0s Light 4.27 2.10

P8 46.6s Light 4.96 2.34

P9 55.1s Light 5.07 2.62

ments. A secondary advantage of the direct server to server communication im-

plemented in SmartGridSolve is that the quantity of memory used on the client

machine is lower than that of the GridSolve version. Furthermore, in SmartGrid-

Solve, the memory paging is happening only when data has to be sent to the

server. Hence, it happens only at the beginning and at the end of a group of

tasks execution. This minimizes the impact of paging on the overall execution of

the group of tasks.

Therefore, the SmartGridSolve version of Hydropad can execute larger prob-

lems without paging having a serious impact on the execution time. One can see

that the computation time of the evolution steps in table 9.7 is similar to that of

table 9.5 and 9.6. The speedup of SmartGridSolve over GridSolve, is increasing

as the problem gets larger due to paging on the client. This trend is also seen in

figure 9.3.

The new features of SmartGridRPC have also a secondary benefit. As previ-

85

9.2 Experiments with the SmartGridSolve version of Hydropad

Figure 9.3. Execution times of the GridSolve and SmartGridSolve version of Hydropad when the

client machine C1-256 has 256MB of memory

ously mentioned, SmartGridSolve obtains similar results when the client memory

and the client-to-server link are largely different. Consequently, the hardware

configuration of the client has less impact on the application performance than

in the case of GridRPC. Figure 9.4 shows this trend. We compare the results

obtained by GridSolve and SmartGridSolve version of Hydropad when the two

configurations of the client used are the optimal one, C1-1, and the worst one,

C100-256. It is possible to see that in the case of GridSolve the performance

changes dramatically depending on the hardware used while for SmartGridSolve

the performance is similar.

86

Chapter8/Chapter8Figs/figure_15.eps

9.2 Experiments with the SmartGridSolve version of Hydropad

Figure 9.4. Execution times of the GridSolve and SmartGridSolve version of Hydropad when the

client machines are C1-1 and C100-256

87

Chapter8/Chapter8Figs/figure_16.eps

Chapter 10

Conclusion

In this thesis, we have presented the SmartGridRPC model, which is an extension

to the GridRPC model that aims to achieve high performance.

The GridRPC model maps each task in an application separately and inde-

pendently of other tasks of the application. Given this restriction, the model can

only support the minimization of the execution time of each individual task of

the application rather than the minimization of the execution time of the whole

application.

Another restriction of GridRPC is its communication model. The commu-

nication model of GridRPC is based on the client-server model or star network

topology. This means that tasks can be executed on any of the servers and

inputs/outputs can only traverse the client-server links.

Mapping tasks individually on a star network results in several limitations.

Firstly, the computation load of a group of parallel tasks cannot be analysed

collectively and therefore the computation load will not be optimally balanced

over the available servers. Also, if dependencies exist in a group of tasks bridge

communication is forced. This is because dependencies between tasks cannot

be analysed and servers cannot communicate directly. This increases the com-

munication load on the network. Bridge communication results in intermediate

results being sent back to and stored on the client. Consequently, this increases

the amount of memory used on the client and may result in paging, which could

significantly increase the execution time of the application. Furthermore, since

dependencies are not known and the network is based on the client-server model,

88

it is impossible to employ any parallelism of communication between the tasks

in the group. For example, this could be implemented if there is a dependency

between two tasks and the destination task is not executed in parallel or imme-

diately after the source task. In theory, this dependent data could be sent to

the destination task in parallel with any computation or communication on any

other machine (client or other servers) which happens in the intervening time.

But since tasks are mapped individually on to a star network, this parallelism of

communication cannot be realized using the GridRPC model.

In related research (chapter 3) we outlined several extensions to the GridRPC

model which fall into the following categories:

• extensions to the GridRPC model which extend the client-server model to

implement direct communication between servers or data persistence.

• extensions to the GridRPC model which extend the system so that a group

of tasks can be collectively mapped.

The papers introduced in this section also have a number of limitations which

were outlined in the related research chapter.

The SmartGridRPC model enhances the GridRPC model to allow a group of

tasks to be mapped collectively on to a fully connected network. This removes

each of the aforementioned limitations of the GridRPC model and the limitations

of the extensions of the GridRPC model described in chapter 3.

The SmartGridRPC model can increase the performance of an application by:

• Improving the load balancing of computation.

• Improving the load balancing of communication.

• Reducing the overall volume of communication.

• Reducing memory usage on the client (reduce paging).

• Parallelising communication.

89

The SmartGridRPC model provides an API, which allows the application

programmer to specify a block of code, in which a group of GridRPC task calls

should be mapped collectively. Then, when the application is run, the specified

group of tasks in this block of code is processed collectively and each operation

in the GridRPC call is separated and done collectively for all tasks in the group.

Namely, all tasks in the group are discovered collectively, mapped collectively

and executed collectively on the fully connected network. In the discovery phase,

performance models are generated for estimating the execution time of the group

of tasks on the fully connected network. In the mapping phase, the performance

models are used by the mapping heuristic to generate a mapping solution for the

group of tasks. In the execution phase, the group of tasks is executed on the fully

connected network according to the mapping solution generated.

In chapter 7 we described the implementation of the SmartGridRPC model in

SmartGridSolve, which is an extension to the GridSolve middleware. It described

a possible implementation of the performance models which are used to estimate

the execution times of executing a group of tasks on a fully connected network.

In chapter 8, we presented Hydropad, a real-life astrophysics application that

simulates the evolution of clusters of galaxies in the Universe. This application

simulates the evolution of clusters of galaxies in our Universe from the beginning

of time till present. The reason this application was chosen as a benchmark

application was that it is not well suited to be implemented in Grid environments

and consequently it can show the eventual limits and benefits of the two models

tested.

In chapter 9 we gave an experimental evaluation of the SmartGridRPC model

by comparing the execution of Hydropad application using a SmartGridSolve

version (SmartGridRPC model), a GridSolve version (GridRPC model) and a

local sequencial version of the application.

In these experiments we evaluated these models using a hardware configu-

ration that consisted of three machines, a client and two servers. The client is

approximately half the speed of the two servers which simulates a common sit-

uation that happens in real life where the user has access to a low specification

client machine and wants access to more powerful machines. We used two network

configurations, either the client-server link was slow (100MB/s) or fast (1GB/s)

90

and the client either had a small amount of memory available (256MB) or a large

amount (1GB).

For the 1GB/s link speed and 1GB client memory configuration it was shown

that the GridSolve version improves the performance over the local sequential

version for all the given problem sizes. The reason for this speedup is the due

to the fact that server machines are more powerful than the client machine and

there is parallelism of the baryonic and darkmatter tasks of Hydropad. Also

for larger problem sizes, the memory footprint on the local sequential version

causes a greater level of paging on the client. This is reduced using GridSolve

as the memory allocation for computation is done on the servers as opposed to

on the client so therefore the level of paging is either decreased or avoided using

GridSolve. In GridSolve, memory is allocated on the client for communication

but not for computation.

For the 100MB/s link speed and 256MB client memory configuration, it was

shown that GridSolve improves the performance over the local sequential version

only for larger problem sizes. The reason for this is due to the heavy penalty of

communicating the data over the slow client-server network link. However, when

the problem sizes is large enough as to cause paging on the client, the GridSolve

version begins to outperform the local sequential version due to the temporary

memory allocation for computation being done on the servers as opposed to on

the client.

The experiments also showed how the SmartGridSolve could further improve

the performance of the Hydropad application. This is due to improving the

load balancing of computation, reducing the overall volume of communication,

increasing the parallelism of communication and decreasing the level of paging

on the client.

Firstly, SmartGridSolve improved the load balancing of computation by im-

proving the distribution of the load of the two parallel tasks. It assigned the

task with larger computational load (baryonic matter) to the faster server and

the task with the smaller computational load (dark matter) to the slower server.

In addition, it reduced the volume of communication on the network by elimi-

nating bridge communication through direct server-server communication. Also,

the performance was increased due to asynchronous remote communication as

91

10.1 Contributions

server-server communication was done asynchronously and therefore it is done

in parallel with other communication and computation. Moreover, it further de-

creased the paging on the client. This is because SmartGridSolve further reduces

the memory allocation on the client because it eliminates bridge communication

and therefore intermediate results are not sent back to and stored on the client.

As a result of these performance enhancements, SmartGridSolve shows significant

speedup over both the local sequential execution of Hydropad and the GridSolve

execution for each of tested problem sizes.

10.1 Contributions

Below, we present more precisely the contributions of this work

The design of the SmartGridRPC model and API: The main goal of the

design of the API was to allow the application programmer to easily convert an

existing GridRPC application into a SmartGridRPC enabled application. This

facilitates a simple transformation from a standard GridRPC application into

a SmartGridRPC application which can fully exploit the potential of collective

mapping of tasks on an execution model that is based on a fully connected net-

work. It has been shown that the collective mapping of tasks on a fully connected

network improves the chances of finding a closer to optimal solution over the indi-

vidual mapping of tasks on to the star network of the GridRPC model. Therefore

an application programmer with a few simple changes to their client application

can easily benefit from all the performance enhancements of the SmartGridRPC

model.

The SmartGridRPC model was designed to be both incremental and inter-

operable with the underlying GridRPC middleware. It is incremental to the

GridRPC model which means a SmartGridRPC client application can be exe-

cuted on a standard GridRPC network where all servers can only communicate

with the client. Furthermore, a SmartGridRPC application can be executed on a

network consisting of both GridRPC enabled servers and SmartGridRPC enabled

servers (SmartServers) that can communicate with each other. It is interoper-

able with GridRPC model which means that if the SmartGridRPC extension is

92

10.1 Contributions

installed, the application programmer has the option to implement their appli-

cation using the GridRPC model or the SmartGridRPC model. As a result of

these interoperability and incremental features SmartGridRPC is both upward

and downward compatible with the GridRPC model.

The design and implementation of SmartGridSolve: The GridSolve

middleware was extended to be SmartGridRPC compliant and this extension

is called SmartGridSolve. Details of this implementation were described in this

thesis to demonstrate how a developer of a GridRPC middleware can extend their

middleware so that it is SmartGridRPC enabled.

The implementation of SmartGridSolve required extensions to the following

aspects of GridSolve:

• Network Discovery.

• Task Discovery.

• Mapping Heuristics.

• Execution model.

In GridSolve, in order to map an individual task on to a star network, the pro-

gramming system discovers the performance model of the star network (network

discovery) and a representation of an individual task (task discovery). Then the

mapping heuristic generates a mapping solution for the individual task based on

the performance model of the star network and representation of the individual

task . Then this task is executed in the distributed environment which is based

on the client-server model (execution model).

In GridSolve, the discovery of the performance model of the star network in-

cludes the discovery of the dynamic performance of each server on the network

and the dynamic performance of client-server links. The discovery of the repre-

sentation of an individual task includes the discovery of the computational load of

the task and the communication load of the input and output arguments. Using

the individual task representation and performance model of the star network,

the mapping heuristic times the communication time and computation time of

that task on each server and returns a mapping solution with specifies the servers

93

10.1 Contributions

with the lowest execution time. This mapping solution is then executed on an

execution model which is based on the client-server model. The inputs are sent

to the mapped server, the mapped server executes the task and sends the output

arguments back to the client.

In order to map a group of tasks, the extensions illustrated in figure 10.1 had

to be implemented in GridSolve.

Figure 10.1. SmartGridSolve extensions

The GridSolve programming system was extended to discover the performance

model of the fully connected network. In addition to performing the discovery

of the dyanamic performance of each server on the network and the dynamic

performance of client-server links, the programming system also discovers the dy-

namic performance of the links connecting SmartServer to other SmartServers.

Furthermore, the programming system was extended to discover a representation

of a group of tasks as opposed to an individual task. This was made possible

by the addition of the grpc map() function. The implementation of this function

and how it generates a task graph was described in this thesis. Furthermore,

the mapping heuristics of GridSolve which maps an individual task on to a star

network were extended so that they map a group of tasks on to a fully connected

network. Finally, the execution model was extended so the mappping solution

generated by these heuristics can be executed on a fully connected network. The

GridSolve servers were extended so that they can perform asynchronous push

communication to other servers on the network. The GridSolve servers were also

extended so they can perform asynchronous push broadcast communication where

94

Conclusions/ConclusionsFig/EPS/extensions.eps

10.1 Contributions

they communicate outputs to multiple servers. Server caching was also imple-

mented, where servers can store outputs to the local filesystem where they can be

retrieved by subsequent tasks executing on the same server. This communication

and caching of outputs is asynchronous and therefore can be done in parallel with

other computation or communication which further increases the opimization of

the executing group of tasks.

95

Appendix A

Appdx A - SmartGridSolve

Manual

This manual demontrates how to configure SmartGridSolve and implement appli-

cations using the SmartGridRPC API. SmartGridSolve can be downloaded from

the Heterogeneous Computing Laboratory website.

http://hcl.ucd.ie/project/SmartGridSolve

The SmartGridSolve extension is also included in the official release of GridSolve

which can be download from the GridSolve website.

http://icl.cs.utk.edu/netsolve/software/index.html

A.1 Using SmartGridSolve

To use SmartGridSolve, one should enable the SmartGridSolve feature both on

the GridSolve client and server.

Type

% ./configure -enable-smartgridsolve

% make

% make services

during the initial configuration of GridSolve. Note that services/tasks require

compilation when GridSolve system has been configured with SmartGridsolve

extension enabled.

96

http://hcl.ucd.ie/project/SmartGridSolve
http://icl.cs.utk.edu/netsolve/software/index.html

A.2 SmartGridSolve API

A.2 SmartGridSolve API

The SmartGridSolve API allows a user to specify the scope of a group of tasks

to be mapped collectively.

A.2.1 The grpc map() function

This function is used for specifying the scope of the group of tasks and the

mapping heuristic to implement.

grpc_map(char * mapping_heuristic_name)

Parameters:

• mapping heuristic name - Name of the mapping heuristic to implement

when mapping the group of tasks.

Usage:

grpc_map(char * mapping_heuristic_name){

...

// group of tasks to map collectively

...

}

Description:

The grpc map() “function” is in fact a macro that inserts a while loop around

the code block specified by the parenthesis. When the grpc map() function is

called the code within its parenthesis will be iterated through twice. On the first

iteration each grpc call() and grpc call async() is discovered but not executed.

From these discovered calls a task graph is generated. At the beginning of the

second iteration the mapping heuristic specified by the grpc map() parameter will

generate a mapping solution based on the task graph and the performance model

of the network. The mapping solution outlines a task to server mapping and also

the communication scheme between tasks.

97

A.2 SmartGridSolve API

During the second iteration through the code, the tasks will be executed

according to the generated mapping solution. It should also be noted that handles

and sessionids should be created, initialised, destroyed and deleted outside the

scope of the parenthesis of the grpc map() function.

The communication scheme may implement:

• Client-server communication

– Standard GridRPC communication

• Server-server communication

– Server sends a single argument to another server

• Client broadcasting

– Client sends a single argument to multiple servers.

• Server broadcasting

– Server sends a single argument to multiple servers.

• Server caching

– Server stores an argument locally for future tasks.

Example:

In the example in table A.1, the grpc map() function is the only addition

required to make this code SmartGridSolve enabled. As previously explained

the handles and sessionids should be created, initialised, destroyed and deleted

outside the scope of the parenthesis of the grpc map() function.

A.2.2 The grpc map ft() function

This function is a fault tolerant version of the grpc map() function.

grpc_map_ft(char * mapping_heuristic_name)

98

A.2 SmartGridSolve API

Table A.1. Example implemention of the grpc map() function
grpc function handle t*handles=

(grpc function handle t*)calloc(iters, sizeof(grpc function handle t));

grpc sessionid t * sessionIDs=(grpc sessionid t *)calloc(iters, sizeof(grpc sessionid t));

int * status=(int *)calloc(iters, sizeof(int));

for(i=0; i<iters; i++){
if(grpc function handle default(&handle[i], ”dgesv”) != GRPC NO ERROR){
fprintf(stderr,”Error creating function handle”);

die(EXIT FAILURE);

}
}

...

...

grpc map(”ex map”){
for(i=0;i<iters;i++){

status[i]=grpc call async(&handle[i], &sessionID[i], .., .., ..);

}
}

.....

.....

for(i=0;i<iters;i++){
if(grpc function handle destruct(handle[i]) = GRPC NO ERROR) {

fprintf(stderr,”Error destroying function handle1”);

die(EXIT FAILURE);

}
}

Parameters:

• mapping heuristic name - Name of the mapping heuristic to implement

when mapping the group of tasks.

Usage:

grpc_map_ft(char * mapping_heuristic_name){

...

// group of tasks to map collectively

...

}

99

A.2 SmartGridSolve API

Description:

This is the same as grpc map() function, except that the mapping solution

generated does not implement server-server communication. The mapping so-

lution outlines a task to server mapping and a communication scheme which

only implements communication between client and server. The communication

scheme may implement

• client-server communication.

– standard GridRPC communication.

• client broadcasting.

– client sends a single argument to multiple servers.

If any server that is part of the mapping solution fails, then the tasks mapped

to those servers will be mapped to the next server which is estimated to give the

lowest execution time for that task.

Example:

Implementation is the same as grpc map() in table A.1, just change the func-

tion from grpc map() to grpc map ft().

A.2.3 The grpc local() function

This function is used to specify the code that should be ignored during the first

iteration through the scope of grpc map() (i.e. code that should be ignored when

building the task graph).

grpc_local()

100

A.2 SmartGridSolve API

Usage:

grpc_map(char * mapping_heuristic_name){

//reset variables which have been updated

//during task discovery

...

if(grpc_local()){

// code to ignore during task discovery

}

...

// group of tasks to map collectively

...

}

Description:

Any segment of client code that is not part of the GridRPC API should not

be executed during task discovery. To achieve this, such code must be enclosed

in the conditional that tests the grpc local() function. This function will return

false during task discovery and true during execution.

There is one exception to this rule, when the client code directly affects any

aspect of the task graph. For example, if a variable is updated on the client

that determines which remote tasks get executed or the size of inputs/outputs

of any task, then the operations on this variable should not be encapsulated by

grpc local(). If any variables or structures are updated during the task discovery

cycle then they should be restored to their original values before the execution

cycle begins.

Example:

In the example in table A.2 the variable x determines which tasks get exe-

cuted and therefore any computation on x should not be encapsulated by the

grpc local(). However the variable y does not affect the task graph therefore

computations on y should be encapsulated by the grpc local().

101

A.2 SmartGridSolve API

Table A.2. Example implemention of the grpc local() function
grpc function handle t*handles=

(grpc function handle t*)calloc(iters, sizeof(grpc function handle t));

grpc sessionid t * sessionIDs=(grpc sessionid t *)calloc(iters, sizeof(grpc sessionid t));

int * status=(int *)calloc(iters, sizeof(int));

for(i=0; i<iters; i++){
if(grpc function handle default(&handle[i], ”dgesv”) != GRPC NO ERROR){
fprintf(stderr,”Error creating function handle”);

die(EXIT FAILURE);

}
}

...

...

x old=x;

grpc map(”ex map”){
\\Reset updated variable

x old=x;

for(i=0;i<iters;i++){
x=func1(x);

if(x==1){
status[i]=grpc call async(&handle[i], &sessionID[i], .., .., ..);

if(grpc local()){
y=func2();

}
}

}
}

.....

.....

for(i=0;i<iters;i++){
if(grpc function handle destruct(handle[i]) = GRPC NO ERROR) {

fprintf(stderr,”Error destroying function handle1”);

die(EXIT FAILURE);

}
}

102

Appendix B

Appdx B - Hydropad Manual

In this section we show how to install and run the Hydropad application.This ap-

plication can be downloaded on the Heterogeneous Computing Laboratory web-

site. http://hcl.ucd.ie/project/SmartGridSolve

B.1 Introduction to Hydropad

Hydropad is an astrophysical application that simulates the evolution of clusters

of galaxies in the Universe. Hydropad is a cosmological application, originally

written by Claudio Gheller, which simulates the evolution of clusters of galaxies

in the Universe. The cosmological model that this application is based on has

the assumption that the Universe is composed of two different kinds of matter.

The first is baryonic matter, which is directly observed and forms all bright

objects. The second is dark matter, which is theorised to account for most of

the gravitational mass in the Universe. The evolution of this system can be

simulated by examining the mutual interaction between these components which

is regulated by a gravitational component.

The Hydropad application is composed of two parts: the initialisation part

which initialises the initial state of the Universe and the evolution part. The

evolution part of the application consists of a number of iterations that simulate

the discrete time steps used to represent the evolution of the Universe from the

Big Bang to present time. This part consists of three tasks: the gravitational

103

http://hcl.ucd.ie/project/SmartGridSolve

B.2 Installing Hydropad

task the dark matter task and the baryonic matter task. For every time step in

the evolution of the Universe, the gravitational task generates the gravitational

field using the density of the two matters calculated in the previous time step.

Hence the dark and baryonic tasks use the newly produced gravitational forces to

calculate the movement of the matter that happens during this time step. Then

the new density is generated and the lapse of time in the next time step is calcu-

lated from it. The dark matter task and baryonic matter task are independent

of each other.

B.2 Installing Hydropad

The installation procedure in Hydropad uses the GNU auto-tools (autoconf, au-

tomake and libtools) and Makefile. The auto-tools generates a configure shell

script that automatically check if the computer contains all the necessary pro-

grams and libraries to compile the application. At this point of development

Hydropad was tested only in a x86 platform with a Linux environment. Hy-

dropad computational code is written in Fortran 90 while the kernel is written in

C language. To be able to compile Hydropad the host machine needs to have these

two compilers installed. Hydropad uses the library FFTW, in the gravitational

task, to compute the discrete Fourier transform. The configure script checks if

this library is installed in the host machine. If this is not the case the package

contains a x86 version of the library. Hydropad application is composed of three

executable files: hydropad seq, hydropad gs, hydropad smart. The first file is the

original Hydropad application, it executes the computation sequentially in a local

computer. The other two executables use the GridRPC protocol to compute the

different tasks of Hydropad in a Grid environment. The difference between the

two files is that the hydropad gs uses the standard GridSolve middleware while

the hydropad smart utilises SmartGridSolve extension. The last two executables

need to be compiled with the GridSolve and SmartGridSolve libraries, if the host

machine does not contain these libraries only the sequential executable will be

generated. The configure shell script will automatically check the presence of

these libraries. The various computational tasks, to be used inside GridSolve or

104

B.2 Installing Hydropad

SmartGridSolve, need to be compiled using the special GridSolve problem com-

piler. To compile these tasks the libraries that contains the code of the task and

a gsIDL file that describe the task are required. The Hydropad package contains

these libraries and gsIDL files to compile these tasks. Furthermore it contains a

specific makefile command to simplify the compilation. The installation proce-

dure is composed of the following steps:

Step 1

Retrieve the package hydropad-1.tar.gz from the hcl website repository (hcl.ucd.ie)

and unpack the files in a local directory with the shell command:

$cd /path/local/

$tar zxfv hydropad-1.tar.gz

Step 2

Execute the configure shell script to generate the makefile.

$./configure --prefix=/path

With the argument --prefix=/path it is possible to choose the directory to

install Hydropad. The default location is /usr/local so the user needs to have

write permission for this directory to install the application. The GridSolve and

SmartGridSolve libraries have to be installed in the machines to generate the

respective executables. If the configure script locates the libraries it will print

the following message:

checking for grpc.h... yes

checking for GridSolve library... yes

checking for GridSolve... yes

checking for gs_smart_clib.h... yes

checking for SmartSolve library... yes

checking for SmartSolve... yes

Step 3

Compile the application with the command:

105

B.2 Installing Hydropad

$make

Step 4

Install the Hydropad libraries and executables with the command:

$make install

To run the application, the directory that contains the executable files has

to be included in the environment variable ”$PATH” while the directory that

contains the libraries has to be included in the variable ”$LD LIBRARY PATH”.

Step 5

Compiling the tasks :

$make services

Other than the three version of the Hydropad executable, the package contains

also another application, grafic. This application is used to generate the initial

computational value and it is utilised by the task usegrafic. To be able to run

Hydropad with GridSolve/SmartGridSolve, the grafic file needs to be installed

and the directory that contains it has to be inserted in the environment variable

”$PATH”. After this procedure the Hydropad application is ready to be executed

sequentially or with GridSolve/SmartGridSolve.

The Hydropad application also needs a specific input file that contains the

initial value of some of the physics variables used in the simulation. The name

of this file is passed at command line by using the specific argument ”—input”.

Table B.1 shows an example of the input file. The most important values are the

third and forth one. The third value indicates the number of particles utilised in

the dark matter N-Body method while the fourth value indicates the number of

cells for grid used for the baryonic matter in the simulation. By increasing these

values it increases the percision of the simulation. However more memory will be

used and the computation will take a longer amount of time. These values have

to be even and the number of particles cannot be more than double the number

of cell for side grid. Table B.2 shows example values and the resulting quantities

of memory used to run the application.

106

B.2 Installing Hydropad

Table B.1. Hydropad Input File

LCDM Cosmological Model

Michele Guidolin Owner of simulation

64 Number of particles (Nparmax = Np3)

64 Ng Grid side sizes, X Y Z

30.0 Box size (Mpc/h)

0.71 Hubble parameter

0.226 Omega dark matter

0.044 Omega baryonic matter

0.73 Cosmological constant

0.01 Present BM average temperature

0.75 Hydrogen mass fraction

0.948 Long-wave spectral index

0.772 Desired normalisation

314159265 Random number seed (9-digit integer)

Hydropad uses other arguments in the command line to change the behaviour

of the application. The arguments are:

–input specify input file.

–notsc use faster CIC for interpolation instead of slower triangular shaped clouds.

–nmap number of cycles to map.

–nmap total number of cycles in the simulation.

The following example executes a local sequential computation of Hydropad

with the input file of table B.1 and 10 evolution cycles of the simulation.

$hydropad_seq --input input.in --cycles 10

The following example executes a GridSolve computation of Hydropad and

10 evolution cycles of the simulation.

$hydropad_gs --input input.in --cycles 10

The following example executes a SmartGridSolve computation of Hydropad

and 10 evolution cycles of the simulation.

107

B.2 Installing Hydropad

Table B.2. Example of input values and problem sizes for Hydropad

Np Ng Data Size

120 60 73MB

140 80 142MB

160 80 176MB

140 100 242MB

160 100 270MB

180 100 313MB

200 100 340MB

220 120 552MB

240 120 624MB

$hydropad_smart --input input.in --cycles 10

108

References

[1] M. Yang, Y. Jiang, L. Wang, and Y. Yang, “High performance computing

architectures,” Computers and Electrical Engineering, 2009. 1

[2] C. Lee and D. Talia, “Grid programming models: Current tools, issues and

directions,” Grid Computing: Making the Global Infrastructure a Reality,

p. 555, 2003. 1

[3] B. Nelson, “Remote procedure call,” 1981. 1

[4] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova,

“Overview of GridRPC: A remote procedure call api for grid computing,”

Lecture notes in computer science, pp. 274–278, 2002. 1, 18

[5] T. Downing, Java RMI: remote method invocation. IDG Books Worldwide,

Inc. Foster City, CA, USA, 1998. 1

[6] E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces principles, patterns, and

practice. Addison-Wesley Longman Ltd. Essex, UK, UK, 1999. 1

[7] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces

of publish/subscribe,” ACM computing Surveys, vol. 35, no. 2, pp. 114–131,

2003. 1

[8] M. Snir, S. Otto, D. Walker, J. Dongarra, and S. Huss-Lederman, MPI: The

complete reference. MIT Press Cambridge, MA, USA, 1995. 1

[9] L. Dagum, R. Menon, and S. Inc, “OpenMP: an industry standard API for

shared-memory programming,” IEEE Computational Science & Engineer-

ing, vol. 5, no. 1, pp. 46–55, 1998. 1

109

REFERENCES

[10] M. Sato, T. Boku, and D. Takahashi, “OmniRPC: a grid RPC system for

parallel programming in cluster and grid environment,” Proceedings of CC-

Grid2003, pp. 206–213, 2003. 1

[11] L. Gong, “JXTA: A network programming environment,” IEEE Internet

Computing, pp. 88–95, 2001. 1

[12] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure

toolkit,” International Journal of High Performance Computing Applica-

tions, vol. 11, no. 2, p. 115, 1997. 1

[13] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,

A. Merzky, R. Vanniewpoort, A. Reinefeld, and F. Schintke, “The grid appli-

cation toolkit: toward generic and easy application programming interfaces

for the grid,” Proceedings of the IEEE, vol. 93, no. 3, pp. 534–550, 2005. 1

[14] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski,

C. Lee, A. Merzky, H. Rajic, and J. Shalf, “SAGA: A Simple API for Grid

Applications. High-level application programming on the Grid,” Computa-

tional Methods in Science and Technology, vol. 12, no. 1, pp. 7–20, 2006.

1

[15] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. Hege, G. Lanfermann,

A. Merzky, T. Radke, and E. Seidel, “Cactus grid computing: Review of cur-

rent development,” Lecture Notes In computer Science, pp. 817–824, 2001.

1

[16] J. Novotny, M. Russell, and O. Wehrens, “GridSphere: a portal framework

for building collaborations,” Concurrency and Computation: Practice & Ex-

perience, vol. 16, no. 5, pp. 503–513, 2004. 1

[17] R. Orfali and D. Harkey, Client/server programming with Java and CORBA.

John Wiley & Sons, Inc. New York, NY, USA, 1998. 1

110

REFERENCES

[18] G. Von Laszewski, I. Foster, and J. Gawor, “CoG kits: a bridge between

commodity distributed computing and high-performance grids,” in Proceed-

ings of the ACM 2000 conference on Java Grande, pp. 97–106, ACM New

York, NY, USA, 2000. 1

[19] A. Natrajan, A. Nguyen-Tuong, M. Humphrey, M. Herrick, B. Clarke, and

A. Grimshaw, “The legion grid portal,” Concurrency and Computation:

Practice and Experience, vol. 14, no. 13-15, pp. 1365–1394, 2002. 1

[20] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. Hong, B. Collins,

N. Hardman, A. Hume, A. Knox, M. Jackson, et al., “The design and im-

plementation of Grid database services in OGSA-DAI,” Concurrency and

Computation: Practice & Experience, vol. 17, no. 2, pp. 357–376, 2005. 1

[21] A. Birrell and B. Nelson, “Implementing remote procedure calls,” ACM

Transactions on Computer Systems (TOCS), vol. 2, no. 1, pp. 39–59, 1984.

2

[22] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra, “Recent develop-

ments in GridSolve,” International Journal of High Performance Computing

Applications, vol. 20, no. 1, p. 131, 2006. 2

[23] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka, “Ninf-

G: A reference implementation of RPC-based programming middleware for

Grid computing,” Journal of Grid Computing, vol. 1, no. 1, pp. 41–51, 2003.

2, 18, 29

[24] E. Caron and F. Desprez, “DIET: A scalable toolbox to build network en-

abled servers on the grid,” International Journal of High Performance Com-

puting Applications, vol. 20, no. 3, p. 335, 2006. 2, 18, 23

[25] T. Brady, M. Guidolin, and A. Lastovetsky, “Experiments with SmartGrid-

Solve: Achieving Higher Performance by Improving the GridRPC Model,” in

Proceedings of the 9th IEEE/ACM International Conference on Grid Com-

puting (Grid 2008), Tsukuba, Japan, vol. 29, 2008. 5, 20

111

REFERENCES

[26] T. Brady, E. Konstantinov, and A. Lastovetsky, “SmartNetSolve: High level

programming system for high performance Grid computing,” in Proc. of

the 20 th International Parallel and Distributed Symposium (IPDPS 2006),

IEEE Computer Society, 2006. 5, 18

[27] H. Casanova and J. Dongarra, “NetSolve: A network-enabled server for solv-

ing computational science problems,” International Journal of High Perfor-

mance Computing Applications, vol. 11, no. 3, p. 212, 1997. 5

[28] A. Lastovetsky, “mpC: a multi-paradigm programming language for mas-

sively parallel computers,” ACM SIGPLAN Notices, vol. 31, no. 2, pp. 13–20,

1996. 6

[29] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a message-passing li-

brary for heterogeneous networks of computers,” Journal of Parallel and

Distributed Computing, vol. 66, no. 2, pp. 197–220, 2006. 6

[30] H. Casanova and J. Dongarra, “NetSolve: A network-enabled server for solv-

ing computational science problems,” International Journal of High Perfor-

mance Computing Applications, vol. 11, no. 3, p. 212, 1997. 14

[31] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Tak-

agi, “Ninf: A network based information library for global world-wide

computing infrastructure,” Lecture Notes in Computer Science, vol. 1225,

pp. 491–502, 1997. 14

[32] H. Casanova, M. Kim, J. Plank, and J. Dongarra, “Adaptive scheduling for

task farming with grid middleware,” International Journal of High Perfor-

mance Computing Applications, vol. 13, no. 3, p. 231, 1999. 15

[33] D. Arnold and J. Dongarra, “The netsolve environment: Progressing to-

wards the seamless grid,” in Parallel Processing, 2000. Proceedings. 2000

International Workshops on, pp. 199–206, 2000. 15

[34] F. Desprez and E. Jeannot, “Add data persistence and redistribution to

netsolve,” LIP, ENS Lyon, Tech. Rep, 2002. 16

112

REFERENCES

[35] F. Desprez, E. Jeannot, I. LIP, and F. Lyon, “Improving the GridRPC model

with data persistence and redistribution,” in Parallel and Distributed Com-

puting, 2004. Third International Symposium on/Algorithms, Models and

Tools for Parallel Computing on Heterogeneous Networks, 2004. Third In-

ternational Workshop on, pp. 193–200, 2004. 17

[36] B. Del-Fabbro, D. Laiymani, J. Nicod, and L. Philippe, “Data management

in grid applications providers,” in Distributed Frameworks for Multimedia

Applications, 2005. DFMA’05. First International Conference on, pp. 315–

322, 2005. 17

[37] E. Caron, “Managing data persistence in network enabled servers,” Scientific

Programming, vol. 13, no. 4, pp. 333–354, 2005. 17

[38] D. Arnold, H. Casanova, and J. Dongarra, “Innovations of the NetSolve grid

computing system,” Concurrency and Computation: Practice and Experi-

ence, vol. 14, no. 13-15, pp. 1457–1479, 2002. 17

[39] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra, “Netsolve: Grid en-

abling scientific computing environments,” Grid Computing and New Fron-

tiers of High Performance Processing, 2005. 18

[40] I. Foster and C. Kesselman, “Globus: A toolkit-based grid architecture,” The

Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann,

vol. 259, p. 278, 1999. 18

[41] M. Guidolin and A. Lastovetsky, “ADL: An Algorithm Definition Language

for SmartGridSolve,” in Grid Computing, 2008 9th IEEE/ACM Interna-

tional Conference on, pp. 322–327, 2008. 18

[42] A. Lastovetsky, X. Zuo, and P. Zhao, “A Non-intrusive and Incremental Ap-

proach to Enabling Direct Communications in RPC-Based Grid Program-

ming Systems,” Lecture Notes In Computer Science, vol. 3993, p. 1008, 2006.

19

113

REFERENCES

[43] Y. Tanimura, H. Nakada, Y. Tanaka, and S. Sekiguchi, “Design and imple-

mentation of distributed task sequencing on gridrpc,” in CIT06: Proceedings

of the Sixth IEEE International Conference on Computer and Information

Technology (CIT06), p. 67, 2006. 19

[44] A. Amar, R. Bolze, A. Bouteiller, A. Chis, Y. Caniou, E. Caron, P. Chouhan,

G. Le Mahec, H. Dail, B. Depardon, et al., “DIET: New developments and

recent results,” Lecture Notes in Computer Science, vol. 4375, p. 150, 2007.

20

[45] E. Loureiro, “All in one Graphical Tool for the management of DIET a

GridRPC Middleware,” 2008. 20

[46] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith, and

S. Tuecke, “A directory service for configuring high-performance distributed

computations,” in Proc. 6th IEEE Symp. on High Performance Distributed

Computing, vol. 365, p. 375, 1997. 22

[47] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka, “Ninf-

G: A reference implementation of RPC-based programming middleware for

Grid computing,” Journal of Grid Computing, vol. 1, no. 1, pp. 41–51, 2003.

22

[48] J. Schopf, M. DArcy, N. Miller, L. Pearlman, I. Foster, and C. Kesselman,

“Monitoring and discovery in a web services framework: Functionality and

performance of the globus toolkits mds4,” Preprint ANL/MCS-P1248-0405,

Argonne National Laboratory, Argonne, IL, 2005. 23

[49] R. Higgins and A. Lastovetsky, “Managing the construction and use of func-

tional performance models in a grid environment,” in Proceedings of the 23rd

International Parallel and Distributed Symposium (IPDPS2009), 2008. 29

[50] A. Lastovetsky, R. Reddy, and R. Higgins, “Building the functional perfor-

mance model of a processor,” in Proceedings of the 2006 ACM symposium

on Applied computing, pp. 746–753, ACM New York, NY, USA, 2006. 29

114

REFERENCES

[51] R. Wolski, N. Spring, and J. Hayes, “The network weather service: A dis-

tributed resource performance forecasting service for metacomputing,” Fu-

ture Generation Computer Systems, vol. 15, no. 5-6, pp. 757–768, 1999. 29

[52] Y. Caniou and E. Jeannot, “Experimental study of multi-criteria schedul-

ing heuristics for GridRPC systems,” Lecture notes in computer science,

pp. 1048–1055, 2004. 29

[53] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther,

J. Robertson, M. Theys, B. Yao, D. Hensgen, et al., “A comparison of eleven

static heuristics for mapping a class of independent tasks onto heterogeneous

distributed computing systems,” Journal of Parallel and Distributed Com-

puting, vol. 61, no. 6, pp. 810–837, 2001. 30

[54] J. Dongarra, “The LINPACK benchmark: An explanation,” Evaluating Su-

percomputers, pp. 1–21. 39

[55] D. Arnold, H. Casanova, and J. Dongarra, “Innovations of the NetSolve grid

computing system,” Concurrency and Computation: Practice and Experi-

ence, vol. 14, no. 13-15, pp. 1457–1479, 2002. 39

[56] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, et al., LAPACK

Users’ guide. Society for Industrial Mathematics, 1999. 43

[57] D. Ryu, J. Ostriker, H. Kang, and R. Cen, “A cosmological hydrodynamic

code based on the total variation diminishing scheme,” Astrophysical Jour-

nal, vol. 414, pp. 1–1, 1993. 66

[58] M. Guidolin and A. Lastovetsky, “Hydropad: a Scientific Application for

Benchmarking GridRPC-Based Programming Systems,” Proceedings of the

23rd International Parallel and Distributed Symposium (IPDPS2009), 2009.

66

[59] R. Hockney and J. Eastwood, Computer simulation using particles. Institute

of Physics Publishing, 1988. 67

115

REFERENCES

[60] P. Colella and P. Woodward, “The piecewise parabolic method(PPM) for

gas-dynamical simulations,” Journal of computational physics, vol. 54, no. 1,

pp. 174–201, 1984. 68

[61] E. Bertschinger, “COSMICS: cosmological initial conditions and microwave

anisotropy codes,” Arxiv preprint astro-ph/9506070, 1995. 69

116

	1 Introduction
	2 Motivation
	2.1 Motivation: GridRPC model
	2.2 Motivation: SmartGridRPC model

	3 Related research
	4 GridRPC programming model and API
	4.1 Design of the GridRPC programming model
	4.2 GridRPC : API and semantics
	4.3 GridRPC : A GridRPC application

	5 SmartGridRPC programming model and API
	5.1 Design of the SmartGridRPC programming model
	5.2 SmartGridRPC: API and semantics
	5.3 SmartGridRPC: A SmartGridRPC application

	6 GridSolve: Implementation of the GridRPC model
	6.1 GridSolve: Agent discovery
	6.2 Run-time GridRPC task call
	6.3 GridSolve: Performance models
	6.4 GridSolve: Mapping heuristic

	7 SmartGridSolve: Implementation of the SmartGridRPC model
	7.1 SmartGridSolve: Agent discovery
	7.2 Run-time of client application
	7.3 SmartGridSolve performance models
	7.3.1 Network graph
	7.3.2 Task graph

	7.4 Mapping Solution Graph
	7.5 Communication model
	7.6 Fault tolerance

	8 SmartGridRPC benchmark application: The evolution of a cluster of galaxies
	8.1 GridRPC implementation of Hydropad
	8.2 SmartGridRPC implementation of Hydropad

	9 Experimental results
	9.1 Experiments with the GridSolve version of Hydropad
	9.2 Experiments with the SmartGridSolve version of Hydropad

	10 Conclusion
	10.1 Contributions

	A Appdx A - SmartGridSolve Manual
	A.1 Using SmartGridSolve
	A.2 SmartGridSolve API
	A.2.1 The grpc_map() function
	A.2.2 The grpc_map_ft() function
	A.2.3 The grpc_local() function

	B Appdx B - Hydropad Manual
	B.1 Introduction to Hydropad
	B.2 Installing Hydropad

	References

