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Abstract

High Performance Computing is essential to continued advancement in many

scientific and engineering fields. In recent years, due to the increasing scale of

the platforms and the breakdown of laws which had long since supported rapid

expansion, energy efficiency has emerged as a new design constraint on HPC

platforms and applications. This constraint has increased the heterogeneity

found in HPC nodes, seen in the form of higher CPU core counts and the

adoption of specialised hardware accelerators. In an effort to address this

new metric, models have been developed to capture and predict power and

energy consumption, of application and systems.

In this thesis, we survey the state of the art in modelling and perform an

evaluation of the existing methods. We then address the problem of accurate

application energy and power measurement at multiple levels of granularity, in-

cluding node, components and cluster level. We contribute multiple measure-

ment tools targeted at researchers, and include case studies demonstrating

their application, to facilitate standard methods in our field. Finally, we intro-

duce a methodology for selecting the ideal accelerator device with respect to

performance and energy efficiency to execute a given algorithm 1.

1This research is supported by the Structured PhD in Simulation Science which is funded
by the Programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by
the European Regional Development Fund
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Chapter 1

Introduction

1.1 Motivation

High Performance Computing (HPC) is the use of extremely powerful com-

puting infrastructure, known as supercomputers to process large amounts of

data or compute complex calculations in a reasonable timeframe. The pri-

mary applications of the field are weather prediction [6], molecular modelling

[7], bioinformatics [8], physical simulations [9], and petrochemical exploration

[10]. These applications have been driving the development of supercomput-

ers possessing ever greater computational capability, however progress has

hit new challenges in the form of physical constraints on scaling processor

frequency for increased performance and power consumption of both compu-

tational hardware and cooling infrastructure.

A modern supercomputer is typically a distributed system, in which many

commodity server computers known as nodes cooperate through a high speed

communication network. These nodes, like all modern computers, are subject

to Dennard scaling [11], which states that as the component transistors of the

processing cores are reduced in size, power consumption scales down for a

unit area of processor chip area. This scaling has allowed manufacturers to in-

crease clock frequency and maintain a constantly stable power consumption,

low enough to be dissipated by traditional cooling. The relation of frequency

(f ), voltage (V ), capacitance (C), and switching activity (α) to power dissipa-

1



1.1. MOTIVATION

tion (P ) can be seen in equation 1.1.

P = αCV 2f (1.1)

As of 2006, this law has failed for new technology nodes and the resulting

increases in power consumption and heat production has driven chip manufac-

turers to transition to multi-core CPUs, with minimal clock frequency increases.

The move to multi-core processors has increased the heterogeneity of these

systems and with it, an increase in programming difficultly. If the current trend

continues, increasing the number of cores per CPU will increase the set of

permutations of processor configurations, expanding the potential for optimi-

sation. To explore this space, we will need advanced tools and models similar

to those which exist for performance optimisation [12]. We require the means

to measure application energy consumption at multiple levels of granularity,

namely, the component, node, and distributed cluster level. As we will discuss

later, these tools are not yet available.

In parallel to this multi-core revolution, computational scientists are using

Graphics Processing Units (GPUs) which have demonstrated significant per-

formance increases relative to optimised CPU implementations [13, 14, 15].

Multiple accelerators are now commonly found in modern heterogeneous

nodes, including Intel’s Xeon Phi, Nvidia and AMD’s GPU and the emerg-

ing Field Programmable Gate Array (FPGA) based accelerators from Xilinx

and Intel (formerly Altera). Each accelerator has its own advantages and dis-

advantages [16, 17], with each having differing compute capabilities, memory

bandwidth, power consumption and cost. Recent efforts have focused on mod-

elling and instrumenting these devices in isolation.

In HPC, the top performing systems are ranked by their performance

achieved in running the LINPACK benchmark [18] as measured in Floating

Point Operations Per Second (FLOPS). In a similar vein, as the electrical con-

sumption of compute infrastructure has continuously risen [19], to rival the cost

of that infrastructure [20], it was recognised in 2007 [21], that a ranking of su-

percomputer infrastructure by energy efficiency would be valuable. As such,

energy efficiency is recognised by the Green500 [22] list, ranking the top sys-

2



1.2. APPROACH

tems in the world by energy efficiency rating as measured by performance per

Watt.

1.2 Approach

Modern high performance computing infrastructure is opaque to researchers

studying energy efficiency. In this thesis, we consider the problem of accu-

rately measuring energy related data at multiple levels of granularity. By pro-

viding tools, we hope to establish repeatable experiments and methods, and

by targeting commodity hardware and a large European scientific platform

(GRID5000), we hope to remove the need for bespoke solutions commonly

found in the literature. The combination should facilitate foundational research

in this area.

Throughout this work we demonstrate our solutions by case study using

relevant applications or benchmark suites.

For the purposes of our investigation we consider the extreme case of het-

erogeneity in our platform. The trend in supercomputing infrastructure design

is to increase the number of processor cores and to augment the node with

several accelerator devices. An exemplar of this construction is our own HCL

node as seen in Fig 1.1 which we use in several experiments.

Figure 1.1: UCD HCL Heterogeneous Node

3



1.3. CONTRIBUTIONS

1.3 Contributions

The major contributions of this thesis are:

• A comprehensive survey of energy and power models and measure-

ment methods for HPC platforms and applications, including evaluation

and criticism of existing Performance Monitoring Counter (PMC) based

models on multicore devices.

• Design of an energy measurement methodology at multiple levels of

hardware granularity, including node level, cluster level and accelerator

level.

• Implementations of this measurement methodology in the form of several

measurement and modelling tools for applications at these granularities,

providing meaningful statistical analysis not found in other tools.

• A Methodology for predicting which accelerator device is optimal in terms

of performance or energy efficiency for executing an application. The

method extends the Berkeley Roofline model and we provide a semi-

automated toolflow implementation. This work includes a mapping of

OpenCL programming model metrics to the Berkeley roofline model for

multiple devices, including a novel FPGA accelerator.

• An evaluation of this methodology using multiple accelerators, including

architecturally driven analysis for the performance of each accelerator.

1.4 Thesis Structure

The structure of this thesis is as follows: In Chapter 2, we describe the back-

ground and related work, detailing the state of the art in modern heteroge-

neous computing infrastructure, current tools and methods, giving context for

our contributions. In Chapter 3 we study instrumentation, specifically we con-

sider the problem of studying application energy efficiency on a modern HPC

node, and we describe our solution and demonstrate its use in a case study

4
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of its use on a wide variety of applications, under multiple configurations. In

Chapter 4 we describe the use of accelerators in HPC, the role they play in

energy efficiency and our solution for studying the energy efficiency on mod-

ern accelerators. In Chapter 5 we describe the problem of identifying how

to select the appropriate accelerator device for an application and our mod-

elling solution. Our solution is demonstrated by use of a case study of a data

center application across multiple accelerators, including a novel FPGA based

accelerator. Finally, we conclude with a discussion, claims and future work.

1.5 Relationship to Other Work

The work of Chapter 2 is the product of a collaboration with Dr. Ilia Pietri of

the University of Manchester, UK. The merging of our background research

in this field was the basis of the literature survey. The work was advised by

our respective supervisors Dr. Alexey Lastovetsky and Dr. Rizos Sakellariou.

The experimental component was designed and carried out as a collabora-

tion between myself and Dr. Ravi Reddy, the postdoctoral researcher of the

Hetergeneous Computing Lab at UCD.

With respect to Chapter 3, on node level measurements, my contributions

were the design and development of the software HCLEnergyAPI, the work

of instrumenting the NAS NPB software with HCLEnergyAPI, and the design

and execution of the experiments. The project idea came from the previously

mentioned collaboration with Dr. Ilia Pietri, who with her supervisor Dr. Rizos

Sakellariou contributed improvements to the text of final paper. The work was

advised by Dr. Alexey Lastovetsky.

Concerning the work of Chapter 4, all contributions were my own. I de-

signed and developed the tool HCLpower. I also carried out the design and

execution of the experiments on the GRID5000 infrastructure. The work was

advised by Dr. Alexey Lastovetsky.

Finally, the work of Chapter 5, was carried out during my six month long

industry internship project, at Xilinx Inc., Ireland. My contributions were the de-

velopment of the optimised hardware and software components of the FPGA

5
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system using experimental tools. I collaborated with Dr. Servesh Muralidharan

and Mr. Christian Lalanne, both performance engineers from the Irish Center

of High End Computing (ICHEC) on the implementation of the GPU and Xeon

Phi accelerator software components. The experimental design and execution,

was a collaboration between myself, Dr. Muralidharan, and Mr. Lalanne. The

modelling component was a collaboration between myself and Dr. Muralidha-

ran. The work was supervised by Michaela Blott, my internship supervisor at

Xilinx, with prior project approval of Dr. Lastovetsky.

6



Chapter 2

Background and Related Works

In this chapter the background to our research is surveyed [3], giving all nec-

essary foundations for the rest of this thesis.

2.1 Definitions

Throughout this thesis there is reference made to both power and energy. For

clarity the definitions of these terms and their units are stated. Power is the

rate of consumption of electricity per second as measured in units of Watt (W).

Energy is the amount of work carried out as measured in units of Joules(J).

As power is a rate over time measured in seconds (s), all three terms can be

related by equation 2.1.

E(J) = P(W ) ∗ t(s) (2.1)

There are several related laws which must be considered with respect to

performance and energy efficiency. They are:

1. Moore’s Law - the number of transistors in Integrated Circuits (ICs) dou-

bles every two years [23].

2. Dennard scaling - as transistor are made smaller, the power density

of a processor made of these transistors will remain constant, causing
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power use to remain proportional to the area of the IC as voltage and

current scale down with length of the transitor [11].

3. Koomey’s Law - The number of computations per Joule doubles every

1.57 years [24].

2.2 Measurement

In this section the various methods used to obtain power measurements are

discussed.

2.2.1 Supercomputer Scale

Supercomputers draw enormous amounts of power, with the top 10 fastest

supercomputers drawing between 1.3 and 17.8 Mega-Watts (MWs) [25]. At

this scale power may be measured through the datacenter power distribution

system as a single value, but as supercomputer infrastructure is often com-

posed of N identical nodes, the total power P̄ (Rmax) consumed by a super-

computer is typically determined by direct measurement of a single node’s

power P̄node(Rmax) while running the linpack benchmark [18], as is advised for

submissions to the GREEN500 list [22]. The total power consumed is then

dictated by equation 2.2.

P̄ (Rmax) = N ∗ P̄node(Rmax)[26] (2.2)

Though large scale measurement at the node level [27] and even to a multi-

site grid [28] have begun to emerge, there is no standard way to measure or

access total power across a supercomputer. In this thesis, we focus on smaller

granularity of multiple nodes, single node and single accelerators.

2.2.2 Node Scale - Direct Measurement

The primary means of direct measurement is to use a clamp meter, which

though affordable offer moderate accuracy, or inline power meters (Watts Up
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Pro for example) which may be expensive but accurate, to measure the mains

power entering the Performance Supply Unit (PSU) of the node. Another

method supported by some commodity servers is the provision of power con-

sumption data by the server’s internal maintenance interface, through a net-

work protocol such as IPMI.

2.2.3 Component Scale - Direct Measurement

To measure individual components of a node, such as an accelerator, a shunt

resistor may be used in conjunction with a PCIe riser card to intercept the

power rails of the device [29]. Though intrusive and not scalable, this method

offers high accuracy as it is transparent to the device, and so the state is not

altered by measurement.

2.3 Developments in Energy Efficient Hardware

2.3.1 Processor level

Several advancements have been made in processor design to aid in energy

efficiency. The being dynamic frequency scaling, which enables a proces-

sor to reduce the power it consumes by lowering its clock frequency. As fre-

quency is a component of the power consumption equation of Complementary

Metal-oxide-semiconductor (CMOS) (Equation 1.1) systems, processor ven-

dors added the ability to reduce frequency in discrete steps. When frequency

is reduced, voltage is also typically lowered, leading to further power savings.

Each of the possible frequency/voltage combinations are given labels known

as P-States. P0 is the maximum frequency of the processor and subsequent

lower states P1...PN are given by stepping back the frequency by a vendor

defined step.

Driven by extending operating time on battery powered laptops, AMD intro-

duced its implementation "PowerNow!" in 2000, followed by Intel’s implemen-

tation called Enhanced Intel Speed Step (EIST) in 2005. These technologies

were later advanced and ported to desktop and server platforms. The fre-
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quency of the processor is controlled by the operating system the processor is

executing. There are multiple strategies for selecting which frequency should

be set at a given time for a given core. These strategies are implemented as

various user selectable "governors".

In addition to scaling frequency and voltage, processor designers have

added functionality to processors to control which of the multiple components

of the processor is allowed to receive power and thus be in an active state.

As with P-States, the possible configurations are discrete states, known as C-

States. The default state, in which the processor is functioning with all compo-

nents active is known as C0. Lower states, such as C1 means the processor is

not currently executing instructions, but could return to C0 immediately. Lower

states begin to disable parts of the processor such as deactivating the caches

or stopping the clock signal entirely (a technique known as clock gating) to

drastically reduce the power consumed.

Multicore

Approaches to processor design at the core level have also been developed

with benefits to energy efficiency. Driven by the collapse of Dennard scaling,

Central Processing Units (CPUs) with multiple cores were mass produced from

2005.

Several novel CPU designs have been produced to increase perfor-

mance and power efficiency. One such example is the heterogeneous ARM

"big.LITTLE" architecture [30], in which small, slower clocked cores are cou-

pled with larger, faster more power hungry cores. The rationale behind this

approach is that most of the time, the small cores will be sufficient to deliver

reasonable performance whilst drawing a small amount of power, but when

more complex operations or heavier workload is presented, the small cores

power off and the large cores power on, with the overall effect of reducing

power consumption but without compromising performance when it is needed.

The origin of ARM processors as embedded processors with power consump-

tion an architectural concern, has led the company to produce server class

processors [31] as this property is now valuable in datacenters, showing en-
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ergy efficiency benefits, using only 33% of the energy compared to similar x86

servers [32].

2.4 Models

There have been many efforts to model power consumption of nodes based on

summation of the power drawn by individual components. Some efforts have

focused on CPU with single or multiple cores [33], [34], [35], [36], [37], [38],

[39], [40], whilst others have focused on accelerator devices such as GPU[41],

[42], [43], [44], [45], [46].

These models are primarily linear regression based, and attempt to cor-

relate the power consumption of components with some metric of activity

or utilisation such as device performance counters. Others try to capture

non-linearity through methods such as artificial neural networks [45], random

forests [42] and fuzzy wavelet neural networks [46].

Compute devices are the primary focus of these efforts as they are the

most power hungry compared to storage and networking components.

In this section the existing models are surveyed and classified, extracting

the core common features with the aim to highlight any shortcomings.

2.4.1 Classification of Models

In table 2.1 the key features of the models are outlined in this survey. Biblio-

graphical reference are used as the name of the model. The attribute "Level

of abstraction" characterises how the model does or does not capture the hi-

erarchical nature of the device its modelling.

1. Linear Independence - All the components considered are assumed to

operate independently. The model’s output is the summation of all con-

tributions.

2. Linear Dependence - The models are constructed taking into account

the shared physical resources, such as caches. The model’s output is

the summation of all contributions.
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Table 2.1: Key characteristics of the power and energy models.

Model Characteristic Description
Model Name of the model and year of publication
Parameters Parameters of the model
Level of abstraction How the model captures the hierarchical nature of

modern processor architectures?
Type of power Is the predicted power instantaneous or average?
Is energy predicted? Is Energy predicted? If yes, how?
Decomposition Does the model provide per-component power and en-

ergy breakdown?
Accuracy of
power predic-
tion

Accuracy
of dynamic
power pre-
diction

The maximum percent error in the dynamic power pre-
diction calculated from the total power and static power
consumptions reported by the authors

Accuracy of
total power
prediction

The maximum percent error in the total power predic-
tion reported by the authors

Accuracy of energy predic-
tion

The maximum percent error in the energy prediction
reported by the authors

Implementation Complex-
ity (effort-week/effort-
month/effort-year
(EW/EM/EY))

The implementation effort required to build the model

Portability Is the model portable to next-gen processors in the
same architecture space?
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3. Nonlinear Independence - All the components considered are assumed

to operate independently. The model’s output is a non linear combination

of its parts.

4. Nonlinear Dependence - The models are constructed taking into account

the shared physical resources, such as caches. The model’s output is a

non linear combination of its parts.

Pinstantaneous = lim
∆T→0

Pavg = lim
∆T→0

∆E/∆T = dE/dt (2.3)

The attribute "Type of power" specifies if the power predicted by the model

is average power for an execution, or instantaneous power. The average power

is defined as ∆E/∆T where ∆E is the total energy consumed and ∆T is the

execution time of the application. Instantaneous power is defined in equation

2.3. For models in this survey, instantaneous power is representative of a one

second interval as that is the resolution of the measurement devices.

Power can be further broken down into two components, static and dy-

namic. Static power is power drawn when the device is not performing any

work. Dynamic power is power drawn by the switching activity of the compo-

nents due to activity. Static power is also referred to as base power, leakage

power or idle power. Some authors [47] differentiate base power from idle

power, where base power is minimum power drawn when all processor cores

are in C-State C0, i.e. active, and idle power is the minimum possible power

drawn when the processor cores are in low C-State of C3 to C6.

From an application point of view, we define dynamic and static power as

the power drawn when the application we are studying is or is not executing

respectively. From a component point of view, accelerators for example, to

determine the static power draw, the total system power drawn by a node

is measured, then the accelerator is added and the measurement is taken

again. The difference in power consumption is the static power. To determine

dynamic power consumption, an application is measured and the static power

value is subtracted. In this work, when reference is made to power, it is defined

as the sum of dynamic and static power, unless otherwise stated.
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The attribute "Is energy predicted?" specifies whether or not energy is pre-

dicted by the model and if so, how? There are two possibilities. First, the

model could predict performance and power separately, then compute energy

by their product. Secondly, energy could be predicted explicitly.

The error of the prediction is given by equation 2.4. Actual value is

recorded by a power meter, and Predicted value is given by the model.

Percent error of prediction =
|Actual value - Predicted value|

Actual value
× 100 (2.4)

The attribute "Accuracy of energy prediction" is the maximum error of the

model’s prediction as reported by the authors, in Joules.

The attribute "Implementation complexity" evaluates the effort required by

a researcher in our field to construct the model. It is an attempt to gauge the

difficulty of build some of the models given, the more difficult models being

artificial neural networks.

The attribute "Portability" conveys the applicability of a model to make ac-

curate predictions for devices of subsequent architectures. For instance, for

Nvidia GPU, a model for Kepler architecture devices, should be usable for sub-

sequent Maxwell and Pascal devices. It is not expected that models for CPU

would be applicable to GPU devices, so we do not consider this. Portability

in this work, rather measures how resistant a model is to large architectural

changes such as architectures deprecating performance counters and those

based on specific performance counters.

2.4.2 Power and Energy Models for CPU

The first models for power consumption focused on CPU components as they

are from an era before hardware accelerators were commonplace. Subse-

quent models included other system components such as memory. These

models are presented in table 2.2. One of the first models was developed

by Bellosa [33] and is based on PMCs. Performance events such as integer

and floating point operations, as well as memory requests were used to build
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a linear model of power consumption of the application. To build the model,

multiple synthetic benchmarks are executed and counters are correlated to fit

the model.

Isci [34] proposed a model which captures the power contributions of in-

dividual components of the CPU, and determines 22 performance counters

which are representative of these components. Benchmarks were executed

and the total power of the system was measured with a multimeter.
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Table 2.2: Power and Energy Models. ‘-’ indicates not reported.

Model
Level
of Ab-
strac-
tion

Type of
Power

Is Energy
Predicted?

Accuracy
of Power
Predic-
tion

Accuracy
of
Energy
Predic-
tion

Implementation
Complexity

Portability

Dynamic Total

CPU
[33] Linear Inde-

pendence

Average Explicit - - - 1 EM Yes

[34] Linear Inde-

pendence

Instantaneous,

Average

No - - - 3 EM No

[35] Linear Inde-

pendence

Instantaneous No - 2.7% - 1 EW No

[36] Linear Inde-

pendence

Instantaneous No - 15% - 1 EW No

[48] Linear Inde-

pendence

Average Power ×
Timing

- 24.5% - 1 EM No

[37] Linear Inde-

pendence

Instantaneous No - - - 1 EW No

[37] Non-linear

Indepen-

dence

Instantaneous No - - - 1 EW No

[49] Linear Inde-

pendence

Instantaneous Yes - - 4% 1 EW Yes
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[38] Non-linear

Indepen-

dence

Instantaneous No - - - 1 EW No

[39] Linear Inde-

pendence

Instantaneous No - 9% - 1 EM Yes

[50] Linear De-

pendence

Average No - 4% - 1 EM Yes

[51] Linear Inde-

pendence

Average No 14% 10.15% - 3 EM Yes

[40] Non-linear

Indepen-

dence

Instantaneous,

Average

No - 14.1% - 3 EM No

GPU
[41] Linear Inde-

pendence

Average Power ×
Timing

18% 8.94% - 3 EM No

[44] Linear Inde-

pendence

Average No - 23% - 3 EM Yes

[42] Non-linear

Indepen-

dence

Average No 12.95% 7.77% - 3 EM Yes

[52] Non-linear

Indepen-

dence

Average No - 4.34% - 3 EM Yes

[43] Linear Inde-

pendence

Average No 24% 12% - 1 EM Yes
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[45] Non-linear

Indepen-

dence

Average Power ×
Timing

- 2.1% 11.02% 3 EM Yes

[53] Non-linear

Indepen-

dence

Average Yes 15.14% 12.8% - 3 EM Yes

[46] Non-linear

Indepen-

dence

Average Power ×
Timing

- 6% - 3 EM Yes

Intel Xeon Phi
[54] Linear Inde-

pendence

Average Explicit - - 5% 3 EM No

HPC Applications
[55] Linear Inde-

pendence

Average No - - - 3 EM Yes

[56] Linear Inde-

pendence

Average Power ×
Timing

- 5.6% - 1 EM No

[57] Non-linear

Indepen-

dence

Average Explicit - 5.5% 7% 3 EM Yes

[58] Linear Inde-

pendence

Average No - 4.94% - 2 EW Yes

[59] Linear Inde-

pendence

Average Power ×
Timing

- - 1.41% 1 EM Yes
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[60] Linear Inde-

pendence

Average Power ×
Timing

- - -6.82% 2 EM Yes

[61] Linear Inde-

pendence

Average No - 10% - 3 EM Yes

[62] Linear Inde-

pendence

- Explicit - - 15% 2 EW Yes
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TotalPower =
22∑
i=1

Power(Ci) +BasePower (2.5)

Power(Ci) = AccessRate(Ci)× ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci)
(2.6)

The parameter, BasePower, is the base power consumption of

the Pentium 4 platform used in their experiments. The parameter,

(ArchitecturalScaling(Ci)), is a conditional clock power factor used to model

the non-linear behaviour of some issue logic units. The values of the parame-

ters, MaxPower(Ci) and NonGatedClockPower(Ci), are obtained for each

of the units using physical areas on the die and training benchmarks.

Lee [48] used PMCs to build a regression model of power in two steps.

First they derived a baseline power estimation, then they refined it with further

sampling. They reported a median error rate of 4.3% and a maximum error of

24.5%.

Node power was modelled linearly by [35] and its parameters are utilization

of CPU, disk, and network as seen below,

P = Cbase + C1 × UCPU + C2 × UDisk + C3 × UNet (2.7)

where Cbase is the base power consumption of a node and the coefficients

C1, C2, and C3 for power consumptions of CPU, disk, and network, respec-

tively are determined using several benchmarks. Total power measurements

and utilization data for CPU, disk, and network were collected using a multi-

meter to compute the least-squares fit and to determine the coefficients of the

model. Reported average and maximum prediction errors of the models were

1.3% and 2.7% respectively.

A similar but more complex power model (Mantis) was proposed in [36],

adding memory access to the model. It is formulated as:

P = Cbase + C1 × UCPU + C2 × UMem + C3 × UDisk + C4 × UNet (2.8)

The models were calibrated for two server systems using idle runs and
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different configurations of Gamut [63] to emulate applications with varying

resource needs. Several benchmarks (SPECcpu2000, SPECjbb2000, and

SPECweb2005 suites) [64] and STREAM benchmark [65]) were used in the

evaluation.

Fan [37] proposed a linear model of power based solely of single core CPU

utilisation.

PCPU = Pbase + (Pmax − Pbase)× (U/100) (2.9)

Here, Pmax represents the power consumption at maximum utilization. The

parameter, U , signifies the utilization of the processor. They refine these mod-

els further as follows:

P = Cbase + C1 × (2× UCPU − U r
CPU) (2.10)

where an empirical term is added to increase the accuracy of the model. The

tuning parameter r is obtained during calibration using a model similar to Man-

tis [36].

Lewis [49] proposed a linear regression energy model as seen below:

E = a× (ECPU + EDRAM) + b× Eem + c× ESupport_Chipsets + d× EHDD

(2.11a)

EHDD = Pspin−up × tsu + Pread ×
∑

Nr × tr + Pwrite ×
∑

Nw × tw + Pbase × tbase
(2.11b)

Eem =
∑

Pfan × tipmi−slice +
∑

Poptical × toptical (2.11c)

ECPU is the energy consumption of the dual-core AMD Opteron processor. It

is predicted from four key contributors. These are traffic on the HyperTransport

bus [66], L2 cache misses, CPU core temperatures, disk read and write band-

widths, and ambient temperatures. EDRAM is the energy consumed by the

DRAM banks. Eem is the energy consumption of the cooling fans and optical

drives. EHDD is the energy consumption of the disk predicted from four com-

ponents: 1). Pspin−up, the power consumption to spin the disk to full rotation

and tsu is the time taken for the spin-up, 2). Pread is the power consumption
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to read kilobyte of data from the disk, 3). Pwrite is the power consumption to

write kilobyte of data to the disk, and 4). Pbase is the base power consump-

tion of the disk [49]. They reported a worse-case prediction error of 4% for

common processor benchmarks.

Energy profiling for applications using CPU and disk activity is the subject

in [67]. The profiling tool consists of a workload manager that triggers the mea-

surement process and event tracing related to OS operations, such as CPU

and disk I/O usage, the event logger for event logging using Windows Xperf

[68], and the energy profiler that correlates resource usage with the event

traces and profiles application energy usage across the various resources.

Rivoire [69], [70] studied and compared five full-system real-time power

models using a variety of machines and benchmarks. Four of these models

are utilization-based whereas the fifth includes CPU PMCs in the model pa-

rameter set along with the utilizations of CPU and disk. They reported that

PMC-based model is the best overall in terms of accuracy since it is able to

account for majority of the contributors to system’s dynamic power (especially

the memory activity). They also questioned the generality of their PMC-based

model since the PMCs used in their model parameter set may not have the

same essence across different architectures (Intel, AMD).

Wang[38] proposed a linear model to predict power consumption of a

server based on CPU utilisation based on the work in [67]:

P = Cbase + C1 × UCPU + C2 × UI/O (2.12)

Here, in addition to already described parameters, UI/O the I/O bandwidth in

MB/sec, and C1, C2 the coefficients of the model. A WattsUp power meter

is used to measure overall power consumption of the servers and to calibrate

the model.

Basmadjian [39] constructed a power model of a server as a summation of

power models of its components, the processor (CPU), memory (RAM), fans,

and disk (HDD). Based on the model evaluations on tower and blade servers,

the authors report maximum prediction error rates of 8% and 9% for tower

servers and blade servers respectively. This model is presented in detail in
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Appendix A.2.1.

Bertran [71] presented a power model that provides per-component power

breakdown of a multicore CPU. It can be described as follows:

Ptotal =

j=cores∑
j=1

(

i=ncomponents∑
i=1

ARij × Pi) + Pbase (2.13)

The parameter ARij is the activity ratio of component i in core j. The dy-

namic power consumption of a component i in core j is given by the product,

ARij × Pi. The parameter, ncomponents, represents the number of com-

ponents accommodated in their model. They reported their model can give

a per-component power breakdown. SPECcpu2006 benchmarks [64] were

used to validate the model, with average prediction errors between [1.89-6]%

and a maximum error of 10.15%.

Bircher [40] proposed an iterative modelling procedure to predict power

using PMCs. They used PMCs that represent activity of various system com-

ponents such as GPU, IO controllers and memory subsystems. The highest

error reported is 14.1% for the memory controller and the average error re-

ported is less than 9% per subsystem.

Basmadjian [50] reported that summation of power consumptions of all

active cores to derive the total power consumption is inaccurate and demon-

strated a model which takes into account resource sharing in their power pre-

diction model for multicore processors. They reported a maximum prediction

error of 5%.

Wang [72] presented an energy consumption model using three param-

eters, which are the concurrency level of the workload, the average power

dissipation of a thread, and the total time taken to execute the workload. Liu

[73] presented a method to predict the energy consumption of a task executing

in a multicore with several other tasks running simultaneously. Their method

used the resource utilization and occupancy of a task to predict its energy

consumption. On a 32-core multicore, they report an average and maximum

errors of 4% and 9% respectively.

Several other research efforts used a PMC approach to model power con-
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sumption. Gurumurthi [74] used analytical power models for CPU, memory,

and disk in their power simulator called SoftWatt to predict power consump-

tions of applications and OS services. Li [75] proposed power models for the

operating system (OS) based on their observations of strong correlation be-

tween instructions per cycle (IPC) and OS routine power. Singh [76] developed

per-core power models based on multiple linear regression using PMCs. Pow-

ell [77] used a linear regression model to estimate activity factors and power

for a large number of micro-architectural structures using a small number of

PMCs. Goel [78] derived per-core power models using PMC values and tem-

perature readings. Roy [79] proposed an energy model for an algorithm, which

expresses the energy for an algorithm as a weighted linear combination of

the time complexity of the algorithm and the number of “parallel” accesses to

the memory. Spiliopoulos [80] proposed linear regression models that predict

power consumption for any DVFS voltage and frequency combination sup-

ported by a computing platform.

McCullough [81] evaluated the competence of predictive power models for

modern node architectures and show that linear regression models show pre-

diction errors as high as 150%. They suggested that direct physical measure-

ment of power consumption should be the preferred approach to tackle the

inherent complexities posed by modern node architectures. As discussed in

2.2, direct measurement requires instrusive equipment, with additional support

from a datacenter operator. Dargie [82] used the statistics of CPU utilization

(instead of PMCs) to model the relationship between the power consumption

of multicore processor and workload quantitatively. They demonstrated that

the relationship is quadratic for single-core processor and linear for multicore

processors.

Finally, hardware vendors now provide software interfaces to measure and

control power and energy consumption of their processors, originally for sys-

tem adminstration. However, due to the disparate capabilities and the non-

uniformity of these interfaces, there is a real need for standardization to fa-

cilitate development of supporting infrastructures and tools. PowerAPI [83]

was the first large-scale effort in this direction. PowerAPI is an interface for

standardizing power and energy measurement and control for wide range of
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systems spanning desktops and datacenters to large-scale HPC systems.

Some key observations follow from the analysis of these models:

• The models by Econoumou [36] and Basmadjian [39] have high predic-

tion error than Heath [35] even though these models are more compre-

hensive by accounting for the power consumption from RAM.

• There is a noticeable difference between the power prediction accura-

cies of the models Economou [36] and Basmadjian [39], even though

they both take into account all the major resource utilizations (CPU,

RAM, Disk, NIC).

• The model by Basmadjian [39] has a higher prediction error than the

model [40], which employs a complex PMC-based approach to model

power consumption of all the architectural units of a CPU.

2.4.3 Power and Energy Models for GPUs

Driven by their immense computational capability, GPU are commonly found in

supercomputing platforms [25]. In this section we survey the prominent GPU

models, summarised in table (2.2) shows the key features of the GPU models.

Rofouei [84] used a linear model to calculate the energy consumption of a

GPU in their server from real-time energy measurements. The linear relation-

ship is presented below:

Egpu = tgpu × (Pavg−gpu + Pbase−cpu) + Etransfer (2.14)

where tgpu, Pavg−gpu, Pbase−cpu, and Etransfer denote the time of execution of

the application on the GPU, average power consumption of GPU, base power

consumption of CPU, and the energy consumption of data transfer between

CPU and GPU.

One of the first comprehensive models developed for a GPU architecture

was by Hong [41]. The GPU power consumption in their prediction model

is modelled similar to the PMC-based unit power prediction approach of Icsi

et al. [34]. Their model is presented in detail in Appendix A.2.2. In their
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model, the power consumption is calculated as sum of power consumptions

of all the components composing the Streaming Multiprocessor Architectures

(SMXs) and Graphics Double Data Rate 5 (GDDR5) memory. They reported

that the prediction error for the total power consumption is 8.94% and the

average energy consumption savings are 10.99% with a NVIDIA GTX280. The

main factor hindering the portability of this model is that it requires detailed

architectural information and contains a large set of parameters.

Nagasaka [44] presented a GPU PMC based approach for the Nvidia GTX

285. They reported an average error of 4.7% and a maximum error of 23% in

prediction of total power consumption.

Chen [42] used linear regression tree and random forest methods in their

models to predict GPU power consumption. The random forest method is

used to select the predictors that are the dominant contributors to the power

consumption. They also used Nvidia GTX 280 GPU. They report an average

percentage error (PE) of 7.77% for the total power consumption.

Kiran [43] proposed an analytical model to estimate activity factors and

power for micro-architectural structures on GPUs. The key difference from the

model [41] is that only two parameters, execution time and load rate, are used

to estimate unit-level dynamic power of a GPU. Their model can be described

as follows:

Total_power_consumption = DynamicPower +BasePower (2.15a)

DynamicPower =
n∑
i=1

(NSM,i × Pi × Ui) +Bi × Ui (2.15b)

where n is the number of architectural components, NSM,i is the number of

streaming processors utilizing an architectural component, Pi, Bi, and Ui are

the dynamic power consumption, base power consumption, and utilization of

the architectural component i respectively. A unit is defined as an architec-

tural component such as a floating-point unit (FP), shared memory (Shared),

or global memory (GlobalMem). A micro-benchmark is designed for each ar-

chitectural unit stressing the unit to obtain its Pi and Bi values. The utilization

rates Ui of the units are obtained from the application execution. The Nvidia
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Fermi C2075 GPU and MAGMA kernels are used for model evaluation in their

experiments. The maximum error in predictions for the total power consump-

tion is reported to be 12%.

Song [45] proposed power and energy prediction models that employ a

configurable, back-propagation, artificial neural network (BP-ANN). The pa-

rameters of the BP-ANN model are ten carefully selected PMCs of a GPU.

The values of these PMCs are obtained using the CUDA Profiling Tools Inter-

face (CUPTI) [85] during the application execution. Their energy model for a

GPU-based cluster can be described as follows [45]:

∀l,m, l ∈ Ψ,m ∈ Γ, E =
Ψ∑
l=1

[(
Γ∑

m=1

¯Pl,m × tgpu)+

P̄base × tgpu + Eparallel−overhead]tgpu = tpci + tkernel

(2.16)

Ψ represents the set of hybrid identical nodes where each node has multicore

processors and multi-GPUs. The set of GPUs in a node is denoted by Γ.

The parameter, tgpu, represents the execution time of the application on the

GPU cluster. P̄lm denotes the average dynamic power consumption of the

mth GPU on node l. This is predicted using an artificial neural network using

the PMCs. P̄base is the average base power consumption of the whole system

on node l without the GPU. The total execution time of the application, tgpu, is

the sum of PCIe data transfer time, tpci, and the kernel execution time, tkernel.

The parameter, tpci, is calculated as the size of the data transferred via the

PCIe link divided by the bandwidth of the PCIe link. The parameter tkernel is

predicted using a performance model. Eparallel−overhead represents the energy

consumption from parallel overhead due to network communications in the

cluster. A NVIDIA Tesla C2075 is used for model validation and analysis.

The authors [45] reported an average prediction error rate of 2.1% for their

power model and maximum prediction error percentage of 11% for their energy

model.

Marowka [86] presented analytical models for studying the energy con-

sumption of various architectural design choices for hybrid CPU-GPU chips.
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Their model for performance per watt for an asymmetric processor follows:

Perf

Wa

=
1

Ps + Pc + Pg
(2.17a)

Ps = (1− f)(1 + (c− 1)× kc + g × wg × kg) (2.17b)

Pc =
α× f
c
× (c+ g × wg × kg) (2.17c)

Pg =
(1− α)× f

g × β
× (g × wg + c× kc) (2.17d)

c is equal to the total number of CPU cores and g is equal to the total number of

GPU cores. α represents fraction of program’s execution time spent in parallel

execution on the CPU cores. β is the GPU core’s performance normalized

to that of the CPU core. f represents is the execution time of the fraction of

program that can be parallelized. Ps represents the power consumption during

the sequential computation phase. It is equal to power of 1 consumed by one

active CPU core plus remaining c − 1 CPU idle cores consuming a fraction

of power, kc, plus g idle GPU cores consuming fraction of power, kg × wg.

Pc represents parallel computation on CPU cores only. Pg denotes parallel

computation on GPU-cores only [86].

Lim[53] enhanced McPAT [87] to write a power model for GPUs. In their

power model, the total average power is calculated as a sum of the power

consumptions of all the components. It can be described as follows:

TotalPower =
n∑
i=0

P_Componenti = a× PSP_fpu_dyn + b× PSP_fpu_lkg+

c× PSP_alu_dyn + d× PSP_alu_lkg + e× PConstMem + POthers

(2.18)

where a, b, c, d, and e are scaling parameters. NVIDIA’s Fermi architecture

is used for building the power model. They report average prediction errors

of 7.7% and 12.8% for the micro-benchmarks (used to build the model) and

Merge benchmarks [88] respectively.

Wang [46] used the technique of program slicing to model GPU power

consumption. The source code of an application is decomposed into slices
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and these slices are used as basic units to train a power model based on

fuzzy wavelet artificial neural networks (FWNN). So, unlike earlier research

efforts which use PMCs, slicing features are extracted from the programs and

used in their model. They used three GPUs for evaluation of their model but

prediction error rates are not reported.

Ma [89] used support vector regression (SVR) to predict the power con-

sumption of a GPU based on workload signals. They choose five major work-

load signals representing the runtime utilizations of major pipeline stages in a

NVIDIA GeForce 8800gt GPU. Li [90] presented power and performance pre-

diction models to identify an energy-efficient consolidation of workloads. Xie

[91] built a power model based on native instructions to analyse and estimate

the power consumption at an architecture level. With proper profilers and tools,

they identify major power contributors in GPU architecture. These contributors

are divided into two groups, i.e. computing unit and memory access on which

different native instruction were run and measured separately as a foundation

for their energy prediction model.

AMD GPUs are also used in many HPC systems. For example: three sys-

tems in Top500 list ([25] and two in Green500 [22] use AMD FirePro GPUs

(the AMD Firepro Server S9150 also topped the November 2014 Green500

list). However, power and energy models for these GPUs are abysmally lack-

ing.

Zhang [52] employed a rigorous statistical model to predict power con-

sumption of GPGPU applications executing on an ATI Radeon HD5870 GPU.

They also used a Random Forest method to correlate the execution charac-

teristics and the power consumption of the GPU. They reported a median ab-

solute error of 4.34% for total power consumption. Zhao [92] examine the

power breakdown using McPAT [87] of different components of NVIDIA and

AMD GPUs such as cores and caches, memory controllers, and off-chip mem-

ory. Based on experiments on AMD Radeon HD7970, they report that the

off-chip DRAM accesses consume a significant portion (32 %) of the total sys-

tem power. To reduce the memory power consumption without compromising

the memory bandwidth, they scale down the supply voltage and frequency of

memory interface.
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Table 2.3: Power/Energy measurement infrastructures for the HPC applica-
tions on FPGAs

Model Power/Energy Measurement Infrastructure
[93] Data sheet TDPs ([94]) for FPGA, GPU, and CPU
[95] Xilinx XPower Estimator for FPGA [96]. For CPU and GPU,

power measured indirectly between mains and Host PC power
supply

[97] No details of how power is measured
[98] Wattsup? Pro power meter
[99] Olson remote power monitoring meter for the whole system
[100] Data sheet TDP for GPU. No details of how power is measured

for FPGA and CPU
[101] Xilinx XPower Estimator for FPGA [96]. No details of how

power is measured for GPU and CPU
[102] Fluke Norma 4000 Power Analyzer for the whole system
[103] Xilinx XPower Estimator 13.2 for FPGA [96], Data sheet TDPs

for GPU and CPU
[104] Xilinx Power Estimater for FPGA [96], data sheet TDP for GPU.
[105] PC diagnostics software utility EVEREST for CPU. For FP-

GAs and GPUs, a pincer galvanometer (equipment type
HIOKI3290)

[106] Power meter for the whole system
[107] No details of how power is measured
[108] Monitoring a wattmeter

One observation from the analysis of these models is that even though both

Song [45] and Wang [46] use sophisticated artificial neural network (ANN)

methods, there is a remarkable difference in their reported power prediction

errors, indicating that sufficient training set has not yet been identified.

2.4.4 Power and Energy Models for Xeon Phi and FPGA

In this section, we cover the other accelerators that are used in high perfor-

mance computing systems.

Xeon Phi [109] is the competing offering from Intel in the accelerator space

based on Intel’s Many Integrated Core Architecture or Intel MIC. The Top 500

(November 2017) list contains 26 supercomputers using Xeon Phi. This list
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includes the No.2 supercomputer Tianhe-2, which uses Xeon Phi 31S1P con-

taining 57 cores running at 1.1GHz. Table (2.2) shows the key features of

the models for Xeon Phi under the heading “Intel Xeon Phi”. We found just

one energy prediction model for this accelerator even though it appropriates

an appreciable share in the Top500 supercomputers. Shao [54] constructs an

instruction-level energy model of a Xeon Phi processor and report an accuracy

between 1% and 5% for real world applications. We believe this may be due

to the ability of the Xeon Phi to report its own power consumption directly from

an internal meter.

FPGAs (Field Programmable Gate Arrays) are another acceleration tech-

nology that holds immense promise for high performance computing plat-

forms. They have created the Reconfigurable Computing (RC) market seg-

ment, which exploited the inherent parallelism and reconfigurability provided

by them to “hardware accelerate” software algorithms. High-Performance Re-

configurable Computing (HPRC) [110] brought Reconfigurable Computing into

the high-performance computing sphere by combining FPGAs with multicore

CPUs. In a node, the FPGA is used as a coprocessor in the same manner as

a GPU or Xeon Phi, and is connected to a CPU through a PCI-Express (PCIe)

bus.

Mitta [111] reported that for several applications, FPGAs have demon-

strated better performance and energy efficiency than CPUs and GPUs. Ta-

ble (2.3) summarizes the power/energy measurement infrastructures used in

the studies that have compared the energy efficiency of FPGAs to CPUs and

GPUs [111]. All of these works use direct physical measurements and none

use models; some use power estimators for FPGAs provided by the vendors

which are based on a model of the switching factor of the components in the

design based on the CMOS power equation 1.1.

There are no linear regression models using PMCs because PMCs are not

yet offered by FPGAs. Ou [112] constructed a linear energy prediction model

based on instruction level energy profiling. Poon [113] presented a hardware-

level model, which uses a placement and routing CAD tool and in-depth knowl-

edge of FPGA architecture. Wang [114] proposed a linear component-based

model to predict energy consumption of a reconfigurable Multiprocessors-on-
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a-Programmable-Chip (MPoPCs) implemented on Xilinx FPGAs. Khatib [115]

proposed a linear instruction-level model to predict dynamic energy consump-

tion for soft processors in FPGA. The model considers both inter-instruction

effects and the operand values of the instructions.

2.4.5 Analytical Energy Models

Demmel [116] proved that a region of strong scaling in energy exists for ma-

trix multiplication and N-body problem. That is, they showed that for a given

problem size n, the energy consumption remains constant as the number of

processors p increases and the runtime decreases proportionally to p.

Choi [117] presented an energy roofline model based on the time-based

roofline model [118]. Their models for time and energy can be described as

follows:

T = max(W × τflop, Q× τmem

= W × τflop ×max(1,
Bτ

I
)

(2.19)

T denotes the running time of the algorithm (under the assumption of perfect

overlap between computations and memory operations). W and Q are the

number of arithmetic and memory operations respectively. I is the algorithm’s

computational intensity. τflop and τmem respectively are the time per flop and

time per mop. Bτ is called the time-balance point. Their energy model is

presented below [117]:

E = W × εflop +Q× εmem) + π0 × T

= W × ε̂flop × (1 +
B̂ε(I)

I
)

(2.20)

εflop and εmem respectively are the energy per flop and energy per mop. B̂ε(I)

is called the effective energy balance. They conclude that the balance gap

(Bε
Bτ

) represents the difficulty in achieving energy efficiency compared to time

efficiency. They validated their model on a Intel multicore CPU and a NVIDIA

Fermi GPU. They used PowerMon2 apparatus [119] for power and energy
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measurements.

Choi [120] extended the roofline model by adding parameters such as

power caps, memory hierarchy access costs, and measurement of random

memory access patterns. They conduct a microbenchmarking study of time,

energy, and power of computation and memory access for over dozen diverse

platforms, which include x86, ARM, GPU, and hybrid (AMD APU, SoC) proces-

sors. They conclude that constant power (or base power) is a critical limiting

factor accounting for about 50% of total power in 7 out of 12 platforms evalu-

ated. Based on these conclusions, they recommend further tighter integration

of non-processor and non-memory components.

Marszałkowski [121] analysed the impact of memory hierarchies on time-

energy trade-off in parallel computations. They formalised non-linear depen-

dence of execution time and energy on problem size. They use this formalisa-

tion in their multi-objective optimisation problem of minimising time and energy

in parallel processing of divisible loads. The total energy consumed is com-

puted as sum of energy consumed of all components.

2.4.6 Power and Energy Models in High Performance Com-

puting Applications

In this section, studies for saving power and energy specifically in HPC appli-

cations are presented. We examine

• How power and energy consumptions were measured (either via direct

measurements or models) for a node and for the whole cluster.

• How a power/energy model for a cluster is composed from the power/en-

ergy models of nodes.

• The prediction error of application-specific models to application-

agnostic (i.e., full-system or the component-specific) models.

Table 2.2 summarizes these studies under the heading “HPC Applications”.

Studies not shown in the table use direct physical measurements.
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Kamil [122] is a pioneering effort that studied power consumption of appli-

cations executing on large-scale HPC systems. They conclude that power con-

sumption of HPL benchmark is a good representative predictor for the power

consumption of a HPC workload and that power consumption of a large-scale

system can be accurately predicted from power measurements of smaller sub-

sets of the system. Their study was conducted on stand-alone systems and

a large-scale NERSC Cray XT4 system. Using results of a single cabinet in

the system, they model the system’s power usage. The power consumption of

a single rack is extrapolated linearly to the 102 racks that compose the HPC

system. Their model is described as follows:

DCWattssystem = 102×DCWattsrack + 50KW

= 102×DCAmpsrack × V oltsrack + 50KW
(2.21)

where 50KW is the power consumed by the disk subsystem.

Bui [55] proposed a power model using PMCs to predict power consump-

tion of parallel scientific applications running on modern multicore/multipro-

cessor systems. They modify the power model of [34] to model power con-

sumption for a modern Intel Itanium2 processor. For the architecture scaling

factor (a parameter modelled in [34] using component area ratios), transistor

counts are used as initial values. The power for each component is modelled

as a linear function of access rates of its architectural units. The total power

consumed by a processor is calculated as the sum of power consumptions of

its components and its base power. The total power consumption of a multi-

core system is then calculated as the sum of power consumptions of all the

cores/processors that are contained in it.

One of the most popular frameworks used for fine-grained power and en-

ergy profiling on parallel and distributed systems is the PowerPack framework

[123]. This toolkit contains both hardware and software components. An AC

power meter (Watt’s Up Pro) is used to measure the power draw from the wall

and DC power data acquisition devices (Analog Input Module NI 9205NI and

cDAQ chassis NI cDAQ9172) are used to obtain component-level power con-

sumptions inside a node through precise instrumentation of all its power rails.
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The software components provide facilities for synchronized collection of the

measurement data from various data streams and analysis of the data. The

toolkit is used to measure the power and energy consumption of one node at a

time. To obtain total power consumption of a whole cluster, a node remapping

approach [123] is used.

Subramaniam [56] used multiple linear regression to model the power con-

sumption of the High Performance Linpack (HPL) benchmark [124]. Out of

the 18 HPL parameters, they select four parameters (problem size, block size,

number of process rows, number of process columns) for the regression mod-

elling. To evaluate their model, they performed experiments using 64 nodes

from a cluster called SystemG [125]. The power and energy values were ob-

tained using “Watts UP? Pro E” power meter. The power consumption of the

cluster is predicted by extrapolating the prediction of power consumption of a

single node.

Dongarra [126] studied energy consumptions of high performance dense

linear algebra libraries LAPACK [127] and PLASMA [128] using PowerPack

[123] and Intel RAPL API [129]. They conclude that, for the applications using

these libraries, RAPL API is a good alternative to power meters based on near

identical power measurements observed between PowerPack and RAPL.

Tiwari [57] studied CPU and DIMM power and energy models using artifi-

cial neural networks. They studied three important HPC kernels, matrix multi-

plication, stencil computation, and LU factorization. To derive component-level

power measurements, they used the PowerMon2 apparatus [119]. They re-

ported an absolute error rate of 5.5% for the total power consumption and

energy usage predictions for the three kernels.

Lively [58] and [130] proposed application-centric predictive models for

power consumption with multivariate linear regression models for system

power, CPU power, and memory power constructed using PAPI performance

events (PMC) [131] as predictors. To train and validate their model, they con-

ducted experiments in a power-aware cluster called SystemG [125]. They

validated the models using four hybrid scientific applications and reported a

maximum prediction error percentage of 4.93%.

Kestor [61] proposed a per-core power model based on a regression anal-
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ysis of core activity. Ltaief [132] and Bosilca [133] also compared the power

consumptions of two high performance dense linear algebra libraries, LAPACK

and PLASMA. Their results indicate that PLASMA outperforms LAPACK both

in performance as well as energy efficiency.

Witkowski [134] and Jarus [135] proposed system-wide power prediction

models for HPC servers based on performance counters and used decision

trees to select an appropriate model for the current system load. They report

average prediction error of 4% based on experiments on four servers, one

AMD and three Intel.

Gschwandtner [62] presented linear regression models based on hardware

counters for prediction of energy consumption of HPC applications executing

on IBM POWER7 processor. They use NAS parallel benchmarks [136] to train

the models. They picked a small subset from 500 different hardware counters

offered by the POWER7 processor. They report a maximum prediction error

of 15%.

There are exhaustive studies primarily focusing on the performance analy-

sis of Xeon Phi but very few on power/energy models. [137] present a detailed

study of the performance-energy trade-offs of the Xeon Phi architecture. They

propose extensions to PowerPack infrastructure [123] to measure component-

wise power and energy consumptions of systems hosting accelerators. The

energy efficiency of Xeon Phi 5110P is compared to a Tesla Fermi c2050

GPGPU and the results are found to be mixed.

Reddy [138] presented an application-level energy model where the dy-

namic energy consumption of a processor is represented by a function of

problem size. Unlike PMC-based models that contain hardware-related PMCs

and do not consider problem size as a parameter, this model takes into ac-

count highly non-linear and non-convex nature of the relationship between

energy consumption and problem size for solving optimization problems of

data-parallel applications on homogeneous multicore clusters for energy.

36



2.5. CASE STUDY OF PERFORMANCE MONITORING COUNTER BASED
MODELS

2.4.7 Summary

The goal of this section was to compare prediction accuracies of power and

energy consumptions of HPC applications and the prediction accuracies of

application-agnostic power and energy models. We expected application-

specific predictive power and energy models to have higher prediction accu-

racy but our survey shows results to the contrary.

2.5 Case Study of Performance Monitoring

Counter Based Models

Table 2.4: Specification of the Intel Haswell workstation used to build the PMC-
based power and energy models.

Technical Spec-
ifications

Intel Haswell i5-4590

Processor Intel(R) Core(TM) i5-4590 3.3 GHz
Microarchitecture Haswell
Memory 8 GB
Socket(s) 1
Core(s) per
socket

4

L1d cache 32 KB
L11 cache 32 KB
L2 cache 256 KB
L3 cache 6144 KB
TDP 84 W
Base Power 22.3 W
Max Turbo Fre-
quency

3.7 GHz

From this background reading it can be found that the most dominant ap-

proach employs linear regression using PMCs as parameters to model the

power/energy consumption of a node. In this section, the accuracy of this ap-

proach for a modern node is assessed. Power and energy models using this

approach on a Intel Haswell platform with the specification shown in Table 2.4
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Table 2.5: Applications used for the training set

Benchmark
Suite

Applications

NPB SER [136] BT.SER.α, CG.SER.α, DC.SER.α, EP.SER.α,
FT.SER.α, IS.SER.α, LU.SER.α, MG.SER.α,
SP.SER.α, UA.SER.α where α = S, W, A

NPB OpenMP
[136]

BT.OMP.α, CG.OMP.α, DC.OMP.α, EP.OMP.α,
FT.OMP.α, IS.OMP.α, LU.OMP.α, MG.OMP.α,
SP.OMP.α, UA.OMP.α where α = S, W, A

Rodinia
OpenMP [139]

bfs, heartwall, kmeans, leukocyte, nn, particlefilter,
srad, backprop, cfd, hotspot, lavaMD, lud, nw,
pathfinder, streamcluster

Stream [65] Stream C
BLAS [140] daxpy, dgemv, dgemm

are built. The Likwid API [2] is used to get the PMC values of an application

execution. 35 PMCs from 13 performance groups are selected from the total of

390 supported PMCs (Table A.5 in Appendix A.3). Some groups share some

of the selected PMCs.

To train the model, applications from Table 2.5 from NAS serial and

OpenMP benchmarks [136], Rodinia OpenMP benchmarks [139], STREAM

benchmark [65], and BLAS double-precision benchmarks [140] were selected.

Benchmark classes (S, W, A) were used in the NAS benchmark suite. For the

parallel benchmarks, NAS OpenMP and Rodinia OpenMP, the number of OMP

threads executed is 4, which is equal to the number of physical cores in our

platform. For all the other applications, the number of threads in the application

is set to 1.

Since PMC values differ for different runs of the same application, the

methodology described below was followed to make sure the experimental

results are reliable:

• The Intel Haswell platform is fully reserved and dedicated to these ex-

periments during their execution. It was made certain that there are no

drastic fluctuations in the load due to abnormal events in the platform by

monitoring its load continuously for a week using the tool sar to establish
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a baseline. Insignificant variation in the load was observed during this

monitoring period suggesting normal and clean behavior of the platform.

• When an application is executed, its execution was bound to physical

cores using the numactl tool.

• The application was repeatedly executed until the sample mean lies in

the 95% confidence interval and within a threshold precision of 0.025

(2.5%). For this purpose, Student’s t-test was used assuming that the

individual observations are independent and their population follows the

normal distribution. The validity of these assumptions were verified by

plotting the distributions of observations. The application was repeatedly

run until one of the following three conditions is satisfied:

1. The input maximum number of repetitions have been exceeded.

2. The sample mean falls in the input confidence interval of 95% (or

the precision of 0.025 has been achieved).

3. The elapsed time of the application runs has exceeded the maxi-

mum time allowed (3600 seconds).

Each application was always run for a minimum number of repetitions.

The input minimum and maximum number of repetitions differ based on

the application or the problem size solved. For small problem sizes (NAS

benchmarks class S, W), these values are set to 10000, and 100000 re-

spectively. For medium problem sizes (NAS benchmarks class A), these

values were set to 100 and 1000. For large problem sizes (NAS bench-

marks class B, C, D), these values were set to 5 and 50. For each

data point, the sample mean was selected as the output only when the

input precision of 0.025 (2.5%) had been reached. If the precision of

measurement was not achieved before the maximum number of repeats

have been completed, the number of repeitions were increased, as well

as the maximum elapsed time allowed. However, it was observed that

condition (2) was always satisfied before the other two in our experi-

ments.

39



2.5. CASE STUDY OF PERFORMANCE MONITORING COUNTER BASED
MODELS

The PMC values, power and energy consumptions, and execution

times were obtained separately using three separate programs. This was

to isolate the overhead (constant but low) in collecting PMC values us-

ing likwid API. The energy consumptions at the socket and DRAM level

were obtained using the RAPL PMC values (PWR_PKG_ENERGY:PWR0,

PWR_DRAM_ENERGY:PWR3) of the performance group, ENERGY. The av-

erage dynamic power consumption during the execution of an application was

obtained by dividing the total energy consumption (given by the PMC values)

by the total execution time of the application (using gettimeofday timer). The

power and energy models were built using the GSL multiple linear regression

API [141]. The main steps of an application execution in the training and vali-

dation set were initializing Likwid runtime, starting of monitoring PMC, execut-

ing the benchmark code, stopping the monitoring of PMC, querying for values

of the PMCs, and finalizing the Likwid runtime.

The model took two weeks (implementation complexity of 2 EW) to imple-

ment. The implementation tasks involved studying Likwid API [2], short-listing

the PMC to use in the modelling which includes using rigorous statistical tech-

niques to prune the PMC set, studying GNU scientific library linear regression

API [141], short-listing the applications (or benchmark test suites) to use in the

training and validation sets, writing scripts to automate the model building and

validation process, and cleaning the validation data, for example, removing

outliers since GSL multiple linear regression (MLR) is quite sensitive to them.

The models took 6 hours of experimental time to build. Figure A.1 (Appendix

A.3.2) shows the execution times of applications in the training set that are

used to calculate their average dynamic power consumptions. It also shows

that we have used applications with a wide range of execution times to build

the models. This would allow for a determination of the true capability of a

model to predict accurately the power and energy consumptions for applica-

tions with a wide range of execution times.

One interesting observation from the results is that some PMCs have nega-

tive coefficients (Table A.6 in Appendix A.3.1). For example, consider the PMC,

L2_RQSTS_MISS. It represents how often it was necessary to get cachelines

from memory and therefore it should only increase the average dynamic power
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Table 2.6: Prediction error percentages for NAS Serial and OpenMP Applica-
tions (Benchmark Class W)

Benchmark Avg. Dynamic Power Pre-
diction Error % (std. dev.)

Energy Prediction Error
% (std. dev.)

BT.SER.W 98.716442 (0.10) 235.52 (1.50)
CG.SER.W 96.66 (0.41) 171.02 (5.90)
DC.SER.W 99.76 (0.01) 97.30 (0.20)
EP.SER.W 99.92 (0.01) 99.39 (0.15)
FT.SER.W 99.24 (0.34) 100.34 (4.91)
IS.SER.W 130.57 (18.66) 40.94 (6.79)
LU.SER.W 50.19 (4.5) 542.05 (64.37)
MG.SER.W 98.21 (0.07) 6.70 (1.06)
SP.SER.W 99.43 (0.03) 72.08 (0.50)
UA.SER.W 79.74 (0.94) 12.86 (13.51)
BT.OMP.W 98.68 (0.17) 10.67 (2.52)
CG.OMP.W 100.00 (0.00) 99.99 (0.00)
DC.OMP.W 92.09 (2.33) 85.55 (13.39)
EP.OMP.W 92.96 (0.87) 10.52 (2.53)
FT.OMP.W 99.41 (0.23) 112.76 (3.33)
IS.OMP.W 64.66 (8.48) 31.83 (1.22)
LU.OMP.W 81.96 (3.22) 626.71 (46.07)
MG.OMP.W 99.12 (0.07) 48.53 (1.06)
SP.OMP.W 99.25 (0.64) 561.84 (9.28)
UA.OMP.W 88.29 (1.18) 15.81 (16.90)
daxpy 99.27 (0.19) 45.41 (2.84)
dgemv 89.00 (1.29) 39.87 (18.46)
dgemm 83.53 (1.83) 77.14 (26.16)

consumption. However, this coefficient is negative for the power model but

positive for the energy model. Same applies for PMC, ICACHE_MISSES. Now,

at this point, this set of PMC can be pruned further to remove the parameters

with negative coefficients or collinearity between parameters using rigorous

statistical techniques ([48]) or detailed iterative methodologies ([40], [51]).

To validate the models, they were used to predict power and energy con-

sumptions of NAS serial and OpenMP benchmarks (class W) and BLAS ap-

plications. The (minimum, average, maximum) prediction error percentages of

average dynamic power and total energy consumptions are (50, 93, 130) and
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(6, 136, 626) respectively (Table 2.6 with standard deviations). The prediction

error percentage for a model is calculated using the actual value provided by

Likwid API and the fitted value provided by the GSL MLR function using the

model.

During an application execution in the training and validation set, DVFS

was disabled by pre-setting the frequencies of CPUs to base frequency using

“userspace” [142] governor. However, in a real-life situation, dynamic power

management (DPM) is not disabled and the default governor is “ondemand”

[142]. Due to DPM (and runtime DVFS), there can be fluctuations in power

consumption. Therefore, the rationale behind use of PMCs is questionable,

which are accumulated for a whole application execution, to model instanta-

neous dynamic power. Models must be made aware of C-State and P-State

values. Even if PMCs are used to model power for small but distinct phases

of an application, the significant overhead of acquiring these PMC values and

building phase-level models prohibits their use for this case. For example,

CUPTI [85], due to its design limitation, allows querying for only one PMC (or

event) of a NVIDIA GPU platform in a single CUDA kernel invocation [143]. A

CUDA kernel must be executed many times to get the values of all the desired

PMCs for a given GPU.

2.6 Discussion

In this section, a summary of all the power/energy models that we have sur-

veyed is presented. The prominent observations for each of the model char-

acteristics are as follow:

1. Level of Abstraction:

• There exists no model today that truly and comprehensively cap-

tures the highly heterogeneous and hierarchical architecture of a

node illustrated in Figure 1.1. That is, no model exists that satisfies

the property of Non-linear Independence.

• Many models for a node have the property of Linear Independence.
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Such models are constructed by summation of models of the com-

ponents.

2. Type of power :

• There are very few models that predict instantaneous power of an

application.

• We expect the models that predict instantaneous power accurately

to maintain their accuracy for a wide range of problem sizes and

execution times.

• However, we are sceptical of models that are used for predicting

average total power consumption for applications running for long

durations (hours to days) to accurately predict power for a wide

range of problem sizes and execution times.

3. Decomposition:

• Many models focus exclusively on modelling power consumption of

either the CPU or an accelerator in a node. They can be further

classified into:

(a) Models that adopt linear regression methods using

performance-monitoring counters (PMCs) as the parame-

ters.

(b) Models that adopt non-linear methods such as artificial neural

networks, etc. using PMCs as the parameters.

• Models using PMC employ iterative methodologies or methods

such as Principal Component Analysis (PCA), Random Forest etc.

to prune the set of PMCs.

• Very few models take into account contention for shared resources

between components (for ex: cores sharing last-level cache).

• Very few models study power consumption of communication links

in a node such as

(a) On-chip interconnect between CPUs.
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(b) PCIe bus connecting the multicore CPUs and accelerators.

4. Accuracy of power prediction:

• Almost all the models report prediction error for only the total av-

erage power consumption but not the dynamic power consump-

tion. We would expect the prediction errors for dynamic power to

be higher.

• There are many models that do not mention clearly the proportion

of dynamic to static power consumptions in the total power con-

sumption as can be seen from the empty entries for dynamic power

in the tables for the models.

5. Implementation Complexity : The implementation complexity for the

models employing linear regression or neural networks using the PMC

as parameters is quite high. This is due to several reasons:

• The first step in these models is to design and write a micro-

benchmark test suite for a component. This test suite contains

benchmarks that stress the various architectural units of the com-

ponent to create a model of the power consumption of the archi-

tectural unit as a function of its access rate (activity factor) or its

PMC set. To the best of our knowledge, there are no standard

micro-benchmark suites. So, if one were to implement one of these

models, one has to write a micro-benchmark test suite. We be-

lieve that writing micro-benchmarks is a very complex, tedious, and

error-prone task. One key design requirement of the test suite is to

stress a single architectural unit avoiding completely or minimizing

interaction with other architectural units. This is required so that its

activity can be decoupled to derive its contribution to the total power

consumption. If there is interaction, the micro-benchmark stressing

an architectural unit must ensure that the utilization is constant for

the other architectural units during its execution. So, this interac-

tion must somehow be removed or accounted in the model for the

architectural unit to avoid collinearity problems when multiple linear
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regression is applied later. This is difficult to accomplish as micro-

benchmark test suites are usually written in assembly language.

So, the model implementer must now become an expert in assem-

bly language to write a reliable micro-benchmark test suite.

• Wu [144], Bertran [71], Molka [47], Kestor [145], Pandiyan [146]

describe in great detail this complex process of writing a micro-

benchmark test suite. Bertran [71] have designed 97 micro-

benchmarks for their power model.

• So, after a micro-benchmark test suite is written, each of the micro-

benchmarks must be run for a sufficiently long time to ensure that

the power consumption reading (using a power meter) is stable.

However, there is no straightforward method to separate the static

and dynamic components of this power consumption. The access

rates or the PMC values for the architectural unit are also obtained

separately.

• Then, the power consumption of an architectural unit is modelled

as a function of its PMC. Today, each architectural unit comes with

a large set of PMC. For example: Haswell architecture [2] has 390

events. So a question arises as to which events to select from this

set of PMCs. Models include some form of Principal Component

Analysis (PCA) to prune this set.

• Some models use complex methods such as Random Forests (RF)

and Neural Networks etc. to incorporate non-linearity or depen-

dence between the PMCs. Therefore, implementation of these

models necessitates the model writer to possess or acquire knowl-

edge of these methods.

6. Portability :

• Many models ensure their portability to next-generation processors

in the same architecture space by using the PMC approach.

• However, the PMC approach hinders their generality or applicability

to all architectures since PMCs are architecture-specific.
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7. Scalability

• The standard approach to determine the total power/energy con-

sumption of a large-scale HPC system is based on the following

steps:

(a) Measure the power/energy consumption of a node (either us-

ing direct measurements or power/energy models). Multiply

this power/energy consumption by the total number of nodes

in the system.

(b) Or use a node remapping technique. In this technique, the

number of measurements is equal to the number of nodes and

each time the node that is measured is mapped to a different

physical node. The total power/energy consumption is equal to

the sum of all the measurements taken.

PMC-based approaches are frequently used to model unit-level power con-

sumptions of a nodal component to predict the total power consumption of

it. However, we question its continuing use to predict power consumption of

a nodal component or a node due to two reasons. Firstly, it has high im-

plementation complexity. In most cases (For example: Likwid, CUPTI), the

values of all the performance events can not be obtained during a single exe-

cution of an application. Secondly, while values of some PMCs can be deter-

mined from static analysis of the source code of an application, values of most

PMCs are gathered during the application execution. Therefore, an applica-

tion must be executed to get the values of PMCs, which are then input to a

PMC-based model to get the predicted power/energy consumption. However,

there are software libraries available today on all mainstream commodity pro-

cessors providing interfaces to determine power consumption at component

level during an application execution via in-built power meters or models. The

PAPI library ([131], [147]) provides API for energy consumption. For Intel’s

CPU processors, the library uses the “Running Average Power Limit” (RAPL)

component [148], which uses a software model to predict energy. Intel PCM

(Performance Counter Monitor) [149] is a tool to monitor performance hard-

ware counters on Intel processors, similar to PAPI. The difference between
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PCM and PAPI is that PCM supports only Intel hardware, but it can moni-

tor also uncore metrics, like memory controllers and QuickPath Interconnect

links. The Intel PCM utility pcm-power displays energy usage and thermal

headroom for CPU and DRAM sockets. For Intel’s Xeon PHI processor, the

MPSS MicMgmt library [150] is used to get the instantaneous power consump-

tion from the on-chip power meters. NVIDIA Management Library (NVML) API

[151] can be used to determine the power consumption of the NVIDIA GPUs

from the on-chip power meter. Although there is some overhead introduced

by these library calls, it can be minimized by choosing appropriate sampling

frequency. Therefore, when one can get the power/energy consumption from

vendor-specific software libraries (that provide access to readings from all on-

chip power meters at low sampling frequency), we question the necessity of

using performance events for modelling power/energy consumption. There is

however a need for tooling to better expose these new power measurement

metrics to researchers in a unified and useful manner. This issue is tackled in

this thesis.

2.7 Conclusion

This background survey presented a classification of predictive power and en-

ergy models for the major components at the node architecture level in modern

HPC computing platforms.

One overarching conclusion can be made from the survey. During the era

of single-core processors, models were able to accurately predict the dynamic

power of the full-system by having parameters that accurately but separately

modelled dynamic power consumption of all components in the system. But

now such an approach will be erroneous. Unless the inherent complexities

(contention for shared resources, dynamic power management, etc.) of the

modern node architectures are methodically taken into account, models as-

piring to predict power/energy consumptions for these architectures will be

inaccurate.

Power models have been the main research focus for HPC applications
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and outnumber energy models. There are very few studies that directly model

energy. Studies that do not directly model energy predict it using a power

model and a timing model (or by expliciting measuring execution time). How-

ever, the prediction error in accuracy of energy consumption in these studies is

compounded by the errors in accuracies of its constituent models (power and

timing). Therefore, we would like to ask why not model energy consumption

directly for HPC applications instead of constructing its constituent models.

Power models and power management algorithms are necessary for system

designers to ensure that an application execution does not exceed the pow-

er/thermal constraints of a system. For example, Intel RAPL [148] allows the

power consumption of an application to exceed the TDP for short periods of

time but monitors the power consumption closely to keep it close to an av-

erage limit by controlling frequency. Many research efforts propose power

models and use them to find inefficiencies in the system and thereby provide

suggestions to designers to improve the system architecture. However, if the

goal of energy efficiency of HPC applications is to minimize the total energy

consumption without sacrificing performance, one can strive to accomplish it

by directly modelling energy consumption.

In the case of accelerators, we found that models for NVIDIA GPUs are

predominant. Even though Intel Xeon Phi holds a notable portion (6%) of

Top500 list [25], very few studies have modelled its power/energy consump-

tions. Considering that FPGAs are now emerging in the HPC space, there are

no studies dedicated to their power/energy models for HPC applications. It

is expected that due to their high degree of configurability and relatively high

power efficiency, they will be a future topic of study.
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Chapter 3

Node Level Power Measurement

3.1 Introduction

The goal of this work is to provide an API for developers, initially through the

C programming language [152], for taking accurate measurements of critical

code sections within their applications. The critical sections, may be nested so

that finer grain measurements (such as a compute kernel) can be taken with-

out sacrificing coarser grained measurements (such as the entire application).

It is assumed that the user has exclusive access to the node when measure-

ments are taken, which is standard practice in HPC environments. This is nec-

essary to avoid other application’s activity being erroneously reported as part

of the user’s target application’s power consumption. Furthermore, as our fo-

cus is on application measurement, it is required that only one application may

be measured per experiment, though this application can be multi-threaded or

multi-process if using the MPI functionality.

In this chapter instrumentation at node level granularity is considered. At

node level only the power that is delivered to the server via the mains power

is considered. The node is treated as a black box that consumes power. The

practical ways in which this level of measurement may be implemented is dis-

cussed below, with their advantages and disadvantages, followed by the so-

lution this work implemented for experimental deployment on the GRID5000

[153] infrastructure. The work described here was published in [4].
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3.2 Background and Related Works

There are several works related to this project, which are described in this

section.

Kwapi [154], provides a web based interface to GRID5000’s [153] energy

measurement infrastructure. While it exposes the raw data of the API upon

which we build HCLEnergyAPI, it is intended for post execution analysis and

lacks an API for measurement of applications or kernels within an application.

We see this as a necessary feature to facilitate dynamic load balancing. It

does however produce useful graphs and visualisations.

Barrachina [155] presents pmlib, a software package for measuring en-

ergy states on CPUs and provides whole node level measurements accurately

through use of external power meters. It has the advantageous ability to in-

terface with high frequency external measurement devices. This approach

requires a daemon to execute on all instrumented nodes. It is not clear how

duplicate contributions from multiple processes on the same node are han-

dled.

Cabrera provides EML [156] which are similar contributions to our HCLEn-

ergyAPI, but lacks the ability to report statistical confidence and transparently

calculate per node power in MPI applications.

In addition to these software methods, there are such as PowerPack [157]

and PowerMon2 [158] that intercept power rails of components to give com-

ponent level. These methods are difficult to deploy in real systems and are

disadvantaged by the complexity of measuring devices with multiple power

rails [159].

This work is limited to a node level granularity, but should the reader be

interested in finer grained measurement at the device level, the following tools

which are performance counter based may be useful.

Intel provides the RAPL interface [160] which is a software power model

and similarly AMD provides APM [161]. Though easily accessible, both have

disadvantages. Intel RAPL fails to provide power measurements, only pro-

viding energy with no timestamp data, hindering indepth analysis [162] and

AMD APM has been shown to be inaccurate due to assumptions during sleep
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h t t ps : / / ap i . gr id5000 . f r / s tab le / s i t e s / lyon / met r i cs / pdu /
t imese r ies ? r e s o l u t i o n =1&from=1502367972& to =1502367997&
only=nova−19. lyon . gr id5000 . f r

Figure 3.1: GRID5000 request

modes [162].

Likwid [163], a lightweight performance tool offers RAPL measurements

from Intel SandyBridge and IvyBridge x86 processors.

Nvidia, through their management library (NVML [164]) provides access to

milliwatt power consumption metrics, accurate to 5%, as well as current Pstate

of each graphics card in a system. NVML also provides related metrics such

a fan speed and temperature.

3.3 Method

3.3.1 GRID5000

GRID5000 [153] is an experimental testbed infrastructure spanning multiple

cities in France, for large scale research on parallel and distributed applica-

tions. GRID5000 provides modern compute nodes, including heterogeneous

nodes containing Nvidia GPU and Intel Xeon Phi accelerator devices. The

nodes are connected through high speed 10Gb/s interconnects.

GRID5000 was used as our experimental platform as it provides a HTTP

REST based metrology API. The API may be called by sending a HTTP re-

quest with query parameters specifying the information desired and the user’s

node.

The GRID5000 API provides detailed data ranging from available memory,

processor and network utilisation, as well as whether or not the node hosts

an accelerator. Crucially, for the work of this thesis, the API provides power

measurement data in the form of a timeseries.

In Figure 3.1, the GRID5000 API is queried for power meter data for the

nova-19 node, at a resolution of 1 second. The response is shown in Figure
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{
" i tems " : [

{
" r e s o l u t i o n " :360 ,
" from ":1502367840 ,
" met r i c_u id " : " pdu " ,
" to ":1502368200 ,
" u id " : " nova−19" ,
" type " : " t imeser ies " ,
" values " : [

134.122222222222
] ,
" l i n k s " : [

{
" h re f " : " / 3 . 0 / s i t e s / lyon / met r i cs / pdu / t imese r ies / nova
−19" ,

" r e l " : " s e l f " ,
" type " : " a p p l i c a t i o n / vnd . f r . gr id5000 . ap i . Timeser ies+

json ; l e v e l =1"
} ,
{

" h re f " : " / 3 . 0 / s i t e s / lyon / met r i cs / pdu " ,
" r e l " : " parent " ,
" type " : " a p p l i c a t i o n / vnd . f r . gr id5000 . ap i . Met r i c+ json ;

l e v e l =1"
}

] ,
" hostname " : " nova−19. lyon . gr id5000 . f r "

}
] ,
" t o t a l " : 1 ,
" l i n k s " : [

{
" h re f " : " / 3 . 0 / s i t e s / lyon / met r i cs / pdu / t imese r ies " ,
" r e l " : " s e l f " ,
" type " : " a p p l i c a t i o n / vnd . f r . gr id5000 . ap i . C o l l e c t i o n + json ;

l e v e l =1"
} ,
{

" h re f " : " / 3 . 0 / s i t e s / lyon / met r i cs / pdu " ,
" r e l " : " parent " ,
" type " : " a p p l i c a t i o n / vnd . f r . gr id5000 . ap i . Met r i c+ json ; l e v e l

=1"
}

] ,
" o f f s e t " : 0

}

Figure 3.2: Raw GRID5000 data
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3.2 in JSON [165] format, where the true resolution of the response that the

API could provide is given. The resolution degrades over time due to storage

constraints of the GRID5000 database. Also included in the response is the

to and from UNIX timestamps for the data points returned. Finally, the values

section is an array containing power data in units of Watts, the first occurring

at from, and subsequent values occurring at resolution intervals.

This raw data may be useful to a scientist asking for power data after the

fact from a script, however it requires processing to extract meaningful results.

The API contributed in this thsis, attempts to minimally process the data to a

useful form during the application lifetime, so that decisions based on the data

can be made at runtime. Possible uses of this API would be evaluating the

energy cost of executing applications on a particular node in comparison to

other nodes, allowing for automated dynamic energy aware load balancing of

parallel workers, minimizing for energy use.

3.3.2 HCLEnergyAPI

The API provides the developer with a minimal set of calls with which to instru-

ment their application. They can be grouped into three broad categories. First,

the control functions from Table 3.1 are responsible for the initialisation of the

API and the start/stop calls with which to wrap sections of code the developer

is interested, known as an event. Secondly, there are the data functions in

Table 3.2, which allow a developer to query an event for information such as

how much energy was consumed, the idle power of the node, the cost of en-

ergy used given a currency/Watt Hour, or a time series of the power consumed

throughout the event.

In Figures 3.3 and 3.4 the easy integration of the energy and power

measurement functions into an application respectively are shown. There is

no limitation on the number of events that an application can record using

HCLEnergyAPI, and they may be nested such that an entire application can

be instrumented, as well as constituent components, facilitating in-depth char-

acterisation of the application.

In Figure 3.5, the infrastructure at GRID5000 and how it relates to our API
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Table 3.1: HCLEnergy API - Control functions

hclenergy_t *hcl_init();
void hcl_start(hclenergy_t *event);
void hcl_stop(hclenergy_t *event);

Table 3.2: HCLEnergy API - Data functions

double energy_consumed(hclenergy_t *event);
struct host_power_series *getPowerSeries(hclenergy_t *event);

double idlePower();
double cost(hclenergy_t *event, double price);

is illustrated. Each compute node is directly connected (a.) to a power meter

at the mains which measures and records the power consumed by the node.

The meter streams its measurement data (c.) to a central metrology server

which can be queried by any of the compute nodes via HTTP (b.).

As the GRID5000 infrastructure provides a timeseries of power data, our

API calculates energy by integrating over this timeseries from the start to end

timestamps of the event in question. Our idlePower function is included to

provide insight to the static power consumed by the node. It calls the sleep

system call, causing the application to wait for 1 minute until told to proceed

by the operating system’s kernel. Our API then requests the power consumed

during the time the application was not performing any operations. A cost

function is also provided which when called with a monetary cost per Kilo

Watt Hour (kWh), the function will provide the cost in the given currency of

the energy used by this application. This is useful for reporting purposes, and

also for determining the ideal node to execute an application. If dealing with a

multi-site infrastructure, the cost of electricity may differ between the sites and

load balancing based on monetary value of this energy would be desirable.

Accuracy of measurement is essential when executing experiments. As the

applications this work instruments do not have exclusive use of the platform

on which they are running, as with performance measurements we cannot

assume that each execution is deterministic and representative of subsequent
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i n t main ( ) {
hc lenergy_t ∗event = h c l _ i n i t ( ) ;

h c l _ s t a r t ( event ) ;
/ / Execute code f o r i ns t rumen ta t i on
hc l_s top ( event ) ;

double energy = energy_consumed ( event ) ;
}

Figure 3.3: HCLEnergyAPI Example of Energy Measurement

i n t main ( ) {
hc lenergy_t ∗event = h c l _ i n i t ( ) ;

h c l _ s t a r t ( event ) ;
/ / Execute code f o r i ns t rumen ta t i on
hc l_s top ( event ) ;

struct host_power_ser ies ∗power = getPowerSeries ( event ) ;
}

Figure 3.4: HCLEnergyAPI Example of Power Measurement

Figure 3.5: Power Measurement Infrastructure
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. / hc lenergyrun −−conf idence =0.95 −−t h resho ld =5 <app>

Figure 3.6: hclenergyrun execution example

runs 1. For this reason, statistical confidence features were built into our API.

First, a researcher chooses a confidence interval and tolerance. Our utility

called hclenergyrun executes the application of interest, and logs the data to

a file on disk representing each run and continues in the same fashion for

subsequent runs. When there are more than one run, the tool calculates the

average of each event present in the application. The tool uses these values

and the confidence and threshold values to calculate the confidence interval

of each event. When all measurements fall within tolerance, the tool exits. The

raw data remains on disk for further analysis.

By conducting experiments in this fashion, we can assert that the true en-

ergy value lies within the threshold amount above or below the value we report

with the confidence selected by the researcher. For example, with threshold=5

and confidence=0.95, we can say that the true value for the energy values is

found X± threshold, 95% of the time, where X is the mean of the values we

record across our experiments.

This test is valid if the distribution of measurements is gaussian. The tool

checks for this condition and will not return a measurement if confidence can-

not be calculated.

As these statistical methods are valid only when the number of measure-

ment points exceeds 20 and the experimental data fits a normal distribution,

checks are provided to ensure that this is the case.

3.4 Case Study: NAS NPB

In this section, the use of HCLEnergyAPI is demonstrated on a set of scientific

codes. The C implementation of the NASA NPB suite [166] (originally For-

tran) known as SNU NPB [167] was instrumented with our API. This code was

1That is to say, whilst there are no other users using the node, there are many background
applications running as part of the operating system of the node.
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chosen for this study as it contains multiple applications with various compu-

tational complexities and memory access patterns. The applications reflect

several compute patterns that are found in computational fluid dynamics and

are often used to evaluate new supercomputer infrastructure. They are listed

in Table 3.3.

Table 3.3: Applications within NPB [1]

Label Description
BT Block Tri-diagonal solver
CG Conjugate Gradient, irregular memory access and communication
DC Data Cube
EP Embarrassingly Parallel
FT Discrete 3D fast Fourier Transform, all-to-all communication
IS Integer Sort, random memory access
LU Lower-Upper Gauss-Seidel solver
MG Multi-Grid on a sequence of meshes, long

and short distance communication, memory intensive
SP Scalar Penta-diagonal solver
UA Unstructured Adaptive mesh, dynamic and irregular memory access

For each application, there are multiple problem sizes labelled

{S,W,A,B,C,D,E, F}. The S configuration, is small and only for testing

purposes. The W configuration is targeted at workstations of the 1990s. Con-

figurations {A,B,C} are standard problem sizes, each increasing by 4x from

the last. Configurations {D,E, F} are larger again, with a 16x increase from

the previous size.

In our experiment we target machines described in appendix A.1. We

run all appropriate sizes of problem class for all applications. The number

threads were varied from 1 to the maximum number of threads supported by

the given processor. The default governor (ondemand) was used, allowing the

processor to alter its C states and P states as it saw fit. For the target machine,

several of the smaller benchmarks were too small to execute and some of the

larger benchmarks do not have {D,E, F} configurations.
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Figure 3.7: B Class Peformance

Figure 3.8: C Class Peformance
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Figure 3.9: D Class Peformance

3.4.1 Results

First, the study looked at the effect of using multiple threads on performance.

As these applications are highly tuned it was observed that all applications

in Figures 3.7, 3.8, 3.9 benefit from additional threads, however, due to

Amdahl’s law and thread synchronisation overhead there is no improvement in

performance after 10 cores for most applications regardless of their problem

size class. The performance is also scaling linearly between the problem sizes

classes when using low numbers of cores.

Secondly, the study progressed to the same experiments from an energy

expenditure perspective as presented in Figures 3.10, 3.11, 3.12. Similarly,

here it was found there are initial benefits of executing with more threads, but

little improvement beyond 10 cores. It may seem counter-intuitive to see en-

ergy expenditure decrease when adding additional compute resources. This

behaviour is a consequence of how power and time relate to energy as pre-

viously shown in equation 2.1. The time component dominates the equation,

meaning increasing speed, decreases overall energy even if the power con-

sumes is raised. This indicates a heuristic known as "race to idle" is beneficial,
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Figure 3.10: B Class Energy

Figure 3.11: C Class Energy
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Figure 3.12: D Class Energy

Table 3.4: HCLEnergy API - MPI functions

struct host_power_series *gatherHostSeries(struct host_power_series *local);
struct host_power_series *getRawPowerSeries(hclenergy_t *event)

double *energy_per_host(hclenergy_t *event);

where speed may be maximised in order to decrease energy. However, this

is not the case in all applications as is demonstrated in [168, 169]. It is our

hope that HCLEnergyAPI will be helpful in furthering this and other areas of

research.

Lastly, the power consumed during these experiments was considered. As

can be seen in Figures 3.13, 3.14 and 3.15, power consumption is trending

upwards as more threads are added. This is consistent with the operating

system scheduling these threads in parallel in multiple cores, causing fewer of

the cores to remain in lower power states.
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Figure 3.13: B Class Power

Figure 3.14: C Class Power
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Figure 3.15: D Class Power

a0 a1

b0 b1

c0 c1

Time

a0 a1

b0 b1

c0 c1

Time

Figure 3.16: Multiple processes on single node, both cases
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3.4.2 Measurement of Distributed Applications

Applications in the field of HPC are commonly distributed in nature. MPI is

the prevalent technology for constructing distributed applications, so for that

reason HCLEnergyAPI supports instrumentation of MPI based applications.

The calls are identical to those described earlier, but in addition several col-

lective operations are added. If the API is compiled with MPI enabled, the

MPI functions in Table 3.4 are available. These functions make available a

time series of power consumption for all nodes participating in the event, the

energy consumed by each node by hostname and a collection of "raw" time

series, which contain the power consumption of all nodes participating even

when that particular node is not executing useful instructions at that point in

time. This last feature is useful for observing the total power consumed for a

distributed application when some of the nodes are left idling but still consum-

ing power and is illustrated in Figure 3.16. In the left part of the diagram, we

illustrate for nodes a, b, c the first of two cases. Here, the event completes in

all nodes at the same time. The energy consumed is the sum of energy from

all processes across all nodes. On the right, the event does not complete in

the same time on all nodes due to some heterogeneity. In this case, only the

power consumed by the nodes when they are active are measured , as this

is the true energy of the application. However, if experiments are running in

a HPC environment, there may be reserved nodes we are using, which aren’t

currently executing the application, therefore it may be relevant to know the

total energy consumed for all nodes, from when the first node begins execut-

ing, until the final node has finished its work. This measurement, given by

getRawPowerSeries ( and integrated to calculate energy ), provides this mea-

surement and includes nodes which are drawing power, but potentially idle as

they wait for other nodes to finish.

HCLEnergyAPI performs useful filtering operations on its data. As many

processes may be executing on the same host, we deduplicate the data which

overlaps. Duplication of readings occur, when more than one process is ex-

ecuting on a node and HCLEnergyAPI is called. Data from the processes

running on the same node must be merged to avoid over-reporting the con-
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sumption.

3.5 Conclusions and Future Works

In this chapter HCLEnergyAPI was presented. This project was developed to

measure power and energy readings at a node level on large scale distributed

systems. This prototype specifies the API for performing these measurements

in a system agnostic fashion. As such, it should be possible to port this project

to a wide variety of supercomputing infrastructure.
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Chapter 4

Component Level Power

Measurement

4.1 Introduction

In this chapter, measurement at a finer granularity than the node is inves-

tigated. Modern compute nodes contain one or more accelerator devices,

ranging across GPU, manycore devices such as Intel’s Xeon Phi accelerator,

and increasingly FPGA [170]. As the majority of the top 10 of the TOP500 and

GREEN500 lists [25, 22] include such an accelerator, there is motivation to

examine the energy consumption of these devices.

Within the target research platform, there is an Intel Xeon Phi 3120P many-

core accelerator card and an Nvidia Tesla K40c. Their specifications are de-

scribed in Tables 4.1 and 4.2.

4.2 Background and Related Works

PAPI [171] exposes Intel RAPL counters and can be used to access Nvidia

GPU power data. There are two approaches that can be taken using PAPI.

First, the PAPI can be used to execute an application and capture power data

for the whole application execution. Secondly, the PAPI API can be used to

sample critical sections of code. The limitation of both approaches, is that
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Table 4.1: Intel Xeon Phi 3120P Specfications

Feature Value
Processors 57

Base Frequency 1.10Ghz
Main Memory Size 6GB GDDR5

L2 Cache Size 28.5MB
Memory Bandwidth 240GB/s

Memory Clock 3.0GHz
TDP 300W

Idle Power 91W
Technology Node 22nm

Table 4.2: Nvidia K40c Specifications

Feature Value
Processors 2880 1

Base Frequency 0.745Ghz
Main Memory Size 12GB GDDR5

L2 Cache Size 1536KB
Memory Bandwidth 288GB/s

Memory Clock 3.0GHz
TDP 235W

Idle Power 68W
Technology Node 28nm
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there is no statistical meaning to the measurements, leaving the user to devise

their own approach to this problem.

Suda [172] reports the collection of power data from Nvidia GPU by in-

tercepting the power rails of PCIe subsystem. There is no tool provided to

replicate the process and the experimental hardware platform is not practical

for widespread deployment.

Kindratenko [173] presents power data collected from AC inline power me-

ters, which is then correlated against benchmark performance values. There

is no tool provided.

Collange [174] measured the DC power of GPUs using an oscilloscope

and clamp meter.

Huang [175] used a "Watts Up Pro" power meter to measure energy con-

sumed while executing scientific kernels on GPU. This again, is an intrusive yet

accurate approach and requires the use of a secondary monitoring computer.

Shao [176] instruments a Xeon Phi coprocessor directly to build a model

of energy as a function of performance counters.

From these works, is it observed that there is no existing tool that facilitates

the instrumentation of an accelerator for energy measurement, at a resolution

of programmer specified critical sections, with statistical confidence.

4.3 HCLpower

Accelerator devices such as Intel’s Xeon Phi and Nvidia GPU contain power

measurement features, generally for the purposes of systems administration.

Both vendors supply utility libraries that offer access to many interesting val-

ues, such as fan speed, temperature, power state and most interestingly to

this work, instantaneous power consumption. In the case of Intel, the library

is the "Manycore Platform Software Stack" or MPSS [177]. Nvidia distribute a

similar library for their hardware called the "NVIDIA Management Library" or

NVML [164]. We also have preliminary support for AMD GPU, but we do not

have physical hardware with which to test. The software architecture is shown

in Table 4.3.
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#include <chrono >
#include <thread >

#include <HCLEvent . hpp>

using namespace s td ;
using namespace s td : : chrono ;

i n t main ( i n t argc , char ∗argv [ ] ) {
HCLEvent event ;
event . r eco rdS ta r t ( "SLEEP−10000" ) ;
t h i s_ th read : : s leep_ fo r ( s td : : chrono : : m i l l i seconds (10000 ) ) ;
event . recordEnd ( ) ;

event . t o F i l e ( Device : :GPU) ;
event . t o F i l e ( Device : : PHI ) ;

return 0;
}

Figure 4.1: HCLPower code example

Driven by the uptake of these accelerators [25], we wish to expose this

energy data to a developer in a useful fashion. To this end, a major contribution

of this thesis, a tool called HCLPower was developed.

HCLpower is an energy consumption profiler for accelerator compute de-

vices. The tool is executed on the target application in order to collect power

consumption timeseries as well as energy consumption. A key feature of the

tool is that it provides the user the ability to profile specific sections of their

code using HCLEvent. A user first creates a HCLEvent and then surrounds

the code of interest with calls to a start and end method of this event.

When the tool is invoked, it forks the target application and begins polling

the device for its instantaneous power consumption value at a configurable

interval which is every 200ms by default. The tool collects these values as a

timeseries, with each entry of the form of (timestamp, watt). After execution

ends, the tool extracts the relevant data for each HCLEvent and calculates

their power and energy values. Each event is created with a name string
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Table 4.3: Software Architecture

HCLEnergyAPI
NVML MPSS Future Others(AMD)

which allows it to be distinguished from the other events.

In Figure 4.1, the full source code of an application designed to measure

the idle power of both supported devices is presented. The application’s only

thread sleeps whilst the HCLpower process continues to monitor the power

activity. The output of executing this application is shown in Figure 4.2. This

application has one event which consumes 619J ± 13.05. The application

runs for 10 seconds and does not perform any computation on the device and

therefore it draws a mean consumption of 61.9W at idle, in this case on this

GPU.

When taking measurements it is desirable to report a statistical confidence

in our results. A compute node has many processes other than our applica-

tion, which we assume to all be running in the background. In order to filter

out the effect of these processes on our measurements we execute our appli-

cation multiple times until the average energy consumption falls within a user

defined confidence interval. Energy is calculated by numerically integrating

the measured power values over the event’s execution.

More specifically, when a user executes their application with HCLpower,

they must provide a confidence level (typically 90%, 95%, 99%). hclpower will

execute the application multiple times, noting the energy consumed for each

execution. After each execution, the average of all these energy measure-

ments are taken, and a confidence interval is calculated on this sample mean.

The executions are stopped only when the confidence interval is below a user

supplied threshold ( within a set number of joules ), or we reach a user speci-

fied maximum number of executions. There is a requirement of a minimum of

20 samples for the measurement to be valid. The confidence interval is only

calculable when the distribution of the measurements are gaussian. The tool

will report an error if this condition is not met.

As the devices exhibit different levels of energy consumption, it is desir-
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[ ken@hclserver01 hclpower ] $ . / t e s t . sh
Sun Jan 29 18:04:09 GMT 2017
Running u n t i l Confidence of .99 f o r 250 J or
u n t i l 1000 i t e r a t i o n s .
I t e r a t i o n : 1
I t e r a t i o n : 2

624.1565 ± 0.676645035607 Joules
I t e r a t i o n : 3

623.911666667 ± 0.684568155375 Joules
I t e r a t i o n : 4

624.1485 ± 0.736695342816 Joules
I t e r a t i o n : 5

624.051 ± 0.63071325232 Joules
I t e r a t i o n : 6

606.100333333 ± 42.2124642885 Joules
I t e r a t i o n : 7

608.692 ± 36.7061805311 Joules
I t e r a t i o n : 8

610.88025 ± 32.5478026068 Joules
I t e r a t i o n : 9

612.403444444 ± 29.1669007762 Joules
I t e r a t i o n : 10

613.8003 ± 26.4712108421 Joules
I t e r a t i o n : 11

614.843181818 ± 24.2006547704 Joules
I t e r a t i o n : 12

615.63725 ± 22.2702013992 Joules
I t e r a t i o n : 13

616.377461538 ± 20.6385666803 Joules
I t e r a t i o n : 14

617.005857143 ± 19.2277518546 Joules
I t e r a t i o n : 15

617.581933333 ± 18.0030685902 Joules
I t e r a t i o n : 16

618.0963125 ± 16.9265621698 Joules
I t e r a t i o n : 17

618.605352941 ± 15.9815868789 Joules
I t e r a t i o n : 18

619.005222222 ± 15.1268755286 Joules
I t e r a t i o n : 19

619.338789474 ± 14.3551052383 Joules
I t e r a t i o n : 20

619.71465 ± 13.6699585875 Joules
Met conf idence a f t e r 20 i t e r a t i o n s

Figure 4.2: HCLpower output 71
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Figure 4.3: GEMM Execution Time

Figure 4.4: Energy consumed computing GEMM kernel
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Figure 4.5: GEMM Average Power Consumption

able to know the idle power consumption of the devices. To achieve this, an

application we distribute with hclpower called "idlesleep" can be profiled. This

application simply calls the UNIX system call sleep for 1 minute while hclpower

polls the accelerator for its power consumption values. For the Xeon Phi a

value of 93.9W is measured and for the Nvidia GPU, 61.9W. Note however,

that the act of polling the device keeps it in an active state. This observation

was made when comparing this method to a direct measurement of the PCIe

power rails using the ICHEC SEMA framework [29].

4.4 Case Study: Matrix-Matrix Multiplication

Matrix-Matrix multiplication is a fundamental computational kernel in scientific

computing. It is commonly referred to as a GEMM (General Matrix Multiplica-

tion) within BLAS [178], the defacto linear algebra API. All major vendors of

computational hardware provide an implementation of BLAS.

Given two matrices A of dimension M∗K and B of dimension K ∗ N ,

GEMM produces the product matrix C of dimensionM∗N .
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In these experiments the GEMM kernel is executed on varying problem

size, by varyingM,N ,K on square matrices, soM = N = K. Both devices

are evaluated computing float (FP32) and double (FP64) precision formats of

real numbers. The performance, energy and power consumed by GEMM on

Xeon Phi and Nvidia Tesla GPU hardware is captured. The vendor optimised

implementations of BLAS is called for each device. The HCLPower tool is used

to measure energy and power.

In the case of the Xeon Phi, the gemm kernel is offloaded entirely from

the host, such that none of the CPU are used in the computation. This is

necessary to isolate the power consumed by the kernel to that which can be

measured by our tool. 2

As the execution speed is quite fast for matrix multiplication on these de-

vices, all setup and teardown of the operation is measured. That is to say,

memory allocation and initialisation time and energy is accounted for within

the measurements.

4.4.1 Results

In Figure 4.3, the execution time of each device for both numerical formats is

presented. It is observed that as problem size increases, so does execution

time in all cases. Also, it is observed that the GPU outperforms the PHI for both

numerical formats and that FP64 is always slower than FP32 in both devices.

The performance difference between the two number formats depends on the

architecture of the device. For the PHI, vector registers of a fixed width of

512b are used to compute both FP32 and FP64 precisions, calculating 16 or 8

operations per cycle respectively. This leads to the 2x performance difference

once the matrices are large enough to saturate the hardware. In the case of

the GPU, the Nvidia Kepler architecture has 3x as many FP32 units as FP64,

leading to a greater acceleration of FP32 computation as shown in the figure.

The energy consumption of this experiment is shown in Figure 4.4, and

greatly reflects the execution speed data from Figure 4.3. This is caused, as

2This is achieved by setting the environmental variables "MKL_MIC_ENABLE=1" and
"MKL_MIC_WORKDIVISION=1.0".
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discussed in previous section, due to the dominance of the time component of

equation 2.1. The confidence interval is shown on each bar for a confidence

of 99% with threshold within 0.5 J.

Figure 4.5 shows the average power consumption of this experiment. It

is observed that within a device, the power consumption for either device are

similar for a given problem size. As measured earlier in 4.3, the idle power

of the PHI is 93.9W and the GPU idles at 61W. We consider these values

static power which will always be consumed, regardless of device activity. The

power values consumed in this experiment shows the dynamic component on

top of this static component caused by the computation we have executed.

The power increases due to wider utilisation of the compute resources in the

devices and as the problem sizes increase, the number of memory banks

performing work increases and with it their contribution to power consumption.

From these experiments it is found that for matrix multiplication of these

sizes, for both numerical formats, the GPU is both the faster and more energy

efficient solution. It is also found that power consumed by either device was

significantly lower than the TDP of the device, demonstrating that calculating

the energy efficiency of a device using Thermal Design Power (TDP) is not a

valid approach.

Though the tool allows for easy measurement of critical sections of code,

it was found that polling the device for power measurements keeps the device

in a higher power state than if power is directly measured using intrusive and

expensive infrastructure at the PCIe power rails. It is believed that this effect

may alter measurements critical sections consuming low power and less likely

to effect measurements in the case of the device being in higher power state

than is brought about by the polling action. Future work would calibrate this

tool to compensate for the polling action against a direct measurement infras-

tructure.
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4.5 Conclusions and Future Works

In this chapter HCLPower was presented, a tool for collecting power and en-

ergy data from accelerators. It supports Nvidia GPU and Intel Xeon Phi ac-

celerators. Data is collected for programmer specified critical sections of their

application, such as key compute kernels. The use of this tool to instrument the

GEMM kernel on both accelerators for various problem sizes was presented.

HCLPower targets accelerator devices, though it is easily extensible to

support any device which supplies component level power values, for example

the Intel RAPL performance counters which provides data for CPU and DRAM

components [160, 171].

In future it is expected that FPGA devices will have the capability to expose

power data. At that time, support for those devices will be extended in the tool.

As stated previously this approach could be enhanced by a calibration

against a direct measurement approach to calculate an offset to compensate

for perturbing the device.
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Chapter 5

Accelerator Performance and

Power Modelling

5.1 Introduction

In previous chapters an investigation into node level and accelerator level

power measurement was conducted. In this chapter a methodology for choos-

ing the optimal accelerator device with respect to performance and energy

efficiency is presented.

As development of accelerated kernel code is a time consuming exercise, a

semi-automated tool flow for determining the expected maximum performance

of an algorithm on a particular accelerator was developed as a contribution.

The results of this tool flow frees a developer to concentrate on developing and

optimising a kernel for the most appropriate device, instead of exhaustively de-

veloping for all accelerators or choosing an accelerator based on coarse data

sheet performance values, which may not accurately reflect which accelerator

would yield the best achievable performance for their chosen algorithm.

Comparing multiple accelerators for performance is a challenging prob-

lem. Different devices implement different Instruction Set Architectures (ISAs),

memory hierarchies and models, and there are no common profiling tools

available.

This analysis leverages the Berkeley Roofline model [179] to calculate the
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peak performance of the hardware device and it allows for the prediction of

what proportion of this peak, can be achieved given an algorithm.

A number of metrics based on the OpenCL computation model are derived

for the first time, for our comparisons. OpenCL was chosen for this study

as it allowed for a common C++ application to run on a standard CPU in our

compute node and an OpenCL kernel executing on any of the three accelerator

devices in our platform. Furthermore, OpenCL standardises the metrics we

from which parameters for the roofline model can be derived.

The collection of these metrics has been semi-automated by use of an

OpenCL device emulator called OCLgrind [180]. In this chapter the use and

benefit of this flow is demonstrated by applying it to an example application on

three distinct accelerators.

The novel contributions are:

• A mapping from OpenCL terminology to the roofline model for three ac-

celerator devices, including a novel FPGA based accelerator.

• A proposed semi-automated toolflow for measuring and comparing per-

formance and power.

• An initial evaluation of this flow using a target application on three accel-

erator devices.

5.2 Background and Related Works

The state of the art approach for selecting an accelerator is often to choose

a device that has the highest data sheet performance value for floating point.

This may not reflect the achievable performance on that device as the applica-

tion may be predominantly integer based, or memory bandwidth may constrain

the achievable performance.

Additionally, it is common to choose accelerators with lower TDP if energy

efficiency is a concern, though this choice does not guarantee an energy effi-

cient solution, if the device performs poorly for each watt it consumes.
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This work leveraged multiple benchmarks to obtain multiple metrics for the

target accelerator. The SHOC L0 benchmark [181], STREAM [182] and LIN-

PACK [18] benchmarks were used to obtain measured values on our acceler-

ators.

There are many other benchmarks available, such as NASA NAS [1],

Rodinia[183] and OpenDwarfs [184]. They were considered for obtaining per-

formance and power metrics, but they only target a subset of the available

target devices. Although when conducting the experiments, some of these

benchmarks could target the Xeon Phi and FPGA through OpenCL, the ker-

nels themselves were optimized for GPU architectures.

This work builds on the roofline [179] model. There have been notable

extensions to this work, notably a cache aware extension that integrates the

effect of cached data on the expected performance [185]. As there is no data

reuse in the application we studied, we leave the integration of this extension

as a future work.

The Spiral project [186], which heavily inspired this work extended the

roofline model by demonstrating the use of measured performance values for

performance bounds within the model instead of theoretical datasheet values.

This extension increases the practical use of the model by more accurately

accounting for the bounds in which the user is working. Without this exten-

sion, the user could find themselves trying to surpass a performance which

is theoretically achievable, but due to unknown architectural implementation

techniques, impossible to attain.

From an energy modelling point of view, Choi [187], extended the roofline

to examine the relationship between time-efficiency and energy-efficiency and

developed a mechanism for determining whether a race to halt strategy is the

most efficient approach for a given application.

5.3 Preliminaries

In this section the preliminaries of our flow is described, starting with the

OpenCL model [188]. OpenCL is an open compute standard specified by
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the Khronos group, which is the foundation on which this work is built. Within

OpenCL, there is a concept of a host, which is a computer containing a CPU

and some memory, and secondly the concept of an accelerator, which is usu-

ally a PCIe attached device where accelerated code is executed. There are

two core relevant models in OpenCL for our flow. They are the compute model,

which describes scheduling and work allocation and the memory model, which

describes how data is accessed and shared between parallel workers.

5.3.1 Compute

OpenCL is specified as an offload model parallel framework. Primarily, this

means that a specific kernel of computation within a CPU based application,

is identified as possibly benefiting from acceleration. The compute kernel is

extracted from the application and rewritten as an OpenCL kernel, in a C99 like

syntax. The application then transfers data to accelerator device and executes

this kernel on it, and then returns the data to the host program.

A key feature of this language is explicit thread parallelism. The kernel is

written in such a way as to specify what a single thread, given a unique thread

ID will execute. A thread executing one of these kernel instances is defined

as a work item. Typically, for performance reasons, work items are launched

together in parallel and scheduled by the OpenCL runtime onto parallel hard-

ware. This batch of work items is known as a work group. As will be seen in

the memory section, work items within a work group have certain benefits in

terms of data sharing.

Kernels can be expressed as having multi dimensional thread indices. For

example, a two dimensional index, representing the column and row of a ma-

trix, would be useful in expressing a matrix multiplication kernel. Work items

would be issued to compute all values of the resulting matrix, by multiplying

row x by column y. This is illustrated in Figure 5.1
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Figure 5.1: OpenCL Matrix Multiplication

5.3.2 Memory

The OpenCL specification [188], defines four distinct memory types from the

perspective of a computational kernel. The first, is global memory, which is

a large Random Access Memory (RAM), accessible by all work items in any

kernel execution. Accessing global memory is typically expensive in terms of

memory bandwidth, as it is most often constructed from memory technology

favouring size over speed, such as Double Data Rate 3 (DDR3) and Double

Data Rate 4 (DDR4). According to the specification, all data transfer between

the host and the accelerator must use global memory as a buffer.

The second memory type is local memory. This is a typically a faster,

yet significantly smaller memory. Typically local memory is implemented as a

cache memory. When a kernel allocates local memory, only work items within

a workgroup can access data within that local memory. Local memory is used

as an explicit cache for global memory when reuse is known to occur or when

the computational kernel requires data from neighbouring work items as an

input to its execution.

The third memory type is constant memory which is simply global mem-

ory but with the promise on the developer’s behalf, that the data will not be

modified, allowing the compiler to make data access optimisations.
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The final memory type is private memory which is the default for all mem-

ories which are not annotated. Private memory variables are not shared be-

tween work items and are essentially stack variables within a work item.

Figure 5.2: OpenCL Memory Model

These memories are illustrated in relation to the host, that is, the CPU

based system on the left side of Figure 5.2.

5.4 Roofline Model

First proposed by researchers at Berkeley for multi-core processors, the

roofline model[179] models the peak achievable performance attainable for

any computation device with respect to its compute ability bound by its mem-

ory bandwidth. The maximum performance a device can achieve is depen-

dent on a number of factors. Taking a CPU as an example, the number of

operations a CPU can execute is calculated by equation 5.1. As seen in this

equation, the number of operations a CPU can execute per cycle depends on

the operation. Most operations can be executed at a rate of 1 per cycle, how-

ever CPU vector technology, such as Intel AVX2 [189], Power Altivec [190] and

ARM Neon [191], can execute up to 8 32bit additions per cycle. Support for

vector instructions varies by processor and instruction.
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Figure 5.3: Roofline of Single and Double Precision Additions on Intel E5-
2620v4

The second term, is simply the clock frequency. It should be assumed

that the processor is operating at its C0 and P0 states, i.e., fully active and at

maximum frequency, as this is the best case for achievable performance. The

third and fourth terms are the number of cores per socket and the number of

sockets in the system.

For a given operation and processor the peak theoretical compute perfor-

mance can be calculated. Taking an Intel E5-2620v4 [192], which has 8 cores,

and runs at 2.10Ghz, using its AVX2 instructions, it could calculate 8 32bit ad-

ditions per cycle, resulting in a peak theoretical performance of 134.4GFLOPS.

This theoretical performance does not however take into account whether

or not the processor can access the input data sufficiently quickly. The maxi-

mum memory bandwidth attainable by this processor is 68.3 GB/s, which de-

pending on the application, may limit the attainable peak performance. The

resulting roofline is seen in Figure 5.3

OPS =
ops

cycle
∗ cycles
second

∗ #cores

socket
∗#sockets (5.1)
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5.4.1 Fundamental Metrics

In this section the metrics used in this analysis are described. Fundamental

metrics are those that can be measured, for example using a benchmark or

profiling tool. Subsequently "Derived metrics", those that are formulated from

the roofline model are described.

Device Memory Bandwidth (B): is the memory bandwidth from global to

the compute cores of an OpenCL device as specified by the manufacturer’s

data sheet. Device Peak Memory Bandwidth (B̂) is the memory bandwidth

measured by a benchmark kernel where the data types being moved are iden-

tically sized to the kernel under investigation. For example, if a primarily inte-

ger based kernel is considered, a memory benchmark that moves integers is

required. The unit of both these metrics is ’Bytes/Second’.

OpenCL Kernel Operations (W ): is defined as the number of operations

performed by an OpenCL kernel. As many devices implement specialised vec-

tor based instructions, this methodologies relies on the count of the number

of mathematical operations performed and not the number of instructions ex-

ecuted. This facilitates fairer comparisons. The operations counted are those

that provide meaningful computation, such as arithmetic or comparisons, but

not branching or those related to data movement, such as read/write opera-

tions.

Some modern compute devices support hardware for specialised instruc-

tions such as the number of bits set in a data word (population count). In order

to count these fairly, they are counted as ’base’ operations as if they were com-

puted using basic arithmetic operations in software. There are two methods

to obtain W . The first is a static code analysis, where the developer exam-

ines a pseudo code of their algorithm and counts the appropriate operations.

The second is, if an OpenCL implementation of the kernel is available, it can

be based to the OpenCL device simulator OCLgrind [180] which can extract a

SPIR representation of the kernel and report what SPIR level operations would

be executed. Standard Portable Intermediate Representation (SPIR) is an in-

termediate presentation used by compilers which we can inspect to account

for the mathematical instructions expressed to the code generation phase of
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the compiler. This SPIR representation should be common to all OpenCL de-

vices and representative of what any OpenCL device would execute. The unit

ofW is operations.

OpenCL Kernel Global Memory Traffic Size (Q): is the number of bytes

which travel between the off-chip DRAM memory and on-chip memory such as

OpenCL local memory or registers, during a kernel execution. The value of Q
depends on both the kernel and the target device. Given a kernel of identical

problem size to several devices, one device may be able to keep resident all

data in local memory for the duration of the kernel’s lifetime, whereas another

may not. The second device would have a higher value of Q, as it would need

to fetch spilled data back into the compute cores more than one time.

In this tool flow, Q is obtained through a combination of OCLgrind memory

access counters and by values obtained by the accelerator vendor’s profiler.

In these tests, these profilers include Intel VTune [193], Nvidia’s nvprof [194]

and Xilinx’s SDAccel [195]. The value of (Q) is measured in Bytes.

OpenCL Kernel Execution Time (T ): is the execution time for

a given kernel execution. This value does not include the setup of

the OpenCL environment, nor the transfer of data for the computa-

tion from the host to accelerator DRAM. It measures, the time in ’Sec-

onds’ from OpenCL’s ’CL_PROFILING_COMMAND_START’ event until the

’CL_PROFILING_COMMAND_END’ event, representing the time the kernel is

executing only. This value does however include the time reading from global

memory and writing any results back into the device’s global memory.

OpenCL Kernel Power Consumption (P): As seen in chapter 4, mod-

ern accelerators expose power monitoring functionality, through there vendor

libraries [164, 177, 196]. In this model, only the peak power is measured as

it is considered the peak value to be worst case power consumption for the

measured kernel. P̂ , the accelerator peak power, is also reported, measured

by taking peak power while executing the same memory benchmark as used

to calculate B̂.
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5.4.2 Derived Metrics

From these fundamental metrics the following metrics are derived which facili-

tates the construction of a combined analysis of a device and application.

Operational Intensity (I): is a measure of how much computational op-

erations are performed on average on each byte of data during a kernel exe-

cution. It is the ratio of OpenCL Kernel Operations (W) to the OpenCL Kernel

Global Memory Traffic Size (Q). The units of I is ’OPS/Bytes’.

I =W/Q (5.2)

Energy (E): represents the energy consumed by the kernel during per

execution. It is the product of execution time (T ) and peak power(P).

E = T ∗ P (5.3)

Performance (F ): is the performance of the kernel. It is computed as the

ratio of operations performed (W) to the execution time of that kernel (T ). It is

measured in units of Operations per Second (OPS).

F =W/T (5.4)

Performance Per Watt (R): is the energy efficiency if the kernel on the

given device. It is computed as the ratio of the performance of the kernel (F )

to the peak power consumed by the kernel (P).

Energy efficiency is a useful metric as it conveys how much work is done

by the energy put into the system. Devices consuming large amounts of power

but achieving a high performance can still be more energy efficient than low

power devices contributing less performance.

R = F/P (5.5)
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5.4.3 Data Type Specialisation

For each metric presented, subscripts are used to denote the data type with

which it is representing. For integer data ’i’ is used and for single precision

floating point, ’f ’ is used. This approach can be extended to arbitrary data

types, once the key characteristics of data type, such as width in memory and

device computational throughput is captured.

There must be a differentiation between data types as accelerator devices

often have unbalanced throughput for the same mathematical operation for

differing data types. This difference is a result of micro-architectural design

decisions of the device vendor. Some devices, such as GPUs for example are

targeted at high performance floating point arithmetic.

Currently this model only supports kernels of a single data types. In future

works we will generalise the model so that kernels containing multiple data

types may be more accurately modelled.

A ∈ {W , I,F ,R} (5.6)

Ai : refers to integer operations

Af : refers to single precision floating point operations

M ∈ {B,P , E ,F ,R} (5.7)

M̂ : refers to values obtained from benchmarking

M̄ : refers to values obtained from datasheets

5.5 Methodology

In this section the details of a methodology for choosing the most appropriate

accelerator for an application is presented as a contribution, beginning with

the combination of the Berkeley Roofline model with the metrics described

previously in section 5.4.
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5.5.1 Tool Flow

In this section the two step semi-automated toolflow is described.

Stage 1: Device Analysis

The first of the two stages is the "Device Analysis". In this stage the bench-

marks are executed on the target device to obtain the roofline model device

parameters B̂, F̂ and P̂ . More specifically, the steps are listed below:

• The toolflow measures the peak performance and memory bandwidth

of the device using benchmarks to acquire F̂f , F̂i, B̂ and P̂ for a given

device.

• Given a range of operational intensities (Imin, Imax) a performance

roofline is constructed using equation5.8

• Using the same approach, a performance per watt roofline is constructed

using the equation 5.9, which graphs performance per watt.

min(x× B̂, F̂ )∀x ∈ (Imin, Imax) (5.8)

min((x× B̂)/P̂ , F̂ /P̂ )∀x ∈ (Imin, Imax) (5.9)

Stage 2: OpenCL Kernel Analysis

Having obtained the device metrics, the next step is to consider the kernel.

The steps proposed are:

• The OpenCL kernel is compiled to the SPIR language and is executed

using the OCLgrind [180] tool. OCLgrind counts the number of SPIR

instructions that are executed, yielding theW . The memory access data

is also recorded.

• In the next step, the device specific profiling tools are used to measure

the Q, that is the memory traffic from global memory of a kernel.
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• The toolflow then executes the kernel and measures the time of execu-

tion giving T .

• The toolflow samples power consumption at regular intervals using mea-

surements acquired from the hclpower tool presented in chapter 4, giv-

ing us P

• Using equation 5.2, I is obtained, facilitating the graphing of the pre-

dicted max performance on the target device.

• Using equations 5.4 and 5.5, the measured performance and energy

efficiency of the kernel, which are F andR in our toolflow are calculated.

5.6 Case Study

In this section a case study of applying this toolflow is described. The algo-

rithm and the target devices are discussed, followed by the construction of the

rooflines resulting from this toolflow. Finally the results are presented.

5.6.1 Algorithm

The algorithm of interest in this study is the lookup3 [197] hashing function

by Bob Jenkins. It is the core hashing function within the memcached [198]

key-value store. This algorithm was chosen as it is called frequently within

the larger memcached application and is sufficiently complex to evaluate the 3

devices on which the experiments were carried out. The algorithm has many

possible execution paths, which can be taken depending on the input. Given

the maturity of the tooling at the time of the experiments, a more complex

algorithm would have resulted in longer development time.

Given a key string and a value object, a key-value store will hash the key

to determine the address of where to store the object. This is known as a SET

operation. The second core operation, a GET operation, is the retrieval of an

object. In this case, the key-value store is given a key; the hash is computed

and the object at this hash’s address is returned from the system. The primary

89



5.6. CASE STUDY

use of these systems are to act as caches for data returned from databases,

to lessen the amount of unnecessary database computation.

The algorithm operates by taking three input values; the key, the length of

that key and a random seed known as init. No matter the length of the key,

the resulting hash is always a 32 bit integer. The algorithm is composed of

two main stages. First, there is a loop which consumes three 32 bit words, or

twelve characters of the key, and performs a Mix operation composed of mul-

tiple operations to shift, xor, add and subtract the state variables {a, b, c}. This

loop continues until there is less than twelve characters of the key remaining.

Then, the second stage processes the remaining characters with a length de-

pendent mixing of the characters. Finally, the resulting hash value is returned

as state variable c.

Algorithm 1: Bob Jenkins lookup3 hash function
key← Input string to hash ;
length← Length of input string ;
init← Initialization value of the hash ;
hash→ Returns the hash value ;

begin
a, b, c← Initialize based on length and init ;
index← Index of the key ;
while length > 12 do // mixing

a += key[ index + 0 ] ;
b += key[ index + 1 ] ;
c += key[ index + 2 ] ;
Mix ( a, b, c ) ;
length −= 12 ;
index −= 3 ;

end

; /* Mix the remainder in a, b, c */
/* and return the hash */
return MixRemainder ( a, b, c, key, length ) ;

end

The W and Q values are obtained for this application by using

OCLGrind [180] on a uniformly random test dataset as 1224 MOPs and 367MB
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respectively. Having both values, the arithmetic intensity is obtained (I) as

3.33.

5.6.2 Target Devices

Inspired by the proliferation of accelerator devices across the Top500 [25] su-

percomputers, to assess this toolflow three diverse accelerators are targeted.

They are two traditional accelerators, such as an Nvidia K20c GPU and an

Intel Xeon Phi 5110P, and a novel accelerator, a Xilinx Virtex 7 based ADM-

PCIE-7V3 FPGA board. In this section the capabilities of the devices and their

mapping to the Roofline Model are described.

Nvidia Tesla K20c

The Nvidia K20c is a Kepler architecture [199] based GPU for HPC in a PCIe

form factor. It has 13 SMX cores, totalling 2496 CUDA cores. Each SMX has

the capability to execute arithmetic operations in parallel. The number of op-

erations per cycle depends on the complexity of the operation. This device

can compute 32 integer multiply-accumulate operations per clock cycle. In the

case of Nvidia GPU the intruction throughputs depend on the microarchitec-

tural generation of the device [200].

The device executes at a base clock frequency of 0.706Ghz. This value is

used for the calculations in this work, though when certain conditions depen-

dent on thermal environment and compute workload are fulfilled, the device

can operate at a boosted clock frequency.

In OpenCL terms, the device’s global memory is composed of 5GB of

GDDR5 memory. The peak memory bandwidth is given from the datasheet

at 208GB/s. This is the value for B̄ for this device. It is obtained by multiplying

the memory interface of data width of 320 bits by the memory clock frequency

of 5.2Ghz and converting to GB units.

The device includes 64KB of L1 cache (48KB of which can be configured

as a shared memory) per SMX totalling 624KB. There is a 1536KB shared L2

cache between all of the SMX. The combination of L1 shared memory and L2
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cache memory gives the a total of 2160KB local memory.

Ff = 0.706Ghz ∗ 13 ∗ 192 ∗ 2 (5.10)

Fi = 0.706Ghz ∗ 13 ∗ 32 ∗ 2 (5.11)

For this device, Fi and Ff are calculated in units of giga-operations by the

Equations 5.11 and 5.10. These are calculated as the product of the clock fre-

quency, the number of SMX cores within the GPU, the number of instructions

per SMX per cycle and the number of mathematical operations per instruction.

Typically this last component is 2, as the operation used for calculating maxi-

mum performance is the fused multiply add instruction, as de facto standard.

Intel Xeon Phi 5110P

The Intel Xeon Phi 5110P is 60 core PCIe based accelerator implementing a

subset of the x86 ISA running at a clock frequency of 1.053 Ghz. Mapping to

the OpenCL model, this device has 8GB of GDDR5 memory, constituting the

global memory. The local memory is comprised of 32KB of L1 and 512 KB L2

cache each per core. The L2 caches are connected via a ring interconnect.

Cache misses on one core’s L2 result in a lookup of the other core’s L2 caches,

before accessing global memory.

The Intel Xeon Phi 5110P cores have 512 bit wide vector registers facilitat-

ing the execution of the same instruction on multiple data (Single Instruction

Multiple Data (SIMD)).

Ff,i = 1.053Ghz ∗ 59 ∗ 16 ∗ 2 (5.12)

Due to it’s relatively low clock frequency (compared to CPU), this device

relies heavily on vectorising computation within its vector registers to achieve

high performance. The throughput performance values Fi and Ff are com-

puted similarly to the Nvidia K20c device. Note, though the Phi has 60 physi-

cal cores, one is reserved for running the embedded operating system on the

board. For this device, Fi and Ff are equal. The performance is calculated
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as the product of the clock frequency, the number of cores, the operations per

instruction, per core, per cycle and finally a factor of 2, again because of the

fused multiply add operation. The result is presented in Equation 5.12.

The memory subsystem of this device is comprised of 8 channels of 64

bit interfaces, executing at 5.5Ghz, giving a total maximum theoretical global

memory bandwidth B̄ of 352GB/s.

Xilinx ADM-PCIE-7V3

The Xilinx ADM-PCIE-7V3 is a half length PCIe based accelerator manufac-

tured by AlphaData, containing a Xilinx Virtex 7 690T FPGA. Unlike the pre-

vious two accelerators, the FPGA has no fixed architecture. It cannot be de-

scribed in terms of cores or SIMD units. The FPGA is a fabric of building

blocks, composed of Lookup Tables (LUTs), Flip-flops (FFs), Digital Signal

Processors (DSPs) and Block Random Access Memorys (BRAMs).

Typically these resources are mapped to specific roles. LUTs for exam-

ple are used to implement arithmetic operations on integer based data types.

They are implemented as a configurable truth table. Instead of building an

operation from multiple logic gates, LUTs can be used to define any boolean

operation, from 6 inputs in this generation of FPGA. Flip-flops are register

memories. Each flip flop can hold a single bit in memory. They are the mech-

anism by which state is held within the FPGA between clock cycles. DSPs are

specialized logic for performing signal processing operations at high speed.

They are often employed to perform floating point arithmetic within the FPGA.

BRAMs are blocks of dedicated memories usually of 36KB in size for Xilinx

based devices. These BRAMs are used to construct a custom memory hierar-

chy within the user’s design. A developer can use these BRAMs to construct

on-chip caches when deemed appropriate.

The FPGA is programmed by expressing a design in either Register Trans-

fer Logic (RTL), which are low level Hardware Description Languages (HDLs)

in which the developer describes their design at the level of wires and signals

which propogate on clock inputs, High Level Synthesis (HLS) tool such as Xil-

inx Vivado HLS C++ [201] in which the design is described through C++ with
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Device F̄f F̄i B̄ P̄ F̂f F̂i B̂ P̂
Tesla K20 3524 587 208 225 2903 585 143 225
Phi 5510P 1988 1988 320 245 1189 946 119 245
ADM 7v3 738 8880 21 25 200 3032 8.5 2 25

Table 5.1: Tool flow values of lookup3 on these test devices

pragma to direct the tool to generate the desired hardware or as in our case

OpenCL. This code does not execute on the device, rather, it describes the

hardware architecture that the FPGA will instantiate. FPGA tools such as Xil-

inx Vivado, transform the code into a binary form, which is used to reconfigure

the hardware in the FPGA to operate on data as described by the code.

When mapped to the OpenCL model, this FPGA device has 16GB of DDR3

memory, which constitutes the global memory. The local memory is composed

of BRAMs.

Xilinx SDAccel 2015.1 [195] was used which constrained our resource

availability to 70%, as platform infrastructure such as PCIe communication

hardware and memory controllers for the onboard DDR memories occupied

the remaining 30%. Within this version of the SDAccel tool, the target clock

frequency for this device is set to 200Mhz.

The 690T FPGA contains 433200 LUTs, 866400 FFs, 3600 DSPs and

52MB of BRAMs.

5.6.3 Rooflines

For each device the rooflines are plotted to demonstrate the maximum achiev-

able performance and the performance/watt for integer operations. Based on

the previous subsection, the required metrics are summarised in Table 5.11.
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5.6.4 Results

A first order analysis of Table 5.1 would suggest that the best accelerator

device for this application will be the FPGA, followed by the Phi, and then

the GPU. This is the case whether considering the theoretical or measured

benchmarked performance of the device. The rooflines 5.4 5.6 5.8 that were

constructed show that for this application, in theory the rank order of the accel-

erators is GPU, Phi, then FPGA, due to the role of memory bandwidth in the

performance of this application. Given this information the developer should

choose to construct a kernel for the GPU device.

In these experiments a kernel was built and measured for each device. All

kernels were optimised to the best of our abilities. For the GPU and Phi de-

vices, this meant maximising the number of parallel worker threads to utilise

all of the Nvidia SMX and Intel vector lanes respectively with each thread pro-

cessing an individual key. For the FPGA, the strategy different. By default, the

FPGA will read data from global memory in bursts equal to the size of the data

type it is requesting. In this case this would lead to requesting 32bit per cycle.

By studying the algorithm it was found that each individual key holds 16 32bit

words, totalling 512 bits. In this design, the memory interface was optimised,

such that 512 bits were read from global memory on every cycle leading to a

16x improvement in bandwidth efficiency. Secondly, the tools were directed to

construct a hardware pipeline of our design, meaning that each operation in

the algorithm would be computed by a separate piece of hardware, leading to

the ability to read, compute and write in parallel. This contrasts the GPU and

Phi approach to parallelism of scheduling instructions over the same hardware.

It should be noted that an additional advantage to the FPGA for this heavily

branching algorithm is that conditional branches simply lead data through dif-

fering paths of logic in the FPGA and so have no performance overhead at

runtime. Contrasting with the GPU or Phi, a conditional branch may cause the

hardware cause a performance penalty if their branch prediction logic fails to

predict the outcome of the branch.

1ADM 7v3 F̂f was measured using an in-house Xilinx benchmark. ADM 7v3 F̂i is esti-
mated using 70% utilisation of LUTS, 20 LUTS per 32bit integer operation, at 200Mhz which
is 0.7*(433200/20)*200 = 3032.4 and 1/2 memory channels available, gives B̂ of 10.6GB/s.
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The results are presented in Table 5.2. It can be seen that the best perfor-

mance is obtained by the GPU, followed by the Xeon Phi and FPGA. Though

the roofline wasn’t met in all cases, due to insufficient development time, the

qualitative results are as we would predict from the roofline analysis. Further

optimisations are possible for each of the target device, but the outcome will

be unchanged.

From a power consumption point of view, it is seen from Table 5.1, that the

FPGA consumes the least power, followed by the GPU, and the Phi consumes

the most. This is TDP, i.e. the worst case power consumption for that device.

In reality power consumption varies as a function of utilisation.

Considering energy efficiency, the rooflines suggest that for the chosen

application, the most efficient device is the GPU, followed by the Phi, followed

by the FPGA. This is a result of the theoretical maximum number of operations

that each device can compute in unit time, consuming power at the TDP rate.

From the measured results, in Table 5.2, it is seen that the order of energy

efficiency is GPU, FPGA, followed by Xeon Phi. These results are due to the

GPU doing a large number of operations, making good use of the high rate of

power being consumed, the FPGA doing a relatively low number of operations

but in a small power envelope, and the Phi doing a middling amount of work,

but drawing a large amount of power.

It is expected if subsequent performance gains were implemented to the

stage that our application reached peak performance as shown in the roofline,

the devices would be ranked as GPU, Phi then FPGA. As seen in the roofline

Figure 5.10, the FPGA device has the highest theoretical integer performance,

but lacks the necessary bandwidth to utilise this capability. It is our recom-

mendation to FPGA vendors to increase memory bandwidth by adding more

advanced memory subsystems such as GDDR5 or High Bandwidth Memory

(HBM).
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Accelerator GOPS GOPS/W
Nvidia K20 126.42 1.18

Xeon Phi 5110P 66.70 0.38
Xilinx 690T 18.11 1.02

Table 5.2: Bob Jenkins Lookup3 measured performance and energy efficiency
results

5.7 Conclusions

Choosing the most appropriate accelerator device for a given kernel is non triv-

ial. As seen in this chapter, the device with the highest datasheet performance

for integer based computation failed to provide the highest performance. More-

over, it was the device with the lowest integer based performance that provided

the highest performance.

The roofline models illustrated that memory bandwidth and arithmetic in-

tensity of the application are essential to consider when choosing an acceler-

ator. As shown in subsection 5.6.2, an understanding of micro-architecture

of each device is important to factor into building the roofline models and we

have provided the mechanism by which we calculate them.

We have provided a semi-automated toolflow for evaluating subsequent

applications for both performance and power efficiency, in order to lessen de-

velopment effort and aid selecting the appropriate accelerator.

This work was published as "A Semi-Automated Tool Flow for Roofline

Analysis of OpenCL Kernels on Accelerators" [5]. From our tool-flow, we have

found that integer based applications with a high arithmetic intensity are espe-

cially suitable for FPGA. Using the insights developed in this work, we applied

ourselves to local sequence alignment problem of the genomics domain as

presented in [202]. Furthermore, for the same reason, FPGAs have since

demonstrated state of the art performance in the field of machine learning,

specifically on inference of deep neural networks using reduced precision in-

teger types [203, 204].

Additionally the applicability of this approach has been seen in subsequent

works such as found in [205] which displays rooflines with multiple neural net-
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work applications evaluated on several state of the art FPGA devices.
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Chapter 6

Conclusions

6.1 Discussion

In this thesis the state of the art of modelling and instrumentation of modern

hybrid platforms with respect to energy efficiency was presented and evalu-

ated It was found through case study that models built in the era of single

core computing fail to accurately model modern platforms, as they fail to cap-

ture the hierarchical and shared nature of the architecture. We have seen the

emergence of power models for accelerator devices, but not on the scale of

total node. We attribute this to the difficulty of electrically isolating accelerator

devices to build such models. Now, with the advent of on-board measure-

ment capabilities for accelerators, and accelerator components, we question

the need for predictive models of energy as we have seen in the past.

It was observed that tools for instrumenting applications in this field are

lacking. To tackle this problem, multiple novel research tools were developed.

For node level power measurement, HCLEnergyAPI was developed allowing

researchers to instrument their application for energy and power data by wrap-

ping their critical sections of code with our API calls. It supports instrumenta-

tion of distributed MPI enabled applications. The prototype implementation of

the tool supports the French scientific computing platform GRID5000.

For accelerator level measurement, hclpower was created, which samples

power data from Nvidia GPU and Intel Xeon Phi accelerators from integrated
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power meters. The researcher accesses this data by wrapping their critical

sections of code with our API calls, much like HCLEnergyAPI.

This thesis studied how to choose an appropriate accelerator for perfor-

mance or energy efficiency by extending and applying the Berkeley roofline

model. Our approach combines an architectural evaluation of the candidate

accelerators and an analysis of the target algorithm.

6.2 Claims

This thesis provides a wide survey and evaluation of the literature in this field.

Having found that predictive models from the single core era are no longer ap-

plicable to modeling applications on modern systems, and with the emergence

of physical measurement capabilities, two novel projects HCLEnergyAPI and

HCLPower were developed. These projects provide accurate measurements

of power and energy at the granularity of the node and the accelerator device,

providing statistical confidence values for the measurements provided. This

is a novel capability. The work further provides the capability to measure dis-

tributed applications using the MPI extension to our API, a novel feature in our

field.

The mapping of the OpenCL standard to the roofline model and further use

of it to formulate a performance model for FPGA devices is a novel approach.

The modelling of an application on multiple accelerator devices through the

OpenCL standard to choose the optimal accelerator has not previously been

shown.

6.3 Future Works

Partitioning of data in parallel applications is a well studied area, complete

with advanced models and tools for performance optimization [12, 206]. With

the tools and methods developed in Chapter 3 of this thesis, accurate en-

ergy and power measurements of applications can be taken. Future work of

this thesis would be to extend functional performance models to include en-
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ergy measurements as a constraint to workload partitioning of data parallel

applications. This would facilitate the partitioning of applications with respect

to energy consumption and performance across a network of heterogeneous

nodes. The interface specified is system agnostic and as such, it should be

easily ported to a wide range of supercomputing infrastructure.

Using the tools developed in Chapter 4, functional models could be ex-

tended to partition data across accelerator devices with respect to energy

consumption, in addition to the existing performance optimiser [207]. This

tool could be further validated by calibration against an external power moni-

toring device to ensure the validity of the vendor provided power readings.

The work of Chapter 5 can be further developed by unifying the work pre-

sented with the cache aware roofline model extension [185]. There is also

scope to resolve a limitation of the roofline model for devices with heteroge-

neous throughput. Currently the roofline can only be used to plot maximum

expected performance for a specific datatype, typically that of the instruction

with maximum throughput of that device. The roofline should be reformulated

to capture the heterogeneity of the instruction throughput by weighting the in-

structions by their relative throughput.
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Appendix A

Background - Supporting

Experimental Data

A.1 HCLEnergy Experiments Platform Definition

The experiments in section 3 were carried out on nova-19.lyon.grid5000.fr, a

compute node at the Lyon site of GRID5000. It is a Dell PowerEdge R430 with

2x Intel(R) Xeon(R) CPU E5-2620 v4 running at 2.10GHz. The node contains

32GB of RAM, a 10Gb ethernet card and a 2x 300GB SAS hard drives. It was

added to the GRID5000 infrastructure in March 2017.

A.2 Power and Energy Models: Details

A.2.1 Power and Energy Models for CPUs

[39] construct a power model of a server as a summation of power models of its

components, the processor (CPU), memory (RAM), fans, and disk (HDD). The

power consumptions for different types of servers are given by the following

equations :

PBlade =
l∑

i=1

PMainboard (A.1)
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PTower_or_Rackable =
l∑

i=1

PMainboard +
m∑
j=1

PFan +
n∑
k=1

PPSU (A.2)

where l, m, and n denote respectively the total number of mainboards, fans,

and power supply units. For purposes of brevity, only their power model for

blade servers is presented here.

The power consumption of the mainboard is given by the following equation

[39]:

PMainboard =
l∑

i=1

PCPU + PRAM +
m∑
j=1

PNIC +
n∑
k=1

PHDD + c (A.3)

where l, m, and n denote the total number of processors (CPU), the total

number of network interface cards (NIC), and the total number of attached hard

disk drives (HDD) respectively and c is a constant (55 W for blade servers).

The power consumption of a multicore processor, PCPU , is calculated as

the sum of power consumptions of individual cores. The power consumption

of each individual core is based on the linear single-core model of [37]. [39]

modelled the power consumption of a multicore processor containing n cores

as follows:

PCi = Pmax × (UCi/100) (A.4a)

PCPU = Pbase +
n∑
i=1

PCi (A.4b)

Pmax = V 2
max × fmax × Ceff (A.4c)

where PCi indicates the power consumption of a core, pbase represents the

base power consumption of a processor, Vmax and fmax signify the voltage

and frequency at maximum utilization respectively, and Ceff , the effective ca-

pacitance.

For memory module, the power consumption is given by [39]:

PRAM = PRAM_base + γ × α× β (A.5)
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where α = 1, 2.3, 1.3, and 1.9 for unbuffered DDR2 SDRAM, buffered DDR2

SDRAM, unbuffered DDR3 SDRAM, and buffered DDR3 SDRAM respec-

tively. The value of β used is 7.347. A probabilistic approach is used to model

γ for a processor not in idle state, otherwise the value of γ used is 0. [39]

and [208] model the idle power consumption of a unbuffered SDRAM of type

DDR2 or DDR3 as follows:

PRAM_base =
r∑
i=1

si × p (A.6)

where r represents the total number of installed memory modules and si indi-

cates the size of memory module i. [39] and [208] model the power consump-

tion of the hard disk as follows:

PHDD = a× 1.4× Pbase + b× PHDD_base + c× 3.7× Pbase (A.7a)

PHDD_base = Pbase × (d+ 0.2× e) (A.7b)

where a, b, c, d, and e denote probabilities of different states of the disk and

Pbase is the base power consumption.

Based on the model evaluations on tower and blade servers, the authors

report maximum prediction error rates of 8% and 9% for tower servers and

blade servers respectively.

A.2.2 Power and Energy Models for GPUs

[41] present a GPU power consumption prediction model that is modelled sim-

ilar to the PMC-based unit power prediction approach of [34]. Their model is
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described below.

GPU_power = DynamicPower +BasePower

DynamicPower =
n∑
i=0

DP_Component_i = DP_SMs+DP_Memory

n∑
i=0

SM_Componenti =

DP_Int+DP_Fp+DP_Sfu+DP_Alu+DP_Texture_Cache+

DP_Const_Cache+DP_Shared+DP_Reg +DP_FDS +DP_Const_SM

DP_SMs = Num_SMs×
n∑
i=0

SM_Componenti

where BasePower is the idle power consumption of a GPU and Num_SMs

is the total number of Streaming Multiprocessors (SM) in a GPU. The dynamic

power for each component is calculated as follows [41]:

DP_Component_i = MaxPowercomponent × AccessRatecomponent

AccessRatecomponent =
DAC_per_thcomponent ×Warps_per_SM

Predicted_Exec_cycles/4

DAC_per_thcomponent =
n∑
i=0

Number_Inst_per_warpsi(comp)

Warps_per_SM = (
#Threads_per_block
#Threads_per_warp

× #Blocks

#Active_SMs
)

The parameter, DAC_per_thcomponent), is calculated as the total number

of instructions that access an architectural component. The parameter,

Warps_per_SM , indicate the number of warps that are executed in one SM.

The parameter, (Predicted_Exec_cycles), is calculated using an analytical

timing model, which we don’t present here since our main focus in this pa-

per is power and energy models. The dynamic power of GDDR memory

(DP_Memory) is modelled based on the dynamic powers of the global mem-
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ory and local memory that share it [41]:

DP_Memory =
n∑
i=0

Memory_componenti = DP_GlobalMem+DP_LocalMem

The other memories (shared, constant, texture) are modelled separately as

SM components. The parameter, MaxPower, is empirically determined

by stressing different architectural units in a GPU using synthetic micro-

benchmarks. A special piecewise linear approach is used for eight power

components due to their non-linear behaviour similar to how it was done in

[34]. Finally, dynamic power is modelled as follows [41]:

DP_SMs = Max_SM × log10(α× Active_SMs+ β)

Max_SM = Num_SMs×
n∑
i=0

SM_Componenti

DynamicPower = (Max_SM +DP_Memory)× log10(α× Active_SMs+ β)

α = (10− β)/Num_SMs, β = 1.1

where Active_SMs is the number of active SMs in the GPU.

To demonstrate the accuracy of their model, NVIDIA GTX280 GPU is used.

The number of dynamic instructions and instruction types (which are used

to calculate the access rates) are determined using a GPU PTX emulator,

Ocelot ([209]). The authors [41] report that the IPP prediction error for the

total power consumption is 8.94% and the average energy consumption sav-

ings are 10.99%. The main factor hindering the portability of this model is

that it requires detailed architectural information and contains a large set of

parameters.

A.2.3 High Performance Computing Applications

[60] present energy prediction model for MPI broadcast algorithms in large

scale HPC systems. They present models for four broadcast algorithms, Scat-

ter and AllGather algorithm (MPI/SAG) [210] used in MPICH2 [211], Pipelining

algorithm (MPI/Pipeline) provided in OpenMPI 1.4.4, hybrid broadcasting algo-
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rithm which combines MPI/SAG and OpenMP, and a hybrid algorithm, which

combines MPI/Pipeline and OpenMP [212]. The energy consumption of MPI

broadcast operation (MPI/SAG) is modelled as follows [60]:

EMPI/SAG =
N∑
i=1

eNodeiMPI/SAG +
M∑
j=1

e
Switchj
MPI/SAG

= tScatter(p,N)× (
N∑
i=1

ρNodeiScatter(p) +
M∑
j=1

ρ
Switchj
Scatter )

+ tAllGather(p,N)× (
N∑
i=1

ρNodeiAllGather(p) +
M∑
j=1

ρ
Switchj
AllGather)

(A.8)

top(p,N) is the time required to perform op (Scatter, AllGather, Pipeline, or

CopyPrivate) over the N × p processes, where N is the number of nodes.

Within each node i, p processes are involved in the execution of op. ρNodeiop (p)

is the power consumption of the node i during top. ρ
Switchj
op (p) is the power

consumption of the switch j during top. They validate their energy prediction

model on Grid5000 [153] and they report a worst prediction error of -6.82%.

[59] explore energy and performance trade-offs of data movement and I/O

at extreme scales. Their energy consumption model follows:

E = Esystem + Ecomm (A.9a)

Esystem = T × (Pstatic + Pdynamic) (A.9b)

Pstatic = P base
cpu + P base

mem + P base
nic + P base

misc (A.9c)

Pdynamic = a× P active
cpu + b× P active

mem (A.9d)

P active
cpu = C × V 2 × α× f (A.9e)

where P base
cpu , P base

mem, P base
nic , and P base

misc are the base power consumptions of CPU,

DRAM, NIC, and other miscellanous components. Dynamic power is predicted

by using the capacitance (C), switching activity (α), operational voltage (V ),

and frequency (f ). The parameters a and b are determined using the number

of arithmetic operations per second and the number of memory accesses per

second. The energy consumption model of a MPI communication operation is
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constructed as follows [59]:

Ecomm =
M∑
i=0

datai
BWnet

× Ptransfer, if smp(srci) 6= smp(desti) (A.10a)

Ecomm =
M∑
i=0

datai
BWmem

× (P active
cpu + P active

mem ), if smp(srci) = smp(desti)

(A.10b)

where smp(i) = smp(j) indicates that MPI ranks i and j are mapped to cores

that share memory, BWnet and BWmem are the bandwidth values of network

and memory respectively, and Ptransfer depends on the characteristics of the

underlying network (for example, Infiniband, Gemini).

A.2.4 Power and Energy Models: Parameters

Table A.1: Parameters and Decomposition characteristics of the CPU Power
and Energy Models Surveyed.

Model Parameters Decomposition

[33] microoperation, floating-

point operations, second-

level address strobes,

memory transactions [33]

single-core CPU
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[34] 128bit_MMX_uop,

64bit_MMX_uop, BPU

Fetch Req, Branch Re-

tired, BSQ Cache Ref, Bus

Ratio, Front End Event,

FSB Data Activity, IOQ

Allocation, ITLB Reference,

Ld Port Replay, Machine

Clear, MOB Load Re-

play, packed_DP_uop,

packed_SP_uop,

scalar_DP_uop,

scalar_SP_uop, St Port Re-

play, TC Deliver Mode, Uop

Queue Writes, Uops retired,

uop_type, x87_FP_uop,

x87_SIMD_moves_uop [34]

1st Level BPU, 2nd

Level BPU, Allocation,

Bus Control, Data

TLB, FP Exec, FP

Regfile, Inst Dec,

Inst Queue1, Inst

Queue2, INT Exec,

INT Regfile, ITLB &

Fetch, L1 cache, L2

Cache, MEM control,

MOB, Rename, RE-

TIRE, Schedule, Trace

Cache, Ucode ROM

[34]

[35] Cbase, UCPU , UDisk, UNet CPU, disk, network

[36] Cbase, UCPU , UMem, UDisk,

UNet

CPU, memory, disk,

network
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[48] ALU Latency, Branch,

Branch Latency, Depth,

D-L1 Cache Size, Fixed-

Point/Memory, Floating-

Point, Floating-Point (FP),

FP-Divide Latency, FPU

Latency, Functional Units,

FX-Divide Latency, FX-

Multiply Latency, General

Purpose (GP), I-L1 Cache

Size, L2 Cache Latency, L2

Cache Size, Load/Store La-

tency, L/S Reorder Queue,

Main Memory Latency,

Special Purpose (SP), Store

Queue, Width [48]

single-core CPU

[37] Pbase, Pmax, U single-core CPU

[37] Cbase, UCPU , r single-core CPU

[49] Ambient_Temp0, Ambi-

ent_Temp1, CPU0 Die

Temp, CPU1 Die Temp,

HT1 Bus X-Actions, HT2

Bus X-Actions, L1/L2 Cache

Miss (Core 0 to Core 3),

Disk Bytes Read, Disk

Bytes Written, Pspin−up, tsu,

Pread, Nr, tr, Pwrite, Nw,

tw, Pbase, tbase, RPMFan,

RPMbase, Pfan, tipmi−slice,

Poptical, toptical, Vpow−line,

Ipow−line, ttimeslice

Cor0 to Core 3,

DRAM, HDD, Fan,

Support Chipsets

[38] Cbase, UCPU , UI/O CPU, I/O
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[39] Pbase, Vmax, fmax, Ceff , UC ,

n, si, p, γ, β, a, b, c, d, e [39]

CPU, RAM, NIC, HDD,

Fan

[51] AR(comp,core), Pcomp, Pstatic

where core = 0,1, comp =

BPU, FE, FP, FSB, INT, L1,

L2, SIMD [51]

BPU and branch ex-

ecution, DECODE,

FETCH_UNIT, Float-

ing point arithmetic

units, FSB, Integer

arithmetic units, L1, L1

DTLB, L1_ICACHE,

L1_ITLB, L2, L2

DTLB, LD/ST execu-

tion, LSD, memory,

MOB, PREDECODE,

RAT, RETIRE, ROB,

SIMD arithmetic units,

SPT, uCODE ROM,

uOP BUFFER [51]
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[40] For server systems, pa-

rameters are: Cycles,

DMA misses, Fetched

µops, Halted cycles, Inter-

rupts, L3 Cache misses,

Processor memory bus

transactions, TLB misses,

Uncacheable accesses [40]

For desktop systems,

parameters are: CPU clock

frequency, CPU to I/O

transactions, CPU voltage,

DC accesses, DCTPage-

Conflicts, DCTPageHits,

DCTPageMisses, DRAM

active percent, Fetched

µops, FP µops retired,

GPU nongated clocks,

%Halted/%Not-Halted, Link

active percent, Spindle

active percent, Temperature

[40]

Chipset, CPU, Disk,

I/O, Memory, Memory

Controller [40]

Table A.2: Parameters and Decomposition characteristics of the GPU Power
and Energy Models Surveyed.

Model Parameters Decomposition
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[41] α, β, Num_SMs,

Active_SMs,

Predicted_Exec_cycles,

#Threads_per_block,

#Threads_per_warp,

#Blocks

DAC_per_thcomponent,

where component = Alu,

Const_cache, Const_SM,

FDS, Fp, GlobalMem,

Int, LocalMem, Reg, Sfu,

Shared, Texture_cache [41]

ALU, Constant cache,

FDS (Fetch/Dec/Sch),

Floating Point Unit,

Global memory, Int.

arithmetic unit, Local

memory, Register File,

SFU, Shared memory,

Texture cache [41]

[44] branch, divergent_branch,

gld_128b, gld_32b, gld_64b,

gst_128b, gst_32b, gst_64b,

instructions, local_load,

local_store, tlb_miss,

warp_serialize [44]

GPU

[42] ALU, Atomic, BankConf,

Barrier, Branch, CMInst.hit,

CMInst.miss, D.Branch,

D.FP, GMInst, INT, LMInst,

M.Barrier, Occupancy,

PMInst, Register, S.FP,

SFU, ShMInst, TMInst.hit,

TMInst.miss, UncoalesMem

[42]

GPU

[43] NSM,i, Pi, Ui, Bi [43] Floating Point Unit,

Global Memory,

Shared Memory [43]
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[45] branch, divergent branch,

gld request + l1 global

load hit + l1 global load

miss, global store transac-

tion, inst executed, local

load, local store, Shared

load + l1 shared bank

conflict, tex0 cache sector

misses, tex0 cache sector

queries, tpci, tkernel, P̄base,

Eparallel−overhead [45]

Floating Point Unit,

Global Memory,

Shared Memory, Lo-

cal Memory, Texture

Cache [45]
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[53] access time, access time,

address bus width, associa-

tivity, associativity, #banks,

#banks, buffer line size, chip

coverage, cycle time, cycle

time, data bus width, de-

coded opcode width, duty

cycle, #entries, #entries, flit

bits, input line width, in-

put line width, I/O buffer

entries, link latency, link

throughput, #memory chan-

nels, output line width, out-

put line width, peak transfer

rate, percentage of pipelin-

ing, pipeline stages, #ports

(in, out), #ports(R, W, RW),

#ranks, request window en-

tries, router or bus, selection

input size, selection output

size, tag width, tag width,

#virtual channels, width [53]

Block/Warp States,

Cache Buffers, Con-

stant Cache, Data

TLB, Fetch Queue,

Instruction Cache,

Instruction Decoder,

Instruction Issue

Selection Logic, In-

struction Queue,

Instruction TLB, L1

Cache, L2 Cache,

LD/ST units, Mem-

ory Controller, NoC,

PipelineLatches, Reg-

ister File, Scoreboard,

SFU, Shared Memory,

SP, Texture Cache

[53]

[46] A, Sa, Ninst, Tarc [46] GPU
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[52] ALUBusy, ALUFetchRa-

tio, ALUInsts, ALUPack-

ing, FastPath, FCStacks,

FetchInsts, FetchSize,

FetchUnitBusy, GPR, LDS-

BankConfict, LDSFetchIn-

sts, LDSWriteInsts, Lo-

calMemSize, ScratchRegs,

Wavefronts, WriteInsts,

WriteUnitStalled [52]

GPU

Table A.3: Parameters and Decomposition characteristics of the Intel Xeon Phi
Power and Energy Models Surveyed.

Model Parameters Decomposition

[54] EPIaccessmode,optype where

accessmode = Register, L1,

L2, Mem_with_prefetch,

Mem_without_prefetch,

Write_to_mem, and optype

= ScalarOp, V ectorOp,

vprefetch0_to_L1,

vprefetch1_to_L2 [54]

Compute, Hardware

PF, MEM, Private

Cache, Redundant

SW-PF, Remote

Cache, Software PF

[54]

Table A.4: Parameters and Decomposition characteristics of the Power and
Energy Models used in the HPC Applications surveyed.

Model Parameters Decomposition

[55] ∆Cycles, L1 Total Cache

Access, L2 Total Cache Ac-

cess, L3 Total Cache Ac-

cess, Total Instructions Re-

tired [55]

L1 cache, Core Logic,

L3 Cache, L2 Cache

[55]
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[56] N,NB,P,Q Node

[57] ti, tj, tk (i, j, k tiles), ti1,

tj1, tk1 (trsm tiles), tj (loop

j tile), ti2, tj2, tk2 (MM

tiles), CPU freqs (freq), ma-

trix sizes (msize), ui, uj (i,

j unrolls), ui1, uj1 (trsm un-

rolls), ui2, uj2 (MM unrolls)

[57]

CPU, DIMM

[58] Cache_FLD_per_instruction,

LD_ST_stall_ per_cycle,

PAPI_BR_INS,

PAPI_L1_DCM,

PAPI_L1_ICA,

PAPI_L1_TCA,

PAPI_L1_TCM,

PAPI_L2_ICM,

PAPI_L2_TCA,

PAPI_L2_TCH,

PAPI_RES_STL,

PAPI_TLB_DM,

PAPI_TOT_INS [58]

CPU, Memory

[61] FP operations, last level

cache misses, Retired in-

structions, stalled cycles

[61]

Integer, Floating point,

L1 cache, L2 Cache,

L3 Cache, Memory

[61]
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[62] _DISP, _DOUBLE_ISSUED,

PAPI_FP_INS,

PAPI_INT_INS,

PAPI_L1_DCM,

PAPI_L2_DCM,

PAPI_L3_DCM,

PAPI_L3_DCR,

PAPI_TOT_CYC,

PAPI_TOT_INS,

PM_CMPLU_STALL,

PM_CMPLU_STALL_THRD,

PM_L1_ICACHE_MISS,

PM_L2_INST_MISS,

PM_L3_MISS,

PM_L3_PREF_MISS,

PM_LSU_DC_PREF,

PM_LSU_FX_FIN,

PM_LSU_LDF,

PM_LSU_LDX,

PM_MEM0_PREFETCH,

PM_VSU_FMA_DOUBLE,

PM_VSU_SIMPLE_ISSUED,

PM_VSU_VECTOR,

PM_VSU_VECTOR,

_SINGLE_ISSUED,

_STREAM_CONFIRM

[62]

CPU
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A.3 Case Study: Performance Monitoring Coun-

ters

Table A.5 shows the Likwid [2] performance groups and performance counters

(PMCs) that are used as parameters in the regression model in the experi-

ments.

Table A.5: Likwid [2] performance groups and performance counters (PMCs)

Performance

Group

Performance Monitoring Counters

BRANCH

(Branch pre-

diction miss

rate/ratio)

BR_MISP_RETIRED_ALL_BRANCHES,

BR_INST_RETIRED_ALL_BRANCHES [2]

DATA (Load to

store ratio)

UOPS_RETIRED_ALL,

MEM_UOPS_RETIRED_STORES,

MEM_UOPS_RETIRED_LOADS [2]

ICACHE (In-

struction cache

miss rate/ratio)

ICACHE_ACCESSES,

ICACHE_MISSES,

ICACHE_IFETCH_STALL,

ILD_STALL_IQ_FULL [2]

L2CACHE (L2

cache miss

rate/ratio)

L2_RQSTS_MISS,

L2_TRANS_ALL_REQUESTS [2]

L2 (L2 cache

bandwidth in

MBytes/s)

L1D_REPLACEMENT,

L2_TRANS_L1D_WB [2]

L3CACHE (L3

cache miss

rate/ratio)

UOPS_RETIRED_ALL,

MEM_LOAD_UOPS_RETIRED_L3_MISS,

MEM_LOAD_UOPS_RETIRED_L3_ALL [2]
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L3 (L3 cache

bandwidth in

MBytes/s)

L2_TRANS_L2_WB,

L2_LINES_IN_ALL [2]

TLB_DATA (L1

Data TLB miss

rate/ratio)

DTLB_STORE_MISSES_WALK_DURATION,

DTLB_STORE_MISSES_CAUSES_A_WALK,

DTLB_LOAD_MISSES_WALK_DURATION,

DTLB_LOAD_MISSES_CAUSES_A_WALK [2]

TLB_INSTR (L1

Instruction TLB

miss rate/ratio)

ITLB_MISSES_CAUSES_A_WALK,

ITLB_MISSES_WALK_DURATION [2]

UOPS_EXEC

(UOPs execu-

tion)

UOPS_EXECUTED_USED_CYCLES,

UOPS_EXECUTED_STALL_CYCLES,

CPU_CLOCK_UNHALTED_TOTAL_CYCLES,

UOPS_EXECUTED_STALL_CYCLES [2]

UOPS_ISSUE

(UOPs issueing)

UOPS_ISSUED_USED_CYCLES,

UOPS_ISSUED_STALL_CYCLES [2]

UOPS_RETIRE

(UOPs retire-

ment)

UOPS_RETIRED_USED_CYCLES,

UOPS_RETIRED_STALL_CYCLES [2]

UOPS (UOPs

execution info)

UOPS_ISSUED_ANY,

UOPS_EXECUTED_THREAD,

UOPS_RETIRED_ALL,

UOPS_ISSUED_FLAGS_MERGE [2]

Fixed function

performance

counter registers

CPU_CLK_UNHALTED_CORE,

INSTR_RETIRED_ANY,

CPU_CLK_UNHALTED_REF [2]

A.3.1 Case Study: Regression Model Coefficients

Table A.6 shows the multiple linear regression coefficients obtained for power

and energy models.
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Table A.6: Multiple linear regression coefficients for power and energy Models

Predictors (Likwid PMCs) [2] Model Co-
efficients
for Average
Dynamic
Power

Model Coef-
ficients for
Energy

INSTR_RETIRED_ANY:FIXC0 -4.489847e-

09

9.837091e-

08

CPU_CLK_UNHALTED_CORE:FIXC1 -8.192357e-

09

-4.365642e-

08

CPU_CLK_UNHALTED_REF:FIXC2 7.601429e-

09

6.070421e-

08

BR_INST_RETIRED_ALL_BRANCHES:PMC0 5.102516e-

10

-8.391657e-

09

BR_MISP_RETIRED_ALL_BRANCHES:PMC1 -1.049940e-

11

1.071510e-

09

MEM_UOPS_RETIRED_LOADS:PMC0 2.383515e-

11

-3.902474e-

09

MEM_UOPS_RETIRED_STORES:PMC1 5.102516e-

10

-8.391657e-

09

ICACHE_ACCESSES:PMC0 -1.049940e-

11

1.071510e-

09

ICACHE_MISSES:PMC1 5.102516e-

10

-8.391657e-

09

ICACHE_IFETCH_STALL:PMC2 -1.049940e-

11

1.071510e-

09

ILD_STALL_IQ_FULL:PMC3 2.383515e-

11

-3.902474e-

09

L2_TRANS_ALL_REQUESTS:PMC0 -6.054451e-

10

3.830272e-

07

L2_RQSTS_MISS:PMC1 5.102516e-

10

-8.391657e-

09

MEM_LOAD_UOPS_RETIRED_L3_ALL:PMC0 -1.049940e-

11

1.071510e-

09

MEM_LOAD_UOPS_RETIRED_L3_MISS:PMC1 5.102516e-

10

-8.391657e-

09

DTLB_LOAD_MISSES_CAUSES_A_WALK:PMC0 -1.049940e-

11

1.071510e-

09
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DTLB_STORE_MISSES_CAUSES_A_WALK:PMC1 5.102516e-

10

-8.391657e-

09

DTLB_LOAD_MISSES_WALK_DURATION:PMC2 -1.049940e-

11

1.071510e-

09

DTLB_STORE_MISSES_WALK_DURATION:PMC3 2.383515e-

11

-3.902474e-

09

ITLB_MISSES_CAUSES_A_WALK:PMC0 -6.054451e-

10

3.830272e-

07

ITLB_MISSES_WALK_DURATION:PMC1 5.102516e-

10

-8.391657e-

09

UOPS_EXECUTED_USED_CYCLES:PMC0 -1.049940e-

11

1.071510e-

09

UOPS_EXECUTED_STALL_CYCLES:PMC1 5.102516e-

10

-8.391657e-

09

CPU_CLOCK_UNHALTED_TOTAL_CYCLES:PMC2 -1.049940e-

11

1.071510e-

09

UOPS_EXECUTED_STALL_CYCLES:PMC3:

EDGEDETECT 2.383515e-

11

-3.902474e-

09

UOPS_ISSUED_USED_CYCLES:PMC0 -6.054451e-

10

3.830272e-

07

UOPS_ISSUED_STALL_CYCLES:PMC1 5.102516e-

10

-8.391657e-

09

UOPS_ISSUED_STALL_CYCLES:PMC3:

EDGEDETECT -1.049940e-

11

1.071510e-

09

UOPS_RETIRED_USED_CYCLES:PMC0 -6.054451e-

10

3.830272e-

07

UOPS_RETIRED_STALL_CYCLES:PMC1 5.102516e-

10

-8.391657e-

09

UOPS_RETIRED_STALL_CYCLES:PMC3:

EDGEDETECT -1.049940e-

11

1.071510e-

09

UOPS_ISSUED_ANY:PMC0 -6.054451e-

10

3.830272e-

07

UOPS_EXECUTED_THREAD:PMC1 5.102516e-

10

-8.391657e-

09
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UOPS_RETIRED_ALL:PMC2 -1.049940e-

11

1.071510e-

09

UOPS_ISSUED_FLAGS_MERGE:PMC3 -6.054451e-

10

3.830272e-

07

A.3.2 Case Study: Regression Model Training Times

Figure A.1: Execution times of applications in the training set.

Figure A.1 shows the distribution of execution times of applications in the

training set.
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