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Abstract

Modern High Performance Computing (HPC) platforms are comprised of

highly heterogeneous computing devices connected by complex hierarchical

networks. To execute data-parallel scientific applications efficiently on such

platforms, it is necessary to balance the load of processors and to minimize

the cost of communications. The former can be achieved by partitioning data

between the processors in proportion to their speed. The latter can be

achieved by reducing the volume of communications, by optimal mapping of

the data to the processors, and by optimal scheduling of communications. In

this doctoral research, we aim to optimize the communication performance of

parallel applications, assuming that the data have been optimally partitioned

between the processors so that the total volume of communicated data has

been minimized.

Communications on hierarchical heterogeneous HPC platforms can be

optimized based on topology and performance information. For MPI, as a

major programming tool for such platforms, a number of topology and

performance-aware implementations of collective operations have been

proposed for optimal scheduling of messages. These approaches improve

the performance of application and do not require modifications to the

application source code. However, they are applicable to collective operations

only and do not affect the parts of the application that are based on
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point-to-point exchanges. This research work addresses the problem of

efficient execution of data-parallel applications on interconnected clusters and

present optimization approaches that reduce communication cost by taking

into account the entire communication flow of the application and underlying

network topology.

In this thesis, we have proposed and implemented the approximate

topology-aware heuristic algorithms aimed at minimization of the

communication cost of data parallel applications on heterogeneous

hierarchical networks. We tested these algorithms in the context of the

parallel matrix multiplication application, which is a very important

computation kernel and a building block of many scientific applications. In

addition, tests were also performed on real-life CFD application, MPDATA,

which is one of the major parts of the EULAG geophysical model. We also

demonstrate the correctness and efficiency of the proposed approaches by

experimental results on multi-core nodes and interconnected

heterogeneous/homogeneous clusters.
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Chapter 1

Introduction

1.1 Motivation

Modern HPC platforms are becoming increasingly complex, heterogeneous

and hierarchical. In terms of computing, “heterogeneous” refers to

non-uniformity in some aspects of the system. Heterogeneity appears not

only in the computing devices but also in networks and can arise from

hardware heterogeneity (Central Processing Units (CPUs), Graphics

Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs) etc.),

software heterogeneity (operating system, compilers, libraries, etc.) and

complex network topology [1]. These heterogeneous platforms present

significant challenges to computer scientists [2], [3]. The HPC applications

must adapt to the heterogeneity of these HPC platforms for optimal

execution [4].

The widespread deployment of multi-core and many-core architectures has

raised the need to exploit parallel computing techniques. The number of cores

have recently increased by an order of magnitude. Modern systems are now

massively built with multi-core co-processors. In 1995, the number of cores

in the top 10 supercomputers were ranged from 42 to 3680 [5]. Nowadays,

this number ranges from 115,984 to 3,120,000. Such a substantial increase in

scale significantly increases the data movement and subsequently increases

the coordination and interaction cost of processes in data-parallel applications.
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1.2. COMMUNICATION OPTIMIZATION FOR PARALLEL APPLICATIONS

In heterogeneous systems, data movement is the primary factor that

influences power consumption, execution speed, and scalability [6]. Here

optimal placement and distribution of data throughout the system are

extremely important. While dealing with heterogeneous platform two major

challenges arise. First, how to partition data across the heterogeneous

processors to efficiently balance the load, so that all processors achieve

near-optimal load balance? [7], [8], [9]. And second, how to minimize the

communication overhead to improve the overall performance? Minimizing the

communication overhead is perhaps the single most important optimization

problem that needs to be solved while working on a heterogeneous

system [10], [11]. In this doctoral work, we focus on the optimization of

communication performance of parallel applications on heterogeneous

platforms, assuming that the data have been optimally partitioned between

the processors.

1.2 Communication Optimization for Parallel

Applications

Communication between the processes of parallel applications executed on

heterogeneous platforms involve multiple message hops, non-optimal routes

and traffic congestion, which significantly affect performance. Communication

optimization is a broad field that comprises a number of different approaches.

The goal of all such optimization approaches is to reduce the overall runtime

of the communication operations. Communication optimization on

heterogeneous HPC platform is comprehensively covered in [10], where all

the existing approaches were classified as performance or topology-aware.

The increasing complexity of HPC platforms has made topology awareness a

critical component of HPC application optimization. A number of

topology-aware approaches have been proposed in [12], [13]. The main idea

behind the topology-aware optimizations is to reduce communication traffic

and contention by considering network topology so that most of the

communication occurs between nearby processors. Whereas, in

2



1.3. THESIS SCOPE

performance-aware optimizations, network properties are reconstructed with

performance measurements by using communication benchmarks. This

approach is used in the absence of topology information.

Many existing Message Passing Interface (MPI) applications can be

executed efficiently on hierarchical heterogeneous HPC platforms by using

topology-aware collectives and do not require modifications in the application

source code. However, it is applicable to collective operation and does not

affect the applications that are based on point-to-point exchanges. In this

case, the communication cost can be reduced by placing frequently

communicating tasks on physically close processors. This closeness is

application-specific and depends on the logical communication flow of the

application.

Topology information has been used in developing a number of

topology-aware implementations of MPI collectives for optimal scheduling of

messages on heterogeneous HPC platforms [14], [15], [16], [17]. However,

parallel applications based on point-to-point exchanges need another

solution, which could consider the application communication flow. If all

point-to-point communications are performed over a virtual topology of

processes, they can be optimally mapped onto physical topology of

processors, which minimizes the communication cost of the application [18],

[12], [19].

1.3 Thesis Scope

Existing approaches for point-to-point communication optimization do not

incorporate the heterogeneity of processors and networks. To optimize

communications in scientific data-parallel MPI applications, we have to

consider both topology information and application communication flow.

Performance of data-parallel applications, especially those designed for

heterogeneous platforms, highly depends on balanced workload, which is

achieved by partitioning the data in proportion to the speed of processors. In

turn, heterogeneous data partitioning affects the application communication

flow and need to be considered in topology-aware optimization. Assuming

3



1.4. CONTRIBUTIONS

balanced workload among the processors, the main contribution of this work

is to propose and implement the topology-aware approximate heuristic

algorithms aimed at the minimization of the communication cost of data

parallel applications on heterogeneous hierarchical platforms.

In this thesis, we target data intensive parallel scientific applications, such

as dense linear algebra and Computational Fluid Dynamics (CFD). We test

the proposed algorithms in the context of parallel matrix multiplication, which

is an important computational kernel and a building block of many scientific

applications, and also for a real-life CFD application, MPDATA, which is one of

the major parts of the EULAG geophysical model.

In our research, we target dedicated heterogeneous HPC platforms with

two-level network hierarchy, such as interconnected computer nodes and

clusters. The processors of these platforms are connected by a network that

can be represented as a two-level rooted tree with faster communications

within sub-trees and slower communications between. These networks are

quite common in today’s computing world. Popular examples include grid and

cloud infrastructures. Even supercomputers with thousands of nodes are also

examples of heterogeneous networks where the communication cost is

different on different hierarchical levels - e.g. intra-node vs inter-node

communication. Topology information can be taken into account, when

application data is mapped to the processors, in order to minimize message

hops and maximize data throughput.

1.4 Contributions

The major contributions of this thesis are:

1. Demonstrating that the problem of communication optimization has not

been comprehensively addressed in literature for huge proportion of

parallel applications that are designed using point-to-point

communication as compared to applications based on collectives.

Hence, there is a need of designing communication optimization

mechanisms for this class of applications.

4



1.4. CONTRIBUTIONS

2. Comprehensive study and analysis of the role of application

communication pattern in communication optimization. We employ

parallel matrix multiplication as a case study for analysing the

communication pattern and based on it we clearly motivate the need for

topology-aware process mapping to reduce the communication

overheads.

3. Design and implementation of two cost measurement functions to

measure the communication cost of any 2D arrangement.

• Hop-count cost function

• Bandwidth cost function

4. Design and implementation of two topology-aware heuristic algorithms

based on evaluation of the matrix multiplication application

communication pattern:

• Hop-count based algorithm

• Bandwidth based algorithm

5. On-line simulation of the matrix multiplication application with the

Simulated Message Passing Interface (SMPI) simulator of the SimGrid

framework for prediction of the performance of MPI applications for

complex heterogeneous platforms.

6. Study and analysis of the communication pattern of a real life CFD

application, MPDATA.

7. Design and implementation of a topology-aware heuristic algorithm

based on the evaluation of the MPDATA application communication

pattern.

8. Demonstration of the accuracy and efficiency of the proposed solutions

using experiments on two-level hierarchical networks, namely,

interconnected nodes (intra- and inter-node communication levels) and

interconnected clusters (intra- and inter-cluster communication levels).

5



1.4. CONTRIBUTIONS

In the following sub-sections, we elaborate the aforementioned

contributions.

1.4.1 Need for Topology-Aware Communication

Mechanism for Applications Based on Point-to-point

Communications

Many high performance computing applications are designed using MPI

point-to-point communications to transfer large amount of data between

various processes. On a heterogeneous platform, applications written using

collective operations result in poor performance and become expensive,

which drives software developers to modify the applications that are based on

collectives originally to point-to-point communications for efficient adaptability

on the heterogeneous platform. Nearest neighbour applications and

multi-dimensional stencil-based applications are the most popular types

which are based on point-to-point communication. Matrix multiplication, as an

example, performs well with point-to-point communication as compared to

broadcast on heterogeneous platforms with 100‘s of processors.

For these applications, it is an open challenge whether it is possible to

achieve performance improvement by providing topology-aware mapping.

Because placement of logical MPI ranks on heterogeneous HPC system also

has a significant impact on performance, thus, certain mappings will be more

advantageous than others. On current HPC systems, when a scheduler

supplies a list of available nodes, MPI processes are started on these nodes

and assigned by logical ranks. This rank assignment is the crucial part that

affects the overall performance of the application. All communication steps of

the application are based on these ranks. A poor ranking may result in poor

locality of communication. Generally, the default mapping scheme is the

allocation of processes in blocks. This implies that all sequential ranks are

allocated to the same node. This block mapping improves the performance of

application over random task mapping. However, in certain situations, for

example, if the application is running on a platform that has hierarchical

heterogeneous clusters of heterogeneous hybrid nodes and are composed of

6



1.4. CONTRIBUTIONS

dozens of sites, further improvement can be achieved if we consider the

application communication pattern and network topology. Thus, profiling the

application to identify its communication pattern and performing a rank

re-ordering based on the application communication pattern can help improve

the overall application performance and scalability.

1.4.2 Study and Analysis of the Communication Pattern of

Matrix Multiplication

Matrix multiplication is the core component of many scientific computations.

Being computationally intensive, the last decade has seen a great interest of

the scientific community to develop parallel formulation of matrix

multiplication on various parallel architectures [20]–[23]. Several parallel

formulation of matrix multiplication are already available for homogeneous

platforms [22], [24], [25] as well as for heterogeneous platforms [7], [9], [26].

At each step of matrix multiplication, communication takes place between the

processors, which make it a most suitable candidate application for finding

the communication optimal solution. In this thesis, we use the matrix

multiplication application as a case study to propose a topology-aware

communication optimized solution for the matrix multiplication kernel for

heterogeneous platforms. Furthermore, if a solution can be applied

successfully to the parallel matrix multiplication, it can be scaled to other

tightly coupled parallel applications. Therefore we have wider applicability of

the solution in mind.

We have considered parallel matrix multiplication application for

heterogeneous platforms which is based on the Scalable Universal Matrix

Multiplication Algorithm (SUMMA) [27]. SUMMA is designed for

homogeneous multiprocessors and implemented using MPI. It distributes the

workload evenly between the processors, mapping dense matrices onto a 2D

grid of processors. Each processor receives one rectangle of matrices and

participates in two MPI communicators that combine all processors in the

same row and column. The communication flow consists of multiple

broadcasts of matrix elements over these communicators. If SUMMA is

7



1.4. CONTRIBUTIONS

executed on a hierarchical network of processors, its performance may be

lower than expected due to higher communication cost. When network

topology is known, this problem can be solved by using topology-aware

broadcasts.

SUMMA was adapted for heterogeneous platforms, with matrices being

partitioned into irregular 2D rectangles in proportion to the speed of

processor [7], [9]. The rectangles, and hence the processors, are arranged in

columns. In columns, the processors communicate the same way as in the

original algorithm. In the horizontal direction, the partition, and hence the

communication flow, is irregular. Usually, irregular communications between

processors are implemented via point-to-point operations. Non-blocking

point-to-point operations additionally allow for overlapping communications

and computations, which can significantly improve the performance of

heterogeneous algorithms. For parallel applications based on point-to-point

exchanges, like heterogeneous SUMMA, no solution has been proposed yet

which could use topology information to minimize communication cost.

1.4.3 Cost Measurement Function

Using the observations from the communication pattern, we propose two cost

functions for matrix multiplication with the ring communication flow and

two-level network hierarchy. One function estimates the number and volume

of inter-cluster communications incurred by a partition arrangement of matrix

rectangles. Another function estimates the communication time by using the

bandwidth properties of the individual links. These cost functions are

described in Chapter 3.

1.4.4 Heuristic Algorithms for Matrix Multiplication

After analysing the communication pattern of matrix multiplication on

heterogeneous platforms, we propose to rearrange the rectangles of the

matrix partition in order to minimize communications between different levels

of the network hierarchy. Finding the optimal arrangement is an NP-complete

combinatorial optimization problem; therefore, it can be solved by using

8



1.4. CONTRIBUTIONS

heuristics. We propose two heuristic algorithms based on evaluation of the

application communication flow on the given network topology. To evaluate

the communication cost we use the number of message hops between

clusters and the bandwidth information. These algorithms are presented in

Chapter 3.

1.4.5 Simulation of the Matrix Multiplication Application

Simulation is a popular approach for predicting the performance of MPI

applications for simulated complex platforms. We use the latest SMPI module

of the SimGrid. SimGrid is a simulator that is developed to study the

behaviour of large-scale distributed systems, such as Grids, Clouds, HPC or

P2P systems. It provides ready to use models and API to simulate different

distributed systems [28], [29]. We perform on-line simulation of a matrix

multiplication application by creating a complex Grid-like heterogeneous

platform with SMPI. Our experiments show that due to complexity and various

design constraints, SimGrid cannot measure the realistic communication cost

on highly heterogeneous complex platforms with application having

asynchronous point-to-point communication operations. SimGrid-SMPI

simulation experiment details are given in Appendix A where we present our

efforts for running the experiments on a simulated platform and discuss the

challenges that we have faced and most important the factors that influenced

the realistic measurement of the application execution time on SMPI.

1.4.6 Study and Analysis of the Communication Pattern of

MPDATA

The real life CFD application, which we considered to study and analyse the

communication pattern of, is the Multidimensional Positive Definite Advection

Transport Algorithm (MPDATA), that is one of the major parts of the dynamic

core of the EULAG geophysical model [30], [31]. This geophysical model can

be used for simulation of thermo-fluid flows across a wide range of scales

and physical scenarios, including the numerical weather prediction. The

9



1.4. CONTRIBUTIONS

MPDATA belongs to the group of non-oscillatory forward-in-time algorithms

and performs a sequence of stencil computations. The very original version

of MPDATA was implemented in FORTRAN 77 and parallelized using MPI

library only. In [32] it was proposed to rewrite the MPDATA code and replace

conventional HPC systems with modern homogeneous and heterogeneous

multi- and many-core based platforms. A new version of MPDATA much

better exploited the available computational features of novel processors or

Intel Xeon Phi coprocessors. However, the communication cost of MPDATA

on modern HPC clusters has not been properly optimized. The current

approach to mapping of the partitions of the MPDATA computational domain

onto computing resources does not take into account neither the actual

properties of the MPDATA communication flow nor the heterogeneity,

hierarchy and performance of the communication network. Study and

analysis of the communication pattern of the MPDATA application reveals that

MPDATA is very sensitive to the choice of the logical topology of processes

as the cost per byte of horizontal communications is higher than that of

vertical communications even for homogeneous communication networks.

1.4.7 Heuristic Algorithm for MPDATA

The asymmetric communication pattern of MPDATA further complicates the

task of partitioning of the MPDATA computational domain and mapping of the

sub-domains to the processors in a way that minimizes the cost of

communications between different levels of the network hierarchy. In general,

finding the optimal arrangement of processors in a 2-D grid is an

NP-complete combinatorial optimization problem [33],[34] but it can be

approximately solved by using heuristics. For MPDATA, we propose a new

algorithm that is built on the top of the cost functions and heuristic of one of

our previously proposed algorithms and reduces overall message hops and

increases data throughput for a wider range of applications, and apply it to

optimization of the communication cost of MPDATA. This algorithm is

non-intrusive to the source code of the application and, compared to our

previously described algorithms, is not application specific. Our previous
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algorithms deal with a two-dimensional symmetric communication pattern

that is why we tested these algorithms in the context of the parallel matrix

multiplication application. With this new algorithm, any data-parallel

application with two-dimensional homogeneous computational domain and

asymmetric heterogeneous communication pattern can benefit. This

algorithm is presented in Chapter 4.

1.5 Thesis structure

The contents of this thesis are organised as follows: In Chapter 2 we present

the background and related work, where we discuss the existing

heterogeneous platforms and programming challenges these platforms have

introduced. Existing work on performance optimization area is also

comprehensively reviewed in this chapter. In Chapter 3 we address the

problem of efficient execution of data-parallel applications on interconnected

clusters and propose two topology-aware optimization algorithms to improve

data partitioning by taking into account the entire communication flow of the

application. We have used matrix multiplication as a driving example to

develop these algorithms. We also demonstrate the correctness and

efficiency of the proposed approaches by experimental results. Chapter 4

presents new topology-aware algorithm that is based on cost functions of one

of our general heuristic algorithms and applies it to optimization of the

communication cost of real-life application, MPDATA. We also present

experimental results demonstrating performance gains due to this

optimization. Finally, in Chapter 5 we conclude the thesis by drawing

conclusions and presenting an insight into the future work.
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Chapter 2

Background and Related Work

This chapter aims to discuss high performance computing platforms,

particularly the concept of heterogeneity in HPC. It also summarises the

programming challenges introduced by heterogeneity. Additionally, it presents

a comprehensive literature review of the work to date, mainly focusing on

performance optimization area, which is a major challenge encountered by

scientific programmers while writing applications for these platforms. Finally,

it includes a discussion from the field of simulation explored for HPC systems.

2.1 Heterogeneous HPC Platforms

High-Performance Computing introduced between 1940s-1960s with the

development of the first supercomputers. In the past, mainstream

supercomputers were homogeneous by design. These supercomputers were

used for running scientific applications efficiently, reliably and quickly for more

than two decades. Many of these machines contained Symmetric

Multiprocessor (SMP) with identical tightly-coupled processors. The demand

for heterogeneity in computing systems have increased partially due to the

need for high performance computing in recent years with more advanced

and complex scientific applications. The shift from homogeneous to

heterogeneous has tremendous impact on high performance computing.

Many new architectures, network topologies and technologies, algorithms,

12
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programming models and tools have been developed under the umbrella of

HPC. The earlier heterogeneous HPC systems were composed of

single-switched heterogeneous clusters of uniprocessor workstations. Recent

heterogeneous HPC systems are hierarchical clusters of heterogeneous

hybrid nodes and are composed of dozens of sites, each site is composed of

several heterogeneous clusters with thousands of computers which some

time have more than 16-core processors. The primary benefit of this many

and multi-core heterogeneity is to get increased computational power.

However, there are many challenges associated with these heterogeneous

systems in terms of performance, scalability, algorithm development, and

programmability for parallel processing. A considerable work has been done

for algorithms [35]–[37], programming models [26], performance improvement

[38], and tools [39], [40] for heterogeneous systems. Despite all this work,

heterogeneous HPC systems are still large, complex and difficult to use

optimally. This is a broad and open research area; how to model, program

and execute parallel applications optimally on these complex, large scale and

diverse heterogeneous HPC platforms.

2.2 Programming Challenges on HPC systems

The importance of high performance computing is continually rising and has

been emerged as one of the foremost fields of research. The big question is

how data parallel complex scientific problems with high computational

requirements can be efficiently adapted over current and upcoming

heterogeneous high performance architectures [41]. This brings up many

challenges to scientific programmers while programming and implementing

these problems on heterogeneous HPC platform. Performance optimization,

fault tolerance and dealing with arithmetic heterogeneity are perhaps the

most challenging issues of heterogeneous parallel and distributed

programming [1]. In this section, we briefly review performance optimization

as one of the important and challenging issue with respect to heterogeneous

parallel and distributed programming.
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2.2.1 Performance Optimization for Parallel Applications

Performance optimization is perhaps the utmost important challenge of high

performance distributed computing and it becomes more challenging when

programming for parallel heterogeneous networks. In heterogeneous HPC

systems, heterogeneity of processors, memory heterogeneity, heterogeneity

of integration of the processors into the network, and heterogeneity in

performance of the processors and the underlying communication networks

further complicate the performance optimization task [1], [4], [42].

Considering these heterogeneity, performance optimization broadly divides

into two major areas. First, optimal data partitioning and load balancing and

second is minimizing the communication overhead to improve the overall

performance.

2.2.1.1 Data Partitioning and Load Balancing

While designing parallel algorithm two main issue are, how to sub-divide the

main computation task into smaller computation tasks, and how to assign

them to different processors for parallel execution. Data decomposition is

commonly used method to deal with these issues. First, it partitions the data

and then this data partitioning is used to partition the main computation task

into smaller sub-tasks. After that these sub-tasks are mapped onto

processes. In order to achieve small execution time, overhead of executing

the tasks in parallel should be minimized. Load imbalance and inter-process

communication are two major sources of this overhead. There is a trade-off

between these two objectives. Finding a good mapping is a non-trivial

problem. Most of the partitioning problems discussed in literature are either

NP-hard or NP-complete [33], [34] . However the authors of these works

solve these problems either in polynomial time by applying some constraints,

or they propose sub-optimal solutions.

On heterogeneous platform, processors might have different performance

speeds. If computation tasks are equally divided on these heterogeneous

processors, then fastest processors will quickly perform the computation task

and wait for slower processors. Which results in slow execution time due to
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load imbalance. While dealing with heterogeneous systems, the question

arises, how to partition data across the heterogeneous processors to

efficiently balance the load so that all processors can achieve near-optimal

load balance and finish the computation tasks at the same time? A well

written parallel algorithm must takes into account the difference in processors

speed. The faster the processor is, the more computations it has to perform.

Data partitioning and load balancing area has been well studied in

literature [43]–[45]. The work has been broadly classified into two categories:

static and dynamic. Static algorithm of data partitioning [46]–[48] distributes

the computation tasks among the processes prior to the execution of

application. Static algorithms are useful when data locality is important

because they do not require redistribution of data; hence, result in improved

data access and transfer within application. It is the case with parallel

applications dealing with large amount of data. However, on non-dedicated

platform these algorithms are unable to balance the workload. Dynamic

algorithms, on the other hand, distribute the tasks among processes during

the time of execution of the application [49]–[51]. These techniques incur

significant communication overhead on distributed memory platforms due to

data migration which may eleminate their benefits. It was shown that static

distribution techniques are more stable and can offer better performance than

traditional dynamic techniques on heterogeneous distributed systems [52],

[53]

Performance models of processors are crucial for efficient data

partitioning. For heterogeneous systems, two types of models were shown in

the literature: Constant Performance Model (CPM) and Functional

Performance Model (FPM). Constant performance model assumes that

relative speed of heterogeneous processors does not depend on the size of

the computational task solved by the processors and it remain constant and

represented by a single positive number. However, in reality the relative

speed changes due to processor and memory heterogeneity [48]. Which

make CPM inaccurate and unrealistic. CPM is used in many load balancing

data partitioning and scheduling algorithms which target heterogeneous

platforms [7], [54]–[56]. For more accurate performance modelling,
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Functional Performance Model (FPM) has been proposed in [48], [57]. In

FPM, the speed of each process is represented by a continuous function of

problem size. The speed is defined as the number of computation units

performed by the process per one time unit. The problem of data partitioning

using FPM was solved in many works [9], [43], [45], [48], [58]. FPM is more

elaborately discuss in Section 3.

2.2.1.2 Communication Optimization

In the broad overview of optimization of communications on heterogeneous

HPC platforms [10], all existing techniques are classified as topology or

performance-aware. In high performance computing, two basic programming

models are the shared memory model and the distributed memory model,

depending on the programmer’s view of the system memory. In distributed

memory model, application runs as a collection of autonomous processes,

each with its own local memory. Processes communicate with other

processes by sending and receiving messages and it is common to have

explicit communication between processes through these messages passing.

The most popular message-passing programming interface use for this

purpose is MPI [59], [60]. Originally, MPI was designed for distributed

memory architectures. However, as architecture trends changed, and shared

memory (SMPs) were combined over networks creating hybrid distributed

memory / shared memory systems. MPI handles any kind of underlying

memory architectures seamlessly. Which makes it popular choice for the

message-passing programming paradigm on distributed-memory

high-performance computing systems since last two decade. MPI

communication primitives (both point-to-point and collectives) are extensively

used across various scientific HPC applications [60], [61]. There is a large

body of research on optimizing these MPI operations for communication

optimization of the parallel applications.
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2.2.1.3 Performance-Aware Communication Optimization

The main idea of performance-aware optimization is to increase data

throughput by a scheduling based on the performance of individual links. This

approach is used when the topology information is not available. Performance

of individual link is evaluated with the help of point-to-point communication

performance models, which are estimated from communication benchmarks.

A number of performance-aware implementations of MPI collective

communication operations have been proposed in the literature [62]–[66].

The execution time of collective communication operations can be predicted

with the help of analytical communication performance models. These

models capture the behaviour of MPI collective operations under significantly

large number of physically established parameters. Several benchmarking

libraries and tools are available to estimate the parameters of the model [67],

[68]. In [69], a model for capturing the congestion on Ethernet clusters for

collective operations is developed. [70] proposed a new congestion model for

hierarchical Ethernet networks. The predictions can be used for optimization

of collective communications. One approach is to choose the collective

algorithm with the minimal predicted time from a given set of algorithms [63].

Another approach is to use the predictions for building more optimal

communication trees for a collective communication [71].

2.2.1.4 Topology-Aware Communication Optimization

Topology-aware is a term that most probably originates from the networking

domain [72]. Topology-aware optimization is use to reduce communication

traffic and contention by placing communicating tasks on physically nearby

processors. Communication traffic is quantified by the number of links a

message traverses. Contention is caused by multiple messages sharing a

network link. Performance of an application heavily depends upon how the

MPI library has been designed and optimized to take into account the system

architecture. Researchers have demonstrated that network topology plays a

critical role in the performance of MPI communication primitives [73], [74].

However, designing topology-aware MPI libraries that manage the
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communication for both point-to-point and collectives based on the underlying

network topology, is still an open challenge. A number of topology-aware

implementations of MPI collective communication operations have been

proposed in the literature. Most MPI libraries such as MPICH2[75], OpenMPI

[76] use multi-core aware, shared-memory based techniques to optimize the

latency of collective operations [77]. A number of node level topology-aware

optimization techniques have already been proposed [78], [79]. However,

these techniques are limited to node level hardware topology and do not

consider the network topology. In [80] portable hardware locality tool, hwloc,

has been proposed that is widely used now a days for complex intra-node

topology discovery.

For interconnected clusters, a two-level communication graph is

constructed [14] so that the clusters communicate via selected nodes,

coordinators, which form the inter-cluster communicator. All nodes within a

cluster communicate with the cluster coordinator, forming the intra-cluster

communicator. These optimized implementations send the minimal amount of

data over the slow wide-area links.

Collective operations are optimized for multilevel hierarchical

heterogeneous networks and Grid [15] and [81]. Hierarchical approach is

applied to optimize collectives for multi-core clusters: inter- and intra-node

communications are overlapped, using offloading and pipelining

techniques [16]. Homogeneous supercomputers with complex network

topologies, like BlueGene and Cray, can also benefit from topology-aware

collectives [13].

Moreover with topology-aware MPI primitives, the placement of logical

MPI ranks on a heterogeneous HPC system can also significantly affect

overall application performance. A random rank assignment can result in

poor locality of communication. Thus, it is important to design optimal

mapping schemes with topology information and communication pattern of

application to improve the overall application performance and scalability.

Even with the best MPI library, if topology-aware mapping of logical MPI

ranks is not done, the performance of parallel application can suffer.

MPI implementations try to exploit target architectures as efficiently as
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possible by using the most suitable communication channels and best

algorithms for collective communication operations. Therefore, many existing

MPI applications can be executed efficiently on hierarchical heterogeneous

HPC platforms, without any modifications of the source code. However, the

approach of topology- or performance-aware collectives does not address

applications based on point-to-point exchanges.

Many high performance computing applications are designed using MPI

point-to-point communication to transfer large amounts of data between

various processes. Nearest neighbour applications and multi-dimensional

stencil based applications [30] are the common examples that extensively

use MPI point-to-point communication. In these applications, each process

communicates with its neighbours after each time step. If neighbour

processes are not topologically closed together, these same time messages

exchange generates a significant pressure on the network. For such

applications, it is an open challenge whether it is possible to achieve

performance improvement by optimizing point-to-point messaging with

topology information.

The problem of topology-aware optimization of point-to-point

communications can be solved by introducing a graph that represents the

application communication flow and is mapped onto the network topology.

This approach has been applied to the mesh and graph virtual MPI

topologies on SMP clusters [18] and to the mesh topology on BlueGene/L

[12]. A tool for automatic profile-guided process placement has been

developed for interconnected clusters [19]. In all these work, the

heterogeneity of processors is not taken into account and therefore the

processes are placed freely to processors in order to minimize the

communication cost. In this context, it is crucial to design

network-topology-aware mapping mechanisms to optimize the performance

of point-to-point operations on large scale heterogeneous systems.
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2.3 Simulation in HPC Systems

Simulation is a well known field in the world of computer science. It is used

for designing the model of real or theoretical physical system, executing that

model, and analysing the execution output. This field has been flourished in

the period of 1970 to 1981, during which computer scientist developed many

enhanced modeling and analytical tools [82]. This section cover the role of

simulation in high performance heterogeneous computing platform.

2.3.1 Parallel and Distributed System Simulation

The role of simulation has been exploded in the last decade for parallel and

distributed systems. Simulation is a popular approach for predicting the

performance of large-scale parallel scientific applications on large-scale

platforms that are not at one’s disposal. This performance prediction and

profiling is helpful for developing and maintaining the HPC application code

that is expected to scale for current and next generation large-scale HPC

systems.

There are many constraints while access to these HPC platforms in real.

They are expensive to access, in terms of access charges to user, time

restriction, number of resource allocation etc. The primary concern behind

simulation of these high performance complex parallel and distributed system

is to analyse the behaviour of scientific applications and full-scale

implementation on such platforms without real access to these platforms [83].

However, simulation of an application on such platforms may also be useful

even when the platforms are available. For example, simulation may bypass

the actual computation, and only simulate the communication pattern and

delays of these computations. Based on simulated result, one can easily

perform the performance tuning of application in simulation without real

execution on a large scale . It will not only save the time but also money and

resources.

Accuracy, scalability and speed are the three possibly main challenges for

simulating parallel applications [84]. A Lot of work has been done to address
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some or all of these challenges [84]–[87]. This simulation work falls into two

categories: off-line simulation and on-line simulation. Off-line simulation also

called trace-based simulation relies on application log, or trace that is

composed of communication events. These traces are obtained by running

the parallel application on a real-world platform. Based on these off-line

traces, simulator then re-execute the application on simulated platform. A

number of trace-based simulators have been found in the literature [88]–[92].

However, the big challenge for off-line simulation is the large size of the

traces, which sometimes prevent running the simulation on a single node.

On-line simulation, also called simulation via direct execution of application

avoids this challenge. In on-line simulation the application is executed but

part of the execution takes place within a simulation component. This

approach is more general because it does not require traces or log obtained

for any application and platform configuration. The popular on-line parallel

application simulators are MPI-SIM, MPI-NetSim, PEVPM, SimGrid etc. [29],

[93]–[95] . Among them, SimGrid [29] is the latest framework that is helpful to

study the behaviour of modern large-scale distributed systems such as Grids,

Clouds, HPC or Point-to-Point (P2P) systems. It provides ready to use

models and API to simulate many different distributed systems. SimGrid

toolkit provides three main models: MSG, Simulated Direct Acyclic Graph

(SimDag) and SMPI. MSG, was the first distributed programming

environment provided within SimGrid. It is a simple parallel application level

simulator. For on-line simulation of MPI based parallel application, they

developed SMPI simulator [84]. It helps to run application on top of any virtual

environment. Whereas, SimDag is a framework for DAG’s of parallel tasks. It

provides some functionalities to simulate parallel task scheduling with DAGs

models (Direct Acyclic Graphs). In our work, we use SMPI to run MPI matrix

multiplication application.
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Chapter 3

Design and Evaluation of

Topology-Aware Mapping

Algorithms for Heterogeneous

Hierarchical HPC Platforms

3.1 Introduction

We identify in Chapter 2, many high performance computing applications are

designed using MPI point-to-point communication to transfer large amounts

of data between various processes. For such applications, it is an open

challenge whether it is possible to achieve performance improvement by

providing topology-aware mapping. Because placement of logical MPI ranks

on heterogeneous HPC system also has a significant impact on performance

as certain mappings will be more advantageous than others. In this chapter,

we take up this challenge. We employ a case-study to clearly motivate the

need for topology-aware process mapping to reduce the communication

overheads.

We propose communication optimizations of point-to-point

communications for parallel matrix multiplication on hierarchical

heterogeneous platforms. Assuming that the data have been optimally
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partitioned between the processors, this optimization is based on

re-arrangement of the rectangles of the matrix partition. In general, finding

the optimal arrangement of processors in a 2-D grid is an NP-complete

combinatorial optimization problem [34], but it can be approximately solved by

using heuristics [96]. We propose two heuristic solutions based on

evaluation of the application communication flow on the given network

topology. To evaluate the communication cost of an arrangement, we propose

the cost function that estimate cost by using number of message hops

between clusters and the bandwidth information. We also demonstrate the

accuracy and efficiency of the proposed solution on experiments with

interconnected clusters.

3.2 Driving Example

As a case study, we consider parallel matrix multiplication application for

heterogeneous platforms. Matrix multiplication is a very important

computation kernel and a building block of many scientific applications, for

example Gaussian elimination and LU decomposition, which in turn used to

solve many scientific problems. All such applications will benefit from any

optimization made in matrix multiplication. Furthermore, if algorithm can be

applied successfully to parallel matrix multiplication, it can be scale to other

tightly coupled parallel applications. Because we design the heuristic

algorithm with wider applicability in mind.

In this section, we describe parallel matrix multiplication algorithms based

on SUMMA, with the emphasis on their communication flow. We consider

these algorithms because of their applicability to a wide range of HPC

platforms. These algorithms can be executed on the platforms that do not

form a 2D grid of processors. The workload in these algorithms can be

balanced by irregular matrix partitioning, proportional to the speed of

processors. The volume of communications can be minimized. We also

demonstrate that communication performance of parallel matrix multiplication

on modern hierarchical HPC platforms can be improved further by taking into

account information about network topology. However, to the best of the our
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knowledge, all existing modifications of SUMMA are topology-unaware.

3.2.1 Parallel Matrix Multiplication on Heterogeneous

Platforms

The SUMMA [27] is designed for homogeneous platforms and implements

parallel matrix multiplication C = A×B. In this algorithm, dense matrices are

partitioned over a 2D grid of processors. Each processor is a part of two MPI

communicators that combine all processors in the same row and column. To

take advantage of processor cache, a blocking factor, b, has been introduced,

so that each matrix consists of b × b blocks. The algorithm iterates over the

columns of blocks of matrix A and over the rows of blocks of matrix B. At each

iteration, a column of blocks (the pivot column), A(b), is broadcast horizontally,

and a row of blocks (the pivot row), B(b) is broadcast vertically. Then, matrix

C is updated on all processors in parallel: Ci+ = A(b) × B(b). At the end

of each iteration, the pivot column and row move horizontally and vertically

respectively.

The update operation can be performed efficiently by invoking a highly

optimized general matrix multiplication (GEMM) routine, available for most

HPC platforms. This operation can be considered as a computation kernel of

the application because it represents the computation performance of the

entire application. Fig. 3.1 shows the communication flow of SUMMA, which

consists of the broadcasts in the row and column communicators. The

broadcasts pass the pivot column and row in rings, pipelining computations

and communications.

Heterogeneous modifications of SUMMA are based on the approach to

optimization of linear algebra computations on heterogeneous platforms [54].

In this approach, to balance the load of heterogeneous processors, the

matrices are partitioned into uneven rectangles such that faster processors

will process larger rectangles. Ideally, this way each processor should receive

the workload proportional to its computing power. In the case of

heterogeneous SUMMA, the amount of computations related to the i-th

rectangle will be proportional to di, the number of blocks it contains. A
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A B

Figure 3.1: Communication flow of SUMMA

number of efficient matrix partitioning algorithms have been proposed,

returning matrix partitions with different arrangements of rectangles [98], [7],

[99], [100]. However, the most popular heterogeneous matrix multiplication

algorithms implement column-based partitioning, when processors are

arranged into columns, and all processors in a column are allocated

rectangles of the same width. The widths of all the columns sum to the width

of the matrix. The heights of rectangles in a column sum to the height of the

matrix. More elaborated irregular matrix partitioning [101], [102] is out of the

scope of this work. In the overview of the heterogeneous column-based

algorithms [9], two main directions of development are defined: minimization

of the volume of communications, and data partitioning based on accurate

computation performance models of processors.

The algorithm minimizing the total volume of communication [7] arranges

the processes into columns and sets the rectangles’ dimensions (mi, ni),

using the relative cycle times of processors as input. The total volume of

communication is proportional to the sum of half-perimeters
∑p

i=1(mi + ni).

The shape and ordering of rectangles are calculated to minimize this sum.

The algorithm returns the optimal number of columns, the optimal number of

rectangles in each column and the optimal dimensions of rectangles. The

resulting rectangles are sorted in the order of increasing area, di = mi × ni,

with the shape as square as possible.

Fig. 3.2 describes the communication flow of the algorithm, which will be

denoted by BR for the rest of the text. It consists of one-to-all non-blocking
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point-to-point communications in horizontal and vertical directions. In the

horizontal direction, these communications are irregular: each processor

holding a part of the pivot column sends multiple messages of different sizes

to all processors in horizontal direction, whose rectangles are overlapped with

the sender’s rectangle. The size of each message is equal to the block size

times the height of the overlap between the sender and receiver. In other

words, the overlap is the maximum part of the pivot column required on the

receiver to perform its local update operation. It should be noted that this

communication pattern is not scalable if the number of communicating

processors increases.

A B

Figure 3.2: Comm. flow of heterogeneous SUMMA: one-to-all

The main shortcoming of the BR algorithm is that it uses simplistic

performance model of processors, where processor speed is represented by

a single positive number. This approach may fail to balance the load,

especially for highly heterogeneous platforms and self-adaptable

applications. More reliable solution is data partitioning based on accurate

performance models, such as functional performance model FPM [48]. It is

built empirically and integrates many important features characterizing the

performance of both the architecture and the application.

Under the functional performance model, the speed of each process is

represented by a continuous function of problem size. The speed is defined as

the number of computation units performed by the process per one time unit.

The computation unit can be defined differently for different applications, but

it is required not to vary during the execution of the application. For SUMMA-
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based matrix multiplication, it can be defined as one update of one b×b matrix

block: Cb×b+ = Ab×b × Bb×b. In this case, the problem size assigned to a

process is given by the number of b × b blocks. The amount of computations

assigned to the process is proportional to the area of the rectangle formed by

these blocks.

The processor speed is found experimentally by measuring the execution

time over a range of problem sizes. This time can be found by benchmarking

the full application. This benchmarking can be done more efficiently by using

a serial code, the speed of execution of which is the same as that of the

application but the execution time of which is significantly less. A benchmark

made of one such core computation can be representative of the

performance of the whole application and can be used as a kernel. The

speed function of the application can be built more efficiently by timing this

kernel. For SUMMA-based matrix multiplication, one update of a rectangle

Ci+ = A(b) × B(b), implemented by highly optimized GEMM and performed

many times for different pivot rows and columns, can be used as a kernel.

The problem of data partitioning using functional performance models

was formulated and solved in [48]. Then, FPM-based data partitioning was

applied to the BR algorithm [9]. We will refer to this modification of matrix

multiplication as The 2D-FPM based Matrix Partitioning Algorithm (FPM-BR)

for the rest of the text. For FPM-BR algorithm, another communication

scheme was implemented, which consists of non-blocking point-to-point

communications in rings, in horizontal and vertical directions (see Fig. 3.3). In

contrast to the one-to-all communication flow, each processor communicates

only with the processors from its neighbouring columns and rows. In

horizontal direction, the partition is irregular, and the processor holding the

pivot row sends multiple messages to its right column. These messages can

be addressed to the same processor. The size of each message is equal to

the block size times the height of the overlap between all rectangles in the

horizontal direction. Here the overlap is the maximum part of the pivot column

that can be transmitted over the ring of processors.

Table 3.1 summarizes the above-mentioned matrix multiplication

algorithms based on SUMMA. The FPM-BR algorithm better balances the
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A B

Figure 3.3: Comm. flow of heterogeneous SUMMA: ring

workload and minimizes the total volume of communications. However, none

of the algorithms takes into account the underlying networks topology, so that

they are not communication-optimal. In this work, we propose to rearrange a

given heterogeneous data partition in order to reduce the number of message

hops and better use the available network bandwidth.

Table 3.1: Comparison of some SUMMA-based algorithms

Algorithm Data partitioning Comm. vol. Comm. flow

SUMMA homogeneous – broadcasts
BR constant speeds min nb-p2p one-to-all
FPM-BR speed functions min nb-p2p one-to-all/ring

In this work, we propose both topology- and performance-aware

optimizations of point-to-point communications for parallel matrix

multiplication on hierarchical heterogeneous platforms. In the target

application, the data (matrices) is distributed in proportion to the speed of

processors. Assuming that the workload is balanced among the processors,

we propose to rearrange the given heterogeneous data partition in order to

reduce the number of message hops and increase data throughput. This

rearrangement is based on network topology, network properties, and

communication pattern of the application. This approach is also non-intrusive

to the source code but application-specific.
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3.2.2 Communication-Optimal Matrix Partitioning

In this section, we formulate the problem of communication-optimal matrix

partitioning for heterogeneous SUMMA on interconnected heterogeneous

HPC clusters. To minimize communication cost, we use information about the

network topology and the application communication flow.

In our target platform, interconnected heterogeneous HPC clusters, the

network can be represented as a two-level rooted tree with faster

communications within sub-trees (clusters) and slower communications

between. Within each cluster, a single network switch provides no-contention

point-to-point communications, appropriately forwarding packets between

sources and destinations. Inter-cluster links may be shared by multiple

processors from different clusters communicating with each other.

Our goal is to minimize communication cost of the parallel application that

implements the FPM-BR matrix multiplication algorithm. In this application,

each processor is assigned a matrix rectangle of the area and shape that

balance the workload and minimize the communication volume. The

communication flow of this application is based on non-blocking point-to-point

communications in rings. Changing the position of a rectangle within the

matrix does not affect the load balance and the communication volume, but

the rectangles can be arranged so as to minimize the cost of communications

between the processors. This forms the optimization problem we solve in this

work.

Since column widths are different, we cannot move a rectangle to another

column unless the whole columns are interchanged. In a column, there are

no restrictions on interchanges of rectangles. All these limit the solution space

of our optimization problem to a certain number of combinations. Let c be the

number of columns and ri be the number of rectangles in column i, 1 ≤ i ≤ c.

Then the number of combinations will be equal to the product r1! × . . . × rc!.

Which arrangement of rectangles is communication-optimal? This is an NP-

complete problem.

We performed exhaustive search by running the application with all

possible arrangements of rectangles on a small platform of three
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interconnected heterogeneous clusters. Each cluster consisted of several

heterogeneous nodes, which were assigned rectangles proportional to their

speed. From the exhaustive search, we found several arrangements that

reduced (Fig. 3.4) and increased (Fig. 3.5) the communication cost (different

colors/fillings correspond to different clusters). We observed some regularity

in the communication-optimal arrangements, which was related to the

topology. In the optimal arrangements, the rectangles were grouped by

clusters, whereas, in the worst cases, the rectangles assigned to the same

cluster were dispersed vertically and horizontally. With the optimal

arrangements, the application, which is based on non-blocking point-to-point

communications in rings, performs less inter-cluster communications in

horizontal and vertical directions. In addition, in the optimal cases, data

throughput in rings is higher due to less use of slow inter-cluster links.

Figure 3.4: Some of the communication-optimal arrangements

Figure 3.5: Some of the worst case arrangements

The factorial design of the exhaustive search leads to a large number of

trials, which becomes infeasible for large platforms. If topology information

is available, we can avoid exhaustive search by applying some heuristic that

efficiently finds a near-optimal arrangement.

30



3.3. COST FUNCTIONS

3.3 Cost Functions

Heuristic search requires to estimate the communication cost incurred by

each partition. Communication cost can be estimated by taking into account

the application communication flow and the network topology or network

properties. Using the observations from the exhaustive search, we propose

two cost functions for the FPM-BR matrix multiplication with the ring

communication flow and two-level network hierarchy. One function estimates

the number and volume of inter-cluster communications incurred by an

arrangement of matrix rectangles. Another estimates the communication

time, using the bandwidth properties of individual links.

3.3.1 Cost Function Based on Message Hops

In the FPM-BR-ring algorithm, the point-to-point communications in the

vertical direction are related to matrix B (see Fig. 3.3). The volume of

communications in each column is proportional to the column width. The

number of communicating clusters in the vertical direction remains the same

for any arrangement of matrix rectangles. The number of inter-cluster

communications is proportional to the number of message hops between

clusters. In the communication-optimal arrangements, the rectangles are

grouped by clusters in each column. In this configuration, the number of

message hops between clusters is minimal in each column. In the worst

cases, the rectangles belonging to the same group are dispersed.

To estimate the inter-cluster communication cost, we take the upper

bound of the number of hops made to send the pivot row over the ring in the

column. The rightmost column of the optimal arrangement in Fig. 3.6

illustrates the upper bound of the number of hops. Namely, when the pivot

row is on the top of the matrix, there will be only one communication between

clusters: between the processors holding the second and third rectangles.

The same happens when the pivot row is in the third rectangle: a part of the

pivot row is sent between the processors from different clusters that hold the

fourth and first rectangles. In other cases, when the pivot row is in second
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and fourth rectangles, two inter-cluster communications are performed.

Worst case

1 2 3
Optimal

1 2 2

Figure 3.6: Inter-cluster communications related to matrix B

We define the cost function for the inter-cluster communications related to

matrix B as follows:

costB =
c∑

i=1

h(i)× v(i), (3.1)

where variable i iterates over the columns of matrix rectangles, functions h

and v return the number of inter-cluster communications in a column and the

column width respectively. This cost corresponds to one iteration of parallel

matrix multiplication. Communications in columns are performed in parallel,

therefore, each inter-cluster link may be used for multiple simultaneous

exchanges. For example, in Fig. 3.6, inter-cluster links are shared by the

processors from two columns. Therefore, instead of maximum, which

represents parallelism, we use sum, which represents the case when all the

inter-cluster links are used simultaneously for communications in all columns.

The cost of the arrangements in Fig. 3.6 is then calculated as follows:

• Worst case: costB = (1× 12) + (2× 12) + (3× 9) = 63

• Optimal: costB = (1× 12) + (2× 12) + (2× 9) = 54

The point-to-point communications in the horizontal direction are related to

matrix A (see Fig. 3.3). The number of communicating clusters and the volume

of inter-cluster communications depend on the arrangement. The number of

inter-cluster communications along the pivot column varies. The volume of

inter-cluster communications is proportional to the height of overlaps of matrix
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rectangles. The overlap is the maximum part of the pivot column that can

be transmitted over the ring of processors in the horizontal direction. Fig. 3.7

illustrates both the numbers of inter-cluster communications in overlaps and

the heights of overlaps. In the optimal arrangement, the rectangles assigned

to the same cluster are grouped in rows as much as possible, while in the

worst case, they are scattered over the matrix.

Worst case

2
2
2
2
2
2

2

Optimal

2
2
2
2
1
1

Figure 3.7: Inter-cluster communications related to matrix A

Similarly to the communications related to matrix B, we use the upper

bound of the number of inter-cluster communications. For example, in the

optimal arrangement in Fig. 3.7, the number of inter-cluster communications

over the upper part of matrix A varies from one to two, depending on the

location of the pivot column. If the pivot column is in the second column of

matrix rectangles, there will be two inter-cluster communications in two top

rings.

We define the cost function for the inter-cluster communications related to

matrix A as follows:

costA =
o∑

i=1

h(i)× v(i), (3.2)

where variable i iterates over the o overlaps of matrix rectangles, functions

h and v return the number of inter-cluster communications in an overlap and

the height of the overlap. This cost corresponds to one iteration of parallel

matrix multiplication. Similarly to costB, we use sum as the upper bound of the

communication cost. The cost of the arrangements in Fig. 3.7 is calculated as

follows:
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• Worst case: costA = 2× (11 + 3 + 3 + 3 + 4 + 2 + 6) = 64

• Optimal: costA = 1× (6 + 8) + 2× (1 + 9 + 2 + 6) = 50

To conclude, the inter-cluster communication cost associated with

arrangement M is represented by two values (costA(M), costB(M)). The

problem of finding the communication-optimal arrangement can be

formulated as minimization of their sum:

costA(M) + costB(M)→ min . (3.3)

This sum represents a combined cost and can be used to compare any two

arrangements. The combined cost of the above arrangements is equal to

64 + 63 = 127 and 50 + 54 = 104 respectively. Table 3.2 summarizes their

execution time and inter-cluster communication cost.

Table 3.2: Exhaustive search experimental results

Cost Exec time (sec)
Worst case Optimal Worst case Optimal

Exhaustive search 127 104 6.00 2.78

3.3.2 Cost Function Based on Network Bandwidth

Communication cost can be estimated more accurately if information on the

network performance is available along with the network topology. For

example, let us consider four interconnected clusters, numbered from 0 to 3,

such that inter-cluster links 0-1 and 2-3 are significantly slower than 0-2 and

1-3. Hence, sending a message in ring 0-1-2-3 will take more time than in

ring 0-2-1-3. The cost function presented in previous section does not

distinguish such cases, returning the same costB value for different

arrangements of clustered rectangles. That function estimates the volume of

inter-cluster communications. If information on network performance is

available, it is possible to estimate the communication time. Moreover, if such

information is available for individual links, the estimate can include not only
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inter-cluster but also intra-cluster contributions. For example, a message sent

in a ring of four processors 0-0-1-2, with two processors from the same

cluster, will traverse both intra- and inter-cluster links. This fact can be

reflected in a cost function.

We define the performance-aware cost function for the communications

related to matrix B as follows:

costB =
c∑

i=1

(
v(i)×

ri∑
j=1

1

b(j, j + 1)

)
, (3.4)

where variable i iterates over the columns, and variable j iterates over the

matrix rectangles in each column. Function v(i) returns the width of column

i (in bytes). Function b(j, j + 1) returns the bandwidth (in bytes per second)

between the processors holding rectangles j and j+1. For j = ri, it is defined

as b(j, j+1) := b(j, 1). Therefore, this cost function estimates communication

time in seconds. The inner sum represents sending a part of the pivot row

in a ring. The outer sum represents the upper bound of communication time

required to send the whole pivot row over all column rings. We use the upper

bound because the bandwidth of some links may be divided between multiple

communications corresponding to different columns.

Fig. 3.8 shows the worst case and optimal arrangements for 16

processors from 4 interconnected clusters. Blue, red, yellow, and green

colors specify rectangles assigned to cluster 0, 1, 2, and 3 respectively.

Table 3.3 summarizes the bandwidths of different links, including intra-cluster

links. Communication cost costB of the arrangements in Fig. 3.8 is calculated

in Table 3.4 and Table 3.5.

Table 3.3: Bandwidth of communicating links (MB/sec)

0 1 2 3

0 891.20 55.01 249.53 56.39
1 55.01 893.13 68.96 90.88
2 249.53 68.96 6850.27 71.93
3 56.39 90.88 71.93 896.17
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Worst case Optimal

Figure 3.8: Worst case and optimal arrangements for 16 heterogeneous
processors from 4 clusters

Table 3.4: Communication cost costB computed for the worst case in Fig. 3.8

Column width × data size (byte) Communication cost per byte (sec/byte)

54 × 512 1/249.53 + 1/891.20 + 1/249.53
30 × 512 1/68.96 + 1/90.88 + 1/56.39
29 × 512 1/71.93 + 1/6850.27 + 1/68.96 + 1/90.88
15 × 512 1/249.53 + 1/56.39 + 1/90.88 + 1/90.88 + 1/36.39

Communication cost (sec) 1948.15

We define the performance-aware cost function related to matrix A in the

same way:

costA =
o∑

i=1

(
v(i)×

c∑
j=1

1

b(j, j + 1)

)
, (3.5)

where variable i iterates over the overlaps, and variable j iterates over matrix

rectangles in each overlap. Function v returns the height of an overlap i (in

bytes). Function b(j, j + 1) returns the bandwidth (in bytes per second)

between the processors holding the rectangles j and j + 1. For j = c, it is

defined as b(j, j + 1) := b(j, 1). Therefore, this cost function estimates

communication time in seconds. The inner sum represents sending a part of

the pivot column in a ring. The outer sum represents the upper bound of

communication time required to send the whole pivot column over all overlap

rings. We use the upper bound because the bandwidth of some links may be

divided between multiple communications corresponding to different overlap.
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Table 3.5: Communication cost costB computed for the optimal case in Fig. 3.8

Column width × data size (byte) Communication cost per byte (sec/byte)

54 × 512 1/891.20 + 1/249.53 + 1/249.53
30 × 512 1/90.88 + 1/56.39 + 1/68.96
29 × 512 1/90.88 + 1/71.93 + 1/6850.27 + 1/68.96
15 × 512 1/90.88 + 1/896.17 + 1/56.39 + 1/891.20 + 1/249.53 + 1/68.96

Communication cost (sec) 1825.23

Communication cost costA of the arrangements in Fig. 3.8 is calculated in

Table 3.6 and Table 3.7.

Table 3.6: Communication cost costA computed for the worst case in Fig. 3.8

Overlap height × data size (byte) Communication cost per byte (sec/byte)

15 × 512 1/56.38 + 1/90.87 + 1/55.00 + 1/891.20
12 × 512 1/56.38 + 1/90.87 + 1/90.87 + 1/56.38
3 × 512 1/56.38 + 1/71.93 + 1/71.93 + 1/56.38
7 × 512 1/56.38 + 1/71.93 + 1/68.95 + 1/55.00
9 × 512 1/55.00 + 1/68.95 + 1/68.95 + 1/55.00
13 × 512 1/55.00 + 1/68.95 + 1/71.93 + 1/56.38
7 × 512 1/68.95 + 1/68.95 + 1/71.93 + 1/71.93
16 × 512 1/68.95 + 1/68.95 + 1/249.52 + 1/249.52
10 × 512 1/6850.27 + 1/6850.27 + 1/249.52 + 1/249.52
2 × 512 1/6850.27 + 1/71.93 + 1/56.38 + 1/249.52
34 × 512 1/6850.27 + 1/71.93 + 1/71.93 + 1/6850.27

Communication cost (sec) 2854.13

The communication cost associated with arrangement M is represented by

two values (costA(M), costB(M)). The problem of finding the communication-

optimal arrangement can be formulated as minimization of their sum:

costA(M) + costB(M)→ min . (3.6)

The combined costs of the above arrangements are

2854.13 + 1948.15 = 4802.28 and 1784.56 + 1825.23 = 3609.79 respectively.
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Table 3.7: Communication cost costA computed for the optimal case in Fig. 3.8

Overlap height × data size (byte) Communication cost per byte (sec/byte)

33 × 512 1/6850.27 + 1/6850.27 + 1/6850.27 + 1/6850.27
1 × 512 1/6850.27 + 1/6850.27 + 1/6850.27 + 1/6850.27
12 × 512 1/6850.27 + 1/6850.27 + 1/249.52 + 1/249.52
3 × 512 1/71.93 + 1/71.93 + 1/249.52 + 1/249.52
16 × 512 1/71.93 + 1/71.93 + 1/249.52 + 1/249.52
4 × 512 1/71.93 + 1/896.16 + 1/56.38 + 1/249.52
8 × 512 1/56.38 + 1/896.16 + 1/56.38 + 1/891.20
6 × 512 1/56.38 + 1/896.16 + 1/896.16 + 1/56.38
9 × 512 1/55.00 + 1/90.87 + 1/896.16 + 1/56.38
6 × 512 1/55.00 + 1/90.87 + 1/896.16 + 1/56.38
3 × 512 1/55.00 + 1/90.87 + 1/896.16 + 1/56.38
11 × 512 1/55.00 + 1/893.13 + 1/90.87 + 1/56.38
16 × 512 1/55.00 + 1/893.13 + 1/893.13 + 1/55.00

Communication cost (sec) 1784.56

In the next section, we show how these intuitive and based on the

observations cost functions can be used in a heuristic solution of the

combinatorial problem of topology-aware optimization of communication cost

in the heterogeneous matrix multiplication application.

3.4 Heuristic Search

In this section, we use information about the network topology/performance

and the application communication flow in two heuristics that efficiently

construct a near-optimal arrangement. These heuristics do not require to run

the application to collect information about its communication performance.

They use different cost functions and therefore have slightly different designs.

Their main idea is to reduce the search space of rectangle arrangements and

find the one that minimizes the communication cost of the application.
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3.4.1 Heuristic Based on the Hop-count Cost Function

The first heuristic uses the cost function estimating the volume of inter-cluster

communications and can be summarized as follows. First, in columns, we

group the rectangles assigned to the same subnetwork. This will minimize

the inter-cluster communication cost related to matrix B. Then, we rearrange

the groups of rectangles in columns to minimize the inter-cluster

communications related to matrix A. Let us present the rationale for such a

solution and describe the solution in detail.

Finding the optimal arrangement is complicated by irregularity of

communications over rows, which is related to matrix M . We propose to

apply cost function costA not to the whole matrix but to some of its columns.

In such a way, costA(M1, . . . ,Mi) estimates the cost of communications

between the first i columns of rectangles. Here Mi is the i-th column of

matrix rectangles. We will construct the near-optimal arrangement by

minimizing this cost function for successive submatrices that consist of two,

three or more columns of rectangles: (M1,M2), (M1,M2,M3), . . ..

Let us assume that the rectangles in the first i− 1 columns have been

rearranged to minimize the cost: costA(M1, . . . ,Mi−1) = min. With these

columns fixed, we can estimate the cost of i columns, with different

permutations of rectangles in the i-th column. The permutation providing the

minimal combined cost can be added to the solution. This approach reduces

the number and volume of inter-cluster communications but does not

guarantee finding a global minimum. It allows us to test a significantly smaller

number of combinations of rectangles, which is equal to the sum (not the

product) of permutations: r2! + . . .+ rc!, where ri is the number of rectangles

in column i.

We observed that in communication-optimal arrangements the matrix

rectangles assigned to the same network subtree were grouped (Fig. 3.4).

Indeed, this minimizes the number of hops between subnetworks, g(i), in

each column i, and therefore, reduces the communication cost related to

matrix B, costB. If the rectangles in columns are grouped, we will have to

estimate costA(M1, . . . ,Mi) for significantly less number of combinations. For
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gi communicating clusters in column i, there will be gi! permutations of the

grouped matrix rectangles. The number of combinations of groups gi! is

significantly smaller than the number of combinations of individual rectangles

ri!.

In one of the optimal cases, namely, in the left picture of Fig. 3.4, one

group of rectangles in the third column is split between the top and bottom of

the column. In this case, the upper bound on the number of inter-cluster

communications remains minimal, two, providing better communication

performance of the parallel matrix multiplication application. Consideration of

such cases significantly increases the search space and complicates the

construction of the near-optimal arrangement. We exclude such cases from

the search and only test permutations of the non-split groups of rectangles in

each column. Nevertheless, our heuristic can find arrangements close to the

one in the right picture of Fig. 3.4.

The heuristic based on the hop-count cost function is summarized in

Algorithm 1. First, in each column, we group the rectangles by subnetworks.

We denote each permutation of the groups in a column i as Mk
i , k = 1 . . . gi!,

and the permutation with the minimum submatrix cost as M∗
i ,

costA(M1, . . . ,M
∗
i ) = min. Let us show how the near-optimal arrangement is

constructed by selecting the optimal permutations for each column. For the

submatrix consisting of only one column (M1), we have nothing to test

because there are no communications in the horizontal direction. Therefore,

we accept this column as the optimal permutation (M∗
1 := M1) and add it in

the resulting arrangement.

Let us assume that we have found the optimal permutations in the first

i − 1 columns, and hence costA(M
∗
1 , . . . ,M

∗
i−1) = min. We add another

column of rectangles and estimate the communication cost for the extended

submatrix, trying different permutations Mk
i . The permutation with the

minimal cost, M∗
i , such that costA(M∗

1 , . . . ,M
∗
i−1,M

∗
i ) = min, is added to the

resulting arrangement. We repeat this step for all columns of rectangles. For

the final arrangement, we try different permutations of the columns and find

the one that further minimizes inter-cluster communications. The result of the

algorithm is the near-optimal arrangement for parallel matrix multiplication.
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Algorithm 1 Heuristic based on the hop-count cost function
for each column i := 1 to c do

group rectangles by clusters→ gi groups
end for
M∗

1 := M1

for each column i := 2 to c do
generate group permutations of Mi →M1

i , . . . ,M
gi!
i

for each permutation k := 1 to gi! do
find k such that costA(M∗

1 , . . . ,M
∗
i−1,M

k
i ) = min

end for
M∗

i := Mk
i

end for
generate column permutations of matrix M∗ →M∗(1), . . . ,M∗(c!)
for each permutation j := 1 to c! do

find j such that costA(M∗(j)) = min
end for
M∗ := M∗(j)

In total, this heuristic requires to test g2! + . . . + gc! + c! arrangements of

submatrices. This is significantly smaller than the solution space of the

exhaustive search, which is equal to the product of the numbers of

permutations of rectangles in each column r1! × . . . × rc!. In addition, this

heuristic does not require to run the application or any benchmarks to

compare the communication cost of the application for different

arrangements. Instead, it uses information about the network topology and

the application communication flow.

By minimizing the cost, this algorithm reduces the number and volume

of inter-cluster communications. However, it does not guarantee finding the

global minimum, and therefore, it provides only some near-optimal solution.

By fixing the communication-optimal submatrices, we reduce the search space

but may loose the optimal solution. M∗
i , the intermediate result of the search,

may change if we rearrange groups in one of the first i − 1 columns, and this

configuration all together may be a better solution. Nevertheless, for the small

platform used in Section 3.2.2, the result of the heuristic search coincided with

the communication-optimal arrangement found by the exhaustive search.
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3.4.2 Heuristic Based on the Bandwidth Cost Function

The second heuristic uses the cost function based on network bandwidth and

is summarized in Algorithm 2. Since this cost function is sensitive to any

permutations in columns, we modify the heuristic. Similarly to the previous

heuristic, first, in columns, we group rectangles assigned to the same

subnetwork. Then, in the first column, we try different permutations of the

clustered rectangles and add the one with minimum costB to the resulting

arrangement: M∗
1 . This provides the fastest route for communications in the

first column. Another modification in the heuristic is related to the search of

optimal permutations of groups in other columns: instead of costA, we use

the combined cost cost(M∗
1 , . . . ,M

∗
i−1,M

∗
i ) → min. This guarantees that

while improving communications horizontally, we will not deteriorate the

vertical routes. The second heuristic is concluded by the similar search for

the most efficient permutation of columns.

Algorithm 2 Heuristic based on the bandwidth cost function
for each column i := 1 to c do

group rectangles by clusters→ gi groups
end for
generate group permutations of M1 →M1

1 , . . . ,M
g1!
1

for each permutation k := 1 to g1! do
find k such that costB(Mk

1 ) = min
end for
M∗

1 := Mk
1

for each column i := 2 to c do
generate group permutations of Mi →M1

i , . . . ,M
gi!
i

for each permutation k := 1 to gi! do
find k such that cost(M∗

1 , . . . ,M
∗
i−1,M

k
i ) = min

end for
M∗

i := Mk
i

end for
generate column permutations of matrix M∗ →M∗(1), . . . ,M∗(c!)
for each permutation j := 1 to c! do

find j such that cost(M∗(j)) = min
end for
M∗ := M∗(j)
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The complexity of the second heuristic is equal to g1! + g2! + . . .+ gc! + c!

tests of different arrangements of submatrices. This is still significantly

smaller than the solution space of the exhaustive search. This heuristic can

be more efficient than the previous one, especially on highly heterogeneous

networks with significant number of subnetworks. Not only it reduces

unnecessary exchanges between the clusters but also employs the fastest

routes between them.

3.5 Experimental Results

In this section, we demonstrate that the communication performance of the

heterogeneous matrix multiplication application can be significantly improved

by rearranging the matrix partition with the hop-count and bandwidth

heuristics. We show that the proposed heuristics provide better matrix

partitions for both ring and one-to-all communication flows.

In our experiments, we used FuPerMod, a software tool for optimal data

partitioning on dedicated heterogeneous HPC platforms [58]. In addition to

the programming interface for balancing the computational workload in data-

parallel scientific applications, this tool provides two implementations of the

FPM-BR heterogeneous matrix multiplication algorithm, based on the one-to-

all and ring communication flows respectively (see Section 3.2.1). We improve

the communication performance of these applications on a two-level network

hierarchy by rearranging the result of the FPM-BR matrix partitioning, using

the proposed heuristics.

We performed experiments on the Grid’5000 infrastructure, which consists

of a number of clusters distributed between 10 sites in France and connected

via the Renater network. Each site hosts several clusters of identical nodes.

Table 3.8 shows the specifications of the clusters used in the experiments. The

interconnected clusters form a two-level hierarchy, with very heterogeneous

inter-cluster links. We had a priori information about the network topology

and bandwidth. We performed experiments on different subsets of Grid’5000,

forming clusters of both highly heterogeneous and relatively homogeneous

computing nodes.
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Table 3.8: Specification of the Grid’5000 nodes used in the experiments

Cluster Site Processor Cores Memory

Edel Grenoble 2.27 GHz Xeon 8 24GB
Genepi Grenoble 2.5GHz Xeon 8 8GB
Suno Sophia 2.26GHz Xeon 8 32GB
Graphene Nancy 2.53GHz Xeon 4 16GB
Griffon Nancy 2.5GHz Xeon 4 16GB
Granduc Luxembourg 2GHz Xeon 8 16GB
Taurus Lyon 2.3GHz Xeon 12 32GB
Orion Lyon 2.3GHz Xeon 12 32GB
Chimint Lille 2.4 GHz Xeon 8 16GB
Chinqchint Lille 2.83 GHz Xeon 8 8GB

3.5.1 Experiments on Highly Heterogeneous Nodes

The first set of experiments was performed on six clusters with 90 nodes in

total: Edel (17), Chinqchint (17) , Graphene (15), Granduc (16), Taurus (12),

and Suno (13). We spawned one MPI process per node, with different

numbers of threads to increase heterogeneity. The bandwidth of inter- and

intra-cluster communications is shown in Table 3.9.

The heterogeneous matrix multiplication applications were configured with

the block size 64 and the problem size 90,000. Fig. 3.9 shows the original

topology-unaware data partitioning. Fig. 3.10 shows the arrangements

obtained from the hop-count and bandwidth heuristics. Table 3.10 shows the

communication cost of all arrangements, found with the hop and bandwidth

cost functions, and the total execution time of the applications based on the

ring and one-to-all communication flows.

The arrangement found by the hop-count heuristic reduces the total

execution time of the ring and one-to-all implementations by 20% and 15%

respectively. While minimizing the number of hops, the hop-count heuristic

groups rectangles that belong to the same cluster. The grouping occurs in

both horizontal and vertical directions. In addition, the partition obtained from

the hop-count heuristic has lower bandwidth cost than the original partition.

The number of hops returned by the bandwidth heuristic is larger, and the
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Table 3.9: Heterogeneous: Bandwidths of communicating links (MB/sec)

Edel Chinqchint Graphene Granduc Taurus Suno

Edel 891.20 59.51 55.01 44.29 249.53 83.54
Chinqchint 59.51 892.90 92.13 71.00 75.12 43.20
Graphene 55.01 92.13 892.35 313.51 68.96 39.30
Granduc 44.29 71.00 313.51 894.53 56.78 28.90
Taurus 249.53 75.12 68.96 56.78 6850.27 111.23
Suno 83.54 43.20 39.30 28.90 111.23 895.41
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Figure 3.9: Heterogeneous: FPM-BR matrix partition for 90 nodes on 6
clusters

arrangement of rectangles does not look intuitively optimal. Nonetheless, it

yields a better partition because it is aware not only of the topology but also of

the performance of the network (25% and 20% improvement for the ring and

one-to-all communication flows respectively). The experimental results can be

interpreted as follows:

• The bandwidth heuristic favors communications between the "nearest"

clusters, that is, the clusters that have the faster interconnect. Indeed,

in the second arrangement, Edel and Taurus nodes communicate much

more than in the first arrangement. The bandwidth between these

clusters is 2-9 times higher than between any other pair of clusters.
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Figure 3.10: Heterogeneous: Arrangements obtained from the heuristics for
90 nodes on 6 clusters

Table 3.10: Heterogeneous: Experimental results on heterogeneous clusters

Partition Hop cost Bandwidth cost Exec. time (ring) Exec. time (one-to-all)

FPM-BR Partition 2677 29205.22 2.445955e+02 2.026377e+02
Hop-count Heuristic 1751 21695.06 2.000589e+02 1.763399e+02
Bandwidth Heuristic 1948 18840.53 1.805339e+02 1.641144e+02

• The bandwidth heuristic avoids the slow links, such as Granduc-Suno.

In the second arrangement, these links are not engaged at all, whereas

in the first arrangement there is significant traffic between Granduc and

Suno nodes in both horizontal and vertical directions.

Being designed primarily for the matrix multiplication application based on

the ring communication flow, the heuristics are equally good for the one-to-

all communication flow. Indeed, rearrangement of submatrices speeds up the

propagation of messages not only in rings but also in flat trees.

3.5.2 Experiments on Relatively Homogeneous Nodes

The second set of experiments was performed on relatively homogeneous

nodes. We took 90 nodes of similar per-core performance from 8 clusters:
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Genepi (7), Edel (11), Griffon (16), Graphene (19), Chinqchint (17), Chimint

(13), Orion (4), and Taurus (3). We spawned one single-threaded MPI process

per node to even the processing speeds as much as possible. The properties

of the heterogeneous network are presented in Table 3.11. The applications

were configured with the block size 64 and the problem size 90,000.

Table 3.11: Homogeneous: Bandwidths of communicating links (MB/sec)

Genepi Edel Griffon Graphene Chinqchint Chimint Taurus Orion

Genepi 893.14 891.02 56.72 56.72 59.51 59.51 249.53 249.53
Edel 891.02 891.20 56.72 56.72 59.51 59.51 249.53 249.53
Griffon 56.72 56.72 893.13 892.17 92.13 92.13 68.96 68.96
Graphene 56.72 56.72 892.17 892.35 92.13 92.13 68.96 68.96
Chinqchint 59.51 59.51 92.13 92.13 892.90 894.35 75.12 75.12
Chimint 59.51 59.51 92.13 92.13 894.35 896.17 75.12 75.12
Taurus 249.53 249.53 68.96 68.96 75.12 75.12 6850.27 892.17
Orion 249.53 249.53 68.96 68.96 75.12 75.12 892.17 6908.83

The algorithm minimizing the total volume of communication [7] is

designed for an arbitrary number of processors, and, while arranging the

matrix rectangles in columns, it may return an irregular partitioning even for

relatively homogeneous processors. This was the case of our experiments

(Fig. 3.11). Fig. 3.12 shows the partitions returned by the hop-count and

bandwidth heuristics. This is another illustration of how the hop-count

heuristic groups the rectangles by clusters and how the bandwidth heuristic

rearranges based on the communication "closeness".

Table 3.12 gives the communication cost and the total execution time of the

application with different arrangements of matrix rectangles. The hop-count

heuristic improves performance of matrix multiplication with ring and one-to-all

communications by 10% and 5% respectively; the bandwidth heuristic – by

20% and 10% respectively.

Both heuristics were less effective on relatively homogeneous nodes. For

such a platform, the FPM-BR matrix partitioning algorithm returns a relatively

regular matrix partition, which is characterized by a less number of overlaps

in the horizontal direction (see Section 3.3.1). Consequently, both ring and
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Figure 3.11: Homogeneous: FPM-BR matrix partition for 90 nodes on 8
clusters

Table 3.12: Homogeneous: Experimental results on relatively homogeneous
nodes

Partition Hop cost Bandwidth cost Exec.time (ring) Exec. time (one-to-all)

FPM-BR Partition 2248 19394.13 1.963404e+02 1.655698e+02
Hop-count Heuristic 1987 17087.58 1.767677e+02 1.557851e+02
Bandwidth Heuristic 2083 12497.47 1.600700e+02 1.500844e+02

one-to-all matrix multiplication applications require less point-to-point

communications and become less communication-intensive.

Another factor that reduced the effect of the heuristics on homogeneous

nodes is the better, in terms of inter-cluster communications, quality of the

initial FPM-BR partition. The design of the FPM-BR partitioning is such that

for relatively homogeneous nodes there is a higher chance that the

rectangles will be grouped by clusters in columns. This minimizes

inter-cluster communications in vertical direction and may also reduce

inter-cluster communications in horizontal direction. Indeed, in Fig. 3.11,

matrix rectangles are better ordered than in Fig. 3.9.

Table 3.12 shows that the bandwidth heuristic provides good improvement

even for relatively homogeneous nodes. This results from minimization of both

the number and the performance of inter-cluster communications.
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Figure 3.12: Homogeneous: Arrangements obtained from the heuristics for 90
nodes on 8 clusters

Scalability study is out of the scope of this work. First, the scalability

problem is related to SUMMA on heterogeneous platforms. It has been

shown that the traditional (homogeneous) scalability metrics for linear algebra

can be used on heterogeneous clusters but some strategies of efficient

heterogeneous distribution of computations may favor heterogeneous

efficiency over scalability [103]. Second, scalability analysis will be

significantly complicated by the necessity to include in consideration both

different communication patterns and the hierarchy and heterogeneity of

communication network. To the best of our knowledge, such a holistic

approach has not been in the focus of research on scalability of parallel

applications on heterogeneous platforms. The scalability analysis of the

heuristics proposed in this work only makes sense if it takes both different

communication patterns and the hierarchy and heterogeneity of

communication network into consideration.

While we have managed to significantly reduce the search space for the

optimization problem (see Section 3.2.2), the proposed heuristics still have a

factorial design (see Section 3.4). The volume of computations to find the

optimal arrangements depends on the number of clusters communicating in

columns, which may not be related to the total number of clusters. In the
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presented experiments, the cost incurred by the heuristics was negligible in

comparison to the execution time of the application. The heuristics do not

require execution of any computation kernels of the parallel application and

implemented in serial code.

3.6 Conclusion

In this chapter, we presented two heuristics aimed to minimize the

communication cost of data-parallel applications using information about

network topology/performance and application communication flow. This a

priori information allows us to reduce significantly the search space of the

optimization problem. As a test case we chose heterogeneous matrix

multiplication, with irregular but deterministic communications. As a test

platform we took the clusters of Grid’5000, with highly heterogeneous

two-level network and good variation of processor performance. The intuition

behind the proposed heuristics was that a heterogeneous data partitioning

can be improved in terms of communications by grouping the parts by

clusters or the speed of interconnect. We validated this approach in

experiments.

Our heuristics can be applied to other data-parallel applications. In next

chapter we extend this work to parallel CFD (Computational Fluid Dynamics)

applications, where partitioning is typically found by minimizing the total

volume of communications, ignoring the topology and network properties of

underlying execution platform.
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Chapter 4

Topology-aware Optimization of

MPDATA on Homogeneous

Multi-core Clusters with

Heterogeneous Network

In this Chapter, we propose a new algorithm that is built on top of cost

functions and heuristics of one of our previously proposed algorithms. This

algorithm reduces overall message hops and increases data throughput for a

wider range of applications, and we apply it to a real-life CFD application. We

also present experimental results demonstrating performance gains due to

this optimization.

4.1 Introduction

Heterogeneity appears not only in the computing devices but also in

networks. Even with homogeneous processors, efficient execution of

data-parallel applications is a big challenge due to ever increasing

heterogeneity and complexity of the underlying networks. In this work, we

consider the network heterogeneity rather than the processor heterogeneity.

Thus, the target platform comprises homogeneous processors connected
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with a heterogeneous network. Assuming that the workload is balanced

among the processors, we propose a mapping approach that optimizes the

overall communication performance of a parallel computational fluid

dynamics application on such a platform.

The CFD application we consider in this work is the MPDATA, which is

one of the major parts of the dynamic core of the EULAG geophysical model

[30], [31]. This geophysical model can be used for simulating thermo-fluid

flows across a wide range of scales and physical scenarios, including the

numerical weather prediction. The MPDATA belongs to the group of

non-oscillatory forward-in-time algorithms, and performs a sequence of

stencil computations. The original version of MPDATA has been implemented

in FORTRAN 77 and parallelized using MPI library. In [32], it was proposed to

rewrite the MPDATA code and replace conventional HPC systems with

modern homogeneous and heterogeneous multi- and many-core based

platforms. A new version of MPDATA allowed us to much better exploit the

available computational features of novel processors and Intel Xeon Phi

coprocessors.

However, the communication cost of MPDATA on modern HPC clusters

has not been properly optimized. The current approach to mapping of the

partitions of the MPDATA computational domain onto computing resources

take into account neither the actual properties of the MPDATA communication

flow nor the heterogeneity, hierarchy and performance of the communication

network.

In this work, we first study and analyse the communication pattern of the

MPDATA application. The analysis reveals that MPDATA is very sensitive to

the choice of logical topology of processes as the cost per byte of horizontal

communications is higher than that of vertical communications even for

homogeneous communication networks. This property of MPDATA further

complicates the task of partitioning of the MPDATA computational domain and

mapping of the sub-domains to the processors in a way that minimizes the

cost of communications between different levels of the network hierarchy. For

MPDATA, we propose a new heuristic algorithm based on one of our general

heuristic approach presented in Chapter 3 and apply it to optimization of the
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communication cost of MPDATA. This algorithm is non-intrusive to the source

code of the application and, compared to previously discused algorithms, is

not application specific. Our previous algorithms deal with two-dimensional

symmetric communication patterns that is why we tested these algorithms in

the context of the parallel matrix multiplication application. With this new

algorithm, any data-parallel application with two-dimensional homogeneous

computational domain and asymmetric heterogeneous communication

pattern can benefit. We demonstrate the accuracy and efficiency of the

proposed solution using experiments on two-level hierarchical networks,

namely, interconnected nodes (intra- and inter-node communication levels)

and interconnected clusters (intra- and inter-cluster communication levels).

4.2 MPDATA

The MPDATA application is used to solve the advection equation on a moving

grid according to the subsequent time steps [104], [105]. This real-life

application offers several advanced options that allow for modeling a wide

range of complex geophysical flows. Depending on the type of modeled

phenomena, this application can demand a high computing performance of

HPC clusters. Therefore, the configurable code of MPDATA was developed

and delivered over the years [30], [104], [106]. This code was implemented in

FORTRAN 77 and parallelized using MPI library, however, without taking into

account of the features of today‘s computing architectures.

The MPI parallelization of the MPDATA computations on x86-based

clusters as a part of the EULAG model was thoroughly studied in [106], [107],

using tens of thousands of cores, or even more than 100K cores in the case

of IBM Blue Gene/Q. The parallelization strategy of this implementation is

based on 3D domain decomposition, and executes computations according

to the distributed memory model where each core is assigned to a single

MPI_rank. This approach ignores the advantages of shared memory systems

available in modern multi core platforms. Moreover, it also does not take into

account the network-aware partitioning of communications across computing

resources.
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The MPDATA code has been recently re-written and optimized for

execution on modern CPU and Intel co-processors based high performance

computing platforms. The new C++ implementation proposed in [32], [108],

[109] allows for more efficient distribution of computational tasks on the

available resources. It makes use of the (3+1)D decomposition strategy for

the stencils computation, that transfers the data traffic from the main memory

to cache hierarchy by proper reusing of the cache memory. Additionally, to

improve the computational efficiency the algorithm groups the cores (threads)

into independent work teams in order to reduce inter-cache communication

overheads due to the communications between neighbouring threads/cores,

and synchronizations.

4.3 MPDATA on Clusters

One of the common methods for exploiting the multi core clusters is to employ

the hybrid programming model, that allows for efficient usage of the distributed

and shared memory hierarchies of these systems. This implies to combine

different programming paradigms, such as MPI and OpenMP. Such a mixture

is successfully utilized for the MPDATA computation, where a single MPI_rank

is assigned to every multi core node while OpenMP threads are employed to

utilize the multi core computational resources.

The 3D n×m× l MPDATA domain is firstly partitioned in two dimensions

n and m into equal sub-domains that are further one-to-one mapped to

adequate nodes of the homogeneous clusters. Every sub-domain of size

nB × mB × l is decomposed according to the (3+1)D decomposition

proposed in [32]. This strategy contributes to ease the main-memory and

communications bounds, that characterize MPDATA, and to better exploit

modern computational resources such as cores and vector units.

Since the (3+1)D strategy allows for independent calculation of every

sub-domain for a single time step, the inter-node communications and

synchronization points have to take place only between subsequent time

steps in order to exchange the required partial outcomes. The exchanged

data corresponds to the halo regions determined by data dependencies of
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MPDATA computations. These regions take place on the border of the

MPDATA domain partitioning. As a result, the data traffic is generated only

between nodes that are mapped onto adjacent sub-domains in both

directions: vertical and horizontal. Figure 4.1 illustrates the data flow between

nodes of MPDATA application.

a) c)b)

n(i)(j) n(i)(j+1)

n(i+1)(j+1)n(i+1)(j)

halo regions

native regions data bar of size ( 1 × jhalo × l )

data slice of size ( ihalo × (jhalo + mB + jhalo) × l )

data transfers from native to halo regions

Figure 4.1: Data flow between nodes for the MPDATA application: a)
2D domain decomposition between computing nodes: nij, nij+1, ..., b) the
communication pattern for the horizontal direction, c) the communication
pattern for the vertical direction

After every time step each node has to send/receive in horizontal direction

the adequate halo regions to/from adjacent nodes placed on the left and right

sides (Figure 4.1b). Since the necessary halo regions for this direction are

periodically placed in the main memory, each node exchanges nB data bar of

size 1× jhalo× l to the left node, and to the right one. Then, the same node

is responsible for sending/receiving in vertical direction the adequate halo

regions to/from adjacent nodes placed on the top and bottom sides (Figure

4.1c). Transferred data in this communication path is placed in the contiguous

memory areas, thus this node moves the data slices of size

ihalo× (jhalo+mB + jhalo)× l to/from the top and bottom nodes.
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4.4 Communication Optimal Mapping

Arrangement for MPDATA

In this section, first we propose an extension of the network-bandwidth-based

cost function presented in Chapter 3 to accurately measure the

communication cost of the MPDATA application. Then we formulate the

heuristic solution that efficiently constructs a near-optimal arrangement for

MPDATA based on the extended cost function by using information about

network topology and the application communication flow. This heuristic

solution reduces the search space of sub-domain arrangements and finds the

one that minimizes the communication cost of the MPDATA.

4.4.1 Cost Function Based on Asymmetric Bandwidth

In previous Chapter, we defined the cost function based on network bandwidth.

The main idea was to estimate the communication cost accurately by using

information about the network topology and the application communication

flow. That cost function proved to work well with applications having symmetric

communication patterns. However, MPDATA has asymmetric communication

behaviour, namely, even in the case of a homogeneous communication layer

the effective bandwidth of horizontal communications is higher than that of

the vertical ones. One of the reasons behind this phenomenon is that data

communicated vertically is stored in a contiguous region of memory while the

data communicated horizontally is not. As a result, this cost function fails to

accurately characterize the communication cost of MPDATA.

Therefore, we propose to extend this bandwidth-based cost function to

account for applications with asymmetric communication patterns. The

proposed extension characterizes the communication time, using the

asymmetric bandwidths properties. We call it a cost function based on

asymmetric bandwidth in the rest of the Chapter. The function takes into

account two bandwidth values, one for horizontal communication and the

other is for vertical one. The problem of finding the communication-optimal

arrangement can be formulated as minimization of the sum of the horizontal
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and vertical communication costs.

Assuming that the data is equally partitioned among the processors, so that

the size of each sub-domain is same, we define the asymmetric cost function

for horizontal communication as follows:

costH =
r∑

i=1

(
h×

c∑
j=1

1

bH(Qij, Qi,(j+1)%c)

)
, (4.1)

where i iterates over the rows and j iterates over the partitioned sub-domains

in each row. h is the height of a row (in bytes) that is same for each row

because data is equally partitioned. Function bH(X, Y ) returns the horizontal

bandwidth (in bytes per second) between processors X and Y , and Qij

designates the processor holding the j-th sub-domain in row i. Thus, this

cost function estimates the communication time in seconds. The inner sum

represents sending a part of the pivot column in a row. The outer sum

represents the upper bound on the communication time required to send the

whole pivot column to all rows. We use the upper bound because the

bandwidth of some links may be divided between multiple communications

corresponding to different rows.

We define the asymmetric cost function for vertical communication in a

similar way:

costV =
c∑

j=1

(
w ×

r∑
i=1

1

bV (Qij, Qi,(j+1)%r

)
, (4.2)

Here j iterates over the columns, and i iterates over the partitioned

sub-domains in each column. w is the width of a column (in bytes) that is

same for each column because data is equally partitioned. Function bV (X, Y )

returns the vertical bandwidth (in bytes per second) between processors X

and Y .

The communication cost associated with arrangement A is represented by

two values (costH(A), costV (A)). The problem of finding the communication-
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optimal arrangement can be formulated as minimization of their sum:

costH(A) + costV (A)→ min . (4.3)

4.4.2 Heuristic Based on Asymmetric Bandwidth Cost

Function

The heuristic algorithm using the asymmetric bandwidth cost function for

estimating the volume of communications is built on top of the

bandwidth-based heuristic presented in Chapter 3. It assumes that the target

platform consists of p interconnected homogeneous processors. The

processors are naturally partitioned into a number of groups based on their

communication proximity, which reflects the two-level hierarchy of the

communication layer. If processors x0, x1, y0 and y1 belong to the same

group then bH(x0, y0) = bH(x1, y1) and bV (x0, y0) = bV (x1, y1). The heuristic

based on the asymmetric bandwidth cost function is summarized in

Algorithm 3.

The algorithm starts with any initial arrangement P1, P2, . . . , Pp of the

processors such that processors from the same group will follow one other in

this linear arrangement. Note, the orders naturally determined by application

configuration files typically satisfy this assumption. Alternatively, a simple

clustering algorithm guided by functions bH(x, y) and bV (x, y) can be applied

to re-order the original arrangement if it does not satisfy this assumption.

The algorithm then repeatedly executes the following two steps. The first

step finds the optimal two-dimensional arrangement of the processors,

m × n, which preserves their linear order as follows. For each factor pair

r × c = p, the processors are arranged column-wise and row-wise into r rows

and c columns forming arrangement A. The cost of these arrangements are

estimated as cost(P1, . . . , Pp, r, c) = costH(A) + costV (A), and the optimal

pair m × n is found as the one that minimizes this cost,

cost(P1, . . . , Pp,m, n) = min
r,c

cost(P1, . . . , Pp, r, c).

The second step applies the bandwidth-based algorithm from Chapter 3

slightly modified by the use of the asymmetric cost function to this 2D
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Algorithm 3 Heuristic based on the asymmetric bandwidth cost function
Input:

Processors, P1, P2, . . . , Pp ∈ Z>0

Horizontal bandwidth, bH(x, y),∀x, y ∈ [1, p], bH(x, y) ∈ Z>0

Vertical bandwidth, bV (x, y),∀x, y ∈ [1, p], bV (x, y) ∈ Z>0

Output:
Optimal 2-D arrangement of the processors

Repeat
STEP 1:
for each factor pair r × c = p do

arrange P1, ..., Pp in r and c by row ranking order→ A
arrange P1, ..., Pp in r and c by column ranking order→ A
find A such that cost(A,m, n) = min

r,c
cost(A, r, c)

end for
STEP 2:
generate group permutations of A1 → A1

1, . . . , A
g1!
1

for each permutation k := 1 to g1! do
find k such that costV (Ak

1) = min
end for
A∗

1 := Ak
1

for each column i := 2 to n do
generate group permutations of Ai → A1

i , . . . , A
gi!
i

for each permutation k := 1 to gi! do
find k such that cost(A∗

1, . . . , A
∗
i−1, A

k
i ) = min

end for
A∗

i := Ak
i

end for
generate column permutations of arrangement A∗ → A∗(1), . . . , A∗(n!)
for each permutation j := 1 to n! do

find j such that t cost(A∗(j)) = min
end for
A∗ := A∗(j)
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arrangement. This step may changes the linear order of the processors within

the arrangement in order to reduce its communication cost while preserving

the shape of the arrangement, m × n. The reordering is guided by the 2D

partitioning of the computational domain induced by the 2D processor

arrangement and uses the fact that within each column of the domain,

sub-domains held by processors from the same group will also make a group

of adjacent sub-domains. In brief, we first try permutations of the groups in

the first column and pick the one that minimizes the vertical communication

cost for this column. We denote each permutation of the groups in a column i

as Ak
i , k = 1 . . . gi!, and the permutation with the minimum sub-arrangement

cost as A∗
i , cost(A1, . . . , A

∗
i ) = min. We accept this column as the optimal

permutation (A∗
1 := A1) and add it in the resulting arrangement. Then, for

each following column i = 2, . . . , n, we try permutations of the groups in this

column Ak
i and pick the one that minimizes the sum of vertical and horizontal

costs for first i columns. This guarantees that while improving

communications horizontally, we will not deteriorate the vertical routes.

Permutation of groups rather than individual processors in a column will

significantly reduce the solution space that otherwise would be p!. Finally, we

try all permutations of whole columns and pick the one that minimizes the

sum of horizontal and vertical communication costs for the whole domain.

This step can change our original linear arrangement of the processors. If

this is the case, we will feed the new arrangement to the first step of next

iteration of our heuristic algorithm that will find the optimal m×n arrangement

for this new order. Then, this 2D arrangement will be re-arranged by the

second step of this iteration. This procedure continues until we find a fixed

point of the transformation performed by one iteration of the algorithm.

The presented iterative algorithm does not require to run the application

or any benchmarks to compare the communication cost of the application for

different arrangements. Instead, it uses information about the network

topology and the application communication flow. This heuristic is efficient for

applications having 2D communication pattern on heterogeneous networks.

Not only it reduces unnecessary exchanges between the sub-networks but

also employs the fastest routes between them.
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4.5 Experimental Results

In this section, we demonstrate that the communication performance of

MPDATA can be significantly improved due to optimization proposed by the

asymmetric bandwidth heuristic not only for heterogeneous but also for a

perfectly homogeneous communication network.

We perform experiments on the Grid’5000 infrastructure, which is a large

scale distributed platform. It consists of a number of clusters distributed

between 10 sites in France and connected via the Renater network. Each site

hosts several clusters of identical nodes. For our experiments, we choose two

clusters, Grisou and Grimoire, from the Nancy site and the other two,

Paravance and Parasilo, from the Rennes site. All clusters have identical Intel

Xeon E5-2630 v3 processors with 8 cores per node. To demonstrate

performance gains, we first perform two types of experiments on

interconnected clusters. These interconnected clusters form a two-level

hierarchy, with very heterogeneous inter-cluster links. Then, we conduct

experiments on a single fully homogeneous cluster, with homogeneous

processors and a homogeneous communication network. We have a priori

information about the network topology and asymmetric bandwidths of

MPDATA. We have tried ten different initial mappings as an input and our

experiment shows that all of these mappings converges to the optimal

solutions have same communication cost after applying asymmetric

bandwidth heuristic. It has been noted that there is more than one optimal

solutions exist. However, the communication cost and execution time of all

optimal solutions are same. To make sure the experimental results are

reliable, the application is repeatedly executed until the sample mean lies in

the 95% confidence interval and a precision of 0.025 (2.5%) has been

achieved and results follows the normal distribution. We also make sure the

nodes are fully reserved and dedicated to our experiments.
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4.5.1 Inter-Cluster experiments

In these experiments, we use four clusters with 12 nodes in total: Grimoire(3),

Parasilo(4), Grisou(2), Paravance(3). We spawn one MPI process per node.

Because logical communication links of MPDATA has different bandwidths, we

have two bandwidth values for each link. Horizontal and vertical bandwidths

are shown in Table 4.1. MPDATA is configured with problem size 512×512×64.

Table 4.1: Horizontal/Vertical bandwidths of communicating links(GB/sec)

Grimoire Parasilo Grisou Paravance

Grimoire 0.03963/0.48068 0.00007/0.00056 0.03889/0.49341 0.00007/0.00056

Parasilo 0.00007/0.00056 0.03876/0.48858 0.00007/0.00056 0.03732/0.45943

Grisou 0.03889/0.49341 0.00007/0.00056 0.03834/0.48916 0.00007/0.00056

Paravance 0.00007/0.00056 0.03732/0.45943 0.00007/0.00056 0.03920/0.46808
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Figure 4.2: One of the non-optimal mappings and the mapping returned by the
asymmetric bandwidth heuristic for the heterogeneous platform.

Fig. 4.2 shows one of the considered default initial mappings and the

optimal mapping found by the asymmetric bandwidth heuristic. Table 4.2

shows the communication cost of these mappings, calculated using the cost

function, and the measured total execution time of MPDATA. To find the
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4.5. EXPERIMENTAL RESULTS

Table 4.2: inter-cluster experimental results

Nodes Cost Ratio Exec. time (sec) Ratio
Non-
optimal

Heuristic Non-
optimal

Heuristic

12 22424946 2143978 10.46 994.02 154.20 6.44

optimal mapping, the asymmetric bandwidth heuristic took 1.130000e-03 sec.

The mapping found by the asymmetric bandwidth heuristic is more then 6

times faster then the non-optimal case mapping.

4.5.2 Intra-Cluster Experiments

We also perform experiments on a homogeneous multi-core cluster to check

the effect of asymmetric bandwidth of MPDATA on the communication

performance with a perfectly homogeneous network. We use 12 nodes from

the Grisou cluster. MPDATA is configured with problem size 512× 512× 64.

Non-optimal Mapping

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Mapping found by Asymmetric bandwidth Heuristic

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Figure 4.3: One of the non-optimal mappings and the mapping returned by the
asymmetric bandwidth heuristic for the fully homogeneous platform.

Fig. 4.3 shows one of the non-optimal mappings and the mapping

returned by the asymmetric bandwidth heuristic. Table 4.3 shows the

calculated communication cost of both mappings and the measured total

execution time of MPDATA. The mapping found by the asymmetric bandwidth

63



4.5. EXPERIMENTAL RESULTS

Table 4.3: intra-cluster experimental results

Nodes Cost Ratio Exec time (sec) Ratio
Non-
optimal

Heuristic Non-
optimal

Heuristic

12 65658 18535 3.5 3.86 1.32 3.0

heuristic is 3 times faster then the non-optimal mapping. Asymmetric

bandwidth heuristic took 3.730000e-04 sec to find this optimal mapping.
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Chapter 5

Conclusion and Future Work

This thesis focused on the problem of communication optimization of parallel

scientific applications for execution on heterogeneous HPC platforms. We

addressed this problem by performing topology-aware communication

optimization. We presented heuristic based algorithms that took into account

the application communication pattern and underlying network topology;

hence, result in communication optimal mapping.

Based on topology and performance information, communications on

hierarchical heterogeneous HPC platforms can be optimized. For MPI, a

major programming tool for such platforms, a number of topology- and

performance-aware implementations of collective operations have been

proposed for optimal scheduling of messages. These approaches improve

performance of application and do not require to modify application source

code. However, they are applicable to collective operations only and do not

affect the parts of the application that are based on point-to-point exchanges.

We addressed the problem of efficient execution of point-to-point based

data-parallel applications on interconnected clusters and proposed a general

approach and two approximate heuristic algorithms aimed at minimization of

the communication cost of data parallel applications which have

two-dimensional symmetric communication pattern on heterogeneous

hierarchical networks, and tested these algorithms in the context of the

parallel matrix multiplication application. We also demonstrated the
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correctness and efficiency of the proposed approaches by experimental

results on multi-core nodes and interconnected heterogeneous clusters.

The communication layer of modern HPC platforms is becoming

increasingly heterogeneous and hierarchical. As a result, even on platforms

with homogeneous processors, the communication cost of many parallel

applications will significantly vary depending on the mapping of their

processes to the processors of the platform. For applications having

asymmetric communication pattern, we proposed a new algorithm that was

based on cost functions of one of our general heuristic algorithms and

applied it for optimization of the communication cost of MPDATA, which has

asymmetric heterogeneous communication pattern. We also presented

experimental results demonstrating performance gain due to this

optimization. Furthermore, our experiments on Grid5000 involved significant

efforts for resolving technical issues. These experiments were performed on

multi-sites which lead to many synchronization issues for software‘s,

application and data. SimGrid simulation experiments, presented in

appendix, also explain our efforts for running the experiments on simulated

platform. Here, we also discussed the possible problems faced and their

causes and also identified the factors that influenced the realistic

measurement of execution time on SMPI. The results presented in Chapter 3

have been published in [110] and [111], and the results presented in

Chapter 4 have been published in [112].

We have seen promising results from these topology-aware algorithms,

and see further opportunities in this area. These algorithms can be scaled to

other complex scientific data-parallel applications. We can modify the

proposed algorithms in a number of ways. Despite our study focuses on

two-level hierarchical optimization, the algorithms can be applied in a

multi-level hierarchical way. Asymmetric Bandwidth based algorithm initially

worked with homogeneous multi-core clusters with heterogeneous network,

but can be modified also for heterogeneous multi-core clusters.

With the advancement of multi-level hierarchical heterogeneous platforms,

the requirement for topology-aware mapping will become stronger and

challenging. Mapping approaches, which take into account the application
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communication flow and platform topology, result in efficient execution of

application at reduced communication cost.
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Appendix A

Simulation Experiments

This section describes our efforts for running experiments on a simulated

platform. There are many constraints, related to time and resources

allocation, involved while running large scale experiments on a Grid5000 real

platform. Therefore, we decided to try SimGrid to simulate the Grid5000

platform and to run applications in a simulated environment. The objective of

these experiments was to validate the performance of our proposed

algorithms on a different kind of complex and large-scale platform by doing

large scale experiments. Our work [110] is rich with Grid5000 platform

experimental results representing a good starting point for simulation based

evaluation. Here, we discuss how we run SMPI experiments and what

limitations and difficulties we have faced.

A.1 SimGrid-SMPI Experiments

SimGrid is an active developing software and has undergone many

adaptations since the day we have started working on it. Its current version

fixes many issues that we faced with its early versions. The SMPI module of

SimGrid is now considered as stable and has a very decent coverage of the

MPI interface. However, our experiments have shown that it still restricts the

user to run some applications due to many design constraints and limitations.

Currently, any MPI application that is written in C, Fortran and Java can run
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unmodified within SMPI provided that (1) application only uses MPI calls that

are implemented in SMPI, and (2) it does not use global variables.

In order to run any simulation, SimGrid must be provided with three things:

• An application to run: That application must use one of the

communication APIs provided by SimGrid and must be written in C,

Fortran or Java.

• Platform description: where the user wants to simulate the execution of

the application.

• Application deployment information: For example: Which process

should be executed onto which processor/core.

First step towards executing our MPI application on SPMI is to compile

application with the SimGrid MPI interface. This is done with the smpicc

compiler of SimGrid. The other important step before running the simulation

is modeling of the underlying platform. This is the most crucial step in

simulation experiments. Accuracy and speed also depend on the complexity

of the simulated platform and the accurate of its modeling. The widely used

available format is XML for platform description, and Lua Support is also

provided. The XML checking is done based on the simgrid.dtd Document

Type Definition (DTD) file. The deployment information can also be provided

as an xml file or as parameters to the script running the application. Once

modeling of the platform and the deployment information are ready, the MPI

application compiled with the smpicc compiler can be executed by the

simulator. This is done using the smpirun script. In addition to the platform

description and deployment information, the user also needs to provide an

MPI hostfile that contains the names of nodes where the processes should

run, one per line. These hosts must be present in the provided platform

description. The command to run application on SMPI is:

smpirun -hostfile my_hostfile.txt -platform my_platform.xml

./my_program -arg my_program_arguments

For the test case, we reproduced on SMPI one of our real platform

experiments with the matrix multiplication application presented in [110]. In
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these grid5000 experiments, we used four heterogeneous clusters with

different numbers of nodes. We spawn one MPI process per node, with

different numbers of threads to increase the heterogeneity. We started the

experiments with 16 nodes, 4 nodes on the “Edel" cluster, 5 nodes on the

“Taurus" cluster, 3 nodes on the “Sol" cluster and 4 nodes on the “Chimint"

cluster. The problem size was 16384, which is the area of a square

s128× 128 matrix, given in the number of b× b blocks. While reproducing the

same experiments on SMPI, we observed non-realistic and non-deterministic

computation and communication times. Our experiments show that due to the

complexity and multiple design constraints, SimGrid cannot measure the

realistic communication cost on highly heterogeneous complex platforms with

applications having asynchronous point-to-point communication operations.

A.2 Issues during SMPI Experiments

In this section, we discuss the challenges that we faced and most important the

factors that influenced the realistic measurement of execution time on SMPI.

• We found that most of the published SimGrid simulation work is done

using MSG or SimDag. We did not find much work using SMPI, even

the documentation examples are mainly focused on MSG.

• The first problem we faced was how to automatically map an existing

Grid5000 platform? Currently, SimGrid does not provide any tool to

accurately map any existing platform. However, the SimGrid team is

working on a tool called ‘ALNeM‘, to automatically discover the topology

of an existing network, and the output will be a platform description file

following the SimGrid syntax. This tool is however not ready yet. In the

absence of it, manual mapping has proved to be a tedious, complicated

and error prone task. We used the execo_g5k [113] and topo5k [114]

tools for topology generation of Grid5000. However, these tools are still

under development and cannot properly handle complex sites.

• In order to provide accurate timings for SMPI simulations on any
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platform, it is vital to take several idiosyncrasies of that platform into

account. SimGrid has recently provided a calibration method that runs

several MPI benchmarks on the machine, and statistical analysis of the

collected data then determines several platform parameters used by

SimGrid. However, running this point-to-point based calibration

procedure is extremely time consuming. It requires tweaking of

parameters and will consider the state of the system at the time of

experiments. It means that different runs using the same configuration

may yield different results. Characterization of the simulated clusters in

a way when you can have a realistic replay with SMPI is still an

unpaved way. Right now, the information for the Graphene cluster of

Grid5000 is the most accurate file that SimGrid provides, but such an

accurate file is only available for one cluster.

• In our real experiments we create heterogeneity inside nodes of the

cluster by using MKL threads and benchmark the speed of each node

using FPM. While modeling platform for SimGrid, we were not able to

create heterogeneous clusters using XML description. This is simply

impossible with the XML format, and can turn to be rather complex in

the code. If the goal is to have "heterogeneous cluster", the lua

mechanism would work but it is quite new and currently lacking a proper

documentation. As an alternative, we created a regular Asynchronous

System ‘AS‘ with a set of separated hosts to represent heterogeneous

cluster and used ’Full’ routing to specify each and every route. However

this made our platform file much more complex and larger.

• In SMPI, for accurate simulation the user must have to provide accurate

flop rates for hosts both in the deployment argument and in the platform

file. We used a functional performance model based benchmark to

measure the speed of nodes which measured the speed of each node

as a continuous function of problem size. However, SimGrid relies on a

simplistic CPU model (time = size/power). So for running the

simulation we measured the speed of nodes using the FPM benchmark

on the real Grid5000 platform and used maximum speed values as the
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host speed parameter in the platform description file.

• In SimGrid, communications are synchronous. If we measure the time

before and after the communication, we get the time spent in real

communication plus the transmission time, and it also includes the time

spent in waiting for other party to be ready. The best way to get the

realistic computation time is to run the simulation on one of the nodes

of the target cluster and specify the exact same rate in the platform file

and in the command line. In this way, real timing is used in the

simulation without re-scaling. However, this only works in the case of

homogeneous cluster. Our experiments are inter-cluster, and even the

same cluster has heterogeneous nodes. In that case, internal

simulation technique is not much helpful in getting the realistic

simulation.

• In SMPI, by default computations are benchmarked and then the

computed times are used instead of computing everything over and

over again. The actual timing is measured on the host machine and

then scaled to the power of the corresponding simulated machine. We

can specify the power of the host machine by using the variable

smpi/running − power. We observed that it affects the computation

time and also affects waiting time in some MPI calls. Hence,

communication time will be affected too. For example, if we have a very

low value for the running-power, for example (5.5Mflops), which means

that when the simulator runs something in 1 second on host computer,

and needs to translate it to a simulated host with a huge amount of

power, for example 23492000000 for one of simulated host, it will

multiply the timing by 55000000/23492000000 = 0.0023. This, in the

end, will have very small computing time. In the resulting time, you will

then have communication time and vice versa. Moreover, simulating

asynchronous communication is very tricky in SMPI.

• In SMPI, MPI processes run as real UNIX processes. Thus, the

application written using threads or OpenMP would not be simulated.
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Currently there is no way to simulate OpenMP applications in SimGrid.

The main issue is that SimGrid cannot intercept thread interactions in

OpenMP applications. For MPI, they re-implemented all the library

calls, but there is no library call in OpenMP that directs thread

interactions.

• SimGrid does not support multi-level parallelization. Any MPI

application that uses MPI+ OpenMP cannot be simulated in SimGrid. It

restricts us to simulate the MPDATA application in SimGrid that uses

multi-level parallelization to gain the maximum benefit of available

resources. The SimGrid team is currently working on simulating

multi-level parallelization, but only based on MPI+StarPU.

• As SMPI also does not support multi-core experiments, the user cannot

perform GPU based experiments in SMPI. Currently it only supports

CPU based experiments. In [115] they worked on modeling GPUs, but

it was ad-hoc and the corresponding abstractions have not been

integrated into SimGrid yet.
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List of abbreviations

The following describes the significance of various acronyms and terms used

throughout this thesis. The page on which each one is defined or used is also

given.
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