
University College Dublin

Optimization of Multithreaded

Data-parallel Applications on Modern

Multicore CPUs For Performance and

Energy Using Application-level Decision

Variables

Semyon Khokhriakov
UCD Student Number: 15204508

This thesis is submitted to University College Dublin in fulfilment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science

Head of School: Assoc. Prof. Chris Bleakley

Research Supervisor: Assoc. Prof. Alexey Lastovetsky

Co-Supervisor: Dr. Ravi Reddy Manumachu

September 2019



i



Abstract

Performance and energy are two most important objectives for optimization

on modern parallel platforms such as supercomputers, high performance

computing (HPC) clusters, and cloud computing infrastructures. These

platforms are now ubiquitously equipped with multicore CPUs to address the

twin critical concerns of performance and energy efficiency. The multicore

CPUs feature tight integration of tens of cores organized in one or more

sockets with multi-level cache hierarchy. Such tight integration, however,

leads to several inherent complexities. The complexities are: a). Severe

resource contention for shared on-chip resources such as last level lache

(LLC), interconnect (For example: Intel’s Quick Path Interconnect, AMD’s

Hyper Transport), and DRAM controllers; b). Non-uniform memory access

(NUMA) where the time for memory access between a core and main

memory is not uniform and where main memory is distributed between

locality domains or groups called NUMA nodes; c). Dynamic power

management (DPM) of multiple power domains (CPU sockets, DRAM).

The inherent complexities in these CPUs pose difficult challenges to

solution methods solving the single- and bi-objective optimization problems of

multithreaded data-parallel applications for performance and energy on such

platforms. Recent researches demonstrate that performance and energy

profiles of data-parallel applications executed on modern multicore CPUs to
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manifest drastic variations and these variations are the principal cause for low

average performance.

This thesis studies the influence of three-dimensional decision variable

space on single- and bi-objective optimizations of applications for

performance and energy on multicore CPUs. The three decision variables

are: a). The number of identical multithreaded kernels (threadgroups)

involved in the parallel execution of an application; b). The number of threads

in each threadgroup; and c). The workload distribution between the

threadgroups.

The thesis demonstrates the workload distribution to be an important

decision variable that can no longer be ignored in performance optimization

problem of data-parallel applications on modern multicore CPUs. The

solution methods using workload distribution as a decision variable are

proposed in this thesis. These methods employ model-based parallel

computing technique and use load-imbalancing data partitioning.

The thesis proposes methods for single-objective optimization for

performance and energy on modern multicore CPUs that use the

threadgroups and the number of threads in each threadgroup as decision

variables. The workload distribution is fixed so that a given workload is

always partitioned equally between the threadgroups.

One of the key findings of this thesis is that energy proportionality of

computing does not hold true for multicore CPUs thereby affording an

opportunity for bi-objective optimization for performance and energy. Based

on this finding, this thesis proposes the first application-level method for

solving the bi-objective optimization problem for performance and energy on

a single multicore CPU. The method uses two decision variables, the number

of identical multithreaded kernels (threadgroups) executing the application in
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parallel and the number of threads in each threadgroup. The workload

distribution is not a decision variable. It is fixed so that a given workload is

always partitioned equally between the threadgroups.

Finally, this thesis proposes a predictive dynamic energy model based on

a non-negative linear regression and employing performance monitoring

counters (PMCs) as predictor variables to explain the Pareto-optimal

solutions determined by the solution method proposed in this thesis for

modern multicore CPUs.
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Chapter 1

Introduction

High-performance computing (HPC) has received lots of attention from the

science and business industry with the advent of multi-core and cloud

computing. HPC is essential in physical simulations, weather forecasting,

quantum mechanics, data analytics, artificial intelligence (AI), etc., where

large-scale problems need to be solved requiring massive computations to be

performed. HPC gathers together a wide range of modern homogeneous and

heterogeneous platforms (supercomputers [1], Grid’5000 [2]) to deliver higher

performance. Multicore CPUs are the mandrel of such system, and any

optimization focusing on the objectives such as performance and energy

consumption of multicore CPUs, will optimize these objectives for the overall

system.

Reviewing the history of computers, for more than three decades prior to

mid-2000s called the single-core era, performance doubled every 18 months

due to Moore’s law [3] and Dennard scaling ([4]). Moore’s law states that the

number of transistors per square inch on integrated circuits doubles every

year since the integrated circuit was invented. Dennard scaling is a scaling

model whereby the power density of a transistor based processor of a unit

area remains constant due to voltage and current scaling down with the

length of the transistor. However, since 2004, designers of processors started

facing physical constraints of the integrated circuit containing the transistors.

Both power dissipation and power density trends have essentially required
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designers to remain within a particular power budget and density

requirements. All these limitations, associated with voltage supply scaling,

threshold scaling, and clock frequency scaling, along with design complexity,

forced companies to look for an alternative to the single core paradigm [5].

Thus, in 2005, AMD released their first dual-core processor (Athlon 64 X2)

and from that time onwards, microprocessor architecture entered multicore

era. Multicore processors integrate many cores into one chip to overcome the

physical constraints of uniprocessor architecture and deliver high computing

power with a single chip.

Modern parallel platforms are composed of tightly integrated multicore

CPUs with a hierarchical arrangement of cores into sockets with multi-level

cache hierarchy. This tight integration has resulted in the cores contending for

various shared on-chip resources such as Last Level Cache (LLC) and

interconnect (For example: Intel‘s Quick Path Interconnect [6], AMD‘s Hyper

Transport [7]), leading to resource contention and non-uniform memory

access (NUMA). NUMA happens where the time for memory access between

a core and main memory is not uniform and where main memory is

distributed between locality domains or groups called NUMA nodes. Figure

1.1 shows the most general architecture of multicore CPUs. It comprises of

two sockets (NUMA node 0 and NUMA node 1) with four physical cores each.

Figure 1.1: The most general architecture of processors nowadays.
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1.1. MOTIVATION BEHIND THIS THESIS

Each core has its own L1 and L2 caches. All the cores in a socket share the

last level cache (L3). The time taken to access a data item depends on where

it is in the multi-level cache and memory hierarchy. The closer the memory to

the core, the less the access time. For example: time to access data in the L1

cache is considerably less than that for L2 and L3 caches. Time is longer for

access to the memory of the neighbour NUMA node since in this case the

slow on-chip interconnect is used. Furthermore, all cores share the same last

level cache (L3) leading to severe resource contention for it between threads.

Efficient portable parallel programming on platforms composed of such

multicore CPUs must address daunting challenges posed by the inherent

complexities.

1.1 Motivation Behind This Thesis

To explain the motivation of this thesis, the author elucidates the challenges

posed by the inherent complexities in multicore CPU platforms to solving

single-objective optimization of data-parallel applications for performance and

energy, and bi-objective optimization for performance and energy on such

platforms. The challenges are illustrated using two well-known highly

optimized scientific kernels, matrix-matrix multiplication (DGEMM) and 2D

fast Fourier transform (2D-FFT).

1.1.1 Performance Optimization on Modern Multicore CPUs

This section presents the challenges posed to performance optimization on

modern multicore CPUs. This is followed by explanation why the state-of-

the-art dominant technique of load balancing fails to address the challenges.

Finally, it proposes solution methods to address the challenges.

Figure 1.2 shows the performance profile of multithreaded matrix-matrix

multiplication employing DGEMM routine provided by the Intel Math Kernel

Library v.2017. The application computes the matrix product (C = α×A×B+

β×C) of two dense square matrices A and B of size N ×N . It is executed on

a modern Intel Haswell server consisting of 36 cores. The number of threads
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1.1. MOTIVATION BEHIND THIS THESIS

Figure 1.2: Speed function of IMKL DGEMM application executing varying
number of threads (T) on the Intel Haswell server.

employed during the execution of the DGEMM routine is configurable.

The crucial observation is that for one thread the profile is smooth.

However, drastic variations in the performance can be observed with

increasing number of threads. The variation is related to the difference of

speeds between two subsequent local minima (s1) and maxima (s2) and is

defined as: variation(%) = |s1−s2|
min(s1,s2)

× 100. The maximum width of variations

with 36 threads is more than 40%. There are several sizes where the width of

variations reaches more than 20%.

Figure 1.3 illustrates the performance profile of 2D-FFT offered by the

same Intel Math Kernel Library v.2017. The 2D-FFT application is executed

with 36 threads on the same Intel Haswell server. It computes the 2D-DFT of

the signal matrix of size N ×N . The number of threads employed during the

execution of the 2D-FFT routine is also configurable. The variations happen

for the whole range of problem sizes. The maximum width of variations is

around 89%. The detailed study of performance profiles of the 2D-FFT

application using three vendor packages, FFTW-2.1.5, FFTW-3.3.7 and IMKL
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1.1. MOTIVATION BEHIND THIS THESIS

Figure 1.3: Speed function of IMKL FFT application executing with 36 threads
on the Intel Haswell server.

FFT, can be found in the Appendix ??, where also is show that the FFT

routines in the packages demonstrate low average performance due to these

variations.

To make sure the experimental results are reliable and not noise, a

statistical methodology described in Appendix ?? is used. Briefly, for every

data point in the functions, the automation software executes the application

repeatedly until the sample mean lies in the 95% confidence interval with

precision of 0.025 (2.5%).

The variations cannot be explained by the constant and stochastic

fluctuations due to OS activity or a workload executing in a node in common

networks of computers. In such networks, a node is persistently performing

minor routine computations and communications by being an integral part of

the network. Examples of such routine applications include e-mail clients,

browsers, text editors, audio applications, etc. As a result, the node will

experience constant and stochastic fluctuations in the workload. This

changing transient load will cause a fluctuation in the speed of the node in the

sense that the speed will vary for different runs of the same workload. One

way to represent these inherent fluctuations in the speed is to use a speed
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1.1. MOTIVATION BEHIND THIS THESIS

band rather than a speed function. The width of the band characterizes the

level of fluctuation in the speed due to changes in load over time [8], [9], [10].

For a node with uniprocessors, the width of the band has been shown to

decrease as the problem size increases. For a node with a very high level of

network integration, typical widths of the speed bands were observed to be

around 40% for small problem sizes and narrowing down to 3% for large

problem sizes. Therefore, as the problem size increases, the width of the

speed band is observed to decrease. Therefore, for long running

applications, one would observe the width to become quite narrow (3%).

However, this is not the case for variations in the presented graphs. Hence,

these variations are consequences of the inherent complexities posed by the

tight integration which has resulted in the cores contending for various shared

on-chip resources such as Last Level Cache (LLC) and interconnect (NUMA).

They pose a daunting challenge to performance optimization of

multi-threaded applications on modern multicore CPUs.

Load balancing is a well known and still the dominant technique for

performance optimization of scientific applications on parallel platforms. Load

balancing algorithms can be classified as static or dynamic. Static algorithms

(for example, those based on data partitioning) [11], [12] require a priori

information about the parallel application and platform. Dynamic algorithms

(such as task scheduling and work stealing) [13]–[15] balance the load by

moving finegrained tasks between processors during the calculation.

Dynamic algorithms do not require a priori information about execution but

may incur significant communication overhead due to data migration.

The most advanced load balancing algorithms use functional performance

models (FPMs), which are application-specific and represent the speed of a

processor by continuous function of problem size but satisfying some

assumptions on its shape [9]. These FPMs capture accurately the real-life

behavior of applications executing on nodes consisting of uniprocessors

(single-core CPUs). The assumptions require them to be smooth enough in

order to guarantee that optimal solutions minimizing the computation time are

always load balanced. However, as can be seen from the figures 1.2 and 1.3,

due to complex nodal architectures with a highly hierarchical arrangement
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1.1. MOTIVATION BEHIND THIS THESIS

and tight integration of cores the shape of the performance profiles of real

scientific applications on the modern multicore CPUs is not smooth and may

deviate significantly from the shapes that allowed traditional and

state-of-the-art load balancing algorithms to find optimal solutions.

Lastovetsky et al. [16], [17] study the variations in performance profile for

a real-life data-parallel scientific application, Multidimensional Positive

Definite Advection Transport Algorithm (MPDATA), on a Xeon Phi

co-processor. They geometrically prove the limitations of the FPM-based load

balancing algorithms to modern performance profiles executed on multicore

CPUs. Based on FPMs, the authors propose a novel optimization technique

that distributes workload among cores unequally but gaining better

performance in comparison with traditional load balancing. Furthermore,

Lastovetsky et al. in [18] propose new model-based methods and algorithms

for minimization of time and energy of computations for the most general

shapes of performance and energy profiles of data parallel applications

observed on the modern homogeneous multicore clusters.

The methods [16]–[18] show that workload distribution has become an

important decision variable for performance optimization on modern multicore

CPUs. The methods are, however, theoretical works and target

homogeneous clusters of multicore CPUs and not a single multicore CPU.

There are three solution approaches that can be employed to remove the

performance variations.

Manual code optimization is typically the first approach adopted to

improve the performance of an application. The roofline model [19] is used to

visually depict the trend of performance gains accrued from code tuning

towards the theoretical peak performance of a multicore processor. Using this

model, the highly optimized scientific applications such as Intel Math Kernel

Library (IMKL) (BLAS, FFT) consistently demonstrate the superior

performance of their codes for new platforms.

However, manual code optimization is a time-consuming process and

programmers who can program such techniques are rare because they

should be experts in both hardware and software domain. This approach

involves different techniques such as loop transformation, use of pointers,
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1.1. MOTIVATION BEHIND THIS THESIS

use of SIMD registers, blocking etc. [20], [21], [22], to avoid the unprofitable

use of cache resources and improve CPU utilization that in turn leads to

higher performance. For this, data from performance monitoring counters

(PMCs) is required, that demands additional knowledge about hardware

specific architecture. PMCs are special-purpose registers provided in modern

microprocessors to store the counts of software and hardware activities. We

will use the acronym PMCs to refer to software events, which are pure

kernel-level counters such as page-faults, context-switches, etc. as well as

micro-architectural events originating from the processor and its performance

monitoring unit called the hardware events such as cache-misses,

branch-instructions, etc.

Besides, PMCs in some cases are not reliable based on additivity test

proposed in [23]. Moreover, such efficient tuning for one architecture can be

inefficient for the other that damages code portability. Some vendors such as

Intel do not disclose the source code of their applications which makes code

modification impossible at the kernel level.

The second approach constructs solutions for an input workload size by

employing solutions to larger workload sizes with better performance. From

the figures 1.2 and 1.3 can be seen that two subsequential workload sizes

have different performance where sometimes a larger problem size has better

performance. The basic idea is to increase the input workload size (by

padding, for example) to a bigger workload size with better performance,

solve the padded workload size, and use its solution to construct the solution

for the input workload size. This is a portable approach.

Finally, the third approach is optimization using model-based parallel

computing method [16]–[18]. The key idea behind this approach is to design

and implement a parallel version of the application that can be executed

using identical abstract processors named threadgroups in parallel. The

performances of the threadgroups are represented by realistic and accurate

performance models of computation. The models are input to a data

partitioning algorithm to determine the optimal workload distribution

maximizing the performance during the parallel execution of the application.

The main advantages of this approach are:
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1.1. MOTIVATION BEHIND THIS THESIS

• It is portable when the performance models of computation used in the

data partitioning algorithms do not use architecture-specific parameters.

• It does not require source code modification of the optimized package.

• The programming effort is less time-consuming, which is to distribute

the workload between identical already optimized and well-tested

multithreaded routines (abstract processors) and execute them in

parallel.

This thesis proposes novel single-objective optimization methods

specifically designed for performance optimization of 2D fast Fourier

transform based on FFTW and IMKL (PFFT) and dense matrix-matrix

multiplication written using OpenBLAS DGEMM and IMKL (PMM).

The solution methods employ workload distribution as the decision

variable and are based on model-based parallel computing method using

load-imbalancing data partitioning technique. The technique determines

optimal solutions (workload distributions) that may not load-balance the

application in terms of execution time. The methods take as inputs, the

discrete functions of the performance of the processors against problem size.

Based on the experiments conducted on a dual-socket Intel Haswell CPU

consisting of 36 physical cores, the average and maximum speedups

observed for PFFT using FFTW-3.3.7 are 2.3x and 9.4x and the average and

maximum speedups observed using IMKL FFT are 1.4x and 5.9x. The

average and maximum speedups observed for PMM using OpenBLAS

DGEMM are 1.2x and 1.4x and the average and maximum speedups

observed using IMKL DGEMM are 1.1x and 1.3x.

Then an application-level method, SOPPETG, for solving performance

optimization problem on a single multicore CPU is proposed. The method

uses two decision variables, the number of identical multithreaded kernels

(threadgroups) executing the application in parallel and the number of threads

in each threadgroup. The workload distribution is not a decision variable. It is

fixed so that a given workload is always partitioned equally between the

threadgroups. Based on the experiments conducted on a single-socket Intel
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1.1. MOTIVATION BEHIND THIS THESIS

Skylake CPU consisting of 22 physical cores, the average and maximum

performance improvements of SOPPETG using OpenBLAS DGEMM are 7%

and 26.3% and the average and maximum performance improvements using

IMKL DGEMM are 4.1% and 6.5%. The average and maximum performance

improvements of SOPPETG using IMKL FFT are 7% and 13% and using

FFTW-3.3.7 are 25% and 51% respectively.

On a dual-socket Intel Haswell CPU consisting of 36 physical cores, the

average and maximum performance improvements of SOPPETG using

OpenBLAS DGEMM are 19% and 31.7% and the average and maximum

performance improvements using IMKL DGEMM are 7% and 42.1%. The

average and maximum performance improvements of SOPPETG using

FFTW-3.3.7 are 85% and 90%.

1.1.2 Energy Optimization on Modern Multicore CPUs

Reducing energy consumption is of paramount concern to the HPC

community since its pervasiveness in data centers and cloud computing

infrastructures. Energy in HPC is now an environment concern not only

because of the maintenance cost of HPC systems but also of high carbon

footprint which affects environmental sustainability as modern data centers

already can rival cities in power consumption. This was not an issue in the

past since until now we have followed Moore’s Law enhancements in

photolithography techniques which are proportional reductions in dynamic

power consumption per transistor and consequent improvements in clock

frequency at the same level of power dissipation. However, below 90 nm, the

static power dissipation can be greater than the dynamic power dissipation.

This effect summons clock frequency freezing in order to stay within thermal

power emission limits [24].

The optimization of energy consumption of multicore CPUs is more

complex than that of a single- or dual-core CPUs. The new complexities such

as tight integration with severe contention on shared resources (Last level

caches (LLC), main memory, PCI-E links, etc.) and NUMA pose tremendous

challenges to the energy optimization of data-parallel applications on modern
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1.1. MOTIVATION BEHIND THIS THESIS

multicore CPUs.

In contrast to single-core optimization, where energy profiles follow the

fully polynomial-time scheme for task partitioning, i.e. energy consumption

with a higher workload is larger than that with a lower workload [25], the

energy profiles of real scientific applications executed on modern multicore

CPUs demonstrate highly non-linear relationship between workload size and

energy consumption.

As an example, figure ?? depicts the dynamic energy consumption profile

of 2D-FFT employing IMKL FFT on the Intel Xeon Platinum server consisting

of 56 cores. The dynamic energy consumption is measured with Yokogawa

WT310 power meter. It can be seen that the graph is highly non-linear. The

maximum width of variations can be up to 73%. It represents the maximum

amount of energy savings possible.

Figure 1.4: Dynamic Energy Consumption of IMKL FFT application executing
with 56 cores on the Intel Xeon Platinum server.

The research works [26], [27] propose model-based data partitioning

methods to minimize the total dynamic energy consumption during the

execution of a data-parallel application on homogeneous clusters of multicore

CPUs. They take as input discrete dynamic energy functions with no shape

assumptions (for example, the discrete profile in the Figure 1.4), which
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1.1. MOTIVATION BEHIND THIS THESIS

accurately and realistically account for resource contention and NUMA

inherent in modern multicore CPU platforms. The research works are

theoretical demonstrating energy improvements based on simulations of

clusters of homogeneous nodes containing multicore CPUs.

This thesis proposes an application-level method, SOPPETG, for solving

energy optimization problem on a single multicore CPU. The method uses

two decision variables, the number of identical multithreaded kernels

(threadgroups) executing the application in parallel and the number of threads

in each threadgroup. The workload distribution is not a decision variable. It is

fixed so that a given workload is always partitioned equally between the

threadgroups. Based on the experiments conducted on a single-socket Intel

Skylake CPU consisting of 22 physical cores, the average and maximum

energy savings of SOPPETG using OpenBLAS DGEMM are 7.9% and 30%

and the average and maximum energy savings using IMKL DGEMM are

35.7% and 67%. The average and maximum energy savings of SOPPETG

using FFTW-3.3.7 are 30% and 63%.

On a dual-socket Intel Haswell CPU consisting of 24 physical cores, the

average and maximum energy savings of SOPPETG using OpenBLAS

DGEMM are 10% and 24.5% and the average and maximum energy savings

using IMKL DGEMM are 13% and 67%. The average and maximum energy

savings of SOPPETG using FFTW-3.3.7 on a dual-socket Intel Skylake CPU

consisting of 56 cores are 23% and 43%.

1.1.3 Bi-Objective Optimization for Performance and

Energy

Energy proportionality is the key design goal pursued by architects of modern

multicore CPU platforms [28]. One of its implications is that optimization of an

application for performance will also optimize it for energy. Modern multicore

CPUs however have several inherent complexities, which are: a) Severe

resource contention due to tight integration of tens of cores organized in

multiple sockets with multi-level cache hierarchy and contending for shared

on-chip resources such as last level lache (LLC), interconnect (For example:
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1.1. MOTIVATION BEHIND THIS THESIS

Intel’s Quick Path Interconnect, AMD’s Hyper Transport), and DRAM

controllers; b) Non-uniform memory access (NUMA) where the time for

memory access between a core and main memory is not uniform and where

main memory is distributed between locality domains or groups called NUMA

nodes; and c) Dynamic power management (DPM) of multiple power

domains (CPU sockets, DRAM). This thesis shows that due to these

complexities, energy proportionality does not hold true for multicore CPUs.

This finding creates the opportunity for bi-objective optimization of

applications for performance and energy.

Solution methods solving the bi-objective optimization problem for

performance and energy BOPPE can be broadly classified into system-level

and application-level categories. System-level methods aim to optimize

performance and energy of the environment where the applications are

executed. The methods employ application-agnostic models and hardware

parameters as decision variables. They are principally deployed at operating

system (OS) level and therefore require changes to either the OS or the

hardware. The key decision variable employed is Dynamic Voltage and

Frequency Scaling (DVFS).

In the second category, solution methods optimize applications rather

than the executing environment. The methods use application-level decision

variables and predictive models for performance and energy consumption of

applications to solve BOPPE. The dominant decision variables include the

number of threads, loop tile size, workload distribution, etc. Following the

principle of energy proportionality, a dominant class of such solution methods

aim to achieve optimal energy reduction by optimizing for performance alone.

Definitive examples are scientific routines offered by vendor-specific software

packages that are extensively optimized for performance. For example, Intel

Math Kernel Library [29] provides extensively optimized multithreaded basic

linear algebra subprograms (BLAS) and 1D, 2D, and 3D fast Fourier

transform (FFT) routines for Intel processors. Open source packages such as

[30]–[32] offer the same interface functions but contain portable optimizations

and may exhibit better average performance than a heavily optimized vendor

package [33], [34]. The optimized routines in these software packages allow
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1.1. MOTIVATION BEHIND THIS THESIS

employment of one key decision variable, which is the number of threads. A

given workload is load-balanced between the threads.

The works [26], [27], [35] propose model-based data partitioning methods

that take as input discrete performance and dynamic energy functions with no

shape assumptions, which accurately and realistically account for resource

contention and NUMA inherent in modern multicore CPU platforms. Using a

simulation of the execution of a data-parallel matrix multiplication application

based on OpenBLAS DGEMM on a homogeneous cluster of multicore CPUs,

[26] show that optimizing for performance alone results in average and

maximum dynamic energy reductions of 24% and 68%, but optimizing for

dynamic energy alone results in performance degradations of 95% and

100%. For a 2D fast Fourier transform application based on FFTW, the

average and maximum dynamic energy reductions are 29% and 55% and the

average and maximum performance degradations are both 100%. Research

work [35] proposes a solution method called ALEPH to solve BOPPE on

homogeneous clusters of modern multicore CPUs. ALEPH is shown to

determine a diverse set of globally Pareto-optimal solutions whereas existing

solution methods give only one solution when the problem size and number

of processors are fixed. The methods target homogeneous HPC platforms.

Khaleghzadeh et al. [36] propose a solution method solving the bi-objective

optimization problem on heterogeneous processors. The authors prove that

for an arbitrary number of processors with linear execution time and dynamic

energy functions, the globally Pareto-optimal front is linear and contains an

infinite number of solutions out of which one solution is load balanced while

the rest are load imbalanced. A data partitioning algorithm is presented that

takes as an input discrete performance and dynamic energy functions with no

shape assumptions. The research works [26], [27], [35], [36] are theoretical

demonstrating performance and energy improvements based on simulations

of clusters of homogeneous and heterogeneous nodes.

All these works done on bi-objective optimization for performance and

energy do not consider the optimization on a single multicore CPU.

Furthermore, the works [26], [27], [35], [36] are theoretical and use only

workload distribution as a decision variable. However, one of the findings of
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1.1. MOTIVATION BEHIND THIS THESIS

this thesis is that modern multicore CPUs are not energy proportional and a

trade-off between energy and performance can be found on such platforms.

This finding opens an opportunity for bi-objective optimization for

performance and energy on a single multicore CPU and makes it meaningful.

To the best of author’s knowledge, this is the first work studying bi-objective

optimization for performance and energy consumption on a single multicore

CPU.

This thesis studies the influence of three-dimensional decision variable

space on bi-objective optimization of applications for performance and energy

on multicore CPUs. The three decision variables are: a). The number of

identical multithreaded kernels (threadgroups) involved in the parallel

execution of an application; b). The number of threads in each threadgroup;

and c). The workload distribution between the threadgroups. The author

focuses exclusively on the first two decision variables in this work. The

number of possible workload distributions increases exponentially with

increasing number of threadgroups employed in the execution of a

data-parallel application and it would require employment of

threadgroup-specific performance and energy models to reduce the

complexity. It is a subject of future work.

The thesis proposes the first application-level method for bi-objective

optimization of multithreaded data-parallel applications on a single multicore

CPU for performance and energy. The method uses two decision variables,

the number of identical multithreaded kernels (threadgroups) executing the

application in parallel and the number of threads in each threadgroup. The

workload distribution is not a decision variable. It is fixed so that a given

workload is always partitioned equally between the threadgroups. The

method allows full reuse of highly optimized scientific codes and does not

require any changes to hardware or OS.

Based on the experiments conducted on a dual-socket Intel Skylake CPU

consisting of 56 cores, it was observed that the number of Pareto optimal

solutions can be up to 11 for FFTW-3.3.7.. Figure 1.5 shows these solutions

for problem size m = n = 30464. One can observe, choosing the best

configuration for performance (g,t)=(1,96), increases the dynamic energy
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Figure 1.5: Pareto frontier of FFTW PFFTTG application on HCLServer4 (S4)
for workload size m = n = 30464.

consumption by 35% in comparison with the optimal configuration for energy

(8,12), and choosing the optimal configuration for energy (8,12), degrades the

performance by 49% in comparison with the optimal configuration for

performance (1,96). The average number of globally Pareto-optimal solutions

for FFTW-3.3.7 is 3. On a single-socket Intel Skylake CPU consisting of 22

physical cores, the average and the maximum number of globally

Pareto-optimal solutions for IMKL DGEMM and IMKL FFT are (2.3,3) and

(2.6,3).

Finally, this thesis proposes a predictive dynamic energy model based on

non-negative linear regression and employing performance monitoring

counters (PMCs) as predictor variables to explain the Pareto-optimal

solutions determined by solution method proposed in this thesis for multicore

CPUs.

1.2 Thesis Contributions

The main contributions of this thesis are the following:

1. Demonstration of the challenges posed by inherent complexities in

modern multicore CPUs such as severe resource contention and

17
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NUMA to the performance of multi-threaded data-parallel applications

executing on such platforms.

2. Studying the performance profiles of multithreaded 2D FFT and

matrix-matrix multiplication provided in highly optimized packages,

FFTW-3.3.7, IMKL FFT, OpenBALS DGEMM and IMKL DGEMM on a

modern Intel Haswell multicore processor consisting of thirty-six cores.

It is shown that all routines demonstrate drastic performance variations

and that their average performances therefore are considerably lower

than their peak performances.

3. Three novel optimization methods specifically designed for optimization

of 2D-FFTW, 2D-FFT-IMKL, OpenBLAS-DGEMM and IMKL-DGEMM

for performance. The methods employ workload distribution as the

decision variable and are based on model-based parallel computing

method using load-imbalancing data partitioning technique. The

technique determines optimal solutions (workload distributions) that

may not load-balance the application in terms of execution time.

4. Application-level methods for single-objective optimization of

multithreaded data-parallel applications for performance and energy.

The method uses two decision variables, the number of identical

multithreaded kernels (threadgroups) and the number of threads in

each threadgroup.

5. Detection and demonstration of that the energy proportionality does not

hold true for multicore CPUs thereby affording an opportunity for

bi-objective optimization for performance and energy.

6. The first application-level method for bi-objective optimization of

multithreaded data-parallel applications for performance and energy.

The method uses two decision variables, the number of identical

multithreaded kernels (threadgroups) and the number of threads in

each threadgroup. The method is demonstrated using four highly

optimized data-parallel applications. It is shown that the proposed

18
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method determines good numbers of globally Pareto-optimal

configurations of the applications allowing for a better balance between

performance and energy consumption.

7. Predictive dynamic energy model based on linear regression and

employing PMCs as predictor variables to explain the Pareto-optimal

solutions determined by the method proposed in this thesis for

dual-socket multicore CPUs.

1.3 Thesis Structure

The rest of the thesis is organized as follows: chapter 2 covers the review of

state-of-the-art methods of single-objective optimization for performance and

energy, bi-objective optimization for performance and energy on modern

multicore CPUs, and performance and energy models of computation.

Chapter 3 presents novel methods for single-objective optimization

performance and energy using three decision variables - workload

distribution, the number of threadgroups and the number of threads in each

threadgroup. Chapter 4 proposes bi-objective optimization for performance

and energy on modern multicore CPUs using the number of threadgroups

and the number of threads per threadgroup as decision variables. The

conclusion of this thesis is in chapter 5.
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