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 A B S T R A C T

Parallel Genetic Algorithms (PGAs) have been widely applied to accelerate solutions for real-world problems 
such as energy optimization in building constructions, data preprocessing and model selection steps in data 
mining, real-time control of multilevel inverters in electronics, land-use planning, nanoscience, optimal power 
flow in power systems, and road traffic management.

The state-of-the-art research proposes PGAs optimized solely for performance and for solving optimization 
problems on a multicore CPU, GPU, or clusters of multicore CPUs. However, no research has analyzed PGAs for 
heterogeneous hybrid platforms comprising multicore CPUs and multiple accelerators that utilize all computing 
devices in parallel. Furthermore, no definitive comparative research comprehensively investigates the energy 
consumption of PGAs in hybrid systems versus multicore CPUs or GPUs.

We address the above gaps in the prior art in this work. First, we present a novel parallelization 
approach (HPIGA) tailored for heterogeneous hybrid platforms, featuring a portable implementation that 
utilizes all available computational devices, including multicore CPUs and GPUs. We conduct a comprehensive 
investigation into the performance and energy profiles of this approach. We compare it with three other 
traditional parallel approaches across a range of dimensions, varying from 100 dimensions and up to 5000 
dimensions. The results showed HPIGA’s competitive energy consumption behavior and promising performance 
compared to other traditional approaches under the study.

Moreover, we formulate a bi-objective optimization problem of a PGA employing a parallel island model 
and executing on a hybrid server comprising 𝑝 compute devices. The problem has two objectives: performance 
and energy. The decision variable used in our bi-objective optimization problem is workload distribution, 
which is proportional to the number of islands. We study the efficacy of our proposed PGA on a hybrid server 
platform with an Intel Icelake multicore CPU and two Nvidia A40 GPUs, analyzing execution time and dynamic 
energy profiles under two power governors. The resulting Pareto front graphs provide valuable insights, serving 
as crucial benchmarks for the future development and use of efficient, energy-aware optimization techniques 
across diverse computational devices.
1. Introduction

Genetic algorithms (GAs) are metaheuristics inspired by the pro-
cess of natural selection employed to solve optimization problems 
where the objective functions are highly non-linear, discontinuous, 
non-differentiable and therefore lack analytical expressions amenable 
to using traditional calculus methods [1–3]. Furthermore, GAs are pre-
dominantly used to solve multi-objective optimization problems where 
the objective functions possess conflicting goals and display ill-defined 
or undesirable calculus properties, rendering finding an efficient exact 
algorithm to solve the problems intractable [4,5].
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GAs with long execution times due to large problem datasets, 
high problem dimensionality, complex objective functions with time-
consuming function evaluation, and customized genetic operators ne-
cessitated the development of Parallel Genetic Algorithms (PGAs) to 
reduce the execution times. PGAs have been widely used to accel-
erate solutions to real-world problems such as energy optimization 
in building constructions [6], data preprocessing and model selection 
steps in data mining [7], real-time control of multilevel inverters in 
electronics [8], land-use planning [9], nanoscience [10], optimal power 
flow in power systems [11], and road traffic management [12].
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One of the critical components of a PGA implementation is the 
parallel hardware architecture or platform, which is essential for op-
timizing the PGA for the specific platform. The parallel hardware 
architectures employed in the PGA implementations include multicore 
CPUs [9,13], clusters of multicore CPUs [7,11], Graphics Processing 
Units (GPUs) [8,14], FPGAs [15,16] and Clouds [17]. The software 
packages popularly used for PGA implementations on multicore CPUs 
are Parallel Computing Toolbox provided in MATLAB and Java threads 
(Java concurrency package). PGA implementations on clusters com-
monly employ a message-passing interface (MPI) [18]. PGA implemen-
tations on GPUs are mostly written in CUDA, which is not portable to 
other vendors and can be challenging to implement or extend.

The word hybrid in the state-of-the-art PGAs is used in two contexts. 
First, it refers to the type of algorithm and second, the hardware 
platform employed. Several hybrid PGAs have been proposed in the 
literature in the first context, which combine two different PGA models 
or integrate the genetic algorithm (GA) with another heuristic method, 
such as simulated annealing (SA), to solve optimization problems. In 
this work, we follow the second context and reserve the word hybrid to 
refer to the PGA implementation executing on a heterogeneous server 
platform comprising multicore CPUs and one or more accelerators and 
employing all the computing devices in parallel. While the research 
works surveyed above focus on improving the performance of PGAs, 
there is a lack of such research devoted to analyzing and minimizing 
the energy consumption of PGAs. To summarize, the state-of-the-art 
research works above propose PGAs optimized only for performance 
and running on either a single computing device (multicore CPU or 
GPU or FPGA) or a homogeneous cluster of multicore CPUs. There is 
no research on PGAs running on heterogeneous hybrid platforms com-
prising multicore CPUs and multiple GPU accelerators that employ all 
computing devices in parallel. Furthermore, no previous research com-
prehensively investigates the energy consumption of PGAs in hybrid 
heterogeneous systems, comparing them to their traditional parallel 
counterparts.

The primary objective of this work is to address the aforementioned 
gaps in the existing literature by developing HPIGA, a parallel genetic 
algorithm designed for execution on hybrid heterogeneous platforms. 
We develop a portable HPIGA implementation for one multicore CPU, 
and 𝑝 − 1 accelerators. The implementation is based on OpenH [19], 
a programming model and API for developing portable parallel pro-
grams on heterogeneous hybrid servers composed of a multicore CPU 
and one or more different accelerators. We compare the energy con-
sumption and performance of this approach to three other parallel 
configurations: a multicore-CPU model, a single GPU model, and a 
functional model. The multicore-CPU and single GPU models represent 
the classical parallel approaches commonly used in the literature, 
while the functional model introduces an innovative parallel approach 
that explores the computational and intercommunication collaboration 
between devices. Detailed explanations of these parallel models are 
provided in Section 6. The key objectives of this study are to:

• Developing a portable implementation of HPIGA across multi-
core CPUs and accelerators. Comparing the performance and 
energy consumption of HPIGA against traditional parallel models 
(multicore-CPUs, GPUs).

• Investigating trade-offs between performance and energy effi-
ciency, with Pareto-optimal solutions for workload distribution 
across devices.

In summary, we experimentally analyze the performance and en-
ergy consumption of the proposed PGA on a heterogeneous hybrid 
server consisting of an Intel Icelake multicore CPU and two Nvidia 
A40 GPU accelerators. Specifically, we present and discuss the Pareto-
optimal solutions from the bi-objective optimization of the PGA, op-
timizing for performance and energy, with the distribution of islands 
between the devices as the decision variable.

The prime contributions of this work are:
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• A novel algorithm design tailored for efficient execution on hy-
brid systems, employing all computing devices through workload 
distribution among them.

• Presenting a portable implementation of our proposed PGA, op-
timizing parallel GAs for performance and energy on a heteroge-
neous hybrid server.

• Analyzing the performance and energy profiles of our proposed 
PGA across different devices on a heterogeneous hybrid platform, 
comprising a multicore CPU and two GPU accelerators. Addi-
tionally, we present Pareto fronts for optimizing PGAs on hybrid 
servers to improve performance and energy efficiency.

The rest of the paper is organized as follows. Section 2 presents the 
related work. In Section 3, we briefly outline the origins and principles 
of GAs and PGAs. Further, we cover the design and implementation of 
hybrid heterogeneous PGAs in Section 5. Then we detail our experimen-
tal framework in Section 6. Section 7 provides the experimental results 
for our study. we summarize the findings and outline future work in 
Section 8.

2. Related work

Over the past two decades, numerous studies have addressed an-
alyzing the parallel performance of metaheuristic algorithms. In this 
section, we review the efforts made to analyze the performance and 
energy consumption of Metaheuristics and GA on multicore CPUs and 
accelerators.

2.1. Parallel metaheuristics on multicore CPUs

The efforts to analyze the performance of parallel metaheuristics 
on processors have been quite extensive over the past two decades. 
However, these studies typically focused on the algorithm’s perfor-
mance and lacked a comprehensive analysis of energy consumption. 
Here, we will explore certain initiatives conducted across both past and 
contemporary times.

One of the early efforts to analyze the performance of parallel 
metaheuristics was presented in [20]. In the article, the author explores 
the application of the parallel tabu search algorithm to address large 
traveling salesman problems. Additionally, the article describes its 
implementation on a transputer network, highlighting the efficiency of 
the parallel algorithm through numerical results and speedup assess-
ments. Another early parallel approach to investigate the performance 
evaluation of a parallel tabu search algorithm was presented in [21]. 
The authors assessed the achieved makespan reduction of various par-
allel applications. Their conclusions suggest that, in numerous cases, 
the parallel tabu search algorithm yields significantly better solutions 
compared to the greedy algorithm.

Over the past few years, efforts and studies have been presented 
to study the performance of PGAs. A study of the performance of 
parallel GA models over multicore CPUs was presented in [22]. They 
studied the performance of three parallel models (master–slave model, 
synchronous, and asynchronous distributed GAs). Their findings illus-
trated the performance characteristics of these models, although the 
paper did not delve into their energy consumption profiles. In [23], 
the authors presented the first approach to study the performance and 
energy consumption of sequential and parallel distributed GAs with 
an examination of the consumption of the algorithm components. The 
results reveal the energy profile of sequential and distributed GAs over 
multi-cores. A recent approach to evaluate the performance of dis-
tributed PGAs on a cluster of multicore CPU processors was presented 
in [24]. The authors of that article aim to study the numerical and 
computational behavior of algorithms by proposing a mathematical 
model representing the observed performance curves. Their research 
follows the typical path of investigating the performance of PGAs, with 
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no mention of the energy profiles. A comparative study of the perfor-
mance and energy consumption of several metaheuristics (including 
GA) over multi-cores was presented in [25]. In their research, they 
conduct two comprehensive investigations into the solution quality, en-
ergy consumption, and execution time of three distinct metaheuristics 
and their corresponding distributed versions. The primary objective of 
their studies is to assess the effectiveness of parallel execution of these 
metaheuristics within emerging computing environments. For more 
research on the performance of parallel metaheuristics over multi-cores 
and clusters, we refer the reader to articles [26–32]. However, none of 
the studies mentioned in this section investigate the performance and 
energy consumption of GPUs or hybrid systems.

2.2. Parallel metaheuristics on GPUs

GPUs are emerging as powerful computation devices, expanding 
beyond their traditional graphical capabilities to solve complex parallel 
problems. Over the past decade, a handful of studies have delved into 
the potential of GPUs to enhance the performance of metaheuristics. 
Here, we will review key studies exploring this aspect.

One of the early attempts to study the performance of metaheuristics 
was presented in [33], where the authors presented two double-level 
parallel metaheuristic algorithms to solve the flexible job shop schedul-
ing problem over GPU. The algorithms consist of two key modules: 
the machine selection module, which is executed sequentially, and the 
operation scheduling module, which operates in parallel over GPUs. 
The authors have not compared the results to the multicore counter-
parts or energy consumption evaluation. Another early effort to study 
the distributed tabu search metaheuristic using a multi-GPU cluster 
is presented in [34]. The article’s authors proposed a hybrid paral-
lelization approach for tabu search designed to solve the flexible job 
shop problem, where hybridization involves simultaneously examining 
multiple solutions from a neighborhood using several GPUs (multi-
GPU). Also, the study does not include energy consumption or an 
evaluation of their proposed approach employing multicore CPUs.

Over the past decade, there has been intense competition in de-
ploying search algorithms on GPUs. Authors of [35] introduced a local 
search strategy named Variable Neighborhood Descent (DVND), which 
was developed for CPU and multi-GPU environments. They introduced 
a neighborhood search strategy for the massive parallelism of GPUs 
to enhance local search (LS) procedures. Their study also does not 
include a comparison with standard algorithms or multicore CPU coun-
terparts. Another approach to parallelize particle swarm optimization 
(PSO) algorithm was presented in [36]. The authors of that work 
proposed a GPU-PSO algorithm based on CUDA, utilizing a combination 
of coarse-grained and fine-grained parallelism for global efficiency. 
They designed a CUDA-based data structure and merged memory ac-
cess mode to enhance data-parallel processing and access efficiency. 
Their experimental results highlight the algorithm’s effectiveness in 
reducing solution times for high-dimensional, large-scale optimization 
problems. For further investigation into the performance of parallel 
metaheuristics across GPUs, readers are directed to [37–39].

In the context of genetic algorithms, a leading metaheuristic, sub-
stantial initiatives have been undertaken in recent years to implement 
it on GPUs. An effort to present a GPU-based PGA for solving the flow 
shop scheduling problem is presented in [40]. They propose an energy-
aware dynamic flexible flow shop scheduling model that considers 
peak power values for GPUs. They introduce a priority-based hybrid 
PGA with a predictive reactive complete rescheduling strategy. Their 
method was designed for the NVIDIA CUDA software model. The nu-
merical experiments presented there demonstrate a competitive perfor-
mance achieved by their approach for GPUs. A recent method employ-
ing parallel Cellular GAs in identifying classification rules on GPUs is 
presented in [41]. In that study, a partitioning strategy was introduced 
for optimizing 3D parallel cellular GAs on a 2D processing array using 
Field Programmable Gate Arrays (FPGAs). That research addresses both 
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combinatorial and continuous domain benchmark problems, focusing 
on optimizing objective function modules through trigonometric and 
arithmetic-tailored units. Their results demonstrate up to three and two 
orders of magnitude speed-up compared to CPU and parallel GPU im-
plementations. For an additional investigation into the implementation 
of genetic algorithms on GPUs, we direct the reader to Refs. [42–44]. 
For a survey on the acceleration of genetic algorithms through GPU 
computing, we direct the reader to Ref. [45].

A recent effort to predict the energy–time behavior of applica-
tions using multi-population genetic algorithms is found in [46]. Their 
approach focused on dynamically distributing the evaluation of indi-
viduals among CPU–GPU devices in heterogeneous clusters, providing 
a more accurate prediction compared to traditional linear regression 
methods. The study demonstrated the effectiveness of their model in 
improving energy and time efficiency in high-performance computing 
systems. It also highlighted the importance of focusing on key param-
eters to further refine the model. However, their work did not include 
running or comparing genetic algorithms executed separately on indi-
vidual devices (CPU and GPUs) with heterogeneous ones, which is a 
key aspect addressed in our study. Another recent study [47] focused 
on the parallel GPU acceleration of optimization algorithms for solving 
large-scale nonlinear equation systems. The authors proposed GPU-
based implementations of several recent algorithms (such as Jaya, and 
a new MaGI algorithm) employing a unified and efficient paralleliza-
tion strategy. The implementations, written in Julia, were tested on 
high-end and consumer-grade GPUs, demonstrating notable speedups, 
especially for high-dimensional problems. The analysis revealed sig-
nificant performance gains, with the scalability and adaptability of 
their approach highlighted across various GPU architectures. While 
their work provides valuable insight into the GPU-based accelera-
tion of emerging metaphorless algorithms, it primarily concentrates on 
the performance improvements achieved by GPU-based parallelizing 
these methods for numerical equation solving. Unlike our study, their 
research does not investigate or compare the behavior of genetic algo-
rithms or other population-based methods distributed across heteroge-
neous computing devices. A recent study by Silva et al. (2025) [48] 
presented a GPU-accelerated implementation of a modified PSO algo-
rithm to solve large-scale systems of nonlinear equations. Their work 
compared the performance of the GPU-parallelized PSO against both 
sequential and multithreaded CPU versions, demonstrating significant 
speedups. The study highlighted the scalability advantages of GPU-
based parallelism, especially for high-dimensional problems, while also 
discussing the trade-offs between computational precision and perfor-
mance. Additionally, the paper examined the effects of increasing CPU 
thread counts, identifying optimal threading for maximum efficiency. 
These findings underscore the potential of heterogeneous computing 
platforms to effectively accelerate population-based metaheuristics for 
complex optimization problems. For more recent studies that ana-
lyze GPU-based and heterogeneous execution behavior of search and 
evolutionary algorithms, we kindly refer the reader to [49–52].

The aforementioned works in this section highlight numerous at-
tempts to implement metaheuristics on multi-cores and accelerators. 
However, these efforts have primarily focused on running metaheuris-
tics on either the multicore CPU or the GPU independently. As we span 
across these studies, we observe that all these articles examined the per-
formance of the algorithms without addressing/comparing their energy 
consumption when being run over CPUs and accelerators. To the best 
of our knowledge, no study has yet compared the energy consumption 
and performance of multicore CPUs, GPUs, and all computing devices 
within heterogeneous systems. Our research aims in this work is to 
investigate the simultaneous execution of metaheuristics on both CPUs 
and GPUs, comparing the results of this integrated approach with the 
outcomes from running on each device separately. Our study provides 
a comprehensive analysis of the performance and energy efficiency of 
combined CPU/accelerator execution versus single-device execution.
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3. Background of genetic algorithms

In this section, we briefly delve into the origins of sequential and 
parallel GAs. We examine the key components of the Canonical GA and 
also outline various models commonly used for parallelizing GAs.

3.1. The genetic algorithm

The GA is a famous population-based metaheuristic that relies on 
searching the problem space with a population of randomly gener-
ated individuals [53]. Each individual (expected optimal solution) is 
represented by a chromosome and its fitness value. The chromosome 
consists of an array of genes, the size of which depends on the problem’s 
dimension. The fitness function evaluates each individual’s quality in 
the population to select the solutions for the next generation.

To generate new solutions for the subsequent generation, the GA 
considers applying genetic operators, typically involving crossover, mu-
tation, and replacement. Selection in GAs involves choosing individuals 
from a population based on their fitness for reproduction. This iterative 
process continues until a stopping criterion is met, such as reaching 
the maximum number of fitness evaluations or obtaining a solution of 
satisfactory quality [23]. Algorithm 1 outlines the pseudocode for this 
panmictic algorithm.

Algorithm 1 The standard genetic algorithm.
1: Initialization. Randomly generate an initial population 𝑃 .
2: Evaluation. Evaluate the individuals in 𝑃 .
3: while 𝑛𝑜𝑡 stop-condition do
4:  𝑃 ′ ← Crossover (𝑃 )
5:  𝑃 ′′ ← Mutation (𝑃 ′)
6:  Fitness Function Evaluation (𝑃 ′′)
7:  𝑃 ← Selection (𝑃 ′′)
8: end while
9: Output. Best Found Solution so far.

Genetic operators are employed to create new solutions from ex-
isting ones. The crossover (or recombination) operator merges two or 
more distinct solutions to generate new ones. The crossover operator is 
essential for inheriting traits from both parents to generate offspring. 
The mutation is a variation operator that produces a new solution 
by altering the genes of a distinct one. The mutation operator’s key 
role is introducing genetic diversity within the population, thereby 
preventing the algorithm from converging to a local optimum [54]. 
Selection in GAs involves choosing individuals from a population based 
on their fitness for reproduction. Selection balances exploration and 
exploitation, influencing algorithm performance and convergence.

3.2. Parallel genetic algorithm

GA, like all metaheuristics, is time-consuming, which is the same 
issue with exact search algorithms [55]. Thus, parallel runs of these 
algorithms arise as a promising approach for overcoming this flaw.

Parallel Islands GA (PIGA) emerged as the best and most common 
GA parallelization approach [56,57]. This parallel model is widely used 
as a promising approach to parallelize GAs [23,25,58]. In this model, 
the GA population is divided into sub-populations (islands) as shown 
in Fig.  1.

These islands are distributed over the parallel processors to run 
in parallel. They execute the identical code of the standard GA and 
can evolve in physical parallelism over the different processors. The 
model involves a migration procedure that requires sharing search 
knowledge by exchanging the individuals between these small-distant 
populations [59]. Periodic migration occurs among islands, with ring 
migration being an example, as outlined in Algorithm 2.
4 
Fig. 1. Population partitioned into islands.

Algorithm 2 Ring migration among islands.
1: Input: Population of individuals, 𝑃 ; Number of islands, 𝑛𝐼𝑠.
2: procedure RingMigration(𝑃 , 𝑛𝐼𝑠)
3:  for i← 0 to nIs − 1 do
4:  𝑃(𝑖+1)%𝑛𝐼𝑠’s worst individual ← 𝑃𝑖’s best solution.
5:  end for
6: end procedure

4. Bi-objective optimization problem formulation and exact algo-
rithms

In this section, we present our methodology to obtain Pareto-
optimal solutions in our study. We formulate the bi-objective opti-
mization problem HPIGAOPT, which minimizes the execution time 
and energy consumption of PIGA applications. HPIGAOPT generates 
a set of globally Pareto-optimal solutions for both execution time and 
energy. These applications execute on a heterogeneous hybrid platform 
comprising 𝑝 heterogeneous processor, using the optimal application 
configuration and a fixed platform configuration. The problem employs 
workload distribution, a vector of 𝑝 workload sizes where a workload 
size is the number of islands, representing the application configuration 
as the decision variable.

The problem considers the execution of an application workload 
of size 𝑛 representing the total number of islands on a heterogeneous 
hybrid platform with base/idle power consumption, 𝐵𝑠, and comprising 
𝑝 heterogeneous processors. Let the sets, 𝑇 = {𝑡1(𝑥),… , 𝑡𝑝(𝑥)}, and 
𝐸 = {𝑒1(𝑥),… , 𝑒𝑝(𝑥)}, contain the execution time and dynamic energy 
functions of workload size of the 𝑝 processors. The function 𝑒𝑖(𝑥) gives 
the amount of dynamic energy consumed by 𝑃  to execute the workload 
𝑖
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size 𝑥, and 𝑡𝑖(𝑥) is the execution time of the workload size 𝑥 on this 
processor. The optimization problem formulation is as follows:

HPIGAOPT(𝑛, 𝑝, 𝑇 , 𝐸, 𝐵𝑠, ): 

𝑓𝑇 ( ) =
𝑝

max
𝑖=1

𝑡𝑖(𝑛𝑖)

𝑓𝐸 ( ) = 𝐵𝑠 ×
𝑝

max
𝑖=1

𝑡𝑖(𝑛𝑖) +
𝑝
∑

𝑖=1
𝑒𝑖(𝑛𝑖)

minimize


(𝑓𝑇 ( ), 𝑓𝐸 ( ))

subject to:
𝑝
∑

𝑖=1
𝑛𝑖 = 𝑛, 0 ≤ 𝑛𝑖 ≤ 𝑛, 𝑖 ∈ {1,… , 𝑝}

(1)

The two objective functions are 𝑓𝑇 ( ) and 𝑓𝐸 ( ). The objective 
function 𝑓𝑇 ( ) gives the execution time of the application workload 
of size 𝑛 employing the workload distribution,  = {𝑛1,… , 𝑛𝑝}. The 
objective function 𝑓𝐸 ( ) gives the total energy consumption during 
the execution of the application workload. 𝑓𝑇 × 𝑓𝐸 ∶ R≥0 × R≥0
denotes the objective space of this problem. HPIGAOPT returns globally 
Pareto-optimal solutions (workload distributions) minimizing the two 
objective functions. If the input parameter 𝐵𝑠 is 0, HPIGAOPT returns a 
set of globally Pareto-optimal solutions for execution time and dynamic 
energy.

4.1. Exact algorithms for the optimization problem variants

We present an overview of the exact algorithms solving HPIGAOPT 
for two different categories of time and energy functions. The exact 
algorithms, LBOPA-TE and PARTITION, solve a special case of HPI-
GAOPT where the sets 𝑇  and 𝐸 contain linear increasing execution 
time and dynamic energy functions of workload size, respectively [60]. 
LBOPA-TE outputs a piecewise linear Pareto front comprising a number 
of segments less than or equal to 𝑝 − 1. Furthermore, given a point on 
the Pareto front, PARTITION finds the optimal workload distribution.

The exact algorithm, HEPOPTA, solves a special case of HPIGAOPT 
where the sets 𝑇  and 𝐸 contain discrete execution time and dynamic 
energy functions (with arbitrary shape and represented by a set of 
points) of workload size [61]. HEPOPTA returns a set of tuples:

{(𝑓𝐸 (𝑜𝑝𝑡), 𝑓𝑇 (𝑜𝑝𝑡),𝑜𝑝𝑡)}, where 𝑜𝑝𝑡 is a vector of size 𝑝 giving 
the optimal workload distribution, 𝑓𝑇 (𝑜𝑝𝑡) is the optimal execution 
time, and 𝑓𝐸 (𝑜𝑝𝑡) is the optimal total energy.

5. Design and implementation of heterogeneous hybrid PGA

This section describes the design and implementation of our Het-
erogeneous Parallel Island Genetic Algorithm (HPIGA), focusing on its 
execution on a hybrid server platform that includes multicore CPUs and 
accelerators.

5.1. HPIGA design

HPIGA takes as input a set of islands (𝑛𝐼𝑠), which are randomly gen-
erated. The target platform is a hybrid heterogeneous system consisting 
of a multicore processor and multiple accelerators (𝑛𝑝). The islands 
are partitioned among the computing devices available in the hybrid 
system. Unlike common approaches found in the literature, our design 
utilizes a self-adaptive algorithm that distributes the workload across 
the available computing devices in the hybrid system, proportionally 
to their performance.

The parallel model in this study is the distributed island model 
described in [22,54]. The model involves partitioning the islands to 
align with the distributed processors available, ensuring optimal dis-
tribution and utilization across the system. Algorithm 3 describes the 
basic structure of the PIGA algorithm.

We consider the uniform crossover operator, which is a commonly 
used operator in the literature [53]. In the uniform crossover method, 
each bit is randomly selected from either parent with a predefined 
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Algorithm 3 Parallel Genetic Algorithm (PGA)
1: Input: Population of individuals, 𝑃 ; Number of islands, 𝑛𝐼𝑠; 
Number of processors, 𝑛𝑝.

2: Output: Best individual in the population.
3: Initialization: Divide the population 𝑃  into 𝑛𝐼𝑠 islands, 

{𝑃0,⋯ , 𝑃𝑛𝐼𝑠−1}.
4: procedure Parallel Islands GA(𝑃 , 𝑛𝐼𝑠, 𝑛𝑝)
5:  #pragma omp parallel for numthreads(𝑛𝑝)
6:  for 𝑖 ← 0 to 𝑛𝐼𝑠 − 1 do
7:  Fitness Evaluation(𝑃𝑖)
8:  end for
9:  while termination criterion NOT met do
10:  #pragma omp parallel numthreads(𝑛𝑝)
11:  #pragma omp for
12:  for 𝑖 ← 0 to 𝑛𝐼𝑠 − 1 do
13:  Crossover(𝑃𝑖)
14:  Mutation(𝑃𝑖)
15:  Fitness Evaluation(𝑃𝑖)
16:  Selection(𝑃𝑖)
17:  end for
18:  if migration condition met then
19:  RingMigration(𝑃 , 𝑛𝐼𝑠)
20:  end if
21:  end while
22: end procedure

probability, ensuring an efficient inheritance of genetic information 
from both parents. We consider the Bit-Flip mutation, which involves 
selecting one or more random bits and flipping them. This mutation is 
typically employed in binary-encoded Genetic Algorithms (GAs) [62]. 
Binary tournament selection is employed for selection. Tournament 
selection involves conducting multiple tournaments among randomly 
chosen individuals from the population. This procedure involves ran-
domly selecting two solutions from the population and selecting one 
based on its fitness for the next generation.

GAs termination criteria are essential for determining when the 
optimization process should end. Typically, these criteria are based on 
reaching a certain number of generations, reaching a certain number 
of function evaluations, or when the algorithm converges to a stable 
solution. These different criteria help prevent premature convergence 
and ensure that the GA terminates efficiently based on each experi-
ment’s specific objectives and constraints. Once the stopping criteria 
are met, each processor identifies the best individual within its subset 
of islands. The multicore processor’s main thread then aggregates these 
best individuals. The algorithm returns the overall best solution found 
among all processors. This parallel approach leverages the diverse 
computational capabilities of heterogeneous processors, maximizing 
efficiency and accelerating the optimization process.

HPIGA employs the island model, which involves the random gener-
ation of islands, each representing a distinct sub-population. The islands 
each have an identical number of individuals. This is a data-parallelism 
approach that considers individualized GA for each island’s operation. 
We assign these islands to the cores and threads across the various com-
putational devices available in the system. Fig.  2 shows the structural 
design of HPIGA where the entire set of islands is divided among the 
available computing devices. Subsequently, these subsets of islands are 
executed in parallel across the computing devices. Algorithm 4 outlines 
a procedure for partitioning islands based on the speeds/performances 
of heterogeneous processors.

The partitioning algorithm assigns islands to processors based on 
their speeds. It calculates the total speed (T) and allocates islands 
proportionally. The remaining islands are individually allocated to 
processors starting from 0. The final vector (N) is then returned, 
showing the number of islands assigned to each processor. Periodic 
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Fig. 2. Island distribution in HPIGA across CPUs and accelerators.
communication occurs between these islands through migration. We 
employ the ring migration policy described in [22]. In this operation, 
each island sends its best individuals to another island in a ring fashion 
in a preset iteration number described in Algorithm 2. The migration 
interval and rate are set to ensure independent exploration and struc-
tured communication. A fixed number of the best individuals migrate 
each interval, replacing the lowest fitness individuals on the destination 
island. This migration topology has a low communication overhead 
compared with other topologies [63]. The high-level HPIGA description 
is provided in algorithm 5.

HPIGA begins with a population of islands 𝑃  that target running 
concurrently on a system with heterogeneous processors. The partition-
ing algorithm 4 is called to divide the islands among the heterogeneous 
processors 𝐷 based on their computational speeds 𝑆 to ensure an equi-
table workload distribution. Each processor independently runs a PGA 
kernel that executes genetic algorithms. Within each processor 𝑖, the 
workload is further divided among cores 𝑛𝑡  according to the specified 
𝑖

6 
number of islands assigned. This strategy optimizes the computational 
resources, allowing multiple cores/threads to work on different subsets 
of islands concurrently.

5.2. HPIGA implementation

We develop an HPIGA implementation for a heterogeneous hybrid 
server comprising 𝑝 computing devices, one multicore CPU, and 𝑝 − 1
accelerators. The implementation is based on OpenH [19], a program-
ming model and API for developing portable parallel programs on 
heterogeneous hybrid servers composed of a multicore CPU and one 
or more accelerators (generally speaking, of different types).

An OpenH parallel program executing on a heterogeneous hybrid 
server is composed of several software components (kernels) executing 
in parallel. There is a one-to-one mapping between the components 
and computing devices of the hybrid platform on which the program 
is executed. The execution of an accelerator component involves a 
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Algorithm 4 Partitioning islands between processors proportional to 
their speeds/performances.
1: Input:

• Number of islands to divide, 𝑛.
• Number of heterogeneous processors, 𝐷.
• Vector of processor speeds, 𝑆 = {𝑠𝑖}𝐷−1

𝑖=0 , sorted in descending 
order.

2: Output: Vector 𝑁 containing the number of islands assigned to 
each processor 𝑁 = {𝑛𝑖}𝐷−1

𝑖=0 .
3: procedure HSP(𝑁,𝐷, 𝑆)
4:  Calculate total speed 𝑇 =

∑𝐷
𝑖=1 𝑠𝑖.

5:  for 𝑖 = 0 to 𝐷 − 1 do
6:  𝑛𝑖 =

⌊

𝑠𝑖
𝑇 × 𝑛

⌋

7:  end for
8:  for 𝑖 = 0 to (𝐷 − 1 −

∑𝐷−1
𝑗=0 𝑁𝑗 ) do

9:  𝑛𝑖 = 𝑛𝑖 + 1
10:  end for
11:  return N
12: end procedure

Algorithm 5 Heterogeneous Parallel Islands GA (HPIGA) algorithm.
1: Input:
2: 𝑃 = {𝑖𝑠0, 𝑖𝑠1, ...., 𝑖𝑠𝑛−1}: Population of 𝑛 islands.
3: 𝐷: Number of heterogeneous processors.
4: 𝑛𝑡 = {𝑛𝑡0, 𝑛𝑡1, 𝑛𝑡2, ..., 𝑛𝑡𝐷−1}: Number of cores per processor.
5: 𝑆 = {𝑠0, 𝑠1, 𝑠2, ..., 𝑠𝐷−1}: Speeds of processors.
6: Output: Best individual in the population.
7: procedure HPIGA(𝑃 , 𝑛,𝐷, 𝑆, 𝑛𝑡)
8:  𝑏 = {𝑏0, 𝑏1, 𝑏2, ..., 𝑏𝐷−1} ← {0, ..., 0}
9:  𝑁 = {𝑛0, 𝑛1, ..., 𝑛𝐷−1} ← HSP(𝑛,𝐷, 𝑆)
10:  #pragma omp parallel numthreads(D)
11:  for 𝑖 ← 0 to 𝐷 − 1 do
12:  𝑚𝑦𝑃 ← {𝑖𝑠∑𝑖−1

𝑗=0 𝑛𝑗
,… , 𝑖𝑠∑𝑖

𝑗=0 𝑛𝑗−1
}

13:  𝑏[𝑖] ← Parallel Islands GA(𝑚𝑦𝑃 , 𝑛𝑖, 𝑛𝑡𝑖)
14:  end for
15:  return Best individual in 𝑏.
16: end procedure

dedicated CPU core, running the hosting thread, and the accelerator 
itself, performing the accelerator code. The execution of the accelerator 
component includes data transfer between the CPU and accelerator 
memory, computations by the accelerator code, and data transfer be-
tween the accelerator memory and CPU. The execution of a CPU 
component only involves the CPU cores executing the multithreaded 
CPU code.

The parallel program starts as a single main thread, creating a 
group of Pthreads called hosting Pthreads. The hosting Pthreads lead the 
execution of the software components of the hybrid parallel program 
in parallel. A CPU hosting Pthread leads the execution of a multi-
threaded CPU software component employing either OpenMP or a 
multi-threaded library routine. There can be one or more CPU software 
components and, therefore, one or more CPU hosting Pthreads. For 
a CPU component employing an OpenMP parallel region, the hosting 
Pthread of the component becomes the master thread of the region. 
An accelerator hosting Pthread leads the execution of an accelerator 
component, which is an OpenACC (or OpenMP) component running 
on one of the accelerators of the server. Finally, the OpenH library 
provides API functions that allow programmers to get the configuration 
of the executing environment. Furthermore, the library provides API 
functions for binding the hosting Pthreads (and hence the execution 
of the software components) to the CPU cores of the hybrid server to 
7 
get the best performance. Fig.  3 illustrates the HPIGA implementation 
using 𝑝 computing devices (one multicore CPU with 𝑛𝑙𝑐 logical cores 
and 𝑝 − 1 accelerators).

The HPIGA code snippet shows that the main thread creates a group 
of 𝑝 hosting CPU and accelerator Pthreads to manage the execution of 
the CPU and accelerator software components in parallel. The routine
HSP() partitions the population into islands using the speeds of the 
software components estimated at runtime. Each computing device is 
assigned a subset of islands proportional to its speed, ensuring balanced 
load distribution. The relative speeds of the software components using 
the OpenH API function, openh_perf_benchmark(), which executes small 
representative benchmark codes of the software components solving 
the same workload size in parallel. The execution times of all the 
benchmark codes are measured simultaneously, thereby considering 
the influence of resource contention. The API function implementation 
essentially executes a mini-version of the HPIGA employing the same 
affinity and binding settings for the Pthreads executing the benchmark 
codes as the hosting Pthreads and the same library settings for the 
library routines invoked in the software component implementations.1

Fig.  4 illustrates the OpenH fork-join model and assignment of 
islands to the components within HPIGA. The CPU software component 
executes the island GA on the multicore CPU using OpenMP. The 
accelerator component executes the island GA on the accelerator using 
OpenACC.

Fig.  5 complements the snippets of the HPIGA implementation. We 
begin by detailing the execution steps of the main thread. Line 7 initial-
izes the OpenH library runtime using the API function openh_init(). The 
API function, openh_get_num_accelerators, returns the number of accel-
erators (Line 9). The variable 𝑝 stores the number of hosting Pthreads 
in the program, which is equal to the number of software components. 
Lines 13–16 determine and assign the physical CPU core IDs closest to 
the accelerators for binding the accelerator hosting Pthreads. The API 
function, openh_get_unique_lcore(i), returns the unique OpenH logical 
CPU core ID closest to the input accelerator, i. The hosting Pthread 
for the accelerator 𝑖 is assigned the place using the API function,
openh_assign_acc_lcpuids (Line 15). The OpenH library functions ensure 
that different accelerator hosting Pthreads are pinned to OpenH logical 
CPU core IDs that map to different OpenH physical CPU core IDs for 
optimal performance.

The CPU software component with ID 0 is assigned the remaining 
OpenH logical CPU core IDs using the API function,
openh_assign_cpu_free_lcpuids(), that executes the component (Line 18). 
Lines 22–32 show the creation of the 𝑝−1 accelerator hosting Pthreads 
responsible for executing the accelerator components. The partition 
data for an accelerator software component is filled in Lines 24–28. 
Lines 31–33 contain the filling of the partition data for the CPU 
component and the creation of the hosting Pthread leading the exe-
cution of the CPU component. After completing the computations, the 
main thread synchronizes/joins with the 𝑝 hosting Pthreads in Lines 
34–36. Finally, the OpenH runtime is destroyed using the API function,
openh_finalize() in Line 37.

Fig.  5 shows the main code fragments of the software components. 
Lines 1–9 contain the CPU software component code. The hosting 
Pthread leading the execution of the CPU component with ID, cpuCom-
ponentId, is first bound using the API function, openh_bind_cpu_self(). 
Then, it executes the PIGA_CPU() routine to perform the island GA 
on the CPU. Lines 10–20 demonstrate the execution of a component 
employing an accelerator. The hosting Pthread leading the execution 
of accId is bound using the API function, openh_bind_acc_self(). The GPU 
device ID is set using the OpenACC library function, acc_set_device_num

1 The presented design automatically finds at runtime the performance 
optimal distribution of the workload between the heterogeneous devices. We 
disable this feature when using the workload distribution as the decision 
variable for bi-objective optimization for performance and energy in Section 7.
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Fig. 3. The OpenH HPIGA code illustrates the OpenH fork-join model of execution. The OpenH library calls are highlighted in bold. The main thread creates the group of hosting 
CPU and accelerator Pthreads to lead the execution of the CPU and the accelerator software components in parallel. The CPU hosting Pthread will lead the execution of the CPU 
component, cpuComponent. The accelerator hosting Pthread will lead the execution of the GPU component, accComponent.
(Line 16). Then, it executes the PIGA_ACC() routine to perform the 
island GA on the accelerator.

The complete source code is available at [64] containing the imple-
mentations for the CPU and accelerator components. The CPU software 
component employs OpenMP. The accelerator software component 
employs OpenACC. While the code description above is generic and, 
for 𝑝 computing devices, the code at [64] supports four versions. In the 
first version, HPIGA has one accelerator component that runs on one 
accelerator. The second version has only the CPU software component 
executing on the multicore CPU. The third version executes initial 
population generation and migration on the CPU and the main genetic 
operations (crossover, mutation, and selection) on the accelerators. The 
fourth version is HPIGA, that distributes the workload between the 
multicore CPU and accelerators.
8 
6. Experimental framework

In our pursuit of analyzing energy efficiency and performance, we 
conduct experiments with various configurations featuring different 
numbers of islands. The underlying objective of this experimental de-
sign is to effectively address the research goals and overcome optimiza-
tion challenges related to energy consumption and system performance 
across diverse island quantities. Our deliberate exploration of different 
running strategies is geared towards achieving a comprehensive un-
derstanding of how our algorithm behaves under varying conditions. 
By systematically evaluating the outcomes, we strive to identify the 
optimal configuration for our algorithm, contributing valuable insights 
for future algorithmic designs. Ultimately, our aim is to configure 
our application to operate in an energy-aware manner, facilitating the 
development of more efficient algorithms and fostering advancements 
in computational methodologies.
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Fig. 4. The OpenH fork-join execution of the HPIGA. The main thread creates the 
group of 𝑝 hosting CPU and accelerator Pthreads to lead the execution of the CPU and 
the accelerator software components in parallel. The islands are distributed among the 
computing devices proportional to their speeds/performances.

We perform two extensive experiments to examine the performance 
and energy consumption of PGAs running on hybrid systems. Further-
more, we conduct a second experiment to generate Pareto front sets for 
optimal execution time and energy consumption across these system 
configurations. In detail, we run the distributed island model of the GA 
using a different number of islands and dimensions over our hybrid 
server that includes multicore CPUs and accelerators.

The first experiment considers running four different parallel strate-
gies. The first strategy is running the algorithm over one accelera-
tor/GPU (named PIGA_ACC). In this setting, all the islands and the 
genetic operations are parallelized over one of the accelerators avail-
able on our system. The second strategy considers running the exact 
algorithm over a multicore CPU (named PIGA_CPU). We remark that 
we have only one kernel for executing all our four strategies in order 
to ensure fair comparisons and accurate Pareto front results.

The third and fourth parallel strategies consider running the island 
model in hybrid parallel execution over the CPU and accelerators. The 
third strategy employs an innovative heterogeneous CPU/Accelerator 
functional parallelism approach (named PIGA_HFP). In this experiment, 
Random Number Generation (RNG) for each generation is generated on 
the CPU and sent to the accelerator where the main genetic operations 
(crossover, mutation, and selection) are executed; all other operations 
(initial population generation and migration) are executed by the CPU. 
This design is proposed to divide the workload between the two devices 
and relies on the CPU for random number generation since RNG on 
CPUs using 𝑟𝑎𝑛𝑑_𝑟 function is thread-safe and has a common use in 
literature [65]. The fourth strategy (named HPIGA) involves executing 
our proposed algorithm in Section 5, by dividing and distributing 
the GA islands across the three computational devices (CPU and two 
accelerators) in our system. The primary objective of this configuration 
is to investigate the common assertion in the literature that using more 
computational devices may lead to higher energy consumption.

In the second experiment, we perform extensive runs for our PIGA 
over the CPU and accelerator with a growing number of islands, starting 
from two islands to 128 islands. These experiments aim to generate 
9 
Table 1
Parameter settings.
 Definitions Values  
 Sub-population size 50 individual  
 Recombination Uniform, 𝑝𝑐 = 0.6  
 Mutation Bit-flip, 𝑝𝑚 = 0.0001 
 Selection Binary tournament  
 Replacement Replacing the worst 
 Elitism Yes  
 Migration interval Every 10 iterations  

the Pareto front set of optimal solutions for execution time and energy 
consumption for the hybrid PGA application employing the powersave 
and performance DVFS governors on the multicore CPU.

These two experiments employ different stopping conditions due to 
the experimental setup used. In the first experiment, the termination 
condition is defined by the total number of function evaluations, which 
remains the same for all island configurations within each dimension. 
However, due to the setup of the algorithm used to generate the Pareto 
fronts, the second experiment employs a fixed number of iterations. 
The specific values for this setup are provided in the next section. Our 
experiments were conducted using both powersave and performance 
governors. Choosing two different power governors can provide the 
researchers with beneficial insights into the energy consumption be-
havior and performance characteristics of parallel GAs. Furthermore, 
presenting Pareto-fronts Figures and discussion gives an optimal anal-
ysis of power consumption patterns. Hence, this detailed examination 
facilitates performance tuning based on the nature of the workload.

6.1. Benchmark problem and parameter settings

We summarize the benchmark problems used to evaluate our ex-
perimental design and parameter settings. Our primary focus in this 
research is to study the performance and energy profiles of PGAs. 
To achieve this, we employ two well-established test problems: One-
Max and Rastrigin. One-Max provides a simple search space, allowing 
for a clear assessment of algorithmic behavior while ensuring reliable 
performance and energy consumption profiles. In contrast, the Rastrigin 
function presents a more computationally expensive landscape with 
numerous local optima. By evaluating both functions, we can assess the 
GA’s efficiency across varying levels of problem complexity and com-
putational cost. The mathematical formulations of the two benchmark 
problems are given below.
1- One-Max Problem (𝑓1) Definition: 

𝑓1(𝐱) =
𝑛
∑

𝑖=1
𝑥𝑖, 𝑥𝑖 ∈ {0, 1} (2)

Search space: 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝑛. Global minimum: 𝐱∗ =
(0, 0,… , 0); 𝑓1(𝐱∗) = 0.
2- Rastrigin Function (𝑓2) Definition: 

𝑓2(𝐱) = 10𝑛 +
𝑛
∑

𝑖=1

(

𝑥2𝑖 − 10 cos
(

2𝜋𝑥𝑖
))

. (3)

Search space: −5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = 1,… , 𝑛. Global minimum:
𝐱∗ = (0, 0,… , 0); 𝑓2(𝐱∗) = 0.

Our experiments include lower dimensions (100) as well as higher 
dimensions (1000 and 5000), which result in increased computational 
effort and enable a more comprehensive energy profile analysis. Table 
1 shows the problem parameter settings used in our experiments. 
We base our selection of these parameters on the most frequently 
employed values documented in the literature, and the parameters used 
in a preceding study [22]. In this study, we determine these param-
eters through various preliminary numerical experiments to illustrate 
distinctions among the algorithms under examination.

Our migrant selection policy for the island model involves choosing 
the best individuals from the sending island and replacing the worst 
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Fig. 5. The OpenH HPIGA implementation is decomposed into 𝑝 software components (one CPU and 𝑝 − 1 accelerator components) and executed on a heterogeneous platform 
comprising 𝑝 computing devices, one multicore CPU, and 𝑝−1 accelerators. The CPU software component implementation is in the function, cpuComponent. The software component 
implementation specific to accelerators is in the function, accComponent. PIGA_CPU() executes the island GA on the multicore CPU using OpenMP. PIGA_ACC() kernel executes the 
island GA on the accelerator using OpenACC.
Table 2
Iterations and evaluations per dimension.
 Dimension Experiment 1 Experiment 2  
 # of Evaluations # of Iterations 
 100 4E6 1250  
 500 5E6 1500  
 1000 7E6 2000  
 3000 1.5E7 6000  
 5000 2E7 8000  

individuals on the destination island. We set the migration rate to be 5 
individuals per communication phase, with migration occurring every 
10 iterations. Table  2 provides the number of function evaluations 
and iterations for each dimension employed in first and second experi-
ments, respectively. These values were determined through a series of 
preliminary experiments to ensure that all instances could reach the 
optimal solution. The number of function evaluations and iterations per 
dimension was kept constant across different island configurations to 
ensure a fair comparison and reproducibility of results.

6.2. System specifications and energy measurement

We employ the research hybrid server platform whose specifications 
are given in Table  3 for our experiments. The two Nvidia A40 GPUs are 
closest to all the cores (0–63) in the Intel Icelake multicore CPU of the 
hybrid server.

We employ system-level physical measurements using external
power meters for component-level measurement of energy consump-
tion. The measurements obtained this way are considered ground 
truth [66].

The hybrid server has one WattsUp Pro power meter between 
the wall A/C outlets and the node’s input power sockets. The power 
meter captures the total power consumption of the node. It has a data 
cable connected to one USB port of the node. A Perl script collects 
the data from the power meter using the serial USB interface. The 
execution of these scripts is non-intrusive and consumes insignificant 
power. The power meters are periodically calibrated using an ANSI 
C12.20 revenue-grade power meter, Yokogawa WT210. The maximum 
sampling speed of the power meters is one sample every second. The 
10 
Table 3
Specifications of the Intel hybrid server containing a single-socket Icelake multicore 
CPU and two Nvidia A40 GPUs.
 Intel Platinum 8362 Icelake
 No. of cores per socket 32  
 No. of threads per core 2  
 Socket(s) 2  
 L1d cache, L1i cache 1.5 MiB, 1 MiB  
 L2 cache, L3 cache 40 MiB, 48 MiB  
 Total main memory 62 GB DDR4-3200  
 TDP 265 W  
 NVIDIA A40 GPU
 No. of GPUs 2  
 No. of Ampere cores 10,752  
 Total board memory 48 GB GDDR6 (with ECC) 
 Memory bandwidth 696 GB/s  
 TDP 300 W  

accuracy specified in the data sheets is ±3%. The minimum measurable 
power is 0.5 W. The accuracy at 0.5 W is ±0.3 W. The static power 
consumption of the server is 146 W.

To ensure the reliability of our results, we follow a statistical 
methodology where a sample average for a response variable (execu-
tion time and energy) is obtained from multiple experimental runs. The 
sample average is calculated by executing the application repeatedly 
until it lies in the 95% confidence interval and a precision of 0.05 (5%) 
is achieved. For this purpose, Student’s t-test is used, assuming that the 
individual observations are independent and their population follows 
the normal distribution. We verify the validity of these assumptions 
using Pearson’s chi-squared test.

7. Experimental results and analysis

In this section, we present the outcomes of our two distinct exper-
iments designed to evaluate the performance of PIGA under various 
parallelization strategies. These experiments focus on presenting robust 
energy and performance profiles of PGAs running on multi-cores and 
accelerators, along with generating and analyzing Pareto front sets for 
optimal execution time and energy consumption across various system 
configurations.
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Table 4
Mean total energy (Joules) for 𝑓1 and 𝑓2.
 # of Algorithm Dimensions under study
 Islands 100 500 1000 3000 5000

 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2
 
128

PIGA_ACC 462.63 577.80 2328.96 2562.91 4435.43 5224.72 32039.00 42494.49 72940.66 87980.97
 PIGA_CPU 622.56 824.72 2206.20 2981.81 3620.10 4727.74 22499.36 31822.14 50844.00 69379.94
 PIGA_HFP 1991.80 3178.21 11534.40 19259.74 27334.80 47099.52 182921.66 279499.40 414800.00 705554.53
 HPIGA 424.93 551.30 2245.13 2753.49 7573.27 9305.09 55920.66 67520.86 133355.66 168353.49

 
64

PIGA_ACC 456.83 614.03 2329.47 3177.83 4334.03 5153.36 30362.10 37212.29 74504.33 103714.30
 PIGA_CPU 695.50 1060.85 2708.23 3760.44 4106.57 5710.52 22891.77 31822.78 49992.00 71181.85
 PIGA_HFP 1994.36 3256.82 11530.27 18105.14 27039.90 41071.65 180245.00 309355.82 414213.33 720104.93
 HPIGA 557.30 806.14 2019.80 3013.32 5944.63 8734.92 50194.33 70950.03 124134.66 165759.06

 
32

PIGA_ACC 427.00 521.73 2324.37 3177.12 4406.97 5846.12 28592.76 35381.40 70088.66 81747.47
 PIGA_CPU 694.00 1091.82 3786.13 5952.17 5261.97 8128.16 25346.33 33589.44 52597.33 77497.54
 PIGA_HFP 2033.13 3395.94 11573.13 18036.73 27365.20 45729.35 175059.00 297152.17 408833.33 679931.69
 HPIGA 821.36 1205.90 2069.37 3013.32 8750.0 8 750.00 48818.66 66902.38 81515.00 119222.83

 
16

PIGA_ACC 431.40 555.16 2331.57 3096.69 4438.13 5406.59 28361.16 34325.95 64764.00 84695.38
 PIGA_CPU 708.43 1110.04 4817.13 6829.81 7674.07 11612.43 30389.23 43836.74 61600.00 94700.42
 PIGA_HFP 1933.96 3110.09 11658.87 18786.34 27385.13 47005.75 175882.00 277299.06 399033.33 621759.30
 HPIGA 1094.46 1395.71 2156.73 2710.66 4940.33 7245.69 47497.66 69347.09 105896.66 149745.64

 Boldfaced and underlined values represent the least and highest values for each algorithm per function within each dimension, respectively.
Table 5
Mean dynamic energy (Joules) for 𝑓1 and 𝑓2.
 # of Algorithm Dimensions under study
 Islands 100 500 1000 3000 5000

 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2
 
128

PIGA_ACC 214.12 267.42 894.07 983.88 1770.76 2085.86 13341.81 17695.70 29605.49 35710.12
 PIGA_CPU 286.88 380.03 415.93 562.15 559.24 730.34 6308.15 8921.97 16535.28 22563.46
 PIGA_HFP 1246.72 1989.32 7114.87 11880.16 18910.19 32583.40 126514.35 193310.54 286850.06 487917.92
 HPIGA 296.40 384.55 1431.06 1755.08 5252.44 6453.54 38650.75 46668.47 92371.44 116613.38

 
64

PIGA_ACC 209.03 280.96 895.73 1221.95 1735.51 2063.60 12454.69 15264.67 31161.98 43379.26
 PIGA_CPU 320.73 489.21 739.94 1027.42 838.38 1165.83 3538.14 4918.51 12583.61 17917.35
 PIGA_HFP 1245.99 2034.71 7139.87 11211.22 18891.97 28695.53 126420.90 216977.12 285141.37 489450.49
 HPIGA 383.32 554.47 1286.62 1919.49 4159.40 6111.74 35142.62 49674.33 84841.72 113290.54

 
32

PIGA_ACC 186.07 227.35 887.53 1213.15 1811.79 2403.45 11699.94 14477.80 28824.57 33619.35
 PIGA_CPU 321.12 505.19 1446.00 2273.25 1626.38 2512.26 4652.75 6165.92 8395.30 12369.74
 PIGA_HFP 1269.07 2119.73 7189.91 11205.33 19127.09 31962.83 120576.31 204671.06 281468.22 468110.46
 HPIGA 556.28 816.72 1330.20 1982.19 4190.31 6105.17 33691.93 46172.30 56202.04 82200.42

 
16

PIGA_ACC 197.58 254.26 899.72 1194.97 1832.93 2232.90 11584.69 14021.12 26538.00 34705.18
 PIGA_CPU 334.45 524.05 2569.64 3643.27 3470.68 5251.84 7932.32 11442.44 12318.02 18937.04
 PIGA_HFP 1228.09 1974.95 7250.09 11682.32 19071.87 32736.29 120998.56 190768.74 275529.20 429319.64
 HPIGA 729.01 929.67 1384.79 1740.45 3455.70 5068.27 32689.37 47726.83 73114.82 103389.72

Boldfaced and underlined values represent the least and highest values for each algorithm per function within each dimension, respectively.
7.1. Experiment 1: Energy and performance analysis

In this experiment, we run the PIGA using four different parallel 
approaches described earlier in Section 6. For this experiment, we em-
ployed the default ‘‘ondemand’’ governor as the energy governor. This 
choice was not only practical, as it is the default for Ubuntu Servers, 
but also provides a standardized and dependable basis for performance 
and energy analysis. The ondemand governor’s unique capability to au-
tomatically modify CPU frequency based on demand makes it a useful 
choose for exploring energy efficiency and computational performance.

Tables  4 and 5 show the total and dynamic energy consumption (in 
Joules) for various dimensions.

An analysis of total energy consumption (Table  4) reveals that 
PIGA_ACC consistently achieves the highest energy efficiency, exhibit-
ing the lowest energy usage (boldfaced values) in most test cases across 
both functions and all dimensions. This highlights its advantage in 
leveraging acceleration hardware for energy-conscious optimization. 
PIGA_CPU demonstrates moderate energy consumption, outperforming 
PIGA_HFP in some lower-dimensional cases but generally consuming 
more energy than both PIGA_ACC and HPIGA, especially as dimen-
sionality increases. HPIGA, by utilizing hybrid computing resources, 
offers a balanced energy profile, frequently outperforming PIGA_CPU 
11 
and significantly reducing energy consumption compared to PIGA_HFP 
in higher-dimensional problems. In contrast, PIGA_HFP consistently 
exhibits the highest total energy consumption across all dimensions 
(underlined values) due to its design, which incurs costly inter-device 
communication overhead. These results confirm that the PIGA_HFP 
design is impractical, a logical conclusion now empirically validated.

The dynamic energy consumption results (Table  5) show that
PIGA_CPU and PIGA_ACC record the lowest dynamic energy in most 
cases, reaffirming their suitability for energy-sensitive environments. 
HPIGA maintains a moderate position, balancing energy consumption 
and computational capability, and frequently achieving dynamic en-
ergy performance comparable to PIGA _CPU and PIGA_ACC. PIGA_HFP 
again ranks as the least energy-efficient, consistently exhibiting the 
highest dynamic energy consumption across all dimensions and func-
tions. Overall, PIGA_ACC stands out as the most efficient algorithm 
in both total and dynamic energy terms, making it the best choice 
for applications where energy efficiency is critical. HPIGA offers a 
practical compromise between performance and energy use, while 
PIGA_HFP remains the most energy-intensive across all scenarios. These 
findings emphasize the importance of aligning algorithm design with 
appropriate hardware to optimize energy performance in large-scale 
optimization tasks. A notable finding from this comparison is that 
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Table 6
Mean execution time (seconds) for 𝑓1 and 𝑓2.
 # of Algorithm Dimensions under study
 Islands 100 500 1000 3000 5000

 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2
 
128

PIGA_ACC 0.98 1.22 5.67 6.24 15.96 18.79 111.96 148.49 259.49 312.99
 PIGA_CPU 1.33 1.75 7.08 9.56 18.33 23.93 96.95 137.12 205.44 280.33
 PIGA_HFP 2.95 4.69 17.47 29.16 50.45 86.92 337.77 516.10 766.17 1303.21
 HPIGA 0.51 0.65 3.22 3.94 13.90 17.07 103.41 124.86 245.41 275.82

 
64

PIGA_ACC 0.98 1.31 5.67 7.73 15.56 18.50 107.23 131.42 259.54 361.28
 PIGA_CPU 1.48 2.25 7.78 10.80 19.57 27.21 115.89 161.10 224.00 318.94
 PIGA_HFP 2.96 4.83 17.35 27.24 48.79 74.10 322.30 553.16 772.89 1326.67
 HPIGA 0.69 0.99 2.90 4.32 10.69 15.70 90.13 127.39 235.29 314.18

 
32

PIGA_ACC 0.95 1.16 5.68 7.76 15.54 20.61 101.15 125.17 247.09 288.19
 PIGA_CPU 1.47 2.31 9.25 14.54 21.77 33.62 123.91 164.21 264.68 389.98
 PIGA_HFP 3.02 5.04 17.33 27.00 49.33 82.43 326.24 553.77 762.67 1268.39
 HPIGA 1.05 2.04 2.92 4.35 10.87 15.83 90.58 124.13 151.57 221.69

 
16

PIGA_ACC 0.92 1.18 5.66 7.51 15.60 19.00 100.46 121.58 228.90 299.34
 PIGA_CPU 1.48 2.31 8.88 12.59 25.17 38.08 134.47 193.97 295.10 453.67
 PIGA_HFP 2.79 4.48 17.43 28.07 49.78 85.44 328.64 518.14 739.55 1152.33
 HPIGA 1.44 1.84 3.05 3.83 8.89 13.03 88.67 129.46 196.30 277.58

 Boldfaced and underlined values represent the least and highest values for each algorithm per function within each dimension, respectively.
search algorithms running on accelerators remain competitive with 
their multi-cores counterparts. For a comprehensive illustration of the 
performance behavior, we present the execution time of the parallel 
strategies in Table  6.

The execution time values reveal distinct behavior compared to the 
energy consumption values. As dimensionality grows, all algorithms 
experience a predictable increase in execution time. However, HPIGA 
demonstrates superior scalability, maintaining lower execution times 
even at high dimensions, showcasing its efficiency in handling large 
problem sizes through hybrid resource utilization. For the majority 
of instances under the study (32/40), HPIGA exhibits the lowest ex-
ecution time (boldfaced values) among all the other strategies over 
the different dimensions and number of islands under the study. This 
behavior is quite prospective since this strategy considers distribute 
the workload by running the parallel algorithm over all the computing 
devices on the system. PIGA_ACC follows closely, particularly in lower 
dimensions where it competes well with HPIGA, reflecting the benefit 
of acceleration hardware for quick task execution. PIGA_CPU exhibits 
moderate performance, generally faster than PIGA_HFP but slower than 
both HPIGA and PIGA_ACC, especially as dimensionality increases. 
PIGA_HFP struggles significantly with scalability, as its execution time 
increases sharply with higher dimensions. This suggests potential bot-
tlenecks caused by excessive communication overhead between the 
CPU and GPU devices.

The PIGA_HFP parallel strategy exhibits the highest energy con-
sumption and execution times (underlined values) for all the dimen-
sions under the study. This consumption behavior is expected due 
to the high communication overhead resulting from real-time data 
exchange between two different computing devices sharing computa-
tions in each iteration. The design of this strategy aimed to evaluate 
the feasibility of hybrid/shared operations between the CPU and GPU 
accelerator in each iteration. As anticipated, our results confirm the 
logical expectation that this approach incurs significant energy costs, 
making it impractical. In this context, we validate these perspectives 
and offer this conclusion as a reference point for future researchers. 
The tables also reveal an interesting accelerator energy consumption 
behavior compared to the multicore one. This outcome proves that 
the accelerators have competitive, promising results in solving parallel 
search algorithms. Overall, the HPIGA parallel strategy demonstrates 
competitive execution times and achieves a notable reduction in energy 
consumption.
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7.2. Experiment 2: Analysis of pareto fronts of dynamic energy vs. perfor-
mance

This section outlines the methodology used to construct the exe-
cution time and dynamic energy profiles for processors running the 
hybrid parallel GA application. We investigate the bi-objective opti-
mization problem concerning energy consumption and execution time, 
aiming to explore the Pareto fronts to determine the optimal workload 
distribution.

The application is executed under two governors: powersave and
performance, allowing us to illustrate the trade-offs between dynamic 
energy consumption and performance for each governor. The choice of 
the powersave and performance governors was deliberate to ensure that 
voltage and frequency remained constant during execution. This stabil-
ity is crucial for maintaining control over the execution environment, 
which is essential for accurately studying the bi-objective optimization 
problem. By preventing dynamic changes in voltage and frequency, we 
can isolate the impact of workload distribution on energy consumption 
and execution time, ensuring that the results reflect the true trade-offs 
between these two objectives.

To comprehensively evaluate the behavior of our algorithm, we 
conducted extensive experiments. These experiments involved running 
HPIGA on both the multicore CPU and one accelerator (A40 GPU) 
separately. We ran experiments with a growing number of islands, 
starting from 2 and increasing up to 128 in steps of 2 islands, to observe 
how the algorithm’s performance and energy consumption change with 
the increasing number of islands. This approach allows us to understand 
the scalability and efficiency of the algorithm under different config-
urations and hardware settings, providing valuable insights into its 
performance dynamics. Fig.  6 illustrates the results of dynamic energy 
consumption and execution time as a function of the number of islands, 
for both 1000 and 5000 dimensions.

The results presented in the figures provide a comprehensive anal-
ysis of the dynamic energy profiles and execution times for a PGA 
application, comparing CPU and GPU implementations under different 
governors. In the powersave governor mode, the energy trend shows 
a notable difference compared to the maximum frequency scenario. 
Initially, the GPU energy consumption was lower than the CPU, but as 
the number of islands increases, the CPU eventually overtakes the GPU. 
This behavior indicates that while GPUs start with an energy efficiency 
advantage, the CPU’s performance in powersave mode becomes more 
competitive as the computational load increases. This could be due to 
the power management features in the powersave governor optimizing 
the CPU’s energy usage more effectively over time and across higher 
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Fig. 6. The execution time and dynamic energy profiles of the multicore CPU and A40 GPU processors involved in the execution of the hybrid parallel GA application. Since the 
two A40 GPU accelerators are identical, only one profile is shown in each plot. The top four plots are for experiments where the multicore CPU employs powersave governor. The 
bottom two plots are for experiments where the multicore CPU operates at the maximum frequency (performance governor).
numbers of islands. CPU’s energy consumption rises significantly with 
the number of islands, showing a steep increase, particularly beyond 60 
islands. In contrast, the GPU maintains a relatively stable and lower en-
ergy consumption profile. This stark difference underscores the GPU’s 
superior efficiency in handling larger datasets and the more extensive 
parallelism inherent in the 5K dimension setup. The CPU’s energy 
consumption spikes could be attributed to increased context-switching 
overheads and less efficient scaling in powersave mode.

When conducting our experiments using the performance governor 
at maximum frequency, we observed that the GPU consistently uses less 
dynamic energy and has shorter execution times than the CPU as the 
number of islands increases. Initially, the GPU shows a more substantial 
energy advantage, which diminishes slightly as the number of islands 
increases but still remains below the CPU energy consumption. This 
suggests that GPUs are more energy-efficient for larger-scale computa-
tions in this setup, benefiting from their parallel processing capabilities 
which are well-suited for the workload distribution in a PGA.

Fig.  6 illustrates that, under both DVFS governors, GPU execu-
tion time scales almost linearly with the increasing number of is-
lands. This behavior arises from the GPU’s ability to launch vast num-
bers of lightweight threads in hardware, incurring constant per-kernel 
overhead and requiring minimal inter-thread synchronization. Conse-
quently, the GPU maintains robust performance, particularly under 
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the power-save governor and at lower island counts. By contrast, the 
CPU exhibits pronounced non-linear scaling caused by two factors. 
The first is the inherent complexity of modern multicore CPUs, in-
cluding software-managed scheduling, multi-level cache hierarchies, 
NUMA-distributed memory, and shared interconnects. These introduce 
performance variability that disrupts uniform linear scaling. This factor 
is particularly influential in cases of lower computational intensity and 
is the dominant cause of non-linearity in the experiment with 1000 
dimensions. The second factor is underutilization when the number 
of islands is less than the total number of available CPU cores (64). 
This becomes the dominant factor in more computationally intensive 
experiments with 5000 dimensions, especially under the powersave 
mode. As the number of islands increases and more cores become 
involved in computation, CPU utilization improves and performance in-
creases. However, beyond a critical point, further increases in the num-
ber of islands lead to escalating synchronization delays and resource 
contention, which moderate further performance gains.

Overall, these results highlight a trade-off between energy efficiency 
and execution time when choosing between CPU and GPU for running 
parallel GA applications. GPUs are notably more energy-efficient, par-
ticularly for larger datasets and higher dimensions, but this comes at 
the cost of longer execution times in some configurations. The choice of 
governor mode also plays a significant role, with powersave governors 
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Fig. 7. Comparison of Pareto fronts for different governors and iteration limits in a parallel genetic algorithm: (1) Powersave with I = 1000, (2) Performance with I = 1000, and 
(3) Powersave with I = 5000.
potentially leveling the playing field between CPU and GPU energy 
consumption, albeit with varying impacts on performance scaling.

Fig.  7 shows the Pareto front results from our experiment under 
different governors. They illustrate the trade-off between dynamic en-
ergy consumption and execution time for various dimensions (I) and 
governor settings (powersave and performance). The decision variable 
is the workload distribution (vector of the number of islands assigned 
to the computing devices).

The presented figures illustrate multiple Pareto fronts, which ad-
dress the bi-objective optimization problem for 1000-dimensional and 
5000-dimensional configurations on the hybrid server. For the 1000-
dimensional configuration, the experiments evaluated various numbers 
of islands (NI) in the set, {122, 124, 126, 128}. For the 5000-dimension 
configuration, the NI values are 80, 84, 86, and 88. The Pareto fronts 
provide a broad spectrum of options for optimal execution of the HPIGA 
on the accelerator server. The average number of solutions in the 
Pareto fronts is 25. The number of solutions employing the performance 
governor is greater than the number for the powersave governor. 
Consider the Pareto front for 𝑁𝐼 = 122 for the 1000-dimension con-
figuration. The Pareto front provides 20 solutions (tradeoffs). Doubling 
the execution time only reduces the dynamic energy consumption 
by 10% utilizing the powersave governor. Similarly, the dynamic en-
ergy savings for the same 𝑁𝐼 value are 17% for the 5000-dimension 
configuration.

The figures continue to provide valuable insights into the opti-
mization of dynamic energy and execution time, revealing several key 
trends. In the first two figures (7(a), 7(b)), comparing the powersave 
and performance governor settings for 1000 iterations, we observe that 
the performance governor generally achieves lower dynamic energy 
consumption for the same execution times compared to the power-
save governor. This indicates that the performance governor is more 
effective in optimizing energy usage while maintaining computational 
speed. A similar trend is observed for the iteration limit set to 5000 (Fig. 
7(c)) under the powersave governor. However, the longer execution 
times and higher iteration count lead to a more pronounced reduction 
in dynamic energy, suggesting that increasing the number of iterations 
allows for more refined optimizations. This also indicates the potential 
benefits of prolonged optimization processes in achieving better energy 
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efficiency. The different values of NI (number of islands) also impact 
the results, with higher NI typically leading to better energy optimiza-
tion but longer execution times. These trends emphasize the importance 
of selecting appropriate parameters for balancing energy efficiency and 
computational speed.

Fig.  8 illustrates the dynamic energy versus performance Pareto 
fronts for the hybrid parallel GA application using the performance and 
powersave governors, with 122 and 128 islands, respectively. These 
Pareto fronts represent the trade-off between minimizing execution 
time and reducing dynamic energy consumption. A comparative ex-
amination of both figures (8(a), 8(b)) reveals that the performance 
governor consistently achieves lower execution times at the cost of 
higher dynamic energy consumption compared to the powersave gov-
ernor. As the number of islands increases, there is a noticeable trend 
where both execution time and energy consumption decrease. This re-
duction is more pronounced with the performance governor, indicating 
a more efficient use of resources.

Additionally, the distinction between the performance and power-
save governors is evident in the clustering of data points, where the 
powersave governor shows higher energy usage for a given execution 
time. This suggests that while the powersave governor is designed to 
reduce power consumption, it does not optimize the trade-off as effec-
tively as the performance governor under the tested configurations.

These results provide valuable insights into how different power 
management strategies affect the efficiency and scalability of PGAs 
on multicore systems. They highlight the need to carefully select the 
appropriate governor based on the specific performance and energy 
requirements of the application, with the number of islands playing a 
crucial role in determining the overall efficiency.

8. Conclusions and future work

This article presents two comprehensive experiments that explore 
the energy consumption and performance of PGAs on multi-core CPUs 
and accelerators using different parallelization strategies. The findings 
(including energy consumption, performance, Pareto front figures, and 
discussions) provide a valuable resource for future researchers to design 
efficient parallel search algorithms.
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Fig. 8. Dynamic energy versus performance Pareto fronts for the hybrid parallel GA application for performance and powersave governors for 𝑁𝐼 = 122 and 𝑁𝐼 = 128, respectively.
For an approach to finding an adequate PGA strategy, we presented 
the first experiment. We compared four distinct parallel strategies 
running on CPUs and accelerators. Our discussions highlighted in-
teresting performance and energy consumption profiles of the differ-
ent algorithms, comparing the characteristics of energy consumption 
when running on CPUs and accelerators. The results serve as novel 
resources for researchers to select optimal configurations for designing 
and running intelligent energy consumption algorithms within hybrid 
heterogeneous systems.

To gain a clearer understanding, Experiment 2 was conducted with 
the application executed under two CPU and GPU frequency scaling 
governors: powersave and performance. The analysis reveals that while 
the GPU maintains consistent energy efficiency and linear execution 
scaling, CPU becomes increasingly competitive in powersave mode as 
the number of islands grows. These insights emphasize the dynamic 
interplay between architecture, workload size, and DVFS settings in 
optimizing PGA performance. The resulting data was utilized to plot 
Pareto fronts, illustrating the trade-offs between dynamic energy con-
sumption and performance for each governor. This analysis elucidates 
the impact of the powersave and performance governors on optimizing 
the balance between computational efficiency and energy consumption.

Our experiments present innovative comparative studies that ex-
amine the performance and energy consumption of GAs on CPUs, 
accelerators, and hybrid servers. Through our analyses and discussions, 
we uncover interesting energy consumption profiles for various algo-
rithms, highlighting their distinctive features when executed on CPUs 
and accelerators. To further enhance our findings, we supplement the 
results with comprehensive Pareto front graphs for the parallel GAs 
under examination. The insights derived from these studies serve as 
crucial benchmarks guiding the future utilization and advancement 
of efficient, energy-conscious optimization techniques across diverse 
computational devices. In future work, we plan to model energy con-
sumption as a function of the parameters using regression models, such 
as random forests. We aim to extend our study by evaluating the impact 
of different CPU and GPU types and generations on performance and 
energy consumption.
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