
Swarm and Evolutionary Computation 98 (2025) 102110

A
2

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Parallel genetic algorithms on hybrid servers: Design, implementation, and

optimization for performance and energy
Amr Abdelhafez a,b,c ,∗, Ravi Reddy Manumachu b , Alexey Lastovetsky b
a Department of Computing, South East Technological University, Carlow Campus, Ireland
b School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
c FCI, Assiut University, Egypt

A R T I C L E I N F O

Keywords:
Genetic algorithms
Parallel computing
Hybrid server
Energy consumption
Optimization
Heterogeneous computing

 A B S T R A C T

Parallel Genetic Algorithms (PGAs) have been widely applied to accelerate solutions for real-world problems
such as energy optimization in building constructions, data preprocessing and model selection steps in data
mining, real-time control of multilevel inverters in electronics, land-use planning, nanoscience, optimal power
flow in power systems, and road traffic management.

The state-of-the-art research proposes PGAs optimized solely for performance and for solving optimization
problems on a multicore CPU, GPU, or clusters of multicore CPUs. However, no research has analyzed PGAs for
heterogeneous hybrid platforms comprising multicore CPUs and multiple accelerators that utilize all computing
devices in parallel. Furthermore, no definitive comparative research comprehensively investigates the energy
consumption of PGAs in hybrid systems versus multicore CPUs or GPUs.

We address the above gaps in the prior art in this work. First, we present a novel parallelization
approach (HPIGA) tailored for heterogeneous hybrid platforms, featuring a portable implementation that
utilizes all available computational devices, including multicore CPUs and GPUs. We conduct a comprehensive
investigation into the performance and energy profiles of this approach. We compare it with three other
traditional parallel approaches across a range of dimensions, varying from 100 dimensions and up to 5000
dimensions. The results showed HPIGA’s competitive energy consumption behavior and promising performance
compared to other traditional approaches under the study.

Moreover, we formulate a bi-objective optimization problem of a PGA employing a parallel island model
and executing on a hybrid server comprising 𝑝 compute devices. The problem has two objectives: performance
and energy. The decision variable used in our bi-objective optimization problem is workload distribution,
which is proportional to the number of islands. We study the efficacy of our proposed PGA on a hybrid server
platform with an Intel Icelake multicore CPU and two Nvidia A40 GPUs, analyzing execution time and dynamic
energy profiles under two power governors. The resulting Pareto front graphs provide valuable insights, serving
as crucial benchmarks for the future development and use of efficient, energy-aware optimization techniques
across diverse computational devices.
1. Introduction

Genetic algorithms (GAs) are metaheuristics inspired by the pro-
cess of natural selection employed to solve optimization problems
where the objective functions are highly non-linear, discontinuous,
non-differentiable and therefore lack analytical expressions amenable
to using traditional calculus methods [1–3]. Furthermore, GAs are pre-
dominantly used to solve multi-objective optimization problems where
the objective functions possess conflicting goals and display ill-defined
or undesirable calculus properties, rendering finding an efficient exact
algorithm to solve the problems intractable [4,5].

∗ Corresponding author at: Department of Computing, South East Technological University, Carlow Campus, Ireland.
E-mail addresses: amr.abdelhafez@setu.ie (A. Abdelhafez), ravi.manumachu@ucd.ie (R.R. Manumachu), alexey.lastovetsky@ucd.ie (A. Lastovetsky).

GAs with long execution times due to large problem datasets,
high problem dimensionality, complex objective functions with time-
consuming function evaluation, and customized genetic operators ne-
cessitated the development of Parallel Genetic Algorithms (PGAs) to
reduce the execution times. PGAs have been widely used to accel-
erate solutions to real-world problems such as energy optimization
in building constructions [6], data preprocessing and model selection
steps in data mining [7], real-time control of multilevel inverters in
electronics [8], land-use planning [9], nanoscience [10], optimal power
flow in power systems [11], and road traffic management [12].
https://doi.org/10.1016/j.swevo.2025.102110
Received 11 December 2024; Received in revised form 25 June 2025; Accepted 26
vailable online 16 August 2025
210-6502/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
 July 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/swevo
https://www.elsevier.com/locate/swevo
https://orcid.org/0000-0003-0469-3791
https://orcid.org/0000-0001-9181-3290
mailto:amr.abdelhafez@setu.ie
mailto:ravi.manumachu@ucd.ie
mailto:alexey.lastovetsky@ucd.ie
https://doi.org/10.1016/j.swevo.2025.102110
https://doi.org/10.1016/j.swevo.2025.102110
http://creativecommons.org/licenses/by/4.0/

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
One of the critical components of a PGA implementation is the
parallel hardware architecture or platform, which is essential for op-
timizing the PGA for the specific platform. The parallel hardware
architectures employed in the PGA implementations include multicore
CPUs [9,13], clusters of multicore CPUs [7,11], Graphics Processing
Units (GPUs) [8,14], FPGAs [15,16] and Clouds [17]. The software
packages popularly used for PGA implementations on multicore CPUs
are Parallel Computing Toolbox provided in MATLAB and Java threads
(Java concurrency package). PGA implementations on clusters com-
monly employ a message-passing interface (MPI) [18]. PGA implemen-
tations on GPUs are mostly written in CUDA, which is not portable to
other vendors and can be challenging to implement or extend.

The word hybrid in the state-of-the-art PGAs is used in two contexts.
First, it refers to the type of algorithm and second, the hardware
platform employed. Several hybrid PGAs have been proposed in the
literature in the first context, which combine two different PGA models
or integrate the genetic algorithm (GA) with another heuristic method,
such as simulated annealing (SA), to solve optimization problems. In
this work, we follow the second context and reserve the word hybrid to
refer to the PGA implementation executing on a heterogeneous server
platform comprising multicore CPUs and one or more accelerators and
employing all the computing devices in parallel. While the research
works surveyed above focus on improving the performance of PGAs,
there is a lack of such research devoted to analyzing and minimizing
the energy consumption of PGAs. To summarize, the state-of-the-art
research works above propose PGAs optimized only for performance
and running on either a single computing device (multicore CPU or
GPU or FPGA) or a homogeneous cluster of multicore CPUs. There is
no research on PGAs running on heterogeneous hybrid platforms com-
prising multicore CPUs and multiple GPU accelerators that employ all
computing devices in parallel. Furthermore, no previous research com-
prehensively investigates the energy consumption of PGAs in hybrid
heterogeneous systems, comparing them to their traditional parallel
counterparts.

The primary objective of this work is to address the aforementioned
gaps in the existing literature by developing HPIGA, a parallel genetic
algorithm designed for execution on hybrid heterogeneous platforms.
We develop a portable HPIGA implementation for one multicore CPU,
and 𝑝 − 1 accelerators. The implementation is based on OpenH [19],
a programming model and API for developing portable parallel pro-
grams on heterogeneous hybrid servers composed of a multicore CPU
and one or more different accelerators. We compare the energy con-
sumption and performance of this approach to three other parallel
configurations: a multicore-CPU model, a single GPU model, and a
functional model. The multicore-CPU and single GPU models represent
the classical parallel approaches commonly used in the literature,
while the functional model introduces an innovative parallel approach
that explores the computational and intercommunication collaboration
between devices. Detailed explanations of these parallel models are
provided in Section 6. The key objectives of this study are to:

• Developing a portable implementation of HPIGA across multi-
core CPUs and accelerators. Comparing the performance and
energy consumption of HPIGA against traditional parallel models
(multicore-CPUs, GPUs).

• Investigating trade-offs between performance and energy effi-
ciency, with Pareto-optimal solutions for workload distribution
across devices.

In summary, we experimentally analyze the performance and en-
ergy consumption of the proposed PGA on a heterogeneous hybrid
server consisting of an Intel Icelake multicore CPU and two Nvidia
A40 GPU accelerators. Specifically, we present and discuss the Pareto-
optimal solutions from the bi-objective optimization of the PGA, op-
timizing for performance and energy, with the distribution of islands
between the devices as the decision variable.

The prime contributions of this work are:
2
• A novel algorithm design tailored for efficient execution on hy-
brid systems, employing all computing devices through workload
distribution among them.

• Presenting a portable implementation of our proposed PGA, op-
timizing parallel GAs for performance and energy on a heteroge-
neous hybrid server.

• Analyzing the performance and energy profiles of our proposed
PGA across different devices on a heterogeneous hybrid platform,
comprising a multicore CPU and two GPU accelerators. Addi-
tionally, we present Pareto fronts for optimizing PGAs on hybrid
servers to improve performance and energy efficiency.

The rest of the paper is organized as follows. Section 2 presents the
related work. In Section 3, we briefly outline the origins and principles
of GAs and PGAs. Further, we cover the design and implementation of
hybrid heterogeneous PGAs in Section 5. Then we detail our experimen-
tal framework in Section 6. Section 7 provides the experimental results
for our study. we summarize the findings and outline future work in
Section 8.

2. Related work

Over the past two decades, numerous studies have addressed an-
alyzing the parallel performance of metaheuristic algorithms. In this
section, we review the efforts made to analyze the performance and
energy consumption of Metaheuristics and GA on multicore CPUs and
accelerators.

2.1. Parallel metaheuristics on multicore CPUs

The efforts to analyze the performance of parallel metaheuristics
on processors have been quite extensive over the past two decades.
However, these studies typically focused on the algorithm’s perfor-
mance and lacked a comprehensive analysis of energy consumption.
Here, we will explore certain initiatives conducted across both past and
contemporary times.

One of the early efforts to analyze the performance of parallel
metaheuristics was presented in [20]. In the article, the author explores
the application of the parallel tabu search algorithm to address large
traveling salesman problems. Additionally, the article describes its
implementation on a transputer network, highlighting the efficiency of
the parallel algorithm through numerical results and speedup assess-
ments. Another early parallel approach to investigate the performance
evaluation of a parallel tabu search algorithm was presented in [21].
The authors assessed the achieved makespan reduction of various par-
allel applications. Their conclusions suggest that, in numerous cases,
the parallel tabu search algorithm yields significantly better solutions
compared to the greedy algorithm.

Over the past few years, efforts and studies have been presented
to study the performance of PGAs. A study of the performance of
parallel GA models over multicore CPUs was presented in [22]. They
studied the performance of three parallel models (master–slave model,
synchronous, and asynchronous distributed GAs). Their findings illus-
trated the performance characteristics of these models, although the
paper did not delve into their energy consumption profiles. In [23],
the authors presented the first approach to study the performance and
energy consumption of sequential and parallel distributed GAs with
an examination of the consumption of the algorithm components. The
results reveal the energy profile of sequential and distributed GAs over
multi-cores. A recent approach to evaluate the performance of dis-
tributed PGAs on a cluster of multicore CPU processors was presented
in [24]. The authors of that article aim to study the numerical and
computational behavior of algorithms by proposing a mathematical
model representing the observed performance curves. Their research
follows the typical path of investigating the performance of PGAs, with

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
no mention of the energy profiles. A comparative study of the perfor-
mance and energy consumption of several metaheuristics (including
GA) over multi-cores was presented in [25]. In their research, they
conduct two comprehensive investigations into the solution quality, en-
ergy consumption, and execution time of three distinct metaheuristics
and their corresponding distributed versions. The primary objective of
their studies is to assess the effectiveness of parallel execution of these
metaheuristics within emerging computing environments. For more
research on the performance of parallel metaheuristics over multi-cores
and clusters, we refer the reader to articles [26–32]. However, none of
the studies mentioned in this section investigate the performance and
energy consumption of GPUs or hybrid systems.

2.2. Parallel metaheuristics on GPUs

GPUs are emerging as powerful computation devices, expanding
beyond their traditional graphical capabilities to solve complex parallel
problems. Over the past decade, a handful of studies have delved into
the potential of GPUs to enhance the performance of metaheuristics.
Here, we will review key studies exploring this aspect.

One of the early attempts to study the performance of metaheuristics
was presented in [33], where the authors presented two double-level
parallel metaheuristic algorithms to solve the flexible job shop schedul-
ing problem over GPU. The algorithms consist of two key modules:
the machine selection module, which is executed sequentially, and the
operation scheduling module, which operates in parallel over GPUs.
The authors have not compared the results to the multicore counter-
parts or energy consumption evaluation. Another early effort to study
the distributed tabu search metaheuristic using a multi-GPU cluster
is presented in [34]. The article’s authors proposed a hybrid paral-
lelization approach for tabu search designed to solve the flexible job
shop problem, where hybridization involves simultaneously examining
multiple solutions from a neighborhood using several GPUs (multi-
GPU). Also, the study does not include energy consumption or an
evaluation of their proposed approach employing multicore CPUs.

Over the past decade, there has been intense competition in de-
ploying search algorithms on GPUs. Authors of [35] introduced a local
search strategy named Variable Neighborhood Descent (DVND), which
was developed for CPU and multi-GPU environments. They introduced
a neighborhood search strategy for the massive parallelism of GPUs
to enhance local search (LS) procedures. Their study also does not
include a comparison with standard algorithms or multicore CPU coun-
terparts. Another approach to parallelize particle swarm optimization
(PSO) algorithm was presented in [36]. The authors of that work
proposed a GPU-PSO algorithm based on CUDA, utilizing a combination
of coarse-grained and fine-grained parallelism for global efficiency.
They designed a CUDA-based data structure and merged memory ac-
cess mode to enhance data-parallel processing and access efficiency.
Their experimental results highlight the algorithm’s effectiveness in
reducing solution times for high-dimensional, large-scale optimization
problems. For further investigation into the performance of parallel
metaheuristics across GPUs, readers are directed to [37–39].

In the context of genetic algorithms, a leading metaheuristic, sub-
stantial initiatives have been undertaken in recent years to implement
it on GPUs. An effort to present a GPU-based PGA for solving the flow
shop scheduling problem is presented in [40]. They propose an energy-
aware dynamic flexible flow shop scheduling model that considers
peak power values for GPUs. They introduce a priority-based hybrid
PGA with a predictive reactive complete rescheduling strategy. Their
method was designed for the NVIDIA CUDA software model. The nu-
merical experiments presented there demonstrate a competitive perfor-
mance achieved by their approach for GPUs. A recent method employ-
ing parallel Cellular GAs in identifying classification rules on GPUs is
presented in [41]. In that study, a partitioning strategy was introduced
for optimizing 3D parallel cellular GAs on a 2D processing array using
Field Programmable Gate Arrays (FPGAs). That research addresses both
3
combinatorial and continuous domain benchmark problems, focusing
on optimizing objective function modules through trigonometric and
arithmetic-tailored units. Their results demonstrate up to three and two
orders of magnitude speed-up compared to CPU and parallel GPU im-
plementations. For an additional investigation into the implementation
of genetic algorithms on GPUs, we direct the reader to Refs. [42–44].
For a survey on the acceleration of genetic algorithms through GPU
computing, we direct the reader to Ref. [45].

A recent effort to predict the energy–time behavior of applica-
tions using multi-population genetic algorithms is found in [46]. Their
approach focused on dynamically distributing the evaluation of indi-
viduals among CPU–GPU devices in heterogeneous clusters, providing
a more accurate prediction compared to traditional linear regression
methods. The study demonstrated the effectiveness of their model in
improving energy and time efficiency in high-performance computing
systems. It also highlighted the importance of focusing on key param-
eters to further refine the model. However, their work did not include
running or comparing genetic algorithms executed separately on indi-
vidual devices (CPU and GPUs) with heterogeneous ones, which is a
key aspect addressed in our study. Another recent study [47] focused
on the parallel GPU acceleration of optimization algorithms for solving
large-scale nonlinear equation systems. The authors proposed GPU-
based implementations of several recent algorithms (such as Jaya, and
a new MaGI algorithm) employing a unified and efficient paralleliza-
tion strategy. The implementations, written in Julia, were tested on
high-end and consumer-grade GPUs, demonstrating notable speedups,
especially for high-dimensional problems. The analysis revealed sig-
nificant performance gains, with the scalability and adaptability of
their approach highlighted across various GPU architectures. While
their work provides valuable insight into the GPU-based accelera-
tion of emerging metaphorless algorithms, it primarily concentrates on
the performance improvements achieved by GPU-based parallelizing
these methods for numerical equation solving. Unlike our study, their
research does not investigate or compare the behavior of genetic algo-
rithms or other population-based methods distributed across heteroge-
neous computing devices. A recent study by Silva et al. (2025) [48]
presented a GPU-accelerated implementation of a modified PSO algo-
rithm to solve large-scale systems of nonlinear equations. Their work
compared the performance of the GPU-parallelized PSO against both
sequential and multithreaded CPU versions, demonstrating significant
speedups. The study highlighted the scalability advantages of GPU-
based parallelism, especially for high-dimensional problems, while also
discussing the trade-offs between computational precision and perfor-
mance. Additionally, the paper examined the effects of increasing CPU
thread counts, identifying optimal threading for maximum efficiency.
These findings underscore the potential of heterogeneous computing
platforms to effectively accelerate population-based metaheuristics for
complex optimization problems. For more recent studies that ana-
lyze GPU-based and heterogeneous execution behavior of search and
evolutionary algorithms, we kindly refer the reader to [49–52].

The aforementioned works in this section highlight numerous at-
tempts to implement metaheuristics on multi-cores and accelerators.
However, these efforts have primarily focused on running metaheuris-
tics on either the multicore CPU or the GPU independently. As we span
across these studies, we observe that all these articles examined the per-
formance of the algorithms without addressing/comparing their energy
consumption when being run over CPUs and accelerators. To the best
of our knowledge, no study has yet compared the energy consumption
and performance of multicore CPUs, GPUs, and all computing devices
within heterogeneous systems. Our research aims in this work is to
investigate the simultaneous execution of metaheuristics on both CPUs
and GPUs, comparing the results of this integrated approach with the
outcomes from running on each device separately. Our study provides
a comprehensive analysis of the performance and energy efficiency of
combined CPU/accelerator execution versus single-device execution.

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
3. Background of genetic algorithms

In this section, we briefly delve into the origins of sequential and
parallel GAs. We examine the key components of the Canonical GA and
also outline various models commonly used for parallelizing GAs.

3.1. The genetic algorithm

The GA is a famous population-based metaheuristic that relies on
searching the problem space with a population of randomly gener-
ated individuals [53]. Each individual (expected optimal solution) is
represented by a chromosome and its fitness value. The chromosome
consists of an array of genes, the size of which depends on the problem’s
dimension. The fitness function evaluates each individual’s quality in
the population to select the solutions for the next generation.

To generate new solutions for the subsequent generation, the GA
considers applying genetic operators, typically involving crossover, mu-
tation, and replacement. Selection in GAs involves choosing individuals
from a population based on their fitness for reproduction. This iterative
process continues until a stopping criterion is met, such as reaching
the maximum number of fitness evaluations or obtaining a solution of
satisfactory quality [23]. Algorithm 1 outlines the pseudocode for this
panmictic algorithm.

Algorithm 1 The standard genetic algorithm.
1: Initialization. Randomly generate an initial population 𝑃 .
2: Evaluation. Evaluate the individuals in 𝑃 .
3: while 𝑛𝑜𝑡 stop-condition do
4: 𝑃 ′ ← Crossover (𝑃)
5: 𝑃 ′′ ← Mutation (𝑃 ′)
6: Fitness Function Evaluation (𝑃 ′′)
7: 𝑃 ← Selection (𝑃 ′′)
8: end while
9: Output. Best Found Solution so far.

Genetic operators are employed to create new solutions from ex-
isting ones. The crossover (or recombination) operator merges two or
more distinct solutions to generate new ones. The crossover operator is
essential for inheriting traits from both parents to generate offspring.
The mutation is a variation operator that produces a new solution
by altering the genes of a distinct one. The mutation operator’s key
role is introducing genetic diversity within the population, thereby
preventing the algorithm from converging to a local optimum [54].
Selection in GAs involves choosing individuals from a population based
on their fitness for reproduction. Selection balances exploration and
exploitation, influencing algorithm performance and convergence.

3.2. Parallel genetic algorithm

GA, like all metaheuristics, is time-consuming, which is the same
issue with exact search algorithms [55]. Thus, parallel runs of these
algorithms arise as a promising approach for overcoming this flaw.

Parallel Islands GA (PIGA) emerged as the best and most common
GA parallelization approach [56,57]. This parallel model is widely used
as a promising approach to parallelize GAs [23,25,58]. In this model,
the GA population is divided into sub-populations (islands) as shown
in Fig. 1.

These islands are distributed over the parallel processors to run
in parallel. They execute the identical code of the standard GA and
can evolve in physical parallelism over the different processors. The
model involves a migration procedure that requires sharing search
knowledge by exchanging the individuals between these small-distant
populations [59]. Periodic migration occurs among islands, with ring
migration being an example, as outlined in Algorithm 2.
4
Fig. 1. Population partitioned into islands.

Algorithm 2 Ring migration among islands.
1: Input: Population of individuals, 𝑃 ; Number of islands, 𝑛𝐼𝑠.
2: procedure RingMigration(𝑃 , 𝑛𝐼𝑠)
3: for i← 0 to nIs − 1 do
4: 𝑃(𝑖+1)%𝑛𝐼𝑠’s worst individual ← 𝑃𝑖’s best solution.
5: end for
6: end procedure

4. Bi-objective optimization problem formulation and exact algo-
rithms

In this section, we present our methodology to obtain Pareto-
optimal solutions in our study. We formulate the bi-objective opti-
mization problem HPIGAOPT, which minimizes the execution time
and energy consumption of PIGA applications. HPIGAOPT generates
a set of globally Pareto-optimal solutions for both execution time and
energy. These applications execute on a heterogeneous hybrid platform
comprising 𝑝 heterogeneous processor, using the optimal application
configuration and a fixed platform configuration. The problem employs
workload distribution, a vector of 𝑝 workload sizes where a workload
size is the number of islands, representing the application configuration
as the decision variable.

The problem considers the execution of an application workload
of size 𝑛 representing the total number of islands on a heterogeneous
hybrid platform with base/idle power consumption, 𝐵𝑠, and comprising
𝑝 heterogeneous processors. Let the sets, 𝑇 = {𝑡1(𝑥),… , 𝑡𝑝(𝑥)}, and
𝐸 = {𝑒1(𝑥),… , 𝑒𝑝(𝑥)}, contain the execution time and dynamic energy
functions of workload size of the 𝑝 processors. The function 𝑒𝑖(𝑥) gives
the amount of dynamic energy consumed by 𝑃 to execute the workload
𝑖

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
size 𝑥, and 𝑡𝑖(𝑥) is the execution time of the workload size 𝑥 on this
processor. The optimization problem formulation is as follows:

HPIGAOPT(𝑛, 𝑝, 𝑇 , 𝐸, 𝐵𝑠,):

𝑓𝑇 () =
𝑝

max
𝑖=1

𝑡𝑖(𝑛𝑖)

𝑓𝐸 () = 𝐵𝑠 ×
𝑝

max
𝑖=1

𝑡𝑖(𝑛𝑖) +
𝑝
∑

𝑖=1
𝑒𝑖(𝑛𝑖)

minimize


(𝑓𝑇 (), 𝑓𝐸 ())

subject to:
𝑝
∑

𝑖=1
𝑛𝑖 = 𝑛, 0 ≤ 𝑛𝑖 ≤ 𝑛, 𝑖 ∈ {1,… , 𝑝}

(1)

The two objective functions are 𝑓𝑇 () and 𝑓𝐸 (). The objective
function 𝑓𝑇 () gives the execution time of the application workload
of size 𝑛 employing the workload distribution,  = {𝑛1,… , 𝑛𝑝}. The
objective function 𝑓𝐸 () gives the total energy consumption during
the execution of the application workload. 𝑓𝑇 × 𝑓𝐸 ∶ R≥0 × R≥0
denotes the objective space of this problem. HPIGAOPT returns globally
Pareto-optimal solutions (workload distributions) minimizing the two
objective functions. If the input parameter 𝐵𝑠 is 0, HPIGAOPT returns a
set of globally Pareto-optimal solutions for execution time and dynamic
energy.

4.1. Exact algorithms for the optimization problem variants

We present an overview of the exact algorithms solving HPIGAOPT
for two different categories of time and energy functions. The exact
algorithms, LBOPA-TE and PARTITION, solve a special case of HPI-
GAOPT where the sets 𝑇 and 𝐸 contain linear increasing execution
time and dynamic energy functions of workload size, respectively [60].
LBOPA-TE outputs a piecewise linear Pareto front comprising a number
of segments less than or equal to 𝑝 − 1. Furthermore, given a point on
the Pareto front, PARTITION finds the optimal workload distribution.

The exact algorithm, HEPOPTA, solves a special case of HPIGAOPT
where the sets 𝑇 and 𝐸 contain discrete execution time and dynamic
energy functions (with arbitrary shape and represented by a set of
points) of workload size [61]. HEPOPTA returns a set of tuples:

{(𝑓𝐸 (𝑜𝑝𝑡), 𝑓𝑇 (𝑜𝑝𝑡),𝑜𝑝𝑡)}, where 𝑜𝑝𝑡 is a vector of size 𝑝 giving
the optimal workload distribution, 𝑓𝑇 (𝑜𝑝𝑡) is the optimal execution
time, and 𝑓𝐸 (𝑜𝑝𝑡) is the optimal total energy.

5. Design and implementation of heterogeneous hybrid PGA

This section describes the design and implementation of our Het-
erogeneous Parallel Island Genetic Algorithm (HPIGA), focusing on its
execution on a hybrid server platform that includes multicore CPUs and
accelerators.

5.1. HPIGA design

HPIGA takes as input a set of islands (𝑛𝐼𝑠), which are randomly gen-
erated. The target platform is a hybrid heterogeneous system consisting
of a multicore processor and multiple accelerators (𝑛𝑝). The islands
are partitioned among the computing devices available in the hybrid
system. Unlike common approaches found in the literature, our design
utilizes a self-adaptive algorithm that distributes the workload across
the available computing devices in the hybrid system, proportionally
to their performance.

The parallel model in this study is the distributed island model
described in [22,54]. The model involves partitioning the islands to
align with the distributed processors available, ensuring optimal dis-
tribution and utilization across the system. Algorithm 3 describes the
basic structure of the PIGA algorithm.

We consider the uniform crossover operator, which is a commonly
used operator in the literature [53]. In the uniform crossover method,
each bit is randomly selected from either parent with a predefined
5
Algorithm 3 Parallel Genetic Algorithm (PGA)
1: Input: Population of individuals, 𝑃 ; Number of islands, 𝑛𝐼𝑠;
Number of processors, 𝑛𝑝.

2: Output: Best individual in the population.
3: Initialization: Divide the population 𝑃 into 𝑛𝐼𝑠 islands,

{𝑃0,⋯ , 𝑃𝑛𝐼𝑠−1}.
4: procedure Parallel Islands GA(𝑃 , 𝑛𝐼𝑠, 𝑛𝑝)
5: #pragma omp parallel for numthreads(𝑛𝑝)
6: for 𝑖 ← 0 to 𝑛𝐼𝑠 − 1 do
7: Fitness Evaluation(𝑃𝑖)
8: end for
9: while termination criterion NOT met do
10: #pragma omp parallel numthreads(𝑛𝑝)
11: #pragma omp for
12: for 𝑖 ← 0 to 𝑛𝐼𝑠 − 1 do
13: Crossover(𝑃𝑖)
14: Mutation(𝑃𝑖)
15: Fitness Evaluation(𝑃𝑖)
16: Selection(𝑃𝑖)
17: end for
18: if migration condition met then
19: RingMigration(𝑃 , 𝑛𝐼𝑠)
20: end if
21: end while
22: end procedure

probability, ensuring an efficient inheritance of genetic information
from both parents. We consider the Bit-Flip mutation, which involves
selecting one or more random bits and flipping them. This mutation is
typically employed in binary-encoded Genetic Algorithms (GAs) [62].
Binary tournament selection is employed for selection. Tournament
selection involves conducting multiple tournaments among randomly
chosen individuals from the population. This procedure involves ran-
domly selecting two solutions from the population and selecting one
based on its fitness for the next generation.

GAs termination criteria are essential for determining when the
optimization process should end. Typically, these criteria are based on
reaching a certain number of generations, reaching a certain number
of function evaluations, or when the algorithm converges to a stable
solution. These different criteria help prevent premature convergence
and ensure that the GA terminates efficiently based on each experi-
ment’s specific objectives and constraints. Once the stopping criteria
are met, each processor identifies the best individual within its subset
of islands. The multicore processor’s main thread then aggregates these
best individuals. The algorithm returns the overall best solution found
among all processors. This parallel approach leverages the diverse
computational capabilities of heterogeneous processors, maximizing
efficiency and accelerating the optimization process.

HPIGA employs the island model, which involves the random gener-
ation of islands, each representing a distinct sub-population. The islands
each have an identical number of individuals. This is a data-parallelism
approach that considers individualized GA for each island’s operation.
We assign these islands to the cores and threads across the various com-
putational devices available in the system. Fig. 2 shows the structural
design of HPIGA where the entire set of islands is divided among the
available computing devices. Subsequently, these subsets of islands are
executed in parallel across the computing devices. Algorithm 4 outlines
a procedure for partitioning islands based on the speeds/performances
of heterogeneous processors.

The partitioning algorithm assigns islands to processors based on
their speeds. It calculates the total speed (T) and allocates islands
proportionally. The remaining islands are individually allocated to
processors starting from 0. The final vector (N) is then returned,
showing the number of islands assigned to each processor. Periodic

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 2. Island distribution in HPIGA across CPUs and accelerators.
communication occurs between these islands through migration. We
employ the ring migration policy described in [22]. In this operation,
each island sends its best individuals to another island in a ring fashion
in a preset iteration number described in Algorithm 2. The migration
interval and rate are set to ensure independent exploration and struc-
tured communication. A fixed number of the best individuals migrate
each interval, replacing the lowest fitness individuals on the destination
island. This migration topology has a low communication overhead
compared with other topologies [63]. The high-level HPIGA description
is provided in algorithm 5.

HPIGA begins with a population of islands 𝑃 that target running
concurrently on a system with heterogeneous processors. The partition-
ing algorithm 4 is called to divide the islands among the heterogeneous
processors 𝐷 based on their computational speeds 𝑆 to ensure an equi-
table workload distribution. Each processor independently runs a PGA
kernel that executes genetic algorithms. Within each processor 𝑖, the
workload is further divided among cores 𝑛𝑡 according to the specified
𝑖

6
number of islands assigned. This strategy optimizes the computational
resources, allowing multiple cores/threads to work on different subsets
of islands concurrently.

5.2. HPIGA implementation

We develop an HPIGA implementation for a heterogeneous hybrid
server comprising 𝑝 computing devices, one multicore CPU, and 𝑝 − 1
accelerators. The implementation is based on OpenH [19], a program-
ming model and API for developing portable parallel programs on
heterogeneous hybrid servers composed of a multicore CPU and one
or more accelerators (generally speaking, of different types).

An OpenH parallel program executing on a heterogeneous hybrid
server is composed of several software components (kernels) executing
in parallel. There is a one-to-one mapping between the components
and computing devices of the hybrid platform on which the program
is executed. The execution of an accelerator component involves a

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Algorithm 4 Partitioning islands between processors proportional to
their speeds/performances.
1: Input:

• Number of islands to divide, 𝑛.
• Number of heterogeneous processors, 𝐷.
• Vector of processor speeds, 𝑆 = {𝑠𝑖}𝐷−1

𝑖=0 , sorted in descending
order.

2: Output: Vector 𝑁 containing the number of islands assigned to
each processor 𝑁 = {𝑛𝑖}𝐷−1

𝑖=0 .
3: procedure HSP(𝑁,𝐷, 𝑆)
4: Calculate total speed 𝑇 =

∑𝐷
𝑖=1 𝑠𝑖.

5: for 𝑖 = 0 to 𝐷 − 1 do
6: 𝑛𝑖 =

⌊

𝑠𝑖
𝑇 × 𝑛

⌋

7: end for
8: for 𝑖 = 0 to (𝐷 − 1 −

∑𝐷−1
𝑗=0 𝑁𝑗) do

9: 𝑛𝑖 = 𝑛𝑖 + 1
10: end for
11: return N
12: end procedure

Algorithm 5 Heterogeneous Parallel Islands GA (HPIGA) algorithm.
1: Input:
2: 𝑃 = {𝑖𝑠0, 𝑖𝑠1,, 𝑖𝑠𝑛−1}: Population of 𝑛 islands.
3: 𝐷: Number of heterogeneous processors.
4: 𝑛𝑡 = {𝑛𝑡0, 𝑛𝑡1, 𝑛𝑡2, ..., 𝑛𝑡𝐷−1}: Number of cores per processor.
5: 𝑆 = {𝑠0, 𝑠1, 𝑠2, ..., 𝑠𝐷−1}: Speeds of processors.
6: Output: Best individual in the population.
7: procedure HPIGA(𝑃 , 𝑛,𝐷, 𝑆, 𝑛𝑡)
8: 𝑏 = {𝑏0, 𝑏1, 𝑏2, ..., 𝑏𝐷−1} ← {0, ..., 0}
9: 𝑁 = {𝑛0, 𝑛1, ..., 𝑛𝐷−1} ← HSP(𝑛,𝐷, 𝑆)
10: #pragma omp parallel numthreads(D)
11: for 𝑖 ← 0 to 𝐷 − 1 do
12: 𝑚𝑦𝑃 ← {𝑖𝑠∑𝑖−1

𝑗=0 𝑛𝑗
,… , 𝑖𝑠∑𝑖

𝑗=0 𝑛𝑗−1
}

13: 𝑏[𝑖] ← Parallel Islands GA(𝑚𝑦𝑃 , 𝑛𝑖, 𝑛𝑡𝑖)
14: end for
15: return Best individual in 𝑏.
16: end procedure

dedicated CPU core, running the hosting thread, and the accelerator
itself, performing the accelerator code. The execution of the accelerator
component includes data transfer between the CPU and accelerator
memory, computations by the accelerator code, and data transfer be-
tween the accelerator memory and CPU. The execution of a CPU
component only involves the CPU cores executing the multithreaded
CPU code.

The parallel program starts as a single main thread, creating a
group of Pthreads called hosting Pthreads. The hosting Pthreads lead the
execution of the software components of the hybrid parallel program
in parallel. A CPU hosting Pthread leads the execution of a multi-
threaded CPU software component employing either OpenMP or a
multi-threaded library routine. There can be one or more CPU software
components and, therefore, one or more CPU hosting Pthreads. For
a CPU component employing an OpenMP parallel region, the hosting
Pthread of the component becomes the master thread of the region.
An accelerator hosting Pthread leads the execution of an accelerator
component, which is an OpenACC (or OpenMP) component running
on one of the accelerators of the server. Finally, the OpenH library
provides API functions that allow programmers to get the configuration
of the executing environment. Furthermore, the library provides API
functions for binding the hosting Pthreads (and hence the execution
of the software components) to the CPU cores of the hybrid server to
7
get the best performance. Fig. 3 illustrates the HPIGA implementation
using 𝑝 computing devices (one multicore CPU with 𝑛𝑙𝑐 logical cores
and 𝑝 − 1 accelerators).

The HPIGA code snippet shows that the main thread creates a group
of 𝑝 hosting CPU and accelerator Pthreads to manage the execution of
the CPU and accelerator software components in parallel. The routine
HSP() partitions the population into islands using the speeds of the
software components estimated at runtime. Each computing device is
assigned a subset of islands proportional to its speed, ensuring balanced
load distribution. The relative speeds of the software components using
the OpenH API function, openh_perf_benchmark(), which executes small
representative benchmark codes of the software components solving
the same workload size in parallel. The execution times of all the
benchmark codes are measured simultaneously, thereby considering
the influence of resource contention. The API function implementation
essentially executes a mini-version of the HPIGA employing the same
affinity and binding settings for the Pthreads executing the benchmark
codes as the hosting Pthreads and the same library settings for the
library routines invoked in the software component implementations.1

Fig. 4 illustrates the OpenH fork-join model and assignment of
islands to the components within HPIGA. The CPU software component
executes the island GA on the multicore CPU using OpenMP. The
accelerator component executes the island GA on the accelerator using
OpenACC.

Fig. 5 complements the snippets of the HPIGA implementation. We
begin by detailing the execution steps of the main thread. Line 7 initial-
izes the OpenH library runtime using the API function openh_init(). The
API function, openh_get_num_accelerators, returns the number of accel-
erators (Line 9). The variable 𝑝 stores the number of hosting Pthreads
in the program, which is equal to the number of software components.
Lines 13–16 determine and assign the physical CPU core IDs closest to
the accelerators for binding the accelerator hosting Pthreads. The API
function, openh_get_unique_lcore(i), returns the unique OpenH logical
CPU core ID closest to the input accelerator, i. The hosting Pthread
for the accelerator 𝑖 is assigned the place using the API function,
openh_assign_acc_lcpuids (Line 15). The OpenH library functions ensure
that different accelerator hosting Pthreads are pinned to OpenH logical
CPU core IDs that map to different OpenH physical CPU core IDs for
optimal performance.

The CPU software component with ID 0 is assigned the remaining
OpenH logical CPU core IDs using the API function,
openh_assign_cpu_free_lcpuids(), that executes the component (Line 18).
Lines 22–32 show the creation of the 𝑝−1 accelerator hosting Pthreads
responsible for executing the accelerator components. The partition
data for an accelerator software component is filled in Lines 24–28.
Lines 31–33 contain the filling of the partition data for the CPU
component and the creation of the hosting Pthread leading the exe-
cution of the CPU component. After completing the computations, the
main thread synchronizes/joins with the 𝑝 hosting Pthreads in Lines
34–36. Finally, the OpenH runtime is destroyed using the API function,
openh_finalize() in Line 37.

Fig. 5 shows the main code fragments of the software components.
Lines 1–9 contain the CPU software component code. The hosting
Pthread leading the execution of the CPU component with ID, cpuCom-
ponentId, is first bound using the API function, openh_bind_cpu_self().
Then, it executes the PIGA_CPU() routine to perform the island GA
on the CPU. Lines 10–20 demonstrate the execution of a component
employing an accelerator. The hosting Pthread leading the execution
of accId is bound using the API function, openh_bind_acc_self(). The GPU
device ID is set using the OpenACC library function, acc_set_device_num

1 The presented design automatically finds at runtime the performance
optimal distribution of the workload between the heterogeneous devices. We
disable this feature when using the workload distribution as the decision
variable for bi-objective optimization for performance and energy in Section 7.

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 3. The OpenH HPIGA code illustrates the OpenH fork-join model of execution. The OpenH library calls are highlighted in bold. The main thread creates the group of hosting
CPU and accelerator Pthreads to lead the execution of the CPU and the accelerator software components in parallel. The CPU hosting Pthread will lead the execution of the CPU
component, cpuComponent. The accelerator hosting Pthread will lead the execution of the GPU component, accComponent.
(Line 16). Then, it executes the PIGA_ACC() routine to perform the
island GA on the accelerator.

The complete source code is available at [64] containing the imple-
mentations for the CPU and accelerator components. The CPU software
component employs OpenMP. The accelerator software component
employs OpenACC. While the code description above is generic and,
for 𝑝 computing devices, the code at [64] supports four versions. In the
first version, HPIGA has one accelerator component that runs on one
accelerator. The second version has only the CPU software component
executing on the multicore CPU. The third version executes initial
population generation and migration on the CPU and the main genetic
operations (crossover, mutation, and selection) on the accelerators. The
fourth version is HPIGA, that distributes the workload between the
multicore CPU and accelerators.
8
6. Experimental framework

In our pursuit of analyzing energy efficiency and performance, we
conduct experiments with various configurations featuring different
numbers of islands. The underlying objective of this experimental de-
sign is to effectively address the research goals and overcome optimiza-
tion challenges related to energy consumption and system performance
across diverse island quantities. Our deliberate exploration of different
running strategies is geared towards achieving a comprehensive un-
derstanding of how our algorithm behaves under varying conditions.
By systematically evaluating the outcomes, we strive to identify the
optimal configuration for our algorithm, contributing valuable insights
for future algorithmic designs. Ultimately, our aim is to configure
our application to operate in an energy-aware manner, facilitating the
development of more efficient algorithms and fostering advancements
in computational methodologies.

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 4. The OpenH fork-join execution of the HPIGA. The main thread creates the
group of 𝑝 hosting CPU and accelerator Pthreads to lead the execution of the CPU and
the accelerator software components in parallel. The islands are distributed among the
computing devices proportional to their speeds/performances.

We perform two extensive experiments to examine the performance
and energy consumption of PGAs running on hybrid systems. Further-
more, we conduct a second experiment to generate Pareto front sets for
optimal execution time and energy consumption across these system
configurations. In detail, we run the distributed island model of the GA
using a different number of islands and dimensions over our hybrid
server that includes multicore CPUs and accelerators.

The first experiment considers running four different parallel strate-
gies. The first strategy is running the algorithm over one accelera-
tor/GPU (named PIGA_ACC). In this setting, all the islands and the
genetic operations are parallelized over one of the accelerators avail-
able on our system. The second strategy considers running the exact
algorithm over a multicore CPU (named PIGA_CPU). We remark that
we have only one kernel for executing all our four strategies in order
to ensure fair comparisons and accurate Pareto front results.

The third and fourth parallel strategies consider running the island
model in hybrid parallel execution over the CPU and accelerators. The
third strategy employs an innovative heterogeneous CPU/Accelerator
functional parallelism approach (named PIGA_HFP). In this experiment,
Random Number Generation (RNG) for each generation is generated on
the CPU and sent to the accelerator where the main genetic operations
(crossover, mutation, and selection) are executed; all other operations
(initial population generation and migration) are executed by the CPU.
This design is proposed to divide the workload between the two devices
and relies on the CPU for random number generation since RNG on
CPUs using 𝑟𝑎𝑛𝑑_𝑟 function is thread-safe and has a common use in
literature [65]. The fourth strategy (named HPIGA) involves executing
our proposed algorithm in Section 5, by dividing and distributing
the GA islands across the three computational devices (CPU and two
accelerators) in our system. The primary objective of this configuration
is to investigate the common assertion in the literature that using more
computational devices may lead to higher energy consumption.

In the second experiment, we perform extensive runs for our PIGA
over the CPU and accelerator with a growing number of islands, starting
from two islands to 128 islands. These experiments aim to generate
9
Table 1
Parameter settings.
 Definitions Values
 Sub-population size 50 individual
 Recombination Uniform, 𝑝𝑐 = 0.6
 Mutation Bit-flip, 𝑝𝑚 = 0.0001
 Selection Binary tournament
 Replacement Replacing the worst
 Elitism Yes
 Migration interval Every 10 iterations

the Pareto front set of optimal solutions for execution time and energy
consumption for the hybrid PGA application employing the powersave
and performance DVFS governors on the multicore CPU.

These two experiments employ different stopping conditions due to
the experimental setup used. In the first experiment, the termination
condition is defined by the total number of function evaluations, which
remains the same for all island configurations within each dimension.
However, due to the setup of the algorithm used to generate the Pareto
fronts, the second experiment employs a fixed number of iterations.
The specific values for this setup are provided in the next section. Our
experiments were conducted using both powersave and performance
governors. Choosing two different power governors can provide the
researchers with beneficial insights into the energy consumption be-
havior and performance characteristics of parallel GAs. Furthermore,
presenting Pareto-fronts Figures and discussion gives an optimal anal-
ysis of power consumption patterns. Hence, this detailed examination
facilitates performance tuning based on the nature of the workload.

6.1. Benchmark problem and parameter settings

We summarize the benchmark problems used to evaluate our ex-
perimental design and parameter settings. Our primary focus in this
research is to study the performance and energy profiles of PGAs.
To achieve this, we employ two well-established test problems: One-
Max and Rastrigin. One-Max provides a simple search space, allowing
for a clear assessment of algorithmic behavior while ensuring reliable
performance and energy consumption profiles. In contrast, the Rastrigin
function presents a more computationally expensive landscape with
numerous local optima. By evaluating both functions, we can assess the
GA’s efficiency across varying levels of problem complexity and com-
putational cost. The mathematical formulations of the two benchmark
problems are given below.
1- One-Max Problem (𝑓1) Definition:

𝑓1(𝐱) =
𝑛
∑

𝑖=1
𝑥𝑖, 𝑥𝑖 ∈ {0, 1} (2)

Search space: 𝑥𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝑛. Global minimum: 𝐱∗ =
(0, 0,… , 0); 𝑓1(𝐱∗) = 0.
2- Rastrigin Function (𝑓2) Definition:

𝑓2(𝐱) = 10𝑛 +
𝑛
∑

𝑖=1

(

𝑥2𝑖 − 10 cos
(

2𝜋𝑥𝑖
))

. (3)

Search space: −5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = 1,… , 𝑛. Global minimum:
𝐱∗ = (0, 0,… , 0); 𝑓2(𝐱∗) = 0.

Our experiments include lower dimensions (100) as well as higher
dimensions (1000 and 5000), which result in increased computational
effort and enable a more comprehensive energy profile analysis. Table
1 shows the problem parameter settings used in our experiments.
We base our selection of these parameters on the most frequently
employed values documented in the literature, and the parameters used
in a preceding study [22]. In this study, we determine these param-
eters through various preliminary numerical experiments to illustrate
distinctions among the algorithms under examination.

Our migrant selection policy for the island model involves choosing
the best individuals from the sending island and replacing the worst

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 5. The OpenH HPIGA implementation is decomposed into 𝑝 software components (one CPU and 𝑝 − 1 accelerator components) and executed on a heterogeneous platform
comprising 𝑝 computing devices, one multicore CPU, and 𝑝−1 accelerators. The CPU software component implementation is in the function, cpuComponent. The software component
implementation specific to accelerators is in the function, accComponent. PIGA_CPU() executes the island GA on the multicore CPU using OpenMP. PIGA_ACC() kernel executes the
island GA on the accelerator using OpenACC.
Table 2
Iterations and evaluations per dimension.
 Dimension Experiment 1 Experiment 2
 # of Evaluations # of Iterations
 100 4E6 1250
 500 5E6 1500
 1000 7E6 2000
 3000 1.5E7 6000
 5000 2E7 8000

individuals on the destination island. We set the migration rate to be 5
individuals per communication phase, with migration occurring every
10 iterations. Table 2 provides the number of function evaluations
and iterations for each dimension employed in first and second experi-
ments, respectively. These values were determined through a series of
preliminary experiments to ensure that all instances could reach the
optimal solution. The number of function evaluations and iterations per
dimension was kept constant across different island configurations to
ensure a fair comparison and reproducibility of results.

6.2. System specifications and energy measurement

We employ the research hybrid server platform whose specifications
are given in Table 3 for our experiments. The two Nvidia A40 GPUs are
closest to all the cores (0–63) in the Intel Icelake multicore CPU of the
hybrid server.

We employ system-level physical measurements using external
power meters for component-level measurement of energy consump-
tion. The measurements obtained this way are considered ground
truth [66].

The hybrid server has one WattsUp Pro power meter between
the wall A/C outlets and the node’s input power sockets. The power
meter captures the total power consumption of the node. It has a data
cable connected to one USB port of the node. A Perl script collects
the data from the power meter using the serial USB interface. The
execution of these scripts is non-intrusive and consumes insignificant
power. The power meters are periodically calibrated using an ANSI
C12.20 revenue-grade power meter, Yokogawa WT210. The maximum
sampling speed of the power meters is one sample every second. The
10
Table 3
Specifications of the Intel hybrid server containing a single-socket Icelake multicore
CPU and two Nvidia A40 GPUs.
 Intel Platinum 8362 Icelake
 No. of cores per socket 32
 No. of threads per core 2
 Socket(s) 2
 L1d cache, L1i cache 1.5 MiB, 1 MiB
 L2 cache, L3 cache 40 MiB, 48 MiB
 Total main memory 62 GB DDR4-3200
 TDP 265 W
 NVIDIA A40 GPU
 No. of GPUs 2
 No. of Ampere cores 10,752
 Total board memory 48 GB GDDR6 (with ECC)
 Memory bandwidth 696 GB/s
 TDP 300 W

accuracy specified in the data sheets is ±3%. The minimum measurable
power is 0.5 W. The accuracy at 0.5 W is ±0.3 W. The static power
consumption of the server is 146 W.

To ensure the reliability of our results, we follow a statistical
methodology where a sample average for a response variable (execu-
tion time and energy) is obtained from multiple experimental runs. The
sample average is calculated by executing the application repeatedly
until it lies in the 95% confidence interval and a precision of 0.05 (5%)
is achieved. For this purpose, Student’s t-test is used, assuming that the
individual observations are independent and their population follows
the normal distribution. We verify the validity of these assumptions
using Pearson’s chi-squared test.

7. Experimental results and analysis

In this section, we present the outcomes of our two distinct exper-
iments designed to evaluate the performance of PIGA under various
parallelization strategies. These experiments focus on presenting robust
energy and performance profiles of PGAs running on multi-cores and
accelerators, along with generating and analyzing Pareto front sets for
optimal execution time and energy consumption across various system
configurations.

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Table 4
Mean total energy (Joules) for 𝑓1 and 𝑓2.
 # of Algorithm Dimensions under study
 Islands 100 500 1000 3000 5000

 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2

128

PIGA_ACC 462.63 577.80 2328.96 2562.91 4435.43 5224.72 32039.00 42494.49 72940.66 87980.97
 PIGA_CPU 622.56 824.72 2206.20 2981.81 3620.10 4727.74 22499.36 31822.14 50844.00 69379.94
 PIGA_HFP 1991.80 3178.21 11534.40 19259.74 27334.80 47099.52 182921.66 279499.40 414800.00 705554.53
 HPIGA 424.93 551.30 2245.13 2753.49 7573.27 9305.09 55920.66 67520.86 133355.66 168353.49

64

PIGA_ACC 456.83 614.03 2329.47 3177.83 4334.03 5153.36 30362.10 37212.29 74504.33 103714.30
 PIGA_CPU 695.50 1060.85 2708.23 3760.44 4106.57 5710.52 22891.77 31822.78 49992.00 71181.85
 PIGA_HFP 1994.36 3256.82 11530.27 18105.14 27039.90 41071.65 180245.00 309355.82 414213.33 720104.93
 HPIGA 557.30 806.14 2019.80 3013.32 5944.63 8734.92 50194.33 70950.03 124134.66 165759.06

32

PIGA_ACC 427.00 521.73 2324.37 3177.12 4406.97 5846.12 28592.76 35381.40 70088.66 81747.47
 PIGA_CPU 694.00 1091.82 3786.13 5952.17 5261.97 8128.16 25346.33 33589.44 52597.33 77497.54
 PIGA_HFP 2033.13 3395.94 11573.13 18036.73 27365.20 45729.35 175059.00 297152.17 408833.33 679931.69
 HPIGA 821.36 1205.90 2069.37 3013.32 8750.0 8 750.00 48818.66 66902.38 81515.00 119222.83

16

PIGA_ACC 431.40 555.16 2331.57 3096.69 4438.13 5406.59 28361.16 34325.95 64764.00 84695.38
 PIGA_CPU 708.43 1110.04 4817.13 6829.81 7674.07 11612.43 30389.23 43836.74 61600.00 94700.42
 PIGA_HFP 1933.96 3110.09 11658.87 18786.34 27385.13 47005.75 175882.00 277299.06 399033.33 621759.30
 HPIGA 1094.46 1395.71 2156.73 2710.66 4940.33 7245.69 47497.66 69347.09 105896.66 149745.64

 Boldfaced and underlined values represent the least and highest values for each algorithm per function within each dimension, respectively.
Table 5
Mean dynamic energy (Joules) for 𝑓1 and 𝑓2.
 # of Algorithm Dimensions under study
 Islands 100 500 1000 3000 5000

 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2

128

PIGA_ACC 214.12 267.42 894.07 983.88 1770.76 2085.86 13341.81 17695.70 29605.49 35710.12
 PIGA_CPU 286.88 380.03 415.93 562.15 559.24 730.34 6308.15 8921.97 16535.28 22563.46
 PIGA_HFP 1246.72 1989.32 7114.87 11880.16 18910.19 32583.40 126514.35 193310.54 286850.06 487917.92
 HPIGA 296.40 384.55 1431.06 1755.08 5252.44 6453.54 38650.75 46668.47 92371.44 116613.38

64

PIGA_ACC 209.03 280.96 895.73 1221.95 1735.51 2063.60 12454.69 15264.67 31161.98 43379.26
 PIGA_CPU 320.73 489.21 739.94 1027.42 838.38 1165.83 3538.14 4918.51 12583.61 17917.35
 PIGA_HFP 1245.99 2034.71 7139.87 11211.22 18891.97 28695.53 126420.90 216977.12 285141.37 489450.49
 HPIGA 383.32 554.47 1286.62 1919.49 4159.40 6111.74 35142.62 49674.33 84841.72 113290.54

32

PIGA_ACC 186.07 227.35 887.53 1213.15 1811.79 2403.45 11699.94 14477.80 28824.57 33619.35
 PIGA_CPU 321.12 505.19 1446.00 2273.25 1626.38 2512.26 4652.75 6165.92 8395.30 12369.74
 PIGA_HFP 1269.07 2119.73 7189.91 11205.33 19127.09 31962.83 120576.31 204671.06 281468.22 468110.46
 HPIGA 556.28 816.72 1330.20 1982.19 4190.31 6105.17 33691.93 46172.30 56202.04 82200.42

16

PIGA_ACC 197.58 254.26 899.72 1194.97 1832.93 2232.90 11584.69 14021.12 26538.00 34705.18
 PIGA_CPU 334.45 524.05 2569.64 3643.27 3470.68 5251.84 7932.32 11442.44 12318.02 18937.04
 PIGA_HFP 1228.09 1974.95 7250.09 11682.32 19071.87 32736.29 120998.56 190768.74 275529.20 429319.64
 HPIGA 729.01 929.67 1384.79 1740.45 3455.70 5068.27 32689.37 47726.83 73114.82 103389.72

Boldfaced and underlined values represent the least and highest values for each algorithm per function within each dimension, respectively.
7.1. Experiment 1: Energy and performance analysis

In this experiment, we run the PIGA using four different parallel
approaches described earlier in Section 6. For this experiment, we em-
ployed the default ‘‘ondemand’’ governor as the energy governor. This
choice was not only practical, as it is the default for Ubuntu Servers,
but also provides a standardized and dependable basis for performance
and energy analysis. The ondemand governor’s unique capability to au-
tomatically modify CPU frequency based on demand makes it a useful
choose for exploring energy efficiency and computational performance.

Tables 4 and 5 show the total and dynamic energy consumption (in
Joules) for various dimensions.

An analysis of total energy consumption (Table 4) reveals that
PIGA_ACC consistently achieves the highest energy efficiency, exhibit-
ing the lowest energy usage (boldfaced values) in most test cases across
both functions and all dimensions. This highlights its advantage in
leveraging acceleration hardware for energy-conscious optimization.
PIGA_CPU demonstrates moderate energy consumption, outperforming
PIGA_HFP in some lower-dimensional cases but generally consuming
more energy than both PIGA_ACC and HPIGA, especially as dimen-
sionality increases. HPIGA, by utilizing hybrid computing resources,
offers a balanced energy profile, frequently outperforming PIGA_CPU
11
and significantly reducing energy consumption compared to PIGA_HFP
in higher-dimensional problems. In contrast, PIGA_HFP consistently
exhibits the highest total energy consumption across all dimensions
(underlined values) due to its design, which incurs costly inter-device
communication overhead. These results confirm that the PIGA_HFP
design is impractical, a logical conclusion now empirically validated.

The dynamic energy consumption results (Table 5) show that
PIGA_CPU and PIGA_ACC record the lowest dynamic energy in most
cases, reaffirming their suitability for energy-sensitive environments.
HPIGA maintains a moderate position, balancing energy consumption
and computational capability, and frequently achieving dynamic en-
ergy performance comparable to PIGA _CPU and PIGA_ACC. PIGA_HFP
again ranks as the least energy-efficient, consistently exhibiting the
highest dynamic energy consumption across all dimensions and func-
tions. Overall, PIGA_ACC stands out as the most efficient algorithm
in both total and dynamic energy terms, making it the best choice
for applications where energy efficiency is critical. HPIGA offers a
practical compromise between performance and energy use, while
PIGA_HFP remains the most energy-intensive across all scenarios. These
findings emphasize the importance of aligning algorithm design with
appropriate hardware to optimize energy performance in large-scale
optimization tasks. A notable finding from this comparison is that

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Table 6
Mean execution time (seconds) for 𝑓1 and 𝑓2.
 # of Algorithm Dimensions under study
 Islands 100 500 1000 3000 5000

 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2

128

PIGA_ACC 0.98 1.22 5.67 6.24 15.96 18.79 111.96 148.49 259.49 312.99
 PIGA_CPU 1.33 1.75 7.08 9.56 18.33 23.93 96.95 137.12 205.44 280.33
 PIGA_HFP 2.95 4.69 17.47 29.16 50.45 86.92 337.77 516.10 766.17 1303.21
 HPIGA 0.51 0.65 3.22 3.94 13.90 17.07 103.41 124.86 245.41 275.82

64

PIGA_ACC 0.98 1.31 5.67 7.73 15.56 18.50 107.23 131.42 259.54 361.28
 PIGA_CPU 1.48 2.25 7.78 10.80 19.57 27.21 115.89 161.10 224.00 318.94
 PIGA_HFP 2.96 4.83 17.35 27.24 48.79 74.10 322.30 553.16 772.89 1326.67
 HPIGA 0.69 0.99 2.90 4.32 10.69 15.70 90.13 127.39 235.29 314.18

32

PIGA_ACC 0.95 1.16 5.68 7.76 15.54 20.61 101.15 125.17 247.09 288.19
 PIGA_CPU 1.47 2.31 9.25 14.54 21.77 33.62 123.91 164.21 264.68 389.98
 PIGA_HFP 3.02 5.04 17.33 27.00 49.33 82.43 326.24 553.77 762.67 1268.39
 HPIGA 1.05 2.04 2.92 4.35 10.87 15.83 90.58 124.13 151.57 221.69

16

PIGA_ACC 0.92 1.18 5.66 7.51 15.60 19.00 100.46 121.58 228.90 299.34
 PIGA_CPU 1.48 2.31 8.88 12.59 25.17 38.08 134.47 193.97 295.10 453.67
 PIGA_HFP 2.79 4.48 17.43 28.07 49.78 85.44 328.64 518.14 739.55 1152.33
 HPIGA 1.44 1.84 3.05 3.83 8.89 13.03 88.67 129.46 196.30 277.58

 Boldfaced and underlined values represent the least and highest values for each algorithm per function within each dimension, respectively.
search algorithms running on accelerators remain competitive with
their multi-cores counterparts. For a comprehensive illustration of the
performance behavior, we present the execution time of the parallel
strategies in Table 6.

The execution time values reveal distinct behavior compared to the
energy consumption values. As dimensionality grows, all algorithms
experience a predictable increase in execution time. However, HPIGA
demonstrates superior scalability, maintaining lower execution times
even at high dimensions, showcasing its efficiency in handling large
problem sizes through hybrid resource utilization. For the majority
of instances under the study (32/40), HPIGA exhibits the lowest ex-
ecution time (boldfaced values) among all the other strategies over
the different dimensions and number of islands under the study. This
behavior is quite prospective since this strategy considers distribute
the workload by running the parallel algorithm over all the computing
devices on the system. PIGA_ACC follows closely, particularly in lower
dimensions where it competes well with HPIGA, reflecting the benefit
of acceleration hardware for quick task execution. PIGA_CPU exhibits
moderate performance, generally faster than PIGA_HFP but slower than
both HPIGA and PIGA_ACC, especially as dimensionality increases.
PIGA_HFP struggles significantly with scalability, as its execution time
increases sharply with higher dimensions. This suggests potential bot-
tlenecks caused by excessive communication overhead between the
CPU and GPU devices.

The PIGA_HFP parallel strategy exhibits the highest energy con-
sumption and execution times (underlined values) for all the dimen-
sions under the study. This consumption behavior is expected due
to the high communication overhead resulting from real-time data
exchange between two different computing devices sharing computa-
tions in each iteration. The design of this strategy aimed to evaluate
the feasibility of hybrid/shared operations between the CPU and GPU
accelerator in each iteration. As anticipated, our results confirm the
logical expectation that this approach incurs significant energy costs,
making it impractical. In this context, we validate these perspectives
and offer this conclusion as a reference point for future researchers.
The tables also reveal an interesting accelerator energy consumption
behavior compared to the multicore one. This outcome proves that
the accelerators have competitive, promising results in solving parallel
search algorithms. Overall, the HPIGA parallel strategy demonstrates
competitive execution times and achieves a notable reduction in energy
consumption.
12
7.2. Experiment 2: Analysis of pareto fronts of dynamic energy vs. perfor-
mance

This section outlines the methodology used to construct the exe-
cution time and dynamic energy profiles for processors running the
hybrid parallel GA application. We investigate the bi-objective opti-
mization problem concerning energy consumption and execution time,
aiming to explore the Pareto fronts to determine the optimal workload
distribution.

The application is executed under two governors: powersave and
performance, allowing us to illustrate the trade-offs between dynamic
energy consumption and performance for each governor. The choice of
the powersave and performance governors was deliberate to ensure that
voltage and frequency remained constant during execution. This stabil-
ity is crucial for maintaining control over the execution environment,
which is essential for accurately studying the bi-objective optimization
problem. By preventing dynamic changes in voltage and frequency, we
can isolate the impact of workload distribution on energy consumption
and execution time, ensuring that the results reflect the true trade-offs
between these two objectives.

To comprehensively evaluate the behavior of our algorithm, we
conducted extensive experiments. These experiments involved running
HPIGA on both the multicore CPU and one accelerator (A40 GPU)
separately. We ran experiments with a growing number of islands,
starting from 2 and increasing up to 128 in steps of 2 islands, to observe
how the algorithm’s performance and energy consumption change with
the increasing number of islands. This approach allows us to understand
the scalability and efficiency of the algorithm under different config-
urations and hardware settings, providing valuable insights into its
performance dynamics. Fig. 6 illustrates the results of dynamic energy
consumption and execution time as a function of the number of islands,
for both 1000 and 5000 dimensions.

The results presented in the figures provide a comprehensive anal-
ysis of the dynamic energy profiles and execution times for a PGA
application, comparing CPU and GPU implementations under different
governors. In the powersave governor mode, the energy trend shows
a notable difference compared to the maximum frequency scenario.
Initially, the GPU energy consumption was lower than the CPU, but as
the number of islands increases, the CPU eventually overtakes the GPU.
This behavior indicates that while GPUs start with an energy efficiency
advantage, the CPU’s performance in powersave mode becomes more
competitive as the computational load increases. This could be due to
the power management features in the powersave governor optimizing
the CPU’s energy usage more effectively over time and across higher

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 6. The execution time and dynamic energy profiles of the multicore CPU and A40 GPU processors involved in the execution of the hybrid parallel GA application. Since the
two A40 GPU accelerators are identical, only one profile is shown in each plot. The top four plots are for experiments where the multicore CPU employs powersave governor. The
bottom two plots are for experiments where the multicore CPU operates at the maximum frequency (performance governor).
numbers of islands. CPU’s energy consumption rises significantly with
the number of islands, showing a steep increase, particularly beyond 60
islands. In contrast, the GPU maintains a relatively stable and lower en-
ergy consumption profile. This stark difference underscores the GPU’s
superior efficiency in handling larger datasets and the more extensive
parallelism inherent in the 5K dimension setup. The CPU’s energy
consumption spikes could be attributed to increased context-switching
overheads and less efficient scaling in powersave mode.

When conducting our experiments using the performance governor
at maximum frequency, we observed that the GPU consistently uses less
dynamic energy and has shorter execution times than the CPU as the
number of islands increases. Initially, the GPU shows a more substantial
energy advantage, which diminishes slightly as the number of islands
increases but still remains below the CPU energy consumption. This
suggests that GPUs are more energy-efficient for larger-scale computa-
tions in this setup, benefiting from their parallel processing capabilities
which are well-suited for the workload distribution in a PGA.

Fig. 6 illustrates that, under both DVFS governors, GPU execu-
tion time scales almost linearly with the increasing number of is-
lands. This behavior arises from the GPU’s ability to launch vast num-
bers of lightweight threads in hardware, incurring constant per-kernel
overhead and requiring minimal inter-thread synchronization. Conse-
quently, the GPU maintains robust performance, particularly under
13
the power-save governor and at lower island counts. By contrast, the
CPU exhibits pronounced non-linear scaling caused by two factors.
The first is the inherent complexity of modern multicore CPUs, in-
cluding software-managed scheduling, multi-level cache hierarchies,
NUMA-distributed memory, and shared interconnects. These introduce
performance variability that disrupts uniform linear scaling. This factor
is particularly influential in cases of lower computational intensity and
is the dominant cause of non-linearity in the experiment with 1000
dimensions. The second factor is underutilization when the number
of islands is less than the total number of available CPU cores (64).
This becomes the dominant factor in more computationally intensive
experiments with 5000 dimensions, especially under the powersave
mode. As the number of islands increases and more cores become
involved in computation, CPU utilization improves and performance in-
creases. However, beyond a critical point, further increases in the num-
ber of islands lead to escalating synchronization delays and resource
contention, which moderate further performance gains.

Overall, these results highlight a trade-off between energy efficiency
and execution time when choosing between CPU and GPU for running
parallel GA applications. GPUs are notably more energy-efficient, par-
ticularly for larger datasets and higher dimensions, but this comes at
the cost of longer execution times in some configurations. The choice of
governor mode also plays a significant role, with powersave governors

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 7. Comparison of Pareto fronts for different governors and iteration limits in a parallel genetic algorithm: (1) Powersave with I = 1000, (2) Performance with I = 1000, and
(3) Powersave with I = 5000.
potentially leveling the playing field between CPU and GPU energy
consumption, albeit with varying impacts on performance scaling.

Fig. 7 shows the Pareto front results from our experiment under
different governors. They illustrate the trade-off between dynamic en-
ergy consumption and execution time for various dimensions (I) and
governor settings (powersave and performance). The decision variable
is the workload distribution (vector of the number of islands assigned
to the computing devices).

The presented figures illustrate multiple Pareto fronts, which ad-
dress the bi-objective optimization problem for 1000-dimensional and
5000-dimensional configurations on the hybrid server. For the 1000-
dimensional configuration, the experiments evaluated various numbers
of islands (NI) in the set, {122, 124, 126, 128}. For the 5000-dimension
configuration, the NI values are 80, 84, 86, and 88. The Pareto fronts
provide a broad spectrum of options for optimal execution of the HPIGA
on the accelerator server. The average number of solutions in the
Pareto fronts is 25. The number of solutions employing the performance
governor is greater than the number for the powersave governor.
Consider the Pareto front for 𝑁𝐼 = 122 for the 1000-dimension con-
figuration. The Pareto front provides 20 solutions (tradeoffs). Doubling
the execution time only reduces the dynamic energy consumption
by 10% utilizing the powersave governor. Similarly, the dynamic en-
ergy savings for the same 𝑁𝐼 value are 17% for the 5000-dimension
configuration.

The figures continue to provide valuable insights into the opti-
mization of dynamic energy and execution time, revealing several key
trends. In the first two figures (7(a), 7(b)), comparing the powersave
and performance governor settings for 1000 iterations, we observe that
the performance governor generally achieves lower dynamic energy
consumption for the same execution times compared to the power-
save governor. This indicates that the performance governor is more
effective in optimizing energy usage while maintaining computational
speed. A similar trend is observed for the iteration limit set to 5000 (Fig.
7(c)) under the powersave governor. However, the longer execution
times and higher iteration count lead to a more pronounced reduction
in dynamic energy, suggesting that increasing the number of iterations
allows for more refined optimizations. This also indicates the potential
benefits of prolonged optimization processes in achieving better energy
14
efficiency. The different values of NI (number of islands) also impact
the results, with higher NI typically leading to better energy optimiza-
tion but longer execution times. These trends emphasize the importance
of selecting appropriate parameters for balancing energy efficiency and
computational speed.

Fig. 8 illustrates the dynamic energy versus performance Pareto
fronts for the hybrid parallel GA application using the performance and
powersave governors, with 122 and 128 islands, respectively. These
Pareto fronts represent the trade-off between minimizing execution
time and reducing dynamic energy consumption. A comparative ex-
amination of both figures (8(a), 8(b)) reveals that the performance
governor consistently achieves lower execution times at the cost of
higher dynamic energy consumption compared to the powersave gov-
ernor. As the number of islands increases, there is a noticeable trend
where both execution time and energy consumption decrease. This re-
duction is more pronounced with the performance governor, indicating
a more efficient use of resources.

Additionally, the distinction between the performance and power-
save governors is evident in the clustering of data points, where the
powersave governor shows higher energy usage for a given execution
time. This suggests that while the powersave governor is designed to
reduce power consumption, it does not optimize the trade-off as effec-
tively as the performance governor under the tested configurations.

These results provide valuable insights into how different power
management strategies affect the efficiency and scalability of PGAs
on multicore systems. They highlight the need to carefully select the
appropriate governor based on the specific performance and energy
requirements of the application, with the number of islands playing a
crucial role in determining the overall efficiency.

8. Conclusions and future work

This article presents two comprehensive experiments that explore
the energy consumption and performance of PGAs on multi-core CPUs
and accelerators using different parallelization strategies. The findings
(including energy consumption, performance, Pareto front figures, and
discussions) provide a valuable resource for future researchers to design
efficient parallel search algorithms.

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
Fig. 8. Dynamic energy versus performance Pareto fronts for the hybrid parallel GA application for performance and powersave governors for 𝑁𝐼 = 122 and 𝑁𝐼 = 128, respectively.
For an approach to finding an adequate PGA strategy, we presented
the first experiment. We compared four distinct parallel strategies
running on CPUs and accelerators. Our discussions highlighted in-
teresting performance and energy consumption profiles of the differ-
ent algorithms, comparing the characteristics of energy consumption
when running on CPUs and accelerators. The results serve as novel
resources for researchers to select optimal configurations for designing
and running intelligent energy consumption algorithms within hybrid
heterogeneous systems.

To gain a clearer understanding, Experiment 2 was conducted with
the application executed under two CPU and GPU frequency scaling
governors: powersave and performance. The analysis reveals that while
the GPU maintains consistent energy efficiency and linear execution
scaling, CPU becomes increasingly competitive in powersave mode as
the number of islands grows. These insights emphasize the dynamic
interplay between architecture, workload size, and DVFS settings in
optimizing PGA performance. The resulting data was utilized to plot
Pareto fronts, illustrating the trade-offs between dynamic energy con-
sumption and performance for each governor. This analysis elucidates
the impact of the powersave and performance governors on optimizing
the balance between computational efficiency and energy consumption.

Our experiments present innovative comparative studies that ex-
amine the performance and energy consumption of GAs on CPUs,
accelerators, and hybrid servers. Through our analyses and discussions,
we uncover interesting energy consumption profiles for various algo-
rithms, highlighting their distinctive features when executed on CPUs
and accelerators. To further enhance our findings, we supplement the
results with comprehensive Pareto front graphs for the parallel GAs
under examination. The insights derived from these studies serve as
crucial benchmarks guiding the future utilization and advancement
of efficient, energy-conscious optimization techniques across diverse
computational devices. In future work, we plan to model energy con-
sumption as a function of the parameters using regression models, such
as random forests. We aim to extend our study by evaluating the impact
of different CPU and GPU types and generations on performance and
energy consumption.

CRediT authorship contribution statement

Amr Abdelhafez: Writing – review & editing, Writing – origi-
nal draft, Visualization, Software, Methodology, Investigation, Formal
analysis. Ravi Reddy Manumachu: Writing – original draft, Software.
Alexey Lastovetsky: Writing – review & editing, Software, Methodol-
ogy.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Amr Abdelhafez reports financial support was provided by Science
Foundation Ireland Public Fellowship Programme. If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.
15
Acknowledgments

This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under the SFI
Frontiers for the Future Programme 20/FFP-P/8683.

Data availability

Data will be made available on request.

References

[1] Michael C. Burkhart, Gabriel Ruiz, Neuroevolutionary representations for
learning heterogeneous treatment effects, J. Comput. Sci. 71 (2023) 102054.

[2] Janko Straßburg, Christian Gonzàlez-Martel, Vassil Alexandrov, Parallel genetic
algorithms for stock market trading rules, Procedia Comput. Sci. 9 (2012)
1306–1313, Proceedings of the International Conference on Computational
Science, ICCS 2012.

[3] El-Ghazali Talbi, Amir Nakib, Metaheuristics for medicine and biology, Studies
in Computational Intelligence, vol. 704, Springer, 2017.

[4] Abdullah Konak, David W. Coit, Alice E. Smith, Multi-objective optimization
using genetic algorithms: A tutorial, Reliab. Eng. Syst. Saf. 91 (9) (2006)
992–1007.

[5] Ying Liu, Haibo Dong, Niels Lohse, Sanja Petrovic, A multi-objective genetic
algorithm for optimisation of energy consumption and shop floor production
performance, Int. J. Prod. Econ. 179 (2016) 259–272.

[6] Chunfeng Yang, Haijiang Li, Yacine Rezgui, Ioan Petri, Baris Yuce, Biaosong
Chen, Bejay Jayan, High throughput computing based distributed genetic algo-
rithm for building energy consumption optimization, Energy Build. 76 (2014)
92–101.

[7] Olivier Devos, Gerard Downey, Ludovic Duponchel, Simultaneous data pre-
processing and SVM classification model selection based on a parallel genetic
algorithm applied to spectroscopic data of olive oils, Food Chem. 148 (2014)
124–130.

[8] Vincent Roberge, Mohammed Tarbouchi, Francis Okou, Strategies to accelerate
harmonic minimization in multilevel inverters using a parallel genetic algorithm
on graphical processing unit, IEEE Trans. Power Electron. 29 (10) (2014)
5087–5090.

[9] Juan Porta, Jorge Parapar, Ramón Doallo, Francisco F. Rivera, Inés Santé, Rafael
Crecente, High performance genetic algorithm for land use planning, Comput.
Environ. Urban Syst. 37 (2013) 45–58.

[10] A. Shayeghi, D. Götz, J.B.A. Davis, R. Schäfer, R.L. Johnston, Pool-BCGA: a
parallelised generation-free genetic algorithm for the ab initio global optimisation
of nanoalloy clusters, Phys. Chem. Chem. Phys. 17 (2015) 2104–2112.

[11] Cheng-Jin Ye, Min-Xiang Huang, Multi-objective optimal power flow considering
transient stability based on parallel NSGA-II, IEEE Trans. Power Syst. 30 (2)
(2015) 857–866.

[12] Zhiyuan Liu, Qiang Meng, Shuaian Wang, Speed-based toll design for cordon-
based congestion pricing scheme, Transp. Res. Part C: Emerg. Technol. 31 (2013)
83–98.

[13] Mohamed Kurdi, An effective new island model genetic algorithm for job shop
scheduling problem, Comput. Oper. Res. 67 (2016) 132–142.

[14] Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, Solving very large instances
of the scheduling of independent tasks problem on the GPU, J. Parallel Distrib.
Comput. 73 (1) (2013) 101–110, Metaheuristics on GPUs.

[15] Rasoul Faraji, Hamid Reza Naji, An efficient crossover architecture for hard-
ware parallel implementation of genetic algorithm, Neurocomputing 128 (2014)
316–327.

[16] Liucheng Guo, David B. Thomas, Ce Guo, Wayne Luk, Automated framework for
FPGA-based parallel genetic algorithms, in: 2014 24th International Conference
on Field Programmable Logic and Applications, FPL, 2014, pp. 1–7.

http://refhub.elsevier.com/S2210-6502(25)00268-8/sb1
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb1
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb1
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb2
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb3
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb3
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb3
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb4
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb4
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb4
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb4
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb4
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb5
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb5
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb5
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb5
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb5
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb6
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb7
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb8
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb9
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb9
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb9
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb9
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb9
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb10
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb10
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb10
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb10
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb10
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb11
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb11
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb11
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb11
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb11
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb12
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb12
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb12
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb12
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb12
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb13
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb13
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb13
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb14
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb14
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb14
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb14
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb14
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb15
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb15
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb15
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb15
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb15
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb16
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb16
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb16
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb16
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb16

A. Abdelhafez et al. Swarm and Evolutionary Computation 98 (2025) 102110
[17] Zhenyu Wen, Renyu Yang, Peter Garraghan, Tao Lin, Jie Xu, Michael Rovatsos,
Fog orchestration for internet of things services, IEEE Internet Comput. 21 (2)
(2017) 16–24.

[18] Message Passing Interface Forum, MPI: A message-passing interface standard,
2015.

[19] Simon Farrelly, Ravi Reddy Manumachu, Alexey Lastovetsky, OpenH: A novel
programming model and API for developing portable parallel programs on
heterogeneous hybrid servers, IEEE Access 12 (2024) 23666–23694.

[20] C.-N. Fiechter, A parallel tabu search algorithm for large traveling salesman
problems, Discrete Appl. Math. 51 (3) (1994) 243–267.

[21] Stella C.S. Porto, João Paulo F.W. Kitajima, Celso C. Ribeiro, Performance
evaluation of a parallel tabu search task scheduling algorithm, Parallel Comput.
26 (1) (2000) 73–90.

[22] Amr Abdelhafez, Enrique Alba, Gabriel Luque, Performance analysis of syn-
chronous and asynchronous distributed genetic algorithms on multiprocessors,
Swarm Evol. Comput. 49 (2019) 147–157.

[23] Amr Abdelhafez, Gabriel Luque, Enrique Alba, A component-based study of en-
ergy consumption for sequential and parallel genetic algorithms, J. Supercomput.
75 (10) (2019) 6194–6219.

[24] Tomohiro Harada, Enrique Alba, Gabriel Luque, A fresh approach to evaluate
performance in distributed parallel genetic algorithms, Appl. Soft Comput. 119
(2022) 108540.

[25] Amr Abdelhafez, Enrique Alba, Gabriel Luque, Parallel execution combina-
torics with metaheuristics: Comparative study, Swarm Evol. Comput. 55 (2020)
100692.

[26] Jan Gmys, Tiago Carneiro, Nouredine Melab, El-Ghazali Talbi, Daniel Tuyt-
tens, A comparative study of high-productivity high-performance programming
languages for parallel metaheuristics, Swarm Evol. Comput. 57 (2020) 100720.

[27] Jianyong Jin, Teodor Gabriel Crainic, Arne Løkketangen, A cooperative parallel
metaheuristic for the capacitated vehicle routing problem, Comput. Oper. Res.
44 (2014) 33–41.

[28] Eugenio J. Muttio, Wulf G. Dettmer, Jac Clarke, Djordje Perić, Zhaoxin Ren,
Lloyd Fletcher, A supervised parallel optimisation framework for metaheuristic
algorithms, Swarm Evol. Comput. 84 (2024) 101445.

[29] E.Y. Seliverstov, A.P. Karpenko, Hierarchical model of parallel metaheuristic
optimization algorithms, Procedia Comput. Sci. 150 (2019) 441–449, Proceedings
of the 13th International Symposium ‘‘Intelligent Systems 2018’’ (INTELS’18),
22-24 October, 2018, St. Petersburg, Russia.

[30] Hung-Kai Wang, Yu-Chun Lin, Che-Jung Liang, Ya-Han Wang, Multi-
subpopulation parallel computing genetic algorithm for the semiconductor
packaging scheduling problem with auxiliary resource constraints, Appl. Soft
Comput. 142 (2023) 110349.

[31] Yongbin Yu, Jiehong Mo, Quanxin Deng, Chen Zhou, Biao Li, Xiangxiang
Wang, Nijing Yang, Qian Tang, Xiao Feng, Memristor parallel computing for
a matrix-friendly genetic algorithm, IEEE Trans. Evol. Comput. 26 (5) (2022)
901–910.

[32] Guanghui Zhang, Bo Liu, Ling Wang, Dengxiu Yu, Keyi Xing, Distributed co-
evolutionary memetic algorithm for distributed hybrid differentiation flowshop
scheduling problem, IEEE Trans. Evol. Comput. 26 (5) (2022) 1043–1057.

[33] Wojciech Bożejko, Mariusz Uchroński, Mieczysław Wodecki, Parallel hybrid
metaheuristics for the flexible job shop problem, Comput. Ind. Eng. 59 (2) (2010)
323–333.

[34] Wojciech Bożejko, Zdziław Hejducki, Mariusz Uchroński, Mieczysław Wodecki,
Solving the flexible job shop problem on multi-GPU, Procedia Comput.
Sci. 9 (2012) 2020–2023, Proceedings of the International Conference on
Computational Science, ICCS 2012.

[35] Eyder Rios, Luiz Satoru Ochi, Cristina Boeres, Vitor N. Coelho, Igor M.
Coelho, Ricardo Farias, Exploring parallel multi-GPU local search strategies in a
metaheuristic framework, J. Parallel Distrib. Comput. 111 (2018) 39–55.

[36] Yanhong Zhuo, Tao Zhang, Feng Du, Ruilin Liu, A parallel particle swarm
optimization algorithm based on GPU/CUDA, Appl. Soft Comput. 144 (2023)
110499.

[37] Mohamed A. Alqarni, Mohamed H. Mousa, Mohamed K. Hussein, Task offloading
using GPU-based particle swarm optimization for high-performance vehicular
edge computing, J. King Saud Univ. - Comput. Inf. Sci. 34 (10, Part B) (2022)
10356–10364.

[38] Manoj Kumar, Aryabartta Sahu, Pinaki Mitra, A comparison of different meta-
heuristics for the quadratic assignment problem in accelerated systems, Appl.
Soft Comput. 100 (2021) 106927.

[39] Rui Zhang, Yanan Sun, Mengjie Zhang, GPU based genetic programming for
faster feature extraction in binary image classification, IEEE Trans. Evol. Comput.
(2023) 1–1.

[40] Jia Luo, Shigeru Fujimura, Didier El Baz, Bastien Plazolles, GPU based parallel
genetic algorithm for solving an energy efficient dynamic flexible flow shop
scheduling problem, J. Parallel Distrib. Comput. 133 (2019) 244–257.

[41] Martín Letras, Alicia Morales-Reyes, René Cumplido, María-Guadalupe Martínez-
Peñaloza, Claudia Feregrino-Uribe, A novel partition strategy for efficient
implementation of 3D cellular genetic algorithms, Microprocess. Microsyst. 104
(2024) 104986.
16
[42] Devrim Akgün, Pakize Erdoğmuş, GPU accelerated training of image convolution
filter weights using genetic algorithms, Appl. Soft Comput. 30 (2015) 585–594.

[43] Mohammad Beheshti Roui, Mariam Zomorodi, Masoomeh Sarvelayati, Moloud
Abdar, Hamid Noori, Paweł Pławiak, Ryszard Tadeusiewicz, Xujuan Zhou, Abbas
Khosravi, Saeid Nahavandi, U. Rajendra Acharya, A novel approach based on
genetic algorithm to speed up the discovery of classification rules on GPUs,
Knowl.-Based Syst. 231 (2021) 107419.

[44] David Radford, David Calvert, A comparative analysis of the performance of
scalable parallel patterns applied to genetic algorithms and configured for
NVIDIA GPUs, Procedia Comput. Sci. 114 (2017) 65–72, Complex Adaptive
Systems Conference with Theme: Engineering Cyber Physical Systems, CAS
October 30 – November 1, 2017, Chicago, Illinois, USA.

[45] John Runwei Cheng, Mitsuo Gen, Accelerating genetic algorithms with GPU
computing: A selective overview, Comput. Ind. Eng. 128 (2019) 514–525.

[46] Juan José Escobar, Pablo Sánchez-Cuevas, Beatriz Prieto, Rukiye Savran
Kızıltepe, Fernando Díaz del Río, Dragi Kimovski, Energy–time modelling of
distributed multi-population genetic algorithms with dynamic workload in HPC
clusters, Future Gener. Comput. Syst. 167 (2025) 107753.

[47] Bruno Miguel Silva, Luiz Guerreiro Lopes, Fábio Mendonça, Parallel GPU-
acceleration of metaphorless optimization algorithms: Application for solving
large-scale nonlinear equation systems, Appl. Sci. 14 (12) (2024) 5349.

[48] Bruno Silva, Luiz Guerreiro Lopes, Fábio Mendonça, Multithreaded and GPU-
based implementations of a modified particle swarm optimization algorithm with
application to solving large-scale systems of nonlinear equations, Electronics 14
(3) (2025) 584.

[49] Jinpeng Han, Haobo Zhang, Baichuan Gao, Jingui Yu, Peng Jin, Jianzhong Yang,
Zhaohui Xia, Efficient isogeometric topology optimization via multi-GPUs and
CPUs heterogeneous architecture, Optim. Eng. 26 (2) (2025) 1317–1363.

[50] Mohd Arfian Ismail, A GPU accelerated parallel genetic algorithm for the
traveling salesman problem, J. Soft Comput. Data Min. 5 (2) (2024) 137–150.

[51] Vincent Roberge, Katerina Brooks, Mohammed Tarbouchi, Parallel algorithm on
multicore processor and graphics processing unit for the optimization of electric
vehicle recharge scheduling, Electronics 13 (2024) 1783.

[52] Zhuoran Sun, Ying Ying Liu, Parimala Thulasiraman, Ruppa Thulasiram, Parallel
co-evolutionary algorithm and implementation on CPU-GPU multicore, in: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
in: GECCO ’24 Companion, Association for Computing Machinery, New York,
NY, USA, 2024, pp. 109–110.

[53] El-Ghazali Talbi, Metaheuristics from Design to Implementation, John Wiley &
Sons, 2009.

[54] Enrique Alba, Parallel Metaheuristics: A New Class of Algorithms, John Wiley &
sons, 2005.

[55] Amr Abdelhafez, Gabriel Luque, Enrique Alba, Analyzing the energy consumption
of sequential and parallel metaheuristics, in: 2019 International Conference on
High Performance Computing & Simulation, HPCS, 2019.

[56] Amr Abdelhafez, Enrique Alba, Speed-up of synchronous and asynchronous
distributed genetic algorithms: A first common approach on multiprocessors, in:
2017 IEEE Congress on Evolutionary Computation, CEC, 2017.

[57] Hao-Chun Lu, F.J. Hwang, Yao-Huei Huang, Parallel and distributed architecture
of genetic algorithm on apache hadoop and spark, Appl. Soft Comput. 95 (2020)
106497.

[58] Tomohiro Harada, Enrique Alba, Parallel genetic algorithms: A useful survey,
ACM Comput. Surv. 53 (4) (2020).

[59] Sourabh Katoch, Sumit Singh Chauhan, Vijay Kumar, A review on genetic
algorithm: Past, present, and future, Multimedia Tools Appl. 80 (5) (2020)
8091–8126.

[60] Hamidreza Khaleghzadeh, Ravi Reddy Manumachu, Alexey Lastovetsky, Efficient
exact algorithms for continuous bi-objective performance-energy optimization
of applications with linear energy and monotonically increasing performance
profiles on heterogeneous high performance computing platforms, Concurr.
Comput.: Pr. Exp. 35 (20) (2023) e7285.

[61] H. Khaleghzadeh, M. Fahad, A. Shahid, R.R. Manumachu, A. Lastovetsky,
Bi-objective optimization of data-parallel applications on heterogeneous HPC
platforms for performance and energy through workload distribution, IEEE Trans.
Parallel Distrib. Syst. 32 (3) (2021) 543–560.

[62] Francisco Chicano, Andrew M. Sutton, L. Darrell Whitley, Enrique Alba, Fit-
ness probability distribution of bit-flip mutation, Evol. Comput. 23 (2) (2015)
217–248.

[63] M. Ruciński, D. Izzo, F. Biscani, On the impact of the migration topology on the
island model, Parallel Comput. 36 (10–11) (2010) 555–571.

[64] Amr Abdelhafez, Ravi Reddy Manumachu, Alexey Lastovetsky, Code repos-
itory, 2024, csgitlab.ucd.ie/amra/parallel-genetic-algorithms-on-hybrid-servers.
git. (Accessed 01 December 2024).

[65] Christoph Riesinger, Tobias Neckel, Florian Rupp, Non-standard pseudo random
number generators revisited for GPUs, Future Gener. Comput. Syst. 82 (2018)
482–492.

[66] Muhammad Fahad, Arsalan Shahid, Ravi Reddy, Alexey Lastovetsky, A compar-
ative study of methods for measurement of energy of computing, Energies 12
(11) (2019).

http://refhub.elsevier.com/S2210-6502(25)00268-8/sb17
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb17
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb17
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb17
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb17
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb18
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb18
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb18
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb19
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb19
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb19
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb19
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb19
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb20
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb20
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb20
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb21
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb21
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb21
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb21
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb21
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb22
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb22
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb22
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb22
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb22
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb23
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb23
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb23
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb23
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb23
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb24
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb24
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb24
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb24
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb24
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb25
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb25
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb25
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb25
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb25
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb26
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb26
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb26
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb26
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb26
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb27
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb27
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb27
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb27
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb27
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb28
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb28
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb28
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb28
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb28
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb29
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb30
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb31
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb32
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb32
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb32
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb32
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb32
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb33
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb33
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb33
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb33
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb33
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb34
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb35
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb35
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb35
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb35
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb35
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb36
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb36
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb36
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb36
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb36
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb37
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb38
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb38
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb38
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb38
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb38
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb39
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb39
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb39
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb39
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb39
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb40
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb40
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb40
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb40
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb40
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb41
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb42
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb42
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb42
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb43
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb44
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb45
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb45
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb45
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb46
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb47
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb47
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb47
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb47
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb47
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb48
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb49
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb49
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb49
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb49
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb49
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb50
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb50
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb50
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb51
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb51
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb51
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb51
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb51
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb52
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb53
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb53
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb53
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb54
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb54
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb54
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb55
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb55
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb55
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb55
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb55
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb56
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb56
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb56
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb56
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb56
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb57
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb57
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb57
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb57
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb57
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb58
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb58
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb58
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb59
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb59
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb59
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb59
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb59
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb60
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb61
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb62
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb62
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb62
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb62
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb62
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb63
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb63
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb63
https://csgitlab.ucd.ie/amra/parallel-genetic-algorithms-on-hybrid-servers.git
https://csgitlab.ucd.ie/amra/parallel-genetic-algorithms-on-hybrid-servers.git
https://csgitlab.ucd.ie/amra/parallel-genetic-algorithms-on-hybrid-servers.git
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb65
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb65
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb65
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb65
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb65
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb66
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb66
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb66
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb66
http://refhub.elsevier.com/S2210-6502(25)00268-8/sb66

	Parallel genetic algorithms on hybrid servers: Design, implementation, and optimization for performance and energy
	Introduction
	Related Work
	Parallel Metaheuristics on Multicore CPUs
	Parallel Metaheuristics on GPUs

	Background of Genetic Algorithms
	The Genetic Algorithm
	Parallel Genetic Algorithm

	Bi-objective Optimization Problem Formulation and Exact Algorithms
	Exact Algorithms for the Optimization Problem Variants

	Design and Implementation of Heterogeneous Hybrid PGA
	HPIGA Design
	HPIGA Implementation

	Experimental Framework
	Benchmark Problem and Parameter Settings
	System Specifications and Energy Measurement

	Experimental Results and Analysis
	Experiment 1: Energy and Performance Analysis
	Experiment 2: Analysis of Pareto Fronts of Dynamic Energy Vs. Performance

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

