
A

A Survey of Power and Energy Predictive Models in HPC Systems
and Applications

KENNETH O’BRIEN, University College Dublin, Ireland
ILIA PIETRI, University of Manchester, UK
RAVI REDDY, University College Dublin, Ireland
ALEXEY LASTOVETSKY, University College Dublin, Ireland
RIZOS SAKELLARIOU, University of Manchester, UK

Power and energy efficiency are now critical concerns in extreme-scale high performance scientific comput-
ing. Many extreme-scale computing systems today (For example: Top500) have tight integration of multicore
CPU processors and accelerators (mix of GPUs, Intel Xeon Phis, or FPGAs) empowering them to provide
not just unprecedented computational power but also to address these concerns. However, such integration
renders these systems highly heterogeneous and hierarchical thereby necessitating design of novel perfor-
mance, power, and energy models to accurately capture these inherent characteristics.

There are now several extensive research efforts focusing exclusively on power and energy efficiency
models and techniques for the processors composing these extreme-scale computing systems. This article
synthesizes these research efforts with absolute concentration on predictive power and energy models and
prime emphasis on node architecture. Through this survey, we also intend to highlight the shortcomings of
these models to correctly and comprehensively predict the power and energy consumptions by taking into
account the hierarchical and heterogeneous nature of these tightly-integrated high performance computing
systems.

CCS Concepts: rComputing methodologies → Parallel computing methodologies; Modeling
methodologies; rComputer systems organization → Parallel architectures; rHardware → Power
estimation and optimization;

Additional Key Words and Phrases: Survey, Power models, Energy models, Power consumption, Energy
consumption, HPC

ACM Reference Format:
Kenneth O’Brien, Ilia Pietri, Ravi Reddy, Alexey Lastovetsky and Rizos Sakellariou, 2015. A Survey of
Power and Energy Predictive Models in HPC Systems and Applications ACM Comput. Surv. V, N, Article A
(January YYYY), 38 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Energy is now a first-class design constraint along with performance in all computing
settings. Energy-proportional designs [Barroso and Hölzle 2007] in servers are now
crucial to the operational efficiency of data centers. Most data centers use almost as
much non-computing or “overhead” energy (due to power distribution and cooling) as

This research is conducted with the financial support of Science Foundation Ireland (SFI) under Grant
Number 14/IA/2474. It is also supported by the Structured PhD in Simulation Science which is funded by
the Programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European
Regional Development Fund. This work is partially supported by EU under the COST Program Action
IC1305: Network for Sustainable Ultrascale Computing (NESUS)
Author’s addresses: Kenneth O’Brien, Ravi Reddy, and Alexey Lastovetsky, School of Computer Science,
University College Dublin, Belfield, Dublin 4, Ireland
Ilia Pietri and Rizos Sakellariou, School of Computer Science, The University of Manchester; Kilburn Build-
ing, Oxford Road, Manchester, M13 9PL, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© YYYY Copyright held by the owner/author(s). 0360-0300/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 K. O’Brien et al.

they do to power their servers [Dat 2015]. According to a 2010 DOE Office of Science
report [DOE 2010] on the challenges and opportunities of building and using exaflop
supercomputers, “All of the technical reports on exascale systems identify the power
consumption of the computers as the single largest hardware research challenge. To
achieve an exascale system using current technology, the annual power cost to operate
the system would be above $2.5 billion per year.” Therefore, energy has now become
the leading concern for HPC system designs also [DOE 2010].

To address the new concerns of power consumption and energy efficiency (perfor-
mance/watt) while continuing to provide unprecedented performance, most of the
extreme-scale high performance scientific computing systems today (especially su-
percomputers [Top500 2015]) have multicore CPUs tightly integrated with accelera-
tors (GPUs, Xeon Phis, FPGAs, etc.). However, such tight integration has rendered
these systems highly heterogeneous and hierarchical where resource contention, non-
uniform memory access (NUMA), limited accelerator memory, and low bandwidth of
communication links (PCIe) between the host (multicore CPU) and accelerators have
become inherent characteristics.

Figure 1 shows the architecture common in supercomputers today highlighting these
complications from modeller’s and programmer’s point of view:

— The nodes are connected to each other by a fast interconnect where each node has
multiple processors with shared memory space. Components in a node are managed
by a chipset and are connected via a PCI-Express bus [PCIE 2003].

— A node has multiple CPUs. Each CPU has multiple number of cores, which share
resources. Each CPU has multiple levels of caches with smaller, faster caches closer
to a core and larger, less fast caches shared by cores.

— Memory access from cores on a CPU to the memory controlled by another CPU hap-
pens via a high-speed on-chip interconnect such as
(1) QuickPath Interconnect (QPI) [QPI 2008] from Intel
(2) HyperTransport (HT) [AMDHT 2001] from AMD

— CPUs have a memory controller integrated into them. Multiple channels are used
to increase memory bandwidth. Multiple DIMMs are used to increase capacity per
channel.

— The CPUs are connected to one or more accelerators with limited memory by a low
bandwidth communication link (PCIe).

— The accelerators have unique architectures with their own hierarchical memory
structures. For example, the NVIDIA Kepler GK210 architecture [GK210 2014] has
the following features:
(1) 15 Streaming Multiprocessors (SMX) and six 64-bit memory controllers.
(2) The total amount of configurable on-chip memory per SMX is 128 KB. The al-

lowed memory configurations are 112 KB shared memory and 16 KB of L1 cache,
96 KB shared memory and 32 KB L1 cache, and 80 KB of shared memory and 48
KB L1 cache.

(3) Each SMX also has a read-only data cache of 48 KB.
(4) 1536 KB of dedicated L2 cache memory.
(5) 12 GB GDDR5 DRAM memory.

— Two accelerators on the same PCIe bus can transfer data directly between their mem-
ories avoiding any copies to system memory. Data can be transferred across a net-
work between two accelerators in different nodes bypassing host memory altogether.
For example: GPUDirect versions introduced in CUDA4.0 and CUDA5.0 [CUD 2015]
provide these capabilities.

As one can see, the node architecture has become highly heterogeneous and hierar-
chical (two-level with components and architectural units within a component). Need-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:3

Fig. 1 The hierarchical and heterogeneous node architecture of extreme-scale comput-
ing systems.

less to say, modelling the power and energy consumption of such a node is a complex
task. There exist several research efforts modelling component-wise power and energy
consumptions of a node. Models ([Bellosa 2000], [Isci and Martonosi 2003], [Heath

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 K. O’Brien et al.

Table I Table of contents for the survey
Section No. Description
2 The salient characteristics we use to classify predictive

power and energy models in this survey
3 Power and energy predictive models for CPUs
4 Power and energy predictive models for GPUs
5 Power and energy predictive models for Xeon Phis and

FPGAs
6 Analytical energy predictive models
7 Power and energy predictive models for high perfor-

mance computing applications
7.1 Interconnects and Communications
8 Related surveys
9 A case study examining the potential accuracy and rel-

evance of performance monitoring counter (PMC) based
models for modern node architectures

10 Discussion
11 Conclusion

et al. 2005], [Economou et al. 2006], [Fan et al. 2007], [Wang et al. 2010], [Basmad-
jian et al. 2011], [Bircher and John 2012]) deal with power consumption on single-core
CPUs and multicore CPUs. Models ([Hong 2010], [Chen et al. 2011], [Kasichayanula
et al. 2012], [Nagasaka et al. 2010], [Song et al. 2013], [Wang and Cao 2015]) focus
on power consumption of accelerators such as GPUs. Many models attempt to provide
per-unit decomposition of a nodal component by correlating the power consumption of
a unit with the hardware performance events associated with it ([Isci and Martonosi
2003], [Heath et al. 2005], [Lee and Brooks 2006], [Economou et al. 2006], [Hong 2010],
[Chen et al. 2011], [Kasichayanula et al. 2012], [Song et al. 2013]).

Models predicting the power consumption of a node construct the model by a sim-
ple summation of the power models of its components. Few research efforts have at-
tempted to model the power consumption of the low-bandwidth links between multi-
core CPUs and accelerators ([Song et al. 2013]). Many models use linear correlation
(multiple linear regression methods) between power and energy consumption and per-
formance counters associated with various architectural units of a component. Some
models ([Chen et al. 2011], [Song et al. 2013], [Wang and Cao 2015]) try to capture the
hierarchical nature of a node by incorporating non-linearity in their design. However,
the non-linearity is built into these models through explicit use of methods such as ar-
tificial neural networks, fuzzy wavelet neural networks, random forest methods, etc.,
where output is expressed as a non-linear function of inputs rather than considering
methodically the hierarchical nature and resource contention of components in a node.

Through this survey, we endeavour to synthesize these research efforts by extracting
common but crucial features of these models. By doing so, we also aim to capture and
highlight their shortcomings.

We classify the models in our survey based on the dominant components at the level
of node architecture which is our primary focus area. The rest of the paper is organized
as shown in Table I.

2. CLASSIFICATION OF POWER/ENERGY MODELS
Table II presents the most salient characteristics of the power and energy models that
we will focus in this survey. A model is represented by its bibliographical reference

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:5

Table II Salient characteristics of the power and energy models.
Model Characteristic Description
Model Name of the model and year of publication
Parameters Parameters of the model
Level of abstraction How the model captures the hierarchical nature of modern

processor architectures?
Type of power Is the predicted power instantaneous or average?
Is energy predicted? Is Energy predicted? If yes, how?
Decomposition Does the model provide per-component power and energy

breakdown?
Accuracy of
power predic-
tion

Accuracy
of dynamic
power pre-
diction

The maximum percent error in the dynamic power prediction
calculated from the total power and static power consump-
tions reported by the authors

Accuracy of
total power
prediction

The maximum percent error in the total power prediction re-
ported by the authors

Accuracy of energy prediction The maximum percent error in the energy prediction reported
by the authors

Implementation Complex-
ity (effort-week/effort-
month/effort-year
(EW/EM/EY))

The implementation effort required to build the model

Portability Is the model portable to next-gen processors in the same ar-
chitecture space?

and its parameters. Some of the models that we surveyed have a large set of model
parameters. To avoid hampering the flow of our paper, self-contained explanations for
each of the parameters are not included. We advise the readers to consult the original
sources. However, we decided to provide the full list of the parameters (Appendix D) for
each model due to two reasons. Firstly, the effort spent to distil the parameters from
their source was considerable. Secondly, such complete enumeration of parameters for
a model would hopefully assist one in building it with minimal effort.

The characteristic Level of abstraction specifies how the model captures the inherent
hierarchical and heterogeneous nature of modern processor architectures.

— Linear Independence - All the components of a node are modelled independently. The
model for a node is a linear combination of the models of its components.

— Linear Dependence - The components of a node are modelled taking into account the
dependencies (shared structures) between them and expressing these dependencies
linearly. For example:
— The models for CPUs are constructed taking into account the shared resources

(Last level cache) between them.
— For an application employing both CPUs and accelerators, the models for CPUs

and the accelerators are constructed taking into account the shared resources (last
level cache) between the CPUs and the communication link (PCIe) connecting the
CPUs and the accelerators.

— Non-linear Independence - All the components of a node are modelled independently.
However, the model for a node is a non-linear combination of the models of its com-
ponents.

— Non-linear Dependence - This is the most complex model. The components and de-
pendencies between them (shared resources, communication links) are modelled
non-linearly by taking into account their inherent hierarchical and heterogeneous
nature.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 K. O’Brien et al.

The model characteristic Type of power specifies if the predicted power is instanta-
neous or average. The average power during a time duration ∆T is defined as the total
amount of energy ∆E consumed during the time duration ∆T and is given by ∆E/∆T .
The instantaneous power is the limit of the average power as the time interval ∆T
tends to zero:

Pinstantaneous = lim
∆T→0

Pavg = lim
∆T→0

∆E/∆T = dE/dt (1)

In the context of power prediction at application level, average power can be defined
as total amount of energy consumed during the execution of an application (∆E) di-
vided by the total execution time of the application (∆T). However, there is no clear-cut
definition for instantaneous power. We can define it as the power at any instant (in-
finitesimal time interval) during the execution of an application. For the models classi-
fied as predicting instantaneous power in this paper, the time interval is considered to
be one second since this was the granularity of system utilization measures (also the
sampling interval of power meters) that were the basis of these models.

If a model predicts only the average total power consumption, it is imperative that
authors of the model make known the total execution times (∆T) of their test appli-
cations used to build and validate the model. This is because the true accuracy of a
model is determined by how closely it exemplifies the fluctuations in power consump-
tions during smaller durations (small multiple of seconds). For an application execut-
ing for a long duration (hours to days), the prediction error reported although accurate
for such long runs may not, however, truly represent the model’s prediction ability for
all ranges of execution times. That is, a model that is built solely from a training set of
applications with large execution times (For example: highly compute-bound BLAS3
routines for large dense matrices) may not accurately capture the minute fluctuations
in power consumptions of some applications (especially those executing on accelerators
that complete within seconds or even fraction of a second).

There are two types of power consumptions in a component: dynamic power and
static power. Dynamic power consumption is caused by the switching activity in the
component’s circuits. Static power is the power consumed when the component is not
active or doing work. Static power is also known as idle power or leakage power or
base power. Some authors [Molka et al. 2010] differentiate baseline power consumption
from idle power consumption. They define baseline power consumption as the “lowest
possible power consumption of the whole system with all processor cores in C0 state
(operating state, CPU fully turned on)” and idle power consumption as the “lowest
possible power consumption of the whole system with all processor cores in deep sleep
states (C3-C6) [ACPI 2015]”.

To remove any confusion, we would like to clarify our definitions further. From an
application point of view, we define dynamic and static power consumption as the
power consumption of the whole system with and without the application execution
respectively. From the component point of view, we define dynamic and static power
consumption of the component as the power consumption of the component with and
without the application utilizing the component during its execution respectively. For
example, supposing we want to determine the static power consumption of an accel-
erator in a node. First, the accelerator is removed and the power consumption of the
whole system is measured using a power meter. Then, the accelerator is inserted into
the node and the power consumption of the whole system is again measured using a
power meter. The difference gives the static power consumption of the accelerator. To
determine the dynamic power consumption of an accelerator during an application ex-
ecution, the static power consumption of the accelerator is subtracted from the power
consumption of the whole system during the application execution.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:7

In this paper, when we refer to power consumption of a component or an applica-
tion, we mean the total power consumption, which is a summation of dynamic and
static powers. Unless otherwise specified explicitly, the models report predicted power
consumption in watts.

The model characteristic Is energy predicted? specifies if the models predict the en-
ergy consumption. If yes, then how is it predicted?

— Power × Timing - By constructing power and timing models and composing the en-
ergy model from these individual models.

— Explicit - By explicitly modelling the energy consumption without any reference to
power consumption.

The model characteristic Decomposition specifies the various architectural units of
the nodal components whose power and energy consumptions are modelled. Some
models model just the power consumption of a node without decomposing it further
whereas some models model the power consumption of all the architectural units com-
posing a nodal component (For example, all the architectural units within a CPU or a
GPU, etc.). Some models try to model all the components of a node and all the archi-
tectural units within a component. In this case, they may take into account the com-
munication links between the architectural units within a component (For example,
on-chip interconnect, high-speed buses, etc.) and/or the low-bandwidth links between
the components (For example, PCIe link between a multicore CPU and an accelerator).
This model characteristic is presented separately in Appendix D.

The accuracy/error of prediction reported by a model is calculated using the formula:

Percent error of prediction =
|Actual value - Predicted value|

Actual value
× 100 (2)

where Actual value is the value measured directly using a power meter and Predicted
value is the value predicted by the model.

The total power consumption of an application is a sum of dynamic and static power
consumptions. The static power consumption is a constant and does not change dur-
ing the execution of the application. Some papers ([Bertran et al. 2013], [Hong 2010],
[Chen et al. 2011], [Kasichayanula et al. 2012], [Lim et al. 2014]) report the static
power consumption as well as the total predicted power consumption of an application,
which allows us to calculate the predicted dynamic power consumption and thereby its
prediction error. We therefore split the model characteristic Accuracy of power predic-
tion into two categories: Accuracy of dynamic power prediction which is the maximum
error in prediction of dynamic power consumption calculated from the static power and
the total power consumptions reported by the authors and Accuracy of total power pre-
diction which is the maximum error in prediction of total power consumption reported
by the authors.

We make this differentiation because static power being a constant will be the same
for all models and therefore, for the sake of truthfulness, the models should be com-
pared based on their prediction accuracy of dynamic power consumption. We elucidate
this subtlety using two examples from published results. In our first example, consider
a model that reports predicted and measured total power consumption of a GPU to be
165W and 180W, respectively. It would report the prediction error to be 8.3%. However,
if it is known that the static power of the GPU is 90W, then the actual prediction error
(based on dynamic powers only) would be double, 16.6%.

In our second example, consider two different power models (A and B) with same
prediction errors of 5% for an application execution on two different machines (A and
B) with same total power consumption of 100W. One would consider both the models to
be equally accurate. But supposing it is known that the dynamic power proportions for

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 K. O’Brien et al.

the machines are 30% and 60%. Now, the true prediction errors (using dynamic powers
only) for the models would be 16.6% and 8.3% respectively. Therefore, the second model
B should be considered more accurate than the first.

However, we also would like to take nothing away from the research works that are
dedicated to predicting static power. Predicting static power can be quite challenging.
There are numerous models researching this topic in the field of digital design and can
be a subject for a separate research survey. Our main goal of this work is application-
level models for HPC systems and applications that are solely dedicated to predicting
dynamic power.

The model characteristic Accuracy of energy prediction is the maximum error in pre-
diction of total energy consumption reported by the authors. Unless otherwise stated
explicitly, the models report predicted energy consumption in watt seconds or joules.

The model characteristic Implementation Complexity expresses a rough estimate of
the effort made by an experienced researcher in implementing the model. Some models
that we survey involve painstaking efforts on the part of a programmer to accurately
build the model experimentally. For example, models that use PMC-based approach
require the model-writer to design a meticulously-written micro-benchmark test suite
that stress the various architectural units to determine the access rates of the compo-
nents. Models that use sophisticated regression and artificial neural network methods
demand the model-writer to not only possess or acquire practical knowledge of these
methods but also to carefully pick a diverse set of kernels (from well-known bench-
marks as well as real applications) to train the models.

The model characteristic Portability can have many connotations. Here, we refer to
its reuse and its ability to predict the power and energy consumption of next gen-
eration processors in the same architecture space. That is, a model designed for a
NVIDIA GT200 processor should be applicable for newer generations of processors
such as Fermi, Kepler, and Maxwell in order to be considered portable. A model de-
signed specially for a single-core CPU may not be applied straight-forwardly to mul-
ticore CPU even though such a model can be used as a foundation for modelling the
power and energy consumptions of individual cores in a multicore processor. Such mod-
els would be considered non-portable. However, when we define portability, we do not
mean generality of the model to be able to predict power consumption for all proces-
sor architectures. Even though it is ideal to have such a model, we don’t expect that
a model designed for multicore CPUs would also be used for modelling GPU architec-
tures. If we apply the criterion of generality, all the models in this survey would fail
to satisfy it. Most of the models in our survey use hardware performance events as
model parameters and we have rated them to be portable since all processors today
come with a large set of diverse performance events. However, these models are not
portable across architectures and hence not generic since performance events differ
between architectures.

3. POWER AND ENERGY MODELS FOR CPUS
For more than three decades prior to mid-2000s, computer users came to expect per-
formance doubling every 18 months due to Moore’s law [Moore 1965] and Dennard
scaling [Dennard 1974]. Both clock rate and power increased rapidly. Power and en-
ergy models appeared in early 2000s addressing the increasing power dissipation for
single-core CPU processors.

However, by 2004, computer designers hit the power wall caused by problems stem-
ming from increasing power consumption and increasing power density (amount of
power dissipated per unit area, which represents the heat dissipation). The power
problem was caused primarily by the breakdown of Dennard scaling, a scaling model
whereby the power density of a transistor based processor of a unit area remains con-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:9

stant due to voltage and current scaling down with the length of the transistor. Up un-
til 2004, moving to a smaller transistor process meant frequency could be increased for
no increase in heat dissipation. The breakdown of Dennard scaling meant frequency
scaling was no longer economical. The chip fabrication industry turned to multicore
CPU architectures to address this problem of increased power consumption and power
density. Frequency scaling was abandoned in favour of multiple processors per chip.
Subsequently, power models for multicore CPUs started appearing towards late 2000s.
The majority of these models focused on the CPU since it was the dominant component
in terms of power consumption. Table III shows the salient features of these models
under the heading “CPU”.

Unfortunately, there are limits to multicore scaling too. As it continues, power con-
straints will prevent “powering of all cores at their full speed, requiring a fraction of
the cores to be powered off at all times” [Esmaeilzadeh et al. 2011] forming the “Uti-
lization Wall” or “Dark Silicon”. The challenges posed by “Dark Silicon” could be ad-
dressed by heterogeneous architectures where general-purpose cores are augmented
by specialized accelerators that offer outstanding performance-per-watt. These hetero-
geneous architectures have now become the dominant paradigm in extreme-scale high
performance computing systems. We cover accelerators in later sections.

Before we survey the models, we trace briefly the roots of modelling power consump-
tion. This would give us hints as to how all these models happened to adopt the domi-
nant approach of predicting power consumptions based on utilizations or activity fac-
tors estimated from hardware performance counters. In the late 1990s, architecture-
level power models were developed in simulators to estimate power and energy mirror-
ing cycle-level architecture simulation of performance. The Cacti tool [Muralimanohar
et al. 2007] originally written to study latencies of caches in detail subsequently pro-
vided their dynamic power and leakage power models. In 2000, whole-processor power
simulators, SimplePower [Vijaykrishnan et al. 2000] and Wattch [Brooks et al. 2000],
appeared. SimplePower focused on in-order pipelined processor and provided detailed
dynamic power models of integer ALU and other architectural units; the Wattch tool
simulated an out-of-order super-scalar pipeline. While both simulators used analytical
methods for modelling power, IBM’s PowerTimer [Brooks et al. 2001] used empirical
techniques. It predicted power consumption of an architectural unit based on mea-
sured power consumption of similar unit in an existing microprocessor and scaling it
appropriately taking into account variations in size and design. However, simulators
had some drawbacks, chief among them being their speed of exploration and their lack
of rapid adaptability and sustainability to fast-changing hardware architecture land-
scape. An appealing alternative route was allowed by direct physical measurements
of power consumption using power meters. Although power meters provided the total
power consumption of the system, one major challenge remained as to how to decom-
pose this power into unit-level power consumptions. To address this challenge, the
performance monitoring counter (PMC) based approach estimating power consump-
tions of architectural units based on their activity factors was invented and eventually
became the core of dominant models today. The accelerated adoption of this approach
was however made possible by the simultaneous provision of hardware performance
counters (almost akin to standardization) by all the major hardware vendors.

One of the first models correlating hardware event counters to energy values was
developed by [Bellosa 2000]. Their model is based on events such as integer operations,
floating-point operations, memory requests due to cache misses, etc. that they believed
to strongly correlate with power consumption. To trigger these events, special micro-
benchmarks are written and executed for several seconds.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A
:10

K
.O

’B
rien

etal.

Table III Power and Energy Models. ‘-’ indicates not reported.

Model Level
of Ab-
strac-
tion

Type of Power Is Energy
Predicted?

Accuracy
of Power
Predic-
tion

Accuracy
of Energy
Predic-
tion

Implementation
Complexity Portability

Dynamic Total
CPU
[Bellosa 2000] Linear Inde-

pendence
Average Explicit - - - 1 EM Yes

[Isci and
Martonosi
2003]

Linear Inde-
pendence

Instantaneous,
Average

No - - - 3 EM No

[Heath et al.
2005]

Linear Inde-
pendence

Instantaneous No - 2.7% - 1 EW No

[Economou
et al. 2006]

Linear Inde-
pendence

Instantaneous No - 15% - 1 EW No

[Lee and
Brooks 2006]

Linear Inde-
pendence

Average Power × Tim-
ing

- 24.5% - 1 EM No

[Fan et al.
2007]

Linear Inde-
pendence

Instantaneous No - - - 1 EW No

[Fan et al.
2007]

Non-linear In-
dependence

Instantaneous No - - - 1 EW No

[Lewis et al.
2008]

Linear Inde-
pendence

Instantaneous Yes - - 4% 1 EW Yes

[Wang et al.
2010]

Non-linear In-
dependence

Instantaneous No - - - 1 EW No

[Basmadjian
et al. 2011]

Linear Inde-
pendence

Instantaneous No - 9% - 1 EM Yes

[Basmadjian
and de Meer
2012]

Linear Depen-
dence

Average No - 4% - 1 EM Yes

[Bertran et al.
2013]

Linear Inde-
pendence

Average No 14% 10.15% - 3 EM Yes

[Bircher and
John 2012]

Non-linear In-
dependence

Instantaneous,
Average

No - 14.1% - 3 EM No

GPU
[Hong 2010] Linear Inde-

pendence
Average Power × Tim-

ing
18% 8.94% - 3 EM No

[Nagasaka
et al. 2010]

Linear Inde-
pendence

Average No - 23% - 3 EM Yes

A
C

M
C

om
puting

Surveys,V
ol.V,N

o.N
,A

rticle
A

,P
ublication

date:January
Y

Y
Y

Y.

A
S

urvey
ofPow

erand
E

nergy
P

redictive
M

odels
in

H
P

C
S

ystem
s

and
A

pplications
A

:11

[Chen et al.
2011]

Non-linear In-
dependence

Average No 12.95% 7.77% - 3 EM Yes

[Zhang et al.
2011]

Non-linear In-
dependence

Average No - 4.34% - 3 EM Yes

[Kasichayanula
et al. 2012]

Linear Inde-
pendence

Average No 24% 12% - 1 EM Yes

[Song et al.
2013]

Non-linear In-
dependence

Average Power × Tim-
ing

- 2.1% 11.02% 3 EM Yes

[Lim et al.
2014]

Non-linear In-
dependence

Average Yes 15.14% 12.8% - 3 EM Yes

[Wang and Cao
2015]

Non-linear In-
dependence

Average Power × Tim-
ing

- 6% - 3 EM Yes

Intel Xeon Phi
[Shao and
Brooks 2013]

Linear Inde-
pendence

Average Explicit - - 5% 3 EM No

HPC Applications
[Bui et al.
2008]

Linear Inde-
pendence

Average No - - - 3 EM Yes

[Subramaniam
and Feng 2010]

Linear Inde-
pendence

Average Power × Tim-
ing

- 5.6% - 1 EM No

[Tiwari et al.
2012]

Non-linear In-
dependence

Average Explicit - 5.5% 7% 3 EM Yes

[Lively et al.
2012]

Linear Inde-
pendence

Average No - 4.94% - 2 EW Yes

[Gamell et al.
2013]

Linear Inde-
pendence

Average Power × Tim-
ing

- - 1.41% 1 EM Yes

[Diouri et al.
2013]

Linear Inde-
pendence

Average Power × Tim-
ing

- - -6.82% 2 EM Yes

[Kestor et al.
2013a]

Linear Inde-
pendence

Average No - 10% - 3 EM Yes

[Gschwandtner
et al. 2014]

Linear Inde-
pendence

- Explicit - - 15% 2 EW Yes

A
C

M
C

om
puting

Surveys,V
ol.V,N

o.N
,A

rticle
A

,P
ublication

date:January
Y

Y
Y

Y.

A:12 K. O’Brien et al.

During the execution of micro-benchmarks, the power and energy consumptions of
the whole system are measured using a multimeter. Their synthetic calibration soft-
ware called Joule Watcher correlates the events and energy measurements. // [Isci
and Martonosi 2003] propose a methodology to determine unit-level power estimates
based on hardware performance counters. They select 22 strictly collocated physical
units based on an annotated P4 die photo. Their power model is constructed as fol-
lows:

TotalPower =

22∑
i=1

Power(Ci) +BasePower (3)

where a unit power prediction is based on the following equation:

Power(Ci) = AccessRate(Ci)×ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci) +BasePower
(4)

The parameter, BasePower, is the base power consumption of the Pentium 4 platform
used in their experiments. The parameter, (ArchitecturalScaling(Ci)), is a conditional
clock power factor used to model the non-linear behaviour of some issue logic units. The
values of the parameters, MaxPower(Ci) and NonGatedClockPower(Ci), are obtained
for each of the units using physical areas on the die and training benchmarks.

[Lee and Brooks 2006] adopt a statistically rigorous approach to derive regression
models using PMC to predict power. Their approach is two-pronged. First, they derive
a baseline model using various statistical techniques to determine the predictors. Af-
ter having derived this baseline model, they optimize it further by reformulating it
using different sampled observations. They report a median error rate of 4.3% and a
maximum error of 24.5%.

A linear model that is based on the utilization of CPU, disk, and network is proposed
in [Heath et al. 2005]. The power consumed by a node can be described using the
formula:

P = Cbase + C1 × UCPU + C2 × UDisk + C3 × UNet (5)

where Cbase is the base power consumption of a node and the coefficients C1, C2, and
C3 for power consumptions of CPU, disk, and network, respectively are determined
using several benchmarks. The server cluster used in their experiments is composed
of four PCs with Pentium III processors and four blade servers with Celeron proces-
sors. The power consumed by it is calculated as the sum of power consumptions of all
the hardware resources in it. Several micro-benchmarks are used to stress each re-
source individually in different ways. Total power measurements and utilization data
for CPU, disk, and network are collected using a multimeter to compute the least-
squares fit and to determine the coefficients of the model. Reported average and max-
imum prediction errors of the models were 1.3% and 2.7% respectively.

A more complex power model (Mantis) is proposed in [Economou et al. 2006] relying
on the utilization metrics of CPU, disk, and network components and hardware perfor-
mance counters for memory. Here, the general model can be described as follows:

P = Cbase + C1 × UCPU + C2 × UMem + C3 × UDisk + C4 × UNet (6)

where Cbase is the base power consumption of a node and UCPU , UMem, UDisk, and
UNet are the CPU, memory, disk, and network utilizations respectively. The models
were calibrated for two server systems using idle runs and different configurations
of Gamut [Moore 2004] to emulate applications with varying resource needs. Several
benchmarks (SPECcpu2000, SPECjbb2000, and SPECweb2005 suites) [SPEC 2015]
and STREAM benchmark [Stream 2015]) were used in the evaluation.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:13

[Fan et al. 2007] propose a simple linear model that correlates power consumption
of a single-core processor with its utilization. In this model, power consumption is
modelled as follows:

PCPU = Pbase + (Pmax − Pbase)× (U/100) (7)

where Pbase is the base power consumption of a processor and Pmax represents the
power consumption at maximum utilization. The parameter, U , signifies the utilization
of the processor. They refine these models further as follows:

P = Cbase + C1 × (2× UCPU − UrCPU) (8)

where an empirical term is added to increase the accuracy of the model. The tuning
parameter r is obtained during calibration using a model similar to Mantis [Economou
et al. 2006].

[Lewis et al. 2008] propose a linear regression energy model and validate it for a
dual-core AMD Opteron processor architecture. Their model can be described as fol-
lows [Lewis et al. 2008]:

E = a× (ECPU + EDRAM) + b× Eem + c× ESupport Chipsets + d× EHDD (9a)

EHDD = Pspin−up × tsu + Pread ×
∑

Nr × tr + Pwrite ×
∑

Nw × tw + Pbase × tbase
(9b)

Eem =
∑

Pfan × tipmi−slice +
∑

Poptical × toptical (9c)

ECPU is the energy consumption of the dual-core AMD Opteron processor. It is
predicted from four key contributors. These are traffic on the HyperTransport bus
[AMDHT 2001], L2 cache misses, CPU core temperatures, disk read and write band-
widths, and ambient temperatures. Emem is the energy consumed by the DRAM banks.
Eem is the energu consumption of the cooling fans and optical drives. EHDD is the en-
ergy consumption of the disk predicted from four components: 1). Pspin−up, the power
consumption to spin the disk to full rotation and tsu is the time taken for the spin-up,
2). Pread is the power consumption to read kilobyte of data from the disk, 3). Pwrite is
the power consumption to write kilobyte of data to the disk, and 4). Pidle is the base
power consumption of the disk [Lewis et al. 2008]. They report a worse-case prediction
error of 4% for common processor benchmarks.

Energy profiling for applications using CPU and disk activity is the subject in
[Kansal and Zhao 2008]. The profiling tool consists of a workload manager that triggers
the measurement process and event tracing related to OS operations, such as CPU and
disk I/O usage, the event logger for event logging using Windows Xperf [WINXPERF
2015], and the energy profiler that correlates resource usage with the event traces and
profiles application energy usage across the various resources.

[Rivoire et al. 2008], [Rivoire 2008] study and compare five full-system real-time
power models using a variety of machines and benchmarks. Four of these models are
utilization-based whereas the fifth includes CPU PMCs in the model parameter set
along with the utilizations of CPU and disk. They report that PMC-based model is
the best overall in terms of accuracy since it is able to account for majority of the
contributors to system’s dynamic power (especially the memory activity). They also
question the generality of their PMC-based model since the PMCs used in their model
parameter set may not have the same essence across different architectures (Intel,
AMD).

A linear model that takes into account CPU utilization and I/O bandwidth is de-
scribed in [Wang et al. 2010] to predict power consumption of a server. The model is

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 K. O’Brien et al.

based on the work in [Kansal and Zhao 2008] and can be described as:

P = Cbase + C1 × UCPU + C2 × UI/O (10)

where Cbase is the base power consumption of a node, UCPU the CPU utilization of the
server, UI/O the I/O bandwidth in MB/sec, and C1, C2 the coefficients of the model. A
wattsup power meter is used to measure overall power consumption of the servers and
to calibrate the model.

[Basmadjian et al. 2011] construct a power model of a server as a summation of
power models of its components, the processor (CPU), memory (RAM), fans, and disk
(HDD). Based on the model evaluations on tower and blade servers, the authors report
maximum prediction error rates of 8% and 9% for tower servers and blade servers
respectively. This model is presented in detail in Appendix A.1.

[Bertran et al. 2010] present a power model that provides per-component power
breakdown of a multicore CPU. It can be described as follows:

Ptotal =

j=cores∑
j=1

((

i=ncomponents∑
i=1

ARij × Pi)) + Pbase (11)

The parameter ARij is the activity ratio of component i in core j. The dynamic power
consumption of a component i in core j is given by the product, ARij × Pi. Pbase rep-
resents the base power consumption of the system. The parameter, ncomponents, rep-
resents the number of components accommodated in their model. They report that
apart from facilitating decomposability (per-component power breakdown), their mod-
els are perceptive to power phase changes. Based on the validation of their models
using SPECcpu2006 benchmarks [SPEC 2015], they report average prediction errors
between [1.89-6]% and a maximum error of 10.15%.

[Bircher and John 2012] propose an iterative modelling procedure to predict power
using PMCs. They use PMCs that trickle down from the processor to other subsystems
such as CPU, disk, GPU, etc and PMCs that flow inward into the processor such as Di-
rect Memory Access (DMA) and I/O interrupts. The highest error reported is 14.1% for
the memory controller and the average error reported is less than 9% per subsystem.

[Basmadjian and de Meer 2012] report that summation of power consumptions of all
active cores to derive the total power consumption is inaccurate and take into account
resource sharing in their power prediction model for multicore processors. They report
a maximum prediction error of 5%. [Wang and Shi 2012] present a energy consump-
tion model using three parameters, which are the concurrency level of the workload,
the average power dissipation of a thread, and the total time taken to execute the
workload. [Liu et al. 2013] present a method to predict the energy consumption of a
task executing in a multicore with several other tasks running simultaneously. Their
method use the resource utilization and occupancy of a task to predict its energy con-
sumption. On a 32-core multicore, they report an average and maximum errors of 4%
and 9% respectively. [Li 2015] use queueing theory to model the power consumption of
multicore processors. They treat a multicore server processor as an M/M/m queueing
system with multiple servers.

Several other research efforts use PMC approach to model power consumption. [Gu-
rumurthi et al. 2002] use analytical power models for CPU, memory, and disk in their
power simulator called SoftWatt to predict power consumptions of applications and OS
services. [Li and John 2003] propose power models for the operating system (OS) based
on their observations of strong correlation between instructions per cycle (IPC) and
OS routine power. [Singh et al. 2009] develop per-core power models based on multiple
linear regression using PMCs. [Powell et al. 2009] use a linear regression model to es-
timate activity factors and power for a large number of micro-architectural structures

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:15

using a small number of PMCs. [Goel et al. 2010] derive per-core power models using
PMC values and temperature readings. [Roy et al. 2013] propose an energy model for
an algorithm, which expresses the energy for an algorithm as a weighted linear com-
bination of the time complexity of the algorithm and the number of “parallel” accesses
to the memory. [Spiliopoulos et al. 2011] propose linear regression models that predict
power consumption for any DVFS voltage and frequency combination supported by a
computing platform.

[McCullough et al. 2011] evaluate the competence of predictive power models for
modern node architectures and show that linear regression models show prediction
errors as high as 150%. They suggest that direct physical measurement of power con-
sumption should be the preferred approach to tackle the inherent complexities posed
by modern node architectures. [Dargie 2015] use the statistics of CPU utilization (in-
stead of PMCs) to model the relationship between the power consumption of multi-
core processor and workload quantitatively. They demonstrate that the relationship is
quadratic for single-core processor and linear for multicore processors.

Finally, hardware vendors now provide software interfaces to measure and control
power and energy consumption of their processors. However, due to the disparate capa-
bilities and the non-uniformity of these interfaces, there is a real need for standardiza-
tion to facilitate development of supporting infrastructures and tools. [PowerAPI 2016]
is the first large-scale effort in this direction. PowerAPI is an interface for standard-
izing power and energy measurement and control for wide range of systems spanning
desktops and datacenters to large-scale HPC systems.

Some key observations follow from the analysis of these models:

— The models [Economou et al. 2006] and [Basmadjian et al. 2011] have high predic-
tion error accuracy than [Heath et al. 2005] even though these models are more
comprehensive by accounting for the power consumption from RAM.

— There is a noticeable difference between the power prediction accuracies of the mod-
els [Economou et al. 2006] and [Basmadjian et al. 2011], even though they both take
into account all the major resource utilizations (CPU, RAM, Disk, NIC).

— The model [Basmadjian et al. 2011] has a higher prediction error accuracy than the
model [Bircher and John 2012], which employs a complex PMC-based approach to
model power consumption of all the architectural units of a CPU.

4. POWER AND ENERGY MODELS FOR GPUS
GPUs are now an integral part of high performance computing systems due to their
enormous computational powers and energy efficiency (performance/watt). In a node,
the GPU is used as a coprocessor and is connected to a CPU through a PCI-Express
(PCIe) bus. Work is offloaded to the GPU from a CPU. Table (III) shows the salient
features of the GPU models under the heading “GPU”.

[Rofouei et al. 2008] use a linear model to calculate the energy consumption of a
GPU in their server from real-time energy measurements. The linear relationship is
presented below:

Egpu = tgpu × (Pavg−gpu + Pbase−cpu) + Etransfer (12)

where tgpu, Pavg−gpu, Pbase−cpu, and Etransfer denote the time of execution of the appli-
cation on the GPU, average power consumption of GPU, base power consumption of
CPU, and the energy consumption of data transfer between CPU and GPU.

One of the first comprehensive models developed for a GPU architecture was by
[Hong 2010]. The GPU power consumption in their prediction model is modelled sim-
ilar to the PMC-based unit power prediction approach of [Isci and Martonosi 2003].
Their model is presented in detail in Appendix B. In their model, the power consump-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 K. O’Brien et al.

tion is calculated as sum of power consumptions of all the components composing the
Streaming Multiprocessor (SM) and GDDR memory. To demonstrate the accuracy of
their model, NVIDIA GTX280 GPU is used. They report that the prediction error for
the total power consumption is 8.94% and the average energy consumption savings
are 10.99%. The main factor hindering the portability of this model is that it requires
detailed architectural information and contains a large set of parameters.

[Nagasaka et al. 2010] present a statistical approach that uses GPU performance
counters exposed for CUDA applications to predict power consumption of GPU ker-
nels. The GPU used in the experiments was NVIDIA GeForce GTX 285. They report
an average error of 4.7% and a maximum error of 23% in prediction of total power
consumption.

[Chen et al. 2011] use linear regression tree and random forest methods in their
models to predict GPU power consumption. The random forest method is used to se-
lect the predictors that are the dominant contributors to the power consumption. The
Nvidia GTX 280 GPU was used for the experiments. They report an average percent-
age error (PE) of 7.77% for the total power consumption.

[Kasichayanula et al. 2012] propose an analytical model to estimate activity factors
and power for micro-architectural structures on GPUs. The key difference from the
model [Hong 2010] is that only two parameters, execution time and load rate, are
used to estimate unit-level dynamic power of a GPU. Their model can be described as
follows:

Total power consumption = DynamicPower +BasePower (13a)

DynamicPower =

n∑
i=1

(NSM,i × Pi × Ui) +Bi × Ui (13b)

where n is the number of architectural components, NSM,i is the number of streaming
processors utilizing an architectural component, Pi, Bi, and Ui are the dynamic power
consumption, base power consumption, and utilization of the architectural component
i respectively. A unit is defined as an architectural component such as a floating-
point unit (FP), shared memory (Shared), or global memory (GlobalMem). A micro-
benchmark is designed for each architectural unit stressing the unit to obtain its Pi
and Bi values. The utilization rates Ui of the units are obtained from the application
execution. The Fermi C2075 GPU and MAGMA kernels are used for model evaluation
in their experiments. The maximum error in predictions for the total power consump-
tion is reported to be 12%.

[Song et al. 2013] propose power and energy prediction models that employ a con-
figurable, back-propagation, artificial neural network (BP-ANN). The parameters of
the BP-ANN model are ten carefully selected PMCs of a GPU. The values of these
PMCs are obtained using the CUDA Profiling Tools Interface (CUPTI) [CUPTI 2015]
during the application execution. Their energy model for a GPU-based cluster can be
described as follows [Song et al. 2013]:

∀l,m, l ∈ Ψ,m ∈ Γ, E =

Ψ∑
l=1

[(

Γ∑
m=1

¯Pl,m × tgpu) + P̄base × tgpu + Eparallel−overhead] (14a)

tgpu = tpci + tkernel (14b)

Ψ represents the set of hybrid identical nodes where each node has multicore proces-
sors and multi-GPUs. The set of GPUs in a node is denoted by Γ. The parameter, tgpu,
represents the execution time of the application on the GPU cluster. ¯Plm denotes the
average dynamic power consumption of the mth GPU on node l. This is predicted using

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:17

BP-ANN using the PMCs. P̄base is the average base power consumption of the whole
system on node l without the GPU. The total execution time of the application, tgpu,
is the sum of PCIe data transfer time, tpci, and the kernel execution time, tkernel. The
parameter, tpci, is calculated as the size of the data transferred via the PCIe link di-
vided by the bandwidth of the PCIe link. The parameter tkernel is predicted using a
performance model. Eparallel−overhead represents the energy consumption from paral-
lel overhead due to network communications in the cluster. A NVIDIA Tesla C2075 is
used for model validation and analysis. The authors [Song et al. 2013] report an aver-
age prediction error rate of 2.1% for their power model and maximum prediction error
percentage of 11% for their energy model.

[Marowka 2013] present analytical models for studying the energy consumption of
various architectural design choices for hybrid CPU-GPU chips. Their model for per-
formance per watt for an asymmetric processor follows [Marowka 2013]:

Perf

Wa
=

1

Ps + Pc + Pg
(15a)

Ps = (1− f)(1 + (c− 1)× kc + g × wg × kg) (15b)

Pc =
α× f
c
× (c+ g × wg × kg) (15c)

Pg =
(1− α)× f

g × β
× (g × wg + c× kc) (15d)

c is equal to the total number of CPU cores and g is equal to the total number of GPU
cores. α represents fraction of program’s execution time spent in parallel execution on
the CPU cores. β is the GPU core’s performance normalized to that of the CPU core.
f represents is the execution time of the fraction of program that can be parallelized.
Ps represents the power consumption during the sequential computation phase. It is
equal to power of 1 consumed by one active CPU core plus remaining c − 1 CPU idle
cores consuming a fraction of power, kc, plus g idle GPU cores consuming fraction
of power, kg × wg. Pc represents parallel computation on CPU cores only. Pg denotes
parallel computation on GPU-cores only [Marowka 2013].

[Lim et al. 2014] enhance McPAT [Li et al. 2013] to write a power model for GPUs.
In their power model, the total average power is calculated as a sum of the power
consumptions of all the components. It can be described as follows:

TotalPower =

n∑
i=0

P Componenti = a× PSP fpu dyn + b× PSP fpu lkg+

c× PSP alu dyn + d× PSP alu lkg + e× PConstMem + POthers

(16)

where a, b, c, d, and e are scaling parameters. NVIDIAs Fermi architecture is used for
building the power model. They report average prediction errors of 7.7% and 12.8% for
the micro-benchmarks (used to build the model) and Merge benchmarks [Linderman
et al. 2008] respectively.

[Wang and Cao 2015] use the technique of program slicing to model GPU power
consumption. The source code of an application is decomposed into slices and these
slices are used as basic units to train a power model based on fuzzy wavelet artificial
neural networks (FWNN). So, unlike earlier research efforts which use PMCs, slicing
features are extracted from the programs and used in their model. They use three
GPUs for evaluation of their model but prediction error rates are not reported.

[Ma et al. 2009] use support vector regression (SVR) to predict the power consump-
tion of a GPU based on workload signals. They choose five major workload signals

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 K. O’Brien et al.

representing the runtime utilizations of major pipeline stages in a NVIDIA GeForce
8800gt GPU. [Li et al. 2011] present power and performance prediction models to iden-
tify an energy-efficient consolidation of workloads. [Xie et al. 2012] build a power model
based on native instructions to analyse and estimate the power consumption at an ar-
chitecture level. With proper profilers and tools, they identify major power contributors
in GPU architecture. These contributors are divided into two groups, i.e. computing
unit and memory access on which different native instruction were run and measured
separately as a foundation for their energy prediction model.

AMD GPUs are also used in many HPC systems. For example: three systems in
Top500 list ([Top500 2015] and two in Green500 [Green500 2015] use AMD FirePro
GPUs (the AMD Firepro Server S9150 also topped the November 2014 Green500 list).
However, power and energy models for these GPUs are abysmally lacking.

[Zhang et al. 2011] employ a rigorous statistical model to predict power consumption
of GPGPU applications executing on an ATI Radeon HD5870 GPU. They use a Random
Forest method to correlate the execution characteristics and the power consumption of
the GPU. They report a median absolute error of 4.34% for total power consumption.
[Zhao et al. 2013] examine the power breakdown using McPAT [Li et al. 2013] of dif-
ferent components of NVIDIA and AMD GPUs such as cores and caches, memory con-
trollers, and off-chip memory. Based on experiments on AMD Radeon HD7970, they
report that the off-chip DRAM accesses consume a significant portion (32 %) of the
total system power. To reduce the memory power consumption without compromising
the memory bandwidth, they scale down the supply voltage and frequency of memory
interface.

One observation from the analysis of these models is that even though both [Song
et al. 2013] and [Wang and Cao 2015] use sophisticated artificial neural network (ANN)
methods, there is a remarkable difference in their reported power prediction error
accuracies.

5. POWER AND ENERGY MODELS FOR XEON PHI AND FPGA
In this section, we cover the other accelerators that are used in high performance
computing systems.

Xeon Phi [XEONPHI 2015] is the competing offering from Intel in the accelerator
space based on Intel’s Many Integrated Core Architecture or Intel MIC. The Top 500
(November 2015) list contains 29 supercomputers using Xeon Phi. This list includes
the No.1 supercomputer Tianhe-2, which uses Xeon Phi 31S1P containing 57 cores
running at 1.1GHz. The current list (June 2016) has 23 supercomputers using Xeon
Phi with Tianhe2 moving to position No.2. Table (III) shows the salient features of the
models for Xeon Phi under the heading “Intel Xeon Phi”. We found just one energy
prediction model for this accelerator even though it appropriates an appreciable share
in the Top500 supercomputers. [Shao and Brooks 2013] construct an instruction-level
energy model of a Xeon Phi processor and report an accuracy between 1% and 5% for
real world applications.

FPGAs (Field Programmable Gate Arrays) are another acceleration technology that
holds immense promise for high performance computing platforms. They have cre-
ated the Reconfigurable Computing (RC) market segment, which exploited the inher-
ent parallelism and reconfigurability provided by them to “hardware accelerate” soft-
ware algorithms. High-Performance Reconfigurable Computing (HPRC) [HPRC 2015]
brought Reconfigurable Computing into the high-performance computing sphere by
combining FPGAs with multicore CPUs. In a node, the FPGA is used as a coprocessor
and is connected to a CPU through a PCI-Express (PCIe) bus.

[Mittal and Vetter 2015a] report that for several applications, FPGAs have demon-
strated better performance and energy efficiency than CPUs and GPUs. Table (IV)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:19

Table IV Power/Energy measurement infrastructures for the HPC applications on FP-
GAs

Model Power/Energy Measurement Infrastructure
[Thomas et al. 2009] Data sheet TDPs ([TDP 2015]) for FPGA, GPU, and

CPU
[Lange et al. 2009] Xilinx XPower Estimator for FPGA [XPE 2015]. For

CPU and GPU, power measured indirectly between
mains and Host PC power supply

[Hamada et al. 2009] No details of how power is measured
[Kestur et al. 2010] Wattsup? Pro power meter
[Betkaoui et al. 2010] Olson remote power monitoring meter for the whole sys-

tem
[Hussain et al. 2011] Data sheet TDP for GPU. No details of how power is

measured for FPGA and CPU
[Schryver et al. 2011] Xilinx XPower Estimator for FPGA [XPE 2015]. No de-

tails of how power is measured for GPU and CPU
[Duan et al. 2011] Fluke Norma 4000 Power Analyzer for the whole system
[Van Essen et al. 2012] Xilinx XPower Estimator 13.2 for FPGA [XPE 2015],

Data sheet TDPs for GPU and CPU
[Birk et al. 2012] Xilinx Power Estimater for FPGA [XPE 2015], data

sheet TDP for GPU.
[Zou et al. 2012] PC diagnostics software utility EVEREST for CPU. For

FPGAs and GPUs, a pincer galvanometer (equipment
type HIOKI3290)

[Benkrid et al. 2012] Power meter for the whole system
[Pauwels et al. 2012] No details of how power is measured
[Fowers et al. 2013] Monitoring a wattmeter

summarizes the power/energy measurement infrastructures used in the studies that
have compared the energy efficiency of FPGAs to CPUs and GPUs [Mittal and Vetter
2015a]. All of these works use direct physical measurements and none use models;
some use power estimators for FPGAs provided by the vendors; some however do not
specify how power consumptions were measured.

To the best of our knowledge, there are no linear regression models using PMCs be-
cause PMCs are not yet offered by FPGAs. [Ou and Prasanna 2004] construct a linear
energy prediction model based on instruction level energy profiling.[Poon et al. 2005]
present a hardware-level model, which uses a placement and routing CAD tool and in-
depth knowledge of FPGA architecture. [Wang et al. 2006] propose a linear component-
based model to predict energy consumption of a reconfigurable Multiprocessors-on-a-
Programmable-Chip (MPoPCs) implemented on Xilinx FPGAs. [Al-Khatib and Abdi
2015] propose a linear instruction-level model to predict dynamic energy consumption
for soft processors in FPGA. The model considers both inter-instruction effects and the
operand values of the instructions.

6. ANALYTICAL ENERGY MODELS
[Demmel et al. 2013] prove that a region of strong scaling in energy exists for matrix
multiplication and N-body problem. That is, they show that for a given problem size n,
the energy consumption remains constant as the number of processors p increases and
the runtime decreases proportionally to p.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 K. O’Brien et al.

[Choi et al. 2013] present an energy roofline model based on the time-based roofline
model [Williams et al. 2009]. Their models for time and energy can be described as
follows:

T = max(W × τflop, Q× τmem)

= W × τflop ×max(1,
Bτ
I

)
(17)

T denotes the running time of the algorithm (under the assumption of perfect overlap
between computations and memory operations).W andQ are the number of arithmetic
and memory operations respectively. I is the algorithm’s computational intensity. τflop
and τmem respectively are the time per flop and time per mop. Bτ is called the time-
balance point. Their energy model is presented below [Choi et al. 2013]:

E = W × εflop +Q× εmem) + π0 × T

= W × ε̂flop × (1 +
B̂ε(I)

I
)

(18)

εflop and εmem respectively are the energy per flop and energy per mop. B̂ε(I) is called
the effective energy balance. They conclude that the balance gap (BεBτ) represents the
difficulty in achieving energy efficiency compared to time efficiency. They validate their
model on on a Intel multicore CPU and a NVIDIA Fermi GPU. They use PowerMon2
apparatus [Bedard et al. 2010] for power and energy measurements.

[Choi et al. 2014] extend the roofline model by adding parameters such as power
caps, memory hierarchy access costs, and measurement of random memory access pat-
terns. They conduct a microbenchmarking study of time, energy, and power of compu-
tation and memory access for over dozen diverse platforms, which include x86, ARM,
GPU, and hybrid (AMD APU, SoC) processors. They conclude that constant power (or
base power) is a critical limiting factor accounting for about 50% of total power in 7
out of 12 platforms evaluated. Based on these conclusions, they recommend further
tighter integration of non-processor and non-memory components.

[Drozdowski et al. 2014] visualize models of energy consumption of computations
as two-dimensional maps similar to isotherms or isobars in weather maps. They call
these models, isoenergy maps which represent points of equal energy consumption in
a multi-dimensional space of system and application parameters. They use isoenergy
maps to study energy-performance trade-offs. They present isoenergy maps for three
models of parallel computations, Amdahl’s law, Gustafsons laws [Gustafson 1988], and
divisible loads representing data-parallel computations [Bharadwaj et al. 2003].

[Marszalkowski et al. 2016] analyze the impact of memory hierarchies on time-
energy trade-off in parallel computations. They formalize non-linear dependence of
execution time and energy on problem size. They use this formalization in their multi-
objective optimization problem of minimizing time and energy in parallel processing of
divisible loads. The total energy consumed is computed as sum of energy consumed by
the originator (initiator or resource allocator) and the energies consumed by the slaves
in idle, starting up, networking, and running states.

7. POWER AND ENERGY MODELS IN HIGH PERFORMANCE COMPUTING APPLICATIONS
In this section, we present studies for saving power and energy in HPC applications.
Previous sections dwelt on power and energy models for dominant components in a
node that predicted power and energy consumptions for all kinds of applications ex-
ecuting on these components. Our focus in this section is application-specific and our
purpose for surveying these studies is manifold.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:21

— Study how power and energy consumptions were measured (either via direct mea-
surements or models) for a node and for the whole cluster.

— Study how a power/energy model for a cluster is composed from the power/energy
models of nodes.

— Compare the prediction error accuracy of application-specific models to application-
agnostic (i.e., full-system or the component-specific) models.

Table (III) summarizes these studies under the heading “HPC Applications”. Studies
not shown in the table use direct physical measurements.

[Kamil et al. 2008] is a pioneering effort that studied power consumption of appli-
cations executing on large-scale HPC systems. They conclude that power consumption
of HPL benchmark is a good representative predictor for the power consumption of a
HPC workload and that power consumption of a large-scale system can be accurately
predicted from power measurements of smaller subsets of the system. Their study was
conducted on stand-alone systems and a large-scale NERSC Cray XT4 system. Using
results of a single cabinet in the system, they model the system’s power usage. The
power consumption of a single rack is extrapolated linearly to the 102 racks that com-
pose the HPC system. Their model is described as follows:

DCWattssystem = 102×DCWattsrack + 50KW

= 102×DCAmpsrack × V oltsrack + 50KW
(19)

where 50KW is the power consumed by the disk subsystem.
[Bui et al. 2008] propose a power model using PMCs to predict power consumption of

parallel scientific applications running on modern multicore/multiprocessor systems.
They modify the power model of [Isci and Martonosi 2003] to model power consumption
for a modern Intel Itanium2 processor. For the architecture scaling factor (a parameter
modelled in [Isci and Martonosi 2003] using component area ratios), transistor counts
are used as initial values. The power for each component is modelled as a linear func-
tion of access rates of its architectural units. The total power consumed by a processor
is calculated as the sum of power consumptions of its components and its base power.
The total power consumption of a multicore system is then calculated as the sum of
power consumptions of all the cores/processors that are contained in it.

One of the most popular frameworks used for fine-grained power and energy profil-
ing on parallel and distributed systems is the PowerPack framework [Ge et al. 2010].
This toolkit contains both hardware and software components. An AC power meter
(Watt’s Up Pro) is used to measure the power draw from the wall and DC power data
acquisition devices (Analog Input Module NI 9205NI and cDAQ chassis NI cDAQ9172)
are used to obtain component-level power consumptions inside a node through precise
instrumentation of all its power rails. The software components provide facilities for
synchronized collection of the measurement data from various data streams and anal-
ysis of the data. The toolkit is used to measure the power and energy consumption
of one node at a time. To obtain total power consumption of a whole cluster, a node
remapping approach [Ge et al. 2010] is used.

[Subramaniam and Feng 2010] use multiple linear regression to model the power
consumption of the High Performance Linpack (HPL) benchmark [HPL 2008]. Out of
the 18 HPL parameters, they select four parameters (problem size, block size, number
of process rows, number of process columns) for the regression modelling. To evaluate
their model, they perform experiments using 64 nodes from a cluster called SystemG
[SYSTEMG 2015]. The power and energy values are obtained using “Watts UP? Pro E”
power meter. The power consumption of the cluster is predicted by extrapolating the
prediction of power consumption of a single node.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 K. O’Brien et al.

[Dongarra et al. 2012] studied energy consumptions of high performance dense lin-
ear algebra libraries LAPACK [LAPACK 2013] and PLASMA [PLASMA 2015] using
PowerPack [Ge et al. 2010] and Intel RAPL API [Rotem et al. 2012]. They conclude
that, for the applications using these libraries, RAPL API is a good alternative to
power meters based on near identical power measurements observed between Pow-
erPack and RAPL.

[Tiwari et al. 2012] develop CPU and DIMM power and energy models using artifi-
cial neural networks. They study three important HPC kernels, matrix multiplication,
stencil computation, and LU factorization. To derive component-level power measure-
ments, they use the PowerMon2 apparatus [Bedard et al. 2010]. They report an abso-
lute error rate of 5.5% for the total power consumption and energy usage predictions
for the three kernels.

[Lively et al. 2012] and [Lively et al. 2014] propose application-centric predictive
models for power consumption. For each kernel in an application, multivariate linear
regression models for system power, CPU power, and memory power are constructed
using PAPI performance events [PAPI 2015] as predictors. To train and validate their
model, they conduct experiments in a power-aware cluster called SystemG [SYSTEMG
2015]. They validate the models using four hybrid scientific applications and report a
maximum prediction error percentage of 4.93%.

[Kestor et al. 2013a] propose a per-core power model based on a regression analysis
of core activity. [Ltaief et al. 2012], [Bosilca et al. 2014] also compare the power con-
sumptions of two high performance dense linear algebra libraries i.e., LAPACK and
PLASMA. Their results indicate that PLASMA outperforms LAPACK both in perfor-
mance as well as energy efficiency.

[Witkowski et al. 2013], [Jarus et al. 2014] propose system-wide power prediction
models for HPC servers based on performance counters. They cluster real-life HPC
applications into groups and create specialized power models for them. They then use
decision trees to select an appropriate model for the current system load. They report
average prediction error of 4% based on experiments on four servers, one AMD and
three Intel.

[Gschwandtner et al. 2014] present linear regression models based on hardware
counters for prediction of energy consumption of HPC applications executing on IBM
POWER7 processor. Instead of micro-benchmarks, they use NAS parallel benchmarks
to train the models. They pick a small subset from 500 different hardware counters
offered by the POWER7 processor. They report a maximum prediction error of 15%.

There are exhaustive studies primarily focusing on the performance analysis of Xeon
Phi but very few on power/energy models. [Li et al. 2014] present a detailed study of the
performance-energy trade-offs of the Xeon Phi architecture. They propose extensions
to PowerPack infrastructure [Ge et al. 2010] to measure component-wise power and
energy consumptions of systems hosting accelerators. The energy efficiency of Xeon
Phi 5110P is compared to a Tesla Fermi c2050 GPGPU and the results are found to be
mixed.

[Lastovetsky and Manumachu 2017] present an application-level energy model
where the dynamic energy consumption of a processor is represented by a function
of problem size. Unlike PMC-based models that contain hardware-related PMCs and
do not consider problem size as a parameter, this model takes into account highly non-
linear and non-convex nature of the relationship between energy consumption and
problem size for solving optimization problems of data-parallel applications on homo-
geneous multicore clusters for energy.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:23

7.1. Interconnects and Communications
We now present research works that have studied power and energy consumptions of
HPC interconnects and communication algorithms in HPC systems and applications.

[Murugan et al. 2013] explore power savings in HPC interconnects. They present
a power-aware scheduling method in a HPC interconnect where the nodes are inter-
connected by a 3D torus topology. They show that 30-40% power savings by switching
elements of the interconnect to low-power modes without any degradation in perfor-
mance.

[Diouri et al. 2013] present energy prediction model for MPI broadcast algorithms
in large scale HPC systems. They present models for four broadcast algorithms, Scat-
ter and AllGather algorithm (MPI/SAG) [Thakur and Gropp 2003] used in MPICH2
[MPICH 2016], Pipelining algorithm (MPI/Pipeline) provided in OpenMPI 1.4.4, hy-
brid broadcasting algorithm which combines MPI/SAG and OpenMP, and a hybrid al-
gorithm, which combines MPI/Pipeline and OpenMP [OpenMPI 2016]. They model the
energy consumption of a broadcast operation as sum of energy consumptions of nodes
and switches involved in the operation. Their model is presented in detail in Appendix
C. They validate their energy prediction model on Grid5000 [Cappello et al. 2005] and
report a worst prediction error of -6.82%.

[Gamell et al. 2013] explore energy and performance trade-offs of data movement
and I/O at extreme scales. Their energy consumption prediction model is presented
in detail in Appendix C. It is calculated based on summation of energy consumptions
of CPU, DRAM, NIC, and other miscellaneous components. The energy consumption
model of a MPI communication operation is calculated as sum of energy consumptions
of nodes involved in the operation.

On-chip interconnect now contributes to more than 30% of on-chip power consump-
tion. Strategies such as DVFS [DVFS 2015], on/off control for link power management,
and reduction of activity factor on the interconnect have been used to improve power
efficiency of interconnect links. [Shang et al. 2003] dynamically adjust frequency and
voltage of links to minimize the power consumption of on-chip interconnect. They re-
port a maximum of 6.3x power savings (and 4.3x on average), which is accompanied
by moderate increase in performance (15.2% increase in average latency and 2.5% de-
crease in throughput). [Soteriou and Peh 2007] propose self-regulating power-aware
interconnection networks, which turn on/off links based on traffic. They report a re-
duction in power consumption of 54.4% accompanied by a modest increase in network
latency. [Jin et al. 2008] propose a data compression technique in on-chip network
architectures that dynamically tracks value patterns in cache traffic and that dynam-
ically applies compression depending on the workload. Based on experiments using
a suite of scientific and commercial benchmarks for a 16-core tiled CMP, they report
energy savings of 36% while at the same time improving latency by 31%.

7.2. Summary
Our goal in this section was to compare prediction accuracies of power and energy con-
sumptions of HPC applications and the prediction accuracies of application-agnostic
power and energy models. We expected application-specific predictive power and en-
ergy models to have higher prediction accuracy but our survey shows results to the
contrary.

8. RELATED SURVEYS
In this section, we present recent surveys summarizing the power and energy ef-
ficiency techniques employed in high performance computing systems and applica-
tions. Our survey differs from these surveys by focusing exclusively on power and en-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 K. O’Brien et al.

ergy models in high performance systems and applications whereas the other surveys
record all the research efforts covering the entire spectrum of power and energy ef-
ficiency, which includes (along with power and energy models) power management
techniques such as DVFS (Dynamic Voltage and Frequency Scaling) [DVFS 2015] and
AVS (Adaptive Voltage Scaling) [AVS 2015]. The goal of our survey is to understand
how power and energy consumption are predicted in these research efforts from the
viewpoint of node architecture.

[Kaxiras and Martonosi 2008] survey the most important architectural techniques
that have been proposed to reduce both static and dynamic power consumptions in
processors and memory hierarchies.

[Benedict 2012] present a survey of various energy measurement methodologies
for HPC, Grid, and Cloud applications. They classify methodologies as follows: a).
Hardware-based, b). Software-based, and c) Hybrid. In hardware-based energy mea-
surements, they survey the various hardware approaches used such as power me-
ters, iPDUs, datasheets, in-built sensors, and external sensors. In the software-based
energy measurements, they survey energy prediction models. And in the hybrid ap-
proach, they look at online-based, offline-based, and profile-based methods. They also
present a list of energy monitoring tools available such as pTop, PowerTop, IntelPCM,
PowerPack, Likwid, and lmsensors and summarize their overhead, portability, and us-
ability of these tools.

[Mobius et al. 2014] present a survey of power consumption models for single-
core and multicore processors, virtual machines, and servers. They conclude that
regression-based approaches dominate and that one prominent shortcoming of the
these models is that they use static instead of variable workloads for training the
models.

[Inacio and Dantas 2014] present a literature survey of works using workload char-
acterization for performance and energy efficiency improvement in HPC, cloud, and big
data environments. They report a remarkable increase in research papers proposing
energy modelling and energy efficiency techniques from 2009 to 2013 thereby suggest-
ing an increasing importance of energy saving techniques in the HPC, cloud, and big
data environments.

[Orgerie et al. 2014] survey techniques for improving the energy efficiency of com-
puting and networking resources in large-scale distributed systems. [Tan et al. 2014]
survey the research on saving power and energy for HPC linear algebra applications.
They separate the surveyed efforts into two categories: 1) Power management in HPC
systems and 2) Power and energy efficient HPC applications (Cholesky, LU, QR). They
construct a linear model of a HPC system as a summation of power consumptions of
all the nodes in the system. The power consumption of a node is modelled as the sum
of all the major components (CPU, GPU, RAM) of a node.

[Mittal and Vetter 2015a] present a survey of Heterogeneous Computing Techniques
(HCTs) that enable utilizing both CPUs and GPUs to improve energy efficiency. They
classify the research efforts in techniques for saving energy in Heterogeneous Com-
puting Systems (HCSs) as follows: “intelligent workload partitioning and performance
improvement, DVFS on both CPU and GPU, DVFS on CPU only, resource scaling or
low-power modes”. They also present energy efficiency evaluation of fused CPU-FPU
chips compared to discrete systems (where GPUs have separate memory spaces from
the CPU).

[Mittal and Vetter 2015b] present a survey of research works analysing and improv-
ing energy efficiency of GPUs. In this survey, they also present works that compare the
energy efficiency of GPUs with other computing systems such as CPUs, Cell processor,
FPGA etc. Their classification categories are: “DVFS, CPU-GPU workload division, ar-
chitectural techniques for specific GPU components such as caches, techniques that

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:25

exploit workload variation to dynamically allocate resources, application-specific and
programming-level techniques for power analysis and management.”

[Dayarathna et al. 2016] present an in-depth survey on data center power modelling.
They organize the power models based on two classifications: a). hardware-centric, and
b). software-centric. While this survey gives an impressive overview from the data-
center point of view, our survey is mainly focused from the viewpoint of node architec-
ture.

9. CASE STUDY OF PERFORMANCE MONITORING COUNTER BASED MODELS
From the survey, we find that the most dominant approach employs linear regression
using PMC as parameters to model the power/energy consumption of a node. To study
the accuracy of this approach for a modern node architecture, we build power and
energy models using it on a Intel Haswell platform with the specification shown in
Table VI. Likwid API [Haswell 2013] is used to get the PMC values of an application
execution. 35 PMCs from 13 performance groups are selected from the total of 390
supported PMCs (Table XII in Appendix E.1). Some groups share some of the selected
PMCs. To train the model, applications (Table V) from NAS serial and OpenMP bench-
marks [NAS 2015], Rodinia OpenMP benchmarks [Rodinia 2015], STREAM bench-
mark [Stream 2015], and BLAS double-precision benchmarks [BLAS 2015] are used.
Benchmark classes (S, W, A) were used in the NAS benchmark suite. The total num-
ber of data points used for training is 187. For the NAS OpenMP and Rodinia OpenMP
benchmarks, the number of OMP threads executed is 4, which is equal to the num-
ber of physical cores in the Intel Haswell platform. For all the other applications, the
number of threads in the application is set to 1.

Since PMC values differ for different runs of the same application, we follow the
methodology described below to make sure the experimental results are reliable:

— The Intel Haswell platform is fully reserved and dedicated to these experiments dur-
ing their execution. We also made certain that there are no drastic fluctuations in
the load due to abnormal events in the platform by monitoring its load continuously
for a week using the tool sar. Insignificant variation in the load was observed during
this monitoring period suggesting normal and clean behavior of the platform.

— When an application is executed, it is bound to the physical cores using the numactl
tool.

— To obtain a data point, the application is repeatedly executed until the sample mean
lies in the 95% confidence interval and a precision of 0.025 (2.5%) has been achieved.
For this purpose, Students t-test is used assuming that the individual observations
are independent and their population follows the normal distribution. We verify the
validity of these assumptions by plotting the distributions of observations. To be
more precise, for each data point, the application is repeatedly run until one of the
following three conditions is satisfied:
(1) The input maximum number of repetitions have been exceeded.
(2) The sample mean falls in the input confidence interval of 95% (or the precision

of 0.025 has been achieved).
(3) The elapsed time of the application runs has exceeded the maximum time al-

lowed (3600 seconds).
Each application is always run for a minimum number of repetitions. The input
minimum and maximum number of repetitions differ based on the application or the
problem size solved. For small problem sizes (NAS benchmarks class S, W), these
values are set to 10000, and 100000 respectively. For medium problem sizes (NAS
benchmarks class A), these values are set to 100 and 1000. For large problem sizes
(NAS benchmarks class B, C, D), these values are set to 5 and 50. For each data

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 K. O’Brien et al.

Table V Applications used for the training set
Benchmark
Suite

Applications

NPB SER [NAS
2015]

BT.SER.α, CG.SER.α, DC.SER.α, EP.SER.α, FT.SER.α,
IS.SER.α, LU.SER.α, MG.SER.α, SP.SER.α, UA.SER.α
where α = S, W, A [NAS 2015]

NPB OpenMP
[NAS 2015]

BT.OMP.α, CG.OMP.α, DC.OMP.α, EP.OMP.α, FT.OMP.α,
IS.OMP.α, LU.OMP.α, MG.OMP.α, SP.OMP.α, UA.OMP.α
where α = S, W, A [NAS 2015]

Rodinia OpenMP
[Rodinia 2015]

bfs, heartwall, kmeans, leukocyte, nn, particlefilter, srad,
backprop, cfd, hotspot, lavaMD, lud, nw, pathfinder,
streamcluster [Rodinia 2015]

Stream [Stream
2015]

Stream C

BLAS [BLAS
2015]

daxpy, dgemv, dgemm [BLAS 2015]

point, we select the sample mean as the output only when the input precision of
0.025 (2.5%) has been reached. If the precision of measurement is not achieved before
the maximum number of repeats have been completed, we increase the number of
repetitions and also the maximum elapsed time allowed. However, we observed that
condition (2) is always satisfied before the other two in our experiments.

The PMC values, power and energy consumptions, and execution times are ob-
tained separately using three separate programs. This is to isolate the overhead
(constant but low) in collecting PMC values using likwid API. The energy con-
sumptions at the socket and DRAM level are obtained using the RAPL PMC val-
ues (PWR PKG ENERGY:PWR0, PWR DRAM ENERGY:PWR3) of the performance
group, ENERGY. The average dynamic power consumption during the execution of
an application is obtained by dividing the total energy consumption (given by the
PMC values) by the total execution time of the application (using gettimeofday timer).
The power and energy models are built using the GSL multiple linear regression API
[GSLMLR 2015]. The main steps of an application execution in the training and vali-
dation set are initializing Likwid runtime, starting of monitoring PMC, executing the
benchmark code, stopping the monitoring of PMC, querying for values of the PMCs,
and finalizing the Likwid runtime.

The model took two weeks (implementation complexity of 2 EW) to implement by a
senior post-doctoral researcher who has vast experience in software programming. The
implementation tasks involved studying Likwid API [Haswell 2013], short-listing the
PMC to use in the modelling which includes using rigorous statistical techniques to
prune the PMC set, studying GNU scientific library linear regression API [GSLMLR
2015], short-listing the applications (or benchmark test suites) to use in the train-
ing and validation sets, writing scripts to automate the model building and validation
process, and cleaning the validation data, for example, removing outliers since GSL
multiple linear regression (MLR) is quite sensitive to them. The models took 6 hours
of experimental time to build. Figure 2 (Appendix E.3) shows the execution times of
applications in the training set that are used to calculate their average dynamic power
consumptions. It also shows that we have used applications with a wide range of exe-
cution times to build the models. This would allow us to determine the true capability
of a model to predict accurately the power and energy consumptions for applications
with a wide range of execution times.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:27

Table VI Specification of the Intel Haswell workstation used to build the PMC-based
power and energy models.

Technical Speci-
fications

Intel Haswell i5-4590

Processor Intel(R) Core(TM) i5-4590 3.3 GHz
Microarchitecture Haswell
Memory 8 GB
Socket(s) 1
Core(s) per socket 4
L1d cache 32 KB
L11 cache 32 KB
L2 cache 256 KB
L3 cache 6144 KB
TDP 84 W
Base Power 22.3 W
Max Turbo Fre-
quency

3.7 GHz

Table VII Prediction error percentages for NAS Serial and OpenMP Applications
(Benchmark Class W)

Benchmark Avg. Dynamic Power Pre-
diction Error % (std. dev.)

Energy Prediction Error
% (std. dev.)

BT.SER.W 98.716442 (0.10) 235.52 (1.50)
CG.SER.W 96.66 (0.41) 171.02 (5.90)
DC.SER.W 99.76 (0.01) 97.30 (0.20)
EP.SER.W 99.92 (0.01) 99.39 (0.15)
FT.SER.W 99.24 (0.34) 100.34 (4.91)
IS.SER.W 130.57 (18.66) 40.94 (6.79)
LU.SER.W 50.19 (4.5) 542.05 (64.37)
MG.SER.W 98.21 (0.07) 6.70 (1.06)
SP.SER.W 99.43 (0.03) 72.08 (0.50)
UA.SER.W 79.74 (0.94) 12.86 (13.51)
BT.OMP.W 98.68 (0.17) 10.67 (2.52)
CG.OMP.W 100.00 (0.00) 99.99 (0.00)
DC.OMP.W 92.09 (2.33) 85.55 (13.39)
EP.OMP.W 92.96 (0.87) 10.52 (2.53)
FT.OMP.W 99.41 (0.23) 112.76 (3.33)
IS.OMP.W 64.66 (8.48) 31.83 (1.22)
LU.OMP.W 81.96 (3.22) 626.71 (46.07)
MG.OMP.W 99.12 (0.07) 48.53 (1.06)
SP.OMP.W 99.25 (0.64) 561.84 (9.28)
UA.OMP.W 88.29 (1.18) 15.81 (16.90)
daxpy 99.27 (0.19) 45.41 (2.84)
dgemv 89.00 (1.29) 39.87 (18.46)
dgemm 83.53 (1.83) 77.14 (26.16)

One interesting observation from our results is that some PMCs have negative coeffi-
cients (Table XIII in Appendix E.2). For example, consider the PMC, L2 RQSTS MISS.
It represents how often it was necessary to get cachelines from memory and therefore

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 K. O’Brien et al.

it should only increase the average dynamic power consumption. However, this coeffi-
cient is negative for the power model but positive for the energy model. Same applies
for PMC, ICACHE MISSES. Now, at this point, this set of PMC can be pruned further
to remove the parameters with negative coefficients or collinearity between parame-
ters using rigorous statistical techniques ([Lee and Brooks 2006]) or detailed iterative
methodologies ([Bircher and John 2012], [Bertran et al. 2013]).

To validate the models, we use them to predict power and energy consumptions of
NAS serial and OpenMP benchmarks (class W) and BLAS applications. The (mini-
mum, average, maximum) prediction error percentages of average dynamic power and
total energy consumptions are (50, 93, 130) and (6, 136, 626) respectively (Table VII
with standard deviations). The prediction error percentage for a model is calculated
using the actual value provided by Likwid API and the fitted value provided by the
GSL MLR function using the model.

During an application execution in the training and validation set, DVFS is disabled
by pre-setting the frequencies of CPUs to base frequency using “userspace” [CPUFreq
2015] governor. However, in a real-life situation, dynamic power management (DPM)
is not disabled and the default governor is “ondemand” [CPUFreq 2015]. Due to DPM
(and runtime DVFS), there can be fluctuations in power consumption. Therefore, we
would like to question the rationale behind use of PMCs, which are accumulated for
a whole application execution, to model instantaneous dynamic power. Even if PMCs
are used to model power for small but distinct phases of an application, the significant
overhead of acquiring these PMC values and building phase-level models prohibits
their use for this case. For example, CUPTI [CUPTI 2015], due to its design limitation,
allows querying for only one PMC (or event) of a NVIDIA GPU platform in a single
CUDA kernel invocation [CUD 2015]. One must execute a CUDA kernel many number
of times to get the values of all the desired PMCs.
10. DISCUSSION
In this section, we present a summary of all the power/energy models that we have
surveyed. Our prominent observations for each of the model characteristics follow:

(1) Level of Abstraction:
— There exists no model today that truly and comprehensively captures the highly

heterogeneous and hierarchical architecture of a node illustrated in Figure (1).
That is, no model exists that satisfies the property of Non-linear Independence.

— Many models for a node have the property of Linear Independence. Such models
are constructed by summation of models of the components.

(2) Type of power:
— There are very few models that predict instantaneous power of an application.
— We expect the models that predict instantaneous power accurately to maintain

their accuracy for a wide range of problem sizes and execution times.
— However, we are sceptical of models that are used for predicting average total

power consumption for applications running for long durations (hours to days) to
accurately predict power for a wide range of problem sizes and execution times.

(3) Decomposition:
— Many models focus exclusively on modelling power consumption of either the

CPU or an accelerator in a node. They can be further classified into:
(a) Models that adopt linear regression methods using performance-monitoring

counters (PMCs) as the parameters.
(b) Models that adopt non-linear methods such as artificial neural networks,

etc. using PMCs as the parameters.
— Models using PMC employ iterative methodologies or methods such as Principal

Component Analysis (PCA), Random Forest etc. to prune the set of PMCs.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:29

— Very few models take into account contention for shared resources between com-
ponents (for ex: cores sharing last-level cache).

— Very few models study power consumption of communication links in a node
such as
(a) On-chip interconnect between CPUs.
(b) PCIe bus connecting the multicore CPUs and accelerators.

(4) Accuracy of power prediction:
— Almost all the models report prediction error for only the total average power

consumption but not the dynamic power consumption. We would expect the pre-
diction errors for dynamic power to be higher.

— There are many models that do not mention clearly the proportion of dynamic to
static power consumptions in the total power consumption as can be seen from
the empty entries for dynamic power in the tables for the models.

(5) Implementation Complexity: The implementation complexity for the models em-
ploying linear regression or ANNs using the PMC as parameters is quite high.
This is due to several reasons:

— The first step in these models is to design and write a micro-benchmark test suite
for a component. This test suite contains benchmarks that stress the various ar-
chitectural units of the component to create a model of the power consumption
of the architectural unit as a function of its access rate (activity factor) or its
PMC set. To the best of our knowledge, there are no standard micro-benchmark
suites. So, if one were to implement one of these models, one has to write a micro-
benchmark test suite. We believe that writing micro-benchmarks is a very com-
plex, tedious, and error-prone task. One key design requirement of the test suite
is to stress a single architectural unit avoiding completely or minimizing inter-
action with other architectural units. This is required so that its activity can be
decoupled to derive its contribution to the total power consumption. If there is
interaction, the micro-benchmark stressing an architectural unit must ensure
that the utilization is constant for the other architectural units during its exe-
cution. So, this interaction must somehow be removed or accounted in the model
for the architectural unit to avoid collinearity problems when multiple linear
regression is applied later. This, we believe, is not easy to accomplish. Micro-
benchmark test suites are usually written in assembly language. So, the model
implementer must now become an expert in assembly language to write a reli-
able micro-benchmark test suite.

— [Wu et al. 2006], [Bertran et al. 2010], [Molka et al. 2010], [Kestor et al. 2013b],
[Pandiyan and Wu 2014] describe in great detail this complex process of writ-
ing a micro-benchmark test suite. [Bertran et al. 2010] have designed 97 micro-
benchmarks for their power model.

— So, after a micro-benchmark test suite is written, each of the micro-benchmarks
must be run for a sufficiently long time to ensure that the power consumption
reading (using a power meter) is stable. However, there is no straightforward
method to separate the static and dynamic components of this power consump-
tion. The access rates or the PMC values for the architectural unit are also ob-
tained separately.

— Then, the power consumption of an architectural unit is modelled as a function
of its PMC. Today, each architectural unit comes with a large set of PMC. For ex-
ample: Haswell architecture [Haswell 2013] has 390 events. So a question arises
as to which events to select from this set of PMCs. Models include some form of
Principal Component Analysis (PCA) to prune this set.

— Some models use complex ANNs such as Random Forest (RF), Back-Propagation
(BP), Fuzzy Wavelet (FW), etc. to incorporate non-linearity or dependence be-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 K. O’Brien et al.

tween the PMCs. Therefore, implementation of these models necessitates the
model writer to possess or acquire knowledge of these methods.

(6) Portability:
— Many models ensure their portability to next-gen processors in the same archi-

tecture space by using the PMC approach.
— However, the PMC approach hinders their generality or applicability to all archi-

tectures since PMCs are architecture-specific.
(7) Scalability:

— The standard approach to determine the total power/energy consumption of a
large-scale HPC system is based on the following steps:
(a) Measure the power/energy consumption of a node (either using direct mea-

surements or power/energy models). Multiply this power/energy consump-
tion by the total number of nodes in the system.

(b) Or use a node remapping technique. In this technique, the number of mea-
surements is equal to the number of nodes and each time the node that is
measured is mapped to a different physical node. The total power/energy
consumption is equal to the sum of all the measurements taken.

PMC-based approach is frequently used to model unit-level power consumptions of
a nodal component to predict the total power consumption of it. However, we question
its continuing use to predict power consumption of a nodal component or a node due
to two reasons. Firstly, it has high implementation complexity. In most cases (For ex-
ample: Likwid, CUPTI), the values of all the performance events can not be obtained
during a single execution of an application. Secondly, while values of some PMCs can
be determined from static analysis of the source code of an application, values of most
PMCs are gathered during the application execution. Therefore, an application must
be executed to get the values of PMCs, which are then input to a PMC-based model
to get the predicted power/energy consumption. However, there are software libraries
available today on all mainstream commodity processors providing interfaces to de-
termine power consumption at component level during an application execution via
in-built power meters or models. The PAPI library ([PAPI 2015], [Weaver et al. 2012])
provides API for energy consumption. For Intel’s CPU processors, the library uses the
“Running Average Power Limit” (RAPL) component [David et al. 2010], which uses
a software model to predict energy. Intel PCM (Performance Counter Monitor) [In-
telPCM 2012] is a tool to monitor performance hardware counters on Intel processors,
similar to PAPI. The difference between PCM and PAPI is that PCM supports only
Intel hardware, but it can monitor also uncore metrics, like memory controllers and
QuickPath Interconnect links. The Intel PCM utility pcm-power displays energy usage
and thermal headroom for CPU and DRAM sockets. For Intel’s Xeon PHI processor,
the MPSS MicMgmt library [IntelMPSS 2014] is used to get the instantaneous power
consumption from the on-chip power meters. NVIDIA Management Library (NVML)
API [NVML 2011] can be used to determine the power consumption of the NVIDIA
GPUs from the on-chip power meter. Although there is some overhead introduced by
these library calls, it can be minimized by choosing appropriate sampling frequency.
Therefore, when one can get the power/energy consumption from vendor-specific soft-
ware libraries (that provide access to readings from all on-chip power meters at low
sampling frequency), we question the necessity of using performance events for mod-
elling power/energy consumption.

11. CONCLUSION
This survey presented a classification of predictive power and energy models for the
major components at the node architecture level in modern HPC computing platforms.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:31

One overarching conclusion can be made from the survey. During the era of single-
core processors, models were able to accurately predict the dynamic power of the full-
system by having parameters that accurately but separately modelled dynamic power
consumption of all components in the system. But now such an approach will be er-
roneous. Unless the inherent complexities (contention for shared resources, dynamic
power management, etc.) of the modern node architectures are methodically taken into
account, models aspiring to predict power/energy consumptions for these architectures
will be inaccurate.

Power models have been the main research focus for HPC applications and outnum-
ber energy models. There are very few studies that directly model energy. Studies that
do not directly model energy predict it using a power model and a timing model (or by
expliciting measuring execution time). However, the prediction error in accuracy of en-
ergy consumption in these studies is compounded by the errors in accuracies of its con-
stituent models (power and timing). Therefore, we would like to ask why not model en-
ergy consumption directly for HPC applications instead of constructing its constituent
models. Power models and power management algorithms are necessary for system
designers to ensure that an application execution does not exceed the power/thermal
constraints of a system. For example, Intel RAPL [David et al. 2010] allows the power
consumption of an application to exceed the TDP for short periods of time but moni-
tors the power consumption closely to keep it close to an average limit by controlling
frequency. Many research efforts propose power models and use them to find inefficien-
cies in the system and thereby provide suggestions to designers to improve the system
architecture. However, if the goal of energy efficiency of HPC applications is to mini-
mize the total energy consumption without sacrificing performance, one can strive to
accomplish it by directly modelling energy consumption.

In the case of accelerators, we found that models for NVIDIA GPUs are predomi-
nant. Even though Intel Xeon Phi holds a notable portion (6%) of Top500 list [Top500
2015], very few studies have modelled its power/energy consumptions. Considering
that FPGAs are now becoming a reckonable force in the HPC space, there exist no
studies dedicated to their power/energy models for HPC applications.

REFERENCES
2015. Compute Unified Device Architecture. (2015). http://www.nvidia.com/object/cuda home new.html
2015. Energy Efficiency in Data Centers. (2015). http://www.google.co.in/about/datacenters/efficiency/
ACPI. 2015. Advanced Configuration and Power Interface Specification, Version 6.0. (2015). http://www.uefi.

org/sites/default/files/resources/ACPI 6.0.pdf
Zaid Al-Khatib and Samar Abdi. 2015. Operand-Value-Based Modeling of Dynamic Energy Consumption of

Soft Processors in FPGA. In International Symposium on Applied Reconfigurable Computing. Springer,
65–76.

AMDHT. 2001. HyperTransport. (2001). https://en.wikipedia.org/wiki/HyperTransport
AVS. 2015. Adaptive voltage scaling. (2015). https://en.wikipedia.org/wiki/Adaptive voltage scaling
Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional computing. Computer 12 (2007),

33–37.
Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de Meer, and Giovanni Giuliani. 2011. A

methodology to predict the power consumption of servers in data centres. In 2nd International Confer-
ence on Energy-Efficient Computing and Networking. ACM.

R. Basmadjian and H. de Meer. 2012. Evaluating and modeling power consumption of multi-core processors.
In Future Energy Systems: Where Energy, Computing and Communication Meet (e-Energy), 2012 Third
International Conference on. 1–10.

Daniel Bedard, Min Yeol Lim, Robert Fowler, and Allan Porterfield. 2010. PowerMon: Fine-Grained and
Integrated Power Monitoring for Commodity Computer Systems. In Proceedings Southeastcon 2010.
IEEE.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 K. O’Brien et al.

Frank Bellosa. 2000. The benefits of event: driven energy accounting in power-sensitive systems. In Pro-
ceedings of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for
the operating system. ACM.

Shajulin Benedict. 2012. Review: Energy-aware Performance Analysis Methodologies for HPC architectures-
An Exploratory Study. J. Netw. Comput. Appl. 35, 6 (Nov. 2012).

Khaled Benkrid, Ali Akoglu, Cheng Ling, Yang Song, Ying Liu, and Xiang Tian. 2012. High Performance Bi-
ological Pairwise Sequence Alignment: FPGA Versus GPU Versus Cell BE Versus GPP. Int. J. Reconfig.
Comput. 2012, Article 7 (Jan. 2012).

Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade. 2010. Decompos-
able and Responsive Power Models for Multicore Processors Using Performance Counters. In Proceed-
ings of the 24th ACM International Conference on Supercomputing (ICS ’10). ACM, 147–158.

Ramon Bertran, Marc Gonzalez Tallada, Xavier Martorell, Nacho Navarro, and Eduard Ayguade. 2013.
A Systematic Methodology to Generate Decomposable and Responsive Power Models for CMPs. IEEE
Trans. Comput. 62, 7 (July 2013), 1289–1302.

Brahim Betkaoui, David B Thomas, and Wayne Luk. 2010. Comparing performance and energy efficiency
of FPGAs and GPUs for high productivity computing. In Field-Programmable Technology (FPT), 2010
International Conference on. IEEE, 94–101.

Veeravalli Bharadwaj, Debasish Ghose, and Thomas G. Robertazzi. 2003. Divisible Load Theory: A New
Paradigm for Load Scheduling in Distributed Systems. Cluster Computing 6, 1 (Jan. 2003).

William Lloyd Bircher and Lizy K John. 2012. Complete System Power Estimation Using Processor Perfor-
mance Events. IEEE Trans. Comput. 61, 4 (April 2012), 563–577.

Matthias Birk, Matthias Balzer, Nicole Ruiter, and Jurgen Becker. 2012. Comparison of processing perfor-
mance and architectural efficiency metrics for FPGAs and GPUs in 3D ultrasound computer tomog-
raphy. In Reconfigurable Computing and FPGAs (ReConFig), 2012 International Conference on. IEEE,
1–7.

BLAS. 2015. BLAS (Basic Linear Algebra Subprograms). (2015). http://www.netlib.org/blas/
George Bosilca, Hatem Ltaief, and Jack Dongarra. 2014. Power profiling of Cholesky and QR factorizations

on distributed memory systems. Computer Science-Research and Development 29, 2 (2014), 139–147.
David Brooks, Margaret Martonosi, John-David Wellman, and Pradip Bose. 2001. Power-Performance Mod-

eling and Tradeoff Analysis for a High End Microprocessor. In Proceedings of the First International
Workshop on Power-Aware Computer Systems-Revised Papers (PACS ’00). Springer-Verlag.

David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: A Framework for Architectural-level
Power Analysis and Optimizations. In Proceedings of the 27th Annual International Symposium on
Computer Architecture (ISCA ’00). ACM.

Van Bui, Boyana Norris, Kevin Huck, Lois Curfman McInnes, Li Li, Oscar Hernandez, and Barbara Chap-
man. 2008. A Component Infrastructure for Performance and Power Modeling of Parallel Scientific
Applications. In Proceedings of the 2008 compFrame/HPC-GECO Workshop on Component Based High
Performance (CBHPC ’08). ACM, Article 6, 11 pages.

F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot, S. Lanteri, J. Leduc, N. Melab,
G. Mornet, R. Namyst, B. Quetier, and O. Richard. 2005. Grid’5000: a large scale and highly reconfig-
urable grid experimental testbed. In The 6th IEEE/ACM International Workshop on Grid Computing,
2005.

Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-Kwon Peir. 2011. Statistical GPU Power Analysis Us-
ing Tree-based Methods. In International Green Computing Conference and Workshops (IGCC). IEEE.

Jee Choi, Marat Dukhan, Xing Liu, and Richard Vuduc. 2014. Algorithmic time, energy, and power on candi-
date HPC compute building blocks. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th
International. IEEE, 447–457.

Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. 2013. A roofline model of energy. In
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 661–
672.

CPUFreq. 2015. CPU frequency scaling - ondemand Governor. (2015). https://wiki.archlinux.org/index.php/
CPU frequency scaling

CUPTI. 2015. CUDA Profiling Tools Interface. (2015). https://developer.nvidia.com/
cuda-profiling-tools-interface

Waltenegus Dargie. 2015. A Stochastic Model for Estimating the Power Consumption of a Processor. IEEE
Trans. Comput. 64, 5 (2015).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:33

Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian Le. 2010. RAPL: mem-
ory power estimation and capping. In Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE
International Symposium on. IEEE, 189–194.

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. 2016. Data Center Energy Consumption Modeling: A
Survey. IEEE Communications Surveys & Tutorials 18, 1 (2016), 732–794.

J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz. 2013. Perfect Strong Scaling Using No Additional
Energy. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on.

Dennard. 1974. Dennard scaling. (1974). https://en.wikipedia.org/wiki/Dennard scaling
M. E. M. Diouri, O. Glück, J.-C. Mignot, and L. Lefèvre. 2013. Energy Estimation for MPI Broadcasting

Algorithms in Large Scale HPC Systems. In Proceedings of the 20th European MPI Users’ Group Meeting
(EuroMPI ’13). ACM.

DOE. 2010. The Opportunities and Challenges of Exascale Computing. (2010). http://science.energy.gov/∼/
media/ascr//pdf/reports/Exascale subcommittee report.pdf

J. Dongarra, H. Ltaief, P. Luszczek, and V. Weaver. 2012. Energy Footprint of Advanced Dense Numerical
Linear Algebra using Tile Algorithms on Multicore Architecture. In The 2nd International Conference
on Cloud and Green Computing.

Maciej Drozdowski, Jedrzej M Marszalkowski, and Jakub Marszalkowski. 2014. Energy trade-offs analysis
using equal-energy maps. Future Generation Computer Systems 36 (2014), 311–321.

B. Duan, W. Wang, X. Li, C. Zhang, P. Zhang, and N. Sun. 2011. Floating-point mixed-radix FFT core gen-
eration for FPGA and comparison with GPU and CPU. In Field-Programmable Technology (FPT), 2011
International Conference on.

DVFS. 2015. Dynamic voltage scaling. (2015). https://en.wikipedia.org/wiki/Dynamic voltage scaling
Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ranganathan. 2006. Full-system

power analysis and modeling for server environments. In In Proceedings of Workshop on Modeling,
Benchmarking, and Simulation. 70–77.

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011.
Dark Silicon and the End of Multicore Scaling. In Proceedings of the 38th Annual International Sympo-
sium on Computer Architecture (ISCA ’11). ACM, 365–376.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power provisioning for a warehouse-sized
computer. In 34th Annual International Symposium on Computer architecture. ACM, 13–23.

Naila Farooqui, Andrew Kerr, Gregory Diamos, S. Yalamanchili, and K. Schwan. 2011. A Framework for Dy-
namically Instrumenting GPU Compute Applications Within GPU Ocelot. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-4). ACM, Article 9.

Jeremy Fowers, Greg Brown, John Wernsing, and Greg Stitt. 2013. A Performance and Energy Comparison
of Convolution on GPUs, FPGAs, and Multicore Processors. ACM Trans. Archit. Code Optim. 9, 4, Article
25 (Jan. 2013).

Marc Gamell, Ivan Rodero, Manish Parashar, Janine C. Bennett, Hemanth Kolla, Jacqueline Chen, Peer-
Timo Bremer, Aaditya G. Landge, Attila Gyulassy, Patrick McCormick, Scott Pakin, Valerio Pascucci,
and Scott Klasky. 2013. Exploring Power Behaviors and Trade-offs of In-situ Data Analytics. In Proceed-
ings of the International Conference on High Performance Computing, Networking, Storage and Analysis
(SC ’13). ACM.

Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W Cameron. 2010. Power-
pack: Energy profiling and analysis of high-performance systems and applications. Parallel and Dis-
tributed Systems, IEEE Transactions on 21, 5 (2010), 658–671.

GK210. 2014. An Overview of Kepler GK110 and GK210 Architecture. (2014). http://international.download.
nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

Bhavishya Goel, Sally A. McKee, Roberto Gioiosa, Karan Singh, Major Bhadauria, and Marco Cesati. 2010.
Portable, Scalable, per-Core Power Estimation for Intelligent Resource Management. Green Computing
Conference, 2010 International.

Green500. 2015. The Green500 List - November 2015. (2015). http://www.green500.org/news/
green500-list-november-2015

Philipp Gschwandtner, Michael Knobloch, Bastian Mohr, Dirk Pleiter, and Thomas Fahringer. 2014. Mod-
eling cpu energy consumption of hpc applications on the ibm power7. In Parallel, Distributed and
Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on. IEEE, 536–543.

GSLMLR. 2015. Multi-parameter fitting. (2015). https://www.gnu.org/software/gsl/manual/html node/Multi
002dparameter-fitting.html

Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, N. Vijaykrishnan, Mahmut Kandemir,
Tao Li, and Lizy Kurian John. 2002. Using Complete Machine Simulation for Software Power Estima-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 K. O’Brien et al.

tion: The SoftWatt Approach. In Proceedings of the 8th International Symposium on High-Performance
Computer Architecture (HPCA ’02). IEEE Computer Society.

John L. Gustafson. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5 (May 1988).
Tsuyoshi Hamada, Khaled Benkrid, Keigo Nitadori, and Makoto Taiji. 2009. A Comparative Study on ASIC,

FPGAs, GPUs and General Purpose Processors in the Gravitational N-body Simulation. In Proceedings
of the 2009 NASA/ESA Conference on Adaptive Hardware and Systems (AHS ’09). IEEE Computer
Society, 447–452.

Haswell. 2013. Performance Monitoring Counters for Haswell Architecture. (2013). https://code.google.com/
p/likwid/wiki/Haswell

Taliver Heath, Bruno Diniz, Belo Horizonte, Enrique V Carrera, and Ricardo Bianchini. 2005. Energy Con-
servation in Heterogeneous Server Clusters. In 10th ACM SIGPLAN symposium on Principles and
practice of parallel programming (PPoPP). ACM, 186–195.

Hyesoon Hong, Sunpyand Kim. 2010. An Integrated GPU Power and Performance Model. SIGARCH Com-
put. Archit. News 38, 3 (June 2010), 280–289.

HPL. 2008. HPL - A Portable Implementation of the High-Performance Linpack Benchmark for Distributed-
Memory Computers. (2008). http://www.netlib.org/benchmark/hpl/

HPRC. 2015. High-Performance Reconfigurable Computing. (2015). http://www.chrec.org/
Hanaa M Hussain, Khaled Benkrid, Ahmet T Erdogan, and Huseyin Seker. 2011. Highly parameterized k-

means clustering on FPGAs: Comparative results with GPPs and GPUs. In Reconfigurable Computing
and FPGAs (ReConFig), 2011 International Conference on. IEEE, 475–480.

Eduardo Camilo Inacio and Mario A. R. Dantas. 2014. A Survey into Performance and Energy Efficiency in
HPC, Cloud and Big Data Environments. Int. J. Netw. Virtual Organ. 14, 4 (March 2014), 299–318.

IntelMPSS. 2014. Intel Manycore Platform Software Stack (Intel MPSS). (2014). https://software.intel.com/
en-us/articles/intel-manycore-platform-software-stack-mpss

IntelPCM. 2012. Intel Performance Counter Monitor - A better way to measure CPU utilization. (2012).
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

Canturk Isci and Margaret Martonosi. 2003. Runtime power monitoring in high-end processors: Method-
ology and empirical data. In 36th annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 93.

M. Jarus, A. Oleksiak, T. Piontek, and J. Wglarz. 2014. Runtime power usage estimation of HPC servers for
various classes of real-life applications. Future Generation Computer Systems 36 (2014).

Yuho Jin, Ki Hwan Yum, and Eun Jung Kim. 2008. Adaptive Data Compression for High-performance Low-
power On-chip Networks. In Proceedings of the 41st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 41). IEEE Computer Society, 354–363.

Shoaib Kamil, John Shalf, and Erich Strohmaier. 2008. Power efficiency in high performance computing. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. IEEE, 1–8.

Aman Kansal and Feng Zhao. 2008. Fine-grained energy profiling for power-aware application design. ACM
SIGMETRICS Performance Evaluation Review 36, 2 (Aug. 2008), 26.

Kiran Kasichayanula, Dan Terpstra, Piotr Luszczek, Stan Tomov, Shirley Moore, and Gregory D. Peterson.
2012. Power Aware Computing on GPUs. In Symposium on Application Accelerators in High Perfor-
mance Computing (SAAHPC). IEEE Computer Society.

Stefanos Kaxiras and Margaret Martonosi. 2008. Computer Architecture Techniques for Power-Efficiency (1st
ed.). Morgan and Claypool Publishers.

Gokcen Kestor, Roberto Gioiosa, Darren J. Kerbyson, and Adolfy Hoisie. 2013a. Enabling Accurate Power
Profiling of HPC Applications on Exascale Systems. In Proceedings of the 3rd International Workshop
on Runtime and Operating Systems for Supercomputers (ROSS ’13). ACM.

Gokcen Kestor, Roberto Gioiosa, Darren J Kerbyson, and Adolfy Hoisie. 2013b. Quantifying the energy
cost of data movement in scientific applications. In 2013 IEEE international symposium on workload
characterization (IISWC).

Srinidhi Kestur, John D. Davis, and Oliver Williams. 2010. BLAS Comparison on FPGA, CPU and GPU.
In Proceedings of the 2010 IEEE Annual Symposium on VLSI (ISVLSI ’10). IEEE Computer Society,
288–293.

Holger Lange, Florian Stock, Andreas Koch, and Dietmar Hildenbrand. 2009. Acceleration and Energy Effi-
ciency of a Geometric Algebra Computation Using Reconfigurable Computers and GPUs. In Proceedings
of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines (FCCM ’09).
IEEE Computer Society, 255–258.

LAPACK. 2013. Linear Algebra Package. (2013). http://http://www.netlib.org/lapack/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:35

Alexey Lastovetsky and Ravi Reddy Manumachu. 2017. New Model-Based Methods and Algorithms for Per-
formance and Energy Optimization of Data Parallel Applications on Homogeneous Multicore Clusters.
IEEE Transactions on Parallel and Distributed Systems 28, 4 (2017), 1119–1133.

Benjamin C. Lee and David M. Brooks. 2006. Accurate and Efficient Regression Modeling for Microarchitec-
tural Performance and Power Prediction. SIGARCH Comput. Archit. News 34, 5 (Oct. 2006), 185–194.

Adam Lewis, Soumik Ghosh, and N.-F. Tzeng. 2008. Run-time Energy Consumption Estimation Based on
Workload in Server Systems. In Proceedings of the 2008 Conference on Power Aware Computing and
Systems (HotPower’08). USENIX Association.

Bo Li, Hung-Ching Chang, Shuaiwen Song, Chun-Yi Su, Timmy Meyer, John Mooring, and Kirk W Cameron.
2014. The power-performance tradeoffs of the Intel Xeon Phi on HPC applications. In Parallel & Dis-
tributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International. IEEE, 1448–1456.

Dong Li, Surendra Byna, and Srimat Chakradhar. 2011. Energy-Aware Workload Consolidation on GPU. In
Proceedings of the 2011 40th International Conference on Parallel Processing Workshops (ICPPW ’11).
IEEE Computer Society, 389–398.

Keqin Li. 2015. Optimal Partitioning of a Multicore Server Processor. J. Supercomput. 71, 10 (Oct. 2015).
Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi.

2013. The McPAT Framework for Multicore and Manycore Architectures: Simultaneously Modeling
Power, Area, and Timing. ACM Trans. Archit. Code Optim. 10, 1, Article 5 (April 2013).

Tao Li and Lizy Kurian John. 2003. Run-time Modeling and Estimation of Operating System Power Con-
sumption. SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 160–171.

Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar Yalamanchili, and Wony-
ong Sung. 2014. Power Modeling for GPU Architectures Using McPAT. ACM Trans. Des. Autom. Elec-
tron. Syst. 19, 3, Article 26 (June 2014), 24 pages.

Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng. 2008. Merge: A Programming
Model for Heterogeneous Multi-core Systems. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS XIII). ACM.

Qixiao Liu, Miquel Moreto, Victor Jimenez, Jaume Abella, Francisco J. Cazorla, and Mateo Valero. 2013.
Hardware Support for Accurate Per-task Energy Metering in Multicore Systems. ACM Trans. Archit.
Code Optim. 10, 4 (Dec. 2013).

Charles Lively, Valerie Taylor, Xingfu Wu, Hung-Ching Chang, Chun-Yi Su, Kirk Cameron, Shirley Moore,
and Dan Terpstra. 2014. E-AMOM: an energy-aware modeling and optimization methodology for scien-
tific applications. Computer Science-Research and Development 29, 3-4 (2014), 197–210.

Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching Chang, Chun-Yi Su, and Kirk
Cameron. 2012. Power-aware predictive models of hybrid (MPI/OpenMP) scientific applications on mul-
ticore systems. Computer Science-Research and Development 27, 4 (2012), 245–253.

Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. 2012. Profiling High Performance Dense Linear Algebra
Algorithms on Multicore Architectures for Power and Energy Efficiency. Comput. Sci. 27, 4 (Nov. 2012),
277–287.

Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. 2009. Statistical power consumption analysis and
modeling for GPU-based computing. In Proceeding of ACM SOSP Workshop on Power Aware Computing
and Systems (HotPower).

Olli Mämmelä, Mikko Majanen, Robert Basmadjian, Hermann De Meer, Andrè Giesler, and Willi Homberg.
2012. Energy-aware job scheduler for high-performance computing. Computer Science - Research and
Development 27, 4 (2012).

Ami Marowka. 2013. Analytical Modeling of Energy Efficiency in Heterogeneous Processors. Comput. Electr.
Eng. 39, 8 (Nov. 2013).

Jedrzej M. Marszalkowski, Maciej Drozdowski, and Jakub Marszalkowski. 2016. Time and Energy Perfor-
mance of Parallel Systems with Hierarchical Memory. Journal of Grid Computing 14, 1 (2016), 153–170.

John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kuppuswamy, Alex C. Sno-
eren, and Rajesh K. Gupta. 2011. Evaluating the Effectiveness of Model-based Power Characterization.
In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference (USENIX-
ATC’11). USENIX Association.

Sparsh Mittal and Jeffrey S. Vetter. 2015a. A Survey of CPU-GPU Heterogeneous Computing Techniques.
ACM Computing Surveys (CSUR) 47, 4 (July 2015).

Sparsh Mittal and Jeffrey S. Vetter. 2015b. A Survey of Methods for Analyzing and Improving GPU Energy
Efficiency. ACM Computing Surveys (CSUR) 47, 2 (Jan. 2015).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 K. O’Brien et al.

Christoph Mobius, Waltenegus Dargie, and Alexander Schill. 2014. Power Consumption Estimation Models
for Processors, Virtual Machines, and Servers. IEEE Transactions on Parallel and Distributed Systems
25, 6 (2014).

Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S Müller. 2010. Characterizing the energy
consumption of data transfers and arithmetic operations on x86- 64 processors. In Green Computing
Conference, 2010 International. IEEE, 123–133.

Moore. 1965. Moore’s Law. (1965). https://en.wikipedia.org/wiki/Moore’s law
J Moore. 2004. Gamut: Generic Application EMULaTOR. (2004).
MPICH. 2016. MPICH - High performance portable MPI. (2016). http://www.mpich.org/
Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Optimizing NUCA Organiza-

tions and Wiring Alternatives for Large Caches with CACTI 6.0. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 40). IEEE Computer Society.

Muthukumar Murugan, David Hung Chang Du, and Krishna Kant. 2013. On the interconnect energy effi-
ciency of high end computing systems. Sustainable Computing: Informatics and Systems 3, 2 (2013), 49
– 57.

Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and Satoshi Matsuoka. 2010. Statis-
tical power modeling of GPU kernels using performance counters. In International Green Computing
Conference and Workshops (IGCC). IEEE.

NAS. 2015. NAS Parallel Benchmarks. (2015). https://www.nas.nasa.gov/publications/npb.html
NVML. 2011. NVIDIA Management Library (NVML). (2011). https://developer.nvidia.com/

nvidia-management-library-nvml
OpenMPI. 2016. OpenMPI - Open source high performance computing. (2016). https://www.open-mpi.org/
Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. 2014. A Survey on Techniques for

Improving the Energy Efficiency of Large-scale Distributed Systems. ACM Comput. Surv. 46, 4, Article
47 (March 2014), 47:1–47:31 pages.

Jingzhao Ou and V. K. Prasanna. 2004. Rapid energy estimation of computations on FPGA based soft pro-
cessors. In SOC Conference, 2004. Proceedings. IEEE International.

D. Pandiyan and C. J. Wu. 2014. Quantifying the energy cost of data movement for emerging smart phone
workloads on mobile platforms. In Workload Characterization (IISWC), 2014 IEEE International Sym-
posium on. 171–180.

PAPI. 2015. Performance Application Programming Interface 5.4.1. (2015). http://icl.cs.utk.edu/papi/
Karl Pauwels, Matteo Tomasi, Javier Diaz, Eduardo Ros, and Marc M. Van Hulle. 2012. A Comparison

of FPGA and GPU for Real-Time Phase-Based Optical Flow, Stereo, and Local Image Features. IEEE
Trans. Comput. 61, 7 (2012), 999–1012.

PCIE. 2003. Peripheral Component Interconnect Express. (2003). https://en.wikipedia.org/wiki/PCI Express
PLASMA. 2015. Parallel Linear Algebra for Scalable Multi-core Architectures. (2015). http://http://icl.cs.utk.

edu/plasma/
Kara K. W. Poon, Steven J. E. Wilton, and Andy Yan. 2005. A Detailed Power Model for Field-programmable

Gate Arrays. ACM Trans. Des. Autom. Electron. Syst. 10, 2 (April 2005), 279–302.
M. D. Powell, A. Biswas, J. S. Emer, S. S. Mukherjee, B. R. Sheikh, and S. Yardi. 2009. CAMP: A tech-

nique to estimate per-structure power at run-time using a few simple parameters. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture. 289–300.

PowerAPI. 2016. Sandia National Laboratories: High Performance Computing Power Application Program-
ming Interface (API) Specification. (2016). http://powerapi.sandia.gov/

QPI. 2008. Intel QuickPath Interconnect. (2008). https://en.wikipedia.org/wiki/Intel QuickPath
Interconnect

Suzanne Rivoire. 2008. Models and Metrics for Energy-Efficient Computer Systems. PhD Thesis. Stanford
University, Stanford, California.

Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. 2008. A Comparison of High-level
Full-system Power Models. In Proceedings of the 2008 Conference on Power Aware Computing and Sys-
tems (HotPower’08). USENIX Association.

Rodinia. 2015. The Rodinia Benchmark Suite, version 3.0. (2015). https://www.cs.virginia.edu/∼skadron/
wiki/rodinia/index.php/Rodinia:Accelerating Compute-Intensive Applications with Accelerators

Mahsan Rofouei, Thanos Stathopoulos, Sebi Ryffel, William Kaiser, and Majid Sarrafzadeh. 2008. Energy-
aware High Performance Computing with Graphic Processing Units. In Proceedings of the 2008 Confer-
ence on Power Aware Computing and Systems (HotPower’08). USENIX Association.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications A:37

Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron Rajwan. 2012.
Power-Management Architecture of the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Mi-
cro 32, 2 (March 2012), 20–27.

Swapnoneel Roy, Atri Rudra, and Akshat Verma. 2013. An Energy Complexity Model for Algorithms. In
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science (ITCS ’13). ACM,
283–304.

Christian de Schryver, Ivan Shcherbakov, Frank Kienle, Norbert Wehn, Henning Marxen, Anton Kostiuk,
and Ralf Korn. 2011. An Energy Efficient FPGA Accelerator for Monte Carlo Option Pricing with the
Heston Model. In Proceedings of the 2011 International Conference on Reconfigurable Computing and
FPGAs (RECONFIG ’11). IEEE Computer Society, 468–474.

Li Shang, Li-Shiuan Peh, and N. K. Jha. 2003. Dynamic voltage scaling with links for power optimization
of interconnection networks. In High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceed-
ings. The Ninth International Symposium on.

Yakun Sophia Shao and David Brooks. 2013. Energy Characterization and Instruction-level Energy Model
of Intel’s Xeon Phi Processor. In Proceedings of the 2013 International Symposium on Low Power Elec-
tronics and Design (ISLPED ’13). IEEE Press, 389–394.

Karan Singh, Major Bhadauria, and Sally A. McKee. 2009. Real Time Power Estimation and Thread
Scheduling via Performance Counters. SIGARCH Comput. Archit. News 37, 2 (July 2009), 46–55.

Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. 2013. A Simplified and Accurate Model
of Power-Performance Efficiency on Emergent GPU Architectures. In 27th IEEE International Parallel
& Distributed Processing Symposium (IPDPS). IEEE Computer Society, 673–686.

Vassos Soteriou and Li-Shiuan Peh. 2007. Exploring the design space of self-regulating power-aware on/off
interconnection networks. IEEE Transactions on Parallel and Distributed Systems 18, 3 (2007), 393–
408.

SPEC. 2015. SPEC’s Benchmarks. (2015). https://www.spec.org/benchmarks.html
Vasileios Spiliopoulos, Stefanos Kaxiras, and Georgios Keramidas. 2011. Green governors: A framework for

continuously adaptive dvfs. In Green Computing Conference and Workshops (IGCC), 2011 International.
IEEE, 1–8.

Stream. 2015. STREAM: Sustainable Memory Bandwidth in High Performance Computers. (2015). https:
//www.cs.virginia.edu/stream/

Balaji Subramaniam and Wu-chun Feng. 2010. Statistical Power and Performance Modeling for Optimizing
the Energy Efficiency of Scientific Computing. In Proceedings of the 2010 IEEE/ACM Int’L Conference
on Green Computing and Communications & Int’L Conference on Cyber, Physical and Social Computing
(GREENCOM-CPSCOM ’10). IEEE Computer Society, 139–146.

SYSTEMG. 2015. System G cluster. (2015). https://www.cs.vt.edu/facilities/systemg
Li Tan, Shashank Kothapalli, Longxiang Chen, Omar Hussaini, Ryan Bissiri, and Zizhong Chen. 2014. A

survey of power and energy efficient techniques for high performance numerical linear algebra opera-
tions. Parallel Comput. 40, 10 (Dec. 2014), 559–573.

TDP. 2015. Thermal design power. (2015). https://en.wikipedia.org/wiki/Thermal design power
Rajeev Thakur and William D Gropp. 2003. Improving the performance of collective operations in MPICH.

In European Parallel Virtual Machine/Message Passing Interface Users Group Meeting. Springer.
David Barrie Thomas, Lee Howes, and Wayne Luk. 2009. A Comparison of CPUs, GPUs, FPGAs, and Mas-

sively Parallel Processor Arrays for Random Number Generation. In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’09). ACM, 63–72.

Ananta Tiwari, Michael Laurenzano, Laura Carrington, and Allan Snavely. 2012. Modeling power and en-
ergy usage of hpc kernels. In Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 990–998.

Top500. 2015. Top 500. The List - November 2015. (2015). http://top500.org/lists/2015/11
Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Accelerating a Random Forest

Classifier: Multi-Core, GP-GPU, or FPGA?. In Proceedings of the 2012 IEEE 20th International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM ’12). IEEE Computer Society, 232–
239.

N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. 2000. Energy-driven Integrated
Hardware-software Optimizations Using SimplePower. In Proceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA ’00). ACM.

Haifeng Wang and Yunpeng Cao. 2015. Predicting power consumption of GPUs with fuzzy wavelet neural
networks. Parallel Comput. 44 (May 2015), 18–36.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 K. O’Brien et al.

Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He, Zhengping Qian, and Lidong Zhou. 2010. Dis-
tributed systems meet economics: pricing in the cloud. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing. USENIX Association.

Shinan Wang and Weisong Shi. 2012. Cpt: An energy efficiency model for multi-core computer systems.
Wayne State University, Tech. Rep. MIST-TR-2012-008 (2012).

X. Wang, S. G. Ziavras, and J. Hu. 2006. System-Level Energy Modeling for Heterogeneous Reconfigurable
Chip Multiprocessors. In 2006 International Conference on Computer Design.

Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr Luszczek, Dan Terpstra,
and Shirley Moore. 2012. Measuring energy and power with PAPI. In Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on. IEEE, 262–268.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Commun. ACM 52, 4 (April 2009).

WINXPERF. 2015. Windows Performance Toolkit Technical Reference. (2015). https://msdn.microsoft.com/
en-us/library/windows/hardware/hh162945.aspx

M. Witkowski, A. Oleksiak, T. Piontek, and J. Weglarz. 2013. Practical Power Consumption Estimation for
Real Life HPC Applications. Future Gener. Comput. Syst. 29, 1 (Jan. 2013).

Wei Wu, Lingling Jin, Jun Yang, Pu Liu, and Sheldon X.-D. Tan. 2006. A Systematic Method for Functional
Unit Power Estimation in Microprocessors. In Proceedings of the 43rd Annual Design Automation Con-
ference (DAC ’06). ACM, 554–557.

XEONPHI. 2015. Intel Many Integrated Core Architecture. (2015). https://en.wikipedia.org/wiki/Xeon Phi
Qiyao Xie, Tian Huang, Zhihai Zou, Liang Xia, Yongxin Zhu, and Jiang Jiang. 2012. An accurate power

model for GPU processors. In Computing and Convergence Technology (ICCCT), 2012 7th International
Conference on. IEEE, 1141–1146.

XPE. 2015. Xilinx Power Estimator (XPE). (2015). http://www.xilinx.com/products/technology/power/xpe.
html

Ying Zhang, Yue Hu, Bin Li, and Lu Peng. 2011. Performance and Power Analysis of ATI GPU: A Statistical
Approach. In Proceedings of the 2011 IEEE Sixth International Conference on Networking, Architecture,
and Storage (NAS ’11). IEEE Computer Society, 149–158.

Jishen Zhao, Guangyu Sun, Gabriel H Loh, and Yuan Xie. 2013. Optimizing GPU energy efficiency with 3D
die-stacking graphics memory and reconfigurable memory interface. ACM Transactions on Architecture
and Code Optimization (TACO) 10, 4 (2013), 24.

Dan Zou, Yong Dou, and Fei Xia. 2012. Optimization Schemes and Performance Evaluation of Smith-
Waterman Algorithm on CPU, GPU and FPGA. Concurr. Comput. : Pract. Exper. 24, 14 (Sept. 2012),
1625–1644.

APPENDIX
ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
A Survey of Power and Energy Predictive Models in HPC Systems
and Applications

KENNETH O’BRIEN, University College Dublin, Ireland
ILIA PIETRI, University of Manchester, UK
RAVI REDDY, University College Dublin, Ireland
ALEXEY LASTOVETSKY, University College Dublin, Ireland
RIZOS SAKELLARIOU, University of Manchester, UK

A. POWER AND ENERGY MODELS: DETAILS
A.1. Power and Energy Models for CPUs
[Basmadjian et al. 2011] construct a power model of a server as a summation of power
models of its components, the processor (CPU), memory (RAM), fans, and disk (HDD).
The power consumptions for different types of servers are given by the following equa-
tions :

PBlade =

l∑
i=1

PMainboard (20)

PTower or Rackable =

l∑
i=1

PMainboard +

m∑
j=1

PFan +

n∑
k=1

PPSU (21)

where l, m, and n denote respectively the total number of mainboards, fans, and power
supply units. For purposes of brevity, only their power model for blade servers is pre-
sented here.

The power consumption of the mainboard is given by the following equation [Bas-
madjian et al. 2011]:

PMainboard =

l∑
i=1

PCPU + PRAM +

m∑
j=1

PNIC +

n∑
k=1

PHDD + c (22)

where l, m, and n denote the total number of processors (CPU), the total number of net-
work interface cards (NIC), and the total number of attached hard disk drives (HDD)
respectively and c is a constant (55 W for blade servers).

The power consumption of a multicore processor, PCPU , is calculated as the sum of
power consumptions of individual cores. The power consumption of each individual
core is based on the linear single-core model of [Fan et al. 2007]. [Basmadjian et al.
2011] model the power consumption of a multicore processor containing n cores as
follows:

PCi = Pmax × (UCi/100) (23a)

PCPU = Pbase +

n∑
i=1

PCi (23b)

Pmax = V 2
max × fmax × Ceff (23c)

c© YYYY Copyright held by the owner/author(s). 0360-0300/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App–2 K. O’Brien et al.

where PCi indicates the power consumption of a core, pbase represents the base power
consumption of a processor, Vmax and fmax signify the voltage and frequency at maxi-
mum utilization respectively, and Ceff , the effective capacitance.

For memory module, the power consumption is given by [Basmadjian et al. 2011]:

PRAM = PRAM base + γ × α× β (24)

where α = 1, 2.3, 1.3, and 1.9 for unbuffered DDR2 SDRAM, buffered DDR2 SDRAM,
unbuffered DDR3 SDRAM, and buffered DDR3 SDRAM respectively. The value of β
used is 7.347. A probabilistic approach is used to model γ for a processor not in idle
state, otherwise the value of γ used is 0. [Basmadjian et al. 2011] and [Mämmelä et al.
2012] model the idle power consumption of a unbuffered SDRAM of type DDR2 or
DDR3 as follows:

PRAM base =

r∑
i=1

si × p (25)

where r represents the total number of installed memory modules and si indicates the
size of memory module i. [Basmadjian et al. 2011] and [Mämmelä et al. 2012] model
the power consumption of the hard disk as follows:

PHDD = a× 1.4× Pbase + b× PHDD base + c× 3.7× Pbase (26a)
PHDD base = Pbase × (d+ 0.2× e) (26b)

where a, b, c, d, and e denote probabilities of different states of the disk and Pbase is the
base power consumption.

Based on the model evaluations on tower and blade servers, the authors report max-
imum prediction error rates of 8% and 9% for tower servers and blade servers respec-
tively.

B. POWER AND ENERGY MODELS FOR GPUS
[Hong 2010] present a GPU power consumption prediction model that is modelled sim-
ilar to the PMC-based unit power prediction approach of [Isci and Martonosi 2003].
Their model is described below.

GPU power = DynamicPower +BasePower

DynamicPower =

n∑
i=0

DP Component i = DP SMs+DP Memory

n∑
i=0

SM Componenti =

DP Int+DP Fp+DP Sfu+DP Alu+DP Texture Cache+

DP Const Cache+DP Shared+DP Reg +DP FDS +DP Const SM

DP SMs = Num SMs×
n∑
i=0

SM Componenti

where BasePower is the idle power consumption of a GPU and Num SMs is the total
number of Streaming Multiprocessors (SM) in a GPU. The dynamic power for each

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications App–3

component is calculated as follows [Hong 2010]:

DP Component i = MaxPowercomponent ×AccessRatecomponent

AccessRatecomponent =
DAC per thcomponent ×Warps per SM

Predicted Exec cycles/4

DAC per thcomponent =

n∑
i=0

Number Inst per warpsi(comp)

Warps per SM = (
#Threads per block

#Threads per warp
× #Blocks

#Active SMs
)

The parameter, DAC per thcomponent), is calculated as the total number of instructions
that access an architectural component. The parameter, Warps per SM , indicate the
number of warps that are executed in one SM. The parameter, (Predicted Exec cycles),
is calculated using an analytical timing model, which we don’t present here since our
main focus in this paper is power and energy models. The dynamic power of GDDR
memory (DP Memory) is modelled based on the dynamic powers of the global memory
and local memory that share it [Hong 2010]:

DP Memory =

n∑
i=0

Memory componenti = DP GlobalMem+DP LocalMem

The other memories (shared, constant, texture) are modelled separately as SM com-
ponents. The parameter, MaxPower, is empirically determined by stressing different
architectural units in a GPU using synthetic micro-benchmarks. A special piecewise
linear approach is used for eight power components due to their non-linear behaviour
similar to how it was done in [Isci and Martonosi 2003]. Finally, dynamic power is
modelled as follows [Hong 2010]:

DP SMs = Max SM × log10(α×Active SMs+ β)

Max SM = Num SMs×
n∑
i=0

SM Componenti

DynamicPower = (Max SM +DP Memory)× log10(α×Active SMs+ β)

α = (10− β)/Num SMs, β = 1.1

where Active SMs is the number of active SMs in the GPU.
To demonstrate the accuracy of their model, NVIDIA GTX280 GPU is used. The

number of dynamic instructions and instruction types (which are used to calculate
the access rates) are determined using a GPU PTX emulator, Ocelot ([Farooqui et al.
2011]). The authors [Hong 2010] report that the IPP prediction error for the total
power consumption is 8.94% and the average energy consumption savings are 10.99%.
The main factor hindering the portability of this model is that it requires detailed
architectural information and contains a large set of parameters.

C. HIGH PERFORMANCE COMPUTING APPLICATIONS
[Diouri et al. 2013] present energy prediction model for MPI broadcast algorithms in
large scale HPC systems. They present models for four broadcast algorithms, Scat-
ter and AllGather algorithm (MPI/SAG) [Thakur and Gropp 2003] used in MPICH2
[MPICH 2016], Pipelining algorithm (MPI/Pipeline) provided in OpenMPI 1.4.4, hy-
brid broadcasting algorithm which combines MPI/SAG and OpenMP, and a hybrid
algorithm, which combines MPI/Pipeline and OpenMP [OpenMPI 2016]. The energy

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App–4 K. O’Brien et al.

consumption of MPI broadcast operation (MPI/SAG) is modelled as follows [Diouri
et al. 2013]:

EMPI/SAG =

N∑
i=1

eNodeiMPI/SAG +

M∑
j=1

e
Switchj
MPI/SAG

= tScatter(p,N)× (

N∑
i=1

ρNodeiScatter(p) +

M∑
j=1

ρ
Switchj
Scatter)

+ tAllGather(p,N)× (

N∑
i=1

ρNodeiAllGather(p) +

M∑
j=1

ρ
Switchj
AllGather)

(27)

top(p,N) is the time required to perform op (Scatter, AllGather, Pipeline, or CopyPri-
vate) over the N × p processes, where N is the number of nodes. Within each node i,
p processes are involved in the execution of op. ρNodeiop (p) is the power consumption of
the node i during top. ρ

Switchj
op (p) is the power consumption of the switch j during top.

They validate their energy prediction model on Grid5000 [Cappello et al. 2005] and
they report a worst prediction error of -6.82%.

[Gamell et al. 2013] explore energy and performance trade-offs of data movement
and I/O at extreme scales. Their energy consumption model follows:

E = Esystem + Ecomm (28a)
Esystem = T × (Pstatic + Pdynamic) (28b)

Pstatic = P basecpu + P basemem + P basenic + P basemisc (28c)

Pdynamic = a× P activecpu + b× P activemem (28d)

P activecpu = C × V 2 × α× f (28e)

where P basecpu , P basemem, P basenic , and P basemisc are the base power consumptions of CPU, DRAM,
NIC, and other miscellanous components. Dynamic power is predicted by using the
capacitance (C), switching activity (α), operational voltage (V), and frequency (f). The
parameters a and b are determined using the number of arithmetic operations per
second and the number of memory accesses per second. The energy consumption model
of a MPI communication operation is constructed as follows [Gamell et al. 2013]:

Ecomm =

M∑
i=0

datai
BWnet

× Ptransfer, if smp(srci) 6= smp(desti) (29a)

Ecomm =

M∑
i=0

datai
BWmem

× (P activecpu + P activemem), if smp(srci) = smp(desti) (29b)

where smp(i) = smp(j) indicates that MPI ranks i and j are mapped to cores that
share memory, BWnet and BWmem are the bandwidth values of network and memory
respectively, and Ptransfer depends on the characteristics of the underlying network
(for example, Infiniband, Gemini).

D. POWER AND ENERGY MODELS: PARAMETERS

Table VIII Parameters and Decomposition characteristics of the CPU Power and En-
ergy Models Surveyed.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications App–5

Model Parameters Decomposition
[Bellosa 2000] microoperation, floating-

point operations, second-level
address strobes, memory
transactions [Bellosa 2000]

single-core CPU

[Isci and Martonosi
2003]

128bit MMX uop,
64bit MMX uop, BPU Fetch
Req, Branch Retired, BSQ
Cache Ref, Bus Ratio, Front
End Event, FSB Data Ac-
tivity, IOQ Allocation, ITLB
Reference, Ld Port Replay,
Machine Clear, MOB Load
Replay, packed DP uop,
packed SP uop,
scalar DP uop, scalar SP uop,
St Port Replay, TC Deliver
Mode, Uop Queue Writes, Uops
retired, uop type, x87 FP uop,
x87 SIMD moves uop [Isci
and Martonosi 2003]

1st Level BPU, 2nd
Level BPU, Allocation,
Bus Control, Data TLB,
FP Exec, FP Regfile,
Inst Dec, Inst Queue1,
Inst Queue2, INT Exec,
INT Regfile, ITLB &
Fetch, L1 cache, L2
Cache, MEM control,
MOB, Rename, RE-
TIRE, Schedule, Trace
Cache, Ucode ROM [Isci
and Martonosi 2003]

[Heath et al. 2005] Cbase, UCPU , UDisk, UNet CPU, disk, network
[Economou et al. 2006] Cbase, UCPU , UMem, UDisk, UNet CPU, memory, disk, net-

work
[Lee and Brooks 2006] ALU Latency, Branch, Branch

Latency, Depth, D-L1 Cache
Size, Fixed-Point/Memory,
Floating-Point, Floating-Point
(FP), FP-Divide Latency, FPU
Latency, Functional Units, FX-
Divide Latency, FX-Multiply
Latency, General Purpose
(GP), I-L1 Cache Size, L2
Cache Latency, L2 Cache
Size, Load/Store Latency, L/S
Reorder Queue, Main Memory
Latency, Special Purpose (SP),
Store Queue, Width [Lee and
Brooks 2006]

single-core CPU

[Fan et al. 2007] Pbase, Pmax, U single-core CPU
[Fan et al. 2007] Cbase, UCPU , r single-core CPU

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App–6 K. O’Brien et al.

[Lewis et al. 2008] Ambient Temp0, Ambi-
ent Temp1, CPU0 Die Temp,
CPU1 Die Temp, HT1 Bus
X-Actions, HT2 Bus X-Actions,
L1/L2 Cache Miss (Core 0 to
Core 3), Disk Bytes Read, Disk
Bytes Written, Pspin−up, tsu,
Pread, Nr, tr, Pwrite, Nw, tw,
Pbase, tbase, RPMFan, RPMbase,
Pfan, tipmi−slice, Poptical, toptical,
Vpow−line, Ipow−line, ttimeslice

Cor0 to Core 3, DRAM,
HDD, Fan, Support
Chipsets

[Wang et al. 2010] Cbase, UCPU , UI/O CPU, I/O
[Basmadjian et al. 2011] Pbase, Vmax, fmax, Ceff , UC , n,

si, p, γ, β, a, b, c, d, e [Basmad-
jian et al. 2011]

CPU, RAM, NIC, HDD,
Fan

[Bertran et al. 2013] AR(comp,core), Pcomp, Pstatic
where core = 0,1, comp = BPU,
FE, FP, FSB, INT, L1, L2,
SIMD [Bertran et al. 2013]

BPU and branch ex-
ecution, DECODE,
FETCH UNIT, Floating
point arithmetic units,
FSB, Integer arithmetic
units, L1, L1 DTLB,
L1 ICACHE, L1 ITLB,
L2, L2 DTLB, LD/ST
execution, LSD, memory,
MOB, PREDECODE,
RAT, RETIRE, ROB,
SIMD arithmetic units,
SPT, uCODE ROM, uOP
BUFFER [Bertran
et al. 2013]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications App–7

[Bircher and John 2012] For server systems, parameters
are: Cycles, DMA misses,
Fetched µops, Halted cy-
cles, Interrupts, L3 Cache
misses, Processor mem-
ory bus transactions, TLB
misses, Uncacheable accesses
[Bircher and John 2012]

For desktop systems, parame-
ters are: CPU clock frequency,
CPU to I/O transactions, CPU
voltage, DC accesses, DCT-
PageConflicts, DCTPageHits,
DCTPageMisses, DRAM active
percent, Fetched µops, FP
µops retired, GPU nongated
clocks, %Halted/%Not-Halted,
Link active percent, Spindle
active percent, Temperature
[Bircher and John 2012]

Chipset, CPU, Disk,
I/O, Memory, Memory
Controller [Bircher
and John 2012]

Table IX Parameters and Decomposition characteristics of the GPU Power and Energy
Models Surveyed.

Model Parameters Decomposition
[Hong 2010] α, β, Num SMs, Active SMs,

Predicted Exec cycles,
#Threads per block,
#Threads per warp, #Blocks
DAC per thcomponent, where
component = Alu, Const cache,
Const SM, FDS, Fp, Glob-
alMem, Int, LocalMem, Reg,
Sfu, Shared, Texture cache
[Hong 2010]

ALU, Constant cache,
FDS (Fetch/Dec/Sch),
Floating Point Unit,
Global memory, Int.
arithmetic unit, Local
memory, Register File,
SFU, Shared memory,
Texture cache [Hong
2010]

[Nagasaka et al. 2010] branch, divergent branch,
gld 128b, gld 32b, gld 64b,
gst 128b, gst 32b, gst 64b,
instructions, local load,
local store, tlb miss,
warp serialize [Nagasaka
et al. 2010]

GPU

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App–8 K. O’Brien et al.

[Chen et al. 2011] ALU, Atomic, BankConf,
Barrier, Branch, CMInst.hit,
CMInst.miss, D.Branch,
D.FP, GMInst, INT, LMInst,
M.Barrier, Occupancy, PMInst,
Register, S.FP, SFU, ShMInst,
TMInst.hit, TMInst.miss,
UncoalesMem [Chen et al.
2011]

GPU

[Kasichayanula et al.
2012]

NSM,i, Pi, Ui, Bi [Ka-
sichayanula et al. 2012]

Floating Point Unit,
Global Memory, Shared
Memory [Kasichayan-
ula et al. 2012]

[Song et al. 2013] branch, divergent branch, gld
request + l1 global load hit +
l1 global load miss, global store
transaction, inst executed, lo-
cal load, local store, Shared
load + l1 shared bank con-
flict, tex0 cache sector misses,
tex0 cache sector queries, tpci,
tkernel, P̄base, Eparallel−overhead
[Song et al. 2013]

Floating Point Unit,
Global Memory, Shared
Memory, Local Memory,
Texture Cache [Song
et al. 2013]

[Lim et al. 2014] access time, access time, ad-
dress bus width, associativity,
associativity, #banks, #banks,
buffer line size, chip coverage,
cycle time, cycle time, data bus
width, decoded opcode width,
duty cycle, #entries, #entries,
flit bits, input line width, input
line width, I/O buffer entries,
link latency, link throughput,
#memory channels, output
line width, output line width,
peak transfer rate, percentage
of pipelining, pipeline stages,
#ports (in, out), #ports(R, W,
RW), #ranks, request window
entries, router or bus, selection
input size, selection output
size, tag width, tag width,
#virtual channels, width [Lim
et al. 2014]

Block/Warp States,
Cache Buffers, Constant
Cache, Data TLB, Fetch
Queue, Instruction
Cache, Instruction De-
coder, Instruction Issue
Selection Logic, Instruc-
tion Queue, Instruction
TLB, L1 Cache, L2
Cache, LD/ST units,
Memory Controller,
NoC, PipelineLatches,
Register File, Score-
board, SFU, Shared
Memory, SP, Texture
Cache [Lim et al. 2014]

[Wang and Cao 2015] A, Sa, Ninst, Tarc [Wang and
Cao 2015]

GPU

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications App–9

[Zhang et al. 2011] ALUBusy, ALUFetchRatio,
ALUInsts, ALUPacking, Fast-
Path, FCStacks, FetchInsts,
FetchSize, FetchUnitBusy,
GPR, LDSBankConfict, LDS-
FetchInsts, LDSWriteInsts,
LocalMemSize, ScratchRegs,
Wavefronts, WriteInsts, Write-
UnitStalled [Zhang et al.
2011]

GPU

Table X Parameters and Decomposition characteristics of the Intel Xeon Phi Power
and Energy Models Surveyed.

Model Parameters Decomposition
[Shao and Brooks 2013] EPIaccessmode,optype where

accessmode = Register, L1,
L2, Mem with prefetch,
Mem without prefetch,
Write to mem, and
optype = ScalarOp,
V ectorOp, vprefetch0 to L1,
vprefetch1 to L2 [Shao and
Brooks 2013]

Compute, Hardware PF,
MEM, Private Cache,
Redundant SW-PF, Re-
mote Cache, Software
PF [Shao and Brooks
2013]

Table XI Parameters and Decomposition characteristics of the Power and Energy Mod-
els used in the HPC Applications surveyed.

Model Parameters Decomposition
[Bui et al. 2008] ∆Cycles, L1 Total Cache Ac-

cess, L2 Total Cache Access, L3
Total Cache Access, Total In-
structions Retired [Bui et al.
2008]

L1 cache, Core Logic, L3
Cache, L2 Cache [Bui
et al. 2008]

[Subramaniam and Feng
2010]

N,NB,P,Q Node

[Tiwari et al. 2012] ti, tj, tk (i, j, k tiles), ti1, tj1, tk1

(trsm tiles), tj (loop j tile), ti2,
tj2, tk2 (MM tiles), CPU freqs
(freq), matrix sizes (msize), ui,
uj (i, j unrolls), ui1, uj1 (trsm
unrolls), ui2, uj2 (MM unrolls)
[Tiwari et al. 2012]

CPU, DIMM

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App–10 K. O’Brien et al.

[Lively et al. 2012] Cache FLD per instruction,
LD ST stall per cycle,
PAPI BR INS, PAPI L1 DCM,
PAPI L1 ICA, PAPI L1 TCA,
PAPI L1 TCM, PAPI L2 ICM,
PAPI L2 TCA, PAPI L2 TCH,
PAPI RES STL,
PAPI TLB DM,
PAPI TOT INS [Lively et al.
2012]

CPU, Memory

[Kestor et al. 2013a] FP operations, last level cache
misses, Retired instructions,
stalled cycles [Kestor et al.
2013a]

Integer, Floating point,
L1 cache, L2 Cache, L3
Cache, Memory [Kestor
et al. 2013a]

[Gschwandtner et al.
2014]

DISP, DOUBLE ISSUED,
PAPI FP INS, PAPI INT INS,
PAPI L1 DCM,
PAPI L2 DCM,
PAPI L3 DCM, PAPI L3 DCR,
PAPI TOT CYC,
PAPI TOT INS,
PM CMPLU STALL,
PM CMPLU STALL THRD,
PM L1 ICACHE MISS,
PM L2 INST MISS,
PM L3 MISS,
PM L3 PREF MISS,
PM LSU DC PREF,
PM LSU FX FIN,
PM LSU LDF, PM LSU LDX,
PM MEM0 PREFETCH,
PM VSU FMA DOUBLE,
PM VSU SIMPLE ISSUED,
PM VSU VECTOR,
PM VSU VECTOR,
SINGLE ISSUED,
STREAM CONFIRM

[Gschwandtner et al. 2014]

CPU

E. CASE STUDY: PERFORMANCE MONITORING COUNTERS AND REGRESSION MODEL
E.1. Case Study: Performance Monitoring Counters
Table XII shows the Likwid [Haswell 2013] performance groups and performance coun-
ters (PMCs) that are used as parameters in the regression model in the experiments.

E.2. Case Study: Regression Model Coefficients
Table XIII shows the multiple linear regression coefficients obtained for power and
energy models.

E.3. Case Study: Regression Model Training Times
Figure 2 shows the distribution of execution times of applications in the training set.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications App–11

Table XII Likwid [Haswell 2013] performance groups and performance counters
(PMCs)

Performance Group Performance Monitoring Counters
BRANCH (Branch pre-
diction miss rate/ratio)

BR MISP RETIRED ALL BRANCHES,
BR INST RETIRED ALL BRANCHES [Haswell 2013]

DATA (Load to store
ratio)

UOPS RETIRED ALL,
MEM UOPS RETIRED STORES,
MEM UOPS RETIRED LOADS [Haswell 2013]

ICACHE (Instruction
cache miss rate/ratio)

ICACHE ACCESSES,
ICACHE MISSES,
ICACHE IFETCH STALL,
ILD STALL IQ FULL [Haswell 2013]

L2CACHE (L2 cache
miss rate/ratio)

L2 RQSTS MISS,
L2 TRANS ALL REQUESTS [Haswell 2013]

L2 (L2 cache band-
width in MBytes/s)

L1D REPLACEMENT,
L2 TRANS L1D WB [Haswell 2013]

L3CACHE (L3 cache
miss rate/ratio)

UOPS RETIRED ALL,
MEM LOAD UOPS RETIRED L3 MISS,
MEM LOAD UOPS RETIRED L3 ALL [Haswell 2013]

L3 (L3 cache band-
width in MBytes/s)

L2 TRANS L2 WB,
L2 LINES IN ALL [Haswell 2013]

TLB DATA (L1 Data
TLB miss rate/ratio)

DTLB STORE MISSES WALK DURATION,
DTLB STORE MISSES CAUSES A WALK,
DTLB LOAD MISSES WALK DURATION,
DTLB LOAD MISSES CAUSES A WALK [Haswell 2013]

TLB INSTR (L1 In-
struction TLB miss
rate/ratio)

ITLB MISSES CAUSES A WALK,
ITLB MISSES WALK DURATION [Haswell 2013]

UOPS EXEC (UOPs
execution)

UOPS EXECUTED USED CYCLES,
UOPS EXECUTED STALL CYCLES,
CPU CLOCK UNHALTED TOTAL CYCLES,
UOPS EXECUTED STALL CYCLES [Haswell 2013]

UOPS ISSUE (UOPs
issueing)

UOPS ISSUED USED CYCLES,
UOPS ISSUED STALL CYCLES [Haswell 2013]

UOPS RETIRE (UOPs
retirement)

UOPS RETIRED USED CYCLES,
UOPS RETIRED STALL CYCLES [Haswell 2013]

UOPS (UOPs execu-
tion info)

UOPS ISSUED ANY,
UOPS EXECUTED THREAD,
UOPS RETIRED ALL,
UOPS ISSUED FLAGS MERGE [Haswell 2013]

Fixed function perfor-
mance counter regis-
ters

CPU CLK UNHALTED CORE,
INSTR RETIRED ANY,
CPU CLK UNHALTED REF [Haswell 2013]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

App–12 K. O’Brien et al.

Table XIII Multiple linear regression coefficients for power and energy Models
Predictors (Likwid PMCs) [Haswell 2013] Model Coef-

ficients for
Average Dy-
namic Power

Model Coeffi-
cients for En-
ergy

INSTR RETIRED ANY:FIXC0 -4.489847e-09 9.837091e-08
CPU CLK UNHALTED CORE:FIXC1 -8.192357e-09 -4.365642e-08
CPU CLK UNHALTED REF:FIXC2 7.601429e-09 6.070421e-08
BR INST RETIRED ALL BRANCHES:PMC0 5.102516e-10 -8.391657e-09
BR MISP RETIRED ALL BRANCHES:PMC1 -1.049940e-11 1.071510e-09
MEM UOPS RETIRED LOADS:PMC0 2.383515e-11 -3.902474e-09
MEM UOPS RETIRED STORES:PMC1 5.102516e-10 -8.391657e-09
ICACHE ACCESSES:PMC0 -1.049940e-11 1.071510e-09
ICACHE MISSES:PMC1 5.102516e-10 -8.391657e-09
ICACHE IFETCH STALL:PMC2 -1.049940e-11 1.071510e-09
ILD STALL IQ FULL:PMC3 2.383515e-11 -3.902474e-09
L2 TRANS ALL REQUESTS:PMC0 -6.054451e-10 3.830272e-07
L2 RQSTS MISS:PMC1 5.102516e-10 -8.391657e-09
MEM LOAD UOPS RETIRED L3 ALL:PMC0 -1.049940e-11 1.071510e-09
MEM LOAD UOPS RETIRED L3 MISS:PMC1 5.102516e-10 -8.391657e-09
DTLB LOAD MISSES CAUSES A WALK:PMC0 -1.049940e-11 1.071510e-09
DTLB STORE MISSES CAUSES A WALK:PMC1 5.102516e-10 -8.391657e-09
DTLB LOAD MISSES WALK DURATION:PMC2 -1.049940e-11 1.071510e-09
DTLB STORE MISSES WALK DURATION:PMC3 2.383515e-11 -3.902474e-09
ITLB MISSES CAUSES A WALK:PMC0 -6.054451e-10 3.830272e-07
ITLB MISSES WALK DURATION:PMC1 5.102516e-10 -8.391657e-09
UOPS EXECUTED USED CYCLES:PMC0 -1.049940e-11 1.071510e-09
UOPS EXECUTED STALL CYCLES:PMC1 5.102516e-10 -8.391657e-09
CPU CLOCK UNHALTED TOTAL CYCLES:PMC2 -1.049940e-11 1.071510e-09
UOPS EXECUTED STALL CYCLES:PMC3:EDGEDETECT 2.383515e-11 -3.902474e-09
UOPS ISSUED USED CYCLES:PMC0 -6.054451e-10 3.830272e-07
UOPS ISSUED STALL CYCLES:PMC1 5.102516e-10 -8.391657e-09
UOPS ISSUED STALL CYCLES:PMC3:EDGEDETECT -1.049940e-11 1.071510e-09
UOPS RETIRED USED CYCLES:PMC0 -6.054451e-10 3.830272e-07
UOPS RETIRED STALL CYCLES:PMC1 5.102516e-10 -8.391657e-09
UOPS RETIRED STALL CYCLES:PMC3:EDGEDETECT -1.049940e-11 1.071510e-09
UOPS ISSUED ANY:PMC0 -6.054451e-10 3.830272e-07
UOPS EXECUTED THREAD:PMC1 5.102516e-10 -8.391657e-09
UOPS RETIRED ALL:PMC2 -1.049940e-11 1.071510e-09
UOPS ISSUED FLAGS MERGE:PMC3 -6.054451e-10 3.830272e-07

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Power and Energy Predictive Models in HPC Systems and Applications App–13

Fig. 2 Execution times of applications in the training set.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

