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The supporting materials for the main manuscript, “A Novel Statistical Learning-Based1

Methodology for Measuring the Goodness of Energy Profiles of Applications Executing on Multicore2

Comptuing Platforms” are:3

• Pattern Matching Approaches in Other Fields for Closely Related Problems4

• Experimental Setup and Applications Suite Used for Construction of The Energy Profiles5

• Similarity Results of Group A6

• Similarity Results of Group B7

1. Pattern Matching Approaches in Other Fields for Closely Related Problems8

The similarity measure problem, in general, can also be classified as pattern matching. A plethora of9

different methods and approaches have been proposed to solve this problem in different fields such as10

data mining, time series similarity analysis, and graph (matching) theory. The proposed solutions can11

be categorized into a non-exhaustive list of categories such as lock-step, pattern-based, model-based,12

elastic, feature-based et cetera.13

However, the main difference of similarity matching in energy modeling with time-series analysis14

is that the energy profiles are (usually) a function of application configuration parameters (such as15

problem sizes, CPU threads, CPU cores, etc.) whereas the time series data is uni-variate (only one16

variable varies over time). Furthermore, the energy profiles are of the same cardinality as of the ground17

truth (i.e. they have equal lengths) whereas it is not necessary in case of graph matching, time series,18

and data mining. Therefore, we do not cover the similarity measures commonly known as elastic19

similarity measures (such as dynamic time warping (DTW) [1]) where a data point of a time series is20

compared with many data points of other time series and vice-versa i.e. one-to-many mapping and21

many-to-one mapping. Now we present some of the popular similarity measures and distance metrics22

used to determine the pattern matching.23

Similarity Measures: Similarity measures establish the resemblance between the ground truth24

and a profile as an absolute value usually within the interval of [0,1] or [-1,1] where 0 or -1 indicates25

an absolute dissimilarity and 1 denotes a maximum similarity. Apart from the Pearson correlation26

coefficient, Cosine similarity is another popular similarity measure that measures the orientation of27

two non-zero n-dimensional vectors irrespective of their magnitude. It measures the cosine of the28

angle between both vectors, and is mainly used in text mining problems such as text classification,29

text summarization, information retrieval, question answering, etc. [2]. It is calculated by the dot30

product of the vectors and normalized by the product of their lengths. Nakamura et al. [3] propose a31

shape-based similarity measure called the Angular Metric for Shape Similarity (AMSS) for time series32

data. It adopts cosine similarity as a principle measure which disregards exact points or vector length.33

Distance Metrics: Another way to compare a profile against the ground truth is the use of a34

distance metric which establishes an absolute value of how far two objects are. Euclidean Distance35

is one of the most popular distance metrics in data mining and time series similarity comparison. It36

is based on Pythagoras’ theorem and measures the distance between two vectors or two points in37

a Euclidean space[4]. It is also used for clustering of time series data [5] [6] because of its indexing38

capabilities and simple computation. The generalized form of Euclidean distance is the Minkowski39

distance [7] which is also called Lp norm. For Manhattan distance, p is equal to 1, and for Euclidean40
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distance, p is equal to 2. However, Minkowski distance variants are blind to capture the data41

correlation.42

Another distance metric widely used in pattern recognition or graph matching in graph theory is43

graph-edit-distance (GED) [8]. It is related to string-edit-distance between two strings. It computes the44

cost of recognition of nodes and the minimum number of modifications (such as deletion, insertion,45

substitution) required to transform the input graph into the referenced one. However, the complexity46

of computing GED is non-polynomial [9].47

Auto-regressive (AR) modeling is a model-based approach that extracts the features from48

time-series to use their underlying models to determine the similarity between them. AR modeling49

specifies that the current value in a data-set (time-series) depends linearly on its preceding value(s).50

The autoregressive integrated moving average (ARIMA) also called Box-Jenkins [10] method, is a51

popular approach used in time-series analysis and for anomaly detection in data [11]. The main52

idea of using AR modelling to measure the goodness is to learn the models of time-series and then53

compute the goodness using the model parameters. Several approaches can be found in the literature54

which use AR to find the similarity between two time-series such as [12], [13], [14]. However, the55

basic assumption of AR modelling is that the data (time-series) is uni-variate and the future value56

depends upon the past value(s). This is not the case with energy modeling because application energy57

profiles are (usually) a function of application parameters, and each data-point in an energy profile is58

distinct and independent of all other data-points in that profile. Furthermore, AR modelling assumes59

that the data is stationary which means that the statistical properties such as mean and variance of60

the time-series do not change over time. On the contrary, the energy profiles are not stationary and61

there also exists an energy consumption trend. Therefore, AR modelling approach is not applicable62

straightforwardly for determining the goodness of energy profiles.63

2. Experimental Setup and Applications Suite Used for Construction of The Energy Profiles64

The input to the proposed solution method Trend-based Similarity Measure (TSM) is a set of65

energy profiles (of an application) constructed with different energy measurement approaches (such as66

integrated on-chip power sensors, external power meters, energy predictive models employing PMCs67

as predictor variables) and the precision settings used for constructing the profiles. The output of TSM68

is the ranking of energy profiles based on their goodness.69

The dataset used in this article comprises of 235 energy profiles of different application70

configurations on multicore heterogeneous hybrid computing platforms with on-chip sensors, power71

meters, or PMCs as predictor variables. The application configuration parameters are (a) Problem size,72

(b) Number of CPU threads, or the number of CPU cores. Table S2 in appendix 2.5 presents the list of73

applications employed to construct the energy profiles. Our application suite contains highly optimized74

memory bound and compute-bound scientific routines such as OpenBLAS DGEMM, FFTW 2D,75

DGEMM and FFT from Intel Math Kernel Library (MKL), benchmarks from NASA Application Suite76

(NAS), Intel HPCG, stress, naive matrix-matrix multiplication and naive matrix-vector multiplication.77

The profiles are constructed as the results of experiments conducted for different research78

works already published in open access peer-reviewed journals such as IEEE Access and Energies.79

The experimental set-up, platforms, application suite, configuration parameters, and the boundary80

conditions all are presented in details in their corresponding publications [15] and [16] which are open81

access. We briefly present the details of experimental methodology and experiment configurations82

in following sections used for these experiments for the convenience of reader and to ensure the83

reproducibility.84

2.1. Technical Description of experimental platforms85

We employ three nodes for our comparative study: (a) HCLServer01 has an Intel Haswell86

multicore CPU having 24 physical cores with 64 GB main memory and integrated with two accelerators:87

one Nvidia K40c GPU and one Intel Xeon Phi 3120P, (b) HCLServer02 has an Intel Skylake multicore88
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CPU consisting of 22 cores and 96 GB main memory and integrated with one Nvidia P100 GPU and89

(c) HCLServer03 has an Intel Skylake multicore CPU having 56 cores with 187 GB main memory.90

Technical description of each node is provided in table S1. These nodes are representative of computers91

used in cloud infrastructures, supercomputers and heterogeneous computing clusters.92

Each node has a power meter installed between its input power sockets and the wall A/C outlets.93

HCLServer01 and HCLServer02 are connected with a Watts Up Pro power meter; HCLServer03 is94

connected with a Yokogawa WT310 power meter. Watts Up Pro power meters are periodically calibrated95

using the ANSI C12.20 revenue-grade power meter, Yokogawa WT310.96

The maximum sampling speed of Watts Up Pro power meters is one sample every second.97

The accuracy specified in the data-sheets is ±3%. The minimum measurable power is 0.5 watts.98

The accuracy at 0.5 watts is ±0.3 watts. The accuracy of Yokogawa WT310 is 0.1% and the sampling99

rate is 100 k samples per second.100

HCLServer01, HCLServer02 and HCLServer03 have a dedicated power meter installed between101

their input power sockets and wall A/C outlets. The power meter captures the total power102

consumption of the node. It has a data cable connected to the USB port of the node. A perl script103

collects the data from the power meter using the serial USB interface. The execution of this script is104

non-intrusive and consumes insignificant power.105

Table S1. Technical Specifications of HCLServers.

Technical Specifications HCLServer01 HCLServer02 HCLServer03
Processor Intel E5-2670 v3 @2.30GHz Intel Xeon Gold 6152 Intel Xeon Platinum 8180
Micro-architecture Haswell Skylake Skylake
OS CentOS 7 CentOS 7 CentOS 7
Thread(s) per core 2 2 2
Cores per socket 12 22 28
Socket(s) 2 1 2
NUMA node(s) 2 1 2
L1d cache / L11 cache 32 KB / 32 KB 32 KB / 32 KB 32 KB / 32 KB
L2 cache 256 KB 1024 KB 1024 KB
L3 cache 30720 KB 30976 KB 30976 KB

NVIDIA K40c NVIDIA P100 PCIe
No. of processor cores 3584 2880
Total board memory 12 GB CoWoS HBM2 12 GB GDDR5
Memory bandwidth 549 GB/sec 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

We use RAPL [17], NVIDIA Management Library (NVML) [18] and Intel System Management106

Controller chip (SMC) [19] (using Intel manycore platform software stack (MPSS) [20]) to determine107

the energy consumed by the application kernels executing on Intel CPUs, Nvidia GPUs and Intel108

Xeon Phi respectively. HCLWattsUp interface [21] is used to obtain the power measurements from the109

WattsUp Pro power meters. The Intel MKL on all HCLServers is 2017.0.2, whereas the CUDA versions110

used on HCLServer01 is 7.5 and 9.2.148 on HCLServer02.111

The remaining section is organized as follows: The details on the HCLWattsUp interface is112

presented in section 2.2 followed by the methodology used to obtain a reliable data point using113

different tools (on-chip power sensors and power meters) in section 2.3. After that the details about114

the methodology to obtain the dynamic energy consumption using on-chip powe sensors is presented115

in section 2.4. Finally, the application suite used for construction of the dynamic energy profiles is116

presented section 2.5.117
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2.2. Application Programming Interface (API) for measurements using external power meter interfaces118

(HCLWattsUp)119

We use HCLWattsUp API function, which gathers the readings from the power meters to determine120

the average power and energy consumption during the execution of an application on a given platform.121

HCLWattsUp API can provide following four types of measures during the execution of an application:122

• TIME—The execution time (seconds).123

• DPOWER—The average dynamic power (watts).124

• TENERGY—The total energy consumption (joules).125

• DENERGY—The dynamic energy consumption (joules).126

We confirm that the overhead due to the API is very minimal and does not have any noticeable127

influence on the main measurements. It is important to note that the power meter readings are only128

processed if the measure is not hcl::TIME. Therefore, for each measurement, we have two runs. One129

run for measuring the execution time. And the other for energy consumption. The example provided130

in figure S1 illustrates the use of statistical methods to measure the dynamic energy consumption131

during the execution of an application.132

The API is confined in the hcl namespace. Lines 10–12 construct the Wattsup object. The inputs133

to the constructor are the paths to the scripts and their arguments that read the USB serial devices134

containing the readings of the power meters.135

The principal method of Wattsup class is execute. The inputs to this method are the type of136

measure, the path to the executable executablePath, the arguments to the executable executableArgs and137

the statistical thresholds (pIn) The outputs are the achieved statistical confidence pOut, the estimators,138

the sample mean (sampleMean) and the standard deviation (sd) calculated during the execution of139

the executable.140

The execute method repeatedly invokes the executable until one of the following conditions141

is satisfied:142

• The maximum number of repetitions specified in maxRepeats is exceeded.143

• The sample mean is within maxStdError percent of the confidence interval cl. The confidence144

interval of the mean is estimated using Student’s t-distribution.145

• The maximum allowed time maxElapsedTime specified in seconds has elapsed.146

If any one of the conditions are not satisfied, then a return code of 0 is output suggesting147

that statistical confidence has not been achieved. If statistical confidence has been achieved,148

then the number of repetitions performed, time elapsed and the final relative standard error149

is returned in the output argument pOut. At the same time, the sample mean and standard150

deviation are returned. For our experiments, we use values of (1000, 95%, 2.5%, 3600) for the151

parameters (maxRepeats, cl, maxStdError, maxElapsedTime). Since we use Student’s t-distribution152

for the calculation of the confidence interval of the mean, we confirm specifically that the observations153

follow normal distribution by plotting the density of the observations using R tool.154

2.3. Methodology to obtain a reliable data point155

We follow the following strict methodology described below to make sure the experimental156

results are reliable:157

• The server is fully reserved and dedicated to these experiments during their execution. We also158

made certain that there are no drastic fluctuations in the load due to abnormal events in the159

server by monitoring its load continuously for a week using the tool sar. Insignificant variation160

in the load was observed during this monitoring period suggesting normal and clean behaviour161

of the server.162
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1 # include <wattsup . hpp>
2 i n t main ( i n t argc , char * * argv )
3 {
4 std : : s t r i n g pathsToMeters [ 2 ] = {
5 "/opt/powertools/bin/wattsup1 " ,
6 "/opt/powertools/bin/wattsup2 " } ;
7 std : : s t r i n g argsToMeters [ 2 ] = {
8 "−− i n t e r v a l =1 " ,
9 "−− i n t e r v a l =1 " } ;

10 hc l : : Wattsup wattsup (
11 2 , pathsToMeters , argsToMeters
12 ) ;
13 hc l : : P r e c i s i o n pIn = {
14 maxRepeats , c l , maxElapsedTime , maxStdError
15 } ;
16 hc l : : P r e c i s i o n pOut ;
17 double sampleMean , sd ;
18 i n t rc = wattsup . execute (
19 hc l : : DENERGY, executablePath ,
20 executableArgs , &pIn , &pOut ,
21 &sampleMean , &sd
22 ) ;
23 i f ( r c == 0)
24 std : : c e r r << " P r e c i s i o n NOT achieved .\n" ;
25 e l s e
26 std : : cout << " P r e c i s i o n achieved .\n" ;
27 std : : cout << "Max r e p e t i t i o n s "
28 << pOut . reps_max
29 << " , Elasped time "
30 << pOut . time_max_rep
31 << " , R e l a t i v e e r r o r "
32 << pOut . eps
33 << " , Mean energy "
34 << sampleMean
35 << " , Standard Deviat ion "
36 << sd
37 << std : : endl ;
38 e x i t ( EXIT_SUCCESS ) ;
39 }
40

Figure S1. Example illustrating the use of HCLWattsUp API for measuring the dynamic energy consumption

• We set the application kernel’s CPU affinity mask using SCHED API’s system call163

SCHED_SETAFFINITY() Consider for example mkl-DGEMM application kernel running on164

HCLServer01. To bind this application kernel, we set its CPU affinity mask to 12 physical CPU165

cores of Socket 1 and 12 physical CPU cores of Socket 2.166

• To make sure that pipelining, cache effects and so forth, do not happen, the experiments are not167

executed in a loop and sufficient time (120 s) is allowed to elapse between successive runs. This168

time is based on observations of the times taken for the memory utilization to revert to base169

utilization and processor (core) frequencies to come back to the base frequencies.170

• To obtain a data point, the application is repeatedly executed until the sample mean lies in the171

95% confidence interval and a precision of 0.025 (2.5%) has been achieved. For this purpose,172

Student’s t-test is used assuming that the individual observations are independent and their173

population follows the normal distribution. We verify the validity of these assumptions by174

plotting the distributions of observations.175

The function MeanUsingTtest, shown in Algorithm 1, describes this step. The inputs to the176

function MeanUsingTtest are:177

– The application to execute, app178

– The minimum number of repetitions, minReps ∈ Z>0179

– The maximum number of repetitions, maxReps ∈ Z>0180

– The maximum time allowed for the application to run, maxT ∈ R>0181
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– The required confidence level, cl ∈ R>0182

– The required accuracy, eps ∈ R>0183

The outputs by the function MeanUsingTtest are:184

– The number of experimental runs actually made, repsOut ∈ Z>0185

– The confidence level achieved, clOut ∈ R>0186

– The accuracy achieved, epsOut ∈ R>0187

– The elapsed time, etimeOut ∈ R>0188

– The mean, mean ∈ R>0189

For each data point, the function is invoked, which repeatedly executes the application app until190

one of the following three conditions is satisfied:191

1. The maximum number of repetitions (maxReps) have been exceeded (Line 3).192

2. The sample mean falls in the confidence interval (or the precision of measurement eps has193

been achieved) (Lines 15–17).194

3. The elapsed time of the repetitions of application execution has exceeded the maximum195

time allowed (maxT in seconds) (Lines 18–20).196

So, for each data point, the function MeanUsingTtest is invoked and the sample mean mean is197

returned at the end of invocation. The function Measure measures the execution time or the198

dynamic energy consumption using the HCL’s WattsUp library [21] based on the input, TIME199

or ENERGY. The input minimum and maximum number of repetitions, minReps and maxReps,200

differ based on the problem size solved. For small problem sizes (32 ≤ n ≤ 1024), these values201

are set to 10,000 and 100,000. For medium problem sizes (1024 < n ≤ 5120), these values are202

set to 100 and 1000. For large problem sizes (n > 5120), these values are set to 5 and 50. The203

values of maxT, cl and eps are set to 3600, 0.95 and 0.025. If the precision of measurement is204

not achieved before the maximum number of repeats have been completed, we increase the205

number of repetitions and also the maximum elapsed time allowed. However, we observed that206

condition (2) is always satisfied before the other two in our experiments. The complexity of the207

function MeanUsingTtest is O(N).208

2.4. Methodology to compare measurements using on-chip sensors and HCLWattsUp209

To analyze the dynamic energy consumption by a given component when running an application,210

we need to build application profiles on them. HCLWattsUp API provides the dynamic energy211

consumption of application instead of the component. It, therefore, contains the contributions by other212

components including CPU host-core and DRAM. Built-in sensors, on the other hand, only provide213

the power consumption of GPU or Xeon Phi only (we offload the applications to run on Intel Xeon Phi,214

so it includes the CPU host core, DRAM and PCIe to copy and migrate the data between CPU host215

core and Xeon Phi). Therefore, to compare both methodologies in a most fairly equitable way and to216

obtain the dynamic energy profiles of applications, we use RAPL as an aide to sensors for determining217

the application energy. Because, RAPL determine the power consumption of CPU and DRAM using218

on-chip voltage regulator and current sensor[22].219

Now, we present the work-flow of experiments that we follow to determine the dynamic energy220

consumption of the application. To obtain the CPU host-core and DRAM contribution in dynamic221

energy consumption of the application, we use RAPL in following way:222

1. Using Intel PCM/PAPI, we obtain the base power of CPU and DRAM (when the given application223

is not running).224

2. Using HCLWattsUp API, we obtain the execution time of the given application.225

3. Using Intel PCM/PAPI, we obtain the total energy consumption of the CPU host-core (because all226

other cores are idle) and DRAM, during the execution of the given application.227
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Algorithm 1 Function determining the sample mean using Student’s t-test.

1: procedure MEANUSINGTTEST(
app, minReps, maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut, mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0The maximum number of repetitions, maxReps ∈ Z>0The maximum time allowed for the application to run, maxT ∈ R>0The required confidence level, cl ∈ R>0The required accuracy, eps ∈ R>0Output:
The number of experimental runs actually made, repsOut ∈ Z>0The confidence level achieved, clOut ∈ R>0The accuracy achieved, epsOut ∈ R>0The elapsed time, etimeOut ∈ R>0The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← MEASURE(TIME)
5: EXECUTE(app)
6: et← MEASURE(TIME)
7: reps← reps + 1
8: etime← etime + et− st
9: ObjArray[reps]← et− st

10: sum← sum + ObjArray[reps]
11: if reps > minReps then
12: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1))

× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum22: etimeOut← etime; mean← sum
reps

23: end procedure

4. Finally, we calculate the dynamic energy consumption (of CPU and DRAM) by subtracting the228

base energy from total energy consumed during the execution of the given application.229

To obtain the GPU/Xeon Phi contribution, we use NVML/Intel SMC in following way:230

1. Using NVML/Intel SMC, we obtain the base power of GPU/Xeon Phi (when the given application231

is not running).232

2. Using HCLWattsUp API, we obtain the execution time of the given application.233

3. Using NVML/Intel SMC, we obtain the total energy consumption of GPU/Xeon Phi during the234

execution of the given application.235

4. Finally, we calculate the dynamic energy consumption GPU/Xeon Phi by subtracting the base236

energy from total energy consumed during the execution of the given application.237

Now, we present the workflow of the experiments to determine the dynamic energy consumption238

by the given application kernel, using HCLWattsUp:239

1. Using HCLWattsUp API, we obtain the base power of the server (when the given application is240

not running).241

2. Using HCLWattsUp API, we obtain the execution time of the application.242

3. Using HCLWattsUp API, we obtain the total energy consumption of the server, during the243

execution of the given application.244

4. Finally, we calculate the dynamic energy consumption by subtracting the base power from total245

energy consumed during the execution of the given application.246
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2.5. Application suite used for the experiments247

We use following applications to constrcut the energy profiles.248

Table S2. Applications suite for constructing the energy profiles.

Application Description

OpenBLAS
DGEMM

OpenBLAS library routine to compute the
matrix product of two dense matrices

FFTW 2D two dimensional FFT routine to compute
the discrete Fourier transform of a complex
signal

CuBLAS
DGEMM

NVIDIA library routine which is optimized
for NVIDIA GPUs to compute the matrix
product of two dense matrices

CuFFT NVIDIA library routine which is optimized
for NVIDIA GPUs to compute the discrete
Fourier transform of a complex signal

MKL FFT MKL routine for Fast Fourier Transform

MKL
DGEMM

MKL routine for Dense Matrix
Multiplication

HPCG High performance conjugate gradient

NPB IS Integer Sort, Kernel for random memory
access

NPB LU Lower-Upper Gauss-Seidel solver

NPB EP Embarrassingly Parallel, Kernel

NPB BT Block Tri-diagonal solver

NPB MG Multi-Grid on a sequence of meshes

NPB FT Discrete 3D fast Fourier Transform

NPB DC Data Cube

NPB UA Unstructured Adaptive mesh, dynamic
memory access

NPB CG Conjugate Gradient

NPB SP Scalar Penta-diagonal solver

NPB DT Data traffic

stress CPU, disk and I/O stress

Naive MM Naive Matrix-matrix multiplication

Naive MV Naive Matrix-vector multiplication

3. Similarity Results of Group A249

Group A comprises of the EPS where there are more than one energy profile of the same250

application constructed with different approaches such as on-chip power sensors, system-level power251

measurements provided by power meters, etc.252

Table S3. Similarity results for Group A.

Correlation Average Error[%]
Euclidean Distance

Between Profiles
Similarity Class TSM

Rank
DGEMM_DiffLoad

0.9992 1.2646 1975.9796 same 1
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0.9668 63.5344 90472.0176 opposite -
0.9682 64.9294 92104.4449 opposite -

DGEMM_EqualLoad
0.9995 4.5639 13623.2651 similar 3
0.9993 21.2295 8270.0584 similar 2
0.9993 16.1469 7625.6795 similar 1

FFT_Different Load
0.9933 3.7506 483.9803 same 1
0.8983 75.6650 8394.0909 similar 3
0.9002 65.9681 7318.8504 similar 2

FFT(socket1)_DGEMM(socket2)
0.9960 1.4562 441.0981 same 1
0.8596 29.9055 8014.0644 similar 2
0.8900 34.5172 9025.7489 similar 3

FFT(HCLServer01)-Sensors
0.9785 4.3116 3806.0259 similar 1
0.9105 15.0796 12702.5932 similar 2

DGEMM(HCLServer01)- Sensors
0.9383 3.0720 3803.1372 similar 1
0.9037 19.0641 19732.2589 opposite -

DGEMM_AnMoHA
0.9762 2.0190 2257.6144 same 1
0.8641 7.7355 8794.7977 similar 3
0.5741 6.5949 8420.5404 opposite -
0.6741 5.9963 7522.9645 opposite -
0.8945 4.0381 4515.2345 similar 2

FFT_Predictive Models
0.9887 37.2600 2414.0882 similar 5
0.9924 91.8419 3321.1547 similar 6
0.9994 7.8324 472.2268 similar 2
0.9991 11.8382 593.4430 similar 4
0.9998 3.8569 293.9054 similar 1
0.9997 5.1557 334.3252 similar 3

DGEMM_Predictive Models
0.9993 27.3336 6217.9387 similar 5
0.9973 39.0893 10576.7382 similar 6
0.9999 8.5995 2076.8247 similar 1
0.9985 13.1182 6574.3586 similar 3
0.9999 3.0024 1276.4288 similar 2
0.9986 6.2412 6556.0057 similar 4

4. Similarity Results of Group B253

An EPS is a constituent of Application, Configuration Parameters, Profile, Platform , Problem Size254

and Step Size.255
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Table S4. Similarity Results of Group B. Here Problem Size is (M× N) where 0 ≥ M ≤ N.

Application,
Configuration Parameter,

Profile, Platform

Problem Size,
Step Size(SS)

Correlation Average_
Error[%]

Euclidean
Distance

Between Profiles

TSM
Similarity

DGEMM, Problem Size,
RAPL, HCLServer01

M=12800-20480,
N=20480, SS=256

0.9319 10.2457 5161.1469 opposite

FFT, Problem Size,
RAPL, HCLServer01

M=15104-18688,
N=23552, SS=64

0.8315 9.2421 92.3809 similar

DGEMM, Problem Size,
Sensors, HCLServer01

M=10752-21504,
N=21504, SS=256

0.7945 53.7876 3841.1001 opposite

FFT, Problem Size,
Sensors, HCLServer01

M=15104-18688,
N=23552, SS=64

0.7779 11.2001 152.0388 opposite

DGEMM, Problem Size,
Sensors, HCLServer02

M=18176-22528,
N=22528 SS=128

0.5959 13.1062 1745.9799 opposite

FFT, Problem Size,
Sensors, HCLServer02

M=21504-25600,
N=25600, SS=128

0.6419 73.3393 258.5867 opposite

DGEMM, Problem Size,
Sensors, HCLServer01

M=12800-20480,
N=20480, SS=256

0.8791 37.0786 14275.7493 similar

FFT, Problem Size,
Sensors, HCLServer01

M=15104-18688,
N=23552, SS=64

0.8534 40.8715 2715.9380 similar

DGEMM, Problem Size,
RAPL, HCLServer01

M=512-16384,
N=16384, SS=512

0.9694 62.4245 4014.0942 similar

FFT, Problem Size,
RAPL, HCLServer01

M=16256-22528,
N=22528, SS=128

0.9964 16.0109 92.5880 similar

DGEMM, Problem Size,
RAPL, HCLServer02

N=6400-29504,
SS=64

0.9857 36.1267 10085.1871 similar

FFT, Problem Size,
RAPL, HCLServer02

N=22400-41536,
SS=64

0.9928 28.6694 2557.1955 opposite

IntelMKLFFT, CPU Cores,
RAPL, HCLServer03

N=43328 0.9976 13.0454 6699.9534 similar

FFTW, CPU Threads,
RAPL, HCLServer03

N=32768 0.9999 7.4316 5485.4512 similar

FFTW, Problem Size,
RAPL, HCLServer03

N=32768 0.9836 10.4683 1134.8875 similar

OpenBlas, Problem Size,
RAPL, HCLServer03

N=10240-26112,
SS=512,G=2,T=56

0.9999 23.3422 15628.3773 similar

N=10240-26112,
SS=512, G=4,T=28

0.9998 20.8883 31537.2291 similar

N=10240-26112,
SS=512,G=7,T=16

0.9998 22.7078 48717.0221 similar

N=10240-26112,
SS=512, G=8,T=14

0.9998 21.5933 58193.8600 similar

N=10240-26112,
SS=512,G=14,T=8

0.9997 15.8470 95839.8982 similar

N=10240-26112,
SS=512,G16,T=7

0.9997 15.8663 143722.2497 similar

N=10240-26112,
SS=512,G=28,T=4

0.9998 15.4408 258623.5761 similar

N=10240-26112,
SS=512,G=56,T=2

0.9994 16.1594 31431.2584 similar
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FFTW, Problem Size,
RAPL, HCLServer03

M=512 - 10240,
N=20480, SS=512

0.9977 6.5117 937.3472 similar

M=544-10272,
N=20544, SS=512

0.9674 11.1643 360.9246 similar

M=576-10304,
N=20608, SS=512

0.8846 7.0593 114.4169 same

M=308-10336,
N=20672, SS=512

0.4054 8.0483 218.7999 similar

M=128-10368,
N=20736, SS=512

0.5962 5.9544 83.1244 similar

M=108-10400,
N=20800, SS=512

0.7604 6.7705 100.8612 similar

M=192-10432,
N=20864, SS=512

0.8973 10.5817 326.0428 similar

M=224 10464,
N=20992, SS=512

0.6522 9.9545 285.7523 similar

M=256-10496,
N=20992, SS=512

0.5333 9.1475 274.5072 similar

M=288-10528,
N=21056, SS=512

0.9991 5.9861 819.9989 similar

M=320-10560,
N=21120, SS=512

0.1895 5.6268 81.5864 similar

M=352-10592,
N=21184, SS=512

0.9967 6.3244 928.4300 similar

M=384-10624,
N=21248, SS=512

0.9480 12.5488 471.9435 similar

M=416-10656,
N=21312, SS=512

0.9964 6.4423 900.8481 similar

M=448-10688,
N=21376, SS=512

0.9461 10.0455 333.6082 similar

M=480-10720,
N=21440, SS=512

0.9487 10.2235 281.0485 similar

M=512-10752,
N=2154, SS=512

0.8474 6.1786 97.7390 similar

MKL, Problem Size,
RAPL, HCLServer03

N=25600-46080,
SS=512,G=1,T=56

0.9998 13.5649 1489.3704 opposite

N=25600-46080,
SS=512,G=2,T=28

0.9999 12.3451 1375.7246 similar

N=25600-46080,
SS=512,G=4,T=14

0.9999 11.9745 1398.6977 similar

N=25600-46080,
SS=512,G=7,T=8

0.9999 12.3395 1603.8175 similar

N=25600-46080,
SS=512,G=8,T=7

0.9999 12.4057 1695.1576 similar

N=25600-46080,
SS=512,G=14,T=4

0.9998 12.9987 2153.5891 similar

N=25600-46080,
SS=512,G=28,T=2

0.9997 14.4593 3179.7384 similar
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MKL, Problem Size,
RAPL, HCLServer03

N=32768-43456,
SS=64,G=1,T=56

0.9999 14.1218 7423.8074 same

N=32768-43456,
SS=64, G=2,T=28

0.9998 13.0212 7452.8136 similar

N=32768-43456,
SS=64, G=4,T=14

0.9998 13.0325 7923.3728 similar

N=32768-43456,
SS=64,G=7,T=8

0.9999 13.2150 8457.6352 same

N=32768-43456,
SS=64,G=8,T=7

0.9999 13.2373 8563.3480 same

N=32768-43456,
SS=64,G=14,T=4

1.0000 13.6266 9325.5557 similar

N=32768-43456,
SS=64,G=28,T=2

0.9999 15.0864 11717.0005 same

FFTW, Problem Size,
RAPL, HCLServer03

N=35480-41920,
SS=64,G=1,T=112

0.9978 24.6166 78669.0124 same

N=35480-41920,
SS=64,g=2,T=56

0.9995 12.2964 5993.3535 same

N=35480-41920,
SS=64,G=4,T=28

0.9976 13.7285 6227.9184 similar

N=35480-41920,
SS=64,G=7,T=16

0.9966 14.5904 5915.2791 similar

N=35480-41920,
SS=64,G=8,T=14

0.9970 13.6615 5569.3958 similar

N=35480-41920,
SS=64, G=14,T=8

0.9946 13.1908 5102.1465 similar

N=35480-41920,
SS=64,G=16,T=7

0.9947 12.3994 4850.3314 similar

FFTW, Problem Size,
RAPL, HCLServer03

N=30720-34816,
SS=64,G=1,T=112

0.9986 25.0459 81473.9811 similar

N=30720-34816,
SS=64,G=2,T=56

0.9984 10.9418 3060.2949 similar

N=30720-34816,
SS=64,G=4,T=28

0.9840 9.3161 3639.7016 similar

N=30720-34816,
SS=64,G=7,T=16

0.9945 14.8833 3013.0125 similar

N=30720-34816,
SS=64,G=8,T=14

0.9942 16.1527 2955.8465 similar

N=30720-34816,
SS=64,G=14,T=8

0.9912 16.3173 2595.7632 similar

N=30720-34816,
SS=64,G=16,T=7

0.9917 42.8061 2416.1999 similar

FFTW, Problem Size,
RAPL, HCLServer03

N=20480-26560,
SS=64,G=1,T=112

0.9996 25.6272 86911.0622 similar

N=20480-26560,
SS=64,G=2,T=56

0.9994 9.7569 1502.1569 similar

N=20480-26560,
SS=64,G=4,T=28

0.9985 7.5984 1324.9766 similar

N=20480-26560,
SS=64,G=7,T=16

0.9549 17.7605 1611.0385 opposite

N=20480-26560,
SS=64,G=8,T=14

0.9427 21.5876 1806.2769 similar

N=20480-26560,
SS=64,G=14,T=8

0.6497 28.1641 2012.2371 similar
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N=20480-26560,
SS=64,G=16,T=7

0.6010 30.9980 2163.2482 opposite

AnMoHA [2.5% precision]
DGEMM, Problem Size,

HCLWattsUp_Combined,
HCLServer01

M=12800-20224,
N=20224,SS=128

0.9750 2.2414 3398.2869 same

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01

M=12800-20480,
N=20480, SS=256

0.9383 3.0720 3803.1504 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01

M=12800-20736,
N=20224, SS=256

0.9739 3.8751 4349.8794 same

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer01

M=15104-18688,
N=23552,SS=64

0.9785 4.3116 3806.0146 same

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer02

M=16384-20096,
N=22528, SS=128

0.9504 2.1708 956.8094 similar

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer02

M=21504-25600,
N=25600, SS=64

0.9387 4.8698 2252.6855 similar

AnMoHA Less Accurate (10%rercision)
DGEMM, Problem Size,
HCLWattsUp_Parallel,

HCLServer01
M=12800-20224,
N=20224,SS=128

0.9134 6.8688 9937.8680 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01
0.9216 7.7965 10996.5086 similar

DGEMM, Problem Size,
HCLWattsUp_Parallel,

HCLServer01
M=12800-20480,
N=20480,SS=256

0.9094 5.9996 6914.4728 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01
0.9023 8.9318 9266.7659 similar

DGEMM, Problem Size,
HCLWattsUp_Parallel,

HCLServer01
M=12800-20736,

N=20736
0.9110 8.1647 8258.8659 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01
0.9456 7.5815 7766.5003 similar

FFT, Problem Size,
HCLWattsUp_Parallel,

HCLServer01
M=15104-18688,
N=23552,SS=64

0.7930 4.4804 2080.0339 similar

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer01
0.8625 3.0740 1516.4442 similar

DGEMM, Problem Size,
HCLWattsUp_Parallel,

HCLServer01
M=16384-20096,
N=22528,SS=128

0.9308 8.4808 7966.4267 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01
0.9010 8.1606 7241.1619 similar
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FFT, Problem Size,
HCLWattsUp_Parallel,

HCLServer01
M=21504-25600,
N=25600,SS=64

0.8667 13.4232 7170.1068 similar

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer01
0.9010 8.1606 7241.1619 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01
M=64- 20288,

N=10112,SS=64

0.9963 8.0723 7060.6467 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer02
0.9994 5.0213 1184.0506 similar

DGEMM, Problem Size,
HCLWattsUp_Combined,

HCLServer01,
HCLServer02

0.9972 7.6614 7598.0246 similar

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer01
M=1024-10160,
N=51200, SS=16

0.9991 14.5338 6279.0562 similar

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer02
0.9971 5.7143 147.5044 similar

FFT, Problem Size,
HCLWattsUp_Combined,

HCLServer01,
HCLServer02

0.9992 14.0973 6383.0253 similar
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