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1      Introduction 

The C language is commonly used by professional programmers because it allows one to 
develop highly efficient software portable within the class of UNIX systems. C reflects all 
main features of UNIX systems' architecture, which has an impact on the program efficiency 

As computer architectures have changed it has become necessary to reflect the changes in 
the compiler's internal languages, by adding constructs to express new computing facilities, 
such as vector calculations. But if we want to use these new facilities explicitly in programs, 
they should also be added to the C language. 

We created a C language superset with the same vector capabilities as vector computer 
assembly languages, by adding several new notions to ANSI C. The resulting extended C 
languages, named C[], which allows one to write portable efficient programs for SIMD (vector 
and superscalar) computer archutectures [2]. Our motivation of the C\\ language is given in 
sec. 2. 

In sec. 3 we give a brief description of the C[] language as it is published in [2]. In sec. 
4 two new statements added to C[] after publishing [2] are discussed. In sec. 5 we discuss 
principles of CQ implementation for superscalar computers and especially for Intel i860. In 
sec. 6 the retargetable compiler prototype system is described. 
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2      Motivation 

As vector and superscalar architectures are an evolution of UNIX systems architecture, the 
language which plays the same part as C does for UNIX systems may be developed as a 
superset of the C language. 

There have been many efforts to develop such C supersets ([3], [4], [5], etc.), but the 
supersets we know have following disadvantages: 

• The conceptual models of these supersets are not sufficiently developed (for example, 
the concept of vector value is absent). 

• The conceptual models reflect some peculiar features of particular architectures having 
no analogs in other vector and superscalar architectures (for example, the notion of 
descriptor in Vector C language [3] is natural for the Cyber 205 but not natural for 
supercomputers of Cray family because all their vector instructions are of register-to- 
register type; the notion of parallel objects in the C* language [4] is natural for the 
Connection Machine 2 but not natural for Cray, Cyber 205, and other shared memory 
supercomputers because it excludes explicit parallel processing of arrays). 

• The supersets do not take into account requirements related to implementation of the 
compiler being portable and retargetable to particular architectures of considered class. 

We considered the following requirements while developing the superset of C for vector 
and superscalar computers: 

• The superset must adequately reflect all common features of the relevant architectures. 

• The conceptual model of the superset must provide simple and efficient imlementation 
for all computers of the class. 

• The superset must be suitable for implementation of the portable and retargetable 
compilers. 

3      Brief description of the C[] language 

The C[] language is a strict superset of ANSI C [6]. The following a brief description of its 
main features as it was described in [2]. 

The basic new notion of the C|J language is a notion of 'vector value' (or simply 'vector'). 
A vector is defined as an ordered sequence of values of any type (the elements of the vector). 
The types of all the elements of a vector must be the same. In contrast to arrays, a vector 
is not an object, it is a new sort of value. 

An array is a container of vector values. The unary postfix \\ operator is applied to a 
operand of array type and provides an access to the vector, being the value of the array 
object. Formally the [] operator cancels the conversion of the operand to a pointer. 
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The notion of array in the C[] language is extended by adding new attribute, namely, the 
step of allocation of array members in storage (in particular, it allows us to introduce the 
notion of subarray sensible enough). Correspondingly, the notion of pointer is extended as 
well as address arithmetic. Namely, a pointer has new attribute step, and address arithmetic 
takes into account this new attribute. 

A formal parameter of a function may have an array type. The corresponding argument is 
an expression of the same vector type that is defined by the formal parameter. The function 
value also may have vector type. 

The notion of vector causes the notion of lvector. Just as an lvalue is an expression 
designating some object, an lvector is a vector expression designating a set of objects. 

The operand of unary *, +, -, ", ?, '/„ 8, ! operators and scalar cast operators may have 
a vector type. One or both operands of binary *, /, '/„ ?<, ?>, +, -, «, », <, >, <=, >=, 
==,!=, ft, ", I , ft*, II operators may have vector type. An assignment operator may 
have as its left operand an lvector. In that case its right operand may have vector type. In 
any case the type of its right operand converts to the type of the left operand's value. The 
conditional operator may also have vector operands. 

The linear (or reduce) operators are introduced. The unary linear [*] , [/] , ['/,], [?<], 
[?>], [+], [-], [«], [»], W, ["]> [I] operators correspond to binary *, /, '/„ ?<, ?>, 
+, -, «, », ft, ", | operators. These operators are applicable only to vector operands. 

The set of C[| operators together with facilities of packing integer vectors into bit-fields 
provide a general set of vector manipulations in vector computers. 

4      New constructs of CQ 

In this section we discuss two new statements — par and pipe, — added to C[] after 
publishing of [2] to describe parallel and pipelined calculations. 

The par statement is another form of compound statement: a list of statements is en- 
closed in braces { and } preceded by the keyword par. It means that all these statements 
may be executed in arbitrary order, in particular, in parallel. Each result of the execution 
is considered be correct even if it depends on the order the statements are executed. 

The par statement allowes the programmer to express data dependencies of his program 
in terms of the source language. If the programmer is sure that there are no data depen- 
dencies between some statements, he may include them in par statement. In general it will 
lead to more profound program optimization. 

The pipe statement is a special loop statement, which allowes to express "skewed" loops. 
The idea of pipe is borrowed from [7]. It has the form 

pipe (<expression><,pt;<expression>0p,;<expression>0p,) <statement> 

The <expression>s have the same semantics as those in for statement. If body of pipe 
is a compound statement, it may contain a special label p+:. It means that the part of 
the current iteration beginning with the statement marked by this label may be executed in 
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parallel with the next iteration of the loop. If the label p+: is omitted it is implied that it 
marks the first statement and therefore all iterations of the loop can be executed in parallel. 
It is supposed that if the compound statement, being a pipe body, contains definitions of 
automatic variables, these variables are different for each iteration, that is if n iterations run 
in parallel, there are n different instances for each such variable. 

5      C[] implementation for superscalars 

It is obvious that C[] is suitable for vector pipelined computers But C[] is also suitable for 
superscalar computers because the vector expressions and constructs par and p+:, presented 
in sec. 4, allow to point parts of the program which can efficiently use their parallel facilities 
(pipelines). 

It may be pointed out dicussing the mapping if CQ to Intel i860 microprocessor. 
All scalar operators of C[] are translated to corresponding scalar operations of the i860 

processor. 

The vector operators of C(] can be mapped on pipelined i860 operations. For example, 
vector expresion 

c[]   = a[]   + b[] may be mapped in the following sequence of instructions: 

rl6  - address  of vector  a[] 
rl7  - address  of vector  b[] 
r20  - vector  size 
rlB  - address  of vector  c[] 

************************************ 
//Load first  4 elements  of  A[] 
//Load first  4 elements  of  B[] 
//rl4  is used to decrement  counter 
//dectement  counter 
//Enter dual mode 
//Set   LCC flag 
//prepare  C address 
//Put  first  elements  in pipe 
//Load next  4 elements  of A[] 
//Put  next  elements  in pipe 
//Load next  4 elements  of B[] 
//Put  next  elements  in pipe 
//Check  if  there  are more   elements 
//and  set  LCC 
//Put  next  elements  in pipe 

//Exit  dual  mode 
//Get   result   from pipe 

// c[]=a[]+b[] 
// input: 
// 
// 
// output 
//***************************** 

fld.q r0(rl6),f8 
fld.q r0(ri7),fl2 
mov -4,rl4 
adds rl4,r20,r20 
.dual 
bla rl4,r20,L0 
adds -16,rl5,rl5 

LO: pf add f8,fl2,f0 
fld.q 16(rl6)++,f20 
pf add f9,fl3,f0 
fld.q 16(rl7)++,f24 
pfadd fl0,fl4,f0 
bla rl4,r20,L2 

pfadd fll,fl5,fl6 
nop 
.enddual 
pfadd f0,f0,f!7 
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nop 
pf add fO,fO,fl8 
nop 

pf add f0,f0,fl9 
br END 

fst.q rl6,16(rl5) 
LI: :       pf add f8,fl2,f29 

fld.q 16(rl6)++,f20 
pf add f9,fl3,f30 
fld.q 16(rl7)++,f24 
pf add fl0,fl4,f31 
bla rl4,r20,L2 

pfadd fll,fiS,fl6 
fst.q r28,16(rlB)++ 
.enddual 
pfadd fO,fO,fl8 
nop 
pfadd f0,f0,fl9 
br END 

fst.q rl6,16(rl5) 
L2::       pfadd f20,f24,fl7 

fld.q 16(rl6)++,f8 
pfadd f21,f25,fl8 
fld.q 16(rl7)++,fl2 
pfadd f22,f26,fl9 
bla rl4,r20,Ll 

pfadd f23,f27,f28 
fst.q rl6,16(rlS)++ 
.enddual 
pfadd f0,f0,f29 
nop 
pfadd f0,f0,f30 
nop 
pfadd f0,f0,f31 
fst.q r28,16(rlS) 

END::     nop 
//♦ft************************** 

The expression: 

c[]  = k * a[]   + b[] 

//Still in dual mode 

//Get result from pipe 

//Still in dual mode 

//Get result from pipe 

//Goto END 

//Store results 

//Put next elements in pipe 

//Load next 4 elements of A[] 

//Put next elements in pipe 

//Load next 4 elements of B[] 

//Put next elements in pipe 

//Check if there are more elements 

//and Bet LCC 

//Put next elements in pipe 

//Store results 

//Exit dual mode 

//Get result from pipe 

//Still in dual mode 

//Get result from pipe 

//Goto END 

//Store results 

//Put next elements in pipe 

//Load next 4 elements of A[] 

//Put next elements in pipe 

//Load next 4 elements of BD 

//Put next elements in pipe 

//Check if there are more elements 

//and set LCC 

//Put next elements in pipe 

//Store results 

//Exit dual mode 

//Get result from pipe 

//Still in dual mode 

//Get result from pipe 

//Still in dual mode 

//Get result from pipe 

//Store results 

where k is a scalar variable, may be treated in similar way; this example allowes to achieve 

pipeline chaining. 
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fld.d r0(rl6), f20 
mov -2, r21 
.dual 

pfadd.ss fo, to. fO 
adds -6, rl7. rl7 
pfadd.ss fo, fO. fO 
bla r21 rl7. LI 
pfadd.ss fo, fO, fO 
fld.d 8(rl6)++, f22 

The linear (or reduce) operators can be mapped to sequence of instructions containing 
pipelined operations. For example, the expression 

B =   W  a[] 

may be mapped to the following sequence of instructions: 

//*********************************,***************************************** 
II B =   [+]   a[] 
//       input: rl6 - fca[] 

// rl7 - Bize of the vector a[] (must be >5) 
//       output: fl6 - a 
//♦*****«*»♦*»»•♦♦»«»«*»«»***»«*»»»•«*»*»»»•»»«»,«.»»«».,»«»»»««»,»»».»»»»»»» 

// 
//Load first 2 elements 

//Loop decrement for bla 

//Enter dual mode 

//Clear adder pipe (1) 

//Decrement size by 6 

//Clear adder pipe (2) 

//Initialize LCC 

//Clear adder pipe (3) 

//Ld 3th t  4th elements 
//*******************************t****t***t**t*t***t*t*******t„ttttttttttttt 

LI::  pfadd.ss    f20,       f30,       f30    //Add f20 to pipe 

bla        r21,       rl7,       L2     //If more go to L2 after 

pfadd.ss    f2i,       f31,       f31    //adding f21 to pipe and 

fld.d       8(rl6)++,  f20 //loading next f20:f21 

// If we reach this point, at least one element remains 

// to be loaded. rl7 is either -4 or -3. 

// f20, f21, f22, and f23 still contain vector elements. 

// Add f20 and f22 to the pipeline, too 

f30,       f30 

//Exit loop after adding 

f31,       f31    //f21 to pipe 

L2::   pfadd.ss     f22,       f30,       f30    //Add f22 to pipe 

rl7, LI //If more go to LI after 

f31, f3i //adding f23 to pipe and 

f22 //loading next f22:f23 
// If we reach this point, at least one element remains 

// to be loaded. ri7 is either -4 or -3. 

// f20, f21, f22, and f23 still contain vector elements. 

// Add f20 and f22 to the pipeline, too 

pfadd.ss    f20,       f30,       f30 
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pfadd.ss f20, 

br sumup 

pfadd.ss f21, 

nop 
pfadd.ss f22, 
bla r21, 
pfadd.ss f23, 

fld.d 8(rl6)++ 



nop 
pfadd.ss f21, 

nop 
.enddual 

pfadd.ss f22, 

mov -4, 
pfadd.ss f23, 

bte r2i. 

fld.l 8(rl6)++, 

pfadd.ss f20. 

f31,       f31 

sutmip::. enddual //Exit dual mode 

f30,       f30     //Still in dual mode 

r21 

f31,       f31     //Last dual mode pair 

rl7,       done    //If there is one more 

f20 //element, load it and 

f30,       f30     //add to pipeline 

// Intermediate results are still in the adder pipeline. 

// Let A1:A2:A3 represent the current pipeline contents 
//»*»*«»»»*»***»*********»*****»*»****»»***********»***********»*******»***** 
done: pfadd.ss fO, fO, f30 // 0:A1:A2   f30=A3 

pfadd.ss f30. f31, f3i // A2+A3:0:A1 f31=A2 

pfadd.ss fO, fO, f30 // 0:A2+A3:0  f30=Al 

pfadd.ss fO, fO, fO // 0:0:A2+A3 

pfadd.ss .fO, fO, f31 // 0:0:0     f31=A2+A3 

pfadd.BS f30, f31, f!6 // f!6=Al+A2+A3 

//»**»***.*»**«»»*»***»*******»»*»****«**»«*«************»»******************* 

But C\\ program may contain portions of sequential code, and this code should also be 
optimized, especially the loops, par and pipe statements allow compiler to reduce delays 
of the instruction pipeline of superscalar processor and therefore to optimize scalar code 
portions. 

In the case of loops par statement provides the information necessary for loop body 
optimization, pipe statement provides the information for mutual optimization of loop 
iterations. 

6      The compiler prototype system 

The portable and retargetable compiler prototype system was implemented on Sun SPARC 
Workstation in UNIX. To implement the compiler prototype system the Karlsruhe toolbox 
for compiler construction [8] was used. 

The compiler consists of four stages. The first stage analyses the source program file and 
builds its internal representation (the abstract syntax tree). 

The second stage translates the internal representation into an intermediate language 
being an extension of the RTL language used in GCC [1]. 

In the third stage, the intermediate program is tuned to the target computer. 
The fourth stage is a retargetable code generator. Currently, it generates code for the 

Russian Cray-like supercomputer [9] and for the Intel i860 [10]. 

83 



References: 

1. R.M.Stallman. Using and Porting GNU CC // Free Software Foundation, 675 Mass 
Ave, Cambridge, MA, May. 1992 

2. S.Gaissaryan, and A.Lastovetsky. An ANSI C Superset for Vector and Superscalar 
Computers and its Retargetable Compiler //J. C Lang. Transl., v.5, No.3, March, 
1994, p.p. 183 — 198 

3. Kuo-Cheng Li, and H. Schwetman. Vector C: A Vector Processing Language // J. 
Parall. Vect. Comput. v.2, No.2, 1985, p.p. 132-169 

4. Connection! Machine Model CM-2. Technical Summary (Version 6.0) /Thinking Ma- 
chines Corporation, Cambridge, Massachusets. Nov.,1990. 

5. R.Gisselquist. An experimental C Compiler for the Cray-2 Computer // ACM SIG- 
PLAN Notices, 21(9), 1986, p.p. 32-36 

6. ANSI. Programming Language C. X3.159-1989. Americn National Standard Institute, 
1989 

7. T.G.Lewis. Foundations of Parallel Programming: A Machine-Independent Approach. 
/ IEEE Comput. Soc. Press, 1994 

8. J.Grosch. Toolbox Introduction. / Compiler Generation Report No 25, GMD For- 
chungsstelle an der Universitaet Karlsruhe, 1992 

9. V.A.Melnikov, Ju.I.Mitropolsky, V.Z.Shnitman, V.P.Ivannikov, A.N.Tomilin, and 
S.S.Gaissaryan.   High Performance Computer System "Electronica SSBIS" / Proc. 
Internat.  Conf.  Parallel Computing Technologies, Novosibirsk, Sept.  7 — 11, 1991, 
p.p. 47-55 

10. i860 Microprocessor Architecture. / Intel, Osborne, McGraw-Hill, 1990 

84 


