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Abstract

In this paper, we study the problem of optimal matrix partitioning for parallel dense factorization on heterogeneous
processors. First, we outline existing algorithms solving the problem that use a constant performance model of processors,
when the relative speed of each processor is represented by a positive constant. We also propose a new efficient algorithm,
called the Reverse algorithm, solving the problem with the constant performance model. We extend the presented algo-
rithms to the functional performance model, representing the speed of a processor by a continuous function of the task
size. The model, in particular, takes account of memory heterogeneity and paging effects resulting in significant variations
of relative speeds of the processors with the increase of the task size. We experimentally demonstrate that the functional
extension of the Reverse algorithm outperforms functional extensions of traditional algorithms.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The paper presents a static data distribution strategy for factorization of a large dense matrix on a cluster of
computers with memory heterogeneity that uses a functional performance model of the computers and an
algorithm of set partitioning with this model. The functional model captures different aspects of heterogeneity
of the computers including the heterogeneity of the memory structure and paging effects.

A number of distribution strategies for matrix factorization in heterogeneous environments have been
designed and implemented. Arapov et al. [1] propose a distribution strategy for 1D parallel Cholesky factor-
ization. They consider the Cholesky factorization to be an irregular problem and distribute data amongst the
processors of the executing parallel machine in accordance with their relative speeds. The distribution strategy
divides the matrix into a number of column panels such that the width of each column panel is proportional
to the speed of the processor. This strategy is developed into a more general 2D distribution strategy in [2].
0167-8191/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Beaumont et al. [3] and Boulet [4] employ a dynamic programming algorithm (DP) to partition the matrix in
parallel 1D LU factorization. When processor speeds are accurately known and guaranteed not to change dur-
ing program execution, the dynamic programming approach provides the best possible load balancing of the
processors. A static group block distribution strategy [5,6] is used in parallel 1D LU factorization to partition
the matrix into groups (or generalized blocks in terms of [2]), all of which have the same number of blocks. The
number of blocks per group (size of the group) and the distribution of the blocks in the group over the pro-
cessors are fixed and are determined based on speeds of the processors, which are represented by a single con-
stant number.

All these aforementioned distribution strategies are based on a performance model, which represents the
speed of each processor by a constant positive number and computations are distributed amongst the proces-
sors such that their volume is proportional to this speed of the processor. The number characterizing the per-
formance of the processor is typically its relative speed demonstrated during the execution of the code solving
locally the core computational task of some given size. The single number model has proved to be accurate
enough for heterogeneous distributed memory systems if partitioning of the problem results in a set of com-
putational tasks each fitting into the main memory of the assigned processor.

But the model becomes less accurate in the following cases:

• The processors have significantly different sizes of main memory and the partitioning of the problem may
result in some computational tasks not fitting into the main memory of the assigned processor. In this case,
solution of the computational task of any fixed size does not guarantee accurate estimation of the relative
speed of the processors. The point is that beginning from some task size, the task of the same size will still fit
into the main memory of some processors and stop fitting into the main memory of others, causing the pag-
ing and visible degradation of the speed of these processors. This means that their relative speed will start
significantly changing in favor of non-paging processors as soon as the task size exceeds the critical value.

• Even if the processors of different architectures have almost the same size of main memory, they may
employ different paging algorithms resulting in different levels of speed degradation for the task of the same
size, which again means the change of their relative speed as the task size exceeds the threshold causing the
paging.

Thus, taking account of memory heterogeneity and the effects of paging significantly complicates the design
of algorithms that distribute computations in proportion with the relative speed of heterogeneous processors.
One approach to this problem is to just avoid the paging as it is normally done in the case of parallel com-
puting on homogeneous multi-processors. However avoiding paging in local and global heterogeneous net-
works may not make sense because in such networks it is likely to have one processor running in the
presence of paging faster than other processors without paging. It is even more difficult to avoid paging in
the case of distributed computing on global networks. There may be no server available to solve the task
of the size you need without paging.

Therefore, to achieve acceptable accuracy of distribution of computations across heterogeneous processors
taking account of memory heterogeneity and effects of paging, a more realistic performance model of a set of
heterogeneous processors is needed. A few performance models have appeared recently that take into account
the memory heterogeneity. Du et al. [7] present an analytical model for evaluating the performance impact of
memory hierarchies and networks on cluster computing. The model quantitatively predicts the average execu-
tion time per instruction based on the locality parameter values obtained by program memory access pattern
analysis. Their study shows that the depth of the memory hierarchy is the most sensitive factor affecting the
execution time for many types of workloads. The model covers only homogeneous cluster platforms. Mane-
gold et al. [8] identify a few basic memory access patterns and provide cost functions that estimate their access
costs for each level of the memory hierarchy. Each level is characterized by a few parameters describing its
sizes and timings. The cost functions are parameterized to accommodate various hardware characteristics
appropriately. Combining the basic patterns, they describe the memory access patterns of database opera-
tions. Wang [9] studies the impact of memory access latency on load sharing problems on heterogeneous net-
works of workstations. In addition to CPU speed and memory capacity, the method takes memory access time
into consideration and shows that memory access latency is an important consideration in the design of load
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sharing policies on heterogeneous networks of workstations. Rauber and Runger [10] propose a unifying com-
putation model that models the memory access time of distributed shared-memory (DSM) systems by a mem-
ory hierarchy comprising different memories with different capacities and access times. Drozdowski and
Wolniewicz [11] propose a model that considers both processor and memory heterogeneity. Their model char-
acterizes the performance of the processor by the execution time of the task, represented by a piecewise linear
function of its size, which is equivalent to representation of the speed of the processor by a unit step function
of the task size. The model is targeted mainly towards carefully designed scientific codes, efficiently using mem-
ory hierarchy and running on dedicated multi-processor computer systems.

Applicability of the functional performance model of heterogeneous processors proposed in [12,13] is not
limited to carefully designed applications running on dedicated systems. It can accurately describe the perfor-
mance of both carefully and casually designed applications on both dedicated systems and general-purpose
networks of heterogeneous computers. Under the functional model, the speed of each processor is represented
by a continuous function of the task size. The speed is defined as the number of computation units performed
by the processor per one time unit. The model is application centric in the sense that different applications will
characterize the speed of the processor by different functions.

In this paper, an algorithm of optimal set partitioning with the functional model [13] is used as a building
block in the design of efficient algorithms of matrix partitioning for parallel LU factorization on a cluster of
heterogeneous processors. The data distribution algorithms, presented in this paper, use static data distribu-
tion strategy and hence do not result in redistribution of data between steps of the execution of the LU fac-
torization application.

The functional model does not take into account the cost of communications. This factor can be ignored if
the contribution of communication operations in the total execution time of the application is negligible com-
pared to that of computations. The LU application used in this paper falls into this category. Incorporation of
communication cost in the functional model and design of efficient data partitioning algorithms with such an
extended model is a subject of our current research and out of scope of this paper.

The rest of the paper is organized as follows. In Section 2, we present a summary of the functional perfor-
mance model and the set-partitioning algorithms with this model. In Section 3, the homogeneous LU factori-
zation algorithm that is used for our heterogeneous modification is presented. In Section 4, two existing
heterogeneous modifications of this algorithm using the constant model of heterogeneous processors are out-
lined and our original modification also based on the constant performance model introduced. Section 5 pre-
sents functional extensions of the three heterogeneous algorithms when distribution of columns of the matrix
is based on the functional performance model of heterogeneous processors. Finally, experimental results on a
local network of heterogeneous computers are presented demonstrating the efficiency of the proposed strategy.

2. Partitioning algorithms using the functional performance model

Under the functional performance model, the speed of each processor is represented by a continuous func-
tion of the task size.

The speed is defined as the number of computation units performed by the processor per one time unit. The
model is application specific. In particular, this means that the computation unit can be defined differently for
different applications. The important requirement is that the computation unit does not vary during the exe-
cution of the application. An arithmetical operation and the matrix update a = a + b · c, where a, b, and c are
r · r matrices of the fixed size r, give us examples of computation units.

The task size is understood as a set of one, two or more parameters characterizing the amount and layout of
data stored and processed during the execution of the computational task (compare with the notion of prob-
lem size as the number of basic computations in the best sequential algorithm to solve the problem on a single
processor [14]). The number and semantics of the task size parameters are problem or even application spe-
cific. It is assumed that the amount of stored data will increase with the increase of any of the task size
parameters.

For example, the size of the task of multiplication of two dense rectangular n · k and k · m matrices can be
represented by three parameters, n, k, and m. The total number of matrix elements to store and process
is (n · k + k · m + n · m). The total number of arithmetical operations needed to solve this task is
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(2 · k � 1) · n · m. If k is large enough, the number can be approximated by 2 · k · n · m. Alternatively, a
combined computation unit, which is made up of one addition and one multiplication, can be used to express
this volume of computation. In this case, the total number of computation units will be approximately equal to
k · n · m. Therefore, the speed of the processor demonstrated by the application when solving the task of size
(n,k,m) can be calculated as k · n · m (or 2 · k · n · m) divided by the execution time of the application. This
gives us a function, f : N3! R+, mapping task sizes to speeds of the processor. The functional performance
model of the processor is obtained by continuous extension of function f : N3! R+ to function g:
R3
þ ! Rþ (f(n,k,m) = g(n,k,m) for any (n,k,m) from N3).
Thus, under the proposed functional model, the speed of the processor is represented by a continuous func-

tion of the task size. Moreover, some further assumptions can be made about the shape of the function.
Namely, it can be realistically assumed that along each of the task size variables, either the function is mono-
tonically decreasing, or there exists point x such that

• On the interval [0, x], the function is
�Monotonically increasing.
� Concave, and
� any straight line coming through the origin of the coordinate system intersects the graph of the function in

no more than one point.
• On the interval [x,1), the function is monotonically decreasing.

The results of Kitchen et al. [15] justify these assumptions. They present the results of benchmark experi-
ments carried out on Xeon, Opteron, Itanium2 and Power5-based clusters using the distributed memory ver-
sion of the EuroBen benchmark suite [16]. The distributed-memory version of the EuroBen benchmark suite
contains 13 diverse programs. They compare and contrast the observed performance as a function of the task
size.

Lastovetsky and Reddy [13] study the problem of optimal partitioning of an n-element set over p hetero-
geneous processors with the functional model and design an algorithm of its solution of the complexity
O(p · log2 n). The low complexity is mainly due to the assumption of bounded heterogeneity of the processors.
The assumption will be inaccurate if the speed of some processors becomes too slow for large n effectively
approaching 0. One approach to this problem is to use a relaxed functional model where the speed of proces-
sor is represented by a continuous function until some given size of the task and by zero for all sizes greater
than this one. Data partitioning algorithms with that model are presented in [17]. The other approach is to use
algorithms not sensitive to the shape of performance functions such as the algorithm of complexity
O(p2 · log2 n) presented in [12]. The special case of heterogeneous processors whose performance is character-
ized by positive constants is studied in [3,4].
3. LU Factorization on homogeneous multi-processors

Before we present our distribution strategy, we describe the LU Factorization algorithm of a dense
(n · b) · (n · b) matrix A, one step of which is shown in Fig. 1, where n is the number of blocks of size
b · b, optimal values of b depending on the memory hierarchy and on the communication-to-computation
ratio of the target computer [18,19].

The LU factorization applies a sequence of Gaussian eliminations to form A = P · L · U, where A, L, and
U are dense (n · b) · (n · b) matrices. P is a permutation matrix which is stored in a vector of size n · b, L is
unit lower triangular (lower triangular with 1’s on the main diagonal), and U is upper triangular.

At the kth step of the computation (k = 1,2, . . .), it is assumed that the m · m submatrix of A(k)

(m = ((n � (k � 1)) · b) is to be partitioned as follows:
A11 A12

A21 A22

� �
¼ P

L11 0

L21 L22

� �
U 11 U 12

0 U 22

� �
¼ P
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L21U 11 L21U 12 þ L22U 22

� �
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Fig. 1. One step of the LU factorization algorithm of a dense matrix A of size (n · b) · (n · b).
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where the block A11 is b · b, A12 is b · (m � b), A21 is (m � b) · b, and A22 is (m � b) · (m � b). L11 is unit
lower triangular matrix, and U11 is an upper triangular matrix.

At first, a sequence of Gaussian eliminations is performed on the first m · b panel of A(k) (i.e., A11 and A21).
Once this is completed, the matrices L11, L21, and U11 are known and we can rearrange the block equations
Fig.
U 12  ðL11Þ�1A12;eA22  A22L21U 12 ¼ L22U 22:
The LU factorization can be done by recursively applying the steps outlined above to the (m � b) · (m � b)
matrix eA22. Fig. 1 shows how the column panel, L11 and L21, and the row panel, U11 and U12, are computed
and how the trailing submatrix A22 is updated. In the figure, the regions L0, U0, L11, U11, L21, and U12 rep-
resent data for which the corresponding computations are completed. Later row interchanges will be applied
to L0 and L21.

Now we present a parallel algorithm that computes the above steps on a one-dimensional arrangement of p

homogeneous processors. The algorithm can be summarized as follows:

1. A CYCLIC(b) distribution of columns is used to distribute the matrix A over a one-dimensional arrange-
ment of p homogeneous processors as shown in Fig. 2. The cyclic distribution assigns columns of blocks
with numbers 1,2, . . . ,n to processors 1,2, . . . ,p, 1,2, . . . ,p, 1,2, . . . , respectively, for a p-processor linear
array (n� p), until all n columns of blocks are assigned.

2. The algorithm consists of n steps. At each step (k = 1,2, . . .),
P1 P2 P3 P1 P2 P3

2. Column-oriented CYCLIC distribution of six column blocks on a one-dimensional array of three homogeneous processors.
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• The processor owning the pivot column block of the size ((n � (k � 1)) · b) · b (i.e., A11 and A21) factors it;
• All processors apply row interchanges to the left and the right of the current column block k:
• The processor owning L11 broadcasts it to the rest of the processors, which convert the row panel A12 to

U12.
• The processor owning the column panel L21 broadcasts it to the rest of the processors.
• All the processors update their local portions of the matrix, A22, in parallel.The implementation of the algo-

rithm, which is used in the paper, is based on the ScaLAPACK [19] routine, PDGETRF, and consists of the
following steps:

1. PDGETF2: Apply the LU factorization to the pivot column panel of size ((n � (k � 1)) · b) · b (i.e.,A11

and A21). It should be noted here that only the routine PDSWAP employs all the processes involved in
the parallel execution. The rest of the routines are performed locally at the process owning the pivot column
panel.
• [Repeat b times (i = 1, . . . ,b)]
� PDAMAX: find the (absolute) maximum element of the ith column and its location.
� PDSWAP: interchange the ith row with the row that holds the maximum.
� PDSCAL: scale the ith column of the matrix.
� PDGER: update the trailing submatrix.

• The process owning the pivot column panel broadcasts the same pivot information to all the other
processes.

2. PDLASWP: All processes apply row interchanges to the left and the right of the current panel.
3. PDTRSM: L11 is broadcast to the other processes, which convert the row panel A12 to U12.
4. PDGEMM: The column panel L21 is broadcast to all the other processes. Then, all processes update their

local portions of the matrix, A22.

Because the largest fraction of the work takes place in the update of A22, therefore, to obtain maximum
parallelism all processors should participate in its update. Since A22 reduces in size as the computation pro-
gresses, a cyclic distribution is used to ensure that at any stage A22 is evenly distributed over all processors,
thus obtaining their balanced load.
4. LU factorization on heterogeneous platforms with a constant performance model of processors

Heterogeneous parallel algorithms of LU factorization on heterogeneous platforms are obtained by mod-
ification of the homogeneous algorithm presented in Section 3. The modification is in the distribution of col-
umn panels of matrix A over the linear array of processors. As the processors are heterogeneous having
different speeds, the optimal distribution that aims at balancing the updates at all steps of the parallel LU fac-
torization will not be fully cyclic. So, the problem of LU factorization of a matrix on a heterogeneous platform
is reduced to the problem of distribution of column panels of the matrix over heterogeneous processors of the
platform.

Traditionally, the distribution problem is formulated as follows: Given a dense (n · b) · (n · b) matrix A,
how can we assign n columns of size n · b of the matrix A to p (n� p) heterogeneous processors P1,P2, . . . Pp

of relative speeds S = {s1, s2, . . . , sp},
Pp

i¼1si ¼ 1, so that the workload at each step of the parallel LU factor-
ization is best balanced? The relative speed si of processor Pi is obtained by normalization of its (absolute)
speed ai, understood as the number of column panels updated by the processor per one time unit,
si ¼ ai=

Pp
i¼1ai. To explain what ‘‘the number of column panels updated by the processor Pi’’ means, let us

first consider the first step (k = 1) of the LU factorization. Remember that at step k (k = 1,2, . . .) of the
LU factorization, column panels of size (n � (k � 1)) · b are updated. Assuming the partitioningPp

i¼1nð1Þi ¼ n for the first step, where nð1Þi denotes the number of column panels allocated to processor Pi,
the number of column panels of size n · b updated by the processor Pi will be nð1Þi . Next, assuming the parti-
tioning

Pp
i¼1nð2Þi ¼ n� 1 for the second step (k = 2) of the LU factorization, where nð2Þi denotes the number of

column panels allocated to processor Pi, the number of column panels of size (n � 1) · b updated by the pro-
cessor Pi is nð2Þi , and so on. While ai will increase with each next step of the LU factorization (because the
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height of updated column panels will decrease as the LU factorization progresses, resulting in a larger number
of column panels updated by the processor per time unit), the relative speeds si are assumed to be constant.
The optimal solution sought is the one that minimizes maxin

ðkÞ
i =si for each step of the LU factorization

ð
Pp

i¼1nðkÞi ¼ nðkÞÞ, where n(k) is the total number of column panels updated at the step k and nðkÞi denotes the

number of column panels allocated to processor Pi.

The motivation behind that formulation is the following. Strictly speaking, the optimal solution should

minimize the total execution time of the LU factorization, which is given by
Pn

k¼1maxp
i¼1nðkÞi =aðkÞi , where aðkÞi

is the speed of processor Pi at step k of the LU factorization and nðkÞi is the number of column panels updated

by processor Pi at this step. However, if a solution minimizes maxp
i¼1nðkÞi =aðkÞi for each k, it will also minimizePn

k¼1maxp
i¼1nðkÞi =aðkÞi . Because maxp

i¼1nðkÞi =aðkÞi ¼ maxp
i¼1nðkÞi =ðsi �

Pp
i¼1aðkÞi Þ ¼ ð1=

Pp
i¼1aðkÞi Þ �maxp

i¼1nðkÞi =si, then

for any given k the problem of minimization of
Pn

k¼1maxp
i¼1nðkÞi =aðkÞi will be equivalent to the problem of min-

imization of maxp
i¼1nðkÞi =si. Therefore, if we are lucky and there exists an allocation that minimizes maxp

i¼1nðkÞi =si

for each step k of the LU factorization, then the allocation will be globally optimal, minimizingPn
k¼1maxp

i¼1nðkÞi =aðkÞi . Fortunately, such an allocation does exist [3,4].

Now we briefly outline two existing approaches to solution of the above distribution problem, which are the
Group Block (GB) distribution algorithm [5] and the Dynamic Programming (DP) distribution algorithm
[3,4].

The GB algorithm. This algorithm partitions the matrix into groups (or generalized blocks in terms of [2]),
all of which have the same number of column panels. The number of column panels per group (the size of the
group) and the distribution of the column panels within the group over the processors are fixed and deter-
mined based on relative speeds of the processors. The relative speeds are obtained by running the DGEMM
routine that locally updates some particular dense rectangular matrix. The inputs to the algorithm are p, the
number of heterogeneous processors in the one-dimensional arrangement, b, the block size, n, the size of the
matrix in number of blocks of size b · b or the number of column panels, and S ¼ fs1; s2; . . . ; spg

Pp
i¼1si ¼ 1

� �
,

the relative speeds of the processors. The outputs are g, the size of the group, and d, an integer array of size p,
the ith element of which contains the number of column panels in the group assigned to processor i. The algo-
rithm can be summarized as follows:

(1) The size of the group g is calculated as b1/min(si)c (1 6 i 6 p). If g/p < 2, then g = b2/min(si)c. This con-
dition is imposed to ensure there is sufficient number of blocks in the group.

(2) The group is partitioned so that the number of column panels di assigned to processor i in the group will
minimize maxi

di
si

(see [5] for a simple algorithm performing this partitioning).
(3) In the group, processors are reordered to start from the slowest processors to the fastest processors for

load balance purposes.

The complexity of this algorithm is O(p · log2 p). At the same time, the algorithm does not guarantee that the
returned solution will be optimal.

The DP algorithm. Dynamic programming is used to distribute column panels of the matrix over the pro-
cessors. The relative speeds of the processors are obtained by running the DGEMM routine that locally
updates some particular dense rectangular matrix. The inputs to the algorithm are p, the number of hetero-
geneous processors in the one-dimensional arrangement, b, the block size, n, the size of the matrix in number
of blocks of size b · b or the number of column panels, and S ¼ fs1; s2; . . . ; spg

Pp
i¼1si ¼ 1

� �
, the relative speeds

of the processors. The outputs are c, an integer array of size p, the ith element of which contains the number of
column panels assigned to processor i, and d, an integer array of size n, the ith element of which contains the
processor to which the column panel i is assigned. The algorithm can be summarized as follows:

(c1, . . . ,cp) = (0, . . . , 0);
(d1, . . . ,dn) = (0, . . . , 0);
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for(k = 1; k 6 n; k = k + 1) {
Costmin =1;
for(i = 1; i < = p; i = i + 1) {
Cost=(ci + 1)/si;
if (Cost < Costmin) {Costmin = Cost; j = i;}

}
dn�k+1 = j;
cj = cj + 1;

}

The complexity of the DP algorithm is O(p · n). The algorithm returns the optimal allocation of the column
panels to the heterogeneous processors [3,4]. The fact that the DP algorithm always returns the optimal solu-
tion is not trivial. Indeed, at each iteration of the algorithm the column panel k is allocated to one of the pro-
cessors, namely, to a processor, minimizing the cost of the allocation. At the same time, there may be several
processors with the same, minimal, cost of allocation. The algorithm randomly selects one of them. It is not
obvious that allocation of the column panel to any of these processors will result in a globally optimal allo-
cation. But, fortunately, for this particular distribution problem this is proved to be true.

In this paper, we propose another algorithm solving this distribution problem, a Reverse distribution algo-
rithm. Like the DP algorithm, the Reverse algorithm always returns the optimal allocation. The complexity of
the Reverse algorithm,O(p · n · log2p), is a bit worse than that of the DP algorithm, but the algorithm has one
important advantage. It is better suitable as a basis for extensions dealing with the functional performance
model of heterogeneous processors.

The Reverse algorithm. This algorithm generates the optimal distribution ðnðkÞ1 ; . . . ; nðkÞp Þ of n · b column
panels of the dense (n · b) · (n · b) matrix over p heterogeneous processors for each step k of the parallel
LU factorization ð

Pp
i¼1nðkÞi ¼ n� k þ 1; k ¼ 1; . . . ; nÞ and then allocates the column panels to the processors

by comparing these distributions. In other words, the algorithm extracts the optimal allocation of the column
panels from a sequence of optimal distributions of the panels for successive steps of the parallel LU factoriza-
tion. The inputs to the algorithm are p, the number of heterogeneous processors in the one-dimensional
arrangement, b, the block size, n, the size of the matrix in number of blocks of size b · b or the number of
column panels, and S ¼ fs1; s2; . . . ; spg

Pp
i¼1si ¼ 1

� �
, the relative speeds of the processors. The output is d,

an integer array of size n, the ith element of which contains the processor to which the column panel i is
assigned. The algorithm can be summarized as follows:

(d1, . . . ,dn) = (0, . . . , 0);
w = 0;
(n1, . . . ,np) = HSP(p,n,S);
for (k = 1; k < n; k = k + 1) {

ðn01; . . . ; n0pÞ ¼ HSP(p,n � k,S);
if (w == 0)
then if (ð9!j 2 ½1; p�Þðnj ¼¼ n0j þ 1Þ ^ ð8i 6¼ jÞðni ¼¼ n0iÞÞ

then {dk = j; ðn1; . . . ; npÞ ¼ ðn01; . . . ; n0pÞ;}
else w = 1;

else if (ð9i 2 ½1�Þðni < n0iÞÞ
then w = w + 1;
else {
for (i = 1; i 6 p; i = i + 1)
for (D ¼ ni � n0i; D 5 0; D = D � 1, w = w � 1)
dk�w = i;
ðn1; . . . ; npÞ ¼ ðn01; . . . ; n0pÞ;
w = 0;

}
}
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If (($i 2 [1,p])(ni = = 1))
then dn = i;

Here, HSP(p,n,S) returns the optimal distribution of n column panels over p heterogeneous processors of the
relative speeds S = {s1, s2, . . . , sp} by applying the algorithm for optimal distribution of independent chunks of
computations from [3,4] (HSP stands for Heterogeneous Set Partitioning). Thus, first we find the optimal dis-
tributions of column panels for the first and second steps of the parallel LU factorization. If the distributions
differ only for one processor, then we assign the first column panel to this processor. The reason is that this
assignment guarantees a transfer from the best workload balance at the first step of the LU factorization to the
best workload balance at its second step. If the distributions differ for more than one processor, we postpone
allocation of the first column panel and find the optimal distribution for the third step of the LU factorization
and compare it with the distribution for the first step. If the number of panel columns distributed to each pro-
cessor for the third step does not exceed that for the first step, we allocate the first and second column panels
so that the distribution for each next step is obtained from the distribution for the immediate previous step by
addition of one more column panel to one of the processors. If not, we delay allocation of the first two column
panels and find the optimal distribution for the fourth step and so on.

In Table 1, we demonstrate the algorithm for n = 10. The first column represents the step k of the algo-
rithm. The second column shows the distributions obtained during each step by HSP. The entry ‘‘Allocation
made’’ denotes the rank of the processor to which the column panel k is assigned. At steps k = 4 and k = 5, the
algorithm does not make any assignments. At k = 6, processor P1 is allocated column panels (4, 5) and pro-
cessor P2 is allocated column panel 6. The output d in this case would be (P1 P1 P1 P1 P1 P3 P2 P1P2 P3).

Proposition 1. The Reverse algorithm returns the optimal allocation.

Proof of Proposition 1. If the algorithm assigns the column panel k at each iteration of the algorithm, then the

resulting allocation will be optimal by design. Indeed, in this case the distribution of column panels over the pro-

cessors will be produced by the HSP and hence optimal for each step of the LU factorization.

Consider the situation when the algorithm assigns a group of w (w > 1) column panels beginning from the

column panel k. In that case, the algorithm first produces a sequence of (w + 1) distributions ðnðkÞ1 ; . . . ; nðkÞp Þ,
ðnðkþ1Þ

1 ; . . . ; nðkþ1Þ
p Þ; . . . ; ðnðkþwÞ

1 ; . . . ; nðkþwÞ
p Þ such that

• the distributions are optimal for steps k, k + 1, . . . , k + w of the LU factorization respectively, and

• ðnðkÞ1 ; . . . ; nðkÞp Þ > ðn
ðkþiÞ
1 ; . . . ; nðkþiÞ

p Þ is only true for i = w (by definition, (a1, . . . ,ap) > (b1, . . . , bp) if and only if

("i)(ai P bi) ^ ($i)(ai > bi)).
Lemma 1. Let (n1, . . . ,np) and ðn01; . . . ; n0pÞ be optimal distributions such that n ¼
Pp

i¼1ni >
Pp

i¼1n0i ¼ n0,
ð9iÞðni < n0iÞ and ð8jÞðmaxp

i¼1ni=si 6 ðnj þ 1Þ=sjÞ. Then, maxp
i¼1ni=si ¼ maxp

i¼1n0i=si.
Table 1
Reverse algorithm with three processors P1, P2, P3

Step of the algorithm (k) Distributions at step k Allocation made

P1 P2 P3

6 2 2
1 5 2 2 P1

2 4 2 2 P1

3 3 2 2 P1

4 1 3 2 No allocation
5 1 3 1 No allocation
6 1 2 1 P1, P1, P3

7 1 1 1 P2

8 0 1 1 P1

9 0 0 1 P2

10 P3
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Proof of Lemma 1. As n > n
0

and (n1, . . . ,np) and ðn01; . . . ; n0pÞ are both optimal distributions, then

maxp
i¼1ni=si P maxp

i¼1n0i=si. On the other hand, there exists j 2 [1,p] such that nj < n0j, which implies

nj þ 1 6 n0j. Therefore, maxp
i¼1n0i=si P n0j=sj P ðnj þ 1Þ=sj. As we assumed that ð8jÞðmaxp

i¼1ni=si 6 ðnj þ 1Þ=sjÞ,
then maxp

i¼1ni=si 6 ðnj þ 1Þ=sj 6 n0j=sj 6 maxp
i¼1n0i=si. Thus, from maxp

i¼1ni=si P maxp
i¼1n0i=si and

maxp
i¼1ni=si 6 maxp

i¼1n0i=si we conclude that maxp
i¼1ni=si ¼ maxp

i¼1n0i=si. h

We can apply Lemma 1 to the pair ðnðkÞ1 ; . . . ; nðkÞp Þ and ðnðkþlÞ
1 ; . . . ; nðkþlÞ

p Þ for any l 2 [1,w � 1]. Indeed,Pp
i¼1nðkÞi >

Pp
i¼1nðkþlÞ

i and ð9iÞðnðkÞi < nðkþlÞ
i Þ. Finally, the HSP guarantees that ð8jÞðmaxp

i¼1nðkÞi =si 6

ðnðkÞj þ 1ÞsjÞ (see [3,4]). Therefore, maxp
i¼1nðkÞi =si ¼ maxp

i¼1nðkþ1Þ
i =si ¼ . . . ¼ maxp

i¼1nðkþw�1Þ
i =si. In particular, this

means that for any (m1, . . . ,mp) such that minkþw�1
j¼k nðjÞi 6 mi 6 maxkþw�1

j¼k nðjÞi (i = 1, . . . , p), we will have

maxp
i¼1mi=si ¼ maxp

i¼1nðkÞi =si. The allocations made in the end by the Reverse algorithm for the column panels
k, k + 1, . . . ,k + w � 1 result in a new sequence of distributions for steps k, k + 1, . . . ,k + w � 1 of the LU
factorization such that each next distribution differs from the previous one for exactly one processor. Each

distribution (m1, . . . ,mp) in this new sequence satisfies the inequality minkþw�1
j¼k nðjÞi 6 mi 6 maxkþw�1

j¼k nðjÞi

(i = 1, . . . ,p). Therefore, all they will have the same cost maxp
i¼1nðkÞi =si, which is the cost of the optimal

distribution for these steps of the LU factorization found by the HSP. Hence, each distribution in this
sequence will be optimal for the corresponding step of the LU factorization. h

Proposition 2. The complexity of the Reverse algorithm is O(p · n · log2 p).

Proof. At each iteration of this algorithm, we apply the HSP, which is of complexity O(p · log2p) [3,4]. Testing
the condition ð9!j 2 ½1�Þðnj ¼¼ n0j þ 1Þ ^ ð8i 6¼ jÞðni ¼¼ n0iÞ is of complexity O(p). Testing the condition
ð9i 2 ½1; p�Þðni < n0iÞ is also of complexity O(p). Finally, the total number of iterations of the inner loop of
the nest of loops.

for (i = 1; i 6 p; i = i + 1)

for (D ¼ ni � n0i; D 5 0; D = D � 1, w = w � 1)

dk�w = i;

during the execution of the algorithm cannot exceed the total number of allocations of column panels, n. Thus,
the overall complexity of the algorithm is upper bounded by n · O(p · log2p) + n · O(p) + n · O(p) +
p · n · O(1) = O(p · n · log2 p). h
5. LU Factorization on heterogeneous platforms with the functional performance model of processors

The problem of distribution of a dense square matrix over heterogeneous processors for the parallel LU
factorization, as it is formulated in Section 4, uses the constant performance model of processors that does
not address the memory heterogeneity and paging effects. The functional performance model [12,13] addresses
the issues. Under this model, the speed of each computer is represented by a continuous and relatively smooth
function of the task size. This model is application centric in the sense that, generally speaking, different appli-
cations will characterize the speed of the processor by different functions.

In this section, we formulate the problem of optimal distribution of column panels of a dense square matrix
for its efficient LU factorization over a one-dimensional arrangement of heterogeneous processors with their
functional performance model. Then we describe how the distribution algorithms presented in Section 4 can
be modified for solution of the functional distribution problem.

5.1. Problem formulation

The problem of distributing a large dense square matrix A for its parallel LU factorization over a one-
dimensional arrangement of heterogeneous processors using their functional performance model can be for-
mulated as follows:
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• Given
� A dense n · n matrix A, and
� p (n > p) heterogeneous processors P1, P2, . . . ,Pp of respective speeds S = {s1(x,y), s2(x,y), . . . , sp(x,y)},

where si(x,y) is the speed of the update of an x · y matrix by the processor i, measured in arithmetical
operations per time unit and represented by a continuous function R+ · R+! R+,

• Assign the columns of the matrix A to the p processors so that the assignment minimizes
Pn

k¼1maxp
i¼1

V ðn�k;nðkÞi Þ
siðn�k;nðkÞi Þ

,

where V(x,y) is the number of operations needed to update a x · y matrix and nðkÞi is the number of columns
updated by the processor Pi at step k of the parallel LU factorization.

This formulation is motivated by the n-step parallel LU factorization algorithm. One element of matrix A

may represent a single number with computations measured in arithmetical operations. Alternatively, it can
represent a square matrix block of a given fixed size b · b. In this case, computations are measured in b · b

matrix operations. The formulation assumes that the computation cost is determined by the update of the
trailing matrix and fully ignores the communication cost. Therefore, the execution time of the kth step of

the LU factorization is estimated by maxp
i¼1

V ðn�k;nðkÞi Þ
siðn�k;nðkÞi Þ

, and the optimal solution has to minimize the overall exe-

cution time,
Pn

k¼1maxp
i¼1

V ðn�k;nðkÞi Þ
siðn�k;nðkÞi Þ

.

Unlike the constant optimization problem considered in Section 4, the functional optimization problem
cannot be reduced to the problem of minimization of the execution time of all n individual steps of the LU
factorization. Correspondingly, this functional matrix-partitioning problem cannot be reduced to a problem
of partitioning a well-ordered set. The reason is that in the functional case there may be no globally optimal
allocation of columns minimizing the execution time of all individual steps of the LU factorization. This com-
plication is introduced by the use of the functional performance model of heterogeneous processors instead of
the constant one. A simple example supporting this statement is designed as follows.

Consider an example with three processors {P1,P2,P3} distributing nine columns. Table 2 shows the func-
tional performance models of the processors S = {s1(x,y), s2(x,y), s3(x,y)} where si(x,y) is the speed of the
update of a x · y matrix by the processor Pi. Table 3 shows the distribution of these nine columns demonstrat-
ing that there may be no globally optimal allocation of columns that minimizes the execution time of all steps
of the LU factorization. The first column of the table represents the step k of the parallel LU factorization.
The second column shows the global allocation of columns minimizing the total execution time of LU factor-
ization. The third column shows the execution time of the step k of the LU factorization resulting from this
allocation. The execution time tðkÞi for a processor i needed to update a matrix of sizeð9� kÞ � nðkÞi is calculated

as
V ð9�k;nðkÞi Þ
sið9�k;nðkÞi Þ

¼ ð9�kÞ�nðkÞi

sið9�k;nðkÞi Þ
where nðkÞi denotes the number of columns updated by the processor Pi (formula for the

volume of computations explained below). The fourth column shows the distribution of columns, which
results in the minimal execution time to solve the task size (9 � k, 9 � k) at step k of the LU factorization. This
distribution is determined by considering all possible mappings and choosing the one, which results in minimal
execution time. The fifth column shows these minimal execution times for the task size (9 � k, 9 � k). For
example, consider the step k = 2, the local optimal distribution resulting in the minimal execution time for
Table 2
Functional model of three processors P1, P2, P3

Task sizes (x,y) s1(x,y) s2(x,y) s3(x,y)

(1,1), (1,2), (1,3), (1,4),(1,5), (1,6), (1,7), (1,8) 6, 6, 6, 6, 6, 4, 4, 4 18, 18, 18, 18, 18, 18, 18, 2 18, 18, 18, 18, 18, 18, 18, 2
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8) 6, 6, 6, 6, 5, 4, 3, 3 18, 18, 18, 18, 9, 8, 8, 2 18, 18, 18, 18, 15, 12, 8, 2
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (3,7), (3,8) 6, 6, 6, 5, 4, 3, 3, 3 18, 18, 18, 9, 8, 8, 6, 2 18, 18, 18, 12, 8, 8, 8, 2
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (4,7), (4,8) 6, 6, 5, 4, 3, 3, 3, 3 18, 18, 9, 9, 8, 6, 5, 2 18, 18, 12, 9, 8, 6, 6, 2
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (5,7), (5,8) 6, 5, 4, 3, 3, 3, 2, 2 18, 9, 8, 8, 6, 5, 3, 1 18, 15, 8, 8, 6, 5, 5, 1
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6), (6,7), (6,8) 4, 4, 3, 3, 3, 2, 1, 1 18, 8, 8, 6, 5, 3, 2, 1 18, 12, 8, 6, 5, 3, 3, 1
(7,1), (7,2), (7,3), (7,4), (7,5), (7,6), (7,7), (7,8) 4, 3, 3, 3, 2, 1, 1, 1 18, 8, 8, 6, 5, 3, 2, 1 18, 8, 8, 6, 5, 3, 2, 1
(8,1), (8,2), (8,3), (8,4), (8,5), (8,6), (8,7), (8,8) 4, 3, 3, 3, 2, 1, 1, 1 2, 2, 2, 2, 1, 1, 1, 1 2,2, 2, 2, 1, 1, 1, 1



Table 3
Distribution of nine column panels over three processors P1, P2, P3

Step of LU
factorization
(k)

Global allocation of columns
minimizing the overall
execution time

Execution time
of LU at step k

Local optimal distribution fnðkÞ1 ,
nðkÞ2 , nðkÞ3 } for task size
(9 � k, 9 � k)

Minimum possible
execution time for task size
(9 � k, 9 � k)

1 P1 P1 P1 P1 P2 P3 P2 P3 8 {4,2,2} 8
2 P1P1P1P2P3P2P3 7 {2,3,2} 14/3

3 P1P1P2P3P2P3 3 {1,2,3} 3/2

4 P1 P2 P3 P2 P3 10/9 {1,2,2} 10/9
5 P2 P3 P2 P3 4/9 {0,2,2} 4/9
6 P3 P2 P3 1/3 {0,1,2} 1/3
7 P2 P3 1/9 {0,1,1} 1/9
8 P3 1/18 {0,0,1} 1/18
Total execution time of LU factorization 20
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the task size {7,7} is {P1P1P2P2P2P3P3}, the speeds given by the speed functions S shown in Table 2 are
{3,8,8}. So the number of columns assigned to processors {P1,P2,P3} are {2,3,2}, respectively. The execution
times are 7�2

3
; 7�3

8
; 7�2

8

� �
¼ 14

3
; 21

8
; 14

8

� �
: The execution time to solve the task size {7, 7} is the maximum of these

execution times, 14
3
.

Consider again the step k = 2 shown in bold in the Table 3. It can be seen that the global optimal allocation
shown in second column does not result in the minimal execution time for the task size at this step, which is
{7,7}. The execution time of the LU factorization at this step based on the global optimal allocation is 7
whereas the minimal execution time given by the local optimal distribution for the task size {7,7} at this step
is 14/3.
5.2. Functional Reverse algorithm

Now the Reverse distribution algorithm is extended to obtain a Functional Reverse (FR) distribution algo-
rithm that uses a functional performance model where the absolute speed of each processor is represented by a
function of two variables representing the task size. The task used for calculation of the absolute speed is the
operation eA22  A22L21U 12, which is the update of the rectangular x · y matrix A22 where L21 is a column of
the size x and U12 is a row of the size y (remember that generally speaking the matrix elements represent b · b

matrix blocks). This computation task represents the lion’s share of computations performed by the processor
at each step of the parallel algorithm. The absolute speed is calculated by dividing the total number of com-
putation units performed during the execution of the task by the execution time. The total number of compu-
tation units (namely, multiplications of two b · b matrices) performed during the execution of the task is given
by x · y. Therefore, the speed of the processor exposed by the application when solving the task of size (x,y)
can be calculated as x · y divided by the execution time of the application. Fig. 3 depicts this function for one
of the computers, ‘hcl11’, used in experiments. Fig. 4 shows the relative speed of two computers, ‘hcl09’ and
‘hcl02’, used in experiments calculated as the ratio of their absolute speeds. One can see that the relative speed
varies significantly depending on the value of variables x and y.

The main idea behind the Functional Reverse algorithm is that all allocations of columns are made using
the functional performance model giving accurate estimation of the speed of the processors at each step of the
LU factorization depending on the number of columns of the trailing matrix updated by each processor at this
step.

The FR algorithm. This algorithm extends the Reverse algorithm presented earlier by using the functional
model of heterogeneous processors. The inputs to the algorithm are

• p, the number of heterogeneous processors in the one-dimensional arrangement,
• n, the size of the matrix,
• S = {s1(x,y), s2(x,y), . . . , sp(x,y)}, the speed functions of the processors, and



Fig. 3. The absolute speed of a computer ‘hcl11’ as a function of the size of the computational task of updating a dense x · y matrix using
level-3 BLAS routine DGEMM.

Fig. 4. The relative speed of two computers (‘hcl09’, ‘hcl02’) calculated as the ratio of their absolute speeds.
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• Proc(k,p,D,w,d), a procedure searching for optimal allocation of a group of w + 1 columns, (k,
k + 1, . . . ,k + w), given columns 1, . . . ,k � 1 have been allocated and the total number of columns to be
assigned to processor Pi is specified by the ith element of integer array D.

The output d is an integer array of size n, the ith element of which contains the processor to which the col-
umn i is assigned. The algorithm can be summarized as:

(d1, . . . ,dn) = (0, . . . , 0);
w = 0;
(n1, . . . ,np) = HSPF(p,n,S);



770 A. Lastovetsky, R. Reddy / Parallel Computing 33 (2007) 757–779
for (k = 1; k < n; k = k + 1) {
ðn01; . . . ; n0pÞ ¼ HSPFðp; n� k; SÞ;
if (w==0)
then if (ð9!j 2 ½1; p�Þðnj ¼¼ n0j þ 1Þ ^ ð8i 6¼ jÞðni ¼¼ n0iÞÞ
then {dk = j; ðn1; . . . ; npÞ ¼ ðn01; . . . ; n0pÞ;}
else w = 1;

else if (ð9i 2 ½1; p�Þðni < n0iÞÞ
then w = w + 1;
else {
for (i = 1; i 6 p; i = i + 1) fDi ¼ ni � n0i; g
proc(k, p, D,w,d);
ðn1; . . . ; npÞ ¼ ðn01; . . . ; n0pÞ;
w = 0;

}
}
if (($i 2 [1,p])(ni = 1))
then dn = i;

Here, HSPF(p,m,S) returns the optimal distribution of a set of m equal elements over p heterogeneous pro-
cessors P1,P2, . . . ,Pp of respective speeds S = {s1(m,y), s2(m,y), . . . , sp(m,y)} using the set-partitioning algo-
rithm [13]. (HSPF stands for Heterogeneous Set Partitioning using the Functional model of processors).
The distributed elements represent column panels of the (m · b) · (m · b) trailing matrix at step (n � m) of
the LU factorization. Function fi(y) = si(m,y) represents the speed of processor Pi depending on the number
of column panels of the trailing matrix, y, updated by the processor at the step (n � m) of the LU factoriza-
tion. Fig. 5 gives geometrical interpretation of this step of the matrix-partitioning algorithm:

1. Surfaces zi = si(x,y) representing the absolute speeds of the processors are sectioned by the plane x = n � k

(as shown in Fig. 5(a) for three surfaces representing the absolute speeds of the processors ‘hcl02’, ‘hcl09’,
‘hcl11’ used in the experiments). A set of p curves on this plane (as shown in Fig. 5(b)) will represent the
absolute speeds of the processors against variable y given parameter x is fixed.

2. The set-partitioning algorithm [13] is applied to this set of curves to obtain an optimal distribution of col-
umns of the trailing matrix.

Proposition 3. If assignment of a column is performed at each step of the algorithm, the FR algorithm returns the

optimal allocation.

Proof. If a column is assigned at each iteration of the FR algorithm, then the resulting allocation will be opti-
mal by design. Indeed, in this case the distribution of columns over the processors will be produced by the
HSPF and hence be optimal for each step of the LU factorization. h

Proposition 4. If the speed of the processor is represented by a constant function of task size, the Functional

Reverse algorithm returns the optimal allocation.

Proof. If the speed of the processor is represented by a constant function of task size, the FR algorithm is func-
tionally equivalent to the Reverse algorithm presented earlier. We have already proved that the Reverse algo-
rithm returns the optimal allocation when constant performance model of heterogeneous processors is used. h

Proposition 5. If assignment of a column panel is performed at each iteration of the main loop of the FR algo-

rithm, its complexity will be bounded by O(p · n · log2 n).

Proof. At each iteration of this algorithm, we apply the HSPF. The first step of the HSPF, which involves
intersection of p surfaces by a plane to produce p curves is of complexity O(p). The second step of the HSPF
is of complexity O(p · log2 n) [13]. Testing the condition ð9!j 2 ½1; p�Þðnj ¼¼ n0j þ 1Þ ^ ð8i 6¼ jÞðni ¼¼ n0iÞ is of
complexity O(p). Since there are n such steps, the overall complexity of the algorithm is upper bounded by
n · O(p · log2 n) + n · O(p) + n · O(p) = O(p · n · log2 n). h



Fig. 5. (a) Three surfaces representing the absolute speeds of three processors (‘hcl02’, ‘hcl09’, ‘hcl11’) are sectioned by a plane x = const.
(b) Curves on this plane represent the absolute speeds of the processors against variable y, given parameter x is fixed.
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Heuristics. If the FR algorithm does not assign a column at each iteration of its main loop, then the opti-
mality of the returned allocation is not guaranteed. The reason is that when we are forced to allocate a group
of columns, (k,k + 1, . . . , k + w), then even if procedure Proc finds a locally optimal allocation, minimizing
the sum of the execution times of the steps k,k + 1, . . . ,k + w of the LU factorization (given columns
1,. . .,k � 1 have been allocated), this allocation may not minimize the global execution time. Hence, sub-opti-
mal allocations of the group of columns may be as good or even better as the exact optimal allocation. There-
fore, in practice it does not make much sense to use an exact but exhaustive search algorithm in
implementation of procedure Proc. Simple approximate algorithms of low complexity can return group allo-
cations that are in average as good as exact optimal allocations.

The complexity of the FR algorithm depends on the complexity of procedure proc. This procedure
determines the optimal order in which to assign the columns Di(1 6 i 6 p) to the processors. At each iteration
of this algorithm, we apply the HSPF, which introduces the complexity O(p · log2 n) + O(p). Testing the
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condition ð9!j 2 ½1; p�Þðnj ¼¼ n0j þ 1Þ ^ ð8i 6¼ jÞðni ¼¼ n0iÞ is of complexity O(p). Testing the condition
ð9i 2 ½1; p�Þðni < n0iÞ is also of complexity O(p). Plus at one or more iterations of the algorithm, there is an
application of the heuristic procedure proc. Since there are n steps of the algorithm, the overall complexity
of the algorithm is upper bounded by n · O(p · log2 n) + n · O(p) + n · O(p) + n · O(p) + n · Ch = O(p ·
n · log2 n) + n · Ch where Ch is the complexity introduced by the heuristic functional procedure at each step.

Therefore if we do not want to drastically affect the overall complexity of the algorithm, efficient polyno-
mial heuristics should be employed. Some of these heuristics are:

• cycl: Allocate cyclically one by one the column until all the Di (1 6 i 6 p) have been assigned;
• ftos: Allocate from the most loaded (maximum D) to the least loaded (minimum D). Sort Di(1 6 i 6 p) in

decreasing order. Assign Di (1 6 i 6 p) number of column to each processor Pi in that order;
• stof: Allocate from the least loaded (minimum D) to the most loaded (maximum D). Sort Di in increasing

order. Assign Di (1 6 i 6 p) number of column to each processor Pi in that order;
• dflt: Assign Di (1 6 i 6 p) number of column to each processor Pi in the default order of processors input to

this algorithm.

In Table 4, we demonstrate the heuristics for n = 10. The first column represents the step k of the algorithm.
The second column shows the distributions obtained during step S2 by the set partitioning algorithm. The
entry ‘‘Allocation made’’ denotes the rank of the processor to which the column k is assigned. At steps
k = 4 and k = 5, the algorithm does not make any assignments. At k = 6, the different heuristics are applied
to assign (2,1) number of blocks to processors (P1,P3), respectively. Note here the heuristic dflt performs the
same assignment as heuristic ftos but it may not be the case always. For example using the heuristic cycl, the
final output d would be (P1 P1 P1 P1 P3 P1 P2 P1 P2 P3).

Table 5 presents the complexities introduced by each of these heuristics. It can be seen that these heuristics
do not affect the overall complexity of the algorithm, which is O(p · n · log2 n).

5.3. Functional GB algorithm

The GB algorithm presented earlier is extended to use the functional model of heterogeneous processors.
The efficiency of the Functional Reverse algorithm over this algorithm is compared in the section on exper-
imental results.

The Functional GB algorithm (FGB). This algorithm extends the Group Block algorithm presented earlier
by using the functional model of heterogeneous processors. The main idea here is that at each step, the number
Table 4
Functional Reverse algorithm using heuristics

Step of the algorithm (k) Distributions at step k Allocation made

P1 P2 P3

6 2 2
1 5 2 2 P1

2 4 2 2 P1

3 3 2 2 P1

4 1 3 2 No allocation
5 1 3 1 No allocation

6 1 2 1 Heuristics

cycl ftos stof dflt

P1, P3, P1 P1, P1, P3 P3, P1, P1 P1, P1, P3

7 1 1 1 P2

8 0 1 1 P1

9 0 0 1 P2

10 P3



Table 5
Heuristics and their complexities

Heuristic Complexity (Ch)

cycl O(p)
ftos O(p · log2 p)
stof O(p · log2 p)
dflt O(p)
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of column panels per group and the distribution of the column panels in the group over the processors are
calculated based on the absolute speeds of the processors given by the functional model, which are based
on the size of the problem solved at that step. That is the number of column panels per group and the distri-
bution of column panels in a group amongst the processors are variable.

The inputs to the algorithm are p, the number of heterogeneous processors in the one-dimensional arrange-
ment, b, the block size, n, the size of the matrix in number of blocks of size b · b or the number of column
panels, and S = {s1(x,y), s2(x,y), . . . , sp(x,y)}, the speed functions of the processors. The outputs are
G = {g1, . . . ,gm}, an integer array of size m, the ith element of which contains the size of the group and d,
an integer array of size m · p logically representing an array of shape [m][p], the (i,j)th element of which con-
tains the number of column panels in the group i assigned to processor j. The algorithm can be summarized as
follows:

(1) The size g1 of the first group of blocks is calculated as follows:
(a) Apply HSPF(p,n,S) to return the optimal distribution (n1, . . . ,np) of n column panels wherePp

i¼1ni ¼ n. Calculate the load index li ¼ ni=
Pp

k¼1nk (1 6 i 6 p).
(b) The size of the group g1 is equal to b1/min(li)c (1 6 i 6 p). If g1/p < 2, then g1 = b2/min(li)c. This con-

dition is imposed to ensure there is sufficient number of blocks in the group.
(c) This group is now partitioned such that the number of column panels dðiÞ1 assigned to processor i in

the group is proportional to the load indices li where
Pp

i¼1dðiÞ1 ¼ g1 (1 6 i 6 p).
(2) To calculate the size g2 of the second group, we repeat step 1 for the number of column panels equal to

n � g1 in matrix A. We recursively apply this procedure until we have fully vertically partitioned the
matrix A.

(3) In each group, the processors are reordered to start from the slowest processors to the fastest processors
for load balance purposes.

To calculate the complexity of the algorithm, consider the first step of the algorithm. The complexity of
HSPF is O(p · log2 n) [13]. The complexity of step 1.b is O(1). The complexity of step 1.c is O(p · log2p).
So the total complexity for this step is O(p · log2 n) + O(p · log2 p) + O(1). In the worst case scenario, there
are n possible groups. So the complexity of the algorithm is upper bounded by n · (O(p · log2 n) +
O(p · log2p) + O(1)) = O(p · n · log2 n).

5.4. Functional DP algorithm

The DP algorithm presented earlier is extended to use the functional model of heterogeneous processors.
The efficiency of the Functional Reverse algorithm over this algorithm is compared in the section on exper-
imental results.

The Functional DP algorithm (FDP). This algorithm extends the DP algorithm presented earlier by using
the functional model of heterogeneous processors. The inputs to the algorithm are p, the number of hetero-
geneous processors in the one-dimensional arrangement, b, the block size, n, the size of the matrix in number
of blocks of size b · b or the number of column panels, and S = {s1(x,y), s2(x,y), . . . , sp(x,y)}, the speed func-
tions of the processors. The outputs are c, an integer array of size p, the ith element of which contains the
number of column panels assigned to processor i, and d, an integer array of size n, the ith element of which
contains the processor to which the column panel i is assigned. The algorithm can be summarized as follows:



774 A. Lastovetsky, R. Reddy / Parallel Computing 33 (2007) 757–779
(c1, . . . ,cp) = (0, . . . , 0);
(d1, . . . ,dn) = (0, . . . , 0);
for(k = 1; k 6 n; k = k + 1) {

Costmin =1;
(n1, . . . ,np) = HSPF(p,k,S);
for(i = 1; i < = p; i++) {
Cost = (ci + 1)/ni;
if (Cost < Costmin) {Costmin = Cost; j = i;}

}
dn�k+1 = j;
cj = cj + 1;

}

To calculate the complexity of the algorithm, consider an iteration of the algorithm. The complexity of
HSPF is O(p · log2 n) [13]. The complexity of the for loop is O(p). Therefore, the total complexity will be
O(p · log2 n) + O(p). Since there are n iterations, the complexity of the algorithm is upper bounded by
n · (O(p · log2 n) + O(p)) = O(p · n · log2 n).

5.5. Concluding remarks

In the general case, the data distribution algorithms employing the functional model of heterogeneous pro-
cessors do not provide optimal solutions to the optimization problem presented at the beginning of Section 5.1.
At the same time, the FR and the FDP algorithms will always return optimal solutions in the following two cases:

(a) The speeds of the processors are constant functions of the task size. In this case, the FDP algorithm is
identical to the DP algorithm.

(b) The speeds of the processors allow the FR algorithm to assign a column at each step (see behind the
Functional Reverse distribution algorithm Proposition 3). In this case, both the FR and the FDP algo-
rithms return the optimal solution.

The FGB algorithm may return non-optimal solutions even in these two cases.

6. Experimental results

A small heterogeneous local network of sixteen different Linux workstations shown in Table 6 is used in the
experiments. The network is based on 2 Gbit Ethernet with a switch enabling parallel communications
between the computers. The experimental results are divided into two sections. The first section is devoted
to building the functional representation of the speed of a processor. Then we present the experimental results
on the local network of heterogeneous computers shown in Table 6.

6.1. Implementation of the functional algorithms

In heterogeneous environments, most processors experience constant and unpredictable fluctuations in the
workload. Therefore, their performance is represented by speed bands rather than speed functions. This prop-
erty of real-life environments can be used to minimize the cost of experimental building of the functional per-
formance model of the processors. If we accept any appropriate function (continuous, etc.) fitting into the
speed band as a satisfactory approximation of the speed function, then the problem of efficient building the
functional performance model can be formulated as follows:

• Find the optimal set of task sizes such that:
�Running the application for this set is enough to build an approximation of the speed function fitting into

the speed band.
� The total execution time to run the application for the set of task sizes is minimal.



Table 6
Specifications of 16 Linux computers of a heterogeneous network

Computer GHz CPU RAM (mBytes) Cache (kBytes) Functional model building time (s)

hcl01 3.6 Xeon 256 2048 565
hcl02 3.6 Xeon 256 2048 555
hcl03 3.4 Xeon 1024 1024 606
hcl04 3.4 Xeon 1024 1024 606
hcl05 3.4 Xeon 1024 1024 606
hcl06 3.4 Xeon 1024 1024 606
hcl07 3.4 Xeon 256 1024 480
hcl08 3.4 Xeon 256 1024 480
hcl09 1.8 AMD Opteron 1024 1024 550
hcl10 1.8 AMD Opteron 1024 1024 600
hcl11 3.2 P4 512 1024 425
hcl12 3.4 P4 512 1024 630
hcl13 2.9 Celeron 1024 256 445
hcl14 3.4 Xeon 1024 1024 485
hcl15 2.8 Xeon 1024 1024 485
hcl16 3.6 Xeon 1024 2048 485
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One possible approach is to look for an optimal piecewise linear approximation of the speed function. A
practical procedure to build a piecewise linear function fitting into the speed band of a processor is given in
[20]. In brief, the Geometric Bisection Building Procedure (GBBP) presented in [20] exploits historic records of
workload fluctuations of the processor in order to minimize the number of experimental points needed to
accurately approximate the speed function by a piecewise linear function fitting into the band. For the exper-
iments in this paper, the piecewise linear approximation of the speed band of the processor is built using a set
of experimentally obtained points (x,y, s(x,y)) for different task sizes (x,y) where s(x,y) is the speed exposed
by the application when solving the task of size (x,y).

To obtain an experimental point for a task size (x,y), we execute the level-3 BLAS DGEMM routine

[21] that is used in the LU factorization application to locally update a dense matrix of size x · y. The
total number of computations involved in updating (eA22  A22L21U 12Þ of the x · y matrix A22, where
L21 is a column of the size x and U12 is a row of the size y, will be x · y (remember that, generally speak-
ing, the matrix elements represent b · b matrix blocks). The block size b used in the experiments is 32,
which is typical for cache-based workstations [18,19]. Therefore, the absolute speed of the processor s(x,
y) can be calculated as x · y divided by the execution time of the application. The piecewise linear approx-
imation is obtained by connecting these experimental points. This gives us a function, f: N2 ! R+, map-
ping task sizes to speeds of the processor. The functional performance model of the processor is obtained
by continuous extension of function f: N2 ! R+ to function g: R2

þ ! Rþ. The speed function is geomet-
rically represented by a surface as shown in Fig. 3 for one of the computers ‘hcl11’ used in the experi-
ments. Fig. 4 shows the geometrical representation of the relative speed of these two processors
calculated as the ratio of their absolute speeds. One can see that the relative speed varies significantly
depending on the value of variables x and y.

The application of the set-partitioning algorithm HSPF at step k of the FR algorithm can be summarized as
follows. When partitioning the trailing square (n � k) · (n � k) matrix, we use the fact that the height of the
partitions is fixed and equal to n � k. Firstly, we section the surfaces representing the absolute speeds of the
processors by the plane x = n � k. This is illustrated in Fig. 5(a) for three surfaces representing the absolute
speeds of the processors ‘hcl02’, ‘hcl09’ and ‘hcl11’ used in the experiments. This way we obtain a set of p

curves on this plane that represent the absolute speeds of the p processors against parameter y given parameter
x = n � k is fixed. Then, the set-partitioning algorithm [13] is applied to this set of p curves to obtain optimal
distribution of the trailing square (n � k) · (n � k) matrix.

The last column in Table 6 shows the execution times taken to build the functional performance model of
each processor used in the experiments. This table demonstrates that building the functional performance
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model is inexpensive compared to the execution times of the parallel LU factorization, which range from min-
utes to hours. It should be noted that the building of the functional performance model could be performed in
parallel for each processor in the network shown in Table 6.

6.2. Numerical results

Fig. 6 shows the first set of experiments. For the range of task sizes (1024–11,264) used in these experiments,
the speed of the processor is a constant function of the task size. These experiments demonstrate the optimality
of the FR and the DP algorithms over the GB algorithm when the speed of the processor is a constant func-
tion of the task size. It should be noted that:

FDP algorithm is functionally equivalent to the DP algorithm when the speed of the processor is repre-
sented by a constant function of task size. The figure shows the execution times of the LU factorization appli-
cation using these algorithms. The single number speeds of the processors used for these experiments are
obtained by running the DGEMM routine to update a dense non-square matrix of size 5120 · 320. The ratio
of speeds of the most powerful computer hcl16 and the least powerful computer hcl01 is 609/226 � 2.7.

Table 7 shows the second set of experiments showing the execution times of the different data distribution
algorithms presented in this paper. We consider two cases for comparison in the range (1024, 25,600) of matrix
sizes. The GB and DP algorithms uses single number speeds. For the first case the single number speeds are
obtained by running the DGEMM routine to update a dense non-square matrix of size 16,384 · 1024. This
case covers the range of small sized matrices. For the second case the single number speeds are obtained
by running the DGEMM routine to update a dense non-square matrix of size 20,480 · 1440. This case covers
the range of large sized matrices. The ratios of speeds of the most powerful computer hcl16 and the least pow-
erful computer hcl01 in these cases are (531/131 = 4.4) and (579/64 = 9), respectively. The cycl heuristic has
been used in the FR algorithm.

Table 8 shows the execution times of the LU factorization application employing different heuristics in the
FR algorithm. The heuristics ftos and cycl outperform the heuristics stof and dflt. It is also shown that these
heuristics perform no worse than the heuristic employing an exhaustive search algorithm.
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Fig. 6. Execution times of the FR, DP, and GB distribution strategies for LU factorization of a dense square matrix.

Table 7
Execution times (in seconds) of the LU factorization using different data distribution algorithms

Size of the matrix FR FDP FGB Reverse/DP GB

16,384 · 1024 20,480 · 1440 16,384 · 1024 20,480 · 1440

1024 15 17 18 16 18 20 18
5120 86 155 119 103 109 138 155

10,240 564 1228 690 668 711 919 926
15,360 2244 3584 2918 2665 2863 2829 3018
20,480 7014 10,801 8908 9014 9054 9188 9213
25,360 14,279 22,418 19,505 27,204 26,784 27,508 26,983



Table 8
Execution times (in seconds) of the LU factorization employing the FR algorithm using the heuristics

Size of the matrix ftos cycl stof dflt Exhaustive search

11,264 866 790 818 826 883
12,288 1360 1283 1408 1377 1467
13,312 1657 1575 1706 1673 1801
14,336 1905 1854 1977 1955 2168
15,360 2340 2244 2371 2383 2585
16,384 3000 2871 3120 3095 3400
17,408 3810 3464 4003 4001 4250
18,432 4908 4501 5217 5293 5699
19,456 6164 6287 6943 6943 6503
20,480 7439 7014 7837 7598 7659
21,504 8440 8279 9022 9034 8891
22,528 10,854 10,939 12,424 12,392 12,307
23,552 12,175 13,048 14,052 14,515 12,816
24,576 13,281 13,314 15,385 15,825 14,221
25,600 14,780 14,279 16,838 16,552 16,731
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The last column in the table shows the execution times of the LU factorization application for the locally
optimal mapping obtained by exhaustive search. Unlike results for the heuristics, in this case, the execution
time of the LU factorization application does not include the execution time of the exhaustive search because
of its very high cost.

Results for task sizes between 1024 and 10,240 are not shown in the table. This is because for this range, the
speed of the processor is a constant function of the task size and the heuristics do not come into play.

It can be seen that the FR algorithm employing the functional model of heterogeneous processors per-
forms well for all sizes of matrices. Firstly, why do the Reverse and the DP algorithms perform better than
the GB algorithm when the speed of the processor is represented by a constant function of the task size?
The main reason is that the GB algorithm imposes additional restrictions on the mapping of the columns
to the processors. These restrictions are that the matrix is partitioned into groups, all of which have the
same number of blocks. The number of columns per group (size of the group) and the distribution of
the columns in the group over the processors are fixed. The Reverse and the DP algorithms impose no
such limitations on the mapping.

Why does the FR algorithm outperform the FDP algorithm when the speed of the processor is a func-
tion of the task size? First of all, if an assignment of the column is made at each step, both the FR and the
FDP algorithms give the optimal solution. It can be proven that the FDP algorithm provides the same
mapping of column panels as the FR algorithm in this case. If an assignment of the column panel can
not be made at each step, the FR algorithm performs better. The main reason is that the FDP algorithm
will keep assigning a column panel at each step even in this case, meanwhile the FR algorithm postpones
the mapping decision until it has enough information to better map the group of column panels to the
processors.
7. Conclusions and future work

In this paper, we presented static data distribution algorithms to optimize the execution of factorization of
a dense matrix on a network of heterogeneous computers. The distribution is based on a functional perfor-
mance model of computers, which integrates some of the essential features underlying applications run on gen-
eral-purpose common heterogeneous networks, such as the processor heterogeneity in terms of the speeds of
the processors, the memory heterogeneity in terms of the number of memory levels of the memory hierarchy
and the size of each level of the memory hierarchy, and the effects of paging.

In the general case, the data distribution algorithms employing the functional model of heterogeneous
processors do not provide optimal solutions to the problem of distributing a large dense square matrix for
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its parallel LU factorization over a one-dimensional arrangement of heterogeneous processors using their
functional performance model. It is shown that the FR algorithm employing the functional model of hetero-
geneous processors performs well for all sizes of matrices. Of all the presented efficient polynomial heuristics
that can be employed in the FR algorithm, the heuristics ftos and cycl perform the best. It is also shown that
these heuristics perform no worse than the exhaustive search considering all the possible mappings.

Future work would involve extension of the distribution algorithms for two dimensional processor grids.
For two-dimensional processor grids, the block cyclic distribution as used in ScaLAPACK is more natural
and scalable. However the problem of data partitioning employing the functional model of heterogeneous pro-
cessors and the block cyclic distribution is very complex and is open for research. This can be deduced from
the complexity of the problem of cyclic distribution of columns over a one-dimensional arrangement of het-
erogeneous processors demonstrated in this paper. We can speculate that the FR algorithm can be applied
along the row and the column dimensions of the matrix for data distribution on two-dimensional arrangement
of heterogeneous processors. But a cursory study shows that this is not trivial.
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