
Scientific Programming 21 (2013) 79–92 79
DOI 10.3233/SPR-130366
IOS Press

Efficient and reliable network tomography in
heterogeneous networks using BitTorrent
broadcasts and clustering algorithms 1

Kiril Dichev a,∗, Fergal Reid a,b and Alexey Lastovetsky a

a School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
E-mails: Kiril.Dichev@ucdconnect.ie, Fergal.Reid@gmail.com, Alexey.Lastovetsky@ucd.ie
b Clique Research Cluster, University College Dublin, Dublin, Ireland

Abstract. In the area of network performance and discovery, network tomography focuses on reconstructing network properties
using only end-to-end measurements at the application layer. One challenging problem in network tomography is reconstructing
available bandwidth along all links during multiple source/multiple destination transmissions. The traditional measurement pro-
cedures used for bandwidth tomography are extremely time consuming. We propose a novel solution to this problem. Our method
counts the fragments exchanged during a BitTorrent broadcast. While this measurement has a high level of randomness, it can
be obtained very efficiently, and aggregated into a reliable metric. This data is then analyzed with state-of-the-art algorithms,
which correctly reconstruct logical clusters of nodes interconnected by high bandwidth, as well as bottlenecks between these
logical clusters. Our experiments demonstrate that the proposed two-phase approach efficiently solves the presented problem for
a number of settings on a complex grid infrastructure.
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1. Introduction and related work

The properties of the underlying network play a cen-
tral role in the performance of all distributed and par-
allel applications which rely on communication. When
these properties are taken into account, communica-
tion can be optimized. In the Message Passing Library
(MPI), every collective operation can profit through
topology awareness, particularly in heterogeneous net-
works. A large body of research has been done in this
direction for various protocols and networks, includ-
ing but not limited to [8,10,17,18,30]. Existing work
performs topology-aware collective operations using
knowledge of a pre-defined partition clustering of the
network, and finds that these topology-aware collec-
tives substantially outperform topology-agnostic meth-
ods. In this work, our goal is to provide a versatile
automated method to deduce a partitioning of the net-
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work into logical bandwidth clusters. We aim to pro-
vide a method that is efficient in its network mea-
surement, and good at finding network bottlenecks un-
der conditions of high load. This method would allow
easy topology-aware communication on large highly
utilized heterogeneous networks, which are becoming
an increasingly important domain for distributed com-
putation.

There are two main ways of incorporating knowl-
edge about the heterogeneity of the network into com-
munication algorithms – by providing such knowledge
manually or automatically. Past MPI implementations
for Grid infrastructures and other wide-area networks
[10,17,18] have used each of these ways of incorporat-
ing such knowledge. Fully automatic approaches can
be subdivided into ‘intra-node’ and ‘inter-node’ ap-
proaches. For inter-node approaches, network discov-
ery typically involves some form of communication
model. There are many examples of this approach in
high-performance computing and early work includes
[1,14]. For intra-node automatic approaches, which are
gaining popularity today due to many-core nodes, re-
cent work includes [12].
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Fig. 1. Overview of network tomography.

However, the existing automated approaches in
high-performance computing do not generally capture
all relevant network properties. Examples of proper-
ties that existing approaches are poor at capturing in-
clude bottleneck links; as while often not visible in iso-
lated point-to-point communication, these bottlenecks
appear under conditions of particularly intense collec-
tive communication. We look for possible solutions
to these peak-bandwidth measurement issues in dis-
tributed computing rather than high-performance com-
puting since heterogeneous and hierarchical networks
are traditionally used in this domain. The challenges
presented by such networks gave rise to an interest-
ing subfield of network discovery in the late 1990s –
‘network tomography’. Castro [6] provides a detailed
overview. The general goal of network tomography is
to reconstruct the logical topology of the network in
two phases, as depicted in Fig. 1. The first phase in-
volves only end-to-end measurements of the network.
Based on how these measurements are performed –
whether actively or passively – we can talk of passive
network tomography (e.g. [24,31]) or active network
tomography (e.g. [4,25]). After measurement data is
collected, the second phase of the process always in-
volves the use of statistical methods to reconstruct the
logical view of the network. While many metrics can
be used, a number of metrics are particularly relevant
from the user perspective, including loss rate, delay
and bandwidth.

The main contribution of this work is in the area of
active network tomography with a bandwidth-related
metric. Our focus is multiple source/multiple destina-
tion communication. An example of such communica-
tion would be heavy bulk transfer between all network
peers (e.g. in all-to-all communication). The closest re-
lated work to ours are [3] and [20]. Both works recon-
struct the logical topology of the network using band-
width as a metric. While [20] infers a qualitative view
of the network, [3] infers a more quantitative view, in-
cluding labeling of actual achievable bandwidth.

The most time-consuming phase in existing ap-
proaches to active network tomography on bandwidth
is the measurement phase. The measurement proce-

Fig. 2. Traditional measurement of bandwidth in tomography.

dures used to find the available bandwidth and/or bot-
tlenecks between communicating peers are generally
similar across all tomography methods. We show the
two essential steps that are generally involved in Fig. 2.

Conceptually, in the first step, an intense communi-
cation is established between a pair of nodes until the
link capacity between them is reached. Then, a new
pair of intensely communicating nodes is introduced,
and the bandwidth of the first link is reexamined. If
no change in bandwidth is observed, then the links
are probably independent – more pairs communicating
in parallel could unveil a bottleneck at a later point.
But if the bandwidth of the node pairs under exam-
ination decreases, then it is clear that they share the
same physical (and logical) link. Following this pro-
cedure, experiments are performed until the entire net-
work is reconstructed. While intuitive, this approach
is very expensive. The measurement procedures have
polynomial complexity, even after some optimizations
using heuristics or parallelism. Indeed, this complexity
makes it infeasible to perform bandwidth-related net-
work tomography on large-scale computer networks.
Both [3] and [20] concede this issue and resort to run-
ning simulations using SimGrid [5]. The latter [20]
only attempts real experiments on a small scale. Even
simplified measurement procedures require approxi-
mately one hour to run with only 20 nodes.

In our work, we introduce a novel approach to mul-
tiple source/multiple destination network tomography,
which differs from traditional approaches described in
Fig. 1 in both the measurement procedure and the ana-
lysis method as follows:

• Phase 1: We use the BitTorrent [7] protocol as
the tool for our measurements. The measurement
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Fig. 3. Alternative bandwidth-related measurement as proposed in
this work.

metric is the number of exchanged fragments
between peers during a synchronized BitTorrent
broadcast (see Fig. 3).

• Phase 2: In the second phase, we use a popular
implementation of a modularity-based network
clustering algorithm [2,22] to perform analysis of
the measured data. We describe this process, and
choice of clustering algorithm, as well as its oper-
ation, in detail in Section 3.2.

We are not aware of previous work in this area us-
ing the type of measurement procedure we employ, nor
are we aware of any coupling of this approach with a
clustering algorithm in the manner which we present.

The intuition behind the metric is that when using a
number of parallel connections, more data will be nat-
urally transferred through the links with higher band-
width. This idea has been demonstrated even before
the advent of protocols like BitTorrent. For example,
[27] demonstrated that a client using a number of par-
allel TCP connections to servers with different upload
rates will download a file with a rate approaching the
fastest upload rate. Indeed, the BitTorrent protocol uses
a number of parallel connections to exploit this net-
work feature. The proposed measurement departs from
existing approaches in the field not only in the met-
ric, but also in its efficiency – a single synchronized
BitTorrent broadcast can often capture the behavior of
a very large number of links. Indeed, every broadcast
of a large message to many peers has a total commu-
nication time linear in the message size. The number
of peers does not reduce the download rate due to the
pipelining and scalability of the BitTorrent algorithm.
For detailed performance analysis of BitTorrent see for
example [15,32].

Surprisingly, we find only one other work [21]
which investigates BitTorrent tomography. However,
this work states that BitTorrent traffic is immeasurable
on a large scale. The authors do not list any technical
issues with this approach, but argue that it is unlikely
for an instrumented BitTorrent client to be used by a
large user community. They replace BitTorrent profil-
ing with an alternative algorithm, which they use in

conjunction with a simulation program. There is also
work which proceeds in the opposite direction – op-
timizing the performance of the BitTorrent protocol,
given knowledge of the network topology (e.g. [26]).

In order to validate our tomography method we per-
form a set of experiments on real networks using a
grid infrastructure. Although we focus on bulk trans-
fers of large data, our measurement approach is effi-
cient, because it does not perform exhaustive measure-
ments. The measurement procedure, which consists of
several iterations of BitTorrent broadcasts, captures the
flow of large data volumes across the entire network in
each iteration. With just a few iterations, we find that
sufficient information can be collected to infer impor-
tant network properties. This information can be used
in many data-intensive communication operations. For
example, if we want to efficiently schedule an all-to-
all operation, we do not need to label the achievable
bandwidth along all fast and slow links in the network.
Instead, the only requirement is a logical clustering of
nodes according to their bandwidth. Thus, if there is a
bottleneck link between nodes, a correct clustering al-
gorithm should place them in different logical clusters.

We find that our method efficiently and reliably clus-
ters nodes with regard to their bandwidth when all
nodes are involved in collective communication. We
use the algorithm successfully both for experiments
separating compute clusters within a site, and between
sites, on the Grid’5000 infrastructure.

The paper is structured as follows: Section 2 presents
our metric and measurement procedures. Section 3
presents the clustering algorithm we use. In Section 4
we present results from a range of experiments. We
conclude the paper in Section 5.

2. BitTorrent broadcasts and “exchanged
fragments between peers” as a metric

2.1. Definition and use

Throughout this paper, we refer to a BitTorrent
broadcast as a fully synchronized instrumented execu-
tion of BitTorrent clients until all clients have down-
loaded a file. The used metric is derived from these
broadcasts and is bandwidth-related. We observe the
communication network as a directed graph G =
(V ,E). A file of size M is distributed as M

16 kB frag-
ments of 16 kB to all nodes v ∈ V using BitTorrent
broadcasts. If v1 →i v2 denotes the number of frag-
ments sent directly from v1 to v2 within broadcast op-
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Fig. 4. w(e) as measured for all edges e to a randomly fixed node (36 iterations). On the left are edges to local cluster nodes, on the right are
edges to remote nodes.

eration i, then we define the metric w per edge e for
one run as

w(e) = v1 →1 v2 + v2 →1 v1 (1)

with e = (v1, v2). Since performing more iterations
significantly increases the accuracy of the metric, for n
iterations we simply state

w(e) =

∑n
i=1 v1 →i v2 + v2 →i v1

n
(2)

with e = (v1, v2).
In this work, the size of a file used in a single BitTor-

rent broadcast is chosen to be 239 MB. This choice is
completely arbitrary and is driven by practical obser-
vations that a single broadcast then takes around 20 s
for different numbers of nodes (see Section 2.2 for de-
tails). We find this to be a reasonable amount of time
for a single broadcast, and it often provides good band-
width information for many of the available links. Pro-
filing the precise number of fragments exchanged gives
the following information: in each BitTorrent broad-
cast, exactly 15,259 fragments of 16,384 bytes each
are received by all participating nodes, following a dy-
namic pattern each time.

We have instrumented the original Python version of
the BitTorrent client written by Bram Cohen and avail-

able in most Linux distributions. We introduce efficient
profiling of the arriving data as follows: At the recep-
tion of each data fragment, a counter is incremented
associated with the sending peer using a hash table of
counters. At the end of a run, all peers have a record
of the source peers and the number of fragments they
received from each peer.

As an example, in a broadcast operation involving
64 nodes on one site, we display measurements for a
randomly chosen node in Fig. 4. The bars represent the
metric as defined above for 36 iterations for all edges
which include the fixed node. Since the results involve
many iterations, the chosen node exchanges fragments
with all 63 peers. For clarity, we have grouped on the
left side the metric values for the 31 peers in the local
cluster, and grouped the values for the 32 remote nodes
on the right side.

We will discuss the main characteristics of this mea-
surement, and explain how it differs to classic band-
width measurements in the following sections.

2.2. Efficiency of the metric

The main strength of our method is that it takes
only a single broadcast of a large message per run to
collect data on a large subset of all possible peer-to-
peer connections. In our setup, the observed complex-
ity of BitTorrent broadcasts is O(M ) – linear in the
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message size M . We verified experimentally that as
we alter the number of nodes, the BitTorrent broad-
cast requires nearly constant time. According to prac-
tices from high-performance computing, our reference
time for the completion of a BitTorrent broadcast is
the maximum download completion time of all the Bit-
Torrent clients, which we start synchronously. For 32,
64 and 128 nodes, the broadcast of the 239 MB large
message takes about 20 s on the Grid’5000 infrastruc-
ture, even when the nodes are spread across 4 sites.
Related work [15] also suggests that a high download
rate can be sustained for very large peer numbers; the
number of participating peers in such experiments typ-
ically does not alter the estimated time of O(M ) for
all peers to download the file. Other work [33] also
demonstrates that the BitTorrent protocol is competi-
tive with client/server architectures in its peak down-
load rate.

We now give a short overview of the complexity
of the network tomography algorithms presented in
the previous section. Each step in these algorithms –
shown in Fig. 2 – is very time consuming. First, ev-
ery link has to be saturated until the maximum band-
width on that link is reached. This is a costly opera-
tion which incurs heavy network overhead. The sec-
ond challenge consists of probing the link bandwidth
in parallel for multiple links. This process is repeated
until all nodes have been sufficiently tested. For exam-
ple, [3] performs such tests only with at most triplets
of nodes. It is stated that triplets are sufficient as long
as the single-link experiments can reach the maxi-
mum capacity. Even with this assumption, all possi-
ble triplets need to be tested in the worst case. This
step is performed since it is assumed that there is no a
priori knowledge of the topology of the network. The
observed complexity of the algorithm in this case is
O(N3), in N the number of nodes.

The algorithm proposed by [20], on the other hand,
tests pairs incrementally, fully in parallel and without
limiting the maximum number of tested links at a time.
In specific cases, where no interference of links is ob-
served, the complexity is estimated at O(N2). The only
empirical experiments performed are for networks of
20 nodes, and these take about one hour to complete.

2.3. Level of randomness with single runs using the
metric

If we examine the volume of exchanged data shown
in Fig. 4 over a number of iterations, we notice that
a total of 22,533 fragments are exchanged with local

cluster nodes, and 6337 fragments are exchanged with
remote nodes. This is a clear indication that with Bit-
Torrent broadcasts, data flows with a preference for
high bandwidth links. Furthermore, we observe this
phenomenon quite reliably in our experimental data.

We have previously defined a single run of our met-
ric as transmitting a single file which takes approxi-
mately 20 s. As the operation of the BitTorrent proto-
col is stochastic, and the data transferred across each
link varies from run to run, it is important to attempt
to characterize the accuracy of the metric we have
defined for a single run. Thus, we now observe how
the metric fluctuates using one Grid’5000 site (Bor-
deaux). We focus on an edge between 2 nodes ran-
domly chosen from within a cluster. Each run mea-
sures the metric w(e) independently (no aggregation is
used). Figure 5 shows the distribution of w(e) along the
fixed edge over 36 runs. In 13 of the 36 runs, the two
peers do not exchange any data with each other. In the
other 23 runs, the exchanged data varies between 3 and
6304 fragments. This distribution shows that the vari-
ance is very high. For comparison, when running the
well known NetPIPE tool [29] to establish the maxi-
mum achievable bandwidth along the link between two
peer nodes on the same compute cluster used above,
the variance is very low and the distribution is dense
around 890 Mbps.

Figure 5 suggests that while inexpensive to compute,
the metric is very variable for single runs. With this
level of measurement noise and randomness, a good
analysis technique will be needed to extract meaning-

Fig. 5. Distribution of measured metric w(e) for a fixed edge e and
36 independent iterations.
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ful data from these measurements. Yet one important
consideration is that our analysis method does not con-
sider each link’s bandwidth in isolation, as in previous
approaches, and this eases to some extent the require-
ments for the measurement step.

Before discussing how we will aggregate and ana-
lyze data from this metric to form a reliable view of the
network, we will briefly discuss the BitTorrent proper-
ties which are responsible for the variance and high de-
gree of randomness between single runs of the metric:

• Initially, BitTorrent clients randomly choose their
initial peers (adjustments in the peer selection are
part of the protocol for longer runs).

• BitTorrent internally limits the number of parallel
uploads to 4, and this indirectly limits the number
of parallel downloads.

• Another protocol feature is that the number of
total peers is limited to 35. This means that for
larger numbers of nodes and a single broadcast,
measurements using this protocol will not provide
a complete graph – only a subset of possible con-
nections will be measured. One solution to this
problem is to aggregate the measurements over a
number of BitTorrent broadcasts, as we shall see.

• Using a BitTorrent broadcast operation means
that nodes which are better connected to the ‘root
node’ are more likely to receive more fragments
from the root. This is simply due to the asym-
metric way data flows in a broadcast operation as
compared to, for example, an all-to-all transmis-
sion. However, in our experiments this was never
an issue during the reconstruction and analysis of
our networks. If this affects results in some cases,
a simple solution is using different root nodes
over a number of runs.

These are characteristics of the protocol, which,
while important for transmission efficiency and relia-
bility, increase the variance of our measurements, and
could make network reconstruction hard. However, it
will become evident in the following sections that de-
spite the high degree of inherent randomness, this met-
ric can easily be made reliable through simple iteration,
especially when the measurements are analyzed using
a clustering algorithm which operates on the observed
network as a whole.

2.4. Improving the accuracy through iteration of
BitTorrent broadcasts

While a single broadcast measurement has a high
level of noise and randomness, aggregating data over

a number of iterations resolves these issues. A posi-
tive property of the used approach is that each new it-
eration potentially improves the accuracy of the met-
ric on a global scale – i.e. for all edges. The previ-
ous approaches presented can not address this, and are
restricted to local experiments on a small subset of
nodes. In order to quantify the number of iterations
needed to improve our accuracy, the key questions are:

• How close is the single run data to an “ideal” rep-
resentation of the peer-to-peer bandwidth when
performing bulk data transfers?

• How fast does the aggregated data over a number
of runs converge to the “ideal” representation?

We address these questions in an end-to-end manner,
by quantitatively evaluating the performance of the en-
tire system which uses these measurements. We make
experimental observations as follows: after obtaining
measurements at each run, we use a clustering metric –
presented in detail in Section 3.4 – to assess the quality
of measurements against a ground truth.

These questions could also be addressed by an ana-
lytical approach, but there are a number of challenges
with this: the implementation of BitTorrent is not triv-
ial to analyze, and porting it to a simulation environ-
ment is a complex engineering challenge.

3. Clustering method

The previous section has shown that the used mea-
surement approach can be very efficient, but that there
is a significant level of randomness in the data gath-
ering process. This would seem to pose a significant
challenge for the clustering algorithm.

A second challenge is that we want to provide as lit-
tle a priori information to our tomography method as
possible, in order to increase the range of application
scenarios. In particular, we do not want to specify the
number of logical clusters into which to partition the
observed network. We want to be able to deploy this
method in real world application domains where very
little information on the underlying topology is pro-
vided.

3.1. Cluster visualization

In order to investigate the potential for an algo-
rithmic clustering method to deduce the ground truth
clusters from the measured network, we first visual-
ize the measured network data using a network lay-
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out algorithm. On each layout visualization, we use
nodes of different shapes to represent different ground
truth clusters. (The exact details of how the ground
truth is produced from the physical network topology
will be discussed in Section 4.1.) As is shown visually
in Figs 9–13, the application of a layout algorithm to
the measured networks allows us to visually observe
groups of nodes the layout places close to each other.
These groups clearly correspond to the ‘ground truth’
logical clusters of the underlying computer network.

For these visualizations, we layout the networks us-
ing the implementation of the Kamada–Kawai spring
weighted graph layout algorithm [16] from the
‘Graphviz’ software package [9], in which we make
the length of edges between nodes inversely propor-
tional to the measured edge weight (which in turn cor-
responds to the presented metric w(e) – the exchanged
fragments between two nodes). While we use all of
the measured edges in our layout algorithms, for clar-
ity of presentation in these diagrams we only render
the edges which are in the top 50% of network edges
by weight. It can be clearly seen that the ground truth
clusters correspond to visually identifiable groups of
nodes formed by the spring weighted layout. The fact
that clear groupings are present in the layout visualiza-
tions is strong evidence that the BitTorrent measure-
ment process is working correctly, and that the ran-
domness in the data gathering process is not a problem
when detecting groups. That the groupings correspond
well to the ground truth clusters indicates that algorith-
mic clustering approaches will be successful on this
problem.

3.2. Modularity-based clustering

That the layout visualizations show a relationship
between the ground truth partitions and the groups of
the nodes in the measured network indicates the mea-
surement technique is working. However, visual in-
spection of observed clusters is not a robust means
of evaluating performance. In addition, we want to
be able to automate our tomography technique and
to deploy it on networks too large to visualize. Thus
we need an algorithmic clustering technique that finds
clusters of nodes like those groups apparent on the lay-
out visualizations.

To do this, we apply a technique from modern net-
work analysis. We use the modularity function of New-
man and Girvan [22] to identify sets of nodes which
are more densely interconnected than the general level
of interconnection in the network.

The modularity method is defined by the following
objective [22]:

Q =
∑

i

(
eii − a2

i

)
= Tr(e) −

∥∥e2
∥∥, (3)

which compares, for a given clustering, the proportion
of network edges that are intra-cluster eii, for each
cluster i, against the proportion that would be intra-
cluster in a randomized model of the same network.
As described by Newman and Girvan: “This quantity
measures the fraction of the edges in the network that
connect vertices of the same type (i.e., within commu-
nity edges) minus the expected value of the same quan-
tity in a network with the same community divisions
but random connections between the vertices”.

We use a weighted version of this same objective,
which will have a high value for clusters of nodes that
have a high internal weight. This objective has been
applied in a wide range of domains, including find-
ing communities of users in social networks, finding
highly connected communication groups in telecoms
networks, and many other related application prob-
lems. As our objective is to find a partition of the net-
work into dense non-overlapping clusters, and in par-
ticular as we do not wish to specify beforehand the
number of logical clusters to find, this objective func-
tion is appropriate. In addition, our empirical results
show it is effective at recovering the ground truth clus-
ters as part of our tomography approach, as we discuss
in Section 4.

3.3. Fast Louvain method

Many different algorithms have been developed to
optimize the modularity objective function. These al-
gorithms improve on the original methods provided
and are designed to work in practical settings and
on large scale networks. One of the most success-
ful and widely used methods is that of Blondel et
al. [2], known as the Louvain method. This algorithm
was originally developed and applied to large mo-
bile telecommunication networks, in order to uncover
clusters of frequently communicating users, and so-
cial communities; the authors found that they could un-
cover many levels of hierarchical organizational struc-
ture within the communications network.

While no meaningful close form complexity of this
heuristic implementation is currently available, its fast
runtime in practice and ability to scale to large datasets,
such as telecoms networks with millions of nodes,
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make this modularity optimization algorithm suitable
for our purposes.

This algorithm produces a dendrogram of hierarchi-
cal clusters by default. We do not use this dendrogram
in this work; instead, we take the cut of the dendro-
gram at the point that yields the highest modularity
value of the resulting partitions. This results in only
a single level of partitioning. This is suitable for our
purposes, as the ground truths which we use are par-
titions of the network; while the underlying networks
themselves may be hierarchical, for simplicity and to
fit our application domain we limit ourselves to non-
hierarchical ground truths. However, there is potential
for extending this approach in future, to uncover struc-
ture of a more hierarchical nature.

There are additional reasons to use the modularity
maximization method. The work of Noack [23] has
shown an equivalence between modularity-based net-
work partitioning approaches and particular types of
force directed network layout algorithms. This does
not include the Kamada–Kawai algorithm we use, but
does provide motivation for trying the modularity-
based methods in domains where graph layout algo-
rithms successfully lay out nodes corresponding to
their ground truth clusters.

We also attempted to perform these experiments
with another modern clustering algorithm – Infomap
[28] – which is based on compressing random walks
through the network, and finds communities which
correspond to the areas of a network that a random
walk would get ‘stuck’ in. However, we find Infomap
does not perform as well as modularity-based cluster-
ing on this particular problem.

Modularity maximization is not without its prob-
lems: Good et al. [11] performed analysis of the mod-
ularity objective function in a variety of practical con-
texts, and concluded that the optimization surface is of-
ten bumpy, and often lacks a clear global maximum in
empirical settings. However, we find that this widely
used community finding algorithm produces results
that work well in this particular application domain.
Further, we find that repeated iterations of the opti-
mization algorithm find results that are consistent with
those presented in this paper; on the experimental net-
works we have examined, the algorithm seems to con-
sistently converge to results that are in high agreement
with our ground truth.

3.4. Comparing network clusterings

In order to quantitatively evaluate the performance
of our method a numerical measure of clustering accu-

racy is necessary. Various methods for comparing set
assignments exist. In the domain of network commu-
nity finding, a frequently used measure of comparison
between a ground truth clustering, and an algorithmi-
cally provided clustering, is the Normalized Mutual In-
formation between the two. For convenience, and to
enable the future extension of our work to situations
where the ground truth overlaps, we use the overlap-
ping NMI implementation of [19]. This method is ca-
pable of calculating the NMI between sets of commu-
nities which overlap, as well as sets of network parti-
tions. This widely used measure enables us to compare
our clustering against the ground truth. It ranges from
0 to 1, where 1 denotes perfect agreement of the found
clustering with the ground truth. We note that there are
several improvements on this NMI method. We have
also investigated the results of some of these, and ob-
served consistent results. As such we report scores only
for the popular NMI method of [19].

Figure 6 shows the NMI values of our experimental
work – to be described in detail in Section 4. Overall,
it demonstrates that for various settings data aggrega-
tion converges to the ideal representation in a few iter-
ations.

Fig. 6. Comparison of the clustering found using our tomography
method, against the ground truth clustering provided. The results are
shown in terms of Normalized Mutual Information [19]. We observe
that, in general, the NMI improves as the number of measurement it-
erations performed increases, converging on a stable value. The con-
vergence occurs quickly on the simpler topologies. The NMI fre-
quently converges to 1 – perfect agreement with the ground truth. In
the case where NMI does not converge to 1, visualized in Fig. 10,
we can see that a hierarchical ground truth, and clustering approach,
may improve this. Details of the topologies between the four sites
used – Bordeaux, Grenoble, Toulouse and Lyon – are provided in
Section 4.1. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130366.)
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4. Experimental results

4.1. Introduction to experimental setup

The purpose of a network tomography method is to
correctly uncover the properties of interest. In this par-
ticular work, the described algorithm performs well if
the reconstruction is correct with regard to the dynamic
bandwidth properties of the network. In practice, the
relationship between these dynamic properties and the
physical structure of the network topology is often
complex. However, in order to evaluate our method, we
use the physical structure of the network topology, in-
cluding information about how network hardware con-
nects compute clusters within physical sites, and infor-
mation on the speed of the inter-site links, to form a
ground truth dataset.

We perform our experiments on the Grid’5000 in-
frastructure in France. Nine sites are interconnected us-
ing the Renater network (Fig. 7) providing high band-
width optical fiber. Within each site, there are differing
technologies, hierarchies and clusters. For this work,
only the Ethernet network within sites as well as the
Renater network between sites is used.

The a priori knowledge of the network, which is
independent of the network tomography algorithm, is
very important in this work. This knowledge provides
our ground truth which we use to evaluate the found
clustering. We have ground truth information about
multiple aspects of the system:

Fig. 7. The Renater infrastructure as presented in [13].

• The communication between sites has similar
properties – it uses the Renater infrastructure.
While it provides very high inter-site bandwidth,
it is reasonable to assume it will not outperform
local Ethernet communication. Experiments us-
ing NetPIPE confirm this assumption – for ex-
ample, the maximum bandwidth achieved be-
tween nodes on Bordeaux and Toulouse is around
787 Mbps – compared to 890 Mbps achieved
within Ethernet clusters.

• Within a Grid’5000 site, intra-site communica-
tion is complex. Physical hardware information is
typically provided by online documentation avail-
able at [13]. However, transient network anoma-
lies can arise when observing the network be-
havior (e.g. bandwidth bottlenecks, availability of
multiple Ethernet interfaces, hardware changes),
and so the authoritative ground truth clustering is
generally best provided by the site administrator.

When we use a setup spanning multiple sites, we as-
sume the clustering should subdivide the network into
separate logical clusters, each cluster corresponding to
a single site. If we evaluate our method on a single
site – which we do for the Bordeaux network – we gen-
erate our ground truth using the available information
about the structure of the physical topology in that site.
We discuss these specifics in each of our experiments
in turn.

4.2. One site experiments

In Fig. 8, we display a partial view of the network
topology in Bordeaux, excluding the connections to
the external network and the Myrinet/Infiniband net-
work. One important realization is that even when pro-
vided with an explicit diagram of the network, it still
is not obvious where the bottlenecks and the strong
links are in terms of achievable bandwidth. The site
administrator clarified that the significant bottleneck is
the link between the Dell and Cisco switches, which

Fig. 8. Ethernet network at the 3 used clusters in the single site Bor-
deaux.
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only provides a single 1 Gigabit Ethernet connection.
Note that the link is only a bottleneck for the multiple
source/multiple destination scenario we are addressing
in this work.

4.2.1. 2 × 2 nodes
We start with a small experiment within the Bor-

deaux site with 2 nodes on the Bordeplage compute
cluster and 2 nodes on the Borderline compute cluster.
We ran 30 iterations and aggregated the measured data.
The measurements provide very similar metrics for all
links. For such a small setting, the link connecting Bor-
deplage and Borderline is not a bottleneck. In agree-
ment with this observation, the used method identified
a single logical cluster containing all four nodes.

4.2.2. 32 × 32 nodes
In another experiment we use 64 nodes – 32 nodes

on Bordeplage, 5 nodes on Borderline and 27 nodes
on Bordereau. We performed 36 BitTorrent iterations.
Figure 9 shows the visualization of the results, which

Fig. 9. Applying Kamada–Kawai layout (using the Graphviz’
‘Neato’ tool) to dataset ‘B’, the Bordeaux site. The configuration
used has 64 nodes, divided between 3 physical compute clusters.
These 3 physical compute clusters give rise to only 2 logical network
clusters, as there is a fast link between the ‘Bordereau’ and ‘Border-
line’ physical clusters. The shape and color of each node rendered
reflects the labelling of the ground truth cluster it is in. We render
only the edges in the top half of all edges, by weight. While the graph
is too dense to visually make out any structure due to edge weight, it
is clear that the layout algorithm is grouping nodes corresponding to
their ground truth. This provides grounds for expecting a graph clus-
tering algorithm to find these clusters. (Colors are visible in the on-
line version of the article; http://dx.doi.org/10.3233/SPR-130366.)

produce a perfect match to the real topology as dis-
played in Fig. 8. The two clusters Bordereau and Bor-
derline (in circles) are merged together since they do
not have a bottleneck link between them. However, the
Bordeplage cluster (in diamonds) forms a different log-
ical cluster, since it communicates to Borderline and
Bordereau on a bottleneck 1 Gigabit link.

We also present the NMI between the specified
ground truth clustering and the clustering produced by
our tomography technique. Figure 6 shows that after
only 2 BitTorrent measurement iterations, the cluster-
ing is completely in accordance with the ground truth,
and remains so during all additional iterations.

4.3. Two site experiments

In the next step we extend the experiments to in-
clude nodes from two sites – Bordeaux and Toulouse.
We still use 64 nodes in total – 32 nodes per site.
We described the available bandwidth within Bor-
deaux in Fig. 8. For inter-site connections between
sites on Grid’5000, the optic fiber Renater network is
used. This connection provides very good bandwidth
(10 Gbps) for inter-site communication, but overall the
observed inter-site bandwidth is slightly lower than the
intra-site bandwidth as described in Section 4.1. With
the aggregated metric data, the clustering algorithm
identifies two logical clusters, one corresponding to
each of the two different sites.

Figure 6 shows that after 4 iterations, the clustering
converges to a steady state. However, we note that the
NMI with the ground truth, while high, is imperfect –
approximately 0.7. On investigation, we observed that
this is because we have provided a ground truth within
which there are 3 different partitions: for the ground
truth, the network was partitioned into the Bordeaux
and Toulouse sites, and then the Bordeaux site was par-
titioned into two separate logical clusters (as discussed
in the previous section), giving a total of three sepa-
rate clusters. The best way to represent this physical
setup is probably with a hierarchical representation of
the clustering; however, in this work, to allow simple
use of our results, we have chosen to focus on finding
clusters which partition the network into a single level
of clustering.

Figure 10 shows that the Kamada–Kawai layout ap-
pears to correctly group Bordeaux and Toulouse, but
also seems to layout two groups within the Bordeaux
cluster. That the visualization makes visible the two
separate sites within the Bordeaux cluster suggests
that a future hierarchical version of our clustering step
should be able to identify individual clusters within
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Fig. 10. Applying Kamada–Kawai layout to dataset ‘BT’, a set of
nodes in Bordeaux and Toulouse, using the same rendering options
as for Fig. 9. Toulouse is represented here by diamonds; the ground
truth clusters represented by circles and triangles both belong to
Bordeaux. Our non-hierarchical clustering method does not recover
this ground truth; it finds only two clusters, one for Toulouse and
one for Bordeaux. The third ground truth cluster is distinct in the
visualization, however, showing that the BitTorrent measurements
do reflect it. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130366.)

sites, at many levels, and makes clear the reason for the
lower NMI in this case.

In another two-site experiment, we used the sites
Grenoble and Toulouse, again using 64 nodes and
30 runs. Unlike Bordeaux, Grenoble and Toulouse both
have a very flat Ethernet network hierarchy within
them. As such, neither Grenoble nor Toulouse are sub-
divided in our ground truth. The aggregated measure-
ment data of our tomography method on Grenoble and
Toulouse was sufficient for the clustering algorithm to
identify two clusters with 100% accuracy within the
first 2 iterations (Fig. 6), and this is in agreement with
the used visualization (Fig. 11).

4.4. Three and four site experiments

In the following experiments, we use only intra-site
nodes which are not separated by bottlenecks within
their site (e.g. in the case of Bordeaux, all nodes used
are in the well connected Borderline and Bordereau
physical clusters).

First, we perform a three-site experiment, using the
sites Grenoble, Bordeaux and Toulouse (32 nodes per

Fig. 11. Applying Kamada–Kawai layout to dataset ‘GT’, a set of
nodes in Grenoble and Toulouse, using the same rendering options
as for Fig. 9. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130366.)

site). Again, we perform 30 iterations, but only 2 it-
erations are sufficient for perfect accuracy (Fig. 6) of
the modularity clustering. Three clusters are identified,
which are also apparent in the visualization (Fig. 12).

In the experiment which spans most sites, we use
16 nodes for each of the sites Grenoble, Bordeaux,
Toulouse and Lyon. Again, we perform 30 itera-
tions. Modularity clustering of our BitTorrent tomog-
raphy measurements correctly identifies the 4 logical
clusters, which are also apparent in the visualization
(Fig. 13). One interesting observation is that in this vi-
sualization, the central cluster of nodes represents the
Lyon site, which is also positioned centrally in the star-
like geographical topology of Fig. 7. Also interesting is
that in this four-site experiment we need around 15 it-
erations (see Fig. 6) to achieve perfect accuracy. While
this is still very few, it is the largest number of itera-
tions needed of all tested settings. This is not surprising
as this is the setting with the largest number of logical
clusters.

5. Conclusion

In this work, we presented a novel approach to mul-
tiple source/multiple destination network tomography.
Instead of using traditional bandwidth measurement
techniques, we counted the number of fragments ex-
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Fig. 12. Applying Kamada–Kawai layout to dataset ‘BGT’, with
nodes in Bordeaux, Grenoble and Toulouse, using the same render-
ing options as for Fig. 9. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-130366.)

Fig. 13. Applying Kamada–Kawai layout to dataset ‘BGTL’, Bor-
deaux, Grenoble, Toulouse and Lyon, using the same rendering op-
tions as for Fig. 9. The ground truth clusters in this rendering appear
to be visually less distinctly laid out than the other examples; how-
ever, we note that the algorithmic clustering method still achieves
perfect accuracy – see Fig. 6. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-130366.)

changed in BitTorrent broadcasts. Even a few iterations
of this approach were sufficient to allow accurate re-
construction of the logical network clusters.

The reconstruction was done using a modern net-
work clustering algorithm – modularity-based cluster-
ing. Our experimental results show that we can reli-
ably find clusters with bandwidth tomography. Our ap-
proach is more efficient at revealing network properties
which appear under intense collective communication
than existing methods. Existing methods would take
hours or days to uncover these details; our approach re-
quires only a few minutes, and achieves high accuracy.

We also evaluated the number of BitTorrent broad-
casts needed for various settings to achieve this accu-
racy. Correct clustering within a single site needed only
a small number of iterations; whereas around 15 itera-
tions are needed for our most complex experiment, tak-
ing only a few minutes, and running on a larger empir-
ical network than studied in related bandwidth tomog-
raphy literature.

Our approach correctly identified communication
bottleneck links in physical clusters by placing the
nodes communicating across the bottleneck link in dif-
ferent logical clusters – a significant result. It also sepa-
rated nodes in different sites into different logical clus-
ters due to the lower inter-site bandwidth.

The efficiency of our approach makes it useful for
applications relying on bulk data transfer – e.g. appli-
cations performing all-to-all communication – across
complex and heterogeneous networks of computers.

This automatic efficient measurement is also partic-
ularly suitable for overlay networks, or networks of vir-
tual machines, which may have a dynamically altering
underlying topology.

Our results were robust for all settings tested.

5.1. Future work

We have seen promising results with this technique.
A major advantage of the technique is that all parts of
it – the BitTorrent-based measurement technique, and
the clustering algorithm – are designed to scale to large
networks. As we have shown that the clusterings found
accurately uncover network structure in empirical net-
works for which ground truth is available, future work
should integrate this tomography method into existing
parallel computation libraries, and measure the perfor-
mance increase gained on large networks. This would
allow us to further evaluate the effectiveness of this
method in an application setting.
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In this work, to keep our method compatible with
existing software libraries, we have worked only with
ground truths that are a single partitioning of the net-
work into disjoint non-overlapping clusters. However,
both the network clustering algorithm used, and the
NMI evaluation method, extend to overlapping multi-
level hierarchical clusterings. Extending our measure-
ment technique and investigating the performance of
the tomography approach on such hierarchical datasets
would be valuable.
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