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Abstract—In the area of network performance and discovery,
network tomography focuses on reconstructing network prop-
erties using only end-to-end measurements at the application
layer. One challenging problem in network tomography is re-
constructing available bandwidth along all links during multi-
ple source / multiple destination transmissions. The traditional
measurement procedures used for bandwidth tomography are
extremely time consuming. We propose a novel solution to this
problem. Our method counts the fragments exchanged during
a BitTorrent broadcast. While this measurement has a high
level of randomness, it can be obtained very efficiently, and
aggregated into a reliable metric. This data is then analyzed with
state-of-the-art algorithms, which correctly reconstruct logical
clusters of nodes interconnected by high bandwidth, as well
as bottlenecks between these logical clusters. Our experiments
demonstrate that the proposed two-phase approach efficiently
solves the presented problem for a number of settings on a
complex grid infrastructure.

Index Terms—Network tomography, BitTorrent, clustering,
bandwidth, bottleneck link

I. INTRODUCTION AND RELATED WORK

The properties of the underlying network play a central role
in the performance of all distributed and parallel applications
which rely on communication. When these properties are taken
into account, communication can be optimized. In the Message
Passing Library (MPI), every collective operation can profit
through topology awareness, particularly in heterogeneous
networks. A large body of research has been done in this
direction for various protocols and networks, including but
not limited to [1], [2], [3], [4], [5] . Existing work performs
topology-aware collective operations using knowledge of a
pre-defined partition clustering of the network, and finds
that these topology-aware collectives substantially outperform
topology-agnostic methods. In this work, our goal is to provide
a versatile automated method to deduce a partitioning of the
network into logical bandwidth clusters. We aim to provide a
method that is efficient in its network measurement, and good
at finding network bottlenecks under conditions of high load.
This method would allow easy topology aware communication

on large highly utilized heterogeneous networks, which are
becoming an increasingly important domain for distributed
computation.

There are two main ways of incorporating knowledge
about the heterogeneity of the network into communication
algorithms - by providing such knowledge manually or auto-
matically. Past MPI implementations for Grid infrastructures
and other wide-area networks [1], [2], [3] have used each
of these ways of incorporating such knowledge. Fully au-
tomatic approaches can be subdivided into ‘intra-node’ and
‘inter-node’ approaches. For inter-node approaches, network
discovery typically involves some form of communication
model. There are many examples of this approach in high-
performance computing and early work includes [6], [7]. For
intra-node automatic approaches, which are gaining popularity
today due to many-core nodes, recent work includes [8].

However, the existing automated approaches in high-
performance computing do not generally capture all rele-
vant network properties. Examples of properties that ex-
isting approaches are poor at capturing include bottleneck
links; as while often not visible in isolated point-to-point
communication, these bottlenecks appear under conditions
of particularly intense collective communication. We look
for possible solutions to these peak-bandwidth measurement
issues in distributed computing rather than high-performance
computing since heterogeneous and hierarchical networks are
traditionally used in this domain. The challenges presented
by such networks gave rise to an interesting sub-field of
network discovery in the late 90s – ‘network tomography’.
Castro [9] provides a detailed overview. The general goal of
network tomography is to reconstruct the logical topology of
the network in two phases, as depicted in Fig. 1. The first phase
involves only end-to-end measurements of the network. Based
on how these measurements are performed - whether actively
or passively - we can talk of passive network tomography
(e.g. [10], [11]) or active network tomography (e.g. [12],
[13]). After measurement data is collected, the second phase
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Fig. 1. Overview of network tomography.

Fig. 2. Traditional measurement of bandwidth in tomography.

of the process always involves the use of statistical methods
to reconstruct the logical view of the network. While many
metrics can be used, a number of metrics are particularly
relevant from the user perspective, including loss rate, delay
and bandwidth.

The main contribution of this work is in the area of active
network tomography with a bandwidth-related metric. Our
focus is multiple source / multiple destination communication.
An example of such communication would be heavy bulk
transfer between all network peers (e.g. in all-to-all commu-
nication). The closest related work to ours are [14] and [15].
Both works reconstruct the logical topology of the network
using bandwidth as a metric. While [15] infers a qualitative
view of the network, [14] infers a more quantitative view,
including labeling of actual achievable bandwidth.

The most time-consuming phase in existing approaches to
active network tomography on bandwidth is the measurement
phase. The measurement procedures used to find the available
bandwidth and/or bottlenecks between communicating peers
are generally similar across all tomography methods. We show
the two essential steps that are generally involved in Fig. 2.

Conceptually, in the first step, an intense communication is
established between a pair of nodes until the link capacity
between them is reached. Then, a new pair of intensely
communicating nodes is introduced, and the bandwidth of
the first link is reexamined. If no change in bandwidth is
observed, then the links are probably independent – more
pairs communicating in parallel could unveil a bottleneck at

Fig. 3. Alternative bandwidth-related measurement as proposed in this work.

a later point. But if the bandwidth of the node pairs under
examination decreases, then it is clear that they share the same
physical (and logical) link. Following this procedure, experi-
ments are performed until the entire network is reconstructed.
While intuitive, this approach is very expensive. The mea-
surement procedures have polynomial complexity, even after
some optimizations using heuristics or parallelism. Indeed, this
complexity makes it infeasible to perform bandwidth-related
network tomography on large-scale computer networks. Both
[14] and [15] concede this issue and resort to running simula-
tions using SimGrid [16]. [15] only attempts real experiments
on a small scale. Even simplified measurement procedures
require approximately one hour to run with only 20 nodes.

In our work, we introduce a novel approach to multiple
source / multiple destination network tomography, which dif-
fers from traditional approaches described in Fig. 1 in both the
measurement procedure and the analysis method as follows:

• Phase 1: We use the BitTorrent [17] protocol as the tool
for our measurements. The measurement metric is the
number of exchanged fragments between peers during a
synchronized BitTorrent broadcast (see Fig. 3).

• Phase 2: In the second phase, we use a popular implemen-
tation of a modularity-based network clustering algorithm
[18] [19] to perform analysis of the measured data. We
describe this process, and choice of clustering algorithm,
as well as its operation, in detail in Section III-B.

We are not aware of previous work in this area using the
type of measurement procedure we employ, nor are we aware
of any coupling of this approach with a clustering algorithm
in the manner which we present.

The intuition behind the metric is that when using a number
of parallel connections, more data will be naturally transferred
through the links with higher bandwidth. This idea has been
demonstrated even before the advent of protocols like Bit-
Torrent. For example, [20] demonstrated that a client using a
number of parallel TCP connections to servers with different
upload rates will download a file with a rate approaching
the fastest upload rate. Indeed, the BitTorrent protocol uses
a number of parallel connections to exploit this network
feature. The proposed measurement departs from existing
approaches in the field not only in the metric, but also in
its efficiency - a single synchronized BitTorrent broadcast can
often capture the behavior of a very large number of links.
Indeed, every broadcast of a large message to many peers has
a total communication time linear in the message size. The
number of peers does not reduce the download rate due to
the pipelining and scalability of the BitTorrent algorithm. For
detailed performance analysis of BitTorrent see for example
[21], [22].

Surprisingly, we find only one other work [23] which
investigates BitTorrent tomography. However, this work states
that BitTorrent traffic is immeasurable on a large scale. The
authors do not list any technical issues with this approach,
but argue that it is unlikely for an instrumented BitTorrent
client to be used by a large user community. They replace
BitTorrent profiling with an alternative algorithm, which they



use in conjunction with a simulation program. There is also
work which proceeds in the opposite direction - optimizing
the performance of the BitTorrent protocol, given knowledge
of the network topology (e.g. [24]).

In order to validate our tomography method we perform a
set of experiments on real networks using a grid infrastruc-
ture. Although we focus on bulk transfers of large data, our
measurement approach is efficient, because it does not perform
exhaustive measurements. The measurement procedure, which
consists of several iterations of BitTorrent broadcasts, captures
the flow of large data volumes across the entire network
in each iteration. With just a few iterations, we find that
sufficient information can be collected to infer important
network properties. This information can be used in many
data-intensive communication operations. For example, if we
want to efficiently schedule an all-to-all operation, we do not
need to label the achievable bandwidth along all fast and slow
links in the network. Instead, the only requirement is a logical
clustering of nodes according to their bandwidth. Thus, if
there is a bottleneck link between nodes, a correct clustering
algorithm should place them in different logical clusters.

We find that our method efficiently and reliably clusters
nodes with regard to their bandwidth when all nodes are
involved in collective communication. We use the algorithm
successfully both for experiments separating compute clusters
within a site, and between sites, on the Grid’5000 infrastruc-
ture.

The paper is structured as follows: Section II presents our
metric and measurement procedures. Section III presents the
clustering algorithm we use. In Section IV we present results
from a range of experiments. We conclude the paper in Section
V.

II. BITTORRENT BROADCASTS AND “EXCHANGED
FRAGMENTS BETWEEN PEERS” AS A METRIC

A. Definition and Use

Throughout this paper, we refer to a BitTorrent broadcast
as a fully synchronized instrumented execution of BitTorrent
clients until all clients have downloaded a file. The used metric
is derived from these broadcasts and is bandwidth-related.
We observe the communication network as a directed graph
G=(V,E). A file of size M is distributed as M

16KB fragments
of 16KB to all nodes v ∈ V using BitTorrent broadcasts. If
v1 →i v2 denotes the number of fragments sent directly from
v1 to v2 within broadcast operation i, then we define the metric
w per edge e for one run as

w(e) = v1 →1 v2 + v2 →1 v1 (1)

with e = (v1, v2). Since performing more iterations signifi-
cantly increases the accuracy of the metric, for n iterations we
simply state

w(e) =

∑n
i=1 v1 →i v2 + v2 →i v1

n
(2)

with e = (v1, v2).
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Fig. 4. w(e) as measured for all edges e to a randomly fixed node (36
iterations). On the left are edges to local cluster nodes, on the right are edges
to remote nodes.

In this work, the size of a file used in a single BitTorrent
broadcast is chosen to be 239 MB. This choice is completely
arbitrary and is driven by practical observations that a single
broadcast then takes around 20 seconds for different numbers
of nodes (see Section II-B for details). We find this to be
a reasonable amount of time for a single broadcast, that
often provides good bandwidth information for many of the
available links. Profiling the precise number of fragments
exchanged gives the following information: in each BitTorrent
broadcast, exactly 15259 fragments of 16384 bytes each are
received by all participating nodes, following a dynamic
pattern each time.

We have instrumented the original Python version of the
BitTorrent client written by Bram Cohen and available in
most Linux distributions. We introduce efficient profiling of
the arriving data as follows: At the reception of each data
fragment, a counter is incremented associated with the sending
peer using a hash table of counters. At the end of a run, all
peers have a record of the source peers and the number of
fragments they received from each peer.

As an example, in a broadcast operation involving 64 nodes
on one site, we display measurements for a randomly chosen
node in Fig. 4. The bars represent the metric as defined above
for 36 iterations for all edges which include the fixed node.
Since the results involve many iterations, the chosen node
exchanges fragments with all 63 peers. For clarity, we have
grouped on the left side the metric values for the 31 peers
in the local cluster, and grouped the values for the 32 remote
nodes on the right side.

We will discuss the main characteristics of this measure-
ment, and explain how it differs to classic bandwidth mea-
surements in the following sections.

B. Efficiency of the Metric

The main strength of our method is that it takes only a
single broadcast of a large message per run to collect data



on a large subset of all possible peer-to-peer connections.
In our setup, the observed complexity of BitTorrent broad-
casts is O(M) – linear in the message size M. We verified
experimentally that as we alter the number of nodes, the
BitTorrent broadcast requires nearly constant time. According
to practices from high-performance computing, our reference
time for the completion of a BitTorrent broadcast is the
maximum download completion time of all the BitTorrent
clients, which we start synchronously. For 32, 64 and 128
nodes, the broadcast of the 239 MB large message takes
about 20 seconds on the Grid’5000 infrastructure, even when
the nodes are spread across 4 sites. Related work [22] also
suggests that a high download rate can be sustained for very
large peer numbers; the number of participating peers in such
experiments typically does not alter the estimated time of
O(M) for all peers to download the file. Other work [25] also
demonstrates that the BitTorrent protocol is competitive with
client/server architectures in its peak download rate.

We now give a short overview of the complexity of the
network tomography algorithms presented in the previous
section. Each step in these algorithms – shown in Fig. 2 –
is very time consuming. First, every link has to be saturated
until the maximum bandwidth on that link is reached. This
is a costly operation which incurs heavy network overhead.
The second challenge consists of probing the link bandwidth
in parallel for multiple links. This process is repeated until
all nodes have been sufficiently tested. For example, [14]
performs such tests only with at most triplets of nodes. It
is stated that triplets are sufficient as long as the single-link
experiments can reach the maximum capacity. Even with this
assumption, all possible triplets need to be tested in the worst
case. This step is performed since it is assumed that there is
no a priori knowledge of the topology of the network. The
observed complexity of the algorithm in this case is O(N3),
in N the number of nodes.

The algorithm proposed by [15], on the other hand, tests
pairs incrementally, fully in parallel and without limiting the
maximum number of tested links at a time. In specific cases,
where no interference of links is observed, the complexity
is estimated at O(N2). The only empirical experiments per-
formed are for networks of 20 nodes, and these take about one
hour to complete.

C. Level of Randomness With Single Runs Using the Metric

If we examine the volume of exchanged data shown in Fig.
4 over a number of iterations, we notice that a total of 22533
fragments are exchanged with local cluster nodes, and 6337
fragments are exchanged with remote nodes. This is a clear
indication that with BitTorrent broadcasts, data flows with a
preference for high bandwidth links. Furthermore, we observe
this phenomenon quite reliably in our experimental data.

We have previously defined a single run of our metric as
transmitting a single file which takes approximately 20 sec-
onds. As the operation of the BitTorrent protocol is stochastic,
and the data transferred across each link varies from run to
run, it is important to attempt to characterize the accuracy of
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Fig. 5. Distribution of measured metric w(e) for a fixed edge e and 36
independent iterations.

the metric we have defined for a single run. Thus, we now
observe how the metric fluctuates using one Grid’5000 site
(Bordeaux). We focus on an edge between 2 nodes randomly
chosen from within a cluster. Each run measures the metric
w(e) independently (no aggregation is used). Fig. 5 shows the
distribution of w(e) along the fixed edge over 36 runs. In 13
of the 36 runs, the two peers do not exchange any data with
each other. In the other 23 runs, the exchanged data varies
between 3 and 6304 fragments. This distribution shows that the
variance is very high. For comparison, when running the well
known NetPIPE tool [26] to establish the maximum achievable
bandwidth along the link between two peer nodes on the same
compute cluster used above, the variance is very low and the
distribution is dense around 890 Mbps.

Fig. 5 suggests that while inexpensive to compute, the
metric is very variable for single runs. With this level of
measurement noise and randomness, a good analysis technique
will be needed to extract meaningful data from these mea-
surements.Yet one important consideration is that our analysis
method does not consider each link’s bandwidth in isolation,
as in previous approaches, and this eases to some extent the
requirements for the measurement step.

Before discussing how we will aggregate and analyze data
from this metric to form a reliable view of the network, we will
briefly discuss the BitTorrent properties which are responsible
for the variance and high degree of randomness between single
runs of the metric:

• Initially, BitTorrent clients randomly choose their initial
peers (adjustments in the peer selection are part of the
protocol for longer runs).

• BitTorrent internally limits the number of parallel uploads
to 4, and this indirectly limits the number of parallel
downloads.

• Another protocol feature is that the number of total peers
is limited to 35. This means that for larger numbers of
nodes and a single broadcast, measurements using this
protocol will not provide a complete graph - only a subset
of possible connections will be measured. One solution
to this problem is to aggregate the measurements over a
number of BitTorrent broadcasts, as we shall see.

• Using a BitTorrent broadcast operation means that nodes
which are better connected to the ‘root node’ are more
likely to receive more fragments from the root. This



is simply due to the asymmetric way data flows in a
broadcast operation as compared to, for example, an all-
to-all transmission. However, in our experiments this was
never an issue during the reconstruction and analysis
of our networks. If this affects results in some cases,
a simple solution is using different root nodes over a
number of runs.

These are characteristics of the protocol, which, while
important for transmission efficiency and reliability, increase
the variance of our measurements, and could make network
reconstruction hard. However, it will become evident in the
following sections that despite the high degree of inherent
randomness, this metric can easily be made reliable through
simple iteration, especially when the measurements are an-
alyzed using a clustering algorithm which operates on the
observed network as a whole.

D. Improving the Accuracy Through Iteration of BitTorrent
Broadcasts

While a single broadcast measurement has a high level of
noise and randomness, aggregating data over a number of
iterations resolves these issues. A positive property of the used
approach is that each new iteration potentially improves the
accuracy of the metric on a global scale – i.e. for all edges.
The previous approaches presented can not address this, and
are restricted to local experiments on a small subset of nodes.
In order to quantify the number of iterations needed to improve
our accuracy, the key questions are:

• How close is the single run data to an “ideal” representa-
tion of the peer-to-peer bandwidth when performing bulk
data transfers?

• How fast does the aggregated data over a number of runs
converge to the “ideal” representation?

We address these questions in an end-to-end manner, by
quantitatively evaluating the performance of the entire sys-
tem which uses these measurements. We make experimental
observations as follows: after obtaining measurements at each
run, we use a clustering metric – presented in detail in Section
III-D – to assess the quality of measurements against a ground
truth.

These questions could also be addressed by an analytical
approach, but there are a number of challenges with this:
the implementation of BitTorrent is not trivial to analyze,
and porting it to a simulation environment is a complex
engineering challenge.

III. CLUSTERING METHOD

The previous section has shown that the used measurement
approach can be very efficient, but that there is a significant
level of randomness in the data gathering process. This would
seem to pose a significant challenge for the clustering algo-
rithm.

A second challenge is that we want to provide as little a
priori information to our tomography method as possible, in
order to increase the range of application scenarios. In partic-
ular, we do not want to specify the number of logical clusters

into which to partition the observed network. We want to be
able to deploy this method in real world application domains
where very little information on the underlying topology is
provided.

A. Cluster Visualization

In order to investigate the potential for an algorithmic
clustering method to deduce the ground truth clusters from
the measured network, we first visualise the measured network
data using a network layout algorithm. On each layout visual-
isation, we use nodes of different shapes to represent different
ground truth clusters. (The exact details of how the ground
truth is produced from the physical network topology will be
discussed in Section IV-A). As is shown visually in Figures
9, 10, 11, 12 and 13, the application of a layout algorithm to
the measured networks allows us to visually observe groups
of nodes the layout places close to each other. These groups
clearly correspond to the ‘ground truth’ logical clusters of the
underlying computer network.

For these visualisations, we layout the networks using
the implementation of the Kamada-Kawai spring weighted
graph layout algorithm [27] from the ‘Graphviz’ software
package [28], in which we make the length of edges between
nodes inversely proportional to the measured edge weight
(which in turn corresponds to the presented metric w(e) – the
exchanged fragments between two nodes). While we use all
of the measured edges in our layout algorithms, for clarity
of presentation in these diagrams we only render the edges
which are in the top 50% of network edges by weight. It
can be clearly seen that the ground truth clusters correspond
to visually identifiable groups of nodes formed by the spring
weighted layout. The fact that clear groupings are present in
the layout visualisations is strong evidence that the BitTor-
rent measurement process is working correctly, and that the
randomness in the data gathering process is not a problem
when detecting groups. That the groupings correspond well to
the ground truth clusters indicates that algorithmic clustering
approaches will be successful on this problem.

B. Modularity-Based Clustering

That the layout visualizations show a relationship between
the ground truth partitions and the groups of the nodes in
the measured network indicates the measurement technique is
working. However, visual inspection of observed clusters is
not a robust means of evaluating performance. In addition, we
want to be able to automate our tomography technique and to
deploy it on networks too large to visualise. Thus we need an
algorithmic clustering technique that finds clusters of nodes
like those groups apparent on the layout visualisations.

To do this, we apply a technique from modern network
analysis. We use the modularity function of Newman and
Girvan [19] to identify sets of nodes which are more densely
interconnected than the general level of interconnection in the
network.



The modularity method is defined by the following objective
[19]:

Q =
∑
i

(
eii − a2i

)
= Tr(e)−

∥∥e2∥∥ (3)

which compares, for a given clustering, the proportion
of network edges that are intra-cluster eii, for each cluster
i, against the proportion that would be intra-cluster in a
randomized model of the same network. As described by
Newman and Girvan: “This quantity measures the fraction of
the edges in the network that connect vertices of the same
type (i.e., within community edges) minus the expected value
of the same quantity in a network with the same community
divisions but random connections between the vertices.”

We use a weighted version of this same objective, which will
have a high value for clusters of nodes that have a high internal
weight. This objective has been applied in a wide range of
domains, including finding communities of users in social
networks, finding highly connected communication groups
in telecoms networks, and many other related application
problems. As our objective is to find a partition of the network
into dense non-overlapping clusters, and in particular as we do
not wish to specify beforehand the number of logical clusters
to find, this objective function is appropriate. In addition, our
empirical results show it is effective at recovering the ground
truth clusters as part of our tomography approach, as we
discuss in Section IV.

C. Fast Louvain Method

Many different algorithms have been developed to optimize
the modularity objective function. These algorithms improve
on the original methods provided and are designed to work
in practical settings and on large scale networks. One of the
most successful and widely used methods is that of Blondel
et al. [18], known as the Louvain method. This algorithm was
originally developed and applied to large mobile telecommu-
nications networks, in order to uncover clusters of frequently
communicating users, and social communities; the authors
found that they could uncover many levels of hierarchical
organizational structure within the communications network.

While no meaningful close form complexity of this heuris-
tic implementation is currently available, its fast runtime in
practice and ability to scale to large datasets, such as tele-
coms networks with millions of nodes, make this modularity
optimization algorithm suitable for our purposes.

This algorithm produces a dendrogram of hierarchical clus-
ters by default. We do not use this dendrogram in this work;
instead, we take the cut of the dendrogram at the point that
yields the highest modularity value of the resulting partitions.
This results in only a single level of partitioning. This is
suitable for our purposes, as the ground truths which we use
are partitions of the network; while the underlying networks
themselves may be hierarchical, for simplicity and to fit our
application domain we limit ourselves to non-hierarchical
ground truths. However, there is potential for extending this
approach in future, to uncover structure of a more hierarchical
nature.

There are additional reasons to use the modularity max-
imisation method. The work of Noack [29] has shown an
equivalence between modularity-based network partitioning
approaches and particular types of force directed network
layout algorithms. This does not include the Kamada-Kawai
algorithm we use, but does provide motivation for trying the
modularity-based methods in domains where graph layout
algorithms successfully lay out nodes corresponding to their
ground truth clusters.

We also attempted to perform these experiments with an-
other modern clustering algorithm – Infomap [30] – which
is based on compressing random walks through the network,
and finds communities which correspond to the areas of a
network that a random walk would get ‘stuck’ in. However,
we find Infomap does not perform as well as modularity-based
clustering on this particular problem.

Modularity maximisation is not without its problems: Good
et al. [31] performed analysis of the modularity objective
function in a variety of practical contexts, and concluded that
the optimization surface is often bumpy, and often lacks a clear
global maximum in empirical settings. However, we find that
this widely used community finding algorithm produces results
that work well in this particular application domain. Further,
we find that repeated iterations of the optimization algorithm
find results that are consistent with those presented in this
paper; on the experimental networks we have examined, the
algorithm seems to consistently converge to results that are in
high agreement with our ground truth.

D. Comparing Network Clusterings

In order to quantitatively evaluate the performance of our
method a numerical measure of clustering accuracy is nec-
essary. Various methods for comparing set assignments exist.
In the domain of network community finding, a frequently
used measure of comparison between a ground truth clustering,
and an algorithmically provided clustering, is the Normalized
Mutual Information between the two. For convenience, and
to enable the future extension of our work to situations
where the ground truth overlaps, we use the overlapping NMI
implementation of [32]. This method is capable of calculating
the NMI between sets of communities which overlap, as well
as sets of network partitions. This widely used measure enables
us to compare our clustering against the ground truth. It ranges
from 0 to 1, where 1 denotes perfect agreement of the found
clustering with the ground truth. We note that there are several
improvements on this NMI method. We have also investigated
the results of some of these, and observed consistent results.
As such we report scores only for the popular NMI method
of [32].

Figure 6 shows the NMI values of our experimental work –
to be described in detail in Section IV. Overall, it demonstrates
that for various settings data aggregation converges to the ideal
representation in a few iterations.
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Fig. 6. Comparison of the clustering found using our tomography method,
against the ground truth clustering provided. The results are shown in terms
of Normalized Mutual Information [32]. We observe that, in general, the
NMI improves as the number of measurement iterations performed increases,
converging on a stable value. The convergence occurs quickly on the simpler
topologies. The NMI frequently converges to 1 – perfect agreement with the
ground truth. In the case where NMI does not converge to 1, visualized in
Figure 10, we can see that a hierarchical ground truth, and clustering approach,
may improve this. Details of the topologies between the four sites used –
Bordeaux, Grenoble, Toulouse and Lyon – are provided in Section IV-A.

IV. EXPERIMENTAL RESULTS

A. Introduction to Experimental Setup

The purpose of a network tomography method is to correctly
uncover the properties of interest. In this particular work,
the described algorithm performs well if the reconstruction is
correct with regard to the dynamic bandwidth properties of the
network. In practice, the relationship between these dynamic
properties and the physical structure of the network topology is
often complex. However, in order to evaluate our method, we
use the physical structure of the network topology, including
information about how network hardware connects compute
clusters within physical sites, and information on the speed of
the inter-site links, to form a ground truth dataset.

We perform our experiments on the Grid’5000 infrastructure
in France. Nine sites are interconnected using the Renater net-
work (Fig. 7) providing high bandwidth optical fiber. Within
each site, there are differing technologies, hierarchies and
clusters. For this work, only the Ethernet network within sites
as well as the Renater network between sites is used.

The a priori knowledge of the network, which is indepen-
dent of the network tomography algorithm, is very important
in this work. This knowledge provides our ground truth which
we use to evaluate the found clustering. We have ground truth
information about multiple aspects of the system:

• The communication between sites has similar properties
- it uses the Renater infrastructure. While it provides
very high inter-site bandwidth, it is reasonable to assume
it will not outperform local Ethernet communication.

Fig. 7. The Renater infrastructure as presented in [33]

Experiments using NetPIPE confirm this assumption -
for example, the maximum bandwidth achieved between
nodes on Bordeaux and Toulouse is around 787 Mbps -
compared to 890 Mbps achieved within Ethernet clusters.

• Within a Grid’5000 site, intra-site communication is com-
plex. Physical hardware information is typically provided
by online documentation available at [33]. However,
transient network anomalies can arise when observing the
network behavior (e.g. bandwidth bottlenecks, availability
of multiple Ethernet interfaces, hardware changes), and
so the authoritative ground truth clustering is generally
best provided by the site administrator.

When we use a setup spanning multiple sites, we assume the
clustering should subdivide the network into separate logical
clusters, each cluster corresponding to a single site. If we
evaluate our method on a single site – which we do for
the Bordeaux network – we generate our ground truth using
the available information about the structure of the physical
topology in that site. We discuss these specifics in each of our
experiments in turn.

B. One Site Experiments

In Fig. 8, we display a partial view of the network topol-
ogy in Bordeaux, excluding the connections to the external
network and the Myrinet / Infiniband network. One important
realization is that even when provided with an explicit diagram
of the network, it still is not obvious where the bottlenecks
and the strong links are in terms of achievable bandwidth.
The site administrator clarified that the significant bottleneck
is the link between the Dell and Cisco switches, which only
provides a single 1 Gigabit Ethernet connection. Note that the



link is only a bottleneck for the multiple source / multiple
destination scenario we are addressing in this work.

1) 2x2 nodes: We start with a small experiment within the
Bordeaux site with 2 nodes on the Bordeplage compute cluster
and 2 nodes on the Borderline compute cluster. We ran 30
iterations and aggregated the measured data. The measure-
ments provide very similar metrics for all links. For such a
small setting, the link connecting Bordeplage and Borderline
is not a bottleneck. In agreement with this observation, the
used method identified a single logical cluster containing all
four nodes.

2) 32x32 nodes: In another experiment we use 64 nodes
- 32 nodes on Bordeplage, 5 nodes on Borderline and 27
nodes on Bordereau. We performed 36 BitTorrent iterations.
Fig. 9 shows the visualisation of the results, which produce a
perfect match to the real topology as displayed in Fig. 8. The
two clusters Bordereau and Borderline (in circles) are merged
together since they do not have a bottleneck link between
them. However, the Bordeplage cluster (in diamonds) forms a
different logical cluster, since it communicates to Borderline
and Bordereau on a bottleneck 1 Gigabit link.

We also present the NMI between the specified ground truth
clustering and the clustering produced by our tomography
technique. Fig. 6 shows that after only 2 BitTorrent measure-
ment iterations, the clustering is completely in accordance
with the ground truth, and remains so during all additional
iterations.

Fig. 8. Ethernet network at the 3 used clusters in the single site Bordeaux

C. Two Site Experiments

In the next step we extend the experiments to include
nodes from two sites – Bordeaux and Toulouse. We still use
64 nodes in total – 32 nodes per site. We described the
available bandwidth within Bordeaux in Fig. 8. For inter-
site connections between sites on Grid’5000, the optic fiber
Renater network is used. This connection provides very good
bandwidth (10 Gbps) for inter-site communication, but overall
the observed inter-site bandwidth is slightly lower than the
intra-site bandwidth as described in Section IV-A. With the
aggregated metric data, the clustering algorithm identifies two
logical clusters, one corresponding to each of the two different
sites.

Figure 6 shows that after 4 iterations, the clustering con-
verges to a steady state. However, we note that the NMI with
the ground truth, while high, is imperfect – approximately 0.7.

172.16.0.9

172.16.0.42

172.16.1.74

172.16.0.29

172.16.0.49

172.16.1.78

172.16.0.48

172.16.1.71

172.16.1.76

172.16.0.41

172.16.0.8

172.16.1.8

172.16.1.9

172.16.0.3

172.16.1.7

172.16.0.7

172.16.0.6

172.16.0.5

172.16.0.4

172.16.1.89

172.16.1.75

172.16.1.87

172.16.1.86

172.16.1.85

172.16.1.84

172.16.1.83

172.16.1.82

172.16.1.81

172.16.1.80

172.16.0.23

172.16.0.26

172.16.1.70

172.16.1.91

172.16.0.39

172.16.0.38

172.16.0.50

172.16.0.35

172.16.1.69

172.16.0.37

172.16.0.36

172.16.0.30

172.16.0.33

172.16.1.68

172.16.0.24

172.16.0.27

172.16.0.28

172.16.0.43

172.16.0.40

172.16.2.9

172.16.2.8

172.16.0.34

172.16.1.77

172.16.1.90

172.16.2.4

172.16.1.92

172.16.1.93

172.16.0.32

172.16.1.73

172.16.2.7

172.16.2.6

172.16.1.72

172.16.0.45

172.16.0.46

172.16.0.25

Fig. 9. Applying Kamada-Kawai layout (using the Graphviz’ ‘Neato’ tool) to
dataset ‘B’, the Bordeaux site. The configuration used has 64 nodes, divided
between 3 physical compute clusters. These 3 physical compute clusters give
rise to only 2 logical network clusters, as there is a fast link between the
‘Bordereau’ and ‘Borderline’ physical clusters. The shape and color of each
node rendered reflects the labelling of the ground truth cluster it is in. We
render only the edges in the top half of all edges, by weight. While the graph
is too dense to visually make out any structure due to edge weight, it is clear
that the layout algorithm is grouping nodes corresponding to their ground
truth. This provides grounds for expecting a graph clustering algorithm to
find these clusters.

On investigation, we observed that this is because we have
provided a ground truth within which there are 3 different
partitions: for the ground truth, the network was partitioned
into the Bordeaux and Toulouse sites, and then the Bordeaux
site was partitioned into two separate logical clusters (as
discussed in the previous section), giving a total of three
separate clusters. The best way to represent this physical setup
is probably with a hierarchical representation of the clustering;
however, in this work, to allow simple use of our results, we
have chosen to focus on finding clusters which partition the
network into a single level of clustering.

Fig. 10 shows that the Kamada-Kawai layout appears to
correctly group Bordeaux and Toulouse, but also seems to
layout two groups within the Bordeaux cluster. That the
visualization makes visible the two separate sites within the
Bordeaux cluster suggests that a future hierarchical version
of our clustering step should be able to identify individual
clusters within sites, at many levels, and makes clear the reason
for the lower NMI in this case.

In another two site experiment, we used the sites Grenoble
and Toulouse, again using 64 nodes and 30 runs. Unlike Bor-
deaux, Grenoble and Toulouse both have a very flat Ethernet
network hierarchy within them.As such, neither Grenoble nor
Toulouse are subdivided in our ground truth. The aggregated
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Fig. 10. Applying Kamada-Kawai layout to dataset ‘BT’, a set of nodes
in Bordeaux and Toulouse, using the same rendering options as for Figure
9. Toulouse is represented here by diamonds; the ground truth clusters
represented by circles and triangles both belong to Bordeaux. Our non-
hierarchical clustering method does not recover this ground truth; it finds only
two clusters, one for Toulouse and one for Bordeaux. The third ground truth
cluster is distinct in the visualization, however, showing that the BitTorrent
measurements do reflect it.

measurement data of our tomography method on Grenoble and
Toulouse was sufficient for the clustering algorithm to identify
two clusters with 100% accuracy within the first 2 iterations
(Figure 6), and this is in agreement with the used visualization
(Figure 11).

D. Three and Four Site Experiments

In the following experiments, we use only intra-site nodes
which are not separated by bottlenecks within their site (e.g. in
the case of Bordeaux, all nodes used are in the well connected
Borderline and Bordereau physical clusters).

First, we perform a three-site experiment, using the sites
Grenoble, Bordeaux and Toulouse (32 nodes per site). Again,
we perform 30 iterations, but only 2 iterations are sufficient
for perfect accuracy (Fig. 6) of the modularity clustering.
Three clusters are identified, which are also apparent in the
visualization (Fig. 12).

In the experiment which spans most sites, we use 16 nodes
for each of the sites Grenoble, Bordeaux, Toulouse and Lyon.
Again, we perform 30 iterations. Modularity clustering of our
BitTorrent tomography measurements correctly identifies the
4 logical clusters, which are also apparent in the visualization
(Fig. 13). One interesting observation is that in this visual-
ization, the central cluster of nodes represents the Lyon site,
which is also positioned centrally in the star-like geographical
topology of Figure 7. Also interesting is that in this four-

172.16.113.28

172.16.16.7

172.16.113.136

172.16.113.135

172.16.16.3

172.16.16.1

172.16.16.2

172.16.16.9

172.16.16.8

172.16.113.140

172.16.16.4

172.16.113.49

172.16.113.26

172.16.113.117

172.16.113.9

172.16.16.13

172.16.16.12
172.16.16.14

172.16.113.3

172.16.16.33

172.16.16.32

172.16.16.56

172.16.16.79

172.16.16.34

172.16.16.75

172.16.16.74

172.16.16.58

172.16.16.71

172.16.113.95

172.16.113.92

172.16.16.120

172.16.113.124

172.16.113.126

172.16.113.76

172.16.113.52

172.16.113.35

172.16.113.50

172.16.113.51

172.16.113.56

172.16.16.107

172.16.113.18

172.16.113.33

172.16.113.16

172.16.113.123

172.16.113.38

172.16.16.5

172.16.113.19

172.16.16.30

172.16.113.98

172.16.113.134

172.16.113.57

172.16.113.36

172.16.16.22

172.16.16.23

172.16.16.24

172.16.16.25

172.16.16.26

172.16.16.27

172.16.16.28

172.16.16.29

172.16.16.16

172.16.113.138

172.16.113.139

172.16.113.133

Fig. 11. Applying Kamada-Kawai layout to dataset ‘GT’, a set of nodes in
Grenoble and Toulouse, using the same rendering options as for Figure 9.
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Fig. 12. Applying Kamada-Kawai layout to dataset ‘BGT’, with nodes in
Bordeaux, Grenoble and Toulouse, using the same rendering options as for
Figure 9.

site experiment we need around 15 iterations (See Fig. 6) to
achieve perfect accuracy. While this is still very few, it is the
largest number of iterations needed of all tested settings. This
is not surprising as this is the setting with the largest number
of logical clusters.
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Fig. 13. Applying Kamada-Kawai layout to dataset ‘BGTL’, Bordeaux,
Grenoble, Toulouse and Lyon, using the same rendering options as for
Figure 9. The ground truth clusters in this rendering appear to be visually
less distinctly laid out than the other examples; however, we note that the
algorithmic clustering method still achieves perfect accuracy – see Figure 6.

V. CONCLUSION

In this work, we presented a novel approach to multiple
source / multiple destination network tomography. Instead
of using traditional bandwidth measurement techniques, we
counted the number of fragments exchanged in BitTorrent
broadcasts. Even a few iterations of this approach were suffi-
cient to allow accurate reconstruction of the logical network
clusters.

The reconstruction was done using a modern network
clustering algorithm – modularity-based clustering. Our ex-
perimental results show that we can reliably find clusters
with bandwidth tomography. Our approach is more efficient
at revealing network properties which appear under intense
collective communication than existing methods. Existing
methods would take hours or days to uncover these details;
our approach requires only a few minutes, and achieves high
accuracy.

We also evaluated the number of BitTorrent broadcasts
needed for various settings to achieve this accuracy. Correct
clustering within a single site needed only a small number of
iterations; whereas around 15 iterations are needed for our
most complex experiment, taking only a few minutes, and
running on a larger empirical network than studied in related
bandwidth tomography literature.

Our approach correctly identified communication bottleneck
links in physical clusters by placing the nodes communicating
across the bottleneck link in different logical clusters - a
significant result. It also separated nodes in different sites into

different logical clusters due to the lower inter-site bandwidth.
The efficiency of our approach makes it useful for ap-

plications relying on bulk data transfer – e.g. applications
performing all-to-all communication – across complex and
heterogeneous networks of computers.

This automatic efficient measurement is also particularly
suitable for overlay networks, or networks of virtual machines,
which may have a dynamically altering underlying topology.

Our results were robust for all settings tested.

Future Work
We have seen promising results with this technique. A

major advantage of the technique is that all parts of it – the
BitTorrent-based measurement technique, and the clustering
algorithm – are designed to scale to large networks. As we
have shown that the clusterings found accurately uncover
network structure in empirical networks for which ground
truth is available, future work should integrate this tomog-
raphy method into existing parallel computation libraries, and
measure the performance increase gained on large networks.
This would allow us further evaluate the effectiveness of this
method in an application setting.

In this work, to keep our method compatible with existing
software libraries, we have worked only with ground truths
that are a single partitioning of the network into disjoint non-
overlapping clusters. However, both the network clustering
algorithm used, and the NMI evaluation method, extend to
overlapping multi-level hierarchical clusterings. Extending our
measurement technique and investigating the performance of
the tomography approach on such hierarchical datasets would
be valuable.
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