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Abstract

Accurate performance models of processors are essential for efficient heteroge-
neous parallel or distributed computing. Characterising the performance of a
processor at a particular operation is a challenge. Simple models that are easy to
construct and use do not represent enough of the detail of a processor’s perfor-
mance to provide high efficiency in all conditions. However, detailed models are
challenging to construct and more difficult to use in a data partitioning algorithm
or task scheduler.

In this thesis the construction and use of a detailed performance model is in-
vestigated. This model is titled: the Band Performance Model (BPM). It is an
evolution of the Functional Performance Model (which expresses the speed of
a processor as a function of the size of a specific task that it operates on). The
BPM describes the processor speed not as a single valued function but as a func-
tion with a range of possible speeds based on a prediction of CPU availability.
In this way the model encapsulates inherent variability in the performance of
the processor. Variability which is caused by the concurrent execution of other
processes.

The Band Performance Model is formulated and a number of methods are
described that use the model for partitioning of problems. The efficiency of the
partitions is demonstrated. The cost of construction of such a model is addressed
by a novel optimised building procedure. This procedure is implemented in a
software tool which is demonstrated in detail. The tool is used to build perfor-
mance models for a non-synthetic distributed application and these models are
integrated with a Grid middle-ware, where significant performance increases are
shown as a result of their use.
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Chapter 1

Introduction

Heterogeneous parallel and distributed computing platforms constitute a wide
and increasingly popular range of high performance computing resources. Ef-
ficiently utilising these platforms is significantly more challenging when com-
pared to using homogeneous computing platforms. Despite this, the current evo-
lution of systems is tending towards more widespread use of heterogeneous pro-
cessor of various sorts. The challenge of scaling performance of clusters is being
met by the development massively parallel streaming multiprocessors, reconfig-
urable computing and heterogeneous multi-core processors.

The focus of this thesis is on performance models which enable efficient
problem partitioning or task scheduling in heterogeneous parallel computing
environments. The research conducted builds on the Functional Performance
Model, which describes the performance of a processor, executing a specific
problem, as a function of the problem’s size. This kind of detailed performance
model has been found necessary as a general solution to optimally utilising het-
erogeneous processors. However, though it considers the performance of a pro-
cessor as variable with problem size, it does not encapsulate a measure of per-
formance variance as a result of external load fluctuations on the processor. Rep-
resenting the performance variation of non-dedicated processors is important in
highly heterogeneous environments such as desktop grids or Networks of Work-
stations (NOWs).

The Band Performance Model (BPM) described in this thesis represents the

1



1. Introduction

performance of the single valued points from a base FPM with a range possible
speeds given by some probability distribution. This represents speed variance
due to both changing problem size and external load fluctuations that may occur
on the processor. The adjustment is made by taking the execution time of the
original point in the FPM and making a prediction of the future average load over
a similar period of time. The prediction is based on a history of load fluctuations
recorded on the processor. The formulation of the BPM is described and methods
to evaluate the distribution of some workload using the BPM are proposed. These
evaluation methods are used to choose appropriate workload distributions and the
performance of the distributions is compared.

The Functional Performance Model is a generalised solution to the problem
of heterogeneity in a parallel computing environment, it makes no assumptions
about the problem it is to be used to partition or the processor it is to represent.
As a result, to find the FPM of a processor and problem, that problem must be
extensively benchmarked. This benchmarking must be carried out on every het-
erogeneous node in a network, and further, the model cannot be used to represent
the speed of any other problem. Such efforts to build the FPM are expensive and
limit its application. In order to address this, a novel algorithm, titled Geomet-
ric Bisection Building Procedure (GBBP) is introduced. GBBP uses the natural
variation in performance to build an approximation of Band Performance Model.
It minimises the number of experimental points that must be benchmarked to ac-
curately approximate the shape of the BPM. The Functional Performance Model
can be seen as a product of a BPM, where the range of speeds described by the
band is reduced to some average single value. In this way, the GBBP algorithm
builds the FPM also.

Further, this algorithm is implemented in a GPL Licenced tool. The purpose
of the tool is to allow for flexible construction and experimentation with a large
set of FPMs and BPMs. It provides a number of construction methods for build-
ing models, including GBBP, a framework for configuring the benchmarking of
a problem and a simple and flexible interface to the problem benchmark.

The last contribution made in this thesis is the integration of a FPM in the
scheduler of a GridRPC system. By providing accurate estimations of execution
times based on actual benchmarks, the FPM can significantly improve the perfor-

2



1. Introduction

mance of a task scheduler. This is demonstrated for a challenging non-synthetic
application which uses the GridRPC framework.

1.1 Heterogeneity in High Performance Comput-
ing Processors

Heterogeneity is an increasingly common attribute of high performance com-
puting resources. Networks of Workstations have provided parallel computing
capabilities without the significant cost of acquiring a dedicated cluster resource
for many years. The capacity of NOWs to take on problems that previously re-
quired expensive vector or massively parallel processors has been demonstrated
in [1] and elsewhere. Non-dedicated NOWs were shown to have ample capacity
to provide high performance computing power in papers such as [2] and [3] has
shown that non-idle, shared systems may be used as processing resources in a
parallel computation. Such work has demonstrated that ad-hoc, non-dedicated
Heterogeneous Networks of Workstations are viable parallel computing plat-
forms and a large body of research in adapting applications for this platform
has been developed.

(a) Illustration of a Heterogeneous Net-
work of Computers.

(b) Illustration of interconnected clus-
ters forming a Heterogeneous Meta-
Computer.

Figure 1.1: Illustration of inter- and intra- cluster heterogeneity.

On a larger scale, inter-connected clusters have formed heterogeneous meta-
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1. Introduction

computing resources in networks such as NorduGrid [4], Grid’5000 [5], Tera-
Grid [6], Open Science Grid [7] and so on. Software such as PAX-MPI [8],
and more recently MPICH-G2 [9] (built on top of Globus [10]) has enabled ap-
plications to pool the resources of many heterogeneous clusters in performing
computations. Use of resources in this manner has been studied and found prac-
tical, even for tightly coupled applications such as parallel matrix multiplication
in [11, 12, 13].

Further, the Cell platform [14] and Hybrid CPU-GPU computing [15, 16]
result in a level of processing heterogeneity inside nodes of an otherwise ho-
mogeneous cluster. Using the processing power of both CPU and GPU at the
same time requires considering the heterogeneous nature of the two resources.
In [17] matrix multiplication has been successfully decomposed between a sin-
gle CPU and GPU, [18] carries out a similar study on the parallelisation of Fast
Fourier Transforms on GPU and CPUs, building on this [19] demonstrates a
framework for collaborative computation on GPUs and CPUs. In [20] the entire
TSUBAME super-computer is benchmarked using LINPACK. This is a highly
heterogeneous computing environment comprising of a pair of clusters. Nodes
of the first cluster contain Opteron multi-core CPUs, NVIDIA GPUs and Clear-
speed accelerators. The nodes of the second cluster are homogeneous, using
Xeon multi-core CPUs. The pair of clusters are linked by a 200Gb/s connection
and the LINPACK benchmark was run to use all resources available.

Finally, heterogeneous multi-core and heterogeneous system-on-chip (SoC)
platforms take heterogeneity in processors to the lowest level of system archi-
tecture. As multi-core processors increase core count dramatically, the speed-up
they achieve at typical end-user workloads is limited by Amdahl’s law [21]. Such
workloads often have a low degree of parallelism and suffer as a result. Given
the same power envelope and real-estate on a chip, better performance can be
achieved by mixing few large, powerful cores (for sequential workloads) with
many smaller, less powerful cores for parallel workloads [22, 23]. The result is
a set of cores with a single instruction set but heterogeneous performance [24].
Also, SoCs that integrate massively parallel processors and multi-cores on the
same die have been developed [25, 26], and reconfigurable Field Programmable
Gate Arrays (FPGAs) have been integrated with general purpose processors on
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Figure 1.2: Illustration of Heterogeneity at the Chip Level and Internal to a Node.

a single die or package [27, 28, 29].
While not all of these developments are targeted directly at the highly scal-

able parallel computing domain, since the era of NOWs clusters have been built
from a wide array available processors and components. The emerging hetero-
geneity of these processors, at the very lowest level of a computer’s architecture,
will result in more difficult decomposition of parallel workloads on any system
using them [30].

1.2 Describing the Performance of Heterogeneous
Processors

It is clear that heterogeneity in the high performance computing domain is in-
creasing as new architectures emerge and it is accepted that heterogeneity will
be a feature of future high performance computing platforms [31]. Forms that
processor heterogeneity have taken and may take in the future are summarised in
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the previous section.
The performance of a processor, or entire systems, has been represented in

many ways for the purposes of both high level comparison of systems and solv-
ing task scheduling or data partitioning problems.

The simplest measure of a processors performance is perhaps the theoretical
peak FLOPS (Floating-point Operations Per Second). This is calculated from
the number of cycles required by the floating point unit of a processor to execute
a floating point calculation. The peak is rarely achieved by any application or
benchmark as a result of latencies in fetching data for the floating point unit to
operate on.

As an alternative to theoretical estimations, benchmarks may be executed to
characterise the performance of a processor. Frequently FLOPS or MIPS (mil-
lion instructions per second) are measured and characterise the performance of
a processor. MIPS is derived from the running time of the Dhrystone bench-
mark [32], which executes a set of common programming constructs. In order to
accurately measure the raw number of instructions that can be issued by the pro-
cessor, the benchmark defeats compiler optimisations, omits any floating point
calculations and fits in the highest level of cache (and entirely in the instruction
cache of modern CPUs). FLOPS is frequently calculated using the LINPACK
[33] benchmark. This solves a fixed number of dense linear equations, where the
dominant operations are floating point (matrix multiplication). The LINPACK
benchmark has had to change the size of problem it solves as cache sizes have
grown over time. This is an indication of an inherent problem with a single sized
benchmark: that they do not measure the processor’s speed as it executes on data
in each of the many levels of the memory hierarchy. This hierarchy can range
from L1-L3, even L41 caches, physical RAM and virtual memory. Both MIPS
and FLOPS are simplistic representations of a processors performance, they are
measured using highly synthetic benchmarks and they often do not relate well
with the performance of actual applications. Despite this, FLOPS is frequently
used as a comparator of heterogeneous processors.

At the cluster level, a parallel LINPACK benchmark such as High Perfor-

1IBM eX4 chip-set supports 256MB off-chip L4 cache for Xeon processors, and the IBM
z196 processors are attached to an interconnect hub with 96MB of L4 cache
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mance LINPACK (HPL) [34] is used to calculate the FLOPS attained by collec-
tions of processors solving large sets of linear equations. The highest FLOPS
attained by a cluster for an arbitrary sized LINPACK problem (the largest size
that fits in memory usually results in the highest speed) is used to rank the fastest
super-computers in the in the Top500 [35] list. LINPACK as a benchmark suffers
the criticism that it does not stress the communication links of a cluster appro-
priately, and much like MIPS and FLOPS, that it does not relate to the speed of
a platform executing a real problem.

The SPEC [36] suite of benchmarks attempts to address this deficiency for
comparison of individual nodes. It is a set of a wide variety of application bench-
marks which allow vendors to describe the performance of their systems at a va-
riety of problems. Similar suites, such as the NAS Parallel Benchmarks [37, 38]
and DEISA [39] serve the same purpose but for clusters. Such benchmark suites
are mostly used to evaluate the performance of systems at certain general types
of application. In some cases they have been used to forecast performance of
specific applications [40, 41], however they are not used for prediction of perfor-
mance for task scheduling or data partitioning problems.

One property that is common to the benchmarks mentioned thus far is that
they all represent the speed of a processor as single point values. Even for suites
of benchmarks, the collection of data points ultimately only reveals a number
of single perspectives of a processors performance, not a global view of per-
formance. The reality is that a processor’s performance varies with the size of
problem it operates on, as a result of differing latencies and bandwidth when
accessing the various levels of memory hierarchy. This is key to the problem of
partitioning data, as a processors speed may change depending on the amount of
work you give it. Also when scheduling a task, the performance of a processor
may vary depending on input parameters of the task, and choosing the correct
schedule requires knowledge of this relationship.

The STREAM benchmark [42] is focused on the performance of a proces-
sor’s memory system. It measures a set of various operations on main memory
rather than floating point calculations. STREAM2 [43] is an extension which
explores the performance of a processor at all levels of the physical memory
hierarchy benchmark. It is of interest as it represents the decline in bandwidth
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available to feed the processor data as a problem size increases across cache and
memory boundaries. This decline is directly related to the decline in speed of a
processor when computing a task that is data-starved.

The final benchmark to mention in this section is HINT [44]. This is a scal-
able benchmark that provides a combination processor performance and the per-
formance of a memory hierarchy in a single representation. HINT is a synthetic
benchmark based around a synthetic kernel. The kernel performs a hierarchical
integration of some function, with increasing detail as the kernel is iterated. It
provides a measurement of Quality Improvement Per Second (QUIPS). This re-
lates to the rate at which the integration becomes more accurate. In the initial
iterations, the overall problem size is small as the integration has a low level of
detail. The integration quality is improved at a high rate in this initial phase. As
execution time increases so too does the overall quality and the amount of data
that comprises the problem. This results in a gradual decline in the refinement
rate of the integration. The QUIPS function can be plot against overall execution
time or bytes of data in the integration and it is shown in Figure 1.3. HINT is
interesting as it bears a resemblance to the model of a processor that is developed
in this thesis, though HINT was not the starting point of this work.

1.3 Data Partitioning and Task Scheduling for Het-
erogeneous Processors

In order to utilise various types of heterogeneous processors in parallel, via data
partitioning or task scheduling, models of the performance of each processing
element must exist. With the nature of processing units becoming more and
more diverse, models of performance must have greater detail and must be more
general to allow for accurate solution of a data partitioning or task scheduling
problem. Existing general performance measures of various types have been
summarised in the previous section.
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Figure 1.3: Examples of the HINT benchmark for various Platforms (from [44]).

1.3.1 Task Scheduling

In the study of task scheduling algorithms for heterogeneous processors it is
assumed that the Expected Time to Compute (ETC) of a task on a node in a
network is known [45, 46, 47, 48, 49, 50]. Estimating the ETC is a branch of
research itself and it is this area of estimation that we work on.

There are a number of approaches for estimating the ETC. In [51] static anal-
ysis of code is used to build the cost function of a procedure. This function is
in terms of the procedure’s argument sizes and allows for run-time prediction
of the procedures cost. Such code analysis has a limited application, to certain
languages and architecture types, thus they are not suitable for heterogeneous
computing in general [49].

Combining code analysis with platform benchmarking is another approach.
The PAWS project [52] provides an environment to evaluate the performance of
an application on different hardware without the need to execute it. It charac-
terises the functional elements of a computer by benchmarking those elements
(processors, memory, I/O) and characterises the application as a set of proce-
dures in data-flow graph. The execution of the application is simulated on the
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functional elements of the computer to provide a prediction of ETC. [53] pro-
poses a framework for characterising an application using a set of base templates
and characterising a computer using a set of analytical benchmarks of those base
templates. The combination of these elements allows for a prediction of execu-
tion time of an application on a computer. In general, the scheme is to benchmark
basic operations of the computer and profile the application to identify how it ex-
ecutes that set of basic operations, then predict execution time using both models.
Such systems can accurately predict the relative performance of heterogeneous
systems but their prediction of actual ETC is not always reliable.

Finally, statistical prediction of ETC based on previous executions of a prob-
lem are often used. These methods build a model of performance based on an
analysis of previously timed executions, they are expected to sit along side a
scheduler and be continually fed with more observations to refine their predic-
tion as new tasks are executed. Examples of such methods may be found in
[54, 55, 56]. In [57] a hybrid of analytical benchmarking and statistical predic-
tion is used so that task execution times may be shared between similar systems.
FAST [58] performs statistical prediction of ETC seeded with an initial set of
task benchmarks. The tasks are benchmarked using an initial set of typical prob-
lem sizes. This gives the statistical prediction an initial accuracy. Subsequent
scheduled tasks are timed and used to improve the prediction of ETC further.

1.3.2 Data Partitioning

In data partitioning on heterogeneous parallel computing the typical represen-
tation of performance that is used is processor weight, relative speed, or nor-
malised speed of the set of processors. These are essentially the same thing.
Using this measure, one can proportionally divide a workload been processors
and expect that they will complete the computation of their respective work at the
same instant. Often data partitioning algorithms assume that the relative speed
is provided [59, 60, 11, 61]. Otherwise suggestions are made for the calcula-
tion of relative speed, in [62] a system for analysing the performance of different
data partitioning methods, it suggests a test program is executed on nodes of the
network to provide a FLOPS rating for each node. In [12] a small test calcula-
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tion is executed on nodes before decomposition to give a measure of speed. In
some cases, no performance model of processors is used and decomposition is
achieved through manual tuning and experimentation [19, 20].

The relative performance model ultimately represents the speed of the pro-
cessor as constant for all problem sizes that may be assigned to it, however it
is clear that the performance of a processor is a function of the problem type
it computes, the size of data that it executes on it and naturally, the underlying
architecture of the processor.

Firstly, a processor’s speed is dependent on the type of problem it solves, for
this reason benchmark suites attempt to encompass as many types of problem
possible and estimators of ETC attempt to identify the type of problem by code
analysis. In heterogeneous data partitioning deriving relative speed from some
fixed benchmark or measure of processor performance is inadequate, this has
been identified in [63]. The mpC language [64] addresses this problem by allow-
ing the programmer to define a small characteristic benchmark routine to mea-
sure the relative speeds of processors before work is partitioned. These speeds
are input to a user defined model of the parallel computation to help the pro-
grammer to optimally utilise the heterogeneous resources. HeteroMPI [65] im-
plements the same techniques in mpC, along with a data partitioning API, as an
extension to MPI.

Second, the processor’s speed is a function of the problem size it operates on.
This is has been demonstrated by the HINT benchmark [44] and in [66], where
a performance model for a mixed in-core and out-of-core problem is described.
Describing the variation in performance between paging and not-paging is not
only an issue for out-of-core processing. As processor architectures become
more heterogeneous, their performance as problem size increases becomes more
difficult to approximate and this necessitates a more detailed general model of
performance than relative speed provides.

In order to address these issues the Functional Performance Model has been
proposed in [67]. This model describes the speed of a processor at a specific task
in terms of the input parameters to that task. The construction of this model and
an extension to it are the subject of this thesis.
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1.4 Functional Performance Model

The Functional Performance Model (FPM) is a model that accurately describes
the speed of a processor, at a specific problem, as a function of the size of
problem it computes. Performance varies with problem size as the processor
may speed up through more efficient use of its caching hierarchy, or slow down
through greater use of deeper levels of the memory hierarchy. The extent of these
changes is dependent on the implementation of the problem that is to be com-
puted. An inefficiently implemented computation will slow down continually as
the data it operates on is fetched from deeper levels of the memory hierarchy,
while an optimised computation may have a relatively flat performance function,
until paging occurs. Further, the computation on widely different architectures
may result in differently shaped functions.

Examples of the FPM for a matrix multiplication are given in Figure 1.4,
they illustrate the wide variation in the performance functions of different matrix
multiplication methods on various platforms. Figure 1.4a shows naive and opti-
mised multiplication on two different platforms hcl05 and hcl15 (specifications
may be viewed in Chapter 2, Table 2.1, page 55). Optimised multiplication is
performed by GotoBLAS2. First, one can see that the naive method varies across
the full range of problem sizes, while the optimised method has a constant per-
formance profile for a significant proportion of its profile, until paging occurs.
Figure 1.4b shows FPMs for multiplication on CPU and GPUs. CUBLAS [68]
and AMCL-GPU [69] libraries are used to perform matrix multiplication on a
NVIDIA GTX285 and an ATI 4770. Both of these are compute capable con-
sumer grade GPUs. The CPU used is a four processor machine, totaling eight
Xeon cores, listed as yeats in the specification table referenced above. Com-
paring the GPUs and CPU profiles, there is significant difference in how the
performance of each type of processor increases and then plateaus as problem
size gets larger. The CPU is almost instantaneously reaching its peak, while the
GPUs have a more gradual climb.

Accurately partitioning a problem or scheduling a task on such platforms
requires detailed knowledge of the performance of the platforms. The FPM is
a general solution to providing this performance information. Application of
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the FPM in various scenarios has resulted in increased performance when using
heterogeneous resources. This has been demonstrated for data partitioning [67],
task scheduling [70] and dynamic loop scheduling [71]. Constructing the FPM
has been described in [72, 70].

1.5 Predicting Performance Variance

Much work exists in the area of predicting processor performance variability.
Statistics provided by the operating system kernel and their ability to describe
CPU availability have been analysed at length in [73], the average queue length
of processes executing or waiting to execute on the CPU, was found to be more
efficient at representing the current performance of the CPU than a percentage
availability measure. Average queue length is often reported by UNIX kernels as
the “load average”, with one, five and fifteen minute periods. In this study a four
second averaging period was found best but one minute periods also performed
well.

In [74] various load descriptions are used to balance tasks in a system, and
again the average queue length was found to be a better predictor of a CPUs
current performance. Both these studies focused on instantaneous load descrip-
tions of processors. This is because the tasks to be assigned to those processors
are some short lived distributed processes, and future load fluctuations are not of
concern.

The Network Weather Service (NWS) [75] is a reliable predictor of short
and medium term load CPU availability. It uses a combination of load statistics
gathered from continuous measurement of load average, CPU availability and
the results of a probing process which are input to an autocorrelation model to
provide accurate performance forecasts on non-dedicated platforms. The WIN-
NER system [76], also uses a hybrid of measures to predict CPU availability in
its performance model. NWS itself is a component of a number of larger systems
such as Globus [77] and Condor [78].

In [79, 80] load traces are used to evaluate various linear time series models
for the prediction of future load between a one and thirty second interval. Here,
the traces are used both for fitting the linear time series models and verifying the
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accuracy of the predictions based on those models. They show that load traces
can be reliably used to predict future load in the time windows they chose to
study.

Studies such as [81] propose a method to balance a workload across a set of
non-dedicate platforms based on their average predicted execution performance.
They have shown that non-dedicated platforms do have the capacity to provide
high performance in parallel computing provided their accurate measures of ex-
ternal utilisation and that the utilisation does not have very high variance.

1.6 Structure

This thesis proceeds as follows: The Band Performance Model is introduced
and formalised in Chapter 2. Experimentation with the Band Model in a data
partitioning problem is presented. In Chapter 3 an algorithm for the optimised
construction of both Band and Functional Performance Models is presented. The
optimised construction is shown to be significantly faster than a naive method,
and this is key to improving the practicality of the FPM and BPM. Chapter 4
presents a tool that implements this optimised algorithm and a number of other
utilities for building, using and viewing FPMs and BPMs. This tool is titled the
Performance Model Manager (PMM). Chapter 5 describes the integration of de-
tailed performance models with the task scheduler of SmartGridSolve [82], and
the resulting speed-up achieved in a real-life application. After the conclusion in
Chapter 6, the user manual of the PMM tool is attached as an appendix.
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Chapter 2

The Band Performance Model

Networks of Workstations (NOWs) provide high performance parallel comput-
ing capabilities without the significant cost of acquiring dedicated cluster re-
sources. NOWs are typically built from a wide variety of nodes that are in situ

on a campus, in an office or belonging to some general purpose network. The
degree of heterogeneity in NOWs is often high and applies to many properties of
the nodes. Their processing capacity may vary greatly and will be determined by
features such as: memory bus, memory capacity, CPU clock, CPU architecture,
cores, and so on. As described in Chapter 1, the Functional Performance Model
(FPM) accurately predicts the performance of heterogeneous processors allow-
ing optimal distribution of workloads between dedicated heterogeneous proces-
sors.

However, some nodes may not be fully dedicated to the computational tasks
of the NOW, they may have varying levels of integration with the wider network
to which they belong. Desktops, servers and other computers may be volunteered
to the NOW, offering their spare resources to use for computational tasks. They
will experience load fluctuations according to their primary role. As a result
their processor availability and subsequent performance may vary. The Band
Performance Model (BPM) which is presented in this chapter is an extension to
the FPM where the variability in processor speed is represented as a range of
performance rather than as the single-valued Functional Performance Model.

The BPM is expressed as a function of problem size in the same way that the
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FPM describes performance. However, it differs in that at any particular problem
size the speed of the processor is represented by a band of performance rather
that some discrete value. This band can be a simple maximum and minimum
predicted performance or a more complex probability density function describ-
ing the performance variation. For problems of small size, with short execution
time, the band of a processor experiencing a large fluctuation in processor avail-
ability will have wide properties. For larger problems with longer running exe-
cution times, the processor availability will approach some constant level as load
fluctuations average out, consequently the band will narrow.

Representing this processor availability in a model provides greater detail
in the description of performance and allows for improved problem partitioning
and task scheduling. In this chapter the formulation of the Band Performance
Model is described. Methods to use the BPM in the partitioning of data for a
parallel matrix multiplication problem are presented and these methods are com-
pared to the Functional Performance Model as well as a Constant Performance
Model. The comparison is done in a simulated execution environment which is
also described in depth.

2.1 Formulation of the Band Model

The Band Performance Model is a product of two inputs. A Functional Perfor-
mance Model that describes the ideal speed of a processor executing a problem
with no external processes contending for the CPU, and some prediction of fu-
ture external processor load that is provided at runtime, when a problem is to be
partitioned or scheduled.

The FPM represents execution speed as operations per second. It is agnostic
to the type of operation, but for most scientific problems the speed is represented
as Floating Point Operations per Second (FLOPS). It is denoted as: Si(x), where
x is the size of the problem which the processor executes and the subscript i

indicates the description of ideal speed. The number of operations required to
compute a problem of size x is it’s complexity, C(x). Using complexity, the ideal
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execution time, Ti(x) and ideal execution speed can be derived from one another:

Si(x) =C(x)/Ti(x)

Ti(x) =C(x)/Si(x)

Practically, Si(x) is a piece-wise linear approximation of the real speed func-
tion, each point in the piece-wise approximation corresponds to a benchmark
of the problem at a particular problem size. The benchmarking of a problem
and construction of FPM and BPMs is a subject described in Chapter 3 . For
this description it is assumed that the approximation of Si(x) has already been
constructed.

The second input to the formulation of the Band Performance Model is a
prediction of processor availability. The basis for this prediction is the UNIX
load average.

The load average is a statistic provided by UNIX-based and UNIX-like op-
erating systems. It is a measure of “the number of processes in the system run
queue averaged over various periods of time”1. The operating system maintains
load averages with time periods over one, five and fifteen minutes. The aver-
ages are exponentially damped, and samples of the run queue length are taken
at a fixed frequency. The system queue length is also exposed to the user and
may be used to calculate averages manually over shorter periods. Load aver-
ages are widely reported by utilities such as w and uptime, system calls such as
getloadavg() and the /proc file-system on Linux.

Its use as an estimate of processor availability is well researched. In [73]
queue length is shown to be a better measure of availability for load balancing
than percent CPU utilisation. The one minute UNIX load average performed
well, with a four second average of the queue length performing best. In [74] a
number of different system parameters were used to describe processor load in
a load balancing system. It was shown that for balancing the execution of short
tasks, the queue length was the best individual description of load on a system. In
their experiments the load average performed poorly, but this is likely as a result

1From the getloadavgman page entry, section 3 (library calls), Linux Programmers Manual.
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of the type of task they were balancing, which had short execution times. In [76]
a hybrid availability measure used by the WINNER system was described. It
combined both load average data and CPU usage to improve accuracy and they
presented experiments showing how closely their availability measure tracked
actual CPU availability. In [75] again, UNIX load average is used in a prediction
of CPU availability in the Network Weather System. In this case it is combined
with CPU usage and a probing process in a autocorrelating forecasting model.
They show accurate short and medium term predictions of CPU availability using
their methods.

The Band Performance Model uses a history of load average observations to
generate two types of CPU availability predictions, first a simple maximum and
minimum processor availability measure is used to generate the simple BPM.
Second, a more detailed probability density function describing processor avail-
ability is used to generate a Probabilistic Band Performance Model. In both
cases, the predictions from the load history are used to adjust the ideal speed
function Si so that it represents a range of predicted speeds.

The investigation of the BPM does not touch on the improved CPU availabil-
ity measures that have been presented in other research, however they could be
used to generate the band model in the same manner that will be described.

2.1.1 Load History

A history of load fluctuations is kept by sampling the one minute load average
at a fixed interval of ∆ time units (logically every minute). The recorded one
minute load average at the n− th sample is denoted as ln. A load average for a
period of t minutes can then be calculated by averaging a uninterrupted sequence
of t

∆ historical load observations. Given a history of load averages, H, containing
h observations:

H = l1, l2, . . . , lh

Load averages over periods ∆,2∆, . . . ,h may be calculated. The ∆ period load av-
erages are simply the individual load observations li, the 2∆ period load averages
would be the average of pairs of load observations li, li+1 where i = 1 . . .h.

The periods for which load averages are calculated is limited by a window
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from ∆ to w time units, 2w < h. For example, if w = 60 and ∆ = 1 (both min-
utes), then the 1 minute period load averages will be the 60 most recent load
observations in H:

LA1 = l1, l2, . . . , lw

The 2 minute period load averages, will be calculated from the 61 most recent
load observations:

LA2 =
l1 + l2

2
,
l2 + l3

2
, . . . ,

lw + lw+1

2

The w, 60 minute, period load averages require 2w− 1, or 119 observations to
calculate,

LAw =
∑60

k=1 lk
60

,
∑61

k=2 lk
60

, . . . ,
∑2w

k=w lk
60

A calculated load average is defined as li, j, where i is the period of the average
and j is the position in the sequence of calculated averages. A matrix of all
calculated load averages is defined as follows:

LA =


l1,1 . . l1,w
. . . .

. . . .

lw,1 . . lw,w


where:

li, j =
∑i+ j−1

k= j lk
i

where i = 1 . . .w; j = 1 . . .w and 2w−1≤ h

Using this method, the matrix LA has an equal number of load averages for every
average period, thus it provides information on historical performance variation
at every period. Also, shorter periods only use the most recent observations,
while longer average periods use a deeper history of observations. Figure 2.1
shows an example of a history of load observations and the load averages cal-
culated from that history. The calculated averages are used as an availability
measure to apply to the ideal functional performance model, Si(x), to create the
Band Performance Model.
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lated from them.
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2.1.2 Applying Load History to Functional Performance Model

Two piecewise linear functions that represent maximum and minimum expected
load over increasing time periods (t) can be extracted from the load average
matrix LA (Figure 2.2). The points in the load functions are defined as:

lmax(t) =
w

max
j=1

(LAt, j)

lmin(t) =
w

min
j=1

(LAt, j)

where t = 1 . . .w. I.e. the maximum and minimum of each row of the matrix
define points in the piece-wise functions. Si(x), the ideal functional performance
model of some task may be adjusted using lmin and lmax to form a band rather
than a single valued function. Si(x) is piece-wise continuous function, consisting
of a series of points, connected by line-segments. Converting this to a band
involves converting each point to the maximum and minimum predicted level of
performance. A load average, l, describes the number of processes executing or
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Figure 2.2: Maximum and minimum load functions extracted from the calculated
load average matrix LA.
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waiting to execute on the CPU over a certain period. The availability of the CPU
over the same time period may be derived from the load average and this can
then be used to calculate the actual speed of a point in Si(x). Introducing a single
threaded computational task (i.e. the task that Si(x) describes) to a processor will
add 1 unit to the current load. Now a total of l+1 processes will be executing or
waiting to execute. We assume that all processes will receive a fair share of the
CPU time, i.e. the processor’s availability, is divided evenly between the l + 1
processes. The proportion of CPU time that the computation task will receive,
the availability a, is defined as follows:

a(l) = 1× 1
(1+ l)

So a task of size xp that executes under ideal conditions with a speed of Si(xp),
utilising 100% of the CPU, will execute at a(l)×Si(xp) under some load l. Sim-
ilarly, the execution time of the task under a load, T ′, is equal to Ti(xp)/a(l).

For every point in Si(x), Ti(x) is also known. This execution time may be used
to look up the maximum and minimum predicted load over such a time period in
lmax(t) and lmin(t). However, applying these predicted loads would increase the
execution time to T ′, and the predicted load over the new duration may be altered.
So, to adjust a point in Si(x) using lmin(t) and lmax(t), the intersection between
execution time adjusted for load, T ′(l), and the load functions must be found.
Both of these functions have the same, though reversed, axes (time and load).
Though the intersection between them may be found analytically, in practice it is
carried out geometrically due to the piece-wise nature of the load functions. This
is illustrated in Figure 2.3. This action is carried out for every point in the ideal
functional performance model. Ideal execution times are converted to maximum
and minimum predicted execution times and finally to pairs of executions speeds
which form the simple Band Performance Model (Figure 2.4).

2.1.3 The detailed Band Performance Model

The matrix of calculated load averages, LA, describes the historical distribution
of load over increasing time periods. The simple Band Performance Model only
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uses the maximum and minimum loads from each time period, as represented
by the piece-wise linear functions lmax and lmin. Using every load average for a
relevant time period in LA would allow for a detailed Band Performance Model
where the speed of a execution is not a simple interval, from minimum to maxi-
mum, but some distribution of speeds in that range.

T ′(l), the execution time of a problem, adjusted for load, is intersected with
the load functions lmax(t) and lmin(t) as before. This defines a period window,
Tmin to Tmax, over which load averages from LA should be examined. The corre-
sponding rows of LA that are used to find the distribution of execution times are
defined by the integer division of the period window by load observation period
∆, i.e.:

rows = bTmin

∆
c . . .bTmax

∆
c

The load averages in these rows of LA are distinct points, not interconnected
piece-wise functions as lmax or lmin. In order to find the distribution of execution
times and speeds T ′(l) must be intersected with line segments that represent
these point load averages. To create a line segment from a load average l, it is
projected, from its position at its particular time period δ, to the time period δ+1.
This projection is not simply horizontal, but adjusted for the change in load band
width between δ and δ+ 1. A line segment AB is defined by two points A and
B. A is simply the load average (l,δ), B is the δ+1 projection, positioned in the
range of lmin(δ+ 1) to lmax(δ+ 1), relative to the position of l between lmin(δ)
and lmax(δ):

A =

(
l,δ

)
B =

(
lmin(δ+1)+(l− lmin(δ))×

lmax(δ+1)− lmin(δ+1)
lmax(δ)− lmin(δ)

,δ+1
)

Line segments are created for every load average in the rows of LA. Then each
segment is tested for intersection with T ′(l). This is illustrated in Figure 2.5. The
collection of all intersection points reveals the distribution of predicted execution
times. These execution times are converted to speeds and histogram is built to
represent the distribution of execution speeds. From the histogram, a piece-wise
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probability density function is formed, illustrated in Figure 2.6. This gives a
probability based estimation of the performance of a processor for any given
problem size and is the final representation of the detailed Band Performance
Model.
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Figure 2.5: T ′ is intersected with projections of calculated load averages from
LA.

2.2 Workload Distribution with Performance Mod-
els

Having formulated the simple and detailed Band Performance Models, methods
to use these models to solve the data partitioning problem must be conceived.
The simplest solution to the data partitioning problem for heterogeneous proces-
sors is the use of a constant performance model, where the speed of a processor
is represented by a single benchmark of some kind. Given a set of processors and
benchmarks, the total speed of the set and the speed of a single processor relative
to the entire set may be calculated. A problem is then partitioned between pro-
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Figure 2.6: Predicted execution speeds for a single problem size (on x-axis) are
binned and plotted in a histogram which forms as the basis for a probability
density function describing the processor’s speed variation at that problem size.

cessors such that each receives a chuck that is proportional to its relative speed.
Given a set of n processors, P= p0, p1, . . . , pn, the speed of the j-th processor,

as represented by a single benchmark, is given by some value: S j. A workload of
W may be partitioned between processors such that each processor Pj, is given
an amount of work: wi, defined as:

w j =W ×
S j

∑n
k=1 Sk

If ST is the summation of executions speeds ∑n
k=1 Sk, we can also say that the

solution to the problem partitioning is finding a distribution where there is an
equal ratio of speed and problem size across all processors, i.e.

ST

W
=

S j

w j
=

S0

w0
=

S1

w1
· · · Sn

wn

Calculating ST and w j is trivial when the model of performance is based on a sin-
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gle benchmark as the speed of a processor is represented as constant regardless
of the problem size it executes. This relative division of workload can also be
expressed graphically as in Figure 2.7a, where a line from the origin intersects
two constant performance models. Dividing some total workload into perfectly
relative portions.

The Functional Performance Model describes performance in a more realis-
tic way, not as a constant, but as varying with problem size, i.e. the speed of
the j-th processor is defined by S j(x). Partitioning with such a model has been
described in [67]. It has been demonstrated that the optimal partitioning of a
problem occurs when a line projected from the origin intersects the functional
performance models. The summation of the x components of the intersection
points (i.e. problem sizes) gives the total workload for which the distribution
is perfect. Conversely, finding the perfect distribution of some workload corre-
sponds to finding a line through the origin which intersects the functional models
such that the x components sum to the required workload. An illustration of this
is shown in Figure 2.7b. An efficient algorithm to achieve this through a bisec-
tion search is presented in [67].

The Band Performance Model extends the FPM so that performance is no
longer a single function but a region between two maximum and minimum func-
tions, Smax(x) and Smin(x). This region reflects the possible performance vari-
ations on the processors. Given a particular distribution of work, there may be
many combinations of performance variations for which the distribution is op-
timal. There may exist more than one line that passes through the origin and
intersects the performance bands of a set of processors at the work attributed to
that processor. Such a pair of performance levels for two processors and a partic-
ular workload distribution is illustrated in Figure 2.8. The notion that a workload
partition may be optimal for certain levels of performance described by the band
is the basis for the proposed methods of determining the best workload partition
using Band Performance Models.
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(a) Single benchmarks represent speed as constant
across problem size, the partition of workload with
such a model may be graphically represented by a line
through the origin intersecting both models.

(b) Partitioning with functional models is equivalent to
finding the same line, through the origin that intersects
both models at certain problem sizes, summing to the
total workload to be partitioned.

Figure 2.7: Graphical representation of partitioning with constant and functional
performance models.
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Figure 2.8: Illustration of performance fluctuations which result in optimality for
some distribution of workload.
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2.2.1 Angular Metric

As described previously, the graphical expression of partitioning with FPMs is
to find some line that intersects the FPMs of the processors and the origin, such
that the sum of the intersection points is equal to the workload that is to be par-
titioned. Partitioning with Band Models can also be approached as an extension
of partitioning with FPMs. The single line through the origin that solves the
partitioning problem using a FPM is expanded to an angular segment of lines,
passing through the origin and through the performance band of each processor
at the corresponding workload. Each line in this angular segment corresponds to
a set of performance levels in the bands of the processors for which the distribu-
tion is optimal. Maximising the size of the angular segment will maximise the
number of performance combinations for which the distribution will be optimal.
Should all performance levels in the bands have equal probability, a distribution
which maximises the angular segment should have a high probability of being
optimal.

For a set of n processors, P. A distribution of a total workload W is given by:

W =
n

∑
j=1

w j

For each processor p j, the workload assigned to it w j may execute at a range of
speeds, as described by the band model, from Smax j(w j) to Smin j(w j). An an-
gle θ j is created with vertex at the origin and lines, extending to the maximum
and minimum speeds (w j,Smax j(w j)) and (w j,Smin j(w j)), as described by a pro-
cessors Band Model. Where the set of angles overlap, there is what is titled a
“common angle” α. Lines within this common angle correspond to a workload
distribution that is optimal for some particular combination of speed variations
across the processors in the set.

The size of the common angle can be calculated from the angle of incidence
with the x axis that is made by the lines which create the set of θ j angles. If the
incidence angles of lines extending to the maximum and minimum performance
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functions of some processor p j are defined as:

Imax j = arctan
(

Smax j(w j)

w j

)
Imin j = arctan

(
Smin j(w j)

w j

)
Then the size of the common angle may be defined as the subtraction of the
largest incidence angle of lines intersecting the minimum performance func-
tions, from the smallest incidence angle of lines intersecting the maximum per-
formance functions. I.e.

|α|= n
max
j=1

(Imin j)−
n

min
j=1

(Imax j)

Where the angles of incidence that make up α are:

Iα0 =
n

max
j=1

(Imin j)

Iα1 =
n

min
j=1

(Imax j)

The calculation of the common angle is illustrated in Figure 2.9. Finding a dis-
tribution with the widest common angle will maximise possible performance
variance combinations where the distribution remains optimal.

2.2.2 Constant Probability Metric

Instead of maximising the common angle α, the range of performance levels that
the common angle covers over each performance band can be considered as a
metric to maximise when finding a good workload distribution. The magnitude
of α represents the volume of possible perfectly balanced performance fluctua-
tions for a particular distribution, but α does not describe whether these perfor-
mance fluctuations cover a wide range of the overall performance fluctuations of
the processors.

The Constant Probability Metric rates a workload distribution using the per-
centage of each performance band that is covered by the common angle α. The
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Figure 2.9: Illustration of the arc of lines through the origin which indicate that
a workload is optimal for some combination of performance fluctuations on a set
of processors.
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performance fluctuations of each processor are given a constant equal probability
of occurring. The probability of the fluctuations that occur inside the common
angle are used to calculate an overall probability of the distribution being bal-
anced.

A distribution of work, w j, on a processor p j will have a predicted perfor-
mance variance given by a cut, C j(w j), of the performance band. The cut is the
vertical section from (w j,Smin j(w j)) to (w j,Smax j(w j)). The sides of the com-
mon angle α, if it exists, will intersect the cut a processor’s performance band at
two points, u j and v j, which may be calculated from the incidence angles of the
two sides, Iαmax and Iαmin:

u j = w j× tan(Iα0)

v j = w j× tan(Iα1)

The actual future performance is assumed to be inside the cut C j(w j). Within
the cut an even and constant probability is assigned to each performance level
between the cut limits of Smax j and Smin j . On finding the intersection between
the common angle and C j(w j), given by values u j and v j, the probability of the
performance being at some level inside this intersection is given by:

φ j = (v j−u j)/|C j(w j)|

Essentially, φ j is the percentage of the cut that is intersected by the common an-
gle. Given a set of processors and a workload distribution, the probability of the
performance variance of each processor occurring within the limits of the com-
mon angle may be calculated, and the overall probability of these performance
levels occurring on all processors is given by:

Φ = ∏
1≤ j≤n

φ j

Maximising Φ is the second method proposed for finding a good distribution of
workload using Band Performance Models.
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2.2.3 Piecewise Probability Metric

The detailed Band Performance Model represents the variance in processor speed
not just as an interval with even probability, but as a series of discrete speed pre-
dictions. Using the detailed Band Performance Model, and the common angle,
α as calculated described previously, a probability metric that is more accurate
than the constant one may be calculated.

A distribution of work assigned to the j-th processor, p j, creates cuts its per-
formance band as before. The cut of the band, C j(w), is defined as the vertical
interval from (w j,Smin j(w j)) to (w j,Smax j(w j)). Following the procedure de-
scribed in section 2.1.3, a series of individual performance predictions can be
calculated between the points that define the cut. These predictions are gathered
into a probability density function f j(x) (Figure 2.6) which is used to represent
the speed of the processor executing the workload w j. As with the constant
probability metric described previously, the common angle α intersects the cut
of the j-th processor at values u j and v j. The probability distribution function
may be integrated between these points to give a more accurate measure of the
probability that the performance level will occur between the points made by the
common angle intersection.

φ j, the probability of the performance of a processor p j being inside the
common angle α is defined as:

φ j =
∫ v j

u j

f j(x)dx

On finding φ j for each processor and a given workload distribution, Φ, the overall
probability that the distribution will encounter some performance fluctuations
where it results in perfect balance, is again, the product of the each independent
processor’s probability measure φ j.

Φ = ∏
1≤ j≤n

φ j

The probability metric is a more reliable metric for the distribution as it en-
capsulates the greatest detail about the actual performance fluctuations of each
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processor in the network.
No algorithms have been designed for finding the best distribution based on

the metrics provided for Band Performance Model. Instead their use is investi-
gated by way of exhaustive search for small solution spaces and genetic algo-
rithms for larger solution spaces. This is presented Section 2.3.1.

2.2.4 Adjusted Functional Model

The final method of partitioning with a Band Model to be presented is where
the band itself is only used to distil a Functional Performance Model. Here,
all predictions of execution speed from the detailed Band Performance Model
described in section 2.1.3 are gathered and averaged to give single valued mean
execution speed for each problem size that makes up the piece-wise linear speed
function.

The novelty of the adjustment is that it is that each point in the functional
model is not adjusted by a single common prediction of future load fluctuation
but by a dynamic one which predicts based on the time period of the execution
for a particular problem size.

A median of the maximum and minimum speed functions, Smax(x) and Smin(x)

which define the boundaries of the simple Band Model was also considered, but
intuitively this does not render as accurate a prediction as the mean performance
from the detailed Band Performance Model.

Partitioning a problem with a set of functional models is by way of a bisec-
tion search algorithm which was presented in [67]. This algorithm finds the line
through the origin which intersects each performance model such that the prob-
lem size components of those intersection points sum to the total workload to be
distributed.

2.3 Problem Partitioning Experiments

In order to investigate the utility of the Band Performance Model in addressing
the problem of data partitioning, a simulated execution environment has been
established. This consists of two parts: functional performance models and load
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fluctuation traces. The functional performance model provides the optimal ex-
ecution speed and execution time for any problem size assigned to a processor.
The load history trace can be used to predict the actual execution time of a prob-
lem on a processor. Load traces are often used to evaluate the performance of
a scheduling method or load prediction algorithm [83, 80]. Repeatable experi-
ments may be conducted as follows:

• View the load trace from some time t.

• Utilise the load observations preceding t to build the Band Model, detailed
Band Model and Adjusted Functional Model.

• Partition a problem using these models:

– In the case of Band Models, find the optimal partition using exhaus-
tive search or genetic algorithm

– In the case of Functional Model, use existing algorithm.

• Evaluate the partitions by simulating their execution:

– Find the optimal execution time of each sub-problem of the parti-
tioned problem using the optimal functional performance model.

– Adjust the optimal execution time using load observations in the trace
from the time t onwards, giving the simulated execution time of the
sub-problem.

– Find the longest execution time of the sub-problems and return this
as the execution time of the partitioned problem.

The problem to be partitioned in the set of experiments is multiple repeti-
tions of a naively parallelised square matrix multiplication. The repetitions are
carried only to extend the overall execution time of the problem, they are not
parallelised. The parallelisation comes from a naive distribution of data. In the
calculation of C = A×B, B is held by all processors, and columns of C and A

are distributed between processors (see Figure 2.10). The calculation of the dis-
tributed columns of C requires no interprocess communication as each processor
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will have the relevant columns of A and all of B. The simulation environment
does not need to consider the time spent on communications as a result. The
workload to distribute is based on a single parameter, W , the number of columns
in a matrix.

��

C A B

W

W

w0 w1 w2 w3

p0 p1 p2 p3 P0-3

w0 w1 w2 w3

p0 p1 p2 p3

Figure 2.10: Illustration of a Column-wise Naive Partitioning of a Parallel Matrix
Multiplication. B is distributed to all processors, w0 columns of A are distributed
to p0 and elements in corresponding w0 columns of C are calculated by p0.

The partitioned matrix multiplication is performed using either an optimised
BLAS library (GotoBLAS2 [84]) or a naively implemented matrix multiplication
method. The shape of the performance models of these two implementations dif-
fers greatly. The highly tuned algorithm has a relatively flat performance model
regardless of problem size (in the region before paging). This flat part may be ap-
proximated accurately by an appropriately sized single benchmark, but the user
must be aware of the profile first and choose the size correctly. The naive ma-
trix multiplication has a performance model with many decreases in execution
speed, particularly as the problem size reaches the boundaries of different levels
of a processor’s memory hierarchy. This kind of performance profile can not be
represented using a single benchmark.

Experiments using the optimised multiplication method relate to partition-
ing of highly tuned codes, such as those provided in various high performance
computing libraries. The naive implementation relates to partitioning of a user
written parallel code, where expertise in hardware specific or automated optimi-
sation may not be available. The code will have a complex performance profile
which cannot be accurately approximated by a single benchmark.
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Figure 2.11: Performance profiles of optimised and naive matrix multiplication
methods.

Each of the metrics described in 2.2 are used to partition a workload, then
these partitions are evaluated and compared with an optimal partition, which is
found using future knowledge of performance fluctuations. Before the experi-
mental results are presented in subsection 2.3.3, the method of finding partitions
based on metrics (subsection 2.3.1), and the method of evaluating those partitions
(subsection 2.3.2) are described.

2.3.1 Metric Based Partitioning

In order to find the best distribution indicated by each metric, angular, constant
probabilistic or piece-wise probabilistic, a search of all possible distributions
must be made. The purpose of these experiments is to investigate the suitability
of the Band Performance Model for workload distribution, rather than to present
methods to use the Band Model for distribution. Efficiency in finding the best
distribution is not considered. Finding a distribution using each metric is done
either using an exhaustive search or an evolutionary meta-heuristic.

Exhaustive Search

An exhaustive search involves evaluating the metric for all possible distributions
of a workload between n processors. This is equivalent to iterating through a
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restricted set of compositions of an integer. The restrictions put in place are that
the composition must have n components and that each component, or processor,
must have a non-zero value. A simple recursive algorithm was implemented to
achieve this, illustrated in Algorithm 1.

Algorithm 1 ConstrainedCompositions(I, N, IDX, R, C)
Input: I, integer to decompose
Input: N, number of components to decompose to
Input: IDX , index variable (initially 0)
Input: R, remainder of I left to be decomposed (initially I)
Input: C[N], array to store composition of I

if IDX +1 = K then
C[IDX ]← R
print C[IDX ]

else
for V = 1 to R do

C[IDX ]←V
ConstrainedCompositions(I,N, IDX +1,R−V,C)

end for
end if

The algorithm used implements tail recursion and so is relatively fast. There
are many pre-existing algorithms to calculate compositions which may be more
efficient or faster (e.g. [85, 86, 87]), however the efficiency of generating com-
positions is not important. The number of possible compositions, i.e. the number
of possible distributions of a workload, increases rapidly as the number of com-
ponents (processors), and the integer (workload) to decompose increase. The
number of compositions of an integer I in n parts, (where zero is excluded from
the compositions) is given by the binomial coefficient ([88]):

comps =
(

I−1
n−1

)
It should be clear that it is only possible to evaluate the metric of every possible
workload distribution for small numbers of processors and workloads. In ex-
periments the exhaustive search was used for 2 and 3 processor configurations
only.
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Genetic Algorithm

For larger configurations an Evolutionary Computation technique has been used
to search through the problem space of possible workload distributions, specifi-
cally, a Genetic Algorithm (GA) [89]. GAs are often suitable for multi-dimensional
global search problems particularly where the search space is not well known.
Given the variety of metrics to test, the GA is seen as a useful investigative
method.

Algorithm 2 Genetic Algorithm
Initialise(Population)
Evalutate(Population)
while not TerminateCondition do

newGeneration := Select(Population)
newGeneration := Crossover(newGeneration)
newGeneration := Mutate(newGeneration)
Evaluate(newGeneration)
Population := Survive(newGeneration, Population)

end while

A workload distribution is represented as a member of a population in a GA.
Each member has a certain fitness, in this case given by the metric, the population
is evolved using elements from natural evolution such as crossover, mutation and
natural selection. This results in the average fitness of the population increasing
over iterations of the evolutionary cycle, and a good coverage of the entire solu-
tion space by way of random mutations. The general pattern of a GA is shown
in Algorithm 2.

In order to use a GA to search the solution space of possible workload parti-
tions a number of core functionalities are implemented as follows:

• The encoding of a workload distribution as a member of the population of
the GA is as an array of integers describing the distribution. Each integer is
a “chromosome” of the member’s representation in the GA. The distribu-
tion is seen both as the actual decomposition of a particular workload, and
as a relative weighting of work to assign to each processor. This relative
weighting is necessary for crossover to function.
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• Evaluation of the fitness of member of the population is by way of the
metrics described in the previous section. A metric will give a score to
each population member which is used in the selection process.

• The Selection process is by tournament, there is no specific modification
to the selection process to deal with the application domain. Tournament
players are randomly selected from the population and their ranks (pro-
vided by metrics) are used to choose a winner. Pairs of winners are used
as parents in crossover.

• Crossover is one of the main ways a genetic algorithm traverses the search
space so it is important that it is implemented properly. The general method
is to splice “chromosomes” between two parents together, to create two
children, each with opposing halves of their parents. In this application, a
single chromosome would be the work load assigned to a specific proces-
sor. And the entire chromosome string is the overall workload distribution.

Given two parent workload distributions, da = da0,da1, . . . ,dan and db =

db0,db1, . . . ,dbn, a splice point is selected randomly at a processor ps in
the distribution. The first child will be generated from da0,da1, . . . ,das

and dbs+1,dbs+2, . . . ,dbn distribution sub-parts. The second child will
have the opposite sub-parts db0,db1, . . . ,dbs and das+1,das+2, . . . ,dan.

At this point the children will have distributions that may sum to more or
less than the total amount of work to be distributed. A fixing function must
be applied. The fixing function takes a distribution and finds the relative
work assigned to each processor by that distribution, even if it distributes
more than the target amount of work. Then the relative amounts are used
to re-distribute the total required workload between the processors. This
maintains the main theme of crossover, where characteristics from two
parents are divided and passed on to two children.

• Mutation is achieved by taking random members of the new generation of
children created by crossover and altering them in some random way. For
this application, a random set of processors are chosen from the workload
distribution, between these processors work is added to some and removed
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2. The Band Performance Model

from others, while maintaining the total amount of work distributed in the
mutation.

• Survival is simple Darwinian survival, where the population is trimmed to
a certain size by removing the least fit members.

After a set number of generations has been exceeded, or when the popula-
tion converges consistently for a number of generations, the Genetic Algorithm
terminates, returning the distribution with the highest metric in its final popula-
tion. The evolution of the fitness of this distribution, using each metric and for
four, eight and sixteen processor configurations, are shown in Figure 2.12. These
graphs show how the fitness of the best partition improves in each generation of
the Genetic Algorithm. It can be seen that the GA rapidly approaches the fittest
distribution in all cases. In Figures 2.12a and 2.12b, where there are sixteen pro-
cessors to divide the workload between, the approach is slightly slower, but the
solution space the GA searches is also much larger. The scales of the various
metrics are omitted as they do not relate to each-other.

The distribution returned by the GA has been verified as having the highest
metric of all possible distributions through a number of small scale exhaustive
searches. Though it cannot be stated that this method always returns the best
solution, using the GA enables experimentation with large numbers of processors
which would otherwise be impossible.

2.3.2 Calculating Execution Time

In order to evaluate the performance of a workload distribution created by a par-
ticular metric, the execution time of that distribution must be calculated. Using
load traces, this can be achieved in the following manner:

A load function for future load fluctuations from t onwards is created. It
represents the future load at periods of 1δ,2δ,3δ and so on. The execution time
adjusted for load T ′ is intersected with this function in much the same way as it is
intersected with historical load functions in the creation of the Band Performance
Model (see Section 2.1.2). The resulting intersection point gives the execution
time of the problem under the future load fluctuations.
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Figure 2.12: Fitness of metric based distribution in the generations of a genetic
algorithm for 16, 8 and 4 processor problem distributions. Note: fitness scales
omitted.
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2. The Band Performance Model

This method of predicting an execution time given a load trace is similar
to that used in [80]. They represent availability of a processor as a continuous
function of time based on a recorded load trace. The execution time of a task with
a known ideal execution time (tnominal), is given by the integral of an availability
function, which should equal tnominal at some texec, the resulting execution time
under the load trace. In the experiments presented here the load fluctuations
are not integrated under, but instead their amalgamated effects over time are
calculated, this amalgamation is intersected with T ′. The result is identical, but
the approach is slightly different.

This is the basic simulation environment in which experiments are conducted.
Given a history of past load fluctuations and a trace of future load fluctuations,
the simple and detailed Band Models may be created and used to partition some
problem, which then has its execution simulated so that we may evaluate the
performance of the distribution.

The clear drawback of this method is that it assumes the load observations
perfectly describe the availability of the processor. Between CPU bound tasks,
the relationship between load and processor availability is linear but this breaks
down when IO-bound tasks share the processor. However, in order to maintain
repeatability of experiments, the simulated environment is more convenient. It
also has the advantage of allowing the evaluation of the models under different
conditions without attempting to manufacture repeatable workloads. Further, the
limitation does not prevent the comparison of different partitioning methods and
metrics.

2.3.3 Experiments

A total of 16 processors are used in the following experiments. Each processor
is represented by a Functional Performance Model which has been built on a real
platform under zero external load, i.e. the model describes the peak performance
of the processor for all possible partitioned amounts of work. The platforms used
to obtain these models are listed in Table 2.1, hcl01 to hcl16 are included in the
experiments.

Load traces were generated with a random Gaussian distribution and having
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2. The Band Performance Model

a target mean and standard deviation. In experiments this is used to apply certain
characteristics to the load fluctuations experience by processors, either highly
variable, with a large deviation, or stable with a low deviation. The performance
of the partitioning metrics could then be evaluated under different circumstances
by choosing sets of load traces to experiment with. Example performance models
obtained from the platforms and load traces generated for an experiment are
shown in Figure 2.13.

In each experiment square matrices of various sizes are partitioned between
selected platforms and the partitions are evaluated. For each matrix size, the par-
tition and simulated execution is made from multiple different points in the load
trace and an average execution time is returned. The execution time of partitions
are compared with a best case execution time, which is calculated using future
knowledge of load fluctuations. The performance of each partition method, rel-
ative to the best case, is plot against the total size of the partitioned matrix.
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Figure 2.13: Example performance models and load traces used for experimen-
tation.

Two Processor Experiments

The first set of experiments use the platforms hcl05 and hcl15. These processors
have differing speeds and amounts of memory. hcl05 uses an external load trace
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2. The Band Performance Model

with a average level of 0.1, i.e. it is busy 10% of the time, and a low level of
fluctuation about this average. hcl15 has a higher external load average of 0.8
and the fluctuation of the external load is moderate.

The results are shown in Figure 2.14. One can see through-out most of the
results in this section that the single benchmark distribution method performs
close to the optimal for small problem sizes. This is because the simulated exe-
cution of partitions is based on a load trace with a resolution of one minute. The
execution time of small problems may be under one minute. The single bench-
mark uses an instantaneous measure of speed to partition the workload and if the
execution occurs entirely within the same time-step as the measurement, it will
have perfect accuracy.

The functional and band model based partition methods do not perform as
well as the single benchmark in this region because their representation of pro-
cessor speed is based on the history of load fluctuations rather than an instanta-
neous measure. For such short running problems, the average historical perfor-
mance may not result in as accurate a representation as the instantaneous proces-
sor speed. Some adjustment to the formulation of the band model could be made
to account for this, e.g. by using only few most recent load observations to build
the band for short running problem sizes.

Moving beyond small problem sizes, the single benchmark performs well
when an optimised calculation method is used. This is because the performance
function of the optimised method is very flat, and a single benchmark represents
speed as constant for all problem sizes. However at a certain problem size pag-
ing occurs and the performance of the single benchmark partition dives. When
viewing the results for the naive calculation method one can see that the sin-
gle benchmark never performs well, this is because the real profile of the naive
calculation is far from flat, with many decreasing steps at memory hierarchy
boundaries.

The functional and band model based partition methods perform well in both
the naive and optimised calculation experiments. The constant probability metric
has inconsistent performance, being poor for small problem sizes but having
the best performance for larger problem sizes. The adjusted functional model
and piece-wise probabilistic partitioning methods follow each-other closely. All
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2. The Band Performance Model

methods are within 5% of each-other.
The second set of two processor experiments uses platforms hcl07 and hcl01.

Both these machines have identical processors but differing memory configura-
tions. The external load traces used apply the same level of average load to both
processors, 0.5, or 50% utilisation, but hcl07 experiences almost no fluctuations
while hcl01 has a high standard deviation of 0.6 from the mean of 0.5.

The results in Figure 2.15 show that the overall performance of the metrics
is worse than in the previous case where the deviation was lower, but they still
achieve greater than 80% of the optimal speed. Most of the same observations
from the previous experiment can be made here too, in this case however the
constant probability metric performs consistently better than other partitioning
methods

Four Processor Experiments

The four processor experiments use machines hcl05, hcl10, hcl11 and hcl15.
Each machine has its own external load trace with various properties. hcl05
and hcl11 both have low average external load, and low load fluctuations. hc10
and hcl15 have high average external load and moderate load fluctuations. The
results of the experiments are shown in Figure 2.16.

The performance of the partitioning methods is similar to the performance in
the two processor experiments. The constant probability metric is inconsistent
performing worst of all for some problem sizes and best for others. The adjusted
functional model, piece-wise probabilistic metric and angular metric all perform
consistently and reach more than 90% of the optimal speed.

Eight Processor Experiments

The eight processor experiments use machines hcl01 to hcl08 with differing ex-
ternal load traces. The performance is the same as the pattern seen in the four and
two processor experiments (Figure 2.17). The performance of the single bench-
mark partitioning method declines consistently until paging occurs and then it
drops severely. Of the functional and band model based partitioning methods,
the constant probability metric often has the peak performance but it is also poor
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2. The Band Performance Model

for small problem sizes. The other methods all perform consistently.

Sixteen Processor Experiments

Finally, the sixteen processor experiments use machines hcl01 to hcl16 with a
wide range of external load traces. The results (Figure 2.18) show lower perfor-
mance than has been seen before for small problem sizes. With a greater number
of processors contributing to the total computation, the execution time for small
problem sizes becomes very short, and this may factor in the performance of the
band model based metrics. As problem size increases the pattern from previous
experiments emerges. The adjusted functional model performs consistently for
all problem sizes and the single benchmark is also as expected, performing well
for the optimised calculation method until paging occurs and performing poorly
for the naive calculation method.
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Figure 2.14: Performance of partitioning methods using two heterogeneous pro-
cessors, hcl05 and hcl15. hcl05 operates under low external load (average load
index of 0.1), with low fluctuations (deviation of 0.05). hcl15 operates under a
high external load (average of 0.8) and moderate load fluctuation (deviation of
0.3).
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Figure 2.15: Performance of partitioning methods using two processors, hcl07
and hcl01. Processors have identical speed but heterogeneous memory. Both
operate under moderate average levels of external load (0.5). hcl07 experiences
low load fluctuations (deviation of 0.05) and hcl01 experiences high fluctuations
(deviation of 0.6).
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Figure 2.16: Performance of partitioning methods using 4 processors, hcl05,
hcl10, hcl11 and hcl15. Processors have varied average external loads and load
fluctuations.
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Figure 2.17: Performance of partitioning methods using 8 processors, hcl01 to
hcl08. Processors have varied average external loads and load fluctuations.
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Figure 2.18: Performance of partitioning methods using 16 processors, hcl01 to
hcl16. Processors have varied average external loads and load fluctuations.
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2. The Band Performance Model

2.3.4 Summary of Experiments

The set of results presented shows that, as expected, the single benchmark is
not appropriate for partitioning problems where the performance profile of the
computation is not flat and consistent, either because paging occurs or because
the computation has not been optimised. Also, for long running computations,
the single benchmark, taken at beginning of runtime will not be sufficient to
achieve optimal balance.

The functional and band based methods perform well for a generalised prob-
lem where the performance profile may or may not be flat. They also accurately
represent the variance in performance at single points in the profile. Of the meth-
ods using these models for problem partitioning, the adjusted functional model
and piece-wise probabilistic metric have the best results. The constant proba-
bility metric is too inconsistent when partitioning small problem sizes and the
angular metric performs slightly worse than the functional or piece-wise proba-
bilistic metric.

The adjusted functional model and piece-wise probabilistic metric both per-
form consistently well across all experiments. They also have almost equal over-
all performance. The key difference between these is that partitioning with the
piece-wise probabilistic method is performed using a heuristic search while par-
titioning problems using the functional is by an efficient algorithm presented in
[67]. This algorithm is guaranteed to converge on the solution of the partition-
ing problem and has a worst case complexity of O(p3× log2(n)) (where p is
number of processors and n is the total problem size to partition). Finding a
partition based on the adjusted functional model is far simpler than finding one
using the piece-wise probabilistic metric. As the performance of both partitions
is so close, the adjusted Functional Performance Model is proposed as the best
representation of the speed variance of non-dedicated processors. This does not
discard the Band Performance Model as the adjusted model is a product of the
band.
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2. The Band Performance Model

2.4 Summary

In this chapter the Band Performance Model has been introduced. This model
extends the Functional Performance Model by adding a prediction of processor
performance variance to it.

The Functional Performance Model may also be considered as a product of
the Band Model, where the performance variance is averaged to a single valued
function. This model is described as an adjusted Functional Performance Model.

The formulation of a simple and detailed Band Performance Model has been
described and methods of evaluating the “goodness” of a problem distribution
using these models has been proposed. A Genetic Algorithm has been imple-
mented to solve the problem of partitioning a workload while maximising the
various goodness metric proposed.

Experiments simulating the execution time of problem distributions using
a variety of model types have concluded that though the simple and detailed
Band Performance Models result in good load balance, the improvement over an
adjusted functional model is marginal at best.

As a result, algorithms for using the Band Models to partition problems have
not been developed beyond the implementation of the genetic algorithm and the
adjusted Functional Performance Model is suggested as the best representation
of processor speed on platforms with load fluctuations.
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Chapter 3

Optimised Construction of the
Band Performance Model

This chapter presents an optimised procedure for building a piece-wise linear
approximation of the Band Performance Model (BPM). The Model represents
the variation in execution speed of a problem on a processor, across a range of
different problem sizes. The formulation of the Band Performance Model has
been described in Chapter 2. Briefly, it is a product of two inputs:

• a history of load observations which describe fluctuations in processor
availability over various time periods. This history is used to predict maxi-
mum and minimum load over time periods t in two piece-wise linear func-
tions: lmin(t) and lmin(t).

• a piece-wise linear function representing ideal execution speed as a func-
tion of problem size Si(x), and ideal execution time Ti(x).

The history of load observations may be obtained at almost no cost and is not a
limiting factor in the practical use of a Band Performance Model. However the
ideal speed function is expensive to discover. Each end-point of the line segments
that make up the piece-wise linear function corresponds to an experimentally
obtained execution speed. Obtaining the speeds requires the actual execution of
the routine computing a specific problem size. A detailed model may require
many of these points and the duration of experiments may be impractically long.
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Example speed band approximations, showing the number of experimental
points required for the approximation, are illustrated in Figure 3.1. The proce-
dure presented in this chapter minimises the number of such points that must be
measured to build an accurate approximation of the Band. The resultant approx-
imation gives the speed of the processor for any problem size with an accuracy
that is within the inherent deviation of the processor’s performance. For sim-
plicity in problem partitioning and task scheduling, a Functional Performance
Model (FPM) may be placed through the middle of the Band, and this FPM will
also have a degree of accuracy that corresponds with the known performance
fluctuations of the processor.

In this chapter the problem of optimally approximating the Band model is
formalised and an algorithm that attempts to solve this problem is described.
Experimental results from an implementation of this algorithm are presented to
show the speed-up in construction time that is achieved.

3.1 Problem Formulation

For a specific routine in a real-life situation, the performance demonstrated by
the processor is characterised by a band representing the speed of the processor
across various problem sizes. The width of such a band describes the level of
fluctuation in the speed due to changes in external load.

The problem is to experimentally find an approximation of the speed band
of the processor that can represent the real-life band with sufficient accuracy but
spend a minimal amount of experimental time in the building process. One such
approximation is a piece-wise linear function which accurately represents the
real-life speed band with a finite number of points.

The piece-wise linear functional approximation of the speed band is built
using a set of experimentally obtained points for different problem sizes. The
problem size, x, is equivalent to the amount of data stored and processed by the
routine. This is usually governed by the input parameters of the routine. To
obtain an experimental point of a particular problem size the routine is executed
with the parameters corresponding to the problem size. The execution time is
measured under ideal conditions, with no other contending processes to give
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(a) The speed band of a problem which uses the memory hierarchy ineffi-
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(b) The speed band of a problem which uses the memory hierarchy efficiently
(built using 8 experimental points).

Figure 3.1: Using piecewise linear approximation to build speed bands. Circular
points are experimentally obtained, square points are calculating using heuristics.
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Ti(x). The ideal speed Si(x) is equal to the volume of computations divided by
the Ti(x). The volume of computations may be given by the complexity of the
problem.

A prediction of the maximum and minimum external load that would occur
during the execution period of the problem size x are extracted from a record of
historical load fluctuations. The exact manner is described in Chapter 2. These
predictions are applied to the ideal speed resulting in maximum and minimum
predicted speeds of execution, Smax(x) and Smin(x). In this manner, the experi-
mental point is converted to a range of speeds, connected by a vertical line, from
(x,Smax(x)) to (x,Smin(x)). This line is denoted as the “cut” of the real-life speed
band (see Figure 3.2a). The difference between Smin(x) and Smax(x) represents
the level of fluctuation in speed due to changes in external load during the exe-
cution of a problem of size x.

The piece-wise linear approximation is obtained by connecting the cuts de-
rived from the experimentally obtained execution speeds as illustrated in Figure
3.2b. The problem of building the approximation is to find a set of experimental
points that can represent the speed band with sufficient accuracy and at the same
time spend minimum experimental time building the approximation.

Formally, the problem is defined as follows:

• Given the functions lmin(t) and lmax(t) (that are functions of time, charac-
terising the level of fluctuation in load over time).

• obtain a set of n experimental points representing the piece-wise linear
function approximation of the speed band of a processor, each point rep-
resenting a cut given by (x j,Smax(x j)) and (x j,Smin(x j)), where x j is the
size of the problem and Smax(x j) and Smin(x j) are speeds calculated based
on the functions lmin(t), lmax(t) and the ideal speed Si(x j) at the jth point,
such that:

– The non-empty intersectional area of the piece-wise linear function
approximation with the real-life speed band is a simply connected
surface. (A surface is said to be connected if a path can be drawn
from every point contained with its boundaries to every other point,
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(a) The speeds Smax(x) and Smin(x) representing a cut of the real band used
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(b) A piece-wise linear approximation built by connecting the cuts.

Figure 3.2: Illustration of how a piece-wise function approximates a band.
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a topological space is simply connected if its path connected and it
has no holes.) This is illustrated in Figure 3.3.

– The sum of times, ∑n
j=1 Tj, is minimal, where Tj is the experimental

time used to obtain point j.
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Figure 3.3: The non-empty intersectional area of a piece-wise linear function
approximation of the real-life speed band is a simply connected surface.

3.2 Assumptions

The procedure presented operates under a number of reasonable assumptions on
the shape of the real-life band that it approximates. They are as follows:

1. The upper and lower curves of the speed band are continuous functions of
the problem size.

2. The permissible shapes of the real-life speed band are:

(a) The upper and lower curve are both a non-increasing function of the
size of the problem for all problem sizes (i.e. Figure 3.4a).
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(b) The upper and lower curve are both an increasing function of the
problem size, followed by a non-increasing function of the problem
size (i.e. Figure 3.4b).

3. A straight line intersects the upper curve of the real-life speed band in
no more than one point between its endpoints. Also, a straight line inter-
sects the lower curve of the real-life speed band in no more than one point
between its end points. This is illustrated for routines which implement
inefficient memory access, as per assumption 2a in Figure 3.4a, and for
routines which implement efficient memory access, as per assumption 2b
in Figure 3.4b.

4. The width of the real-life speed band, representing the level of speed fluc-
tuations due to changes in load, decreases as the problem size, and conse-
quently problem execution time, increases.

Experiments with diverse scientific routines and heterogeneous platforms pre-
sented in [90] have shown that the above assumptions are realistic and that the
speed band of the processor can be approximated accurately by a band that sat-
isfies these assumptions.

There is also a constraint on the environment that the model is used in. The
effects on the performance of a processor caused by several users running heavy
computational tasks simultaneously is not considered. It is assumed that only one
computational task will be executed at a time, but that this task may execute in
the presence of other programs performing computations and communications
of a relatively light-weight nature. For example, desktop applications such as
email clients, browsers, editors and so on. The Band Model can approximate the
fluctuation in processor performance due to such tasks and the scenario fits the
notion of a “Desktop Cluster”.

3.3 Definitions

Before presenting the procedure to build a piece-wise linear function approxi-
mation of the speed band of a processor, some objects, operations and relations
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(a) Shape of real-life speed band of a processor for a routine that uses the
memory hierarchy inefficiently.
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(b) Shape of a real-life speed band of a processor for a routine that uses the
memory hierarchy efficiently.

Figure 3.4: The two general shapes of the real-life band.
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must be defined.

1. The cut C(x) is a line segment connecting the points (x,Smin(x)) and (x,Smax(x)).

2. The “interval” I(x) is the horizontal projection of the interval Smin(x),Smax(x)

for a problem size x.

3. I(x)≤ I(y) if and only if Smax(x)≤ Smax(y) and Smin(x)≤ Smin(y)

4. I(x)∩I(y) represents the intersection between the intervals (Smin(x),Smax(x))

and (Smin(y),Smax(y)). If I(x)∩ I(y) =∅ where ∅ represents an empty set
with no elements, then the intervals are disjoint. If I(x)∩ I(y) = I(y) then
the interval (Smin(x),Smax(x)) contains the interval (Smin(y),Smax(y)), that
is, Smax(x)≥ Smax(y) and Smin(x)≤ Smin(y).

5. I(x) = I(y) if and only if I(x)≤ I(y) and I(y)≤ I(x)

3.4 Speed Band Approximation Algorithm

The algorithm, titled Geometric Bisection Building Procedure (GBBP), is pre-
sented in the following steps, and illustrated in Figures 3.5, 3.6 and 3.8.

Step 1: Initialisation We select an interval of problem sizes, [a,b], where a is
some small size and b is a problem size large enough to make the speed of
the processor practically zero. The problem size a should be sufficiently
small that the problem fits in one of the upper levels of the memory hier-
archy of the computer (L1 Cache for instance) and b may be equivalent
to the maximum amount of memory that the computer will allow to be
allocated on the heap. The speeds of execution at a, Smin(a) and Smax(a)

are obtained experimentally, while the speed at b is set at 0. The initial
approximation is a band connecting the cuts C(a) and C(b) as illustrated
in Figure 3.5a.

Step 2: Approximation of the increasing part of the speed band The band cut
at 2a is obtained experimentally.
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If I(2a) ≤ I(a) or I(2a)∩ I(a) = I(2a) (i.e. the increasing section of the
band ends at point a), then the current trapezoidal approximation is re-
placed by two trapezoidal connected bands, the first connecting cuts C(a)

and C(2a) and the second connecting cuts C(2a) and C(b). Variable xle f t

is set to 2a and xright is set to b and the algorithm proceeds to Step 3, where
the non-increasing portion of the band will be approximated.

If I(a) < I(2a) (i.e. the speed band is increasing with problem size) then
Step 2 is applied recursively to pairs (ka,(k+1)a) until I((k+1)a)≤ I(ka)

or I((k+1)a)∩ I(ka) = I((k+1)a). Then, the current trapezoidal approx-
imation of the speed band in the interval [ka,b] is replaced by two con-
nected bands, the first connecting cuts C(ka) and C((k+1)a), the second
connecting the cuts C((k+1)a) and C(b). The xle f t is set to (k+1)a, xright

is set to b and the algorithm proceeds to Step 3. This is illustrated in Figure
3.5b.

It should be noted that the experimental time take to obtain cuts of the
speed band at sizes {a,2a, . . . ,(k+1)a} is relatively small (in the order of
seconds) compared with the time to measure large problem sizes (minutes
to hours).

Step 3: Approximation of the non-increasing section The interval from [xle f t ,xright ]

is bisected at xb1 into sub-intervals [xle f t ,xb1] and [xb1,xright ] of equal length.
The current approximation, given by the band connecting cuts C(xle f t) and
C(xright) is intersected with a line x = xb1 giving an approximation of the
band cut at xb1: C′(xb1). The actual cut at C(xb1) is also obtained, experi-
mentally, at problem size xb1.

• If I(xle f t)∩ I(xb1) 6=∅, the current trapezoidal approximation of the
speed band is replaced by two connected bands, the first connect-
ing cuts C(xle f t) and C(xb1), the second connecting cuts C(xb1) and
C(xright). This is illustrated in Figure 3.6a. Construction of the band
in the interval [xle f t ,xb1] is halted and Step 3 is applied recursively to
the interval [xb1,xright ].

• If I(xle f t)∩ I(xb1) = ∅ and I(xb1)∩ I(xright) 6= ∅, the current trape-
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zoidal approximation of the speed band is replaced by two connected
bands, the first connecting cuts C(xle f t) and C(xb1), the second con-
necting cuts C(xb1) and C(xright). This is illustrated in Figure 3.6b.
Construction of the band in the interval [xb1,xright ] is halted and Step
3 is applied recursively to the interval [xle f t ,xb1].

• If I(xle f t)∩ I(xb1) =∅ and I(xb1)∩ I(xright) =∅ and I′(xb1)< I(xb1)

(that is I′(xb1) ≤ I(xb1) and I′(xb1)∩ I(xb1) = ∅), the current trape-
zoidal approximation of the speed band is replaced by two connected
bands, the first connecting cuts C(xle f t) and C(xb1), the second con-
necting cuts C(xb1) and C(xright). This is illustrated in Figure 3.7.
Step 3 is applied recursively to both intervals, [xle f t ,xb1] and [xb1,xright ].

• If I(xle f t)∩I(xb1)=∅ and I(xb1)∩I(xright)=∅ and I′(xb1)∩I(xb1) 6=
∅), then there are two possible forms of the real life band that the
algorithm must discover. These are illustrated in Figures 3.8a and
3.8b. In order to determine which shape the band takes, the intervals
[xle f t ,xb1] and [xb1,xright ] are tested as follows:

– First, interval [xle f t ,xb1] is bisected at point xb2 and the cut C(xb2)

is obtained experimentally. The current approximation of the cut
C′(xb2) is also obtained from an intersection of the vertical line:
x = xb2 and the trapezoidal approximation of the band.

∗ If I(xb2)∩ I′(xb2) 6=∅, then the real-life band corresponds to
the shape in Figure 3.8a. Therefore, construction of the band
in the interval [xle f t ,xb1] is halted. The current trapezoidal
approximation is replaced by two connected bands, the first
connecting cuts C(xle f t) and C(xb2), the second connecting
cuts C(xb2) and C(xb1). Since the cut at xb2 has been ob-
tained it is included in the model, even though the previous
approximation was adequate at this point.

∗ If I(xb2)∩ I′(xb2) = ∅, then the real-life band corresponds
to the shape in Figure 3.8b. Therefore, construction is con-
tinued by recursively applying Step 3 on intervals [xle f t ,xb2]

and [xb2,xb1].
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– Similarly, interval [xb1,xright ] is bisected at point xb3 and the cut
C(xb3) is obtained experimentally. The current approximation
of the cut C′(xb3) is also obtained from an intersection of a line
x = xb3 and the trapezoidal approximation of the band.

∗ If I(xb3)∩ I′(xb3) 6=∅, then the real-life band corresponds to
the shape in Figure 3.8a. Therefore, construction of the band
in the interval [xb1,xright ] is halted. The current trapezoidal
approximation is replaced by two connected bands, the first
connecting cuts C(xb1) and C(xb3), the second connecting
cuts C(xb3) and C(xright). Since the cut at xb3 has been ob-
tained it is included in the model, even though the previous
approximation was adequate at this point.

∗ If I(xb3)∩ I′(xb3) = ∅, then the real-life band corresponds
to the shape in Figure 3.8b. Therefore, construction is con-
tinued by recursively applying Step 3 on intervals [xb1,xb3]

and [xb3,xright ].

This completes the definition of GBBP. The algorithm terminates as all construc-
tion intervals are finalised. Illustrations of the completed band approximations
are shown in Figure 3.1.
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Figure 3.5: Illustrations of steps of the Geometric Bisection Building Procedure.
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Figure 3.6: Further Illustrations of steps of the Geometric Bisection Building
Procedure.
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(a) Possible shape of real-life band: C(xb1) and regions to the left or right
are all accurately approximated, i.e. there is no inflection in the model.
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(b) Possible shape of real-life band: C(xb1) is accurately approximated but
regions to the left and right are not, i.e. there is inflection in the model.

Figure 3.8: Illustrations of possible shapes of the model when the speed at a new
bisection point is already approximated.
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Table 3.1: Machine specifications for GBBP experiments.

Arch.
CPU
(MHz)

Total
Memory
(KiB)

Available
Memory
(KiB)

Cache
(KiB)

Problem size end
points a:b
Matrix
Multi-
plication
(naive &
ATLAS)

Cholesky
Factorisa-
tion

X1 Linux
/ Intel
Xeon

1977 1033908 460368 512 100:13000 100:19500

X2 SunOS
/ Ultra-
SPARC
IIi

440 524288 401408 2048 100:7000 100:13000

3.5 GBBP Experiments

Two systems: a 2GHz Pentium Xeon Linux workstation with 1GB of RAM (X1)
and a 440MHz UltraSPARC IIi Solaris workstation with 512MB of RAM (X2),
are used in experiments with the Geometric Bisection Building Procedure. Each
machine is integrated in the departmental network and operates with roughly
400MB of available memory, the rest being consumed by operating system and
user processes. These extra processes perform basic computations and commu-
nications associated with email clients, browser sessions, text editing and audio
use. Their specifications can be found in Table 3.1.

Three applications are used to demonstrate the efficiency of GBBP in the con-
struction of the piece-wise linear function approximation of the speed band of a
processor. The first application is Cholesky Factorisation of a dense square ma-
trix employing the LAPACK [91] routine dpotrf. The second is a matrix-matrix
multiplication of two dense matrices using memory hierarchy inefficiently. The
third application is a matrix-matrix multiplication of two dense matrices using
the level-3 BLAS routine dgemm [92], supplied by the Automatically Tuned
Linear Algebra Software package (ATLAS) [93]. This routine uses the memory
hierarchy efficiently.
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CPU Naive Matrix Mul-
tiplication

ATLAS Matrix
Multiplication

Cholesky Factorisa-
tion

Speed Up (Number of Points used by GBBP)
X1 5.9 (5) 8.5 (7) 6.5 (19)
X2 5.7 (5) 5.7 (5) 15 (8)

(a) Speedup of GBBP over naive construction procedure for different applications.
CPU Naive Matrix Mul-

tiplication
ATLAS Matrix
Multiplication

Cholesky Factorisa-
tion

X1 5 7 19
X2 5 5 8

(b) Number of points used by GBBP in construction of models for different appli-
cations.

Table 3.2: Results of experimentation with GBBP.

Figures 3.9 and 3.10 show the real life speed function and piece-wise linear
function approximation of the speed band for processors X1 and X2 on a se-
lection of the demonstration applications. Each point in the approximations is
obtained by execution of the application for the problem size at that point. The
absolute speed of the processor for this problem size is found by dividing the
volume of computations by the measured execution time. For the applications
described the volume of computations is given by their floating point complexity.

Table 3.2a shows the speed-up of GBBP over a naive construction proce-
dure. The naive procedure divides the interval [a,b] of problem sizes into n

equal points, the application is then executed for each of the problem sizes
{a,(a+(b− a)/n),(a+ 2(b− a)/n), . . . ,b}, to obtain the experimental points
used in building the piece-wise linear function approximation of the speed band.
In the experiments 20 points were used to achieve a reasonable accuracy over the
range [a,b]. The speed-up calculated is equal to the ratio of experimental time
taken to build the band approximation using the naive procedure over the time
taken using GBBP.

In Table 3.2b, for processor X1 and the Cholesky Factorisation routine, it
can been seen that the number of experimentation points required by GBBP was
close to the naive construction method (19 versus 20), however the execution
speed up remained high. Figure 3.9a reveals that a large number of experimental
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(b) Speed Band for Naive Matrix Multiplication on
X1.
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(c) Speed Band for optimised ATLAS Matrix Multi-
plication on X1.

Figure 3.9: Experiments showing the constructed Band Approximations realised
by the Geometric Bisection Building Procedure for a variety of routines on X1.
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(a) Speed Band for Cholesky Factorisation on X2.
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(b) Speed Band for Naive Matrix Multiplication on
X2.
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(c) Speed Band for optimised ATLAS Matrix Multi-
plication on X2.

Figure 3.10: Experiments showing the constructed Band Approximations re-
alised by the Geometric Bisection Building Procedure for a variety of routines
on X2.
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points were taken for very small problem sizes in the second step of GBBP where
it tests for a performance increase in the band. These experimental points have
no significant impact on the overall construction time as their running time is
relatively small.

3.6 Summary

The piece-wise linear functional approximation of the speed band of a processor
may be practically built using the algorithm presented (GBBP). Its use results
in a dramatic speed up in construction time against a naive method. This has
been demonstrated for a variety of routines with differing band profiles, both
optimised and naive matrix multiplication as well as Cholesky Factorisation. The
algorithm presented uses more experimental points in regions of the band profile
where significant change occurs and fewer experimental points where the profile
may easily be approximated. Overall it approximates the profile of the band with
a high degree of accuracy using fewer points than a naive method.
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Chapter 4

Application to Construct Processor
Performance Models

This chapter presents a tool, the Performance Model Manager (PMM), which
addresses the complexity of the construction and management of a set of Func-
tional and Band Performance Models on a computing server.

PMM [94] is a freely available open source piece of software distributed
under the GPL. It implements the Geometric Bisection Building Procedure de-
scribed in Chapter 3, optimising the construction of Functional and Band Perfor-
mance Models. The manual for PMM is attached as Appendix A of this thesis.

It allows for the definition of a large number of dynamic routines, for which it
will construct detailed performance models. Their construction may be managed
by flexible policies implemented in PMM which aim to minimise the impact of
the building procedure on the platform.

Finally, it provides visualisation of, and interfaces to access, constructed
models so that they may be understood and used in other systems.

In following sections the implementation of the GBBP construction method
is briefly described, how a routine is configured for construction by the manager
is shown and the management of model construction and interfaces to access
constructed models are explained.
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4.1 Performance Model Manager

PMM is a tool that has been developed to address issues surrounding the con-
struction, maintenance and use of Functional Performance Models in a variety
of parallel computing environments. It consists of three main features. Firstly it
implements the Geometric Bisection Building Procedure, described in Chapter
3, for multi-parameter FPMs, optimizing the construction of a routine’s perfor-
mance model. It permits a large number of routines to have their construction
managed by implementing a flexible benchmarking scheduler, suitable for use
where a queuing system does not exist. Finally it provides access to the models
in a variety of ways, allowing feedback from actual executions and providing
tools to use the models in scheduling decisions.

4.2 Efficient Construction

Unoptimised construction of the FPM for a large set of routines installed on a
large number of servers is infeasible due to the time and resources that would be
consumed. A novel algorithm that optimises the construction has been described
in Chapter 3, titled Geometric Bisection Building Procedure (GBBP).

Single parameter GBBP optimisations are made possible by using the nat-
ural variation in performance (due to a server’s external load fluctuations) and
assumptions on the shape of a FPM (that it may initially be increasing, but is
then decreasing and monotonic). Examples of the shape of models that fit these
assumptions are shown in Figure 4.1a.

4.2.1 Band of Performance

The performance of a server in a non-dedicated environment is variable and a
performance model for such a server must not be static. A FPM can be con-
sidered as a single possible level of performance that a server may return under
certain load conditions. When those load conditions are variable, the FPM be-
comes a band of performance levels rather than a single function.

GBBP finds a piecewise approximation of this band (illustrated in Figure

80



4. Application to Construct Processor Performance Models

4.1a). The approximation is constructed in such a way that its intersection with
the real-life performance band forms a simply connected surface. That is, the
approximation intersects the real-life band across the entire problem size range
leaving no gaps. This ensures the accuracy of the model while allowing the for-
mulation of optimizations that do not violate the constraint. A history of load
fluctuations, which does not include load from any heavy computational pro-
cesses that have been scheduled for execution on the processor, is recorded. This
history can be used to predict the maximal and minimal expected load fluctu-
ations that a problem may encounter on execution. Benchmarks made during
the construction of the model are adjusted by the loads they are predicted to en-
counter. The result is a maximal and minimal speed for every problem size and
these form the band model.

The functional model is then extracted from the band using the average speed
been the maximum and minimum limits of the band. The band itself is not
used in scheduling. As shown in Chapter 2, it provides limited benefit while
adding a great deal of overhead. Its main purpose is in enabling the optimization
of construction and providing a dynamically adjusted functional model which
describes performance under the average load condition.

4.2.2 Model Shape

The optimization of construction is based on assumptions on the shape of the
model. These are: that the performance may initially increase and that after
any initial increase it will be decreasing and monotonic. The initial performance
increase is discovered through a series of short benchmarks for small problem
sizes. These are inexpensive.

Once non-increasing, the problem size range is recursively bisected. The
performance at each bisection point is found through experimentation. At each
point, an attempt is made to determine if further construction is required or if
sufficient detail has been resolved in the model. Identifying where benchmarks
are no longer needed minimises the construction time.

For instance, in Figure 4.1b, when the model at benchmark points (a) and
(b) is examined, we find that the vertical component of the band at (a) contains
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(a) Typical profile of Band Performance Models ac-
cording to their memory access efficiency.

(b) Band Performance Model for barmatter routine
with points used by GBBP and a naive construction
algorithm shown.

Figure 4.1: Load observations and the load averages for various periods calcu-
lated from them.
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(b) entirely. As a result of the assumptions on shape (that it is monotonic), con-
struction between these points can cease without violating the simply connected
property of the real/model intersection.

Further, in the case of benchmarks (c),(d) and (e) we can see that (e) was
previously approximated by the segment joining (c) to (d) and, before that, by
the segment joining (c) to the endpoint. Again, no further benchmarks are re-
quired in the intervals between these points, as it has been shown that the model
adequately approximates the real band in these regions. A full description of the
GBBP algorithm can be found in Chapter 3

GBBP as described only applies to performance models that are a function
of a single parameter. In some cases it may not be possible to combine the
parameters of a problem into a single measure of problem size. For these cases
a multi-parameter model must be constructed. A pair of heuristic methods for
multi-parameter GBBP, each based extension of the single parameter algorithm
are implemented in PMM. The reliability of the approximation is not as rigorous
as for single parameter models.

Multi-parameter construction is exponentially more expensive than single pa-
rameter construction, so it is vital that any parameters which do not contribute
to the problem size or speed of execution are not included in the construction of
the multi-parameter model.

Single parameter GBBP requires that a minimum and maximum problem size
are defined. This is also the case for multi-parameter methods, each parameter
must have a defined maximum and minimum. The two methods implemented
are as follows:

4.2.3 Boundary multi-parameter GBBP

For each routine parameter, GBBP is applied in constructing a Bands where that
parameter is variable, and all other parameters are fixed at their minimum values.

The resultant band models form the boundaries of the full multi-parameter
model. New construction intervals are projected parallel to each parameter-axis
and through the points along the boundary band models forming a grid. GBBP
is applied to each of these intervals to complete the approximation of the multi-
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parameter model.

4.2.4 Diagonal multi-parameter GBBP

In this heuristic, a virtual construction interval created between a point where all
parameters have their minimum values, a so-called origin of the parameter space,
and a point where all parameters have their maximum values. The Geometric Bi-
section Building Procedure is applied along this interval to create a performance
band.

On completion of this diagonal band model, new construction intervals are
projected parallel to each parameter axis and through the experimental points
that make up the diagonal band, forming a grid. GBBP is applied to each of the
new construction intervals to complete the approximation of the multi-parameter
model.

The advantage in this method is that the overall problem size grows consis-
tently in the initial diagonal construction interval. This results in a reasonable
initial approximation of the shape of the model. The initial boundary models in
the Boundary method may not have the expected shape as the problem size does
not always grow significantly if just one parameter is increased.

4.3 Routine Configuration

PMM provides the developer of a routine with a framework for using GBBP
to construct a routine’s FPM. An interface to a call a routine with a particular
set of parameters must exist so that PMM may execute benchmarks at points
determined by GBBP.

To realise this interface the routine developer must provide a benchmarking
binary that executes a call to the routine on behalf of PMM. This binary must
follow a set of rules regarding the input that it accepts and the output it returns to
PMM. In certain specific environment it could be conceivable to execute routines
dynamically without this requirement, provided their function call has been de-
scribed in some machine parse-able way. However, there would be no facility to
pass intelligible data for the routine to process. This would require a user define
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actual code to initialise data as well as a detailed description of the function.
Such efforts would amount to no less effort than what is proposed: that the

user implements a small benchmarking binary to execute a routine. Ultimately
the proposed method is a far simpler and more flexible solution to the interfacing
between the routine and PMM.

In order to allow the PMM to execute benchmarks of a routine at points
as requested by GBBP, the benchmark binary of the routine that the developer
provides must:

• accept an ordered list of command line parameters that define the size of
the input parameters to the routine

• dynamically allocate input and output data structures according to the in-
put arguments

• initialise input parameters with data that is intelligible to the routine call,
and permits normal execution

• place calls to the PMM timer functions directly before and after execution
of the routine

• terminate and return normally on successful execution

An example of a routine benchmark is shown in Listing 4.1. The calls to PMM
timing code are highlighted on lines 27 and 32. Also shown are constructors,
destructors and the function that formats and prints the measured benchmarking
information (line 34), which is parsed by PMM. The routine that is benchmarked
by this example is an N-Body simulation of dark matter. It comes from an appli-
cation that will be described in Chapter 5.

The darkmatter routine acts on two large 3-dimensional matrices. Both
these matrices must be cubic and as a result we only need to build the FPM in
terms of two parameters, the size of a single side of each matrix, Nx and Np. This
is an important optimization that the routine developer can enable us to use, as
greater numbers of parameters results in far longer construction time. There is
also a constraint that Np is less than Nx. Parameter constraints may be configured
in the description provided to PMM, or by the benchmarking binary itself, as is
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the case here. When the parameters are not valid it returns a defined code to
PMM on line 15 of Listing 4.1.

In the configuration of PMM the routine developer specifies the parameters
to pass to the benchmarking binary, the order that they appear in the function
call, the range of each parameter (over which the model is to be built) and a path
to the binary itself. An example configuration in XML is shown in Listing 4.2.

4.3.1 Flexible Construction

PMM can construct models in a number of modes. Invoked from the command
line in an interactive mode, PMM can construct all models it has been configured
with at that instant. This provides for accurate model construction before a server
is enabled as part of some computing cluster. For a large number of routines, this
may be is a lengthy process that could occupy a machine for an unacceptable
amount of time. For situations where a server cannot be removed from use for
the duration of the model construction process, PMM can be started as a daemon
process. In this mode the construction of FPMs could be less intrusive. Time
constraints, system conditions and routine priorities can be applied to manage
the building process with a maximum level of flexibility provided to the system
administrator.

Time constraints limit the periods when models are permitted to be con-
structed. Three constraints have been implemented:

now construct a model as soon as possible with no time limit on benchmark
execution

until allow construction of a model up until a certain time, at which point, end
construction or allow another time constraint to take over

periodic construct a model in specific time intervals, which can be defined by
the minute of an hour, the hour of a day, day of week, etc.

Along with each time constraints are halting conditions. These are monitored
conditions that can prevent benchmarking. We make a number of conditions
available to monitor as well as test for the existence of a halt-file. The halt-file
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Listing 4.1: Example Benchmark Code

1 #include <pmm_util.h>
2 #include <"hydropad_bench.h">
3
4 int main(int argc , char **argv) {
5
6 /* declare variables */
7 global_data *gb;
8 int nx, np;
9 struct pmm_timer *t;

10 long complexity;
11
12 parse_args(argc , argv , nx, np);
13
14 if (nx < np)
15 return PMM_INVALID_PARAM;
16
17 /* allocate and initialise data */
18 allocate_gb(gb);
19 gb->nx = gb->ny = gb->nz = nx;
20 gb->np=np;
21 initialize_gb(gb);
22
23 complexity = (long) pow(nx ,3.0);
24
25 t = pmm_timer_init("dark", complexity); /* init timer

*/
26
27 pmm_timer_start(t); /* start timer */
28
29 /* execute routine */
30 darkmatter(gb->nx, gb->ny, gb->nz, gb->np, ......);
31
32 pmm_timer_stop(t); /* stop timer */
33
34 pmm_timer_result(t); /* get timing result */
35 pmm_timer_destroy(t); /* destroy timer */
36
37 free(gb);
38
39 return EXIT_SUCCESS;
40 }
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Listing 4.2: Example configuration of darkmatter routine in PMM

1 <routine>
2 <name>darkmatter</name>
3 <exe_path>/usr/lib/pmm/darkmatter</exe_path>
4 <model_path>/var/pmm/darkmatter_model</model_path>
5 <parameters>
6 <param>
7 <name>nx</name>
8 <order>0</order>
9 <min>32</min>

10 <max>256</max>
11 </param>
12 <param>
13 <name>np</name>
14 <order>0</order>
15 <min>32</min>
16 <max>256</max>
17 </param>
18 </parameters>
19
20 <priority>30</priority>
21
22 <benchmarking_policies>
23 <policy>
24 <time_constraint type=now/>
25 <condition type="user_login"/>
26 <condition type="halt_file">
27 <halt_path>/tmp/.pmm_halt</halt_path>
28 </condition>
29 </policy>
30 </benchmarking_policies>
31
32 <construction>
33 <method>gbbp</method>
34 </construction>
35 </routine>
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allows an administrator to add any halting condition they wish via an external
program that creates and removes the file. The conditions implemented are:

user login Halt construction if a user is logged into the machine.

load threshold Halt construction when load is above a threshold, this condition
is not monitored while a benchmark is being executed.

process detection Halt the construction if a particular process is detected.

user process detection Halt the construction if any process that does not belong
to an exclusion list of users is detected.

halt file As described previously, a specific file is tested for existence and con-
struction is halted on that basis.

Finally we allow each routine to have a construction priority. Problems with
a higher priority are constructed to completion before the construction of other
routines is begun. Problems with the same priority are scheduled based on their
level of completion, always choosing to benchmark a routine that is less complete
first.

All constraints on construction can be applied system wide, to all routines
configured in PMM, but specific routines can have specific constraints applied to
them, which override the system wide configuration. For example, the general
timing policy may be that benchmarks are only executed on weekends, but some
high priority routine may have a less limiting constraint allowing it’s benchmarks
to be executed during weekdays provided there are no processes detected that
relating to a cluster resource user.

When halting conditions are encountered, no benchmarks will start executing
until the conditions have cleared. However, if a benchmark is already executing
a decision must be made as to whether to allow it to complete or signal it to halt.
The action to take is a configurable option. If the halting strategy is to inter-
rupt executing benchmarks and the time constraints / halting conditions are very
limiting, lengthy benchmarks may never be run to completion. Consequently
some models may never be completely constructed. To mitigate this issue the
scheduler takes a number of actions:
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1. Benchmarks of a large size are added to the rear of a routines benchmark
queue.

2. Interrupted benchmarks are moved to the rear of a routines benchmark
queue.

3. Repeatedly interrupted routines have their priority reduced.

Though none of these actions prevent this issue entirely, they do delay the point
at which it would interfere with FPM construction. Ultimately it is for the ad-
ministrator to decide how to un-constrain the construction so it may complete.

The design of benchmarking scheduler is trivial. As it has a periodic duty
to check the halting conditions, this fixed loop can also be used to schedule new
benchmarks. The algorithm is defined in Algorithm 3.

Algorithm 3 Scheduling loop of the Performance Model Manager
while 1 do

update system conditions
if a benchmark b is currently executing then

if b’s execution-policy is no longer satisfied by the system conditions
then

halt b, if halt-able
end if

else
if the global execution policy is satisfied then

execute a benchmark on a routine with the highest priority
else

for all routines with a defined execution policy do
if the routine’s execution policy is satisfied then

add the routine to an executable list
end if

end for
execute benchmark on the routine with the highest priority on the exe-
cutatble routine list

end if
end if
sleep

end while
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4.4 Enabling Access and Use of FPM

PMM provides external programs with access to models in two manners. First,
direct access to the FPMs is available via the file system. The models are stored
in a structured format using XML. The PMM API provides methods to locate and
parse the FPMs stored on a system into data structures. The API also provides
accessor methods to look up an execution time approximated by the model, given
a particular set of routine parameters. New points in the FPM can be added to
the model when using files, but only if the models are not in the process of being
constructed by PMM.

When running as a daemon, the manager can service requests for models via
socket instead. It accepts the submission of benchmark timing via socket also,
which may come from actual executions of a routine that have had timing code
inserted. If construction is ongoing when an actual execution time is submitted,
the submission can be processed by the GBBP algorithm and can aid in further
minimizing construction time. A set of methods is provided for conveniently
opening a socket to PMM and sending or receiving data, in the form of individual
benchmarks or whole models.

Further, a plotting tool is provided which interfaces with the widely avail-
able Gnuplot [95] application. The tool allows for visualisation of both com-
plete models and models in construction, as well as live visualisation of the con-
struction process. Single and two parameter models can be viewed natively, and
higher dimensional models can be viewed by defining slices, i.e. fixing parame-
ters at certain values so that no more than two free parameters remain.

4.5 Summary

This chapter presented the Performance Model Manager tool, which has been
designed to enable the construction and use of Band and Functional Performance
Models. Its goals are to build the FPM in the most efficient manner possible and
to minimise the disruption to a running server. To these ends, it implements the
Geometric Bisection Building Procedure and it allows the user to apply a flexible
set of constraints on the benchmarking procedure.
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The configuration of PMM and how it benchmarks a routine in order to con-
struct the routine’s FPM has been described briefly, a complete manual can be
found in the Appendix A. FPMs enable more efficient parallel computing in het-
erogeneous environments, it is important that a tool such as PMM exists so that
their use can be conveniently realised.

92



Chapter 5

Functional Performance Models in
a GridRPC Environment

Grid Computing often utilises highly heterogeneous networks of computers. Ef-
ficient high performance computing on Grids can only be achieved when accu-
rate models of the performance of compute nodes are available to the scheduling
middle-ware. The performance of a processor executing a routine is determined
not only by the physical characteristics of the processor, but also by the nature of
the routine’s core algorithm and the size of the problem it is requested to compute
(determined by input parameters). When scheduling the execution of a remote
routine on a Grid, it is important to make an accurate estimation of the routine’s
execution time on the available heterogeneous processors.

In GridRPC [96] systems, many scheduling decisions are based on an esti-
mation of execution time of the routine. The Minimum Completion Time heuris-
tic [48] as implemented in NetSolve [97] or the Historical Trace Manager [98]
heuristics implemented in GridSolve [99] both rely on the accuracy of this es-
timation. Presently, this is provided by the combination of a simple LINPACK
[33] style benchmark, which measures operations per second of the processor,
and a measure of the complexity of a given routine. This kind of estimation as-
sumes that the core algorithm of the routine is similar to the benchmark code
used, which is not necessarily the case. A routine may be more or less suited
to a particular processor as a result of the underlying architecture of that pro-
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cessor. This difference may not be represented in the benchmark. Further, the
single benchmark does not account for variance in processor speed as problem
size increases. It describes the speed as constant. Should the speed of proces-
sors decreases with problem size, it assumes they will do so at the same rate and
that their relative speeds remain constant. This is never quite true, especially
where paging occurs on processors at different sizes of problem. In any case,
advanced task schedulers require accurate measures of a task’s execution time
on all processors rather than an accurate ranking of the processors.

The Functional Performance Model (FPM) is a excellent candidate for mak-
ing a more accurate estimation of a routine’s execution time. It is a routine spe-
cific, realistic, experimentally obtained model of the actual execution speed of a
routine expressed as a piece-wise linear function of the problem size. The prob-
lem size is given by its input parameters. These properties of the FPM address
both issues with the current estimations used in GridSolve. However, the tasks of
construction, management and use of a set of functional models are not trivial.
The previous chapter presented a tool which addresses these issues: the Per-
formance Model Manager (PMM). In this chapter the integration of Functional
Performance Models, provided by PMM, with an extended GridRPC system:
SmartGridSolve [82], is described.

5.1 SmartGridSolve and PMM

The steps involved in a GridRPC call using GridSolve are illustrated in 5.1.
There are three actors: the client, agent and server. Servers execute routines
on behalf of the client. The agent maintains a list of registered GridRPC servers
that it may offer to clients. Each server communicates to the agent the routines it
can solve and periodically sends an up-to-date performance index for the server.
When the client makes a GridRPC call it first communicates with the agent,
sending a description of the routine it wishes to have solved. In return, the client
receives an ordered list of servers ready to service the request. It then selects a
server and sends a request to solve the routine directly to that server. The list
of servers sent to a client is ordered using GridSolve’s scheduler on the agent.
Amongst other things, the scheduler uses a servers score to decide how to order
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Figure 5.1: Illustration of Scheduling Transactions in GridSolve.

95



5. Functional Performance Models in a GridRPC Environment

the server list. For a given routine request, the agent calculates a score for each
server that has the ability to compute the routine. The score is a representation
of the time that a server would require to execute the routine. This is calculated
using two components, a measure of the routine’s complexity and a measure of
the server’s speed.

The routine’s complexity is set by the routine developer during its configura-
tion in GridSolve. It is a function of the scalar arguments of the routine, which
are known to the agent when it is calculating a server’s score. The speed of a
server is measured in floating point operations per second (FLOPS) using a LIN-
PACK type benchmark. The routine complexity divided by the server’s FLOPS
gives the server’s score.

As previously mentioned, a single benchmark can be a poor representation of
a processors speed when the routine being executed is not similar to the bench-
marked routine or when the processor uses a different memory hierarchy to the
benchmark.

The Functional Performance Model overcomes both of these issues. It mod-
els the performance of each specific routine for a range of input sizes, not at only
a single point and not using a characteristic application, but the actual routine
itself. It is an experimental model, which can render accurate approximations of
execution time.

Integration of the FPM in GridSolve requires no fundamental modifications
to the GridSolve system design. Server scores are a rough estimation of execu-
tion time of a routine with a given set of arguments; the FPM provides exactly
this, so from the scheduler perspective, no changes are made. No changes are
required on the client side either.

The “Smart” extension to GridSolve (SmartGridSolve [82]) uses the same
mechanism to retrieve estimations of routine execution time. It has the ability
to schedule groups of parallel routines in a single mapping. When scheduling a
group of routines the scores of the routines on all available servers are input to a
scheduling algorithm. Inaccuracy in the estimation of execution times severely
limits the ability of a scheduler in its search for an optimal mapping.

Functionality is added on the server and agent via compile flags set during
the configuration of the GridSolve. Where previously, the server would commu-
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nicate to the agent a list of installed routines at start up, it now must also provide
the agent with FPMs for those routines. The server retrieves the FPMs either
directly from the PMM daemon via socket or from the file system. The server
also submits timing from actual executions to PMM.

Modification to the agent is only in networking code to receive models from
the server and in calculating a server’s score using the FPM. Common socket
code can be used in the server to agent and server to PMM communications.
Apart from extending the networking protocol between the agent and server, the
majority of the required code permitting the use of FPM in GridSolve and Smart-
GridSolve exists in PMM’s shared library. No modification to the scheduler is
necessary.

5.2 Hydropad and PMM

Hydropad [100] is a simulation of the evolution of clusters of galaxies in a uni-
verse that is comprised of baryonic matter and dark matter. The core loop of this
simulation models the internal interactions of baryonic matter and dark matter,
separately and in parallel, while their mutual interaction is modeled in a sequen-
tial gravitational calculation. The structure of the application is illustrated in
5.2. A GridRPC version ([101, 102]) of this application has been implemented
to demonstrate the performance of the Smart extension to GridSolve. Each task
in the graph is implemented as a remote procedure call. As a result of data de-
pendencies between time-steps it is not possible to unroll the loop, which limits
the level of task parallelism. Further, the volumes of data that must be commu-
nicated by the tasks are high. These properties make it particularly challenging
for a GridRPC middle-ware to achieve high performance when running the ap-
plication. It is for this reason that Hydropad is a good application to examine
the performance of GridSolve and the benefit of using FPMs in GridSolve. The
data manipulated by the simulation are three-dimensional cubic matrices that de-
scribe the particles in the system (in terms of position, pressure, density, etc.).
The number of particles in the system is defined by Np. The accuracy of the over-
all simulation is determined by the number of cells which the simulation space is
divided into. These cells are in a cubic grid structure, the size of which is given
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Figure 5.2: Task Graph of Hydropad Application.
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by Nx.
The major computational routines in Hydropad are those contained in the

main loop. The dark matter routine, darkmatter, is a Particle-Mesh N-Body
algorithm with a complexity of O(Np). The Baryonic matter, barmatter, routine
is a Piecewise Parabolic Method with a complexity of O(Nx).

In the context of Functional Performance Models, both of these routines are
interesting ones. The volumes of data they operate on are different. darkmatter
takes as input parameters both the particles in the system, specified by Np and
the cells of the grid, specified by Nx. barmatter only operates on the cells of
the grid structure. Despite this, barmatter is computationally more intensive.
When executing these tasks on a two of heterogeneous machines it is important to
note the volumes of data and the memory available to each processor. A simple
performance model will map the computationally large barmatter routine to
the fastest server. However, if the slower server does not have enough memory
to compute the darkmatter routine without paging, it may be that overall, the
tasks would be executed more quickly if barmatter is mapped to the slower
server. This is counterintuitive when the only performance information available
is a single benchmark.

FPMs for Hydropad routines have been built using PMM. As can be seen
in the task graph, there are a number of routines that must be executed prior
to execute barmatter or darkmatter routines. These are associated with the
initialization of the data structures and the calculation of gravitational fields. In
the benchmarking binary for a particular target routine, timing functions can be
added around any of the routines that the target is dependent on. As such, only
two benchmarking binaries were required in building the models for Hydropad,
as adequate data for the FPMs of initialization and gravitational routines could
be retrieved from the benchmarks of darkmatter and barmatter.

5.3 Models and Experiments

This section presents the FPMs constructed using PMM for the Hydropad appli-
cation and experimental results in the speed up achieved through using the FPMs
in GridSolve, with the Smart extension. As task parallelism is limited only two
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Table 5.1: SmartGridSolve Server Configuration.

Name Type MFLOPs Memory
hcl10 1.8GHz Opteron 693.85 1024 MiB
hcl05 3.6GHz Xeon 481.68 256 MiB

servers were used in experiments, their configuration is listed in Table 5.1. All
timed results were remote computations, totally independent of the client.

Experiments were carried out to illustrate the benefit of using FPMs when
scheduling a group of tasks. For simplicity experiments are focused on a sin-
gle iteration of the main loop in Hydropad, the parallel routines: darkmatter
and barmatter. Figure 5.3 shows FPMs for the darkmatter routine, which
are in terms of two parameters Np and Nx. The models for both servers in the
experimental setup are displayed. The change in their relative performance as
parameters increase in size is illustrated at the base of the graph. It is clear that
paging begins on hcl05 before hcl10 and that while the relative performance is
fairly constant for smaller problem sizes, it changes dramatically when paging
starts. At the maximum problem parameters allocate-able by hcl05, it is com-
puting at a rate that is twelve times slower than hcl10, when before it was just
slightly slower. This is a property of hcl05s performance that is not represented
by a single benchmark. Figure 5.4 reveals greater detail in the region of paging
for the darkmatter task. Figure 5.5 shows the functional performance models
for the barmatter task. Again, the differing amounts of available memory on
the servers results in performance degradation at different values of Nx. Bench-
marking points for a naive construction method are also displayed to illustrate
the reduction in the number of benchmarks that are required to build the FPM
using GBBP versus a naive method.

The time spent executing GBBP and naive benchmarks is shown in Table 5.2.
The speed up achieved by GBBP makes the construction of FPMs a more prac-
tical task. In one case GBBP did not achieve a large speed up, the barmatter
task on hcl10. This is because an artificial limit was placed on the range of the
input value Nx. Had the model been constructed across all allocate-able problem
sizes, the Geometric Bisection Building Procedure would have shown a consis-
tent speedup.
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Figure 5.3: Graph of darkmatter Functional Performance Model with relative
performance highlighted.
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Figure 5.4: Detail of problem parameters where paging contributes to sudden
performance decrease in darkmatter problem.
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Figure 5.5: Functional Performance Models for the barmatter routine, with
points for GBBP and a naive construction method shown.
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Table 5.2: Time Spent Construction Functional Performance Models.

Task / Ma-
chine

Naive
Points

Naive
Time

GBBP
Points

GBBP
Time

Speed-up
Factor

darkmatter /
hcl05

76 6854s 36 2292s 2.99

darkmatter /
hcl10

80 1704s 36 598s 2.85

barmatter /
hcl05

14 8792s 7 3687s 2.38

barmatter /
hcl10

15 8262s 6 7444s 1.11

Finally, Table 5.3 shows the results of a set of experiments on the schedul-
ing accuracy of SmartGridSolve. A single iteration of the main loop was timed
for a set of input parameters. First the scheduler was provided with the stan-
dard LINPACK type single benchmark that is made available by GridSolve. As
barmatter is the most computationally intensive problem, the scheduler as-
signed it to the faster processor, hcl10, in all experiments. The darkmatter

problem was executed in parallel on hcl05. However, when the amount of data
darkmatter operates on exceeds the available physical memory on hcl05, it
begins to slow. At this point it would be more efficient to assign the computa-
tionally intensive barmatter to the slower server, as it would be able to solve
this problem without paging. The scheduler is not able to make this decision
when the performance model of the processor does not represent the change in
speed at different levels of the memory hierarchy. When the scheduler uses
FPMs in its decision-making the results are much better. When no paging oc-
curs, it schedules in exactly the same way as before, but as hcl05 begins to page
it is assigned the routine with the smaller memory footprint. This permits a more
optimal scheduling with much greater overall performance. It also allows larger
problem sizes to be executed. Previously, after the number of particles, Np ex-
ceeded 256 the darkmatter routine failed to execute on hcl05 as it could not
allocate enough virtual memory.

104



5. Functional Performance Models in a GridRPC Environment

Table 5.3: Scheduling Improvements with FPMs in SmartGridSolve.

Np Nx Iteration Time:
single benchmark

Iteration
Time: GBBP

FPM Speed-
up Factor

96 96 26.33s 26.17s 1.01
128 96 25.10s 24.91s 1.01
160 96 25.45s 24.59s 1.03
192 96 41.48s 29.63s 1.40
216 96 123.78s 27.98s 4.42
256 96 n/a 39.02s n/a
288 96 n/a 51.98s n/a
320 96 n/a 362.57s n/a

5.4 Summary

This chapter has presented the integration of Functional Performance Models
provided by the Performance Model Manager, with a GridRPC middle-ware,
SmartGridSolve. This integration has been described and shown to have minimal
impact on the general architecture of SmartGridSolve.

Hydropad, a scientific application which has been reworked as a general
benchmark of GridRPC systems has been described in the context of Functional
Performance Models. PMM has been used to build the models of key tasks in
the Hydropad application, these models have then been used in SmartGridSolve
to map task to servers. The efficiently constructed models have been presented
and the improvement in execution of Hydropad, using a variety of input data
sizes is shown. By providing accurate estimations of execution time of various
task on the nodes of the Grid, the FPM allows SmartGridSolve to assign these
tasks for optimal overall execution speed. It also allows execution of larger prob-
lem sizes than the standard GridSolve performance models do by describing the
performance drop where paging occurs.
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Conclusion

This thesis has introduced the Band Performance Model to the domain of prob-
lem partitioning and task scheduling in heterogeneous parallel and distributed
computing environments. This model extends the functional performance model
by adding a prediction of processor performance variance to it. It is a highly
detailed representation of a processors speed at a specific task.

Though it was conceived as an extension of the Functional Performance
Model, the FPM may also be considered a product of the Band Model, where
the performance variance represented by the band is averaged to a single valued
function. The Band Model represents the uncertainty in the performance of the
processor, and the adjusted functional model is just an average level of predicted
performance.

In Chapter 2, the formulation of a simple and detailed Band Performance
Model has been described and a number of methods of evaluating the “good-
ness” of a problem distribution using these models have been proposed. Each
of these methods results in a metric which may be maximised to find a best dis-
tribution of some problem. These metrics have been maximised by exhaustive
search and a genetic algorithm. Experiments were conducted which simulated
the execution time of the best problem distributions rendered by a variety of
model types. The number of processors to partition across, and load fluctuation
on those processors was varied to reveal the overall performance of the different
model types. The conclusion of those experiments is that though the simple and
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detailed Band Performance Models result in good load balance, the improvement
over an adjusted functional model is marginal at best. As a result, algorithms for
using the Band Models to partition problems has not been developed beyond the
implementation of the genetic based solver. This result however, allows us to fo-
cus on the derivation of a Functional Performance Model from the Band, which
is investigated further in this thesis.

Chapter 3 presents an algorithm (GBBP) that optimises the construction of
the piece-wise linear functional approximation of the Band Performance Model.
The importance of this is that it allows the practical construction of both Band
and adjusted Functional Performance Models. Its use results in a dramatic speed
up in construction time against a naive method. This has been demonstrated
for a variety of routines with differing band profiles, both optimised and naive
matrix multiplication as well as Cholesky Factorisation. The algorithm presented
uses more experimental points in critical regions of the performance profile, but
overall approximates the profile with the same, or greater, degree of accuracy
using less experimental points.

In order to demonstrate and make available Functional Performance Models,
a tool, the Performance Model Manager tool has been implemented. This tool is
designed to enable the construction and use of Band and Functional Performance
Models. Its goals are to build the FPM in the most efficient manner possible and
to minimise the disruption to a running server. To these ends, it implements
the Geometric Bisection Building Procedure and it allows the user to utilise a
flexible set of constraints on the benchmarking procedure. It provides access
to the models for use in task scheduling and problem partitioning with other
softwares, as well as visualisation of constructed models and the construction
process.

Chapter 4 has described the configuration of PMM and how it benchmarks
a routine in order to construct the routine’s FPM, a complete manual can be
found in the Appendix A. FPMs can enable more efficient parallel computing in
heterogeneous environments, it is important that a tool such as PMM exists so
that their use may be conveniently realised.

Finally, Chapter 5 presented the integration of Functional Performance Mod-
els provided by the Performance Model Manager, with a GridRPC middle-ware
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(SmartGridSolve) and a non-synthetic application that uses this middle-ware
(Hydropad). This integration has been described and shown to have minimal
impact on the general architecture of SmartGridSolve. This shows that the FPM
is suitable for use in a task scheduling environment.

Hydropad, a scientific application which has been reworked as a challenging
benchmark for GridRPC systems, has been described in the context of Functional
Performance Models. PMM has been used to build the models of key tasks in the
Hydropad application, these models have then been used in SmartGridSolve to
map task to servers. The efficiently constructed models have been presented and
the improvement in execution of Hydropad, using a variety of input data sizes is
shown. The FPM allows SmartGridSolve to assign tasks for optimal execution
speed and allows execution of larger problem sizes than the standard GridSolve
performance models do.

We conclude that Functional and Band Performance Models have wide and
practical application in heterogeneous computing environments. Their use should
be pursued in middle-wares and programming frameworks that target heteroge-
neous platforms. They can be a first port-of-call for when attempting to tune an
algorithm to a fixed platform, or integrated in heterogeneous parallel libraries to
provide efficient balancing of workloads in users applications, across dynamic
resources.

As computing architectures evolve, from Hybrid CPU-GPU computing to
Heterogeneous Multi-core, the requirement for balancing workloads between di-
verse heterogeneous processors will become stronger and more challenging. The
Functional Performance Model is a general solution that can reliably solve this
problem.
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A. PMM User Manual

A.1 Introduction

Performance Model Manager (PMM) is an open source GNU Public Licenced
tool for experimentation in the use of Functional Performance Models (FPMs).
An FPM is a detailed description of the speed of a computational routine in terms
of the routine’s input parameters. PMM focuses on addressing issues surround-
ing the construction, maintenance and use of FPMs. To this end, it has three
main features:

• It implements the Geometric Bisection Building Procedure for multi-parameter
FPMs, optimizing the construction of a routine’s performance model.

• It permits the construction of models for a large number of routines by
implementing a flexible benchmarking scheduler.

• It provides access to the models in a variety of ways, so that they may be
visualised, used to make scheduling decisions or partition problems.

Construction of the FPM of some general computational procedure is supported
by requiring that the user provides a benchmarking executable which behaves
according to a simple protocol.

An example implementation of such a “benchmark binary” is given in Sec-
tion A.4.2 along with details of its configuration within PMM. Further examples
are also included in the source distribution.

Models can be constructed on demand or in the background by the pmmd

daemon. Construction of multiple models can be scheduled according to a vari-
ety of policies. They will be constructed in turn according to their priority and
scheduling criteria.

Access to models is available via an API which will be documented in a
future release of PMM, at present only viewing of models is described, via a
plotting program: pmm_view.

This manual continues to Section A.2 where compilation and installation is
described. Then the PMM configuration file is described in Section A.3. Section
A.4 provides notes on how to write a benchmark binary and configure it as a
“routine” to be modelled within PMM.
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A.2 Installation

A.2.1 Requirements

PMM is developed for the Linux platform but may also compile on other POSIX
operating systems. The following softwares are required to install PMM:

• GNU Make

• GCC compiler suite (tested with 4.x series only)

• libxml2 2.6.0 or greater

• Gnuplot

The following are optional but enable certain features:

• Octave (2.9.14 or greater) is required for multi-parameter model construc-
tion

• muParser is required for definition of parameter constraints

• PAPI (4.0.0 tested) is required for higher resolution timing and automatic
complexity calculation

• GNU Scientific Library is required for analysis and comparison of models,
as well as for certain example routines

• GotoBLAS2 and/or ATLAS are required for further example routines

• LAPACK is required for further example routines

A.2.2 Compiling & Installing

Installation of PMM uses a hierarchy of directories under a certain prefix, by
default /usr. If this is not desirable the build should be configured with the
--prefix=<dir> option. A typical installation follows:
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$ tar -xzf pmm-0.0.1.tar.gz

$ cd pmm-0.0.1

$ ./configure --prefix=$PWD/install

$ make && make install

Configuration options to note:

• --enable-debug enable debugging messages and flags

• --disable-octave disable use of octave and multi-parameter model sup-
port

• --without-muparser disable use of muParser libraries for definition of
parameter constraint formula

• --without-gsl disable compilation and installation of components that
depend on GSL (routine benchmarks and model analysis tools)

• --with-gotoblas2[=path] enable compilation and installation of demon-
stration GotoBLAS2 routines with an optional specification of the Goto-
BLAS2 installation path

• --with-atlas[=path] enable compilation and installation of demonstra-
tion ATLAS routines with an optional specification of the ATLAS instal-
lation path

• --with-lapack[=path] enable compilation and installation of demon-
stration LAPACK routines with an optional specification of the LAPACK
installation path

• --with-papi[=path] enable use of PAPI with optional specification of
PAPI installation path

Further options can be viewed by running ./configure --help .
After installation, the PMM daemon is started by executing the pmmd binary

and the PMM viewer program is run via the pmm_view binary.
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A.3 Configuration

PMM is distributed with a default configuration which will be installed under:

<prefix>/etc/pmmd.conf[.sample]

This can serve as a template for a user’s own configuration and contains sane
values for all options. If example routine benchmarks are built, the sample con-
figuration will also describe those routines.

The configuration file has an hierarchical XML structure. Configuration is
described between <config> root element tags. Under this, the load monitor
facility is described by a <load_monitor> element, and each routine for which
a model is to be built, is described by a <routine> element.

In the following sections, each element in the configuration file is described.
If an element has a default value, it need not be explicitly set in the configuration
file, on the other hand, some options must be set. This information, along with
the type of the expected element value (string, integer, etc.) and what exactly the
element describes is detailed below.

A.3.1 General Configuration

The following elements (which can be seen in context in Listing A.1) define some
general application configurable options and come directly under the <config>
tags:

• <main_sleep_period> (integer, default:1) The benchmark scheduler checks
the system state ever n seconds and this period may be configured here.
The default value is suitable and this variable is made configurable mostly
for developmental purposes.

• <model_write_time_threshold> (integer, default:60) When benchmark-
ing problems of small size, which execute quickly, the manager may be-
come overloaded by writing the model to disk after each execution. This
option allows us to configure how often the model will be saved to disk, i.e.
after a total of n seconds has been spent benchmarking a particular model
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it will be written to disk. The default value is suitable and this variable is
made configurable mostly for developmental purposes.

• <model_write_execs_threshold> (integer, default:10) This option serves
the same purpose as the previous one, except that it specifies the number of
benchmark executions that must occur before it is written to disk. It may
take hundreds of small benchmarks exceed the time threshold (above), so
this second threshold allows us to write based on execution frequency as
well. The default value is suitable and this variable is made configurable
mostly for developmental purposes.

Listing A.1: Basic Configuration

1 <?xml version="1.0"?>
2 <config>
3 <main_sleep_period>1</main_sleep_period>
4 <model_write_time_threshold>60
5 </model_write_time_threshold>
6 <model_write_execs_threshold>20
7 </model_write_execs_threshold>
8
9 <load_monitor>

10 <load_path>/usr/var/pmm/loadhistory</load_path>
11 <write_period>60</write_period>
12 <history_size>60</history_size>
13 </load_monitor>
14
15 ....
16 </config>

A.3.2 Load Monitor Configuration

The load monitoring facility is described by a <load_monitor> element, this
has the following children:

• <load_path> (string, required) path to a file where load observations are
recorded
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• <write_period> (integer, default:360) frequency with which to save the
load file to disk (in seconds)

• <history_size> (integer, default:60) number of load observations to store

A.3.3 Routine Configuration

Each routine is described by a <routine> element. Routines have detailed de-
scriptions of the parameters to be passed to them and the construction method
that should be used to build their models. An example routine configuration can
been seen in Listing A.2, it describes a 2-parameter routine. First, the general
options are set using the following child elements:

• <name> (string, required) The routine name.

• <exe_path> (string, required) The path to the benchmarking executable

• <model_path> (string, required) The path to the file where the perfor-
mance model of the routine will be saved.

• <exec_args> (string, optional) The value of this parameter will be passed
to the benchmarking binary before any arguments which define the prob-
lem size that is to be benchmarked. This allows the user to implement say
one binary that executes a number of routines based on the initial argu-
ments that are passed.

• <priority> (integer, default:0) The construction priority this routine has
(logically, the higher the value, the higher the priority)

The parameters of a routine are described by a <parameters> element. These
are the parameters that will be passed to the benchmark binary which ultimately
executes the routine which is being modeled. The parameters passed to the
benchmark are those that influence the volume of computations or the speed at
which the computations are carried out. This is further described in Section A.4.
The first child of the <parameters> element must be the number of parameter
descriptions which will follow:
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• <n_p> (integer, required) number of parameters which the benchmark ac-
cepts

Following that, each parameter is described by a <param> element. The <param>
element has a number of child elements which are:

• <order> (integer, required) The order in which this parameter should be
passed to the benchmark binary.

• <name> (string, required) The name of this parameter.

• <min> (integer, required) The minimum value this parameter may have.
If modelling the performance of the processor while operating in cache
only is not important, this should be set so the overall problem size is large
enough to occupy main memory.

• <max> (integer, required) The maximum value this parameter may have.
This should be large enough to induce significant paging.

• <stride> (integer, default:1) The stride with which this parameter should
be incremented. Stride influences the climbing phase of optimised con-
struction (where successive benchmarks are incremented in size by this
value) as well as naive construction (where all points on the stride between
min and max are benchmarked). A reasonable value for stride would be,
for example, 1/100th of the range between max and min. If stride is too
low, excessive time may be spent building a model.

• <offset> (integer, default:0) Offset for this parameter. If required, you
can specify that a parameter value must always be a certain offset from
zero.

• <fuzzy_max> (boolean, default:false) This specifies that the maximum
parameter size defined is not a true max and speed at this maximum should
be measured.

In normal circumstances the FPM is constructed across a complete range
of problem sizes, from small to so large that speed is effectively zero. The
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maximum parameter value will be so large that it induces heavy paging.
Speed at this maximum is not measured, but assumed to be zero. If this is
not the case, and the maximum parameter size will not induce heavy pag-
ing, <fuzzy_max> must be set to true for the GBBP algorithm to complete
successfully.

Following definition of parameters, a parameter constraint may be defined.
This is a formula which uses standard mathematical syntax and the variable
names defined above, along with maximum and minimum values for the con-
straint. The formula will be evaluated and the maximum and minimum values
will define the parameter space in which the model is constructed. By way of
the parameter constraint, the user may define the memory complexity of a rou-
tine and limit the construction of the model to between certain memory footprint
sizes. The constraint is defined by <param_constraint> which has a number
of children:

• <formula> (string, required) This is the formula which describes the pa-
rameter constraint. Any syntax and mathematical operation supported by
the muParser library is valid. The variable terms of the formula must by
named in the parameter definitions.

• <min> (integer, optional) This is the minimum value the formula may eval-
uate to. Combinations of parameters which evaluate to less than this value
will not be included in the model construction. If this is not defined, the
normal start points which the parameters are described with will be used
to limit the model construction region.

• <max> (integer, optional) This is the maximum value the formula may eval-
uate to. Combinations of parameters which evaluate to greater than this
value will not be included in the model construction. If this is not defined,
the normal start points which the parameters are described with will be
used to limit the model construction region.

Directives for the construction method must be described by a <construction>
element. It has the following child elements:
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• <method> (string, default:gbbp) The construction method, this element
may have the following values:

– gbbp - the Geometric Bisection Building Procedure will be used to
select benchmark points, minimising the number of points required
to accurately estimate the model. In multi-parameter models, the
diagonal construction method will be used.

– gbbp naive - the Geometric Bisection Building Procedure will be
used to select benchmark points, minimising the number of points
required to accurately estimate the model. In multi-parameter mod-
els, the boundary construction method will be used.

– naive - all possible points between the parameter ranges will be bench-
marked sequentially

– naive bisect - all possible points between parameter ranges will be
benchmarked using a simple bisection algorithm

– rand - points between the parameter ranges will be selected at ran-
dom

• <min_sample_num> (integer, default:1) Specify the minimum number of
benchmarks to be taken at a single point in the model. Once this is met,
the point will be considered as measured and the construction method will
proceed to the next point of its choosing.

• <min_sample_time> (integer, default:0) Specify the minimum number of
seconds that should be spent in the benchmarking of a single point before
it is considered as measured. I.e. if set to 60 seconds, a benchmark taking
20 seconds will be measured 3 times.

Finally, priority and scheduling policy may be specified. When multiple rou-
tines are configured in PMM priorities allow the user to specify which models
will be built first. Scheduling policies allow the user limit the execution of bench-
marks to certain time periods or certain system conditions.
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• <priority> (integer, default:0) Priority of construction for the routine.
Higher priority routines will have their models constructed before lower
ones

• <condition> (string, default:now) Condition under which benchmarking
of a routine is permitted.

– now - construction is permitted at all times

– idle - construction is only permitted when the observed 5 minute load
average is less than 0.10 (note: the act of benchmarking will influence
the load average of the system. After the benchmark is complete,
PMM will probably have to wait 5 minutes before the next execution
can occur)

– nousers - construction is only permitted when no users are logged
into the system. Logged in users would be those reported by utilities
such as w, who, users and so on.
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Listing A.2: Routine Configuration Example

1 <routine>
2 <name>dgemm2</name>
3 <exe_path>/usr/local/lib/pmm/dgemm2</exe_path>
4 <model_path>/usr/local/var/pmm/dgemm2_model</model_path

>
5 <parameters>
6 <n_p>2</n_p>
7 <param>
8 <order>0</order>
9 <name>m</name>

10 <min>32</min>
11 <max>4096</max>
12 <stride>32</stride>
13 <offset>0</offset>
14 </param>
15 <param>
16 <order>1</order>
17 <name>n</name>
18 <min>32</min>
19 <max>4096</max>
20 <stride>32</stride>
21 <offset>0</offset>
22 </param>
23 </parameters>
24 <construction>
25 <method>gbbp</method>
26 <min_sample_num>5</min_sample_num>
27 <min_sample_time>120</min_sample_time>
28 </construction>
29 <condition>now</condition>
30 <priority>30</priority>
31 </routine>

A.4 Building the FPM of a Computation

This section outlines what a user must do to have PMM build the FPM of some
computation. The computation may be a library subroutine, a code fragment or
an entire process. Throughout this document this computation will be referred
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to as a routine. The users routine must be wrapped in a benchmarking binary or
script which should behave in a specific manner:

• It must accept arguments from the command line which define the volume
of computations it must carry out.

• It must execute and time the computation that is to be modeled. Execution
may be via a script or compiled binary, written in any language, and the
details of how it perform or times the computation do not concern the
PMM tool. If the benchmark is written in C/C++, PMM provides some
utilities to aid this in a shared library, libpmm.

• It must output timing and volume of computations (complexity) in a stan-
dard manner. libpmm also supports this.

Implementation of this benchmark is a task left to the user. The following
sections describe how to choose input parameters, write the benchmark and con-
figure PMM to build a FPM for the routine.

A.4.1 Choosing Parameters of a Routine

The first step a user must take is to identify the parameters of the routine which
effect the volume of computations it must carry out or the speed at which those
computations are carried out at. Typically, the volume of computations would be
floating point operation count, however PMM is agnostic to the type of computa-
tions the routine carries out, and the volume may be expressed as the user wishes.
The performance model that we build will be expressed in terms of the chosen
parameters. Throughout this section we will refer to an example of a square ma-
trix multiplication. In this scenario, there is only one parameter that effects the
volume of computations, N, the length of a matrix side in the multiplication.

For a more general case, were two matrices of sizes N×K and K×M are
multiplied and the result stored in an third matrix of size N×M, then the volume
of computations would depend on three parameters, N, M and K.

A general purpose matrix multiplication routine usually has other associated
parameters defining transpositions of the input data and other coefficients. These
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however do not contribute significantly to the computational complexity of the
routine and they should not be considered as parameters of the model in the
PMM framework. It is important to note than building an FPM which is in terms
of more than one parameter is very intensive as the number of points required to
accurately approximate scales exponentially with the number of parameters the
model is in terms of. Any parameters of a routine that can be excluded from the
functional performance model should be.

A.4.2 Writing a Benchmark for PMM

For PMM to build the performance model of a routine, it must be able to execute
benchmarks of that routine for various problem sizes. As previously stated, the
problem’s size is determined by the parameters which effect the computational
complexity of the routine, and the performance model is a function of these
parameters.

PMM must be provided with an executable which carries out a benchmark
with given input parameters. The user must write this executable so that it be-
haves in a specified way. PMM is distributed with the source of a number of
example benchmarks, here we will list one and reference it as the required be-
haviours are described below. Listing A.3 shows an example benchmark for a
square matrix multiplication routine. The multiplication is provided by the Gnu
Scientific Library. Note in a square matrix multiplication, the volume of compu-
tations is determined by the size of one side of matrices to be multiplied.

The benchmark code behaves in the following manner:

• The executable must accept a number of parameters on the command line.
These parameters will also be described in the configuration entry for the
routine. As of version 0.0.1 parameters can only have integer types. (Lines
17-23)

• Based on the parameters passed on the command line, the benchmark must
initialise memory and data structures that are to be passed to the routine.
If the computation that is to be modelled is just a simple code fragment,
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no allocation of memory that occurs within the code fragment should be
done in this initialisation phase. (Lines 29-35)

• The benchmark must start a timer, either using timers provided by the
PMM shared library, libpmm, or using his own methods (Lines 38-41)

• The benchmark must execute the routine directly after timing is initiated
(Line 44)

• the benchmark must stop timing directly after the routine has finished
(Line 47)

• the benchmark must print on a single line, to stdout, the seconds and
microseconds, separated by a single space, elapsed during the routine exe-
cution. This can be done using a function provided by libpmm or the users
own method. (Line 50)

• the benchmark must print on a new line, the volume of computations made
by the routine (typically the number of floating point operations carried
out). Long long integers are supported. (Lines 26,38,50)

• on successful completion of the above operations, the benchmark should
terminate and return successful exit status, PMM expects this to be equiv-
alent to EXIT_SUCCESS as defined by the C standard. (Line 59)

Listing A.3 shows an example benchmark for a square matrix multiplication
routine provided by GSL. The in-line comments refer to each of the points made
above

Listing A.3: Square Matrix Multiplication Benchmark

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include "pmm_util.h"
4 #include <gsl/gsl_blas.h>
5
6 #define NARGS 1
7

124



A. PMM User Manual

8 int main(int argc , char **argv) {
9

10 /* declare variables */
11 gsl_matrix *A, *B, *C;
12 double arg;
13 size_t n;
14 long long int c;
15
16 /* parse arguments */
17 if(argc != NARGS+1) {
18 return PMM_EXIT_ARGFAIL;
19 }
20 if(sscanf(argv[1], "%lf", &arg) == 0) {
21 return PMM_EXIT_ARGPARSEFAIL;
22 }
23 n = (size_t)arg;
24
25 /* calculate complexity */
26 c = 2*n*n*(long long int)n;
27
28 /* initialise data */
29 A = gsl_matrix_alloc(n, n);
30 B = gsl_matrix_alloc(n, n);
31 C = gsl_matrix_alloc(n, n);
32
33 gsl_matrix_set_all(A, 2.5);
34 gsl_matrix_set_all(B, 4.9);
35 gsl_matrix_set_zero(C);
36
37 /* initialise timer */
38 pmm_timer_init(c);
39
40 /* start timer */
41 pmm_timer_start();
42
43 /* execute routine */
44 gsl_blas_dgemm(CblasNoTrans , CblasNoTrans , 1.0, A,

B, 0.0, C);
45
46 /* stop timer */
47 pmm_timer_stop();
48
49 /* get timing result */
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50 pmm_timer_result();
51
52 /* destroy timer */
53 pmm_timer_destroy();
54
55 gsl_matrix_free(A);
56 gsl_matrix_free(B);
57 gsl_matrix_free(C);
58
59 return PMM_EXIT_SUCCESS;
60 }

A.4.3 Configuring the Benchmark in PMM

Now that the benchmark code is written, the construction of the model must be
configured in PMM. This involves indicating the location of the benchmarking
binary, describing the maximum and minimum allowable values of N, the steps
at which N may be incremented and the construction priority of the model.

In this example, we assume the model will be created for a processor with
1024MiB of memory. We choose a starting value of 32, a stride of 32 and a
maximum value of 8196.

Square matrix multiplication operates on 3 matrices of size NxN, each ele-
ment of the matrix is a double with a size of 8 bytes. Knowing this we choose
a starting value that of reasonable computational size, yet still small enough to
fit in the L1 cache or certainly L2 cache of modern machines. N = 32 results
in a problem size that will occupy less than 32KiB of memory. The stride is
chosen as 32 so that the problem size will quickly increase beyond the size of
the CPU caches and force use of main memory. The maximum size of 8192 has
a memory footprint of over 1.5GiB, this ensures that at the maximum problem
size the machine will be paging heavily and we can assume it has zero speed at
this point.

To illustrate the parameter constraint we effectively limit the construction
parameters in the same way by defining the formula as 3× 8×N2 and the max
and min as 32KiB and ∼1.5GiB.

Listing A.4: Configuration of PMM for a simple Matrix Multiplication Routine
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1 <?xml version="1.0"?>
2
3 <config>
4 <load_monitor>
5 <load_path>/var/pmm/loadhistory</load_path

>
6 </load_monitor>
7
8
9 <routine>

10 <name>square_dgemm</name>
11 <exe_path>/usr/lib/pmm/square_dgemm</

exe_path>
12 <model_path>/var/pmm/

dgemm_ben_5000_icc_mkl</model_path>
13 <parameters>
14 <n_p>1</n_p>
15 <param>
16 <order>0</order>
17 <name>N</name>
18 <start>32</start>
19 <end>8196</end>
20 <stride>32</stride>
21 </param>
22
23 <param_constraint>
24 <formula>3*8*N*N</formula>
25 <min>32768 </min>
26 <max>1610612736</max>
27 </param_constraint>
28 </parameters>
29
30 <condition>now</condition>
31 <construction>
32 <method>gbbp</method>
33 </construction>
34 </routine>
35 </config>

The construction may be started instantly by executing pmmd with the build
only option -b. This will construct the model in the foreground and terminate
when finished.
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A.5 Viewing Models

During the construction or at the end of the process the model may be viewed
using the pmm_view tool. This is a simple program that access the model file and
plots them via a Gnuplot front-end.

pmm_view has the following command line options:

• -a Plot averages where there are multiple measured speeds at the same
points

• -c <file> Specify a configuration file from which a routine will be loaded

• -f <model file> Specify a model file which will be loaded and plot,
multiple instances of the -f option will result in multiple plots being placed
on the same axes.

• -h Print help

• -i Plot construction intervals along the base of the axes (these illustrate
the GBBP construction process).

• -I Enter a Gnuplot terminal mode after the plot has been made (this allows
the user to manipulate the intervals of Gnuplot and adjust the display of a
model to their choosing

• -l List routines in the specified or default configuration file

• -m Plot maximum speeds where there are multiple measured speeds at the
same points

• -o <output file> Save the plot to the file specified, the format of the
plot is determined by the suffix of the output file. Suffixes of .png and
.eps or .ps are supported. More advanced output options of Gnuplot
may be accessed by specify the -I option to enter interactive mode.

• -P Create coloured plots using the palette option of Gnuplot
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• -r <routine name> Specify the name of a routine from the configura-
tion file who’s model will be loaded and plot, multiple instances of the -r
option will result in multiple plots being placed on the same axes.

• -s <slice spec> This option allows the user to specify a slice of a multi-
parameter model that is to be plot. For example, if there are two parameters
to the model and the user wishes to specify that the parameter with index 0
is fixed with a value of 256, resulting in a plot of a function that is in terms
of the other parameter, the argument would be: -s p0:256. pmm_view

supports plotting with respect to a maximum of two parameters. For high
dimensional models, many slices may be specified so that the plot is re-
duced to being in terms of two parameters or less.

• -S <style> Plot using particular Gnuplot style, such as points, linespoints
or dots.

• -w <wait time> Re-plot the specified models every <wait time> sec-
onds. If the model file stored on disk has not changed in the intervening
period, the model will not be redrawn as an efficiency measure.

Example output from two executions of pmm_view are shown in Figure A.1.
A.1a shows the result of the following execution, which demonstrates the calling
syntax of the utility:

pmm_view -f 2d_model_file -P -S points

Figure A.1b shows the results of isolating a slice of the first model using the
-s <slice spec> option. The command in this instance was:

pmm_view -f 2d_model_file -s p1:3000 -S lines

This instructed the utility to isolate points from the 2 parameter model where
the second parameter was equal to 3000.
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(a) Example output from pmm view showing a 2 parameter model for a naive
matrix multiplication on a machine with 256MiB of memory which has been
constructed with naive method.
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(b) Slice of the previous model where the second parameter is fixed at 3000, as
displayed by the pmm view utility.

Figure A.1: Example output from the pmm view utility.
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