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Abstract—Modern homogeneous parallel platforms are composed of tightly integrated multicore CPUs. This tight integration has
resulted in the cores contending for various shared on-chip resources such as Last Level Cache (LLC) and interconnect, leading to
resource contention and non-uniform memory access (NUMA). Due to these newly introduced complexities, the performance and
energy profiles of real-life scientific applications on these platforms are not smooth and may deviate significantly from the shapes that
allowed traditional and state-of-the-art load balancing algorithms to minimize their computation time.
In this paper, we propose new model-based methods and algorithms for minimization of time and energy of computations for the most
general shapes of performance and energy profiles of data parallel applications observed on the modern homogeneous multicore
clusters. We formulate the performance and energy optimization problems and present efficient algorithms of complexity O(p2) solving
these problems where p is the number of processors. It is important to note that the globally optimal solutions found by these
algorithms may not load-balance the application.
We experimentally study the efficiency and scalability of our algorithms for two data parallel applications, matrix multiplication and fast
Fourier transform, on a modern multicore CPU and clusters of such CPUs. We also demonstrate the optimality of solutions determined
by our algorithms.
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1 INTRODUCTION

Modern homogeneous parallel platforms are composed
of tightly integrated multicore CPUs with highly hierarchi-
cal arrangement of cores. This tight integration has resulted
in the cores contending for various shared on-chip resources
such as Last Level Cache (LLC) and interconnect (For ex-
ample: Intel’s Quick Path Interconnect [1], AMD’s Hyper
Transport [2]), leading to resource contention and non-
uniform memory access (NUMA). These newly introduced
complexities have created fresh formidable challenges for
model and algorithm designers.

To elucidate these challenges, we analyze the limita-
tions of the state-of-the-art load balancing algorithms for
performance optimization [3], [4], [5], [6], [7]. We select
two widely known and highly optimized scientific routines,
OpenBLAS DGEMM [8] and FFTW [9], for this purpose. The
goal of these load balancing algorithms is to minimize the
computation time of the application. The intuition behind
the notion that load balancing the application improves
its performance is the following: a balanced application
does not waste processor cycles in waiting at points of
synchronization and data exchange, therefore maximizing
the utilization of the processors. The key input to these load
balancing algorithms is the functional performance model
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(FPM) [3], [4], [5], which represents the speed of processor
by a continuous function of the problem size. In addition to
the property of continuity, the speed function is assumed to
be smooth enough satisfying one of the following assump-
tions on its shape:

1) Along each of the problem size variables, the func-
tion is monotonically decreasing

2) There exists point x such that

• On the interval [0, x], the function is

– monotonically increasing,
– concave, and
– any straight line coming through the ori-

gin of the coordinate system intersects the
graph of the function in no more than one
point.

• On the interval [x,∞), the function is mono-
tonically decreasing

These very restrictions on the shape of speed functions
guarantee that the FPM-based load balancing algorithms,
proposed in [6], [10], [11], [7], [12], [13], [14], [15], [16],
always return a unique solution that minimizes the com-
putation time. Also these restrictions are trivially satisfied
when the speed of processor is modelled by a constant.

The smooth FPMs accurately capture the shapes of real-
life scientific applications on platforms consisting of unipro-
cessors (single-core CPUs). This is clearly illustrated in
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Fig. 1. Speed function of OpenBLAS DGEMM application executed on
a single core on the Intel Haswell server.

Figure 1, which shows the speed function of the OpenBLAS
DGEMM application built experimentally by executing it
on a single core of an Intel Haswell server (specification
shown in Table 1). The application multiples two square
matrices of size n × n (problem size being equal to n2).
In these experiments, the numactl tool is used to bind the
application to one core. Fig. 2 and 3 respectively show the
average dynamic power consumption and dynamic energy
consumption of the application. The power and energy
consumptions are obtained using Watts Up Pro power me-
ter. We must mention that there are two types of energy
consumptions, dynamic energy and static energy. We define
the static energy consumption as the energy consumption
of the platform without the application execution. Dynamic
energy consumption is calculated by subtracting this static
energy consumption from the total energy consumption of
the platform during the application execution measured
using the Watts Up Pro. In this work, we consider only
the dynamic energy consumption because static energy
consumption is a constant (inherent property) of a platform
and will be the same for different application configura-
tions. However, we would like to mention that static power
consumption can be easily incorporated in our problem
formulations and algorithms.

One can observe that the shapes of the performance and
energy graphs are smooth with minimal variations, and the
performance graphs comfortably satisfy the conditions im-
posed by the FPMs that are crucial for the correct operation
of the load balancing algorithms.

Now, due to the newly introduced complexities in
modern homogeneous multicore clusters such as resource
contention and NUMA, the performance and energy pro-
files of real-life scientific applications executing on these
platforms are not smooth and may deviate significantly
from the shapes that allowed traditional and state-of-the-
art load balancing algorithms to find optimal solutions. This
is illustrated in Fig. 4, 5, and 6 which show respectively
the speed function, average dynamic power, and dynamic
energy consumption graphs of OpenBLAS DGEMM appli-
cation executed on the Intel Haswell server and employing
varying number of threads. One can see that as the number
of threads executing in the application increases, the fluc-
tuations increase reaching the peak when the number of
threads is 24 equalling the total number of physical cores

Fig. 2. Average dynamic power consumption of OpenBLAS DGEMM
application executed on a single core on the Intel Haswell server.

Fig. 3. Dynamic energy consumption of OpenBLAS DGEMM application
executed on a single core on the Intel Haswell server.

TABLE 1
Specification of the Intel Haswell server used to build the FPM and

energy model.

Technical Specifications Intel Haswell Server
Processor Intel E5-2670 v3 @ 2.30GHz

OS CentOS 7
Microarchitecture Haswell

Memory 64 GB
Socket(s) 2

Core(s) per socket 12
NUMA node(s) 2

L1d cache 32 KB
L11 cache 32 KB
L2 cache 256 KB
L3 cache 30720 KB

TDP 240 W
Base Power 58 W

in the server. The full speed, power, and energy functions
for number of threads equal to 24 are shown in Fig. 7, 8, and
9 respectively.

To make sure the experimental results are reliable, we
follow a detailed methodology, which is described in Section
1 of the supplemental. It contains the following main steps:
1). We make sure the server is fully reserved and dedicated
to our experiments and is exhibiting clean and normal
behaviour by monitoring its load continuously for a week.
2). For each data point in the speed, power and, energy
functions of an application, the sample mean is used, which
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Fig. 4. Speed function of OpenBLAS DGEMM application executing
varying number of threads (T ) on the Intel Haswell server.

Fig. 5. Function of average dynamic power consumption against prob-
lem size for OpenBLAS DGEMM application executing varying number
of threads (T ) on the Intel Haswell server.

Fig. 6. Function of dynamic energy consumption against problem size
for OpenBLAS DGEMM application executing varying number of threads
(T ) on the Intel Haswell server.

is calculated by executing the application repeatedly until
the sample mean lies in the 95% confidence interval and a
precision of 0.025 (2.5%) has been achieved. For this pur-
pose, Student’s t-test is used assuming that the individual
observations are independent and their population follows
the normal distribution. We verify the validity of these
assumptions by plotting the distributions of observations.

Therefore, the variation observed is not noise but is an
inherent trait of applications executing on multicore servers

Fig. 7. Speed function of OpenBLAS DGEMM application for T = 24 on
the Intel Haswell server.

Fig. 8. Function of average dynamic power consumption against prob-
lem size for OpenBLAS DGEMM application for T = 24 on the Intel
Haswell server.

Fig. 9. Function of dynamic energy consumption against problem size for
OpenBLAS DGEMM application for T = 24 on the Intel Haswell server.

with resource contention and NUMA.
There are some other interesting observations about

these variations.

• They are noticeable even when smaller number of
threads are used. This can be seen from the average
dynamic power and dynamic energy plots of Open-
BLAS DGEMM application (Fig. 5 and 6 respectively)
for number of threads equal to 2.

• They can be quite large. This is evident from Fig.
10, 11, and 12, which respectively show the speed
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function, average dynamic power, and dynamic en-
ergy consumption graphs for multi-threaded FFTW
application executed with 24 threads on the Intel
Haswell server. The application performs a 2D FFT of
size n×n (the problem size being n2). From the speed
function plot, one can observe performance drops of
around 70% for many problem sizes.

• The variations presented in the paper cannot be
explained by the constant and stochastic fluctuations
due to OS activity or a workload executing in a
node in common networks of computers. In such
networks, a node is persistently performing minor
routine computations and communications by being
an integral part of the network. Examples of such
routine applications include e-mail clients, browsers,
text editors, audio applications, etc. As a result, the
node will experience constant and stochastic fluctu-
ations in the workload. This changing transient load
will cause a fluctuation in the speed of the node in the
sense that the speed will vary for different runs of the
same workload. One way to represent these inherent
fluctuations in the speed is to use a speed band
rather than a speed function. The width of the band
characterizes the level of fluctuation in the speed
due to changes in load over time [3], [4], [5]. For a
node with single-core CPUs, the width of the band
has been shown to decrease as the problem size in-
creases. For a node with a very high level of network
integration, typical widths of the speed bands were
observed to be around 40% for small problem sizes
and narrowing down to 3% for large problem sizes.
Therefore, as the problem size increases, the width
of the speed band is observed to decrease. Therefore,
for long running applications, one would observe the
width to become quite narrow (3%). However, this is
not the case for variations in the presented graphs.
The dynamic energy consumption in Fig. 9 and 12
(for the number of threads equal to 24) show the
widths of the variations increasing as problem size
increases. These widths reach a maximum of 70%
and 125% respectively for large problem sizes. The
speed functions in Fig. 7 and 10 (for the number of
threads equal to 24) demonstrate that the widths are
bounded with the averages around 17% and 60% re-
spectively. This suggests therefore that the variation
is largely due to the newly introduced complexities
and not due to the fluctuations arising from changing
transient load.

We believe that these variations will become typical
because chip manufacturers are increasingly favouring and
thereby rapidly progressing towards tighter integration of
processor cores, memory, and interconnect in their products.
To discern how they limit the applicability of the load bal-
ancing algorithms, we zoom into the speed function of the
multi-threaded OpenBLAS DGEMM application executing
24 threads on the Intel Haswell server. Figure 13 shows the
speed function between two arbitrarily chosen points A and
B. Assume, for the sake of simplicity, that we are allowed
to use only this partial speed function in our algorithms.
One can observe that the speed function is characterized

Fig. 10. Speed function of FFTW application executing 24 threads on
the Intel Haswell server.

Fig. 11. Function of average dynamic power consumption against prob-
lem size for FFTW executing 24 threads on the Intel Haswell server.

by many local minima (Q1, Q2, ...) and many local maxima
(P1, P2, ...). There is one global maximum P and one global
minimum Q. This highly wavering shape is the reason why
the load balancing algorithms will return non-optimal so-
lutions. For example, consider 2 processors solving a work-
load of size n = 40. The load balancing algorithms will out-
put the distribution, (Q,Q) = (n

p ,
n
p ) = (20, 20). However,

one can see that the solution given by a distribution com-
posed from the neighbouring points, (P3, P4) = (19, 21), is
better. Similarly, for the other local optima, Q1, Q2, and Q3,
one can find neighbouring points that yield better solutions
than those given by the load balancing algorithms.

To summarize, the new inherent complexities introduced
in modern homogeneous multicore clusters limit the appli-
cability of state-of-the-art performance models and load bal-
ancing algorithms thereby necessitating either a thorough
redesign or development of novel models and algorithms.

In this paper, we propose novel model-based methods
and algorithms for minimization of time and energy of
computations for the most general performance and energy
profiles of data parallel applications executing on homo-
geneous multicore clusters. We formulate the performance
and energy optimization problems and present efficient
algorithms (called POPTA and EOPTA respectively) of com-
plexity O(p2) solving these problems where p is the number
of processors. Unlike load balancing algorithms, optimal
solutions found by these algorithms may not load-balance
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Fig. 12. Function of dynamic energy consumption against problem size
for FFTW executing 24 threads on the Intel Haswell server.

Fig. 13. Zoomed speed function of OpenBLAS DGEMM application
between two arbitrarily chosen points A and B. The problem size x is
normalized and shown in multiples of minimum granularity.

the application.
We summarize below the fundamental idea behind our

optimization technique:

• To apply our algorithms, the user takes a data-
parallel application that has been optimized for load-
balanced execution on a cluster of identical multicore
nodes.

• This application is now treated as a black-box and
executed on one node for a range of problem sizes
to construct its speed, power, and energy functions.
When it is executed to obtain an experimental point
of a function, the optimal values of the tunables (such
as the number of threads) that have already been
determined are used. The goal here is not to perform

multi-parameter optimization where the user finds
the optimal values of these tunables. It is assumed
that this optimization has already been done and
the optimal values of the tunables have already been
determined before this step.

• The speed and energy functions are then input
to POPTA and EOPTA, which determine optimal
workload distributions that may not load-balance
the application and that minimize the execution
time and the energy consumption of computations
in the parallel execution of the application. Thus,
our optimization technique takes a configuration of
the application, which has been obtained by one
of the traditional load-balancing optimization tech-
niques, and tries to further improve it by applying
the single-parameter load-imbalancing optimization
algorithms.

To summarize, the main goal of our optimization tech-
nique is not intra-node optimizations but inter-node opti-
mization of performance and energy consumption of the
application.

Based on our experiments with two data parallel ap-
plications on a modern multicore CPU and simulations on
clusters of such CPUs, we demonstrate the optimality of so-
lutions determined by our algorithms. We show significant
average and maximum percentage improvements in perfor-
mance and energy compared to traditional load-balanced
workload distribution. We also confirm experimentally that
the improvements in performance and energy are constant
for a fixed problem size per processor. We further find
that optimizing for performance alone produces significant
energy reduction whereas optimizing for energy alone can
cause major degradation in performance. Our conclusions
are valid for arbitrary number of processors suggesting large
positive implications for extreme-scale parallel platforms.

To summarize, our main contributions in this paper are:

• Explanation of the challenges introduced to model
and algorithm design for optimization of perfor-
mance and energy by the brand new complexities of
resource contention and NUMA present in modern
homogeneous multicore clusters.

• Efficient algorithms for performance and energy
optimization problems for homogeneous multicore
clusters.

• Experimental study of efficiency and scalability of
our algorithms with conclusions that have large posi-
tive implications for extreme-scale parallel platforms.

The rest of the paper is structured as follows. Section 2
presents related work on performance and energy models
for homogeneous and heterogeneous parallel platforms.
Section 3 contains formulations of performance and energy
optimization problems for homogeneous multicore clusters.
Section 4 presents an efficient algorithm solving the per-
formance optimization problem for homogeneous multicore
clusters. Section 5 presents an efficient algorithm solving the
energy optimization problem for homogeneous multicore
clusters. Section 6 contains experimental analysis of the
algorithms. Section 7 concludes the paper.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, SEPTEMBER 2016, DOI:10.1109/TPDS.2016.2608824 6

2 RELATED WORK

Although the algorithms that we present in this paper use
load-imbalancing technique, we briefly look at various cat-
egories of load-balancing algorithms since they have been a
dominant class of algorithms for performance optimization
on parallel platforms. We then discuss the performance and
energy models for parallel platforms.

2.1 Load-Balancing Algorithms

There are several classifications of load-balancing algo-
rithms: static or dynamic, non-centralized or centralized, task
queue or predicting-the-future. One can find edifying descrip-
tions of these classifications in [11], [17], [18].

Static algorithms, such as those based on data partition-
ing [19], [20], [4], use a priori information about the parallel
application and platform. These algorithms are also known
as predicting-the-future because they rely on accurate perfor-
mance models as input to predict the future execution of
the application. They are particularly useful for applications
where data locality is important because they do not require
data redistribution. However, these algorithms may be un-
suitable for non-dedicated platforms, where load changes
with time. Dynamic algorithms, such as task scheduling and
work stealing [21], [22], [23], balance the load by moving
fine-grained tasks between processors during the execution.
They do not require a priori information about execution
but may incur large communication overhead due to data
migration. They can use static partitioning for the initial
step due to its provably near-optimal communication cost,
bounded tiny load imbalance, and lesser scheduling over-
head.

In non-centralised algorithms [24], [25], load is mi-
grated locally between neighbouring processors, while in
centralised ones [26], [27], [28], load is distributed based
on global load information. Non-centralised algorithms are
slower to converge. At the same time, centralised algorithms
typically have higher overhead. The centralised algorithms
can be further subdivided into two groups: task queue [27]
and predicting-the-future [26], [28].

2.2 Performance and Energy Models for Parallel Plat-
forms

Over the years, load balancing algorithms developed for
performance optimization on parallel platforms have at-
tempted to take into consideration the real-life behaviour
of applications executing on these platforms. This can be
discerned from the evolution of performance models for
computation used in these algorithms. The simplest models
used positive constant numbers and different notions such
as normalized processor speed, normalized cycle time, task
computation time, average execution time, etc to charac-
terize the speed of an application [29], [30], [31]. A sin-
gular feature of these efforts is that the performance of a
processor is assumed to have no dependence on the size
of the workload. The most advanced load balancing algo-
rithms use functional performance models (FPMs), which
are application-specific and represent the speed of a proces-
sor by continuous function of problem size but satisfying
some assumptions on its shape [3], [4]. These FPMs capture

accurately the real-life behaviour of applications executing
on nodes consisting of uniprocessors (single-core CPUs).

Modern parallel platforms have complex nodal archi-
tectures with highly hierarchical arrangement and tight
integration of processors where resource contention and
NUMA are inherent complexities. On these platforms, the
traditional and state-of-the-art performance models are de-
ficient and the load balancing algorithms based on these
models may return non-optimal solutions. Therefore, one
must develop novel techniques for performance optimiza-
tion for these platforms. In [32], [18], the authors propose an
optimization technique reusing an advanced performance
model of computation (FPMs) but using novel load distri-
bution to minimize the computation time of the application.
First, they experimentally build the speed function of the
application using a wide range of problem sizes separated
by minimum granularity. They then use this function and
its connected visual picture to distribute computations un-
evenly between homogeneous groups of cores of the Xeon
Phi co-processor, therefore load imbalancing the applica-
tion, to achieve performance optimization. This is the first
work where the load-imbalancing technique is applied to
partition the workload minimizing the computation time
of its parallel execution. However, no general partitioning
algorithm is proposed in this work.

We now review methods for determining energy con-
sumption of applications executing on modern parallel plat-
forms. We also report the limitations of model-based meth-
ods arising from the inherent complexities newly introduced
in modern parallel platforms.

There are two methods to determine the dynamic en-
ergy consumption of an application execution. One is by
direct measurement using a power meter and the other is a
model based approach. The dynamic energy consumption
is calculated by deducting the base energy consumption
(base power multiplied by the execution time) from the
total energy consumption. In the model based approach,
there are two ways to predict the energy consumption of
an application execution:

• Power × Timing:

– Construct a power prediction model but mea-
sure execution time explicitly from the execu-
tion of the application. The energy consump-
tion is obtained by computing their product.
The power prediction model can give a single
number, which is the average dynamic power
consumption of the application execution. It
can also provide a time-series graph of dy-
namic power for the application execution.
The energy consumption can then be calcu-
lated by using trapezoidal rule.

– Construct power prediction and timing pre-
diction models separately and compose the
energy consumption from these models. The
prediction error in accuracy of energy con-
sumption is compounded by the errors in ac-
curacies of its constituent models (power and
timing).

• Explicit: By explicitly modelling the energy consump-
tion without any reference to power consumption.
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[33] study and compare five full-system real-time power
models using a variety of machines and benchmarks. Four
of these models are utilization-based whereas the fifth in-
cludes CPU performance monitoring counters (PMCs) in
the model parameter set along with the utilizations of CPU
and disk. They report that PMC-based model is the best
overall in terms of accuracy since it is able to account for
majority of the contributors to system’s dynamic power
(especially the memory activity). They also question the
generality of their PMC-based model since the PMCs used
in their model parameter set may not have the same essence
across different architectures (Intel, AMD). [34] evaluate the
competence of predictive power models for modern node
architectures and show that linear regression models show
prediction errors as high as 150%. They suggest that direct
physical measurement of power consumption should be
the preferred approach to tackle the inherent complexities
posed by modern node architectures. [35] survey predictive
power and energy models focusing on the highly hetero-
geneous and hierarchical node architecture in modern HPC
computing platforms. They highlight the ineffectiveness of
models to accurately predict the dynamic power consump-
tion of modern nodes due to the inherent complexities
(contention for shared resources such as Last Level Cache
(LLC), NUMA, and dynamic power management).

In this paper, we use a functional model of dynamic
energy consumption where the dynamic energy consump-
tion is represented by a function of the problem size. This
functional model is input to energy optimization problem
and the corresponding algorithm solving the problem. For
our experimental results, we use a functional model built
from experimental points where each point is obtained by
direct measurement of the dynamic energy consumption
during the execution of the application using a Watts Up
power meter.

3 FORMULATIONS OF PERFORMANCE OPTIMIZA-
TION AND ENERGY OPTIMIZATION PROBLEMS

Consider a workload of size n executed using one or more
of p identical processors. Let the speed function of a pro-
cessor executing a problem size x be represented by s(x).
The speed s(x) for a problem size x is calculated as x

t(x) ,
where t(x) is the time of execution of the problem size.
The dynamic energy consumption of execution of a problem
size x by a processor is represented by Ω(x). There are two
optimization problems to consider.

Performance Optimization Problem, POPT(n, p, s, q,
d): The problem is to find a partitioning, d = {x1, ..., xq}, of
the workload of size n between p identical processors that
minimizes the computation time of parallel execution of the
workload. The parameters (n, p, s) and the parameters (q,d)
are the inputs and outputs respectively of the problem. This
problem can be formulated as an integer non-linear program

(INLP) as follows:

minimize
q

max
i=1

xi

s(xi)

Subject to x1 + x2 + ... + xq = n

xi ≤ n i = 1, ..., q

xi ≥ 0 i = 1, ..., q

1 ≤ q ≤ p

where p, q, n, xi ∈ Z>0 and s(x) ∈ R>0

This INLP problem can be modified to an equivalent integer
linear program (ILP) problem as follows:

minimizef

Subject to f ≥ xi

s(xi)
i = 1, ..., q

x1 + x2 + ... + xq = n

xi ≤ n i = 1, ..., q

xi ≥ 0 i = 1, ..., q

1 ≤ q ≤ p

where p, q, n, xi ∈ Z>0 and s(x) ∈ R>0

We propose two formulations for the optimization problem
for energy. The first formulation is based on a energy model,
which represents the dynamic energy consumption of a
processor by a function of problem size. For example, Fig.
6 and 12 respectively show the experimentally built energy
functional models of OpenBLAS DGEMM and FFTW appli-
cations each executing 24 threads on the Intel Haswell server
(Table 1). For each problem size in the energy consumption
graph, the energy consumption was measured using Watts
Up Pro power meter.

Energy Optimization Problem, EOPT(n, p, Ω, q, d): The
problem is to find a partitioning, d = {x1, ..., xq}, of the
workload of size n between p identical processors that min-
imizes the dynamic energy consumption of computations
in the parallel execution of the workload. The parameters
(n, p, Ω) and the parameters (q,d) are the inputs and outputs
respectively of the problem. This problem can be formulated
as an integer linear program (ILP) as follows:

minimize

q∑
i=1

Ω(xi)

Subject to x1 + x2 + ... + xq = n

xi ≤ n i = 1, ..., q

xi ≥ 0 i = 1, ..., q

1 ≤ q ≤ p

where p, q, n, xi ∈ Z>0 and Ω(x) ∈ R>0

The second formulation requires a functional performance
model and a functional power model, which represents
the average dynamic power consumption of a processor
by a function of problem size. For example, Fig. 5 and 11
respectively show the experimentally built power functional
models of OpenBLAS DGEMM and FFTW applications each
executing 24 threads on the Intel Haswell server (Table 1).
For each problem size in the power consumption graph,
the average dynamic power consumption was calculated
from the power measurements obtained using Watts Up
Pro power meter during the execution of the problem size.
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In this formulation, let the average dynamic power con-
sumption of a processor executing a workload x be Pd(x).
The dynamic energy consumption Ω(x) of execution of the
workload is proportional to Pd(x)× x

s(x) . The EOPT problem
can therefore be reformulated as follows:

EOPT2(n, p, s, Pd, q, d) :

minimize

q∑
i=1

Pd(xi)×
xi

s(xi)

Subject to x1 + x2 + ... + xq = n

xi ≤ n i = 1, ..., q

xi ≥ 0 i = 1, ..., q

1 ≤ q ≤ p

where p, q, Pd(x), n, xi ∈ Z>0 and s(x) ∈ R>0

The functional models for power and energy for an appli-
cation are built for a wide range of problem sizes where for
each problem size, the average dynamic power consump-
tion or the dynamic energy consumption can be determined
via either a direct measurement or a prediction model.

POPT and EOPT (EOPT2) are popularly known as min-
max and min-sum problems.

4 POPTA: ALGORITHM SOLVING POPT PROB-
LEM

In this section, we present an efficient algorithm solving
the POPT problem where the speed function of a processor,
s(x), is represented by a discrete set of experimental points
separated by minimum granularity. The problem can be
described as follows: Let p identical processors be used to
execute the workload of size n, and let s(x) be the speed
of execution of the workload of size x by a processor. Let
∆x be the minimum granularity of workload so that each
processor is allocated a multiple of ∆x only. The problem is
to find the distribution of the workload of size n between
the p processors, which minimizes the computation time of
its parallel execution.

We propose an algorithm called POPTA (Algorithm
1) that solves the problem. It should be noted that the
traditional load-balancing algorithm returns the workload
distribution, xi = n

p ,∀i ∈ [1, p].
The inputs to the algorithm are the size of the workload,

n, given as multiple of ∆x, the number of processors,
p, the minimum granularity, ∆x, and the speed function
represented by two discrete sets, X and S respectively
containing problem sizes and speeds. m is the cardinality of
the sets X and S. The outputs from the algorithm are the op-
timal workload distribution, Dopt, where the distributions
are given in multiples of ∆x, and the optimal execution
time, topt. It is important to note that the optimal number
of processors that are selected by POPTA in the optimal
workload distribution may be less than p.

We will illustrate its execution through an example.
Consider p = 4 processors involved in parallel execution
of a OpenBLAS DGEMM workload of size n = 64. Let the
minimum granularity ∆x be 1. We use a segment of the
speed function, s(x), shown in Figure 14. The function is
represented by discrete sets X and S composed from the
points in the graph. These points are connected by dashed

Algorithm 1 Algorithm determining optimal distribution of
workload of size n for maximizing performance.

1: procedure POPTA(n, p,∆x,X, S,Dopt, topt)
Input:

Workload size, n ∈ Z>0

Number of processors, p ∈ Z>0

Minimum granularity, ∆x ∈ Z>0

Speed function represented by two sets (X,S),
X = {x1, ..., xm}, x1 < ... < xm, xi ∈ Z>0,∀i ∈ [1,m]
S = {s(x1), ..., s(xm)}, s(x) ∈ R>0

Output:
Optimal workload distribution,
Dopt = {x1

opt, ..., x
p
opt}, xi

opt ∈ Z>0,∀i ∈ [1, p]
Optimal execution time, topt ∈ R>0

2: for point← 1,m do
3: (X↑[point], S↑[point])← Sort↑(point, X , S)
4: end for
5: (B,E)← GetBE(n,p,∆x,X ,S)
6: if n mod p = 0 then
7: if E ≤ X↑[ np ]

S↑[ np ] then

8: Di
opt ← n

p ,∀i ∈ [1, p]; topt ←
n
p×∆x

S[ np ]

9: return (Dopt, topt)
10: end if
11: end if
12: ∀I ∈ [1, n

p ], J ∈ [1, p],K ∈ [1, J ],
13: memorized[I][J ][K]← (0, 0, 0)
14: (Dopt, topt)← POPTAKERNEL(

n,p,∆x,B,E,X ,S,X↑,S↑,memorized)
15: return (Dopt, topt)
16: end procedure

lines for clarity. The recursive procedure, POPTAKernel
(Algorithm 2), examines all the points between the lines
B and E as shown in Figure 15. Vertical line B represents
x = n

p (x = 16 in this example) and line E passes through

origin and the point (n
p ,

n
p

s( n
p ) ).

The first step of the algorithm is to create a sorted array
of points for each point a ∈ [1,m] (Lines 2-4). For each
point a, the array contains all the points sorted in non-
decreasing order of X[b]

S[b] ,∀b ∈ [a + 1,m]. The ratio x
s(x) is

proportional to the execution time of the problem size x. The
sorted arrays are stored in the arrays, {X↑, S↑}. If the point
a has execution time less than or equal to execution times
at points greater than it (x > a), then the point a represents
the optimal workload distribution for workload of size p×a
using p processors. That is, the problem size a is allocated
to all the p processors. Therefore, having these sorted arrays
of points allows us to avoid recursion of the algorithm at
points, which give optimal workload distribution for sub-
problems. These are essentially points which have execution
times less than or equal to execution times at points beyond
them.

The procedure, GetBE (given in Section 2 of the sup-
plemental), determines the lines B and E and takes into
account the case when n is not divisible by p. When n is
divisible by p, B is n

p and E is the execution time to solve
it, n

p /s(
n
p ). When n is not divisible by p, there are many
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Algorithm 2 The kernel of the algorithm 1.
1: function POPTAKERNEL(n, p,∆x,B,E,

X, S,X↑, S↑,memorized,Dopt, topt)
2: if p = 1 then return ({n}, n×∆x

S[n] ) end if
3: Di

opt ← n
p ,∀i ∈ [1, p]

4: Di
opt ← Di

opt + 1,∀i ∈ [1, n mod p]

5: topt ← max
1≤i≤p

(
Di

opt

S[Di
opt]

)

6: for L← memorized[B][p][n mod p][1], |X↑| do
7: nr ← X↑[L]
8: tr ← nr

S↑[L]

9: if tr ≥ E then break end if
10: for r ← 1, p− 1 do
11: nl ← n− r × nr

12: if (nl < 0) then break end if
13: if nl = 0 and tr < topt then
14: diopt ← nr,∀i ∈ [1, r]
15: diopt ← 0,∀i ∈ [r + 1, p]
16: topt ← tr
17: continue
18: end if
19: (Bl, El)← GETBE(nl,p− r,∆x,X ,S)
20: if Bl > |X| then continue end if
21: if (nl mod (p− r) 6= 0) or (El >

X↑[Bl]
S↑[Bl]

) then
22: El ← (El > tr) ? tr : El

23: tl ← memorized[ nl

p−r ][p− r][n mod p][3]
24: if (tl ≤ El and max(tr, tl) < topt) then
25: ∀i ∈ [r + 1, p], xi ←
26: memorized[ nl

p−r ][p− r][n mod p][2]
27: else
28: {(xr+1, ..., xp), tl} ←

POPTAKERNEL(
nl,p− r,∆x,Bl,El,
X ,S,X↑,S↑,memorized,Dopt,topt)

29: end if
30: else
31: tl ← El

32: if max(tr, tl) < topt then
33: xi ← Bl,∀i ∈ [r + 1, p]
34: end if
35: end if
36: if max(tr, tl) < topt then
37: diopt ← nr,∀i ∈ [1, r]
38: diopt ← xi,∀i ∈ [r + 1, p]
39: topt ← max(tr, tl)
40: if tl ≤ tr then Go To 43 end if
41: end if
42: end for
43: end for
44: memorized[ B

∆x ][p][n mod p]← (L, dopt, topt)
45: return (Dopt, topt)
46: end function

Fig. 14. POPTA example: Speed function of a processor executing
the multithreaded OpenBLAS DGEMM application represented by a
discrete set of points (connected by dashed lines for clarity).

ways to allocate the extra n mod p units. The procedure just
picks one combination for the purpose of initialization. Also
when n is divisible by p and if the point (n

p ,
n
p /s(

n
p )) has

execution time less than or equal to execution times at points
greater than it (x > n

p ), then we have the optimal workload
distribution, that is, the problem size n

p is allocated to all
the p processors. This is the traditional homogeneous load-
balanced workload distribution.

A key optimization in the algorithm is the 3D array,
memorized, of size O(m×p2), which memorizes the points
that have already been visited during the recursive invoca-
tions. This array is initialized to zero before the invocation
of the core routine (Algorithm 2). Briefly, for the execution
of the problem size n using p processors, the array value
memorized[np ][p][extra] contains the ending index of the
range of points examined during the previous invocation.
The array entry memorized[np ][p] is of size p where the
extra index represents a problem size (np + n mod p) in the
range [np ,

n
p + p]. This memorization ensures that there are

only O(m× p2) recursive invocations of the core kernel (Al-
gorithm 2) to solve a problem size of n using p processors.
Along with memorization of the range of points examined,
the optimal workload distribution and the optimal execu-
tion time are also memorized.

One other optimization (Line 40) is that during the
recursive invocation of POPTA (Algorithm 2) for some r
(Line 11), if tl is less than or equal to tr, then we return from
the invocation because we have found the optimal solution
for the problem size n using p processors. This is because
any other solution will have an execution time greater than
or equal to tr since points to the right of B = nl

p−r are sorted
in non-decreasing order of execution times (as given by the
arrays {X↑, S↑}). This is the best case.

Line 2 of the procedure, POPTA, deals with the simple
case of solving the problem size n using one processor. Lines
3-5 initialize the outputs, Dopt and topt, allocating each extra
bit ∆x to all the processors, I ∈ [1, n mod p]. Lines 6-45
contain the kernel of POPTA. The array of sorted points
between B and E as shown on lines L1, ..., Lq in Figure 16
is sequentially examined (Line 6-8). The condition (tr > E)
ensures that all points beyond E are not considered. For
each point A (on line Lx,∀x ∈ [1, q]), there are p − 1 main
execution steps in the nested for loop (at Line 10). In a main
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Fig. 15. POPTA example: POPTA sorts points between B and E in non-
increasing order of Θ.

Fig. 16. POPTA example: Points on line L1 examined followed by points
on line L2 and so on until the points on line Lq .

Fig. 17. POPTA example: One processor is allocated problem size 19
to the right. POPTA is invoked for remaining problem size 45 and 3
remaining processors.

step, each of the r processors is allocated the problem size
nr to the right of B. If the remaining problem size nl is
less than 0, that means there is excessive allocation to the
right of B and so we break from the loop since subsequent
allocations to the right of B will always result in negative
remaining problem size to the left of B. If the remaining
problem size nl is equal to 0, then we save this distribution
if (tr < topt) (Lines 14-16).

Then, we determine the lines Bl and El for the recursive
invocation of POPTA solving the problem size nl to the

Fig. 18. POPTA example: Two processors are allocated problem size
P = 19 each to the right. POPTAkernel is invoked to find optimal load
distribution for remaining problem size 26 and 2 remaining processors.

Fig. 19. POPTA example: Three processors are allocated problem size
P = 19 each to the right. The only remaining processor is allocated
problem size Q3 = 7.

Fig. 20. POPTA example: Point P on line L2 examined. The correspond-
ing allocations to the left are Q1, Q2, and Q3.

left of B using p − r processors using the function, getBE
(Line 19). We invoke POPTA to solve the problem size
nl to the left of B using p − r processors only if nl is not
divisible by p − r and the execution time of the point Bl

given by El in the recursive invocation is greater than the
execution times of the points beyond it (Line 21). This can
be determined using the sorted arrays, (X↑, S↑). Otherwise,
the optimal workload distribution is given by the point Bl

for the recursive invocation (Lines 32-34). If the memorized
execution time of the recursive invocation (tl) is less than
or equal to El, then we use the memorized workload
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Fig. 21. POPTA example: Point P on the final line Lq examined. The
corresponding allocations to the left are Q1, Q2, and Q3.

distribution and avoid recursion (Line 26). Essentially, if
a range of points have already been examined, then they
will not be re-examined due to the memorization. For the
recursive invocation solving the problem size nl to the left
of P using p− r processors, the lines B and E are set in Bl

and El. El is either Lx or Bl

s(Bl)
, whichever is lesser. If Bl

s(Bl)

is less than Lx, then we don’t consider points beyond Bl

s(Bl)

(i.e., greater than Bl

s(Bl)
but less than or equal to Lx) because

those points will have worse execution times. That is, when
the algorithm is considering the points on a line Lx, this line
will always be the limiting line for the recursive invocations.

For a main step, if the execution time of the parallel
execution (max(tr, tl)) is less than the topt, we save the
improved solution (Lines 37-39). For each problem size nl

solved using p − r processors, the ending index L, which
contains the range of points already examined, is saved
(Line 44). So, if an invocation for solving this problem
size recurs, then recursion is avoided using the memorized
arrays (Line 26). Therefore, this memorization ensures that
the total number of examined points (including those in the
recursive invocations) for a point on a line Lx,∀x ∈ [1, q] is
not more than O(m× p2).

Let us trace the execution of the procedure for the only
point P on line L1. There are 3 main execution steps for this
point (for loop in Line 10). In the first step, one processor
is allocated the problem size nr = 19 to the right shown by
point P in Figure 17. POPTAKernel is now invoked to find
the optimal workload distribution for problem size nl = 45
and p− r = 3 processors. The point Q1 shown in Figure 17
represents x = n

p = 15 for this problem size in the recur-
sive invocation POPTAKernel(45, 3, 1, Q1, L1, X, S, ...).
The lines B and E for this recursive invocation are set to Q1

and L1 respectively. In the second step, 2 processors are allo-
cated the problem size nr = 19 to the right shown by point
P in Figure 18. POPTAKernel is now invoked to find the
optimal workload distribution for problem size nl = 26 and
p−r = 2 processors. The point Q2 shown in Figure 18 repre-
sents x = n

p = 26 for this problem size in the recursive invo-
cation POPTAKernel(26, 2, 1, Q2, L1, X, S, ...). The lines
B and E for this recursive invocation are set to Q2 and
L1 respectively. Similarly, for the third step, 3 processors
are allocated the problem size nr = 19 to the right shown
by point P and one processor is allocated the problem size
nl = 7 to the left shown by point Q3 in Figure 19. The

best workload distribution and execution time from the
execution of these three steps is saved in Dopt and topt.

After examining all the points on L1, the algorithm
considers the points on Line L2. There is only one point
P on this line as shown in Figure 20. For this point, the
points Q1, Q2, and Q3 respectively represent the recursive
POPTAkernel invocations to the left of B for r = 1, r = 2,
and r = 3. So, in this manner, the algorithm examines the
points on lines L1, L2, L3, and so on until the final line Lq

(shown in Figure 21) before (and excluding) E.
At the end of the execution of the algorithm, the optimal

workload distribution is returned in dOpt and the optimal
execution time is returned in eOpt.

The optimality and complexity proofs of POPTA are pre-
sented in Sections 3 and 4 respectively in the supplemental
material.

5 EOPTA: ALGORITHM SOLVING EOPT PROB-
LEM

In this section, we present an efficient algorithm solving the
EOPT problem where the energy function of a processor,
Ω(x), is represented by a discrete set of experimental points
separated by minimum granularity. The problem can be
described as follows: Let p identical processors be used to
execute the workload of size n, and let Ω(x) be the dynamic
energy consumption of execution of the workload of size x
by a processor. Let ∆x be the minimum granularity of work-
load so that each processor is allocated a multiple of ∆x
only. The problem is to find the distribution of the workload
of size n between the p processors, which minimizes the
total dynamic energy consumption of the computations in
its parallel execution.

We propose an algorithm called EOPTA (Algorithm 3)
that solves the problem. It has structure similar to algorithm
POPTA (Algorithm 1).

The inputs to the algorithm are size of the workload,
n, given as multiple of ∆x, the number of processors, p, the
minimum granularity, ∆x, and the dynamic energy function
represented by two discrete sets, X and Ψ respectively con-
taining problem sizes and dynamic energy consumptions. m
is the cardinality of the sets X and Ψ. The outputs from the
algorithm are the optimal load distribution, Dopt, and the
optimal dynamic energy consumption, Ωopt. It is important
to note that the number of processors that are selected
by POPTA in the optimal workload distribution may be
less than p. For example, if the dynamic energy function
is concave, then EOPTA may select just one processor to
execute the workload if the workload size lies in the domain
of the dynamic energy function.

The first step of the algorithm is to determine the set of
convex points, ConvS, using the function, getConvexSet
(given in Section 5 in the supplemental). A point Q is
defined as convex if Ψ[IQ−k]+Ψ[IQ+k] > 2×Ψ[IQ],∀k ∈
[1, 2 × IQ], where IQ is the index of point Q. For example,
Figure 22 shows these points in a segment of the energy
function of OpenBLAS DGEMM application. If all the points
in Ψ are convex, then we determine the optimal workload
distribution using Lemma 6.1 given in the supplemental.
If there are no convex points in Ψ (i.e., ConvS = Φ,
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Algorithm 3 Algorithm determining optimal distribution of
workload of size n for minimizing energy.

1: procedure EOPTA(n, p,∆x,X,Ψ, Dopt, topt)
Input:

Workload size, n ∈ Z>0

Number of processors, p ∈ Z>0

Minimum granularity, ∆x ∈ Z>0

Energy function represented by two sets (X,Ψ),
X = {x1, ..., xm}, x1 < ... < xm, xi ∈ Z>0,∀i ∈ [1,m]
Ψ = {Ω(x1), ...,Ω(xm)},Ω(x) ∈ R>0

Output:
Optimal workload distribution,
Dopt = {x1

opt, ..., x
p
opt}, xi

opt ∈ Z>0,∀i ∈ [1, p]
Optimal dynamic energy consumption, Ωopt ∈ R>0

2: ConvS ← GETCONVEXSET(Ψ)
3: ConvConvS ← GETCONVEXSET(ConvS)
4: if (|ConvS| = m) or

(|ConvConvS| = |ConvS|) then
5: return (dOpt, eOpt) . Lemma 6.1 (Supplemental)
6: end if
7: if (|ConvS| = 2) or (|ConvConvS| = 2) then
8: return (dOpt, eOpt) . Lemma 7.1 (Supplemental)
9: end if

10: ∀I ∈ [1, n
p + 1], J ∈ [1, p],K ∈ [1, p]

11: memorized[I][J ][K]← (I + 1, 0, 0)
12: (Dopt,Ωopt)← EOPTAKERNEL(

n,p,∆x,|ConvS|,X ,Ψ,ConvS,memorized)
13: return (Dopt, topt)
14: end procedure

Fig. 22. Convex points shown for a segment of dynamic energy con-
sumption graph of OpenBLAS DGEMM application.

excluding the endpoints), then the dynamic energy con-
sumption function is a concave function and we determine
the optimal workload distribution using Lemma 7.1 given in
the supplemental. Also, if the set of convex points, ConvS,
is a convex function or a concave function, then we use
Lemmas 6.1 and 7.1 (given in the supplemental) respectively
to determine the optimal workload distribution. These are
the best cases. One can see from the Figure 22 that the set
of convex points is neither a convex function nor a concave
function. So, EOPTA will examine all the convex points in
the energy function in this case.

Similar to POPTA, a 3D array, memorized, of size

Algorithm 4 The kernel of algorithm EOPTA 3.
1: function EOPTAKERNEL(n, p,∆x,E,

X,Ψ, ConvS,memorized,Dopt, topt)
2: if (p = 1) then return ({n},Ψ[n]) end if
3: Di

opt ← n
p ,∀i ∈ [1, p]

4: Di
opt ← Di

opt + 1,∀i ∈ [1, n mod p]
5: Ωopt ←

∑p
proc=1 Ψ[Dproc

opt ]
6: for L← memorized[nbyp][p][extra][1], E do
7: for r ← 1, p− 1 do
8: nr ← X[Conv[L]]; nl ← n− r × nr

9: if nl < 0 and Ωr < Ωopt then
10: d1

opt ← n; diopt ← 0,∀i ∈ [2, p];Ωopt ← Ωr

11: break
12: end if
13: Ωr ← r ×Ψ[Conv[L]]
14: if nl = 0 and Ωr < Ωopt then
15: diopt ← nr,∀i ∈ [1, r];
16: diopt ← 0,∀i ∈ [r + 1, p]; Ωopt ← Ωr

17: continue
18: end if
19: if memorized[nl/∆x

p−r ][p− r][extra] > L then

20: Ωl ← memorized[nl/∆x
p−r ][p− r][extra][3]

21: if Ωr + Ωl < Ωopt then
22: ∀i ∈ [r + 1, p], xi ←
23: memorized[nl/∆x

p−r ][p− r][extra][2]
24: end if
25: else{(xr+1, ..., xp),Ωl} ← EOPTAKERNEL(

nl,p−r,∆x,L,X ,Ψ,ConvS,memorized)
26: end if
27: if (Ωr + Ωl) < Ωopt then
28: diopt ← nr,∀i ∈ [1, r]
29: diopt ← xi,∀i ∈ [r+ 1, p];Ωopt ← (Ωr + Ωl)
30: end if
31: end for
32: end for
33: memorized[np ][p][extra]← (L, dopt,Ωopt)
34: return (Dopt,Ωopt)
35: end function

O(m× p2) is used to memorize the points that have already
been examined during the recursive invocations. Note that
each array entry memorized[I][J [K] is initialized to I + 1
because the range of points examined in the loop (Line 6,
Algorithm 4) is [I + 1, E]. While in POPTA, the space of
points considered on the right lies between B = n

p and E,
the space of points in EOPTA are all the points in the convex
set, ConvS.

The optimality and complexity proofs of EOPTA are pre-
sented in Sections 8 and 9 respectively in the supplemental.

6 EXPERIMENTAL ANALYSIS OF POPTA AND
EOPTA
In this section, we will present analysis of POPTA and
EOPTA for two data-parallel applications, OpenBLAS
DGEMM [8] and FFTW [9], [36], on a Intel Haswell server
shown in Table 1. The experiments are a combination of
actual measurements conducted on the server and simula-
tions for clusters containing replicas of the server. We would
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like to mention that the results from actual experiments
on clusters would be no different from the results of our
simulations. This is because the algorithms minimize the
execution time and energy consumption of computations
only in the parallel execution of a workload and do not con-
sider communication overheads. Since the problems sizes
(xi,∀i ∈ [1, p]) in the optimal workload distributions are
members of the set X in the input functions that have been
built experimentally, the minimal execution time and energy
consumption from actual measurements can not differ from
simulations.

The speed and the energy functions that are input to
POPTA and EOPTA are experimentally built on the Intel
Haswell server. These are built once and for only one
processor (the Intel Haswell server in this case). Simulations
of POPTA and EOPTA for clusters containing replicas of the
Intel Haswell server are then also executed on this server.
The speed (X,S) and dynamic energy consumption (X,Ψ)
functions of OpenBLAS DGEMM application are shown
in Fig. 7 and 9 respectively. The speed of the application
multiplying two matrices of size n × n (and corresponding
problem size of n2) is calculated as (2×n3)/t, where t is the
execution time. The speed (X,S) and dynamic energy con-
sumption (X,Ψ) functions of FFTW application are shown
in Fig. 10 and 12 respectively. The speed of the application
performing 2D DFT of size n× n (and corresponding prob-
lem size n2) is calculated as (2.5× n× log2 n)/t, where t is
the execution time. The total dynamic energy consumption
during the application execution is obtained using Watts Up
Pro power meter. To ensure reliability of the results, we fol-
low a detailed methodology, which is described in Section 1
of the supplemental. We execute the application repeatedly
and stop the measurements only when the sample mean lies
in the interval with the confidence level 95% and a precision
of 2.5% is achieved. In this work, we use Student’s t-test,
assuming that the individual observations are independent
and their population follows the normal distribution.

The cardinality (m) of the discrete sets ((X,S) and
(X,Ψ)) representing the speed function and dynamic en-
ergy function of OpenBLAS DGEMM application is 1440.
The granularity (∆x) selected for the OpenBLAS DGEMM
application is 1478656 (representing DGEMM of a 1216 ×
1216 matrix). The cardinality (m) of the discrete sets rep-
resenting the speed function and dynamic energy function
of FFTW application is 766. The granularity (∆x) selected
for the FFTW application is 1327104 (representing 2D DFT
of size 1152 × 1152). There is no specific reason why we
picked the particular granularities for OpenBLAS DGEMM
and FFTW. Lesser granularity would unveil larger fluctua-
tions in the functional models but would also mean more
experimental points thereby increasing the time to build the
functional models as well as the execution times of POPTA
and EOPTA. As the granularity increases, the functional
models become smooth and will resemble those for single-
core CPUs therefore disallowing any opportunity for opti-
mization. There are 44 and 59 convex points in the dynamic
energy consumption graphs for OpenBLAS DGEMM and
FFTW (Fig. 9 and 12 respectively). The starting point in the
speed and energy functions contains a problem size that is
so selected as to exceed the L2 cache. The last point in the
discrete set X (representing DGEMM of a 46080 × 46080

matrix) for the OpenBLAS DGEMM application contains a
problem size, which occupies the whole main memory. For
the FFTW application, we restrict the number of points be-
cause we observed that very large problem sizes were taking
erroneously large execution times to complete possibly due
to a software limitation. This was unduly lengthening the
experimental building times of the functional models. The
last point contains the problem size representing 2D DFT of
size 32768× 32768.

To demonstrate the benefits of the solutions deter-
mined by POPTA and EOPTA, we report the average
and maximum improvements in performance and en-
ergy provided by the solutions determined by these algo-
rithms. The performance improvement is calculated as fol-
lows: Performance Improvement (%) =

thomo−tpopta
tpopta

× 100,
where thomo is the execution time obtained using tradi-
tional homogeneous workload distribution (xi = n

p ,∀i ∈
[1, p]) and tpopta is the execution time obtained using
the optimal workload distribution determined by POPTA.
The percentage energy reduction is calculated as follows:
Energy reduction (%) =

Ωhomo−Ωeopta

Ωeopta
× 100, where Ωhomo

is the dynamic energy consumption using traditional homo-
geneous workload distribution and Ωeopta is the dynamic
energy consumption using the optimal workload distribu-
tion determined by EOPTA. Negative values of these per-
centages represent performance degradation and increase
in energy consumption.

In the analysis of the solutions determined by POPTA,
we use two different datasets. The first dataset is com-
posed as follows. We sort the speed function (X,S) in
non-decreasing order of speeds. We choose the first half of
the points from this sorted dataset. The problem size per
processor, n

q , is iterated over these selected problem sizes
and q is iterated from 2 to 1024. We then solve the resulting
workloads of size, n = n

q×q, using p processors in the range,
[q, 1024]. For the second dataset, we use all the points in the
speed function to iterate for n

q .
To analyze the solutions determined by EOPTA, we

again compose two different datasets. For the first dataset,
we sort the energy function (X,Ψ) in non-increasing order
of energies and pick the first half of the points to iterate for
n
q . For the second dataset, we use all the points in the energy
function to iterate for n

q .
The average percentage improvement in performance

and energy is calculated by averaging the percentages ob-
tained from solving all the workloads for the corresponding
dataset. The maximum percentage improvement is calcu-
lated as the maximum of all these percentages.

For the OpenBLAS DGEMM application, the minimum,
average, and maximum percentage improvements in per-
formance for the first dataset are found to be 1%, 17%,
and 97% respectively. For the second dataset, the average
percentage improvement is 13%. The minimum, average,
and maximum percentage reductions in energy for the first
dataset are 1%, 23% and 71% respectively. For the second
dataset, the average percentage reduction is 18%. One can
see that the average and maximum improvements are close
to the average and maximum width of variations observed
in the Fig. 7 and 9 respectively.

For the FFTW application, the minimum, average, and
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maximum performance percentage improvements for the
first dataset are found to be 15%, 60%, and 95% respec-
tively. For the second dataset, the average percentage im-
provement is 40%. The minimum, average, and maximum
percentage reductions in energy for the first dataset are 1%,
40%, and 127% respectively. For the second dataset, the
average percentage reduction is 22%. Again one can observe
that the average and maximum improvements are close to
the average and maximum width of variations observed in
the Fig. 10 and 12 respectively.

For points in the two datasets with the highest speeds
and the lowest energies, we confirmed experimentally that
the optimal solutions determined by POPTA and EOPTA
and the traditional load balancing algorithms are the same.
For all the executions, the problem sizes in the optimal
workload distributions determined by POPTA and EOPTA
are members of the set, X , in the input speed and energy
functions. We would also like to mention that the number
of processors used in the optimal solutions are less than or
equal to the input number of processors, p.

Both the algorithms demonstrated average quadratic
polynomial complexity of O(p2). The execution times
ranged from few seconds to few minutes. However, unlike
EOPTA, POPTA exhibited a practical complexity of O(1) for
many executions.

If the problem size per processor n
p is fixed, the per-

centage improvements in performance and dynamic energy
consumption will be constant for any arbitrary number of
processors, p. We confirmed experimentally that this is the
case.

To study the interplay between performance and energy,
we determined the improvements in energy obtained when
using the performance optimizing POPTA as well as the
improvements in performance obtained when using the en-
ergy optimizing EOPTA. We use the same pairs of datasets
in the analysis. To determine the reduction in energy, we use
the optimal workload distribution determined by POPTA
and calculate the dynamic energy consumption associated
with this distribution. We then compare this dynamic en-
ergy consumption with the dynamic energy consumption
obtained using the traditional workload distribution. We
observed that optimizing for performance alone can lead
to good reduction in dynamic energy consumption.

For OpenBLAS DGEMM, the minimum, average, and
maximum percentage reductions in energy for the first
dataset were 1%, 24%, and 68% respectively. For the second
dataset, the average percentage reduction is 12%. For FFTW,
the minimum, average, and maximum percentage reduc-
tions in energy for the first dataset were 1%, 29%, and 55%
respectively. For the second dataset, the average percentage
reduction is 23%.

To analyze the impact of EOPTA on the performance,
we take the optimal workload distribution determined by
EOPTA and calculate the execution time associated with
this distribution. We then compare this execution time with
the execution time obtained using the traditional workload
distribution. We observed that optimizing for energy alone
can cause major performance degradation.

For OpenBLAS DGEMM, the minimum, average, and
maximum performance degradations for the first dataset
were 88%, 95%, and 100%. For the second dataset, the av-

erage performance degradation is 95%. For FFTW, the min-
imum, average, and maximum performance degradations
for the first dataset were close to 99%, 100%, and 100%. For
the second dataset, the average performance degradation is
close to 100%.

One of our future goals is to understand the causes for
these degradations and pursue pareto-optimality study of
performance and energy.

The software implementations of the algorithms pre-
sented in this paper can be downloaded from the location,
https://git.ucd.ie/manumachu/aleph.

7 CONCLUSION

Homogeneous parallel platforms now are composed of
tightly integrated multicore CPUs with highly hierarchical
arrangement of cores. This tight integration has resulted in
the cores contending for various shared on-chip resources
such as Last Level Cache and interconnect leading to re-
source contention and NUMA. Due to these newly intro-
duced complexities, the performance and energy profiles of
real-life scientific applications executing on these platforms
are not smooth and may deviate significantly from the
shapes that allowed traditional and state-of-the-art load
balancing algorithms to find optimal solutions.

In this paper, we proposed novel model-based methods
and algorithms for minimization of time and energy of
computations for the most general performance and energy
profiles of data parallel applications executing on homoge-
neous multicore clusters. We formulate the performance and
energy optimization problems and present efficient algo-
rithms of complexity O(p2) solving these problems where
p is the number of processors. Unlike load balancing algo-
rithms, optimal solutions found by these algorithms may
not load-balance an application. Based on our experiments,
we demonstrate the optimality of solutions determined by
the algorithms for two data-parallel applications. We also
demonstrate significant average and maximum percentage
improvements in performance and energy for the two appli-
cations compared to traditional load-balanced workload dis-
tribution. We further show that optimizing for performance
alone can lead to significant reduction in energy. However,
optimizing for energy alone can cause major degradation in
performance.

In our future work, we will study pareto-optimality
of performance and energy for applications executing on
homogeneous multicore clusters. We would also try to study
optimization problems for performance and energy for ap-
plications executing on heterogeneous parallel platforms.
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