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Abstract—Two strategies of distribution of computations can be 
used to implement parallel solvers for dense linear algebra prob-
lems for Heterogeneous Computational Clusters of Multicore 
Processors (HCoMs). These strategies are called Heterogeneous 
Process Distribution Strategy (HPS) and Heterogeneous Data 
Distribution Strategy (HDS). They are not novel and have been 
researched thoroughly. However, the advent of multicores neces-
sitates enhancements to them. In this paper, we present these 
enhancements. Our study is based on experiments using six ap-
plications to perform Parallel Matrix-matrix Multiplication 
(PMM) on an HCoM employing the two distribution strategies.  

Keywords- Heterogeneous ScaLAPACK; HeteroMPI; multicore 
clusters; matrix-matrix multiplication; heterogenous clusters 

I. INTRODUCTION 
Parallel platforms employing multicores are becoming 

dominant systems in High Performance Computing (HPC). 
Almost 90% of the supercomputing systems in the Top500 list 
are based on dual- or quad-core architectures [1]. This rapid 
widespread utilization of multicore processors is due to sev-
eral factors [2]. Therefore, computers containing multicore 
processors will become ubiquitous soon and will be widely 
deployed in clusters purposely built to tackle the most chal-
lenging scientific and engineering problems. A cluster built 
from such computers (HCoM), will be inherently heterogen-
eous due to the different number of cores/processors, its pro-
cessing capabilities and the multilevel hierarchy of intercon-
nected sets of them. Therefore, the advent of multicores poses 
many challenges to writing parallel solvers for dense linear 
algebra problems for an HCoM. Addressing these challenges 
would entail redesign and rewriting of parallel algorithms to 
take into account the increased TLP (Thread Level Parallel-
ism) and the hierarchical nature of communications satisfying 
the criteria of fine granularity (as cores are associated with 
relatively small local memories) and asynchronicity to hide 
the latency of memory accesses. Algorithms hitherto con-
sidered unscalable for being communication-intensive or due 

to high granularity have to be revisited. These criteria can be 
satisfied when an algorithm can generate a set of independent 
tasks having a high ratio of floating point calculations to data 
required, that is, all the tasks involved are of Level 3 BLAS.  

These solvers must take into account the aforementioned 
heterogeneities and provide “scalable” parallelism where 
speedups obtained are proportional to the number of cores as 
one scales from 4-16-128 and more cores. They must be writ-
ten using hybrid programming models (e.g. MPI [3] plus 
OpenMP [4]). These solvers must also be automatically tuned 
for an HCoM, which means that they must automate the fol-
lowing complex optimization tasks [5]: the accurate estima-
tion of platform parameters (speeds of processors, latencies 
and bandwidths of communication links, etc.); the use of effi-
cient communication models that would reflect the hierarchi-
cal nature of communications and would accurately predict 
the time of different types of communications; the determina-
tion of the optimal values of algorithmic parameters such as 
data distribution blocking factor and two-dimensional proces-
sor grid arrangement; and, finally, an efficient mapping of the 
processes executing the parallel algorithm to the computers.  

In this paper, we propose and analyse two strategies of dis-
tribution of computations: 

• Heterogeneous Process Distribution Strategy (HPS): In 
this strategy, more than one process is executed per 
computer. All the processes get the same amount of 
data. The number of processes on the computer multi-
plied by the number of threads run per process is equal 
to the number of cores in the computer. Given a prob-
lem size, there exist an optimal number of processes to 
be executed on a computer and an optimal number of 
threads to run per process. This is a different definition 
from the traditional HeHo strategy [6] since the number 
of processes executed per computer in the HPS strategy 
will be always equal to the number of cores. Therefore, 
the HeHo condition of proportionality of the number of 
processes run per processor to its speed is relaxed. 
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• Heterogeneous Data Distribution Strategy (HDS): In 
this strategy, one process is executed per computer (the 
computer may have one or more processors). The vol-
ume of data allocated to a computer is proportional to 
the speed of the computer. The number of threads run 
per computer will be equal to the number of cores in the 
computer to ensure that all the cores are fully utilized. It 
should also be noted the terms computer or process or 
processor are used interchangeably using this strategy, 
which is why in our modified definition we consider a 
computer with one or more processors (multicore or 
not) as a single entity, that is, one process is executed 
per computer even though the computer may have one 
or more processors (multicore or not). 

The HPS strategy is a multiprocessing approach that is used 
to accelerate legacy parallel linear algebra programs on 
HCoMs. It allows the complete reuse of high-quality legacy 
parallel linear algebra software such as ScaLAPACK [7] on 
HCoMs with no redesign efforts and provides good speedups. 
The Heterogeneous ScaLAPACK library [8], currently under 
development, uses this strategy and is built on the top of Het-
eroMPI [9] and ScaLAPACK. It provides automatically tuned 
parallel linear algebra programs for HCoMs but most import-
antly performs all the aforementioned critical automations of 
the complex optimization tasks. 

The rest of the document is organized as follows. The next 
section briefly outlines six applications used in this study to 
perform the Parallel Matrix-matrix Multiplication (PMM). 
Sections III to V introduce in more detail three of them, spe-
cifically designed and implemented for this study. Section VI 
presents the results of experiments with the applications. Sec-
tion VII presents some conclusions and future work.  

II. APPLICATIONS DESCRIPTION 

A. Homogeneous ScaLAPACK Application Using HPS 
This application calls the PDGEMM routine of the PBLAS 

subproject, which implements the parallel outer-product algor-
ithm of two dense matrices on a 2D process grid [7]. This rou-
tine falls in the set of HPS applications in our study. 

B. MPI Application Using HDS 
The heterogeneous parallel algorithm [10] used to compute 

this matrix product is a modification of the ScaLAPACK 
outer-product algorithm. This application requires, as input, 
the 2D computer grid arrangement to use during the execution 
of the PMM. More details will follow in Section III. 

C. HeteroMPI Application Using HDS 
This application calls the HeteroMPI routines to determine 

the optimal values of the algorithmic parameters: the subset of 
computers used for computations and their 2D arrangement. 
Afterwards, the selected computers that form the optimal 2D 
computer grid perform the heterogeneous PMM described in 
Section B. More details will be presented in Section IV. 

D. MPI Application Using HPS 
This application requires two inputs, which are the number 

of threads to run per process and the 2D process grid ar-

rangement to use during the execution of the PMM. It uses 
homogeneous distribution of computations, that is, each pro-
cess gets the same amount of data. It reuses the code of the 
MPI application utilizing the HDS strategy (Section B) for the 
particular case of homogeneous data distribution among pro-
cesses. 

E. HeteroMPI Application Using HPS 
This application reuses the code of the HeteroMPI applica-

tion utilizing the HDS strategy (Section C) with some excep-
tions. It uses homogeneous distribution of computations, that 
is, each process gets the same amount of data. The number of 
threads per process must be preconfigured. This is due to a 
shortcoming in HeteroMPI, which is the feature that would 
detect the optimal (process, thread) combination in the HPS 
strategy. This application is the application presented in Sec-
tion D instrumented with HeteroMPI. 

F. Heterogeneous ScaLAPACK Application Using HPS 
This application is written using Heterogeneous ScaLA-

PACK routines and reuses the PBLAS routine PDGEMM. 
The number of threads to run per process must be preconfig-
ured. This application can be considered as the one shown in 
Section A (ScaLAPACK) instrumented with HeteroMPI. 
However, HeteroScaLAPACK provides users with additional 
tools to facilitate the interface with HeteroMPI. A summary of 
the software is presented in Section V. 

III. THE MPI APPLICATION USING HDS 
This section presents the PMM application multiplying ma-

trix A and matrix B, C=A×B, where A, B, and C are dense ma-
trices of size m×k, k×n, and m×n matrix elements respectively 
on a 2D heterogeneous processor grid of size p×q, 

€ 

Pij ,∀i ∈ 1, p[ ]∧ j ∈ 1,q[ ]  provided as input. Each matrix ele-
ment is a square block of size b×b. The heterogeneous parallel 
algorithm [10] used to compute this matrix product is a modi-
fication of the ScaLAPACK outer-product algorithm. One 
process is executed per computer even though the computer 
may have one or more processors (multicore or not). 

 

  
Figure 1.  One step of the h eterogeneous PMM on a 2D processor grid of 

3×3. First, each b×b block of the pivot column  of matrix A (emitting the 

curly arrows) is broadcast horizontally, and each b×b block of the pivot row 
 of matrix B (emitting the curly arrows) is broadcast vertically. Then, 

each b×b block 

€ 

cij  of matrix C is updated, 

€ 

cij = cij + aik × bkj .  
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Figure 2.  The computational kernel (shown here for processor P12 for 

example) performs a matrix update of a dense matrix Cb of size mb×nb using 
Ab of size mb×1 and Bb of size 1×nb. The matrix elements represent b×b 

matrix blocks. 

To perform the PMM, matrices A, B, and C are divided into 
rectangles such that there is one-to-one mapping between the 
rectangles and the computers, and the area of each rectangle is 
proportional to the speed of the processor owning it (Fig. 1). 
The procedure of data distribution invokes the data partition-
ing algorithm [6], [10], which determines the optimal 2D col-
umn-based partitioning of a dense matrix of size m×n over a 
2D heterogeneous processor grid of size p×q. The area is par-
titioned into uneven rectangles so that they are arranged into a 
2D grid of size p×q and the area of a rectangle is proportional 
to the speed of the processor owning it. The inputs to the pro-
cedure are: the rectangular area size (m×n), the 2D processor 
grid (p×q) and the absolute speeds (represented with a single 
number) of the processors. The outputs are the heights and the 
widths of the rectangles. This procedure is described in [11].  

For this application, the core computational kernel per-
forms a matrix update of a matrix Cb of size mb×nb using Ab of 
size mb×1 and Bb of size 1×nb as shown in Fig. 2. The size of 
the problem is represented by mb and nb. We use a combined 
computation unit, which is made up of one addition and one 
multiplication to express the volume of computation. Thus, 
the total number of computation units (namely, multiplications 
of two b×b matrices) performed during the execution of the 
benchmark code will be approximately equal to mb×nb. The 
absolute speed of the processor exposed by the application 
when solving the problem of size (mb,nb) can be calculated as 
mb×nb divided by the execution time of the matrix update. 

IV. HETEROMPI APPLICATION USING HDS 
The application presented in this section is composed of 

two parts. First, it calls the HeteroMPI routines to determine 
the optimal values of the algorithmic parameters, which are 
the computers to be used in the execution of the PMM and 
their 2D arrangement. Then, the computers of the optimal 2D 
computer grid perform the heterogeneous PMM explained in 
Section III. Again, one process is executed per computer even 
though the computers may have one or more processors 
(multicore or not). 

HeteroMPI is an extension of MPI for programming high-
performance computations on heterogeneous computational 
clusters (HCCs). The main idea of HeteroMPI is to automate 
the process of selection of a group of processes, which would 
execute the parallel algorithm faster than any other group.  

The first step in this process of automation is the writing of 
the performance model of the parallel algorithm, the PMM 

algorithm in our case. Performance model is a tool supplied to 
the programmer to specify its high-level knowledge of the 
main features of the underlying parallel algorithm that impact 
the execution performance in order to assist in finding the 
most efficient implementation on HCCs. These features are: 

• The total number of processes executing the algorithm; 
• The total volume of computations to be performed by 

each of the processes in the group; 
• The total volume of data to be transferred between each 

pair of processes in the group; 
• The order of execution of the computations and com-

munications by the parallel processes in the group, that 
is, how exactly the processes interact. 

HeteroMPI provides a dedicated performance model defini-
tion language (PMDL) for writing this performance model. 
The model and the PMDL are borrowed from the mpC pro-
gramming language [12], [13]. The PMDL compiler compiles 
the performance model written in PMDL to generate a set of 
functions, which make up the algorithm-specific part of the 
HeteroMPI runtime system. These functions are called by the 
mapping algorithms of HeteroMPI runtime system to estimate 
the execution time of different configurations of the parallel 
algorithm. The HeteroMPI runtime system solves the problem 
of selection of the optimal set of processes running on differ-
ent computers using the mapping algorithms explained in [9] 
and [13]. HeteroMPI considers the executing heterogeneous 
network as a multilevel hierarchy of interconnected sets of 
heterogeneous multiprocessors [13]. The mapping algorithms 
use an estimation of platform parameters: speed of processors 
and communication links. The speed of each processor is 
characterized by the execution time of a serial code provided 
by the application programmer (benchmark code) and it is 
supposed to be representative for the computations. The code 
is performed at runtime at points of the application specified 
by the application programmer. The communication model is 
seen as a hierarchy of homogeneous communication layers 
characterized by the latency and bandwidth. Unlike the speed 
model of the processors, the communication model is static, a 
shortcoming that would be addressed in our future work. Its 
parameters are obtained during the initialization of the Het-
eroMPI runtime and are not refreshed later. 

The optimal values of the algorithmic parameters that Het-
eroMPI allows to determine are: the data distribution blocking 
factor and the 2D processor grid arrangement. The perform-
ance model of PMM and the estimation procedure are ex-
plained in detail in [11].  

V. HETEROGENEOUS SCALAPACK APPLICATION USING 
HPS 

This section presents the Heterogeneous ScaLAPACK ap-
plication, which utilizes the HPS strategy. The high-level 
building blocks of Heterogeneous ScaLAPACK package [8] 
are HeteroMPI and ScaLAPACK (Fig. 3). The principal rou-
tines in Heterogeneous ScaLAPACK package are the context 
creation functions for the ScaLAPACK routines (which in-
clude the PBLAS routines as well). There is a context creation 
function for each and every ScaLAPACK  routine.  It provides 
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Figure 3.  Flow of the Heterogeneous ScaLAPACK context creation routine 

call. The percentages give the breakup of Heterogeneous ScaLAPACK 
development efforts. 

a context for the execution of the ScaLAPACK routine but 
most importantly, performs the critical work of automating the 
difficult optimization tasks.  

Context creation routines keep the interface of the corres-
ponding LAPACK routine except the pointers to data matrices 
are not passed as arguments. These routines return a handle to 
a HeteroMPI group of processes that is subsequently used in 
the actual execution of the computational routine. The 
Heterogeneous ScaLAPACK context creation and destruction 
routines call functions of HeteroMPI runtime system. The 
Heterogeneous ScaLAPACK information functions calculate 
the total number of floating-point operations performed by 
each process and the total number of communications in bytes 
between each pair of processes involved in the execution of 
the homogeneous ScaLAPACK routine. These routines are 
serial and can be called by any process. The block IS-
CALAPACK (‘I’ standing for instrumented) in Fig. 3 repre-
sents the instrumented code of ScaLAPACK, which reuses the 
existing code base of ScaLAPACK completely. The perform-
ance model definitions contain the instrumented code compo-
nents. The HeteroMPI compiler compiles this performance 
model to generate a set of functions. During the creation of the 
context, the mapping algorithms of HeteroMPI runtime sys-
tem call these functions to estimate the execution time of the 
ScaLAPACK routine. With this estimation, the context con-
structor routine determines the optimal values of the algorith-
mic parameters such as the 2D process grid arrangement and 
efficient mapping of the processes. 

The Heterogeneous ScaLAPACK program uses the 
multiprocessing HPS strategy, which allows more than one 
process involved in its execution to be run on each processor. 
The number of processes to run on each processor during the 
program startup is determined automatically by the Hetero-
geneous ScaLAPACK command-line interface tools. During 
the creation of a HeteroMPI group in the context creation rou-
tine, the mapping of the parallel processes in the group is per-
formed such that the number of processes running on each 
processor is as proportional to its speed as possible. In other 
words, while distributed evenly across parallel processes, data 
and computations are distributed unevenly over processors of 

the heterogeneous network, and this way each processor per-
forms the volume of computations as proportional to its speed 
as possible. At the same time, the mapping algorithm invoked 
tries to arrange the processors along a 2D grid so as to opti-
mally load balance the work of the processors. 

VI. EXPERIMENTAL RESULTS 
A small local heterogeneous cluster (Rosebud) consisting 

of multicore computers, SMPs, and single-processor worksta-
tions is used in the experiments. The specifications of this 
cluster are shown in Table I. Nodes R01 and R02 are single-
processor workstations, nodes R03 and R04 are SMPs with 
two processors each, nodes R05 and R06 are computers with 
four Itanium dual-core processors, and R07 and R08 are com-
puters with two Itanium dual-core processors. All the com-
puters are running Linux OS. R01 to R04 have 32-bit OS 
whereas the rest have 64-bit OS. The communication network 
is based on 1 Gbit Ethernet. The software used is OpenMPI-
1.2.8, ScaLAPACK-1.8.0, HeteroMPI-1.2.0, Heterogeneous 
ScaLAPACK-1.0.6-BETA, Intel mkl 9.0 (which includes a 
multithreaded version of BLAS) and Intel icc 9.1. 

For all the applications utilizing the HDS strategy, the 
number of threads configured to run per node or computer is 
the number of cores (number of processors for the SMP 
nodes). The heterogeneity of the network due to the heteroge-
neity of the computers is calculated as the ratio of the absolute 
speed of the fastest computer to the absolute speed of the 
slowest computer. The absolute speed of the computers is 
obtained by performing a local DGEMM update of two matri-
ces 2048×99 and 99×2048 where 99 is the optimal blocking 
factor. As one can see, R05 and R06 are the fastest computers 
and R01 and R02 are the slowest. The heterogeneity in this 
case is 15. If we exclude the computers R01 and R02, the 
heterogeneity would be 5.  

TABLE I.  SPECIFICATIONS OF THE EIGHT COMPUTERS IN THE ROSEBUD 
CLUSTER 

HDS Node 
name 

Main 
memory 

(kB) 

No. of  
procs. 

No. 
of 

cores 
No. of 

threads 
Absolute speed 

(Mflops) 
R01 1035492 1 - 1 2295 
R02 1035688 1 - 1 2295 
R03 3635424 2 - 2 6515 
R04 3635424 2 - 2 6515 
R05 8240240 4 8 8 34600 
R06 8240512 4 8 8 34600 
R07 8240528 2 4 4 19130 
R08 8240672 2 4 4 19130 

The number of threads shown in Table I have been ob-
tained by running the sequential matrix-matrix multiplication 
(level-3 BLAS routine DGEMM) with different problem sizes 
on each node. There are two trends that can be observed in the 
execution performance [11]. The first trend concerns problem 
sizes before the computer starts paging. For these problem 
sizes, the execution performance of the applications reduces 
when the number of threads exceeds the number of processors 
(in the case of single-processor workstation or SMP) or the 
number of cores in the case of a multicore computer.  The sec- 
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Figure 4.  The solver using threads is more efficient than the parallel solver 

on a computer performing the same matrix-matrix multiplication. 

ond trend relates to the execution performance in the area of 
paging. It can be concluded that there is no definite rule to use 
for the optimal number of threads except that the number of 
threads to run per process must be greater than the number of 
processors or the number of cores. 

Inside a multicore node, our study [11] shows that it is 
more efficient to use a sequential matrix-matrix multiplication 
routine executed with the number of threads set equal to the 
number of cores than to use a MPI application with the num-
ber of processes equal to the number of cores (each process 
running one thread) as shown in Fig. 4. This justifies the fea-
ture of the HDS strategy, which is that a computer must be 
considered as a single entity instead of each of its processors 
for the distribution of computations. In addition, the solution 
space of 2D processor grid arrangements to evaluate will in-
crease enormously if the (processor, thread) combinations 
need to be considered as is the case in the original definition 
of the strategy. Therefore, by treating a computer as a single 
entity, we eliminate this complexity. 

One approach investigated in [15] determines the optimal 
blocking factor for each computer, which can be a drawback. 
This is because a single value of the blocking factor must be 
used as input to the routines in the legacy linear algebra pack-
ages (this is a interface requirement). Modifying this approach 
to determine the single optimal value to use in the parallel 
application is not trivial. As a result of our experiments, we 
saw that the optimal values of the blocking factor are in the 
range 54<=b<=144. We use the value of 99 in the experi-
ments. This procedure to determine the best value of the 
blocking factor (as explained in Section IV) is executed sepa-
rately and before the execution of all the parallel applications. 
So ideally this procedure must be executed during the installa-
tion of the software (as is done for the Heterogeneous 
ScaLAPACK).  

For all the experimental results shown in the tables, the 
processes are arranged in the 2D grid in decreasing order of 
their speeds along each process row and along each process 
column. For example, a 2×4 computer grid arrangement con-
taining all the computers shown in Table I will have the com-
puters arranged as follows: {R05, R06, R07, R08, R04, R03, 
R02, R01}. Similarly, a 3×8 process grid arrangement involv-
ing the computers {R05, R06, R07, R08} shown in Table I, the 
number of processes run per computer being 8, 8, 4, 4, respec- 

TABLE II.  MPI-HDS AND HETEROMPI APPLICATION UTILIZING THE 
HDS STRATEGY (EXECUTION TIME S IN SECONDS) 

MPI-HDS HeteroMPI-HDS Size of 
the 

matrix 
(n) 

p×q Exec. 
time 

Predict. 
p×q 

Predict. 
exec. 
time 

Group 
creation 

time  

Actual 
time  

594 1×1 0.03 1×1 0.04 0.1 0.15 
1188 1×1 0.12 1×1 0.18 0.4 0.52 
2376 1×1 1 1×1 1 1 2 
4752 1×1 5 1×1 6 2 7 
7128 1×1 18 1×1 19 3 21 
9504 1×1 42 1×1 44 4 46 

11880 1×1 81 1×1 85 5 86 
14256 2×2 133 2×2 131 6 140 
16632 2×2 191 2×2 191 8 201 
19008 2×2 250 2×2 263 8 260 
21384 2×2 350 2×2 347 9 360 
23760 2×2 453 2×2 452 11 467 
26136 2×2 577 2×2 576 11 593 
28512 2×2 756 2×2 757 12 790 
30888 3×2 1006 3×2 1010 13 1048 
33264 3×2 1203 3×2 1225 15 1460 
35640 3×2 2091 3×2 2167 15 2993 
38016 3×2 3423 3×2 3552 17 4766 
40392 3×2 5575 3×2 5773 18 7156 

tively, will have the processes arranged as follows: {R05, R05, 
R05, R05, R05, R05, R05, R05, R06, R06, R06, R06, R06, R06, 
R06, R06, R07, R07, R07, R07, R08, R08, R08, R08}. 

The experimental results of the MPI-HDS application are 
shown in the second and third columns in Table II. The sec-
ond column shows the optimal 2D computer grid arrange-
ments. The data distribution used is column-based [6], [10]. 
The number of threads configured to run per node is shown in 
Table I. The execution of the MPI-HDS application consists 
of two parts. First, all the computers execute the benchmark 
code, whose time of execution is used to estimate their speeds, 
and then they execute the column-based data partitioning 
algorithm to partition the matrices. Second, they perform the 
PMM.  

TABLE III.  EXECUTION TIMES OF MPI-HDS APPLICATION (IN SECONDS) 

MPI-HDS 
2×2 3×2 4×2 Size of 

matrix 
(n) DPA 

time 
PMM 
Time 

DPA 
time 

PMM 
Time 

DPA 
time 

PMM 
time 

28512 11 745 12 852 32 896 
30888 10 1006 14 1006 18 1155 
33264 11 1607 19 1203 220 1285 
35640 13 3251 19 2091 810 2143 
38016 15 4863 30 3423 1196 3442 
40392 22 8857 29 5575 1365 5673 

Table III shows the execution time of the first part (DPA) 
and the second part (PMM). The interesting computer ar-
rangement to observe in this table is 4×2 where all the com-
puters of the network are used. It can be seen that for problem 
sizes exceeding 30888, times spent in the execution of the first 
part (DPA) are large.  This is because the slow computers R01  
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Figure 5.  N=30888. The column-based distribution for the arrangement 3×2 
is actually cartesian whereas that of the arrangement 2×3 is non-cartesian. The 
number of communications (horizontal+vertical) at each step of the PMM for 

the arrangements {2×3, 3×2} is {24,18}. The matrix elements are square 
blocks of size 99×99. 

and R02 start paging as the problem size exceeds 30888 and 
spend large times executing the benchmark code. The optimal 
data distribution determined however does not include the 
slow computers and as a result the processor arrangement 
used in the PMM is 3×2. 

It has also been observed that the 2D computer grid ar-
rangements {3×2, 4×2} perform better than {2×3, 2×4}, re-
spectively. The reason why the column-based data distribution 
for 3×2 is efficient is because the matrix data distribution is 
actually cartesian (each processor has only two neighbours) as 
shown in Fig. 5. The column-based matrix data distribution 
for 2×3 is not cartesian, which results in more communica-
tions.  

We performed further experiments to investigate the two 
matrix data distributions {column-based, cartesian}. The best 
performing 2D computer arrangements is 3×2 with both the 
column-based and the cartesian data distribution. In fact, the 
data distribution for the best performing 2D computer ar-
rangement that is {3×2, column-based} is actually cartesian. 
The 2D computer grid arrangement {2×3, column-based} per-
forms poorly due to non-cartesian distribution resulting in 
large number of communications. The 2D computer grid ar-
rangement {2×3, cartesian} performs poorly due to load im-
balance resulting from non-optimal matrix data distribution. It 
is very difficult to achieve the proportionality (volume of data 
to the speed of the processors) in the case of cartesian data 
distribution.  

The experimental results highlight the importance of a tool 
that can provide features that can determine the optimal values 
of the algorithmic parameters such as the total number of 
computers and the 2D computer grid arrangement. HeteroMPI 
is one such tool. The experimental results of the HeteroMPI-
HDS application are shown in Table II. The second column 
shows the best execution times and the 2D computer grid ar-
rangements from the MPI-HDS application. These are com-
pared with the predictions of HeteroMPI. The results of the 
HeteroMPI-HDS application in the third column are organized 
as follows. The first sub-column shows the optimal 2D com-
puter grid arrangement predicted by HeteroMPI. The second 
sub-column shows the predicted time of execution of the 
PMM. The third sub-column shows the time taken by Het-
eroMPI group  constructor routine  to evaluate all  the possible 

TABLE IV.  SPEEDUP OF MPI-HDS OVER SEQUENTIAL MATRIX-MATRIX 
MULTIPLICATION 

Size of matrix (n) Speedup  
594 to 11880 1 

14256 1.04 
16632 1.14 
19008 2.3 
21384 5.4 
23760 10 

2D computer grid arrangements and to arrive at the best 2D 
computer grid arrangement. Last sub-column shows the total 
execution time of the HeteroMPI-HDS application. This in-
cludes the time taken to execute the benchmark code and the 
time taken to determine the best 2D computer grid arrange-
ment. The predictions of HeteroMPI are spot-on and the pre-
dictions of the execution times are accurate within 10%.  

Table IV shows the speedup of the MPI-HDS application 
over the sequential matrix-matrix multiplication application 
run on R05. The number of threads run in the sequential appli-
cation is equal to the number of cores, which is equal to 8. 

Table V shows the best time obtained with the different ap-
plications using the HPS strategy. For the MPI-HPS applica-
tion, there will be an optimal (process, thread) combination 
for each problem size. Combination (2×2, 2t) involves 4 pro-
cesses in R05 with each process running 2 threads. Combina-
tion (2×2, 4t) involves one process per computer (R05-R08) 
running 4 threads each. As the problem size increases, it can 
be seen that the optimal number of threads per process in-
creases from 2 to 4 due to the role played by communications. 

For the HeteroMPI-HPS application, the execution time 
shown in Table V (col. 3) includes the execution of the 
benchmark code, the evaluation of the possible 2D process 
grid arrangements and the PMM computation. At the moment, 

TABLE V.  BEST CONFIGURATION (PROCESSOR ARRANGEMENT, NUMBER 
OF THREADS) FOR FOUR HPS APPLICATIONS TO PERFORM PMM. EXECUTION 

TIMES IN SEC. 

Size of 
the 

matrix 
(n) 

MPI-HPS Hetero-
MPI-HPS 

ScaLA-
PACK-

HPS 

HeteroSca- 
LAPACK 

4752 7  
(2×2, 2 t) 

4 
(2×2, 2 t) 

12 
(2×8, 1t) 

28 
(5×6, 1t) 

7128 22  
(2×2, 2 t) 

26 
(2×2, 2 t) 

34 
(3×8, 1t) 

77 
(3×9, 1t) 

9504 52  
(2×2, 2 t) 

58 
(2×2, 2 t) 

64 
(3×8, 1t) 

80 
(2×14, 1t) 

14256 149 
(2×2*, 4 t) 

157 
(2×4, 2 t) 

163 
(3×8, 1t) 

246 
(4×7, 1t) 

16632 221 
(2×2*, 4 t) 

236 
(2×4, 2 t) 

245 
(3×8, 1t) 

380 
(2×14, 1t) 

23760 545 
(2×2*, 4 t) 

572 
(2×4, 2 t) 

610 
(3×8, 1t) 

789 
(4×7, 1t) 

30888 1090 
(2×2*, 4 t) 

1205 
(3×4, 2 t) 

1290 
(3×8, 1t) 

1557 
(2×14, 1t) 

33264 1320 
(2×2*, 4 t) 

1668 
(2×2, 4 t) 

1819 
(3×8, 1t) 

1966 
(2×14, 1t) 

40392 4355 
(2×2*, 4 t) 

5537 
(2×2, 4 t) 

8224 
(7×4, 1t) 

4851 
(4×7, 1t) 
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Figure 6.  Speedup of the MPI application utilizing the HDS strategy over 

the MPI application utilizing the HPS strategy. 

the number of threads must be pre-configured. The prediction 
of the 2D process grid arrangement is as correct as in the case 
of the HeteroMPI-HDS algorithm. The prediction of the exe-
cution time is not so. One of the reasons could be the inaccu-
racy of the communication model used for the shared-memory 
communications between the processes inside a computer. 
This issue is currently under investigation. 

The application performing the worst is ScaLAPACK with 
the configuration where one process is run per core and one 
thread is run per process. The 2D process grid arrangements 
for the MPI-HPS shown in Table IV are the following (num-
ber of processes in brackets): (2×2): R05 (2), R06 (2); (2×2)*: 
R05 (1), R06 (1), R07 (1), R08 (1). 

The (process, thread) combinations for the 2D process grid 
arrangements for the ScaLAPACK-HPS application shown in 
Table V are the following: (2×8): R05 (8,1), R06 (8,1); (3×8): 
R05 (8,1), R06 (8,1), R07 (4,1), R08 (4,1); (7×4): R05 (8,1), 
R06 (8,1), R07 (4,1), R08 (2,1), R03 (2,1), R04 (2,1). 

In the experiments with the Heterogeneous ScaLAPACK 
application, all the computers are used in the execution of the 
application. The slowest computers R01 and R02 are however 
not picked during the execution of the PMM. Given the num-
ber of threads per process is preconfigured as input to the ap-
plication, the Heterogeneous ScaLAPACK runtime would 
then determine the optimal number of processes and the opti-
mal 2D process arrangement. In this case, the best execution 
times are achieved with only one thread per process.  

Fig. 6 shows the speedup of the MPI-HDS application over 
the MPI-HPS application calculated as the ratio of the execu-
tion time of MPI-HPS application to the execution time of 
MPI-HDS application. The results reveal that the two strat-
egies can compete with each other. For the range of problem 
sizes (n≤35640), the MPI applications employing HDS per-
form the best since they fully exploit the increased thread-
level parallelism (TLP) provided by the multicore processors. 
However, for large problem sizes, the non-cartesian nature of 
the data distribution may lead to excessive communications 
that can be very expensive. For such cases, the HPS strategy 
has been shown to out-perform the HDS strategy. Fig. 7 
shows the effect of oversubscribing the multicore computers 
and SMPs (running more processes than cores or processors). 
The number of threads run per process on each computer is 1. 
Our experiments allow us to conclude that once the number of 
processes exceeds the number of cores in the computer, the  

 
(a) 

 
(b) 

Figure 7.  Execution times of the MPI application utilizing the HPS strategy. 
(a). The multicore computers are oversubscribed. (b). The multicore and the 

SMP machines are oversubscribed. 

execution performance of the application goes down before 
the region of paging (n≤40000). The computers can be over-
subscribed in the region of paging. The 2D process grid ar-
rangements shown in the Fig. 7(a) are the following with the 
number of processes in brackets: 3×16: R05(16), R06(16), 
R07(8), R08(8); 6×8: R05(16), R06(16), R07(8), R08(8); 
3×12: R05(12), R06(12), R07(6), R08(6); 6×6: R05(12), 
R06(12), R07(6), R08(6); 3×8: R05(8), R06(8), R07(4), 
R08(4). The 2D process grid arrangements shown in the Fig. 
7(b) are the following with the number of processes in brack-
ets: 13×4: R05(16), R06(16), R07(8), R08(8), R03(2), R04(2); 
8×5: R05(12), R06(12), R07(6), R08(6), R03(2), R04(2); 8×7: 
R05(16), R06(16), R07(8), R08(8), R03(4), R04(4); 7×4: 
R05(8), R06(8), R07(4), R08(4), R04(2), R03(2). The grid 
arrangements 3×8 and 7×4 (Fig. 7(a) and (b), respectively) are 
just shown for comparison. There still remains a problem of 
how many processes to run per computer and which 2D pro-
cess grid arrangement to use. The problem becomes more 
complicated when threads are taken into account. This neces-
sitates the importance of a tool, which can determine the op-
timal values of these algorithmic parameters automatically. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented enhancements to two pre-

existing strategies of distribution of computations for HCoMs: 
HPS and HDS, to implement parallel solvers for dense linear 
algebra problems. We performed experiments using six appli-
cations utilizing the various distribution strategies to perform 
the PMM on a local HCoM. The results revealed that the two 
strategies can compete with each other. The conclusions to be 
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drawn from these results are: 
• The HDS strategy is the best strategy to use since it al-

lows to fully exploit the increased thread-level parallel-
ism (TLP) provided by the multicore processors. How-
ever, for large problem sizes, the non-cartesian nature 
of the data distribution may lead to excessive communi-
cations that can be very expensive. For such cases, the 
HPS strategy has been shown to outperform it. 

• HeteroMPI is a valuable tool to implement heterogen-
eous parallel algorithms on HCoMs using the HDS 
strategy since it accurately predicts the execution time 
of the parallel algorithm, accurately detects the optimal 
values of the algorithmic parameters such as the total 
number of processors and the 2D processor grid ar-
rangement. 

• The software (HeteroMPI, Heterogeneous 
ScaLAPACK) must be enhanced to provide accurate 
predictions of the optimal (process, thread) combination 
in the case of the HPS strategy. Since Heterogeneous 
ScaLAPACK is built on the top of HeteroMPI, the fea-
ture only needs to be added to HeteroMPI. 

• No package is currently available using HDS strategy. 
A package based on this strategy requires great effort 
redesigning and reimplementing the linear algebra rou-
tines and writing the associated performance models. 
Heterogeneous ScaLAPACK is however completely 
implemented except for the eigenvalue solvers. It uses 
the legacy ScaLAPACK and its associated performance 
models are written. In addition, the HeteroMPI-HPS 
strategy followed by Heterogeneous ScaLAPACK have 
been shown to be quite competitive to the HDS strategy 
in single core processor clusters [16], [17], [18] as well 
as multicore processor clusters. 

• HeteroMPI has been proven to be a valuable tool in sin-
gle core processor clusters [9] by oversubscribing a fast 
processor with a number of processes proportional to its 
speed. From the analysis of the results of this paper, this 
can be accomplished too in multicore processor clusters 
but with one limitation: the total number of processes 
per node cannot be larger than the number of cores of 
the node, otherwise, the performance falls down drasti-
cally due to resource contention of the concurrent pro-
cesses and loss of some aggregate computational com-
putation power of the heterogeneous cluster. More in-
vestigation needs to be done with incoming growth in 
the number of cores per node. 

Our future work would involve addition of features to the 
software (HeteroMPI, Heterogeneous ScaLAPACK) to deter-
mine the optimal (process, thread) combination in the HPS 
strategy. We would also look at improvements to the com-
munication models in the software, which would accurately 
predict the time of different types of communications. 
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