
Experimental Study of Six Different
Implementations of Parallel Matrix Multiplication

on Heterogeneous Computational Clusters
of Multicore Processors

Pedro Alonso
Department of Information Systems and Computation,

Polytechnic University of Valencia
Cno. Vera s/n, 46022 Valencia, Spain

palonso@dsic.upv.es

Ravi Reddy and Alexey Lastovetsky

School of Computer Science and Informatics,
University College Dublin
Belfield, Dublin 4, Ireland

{manumachu.reddy,alexey.lastovetsky}@ucd.ie

Abstract—Two strategies of distribution of computations can be
used to implement parallel solvers for dense linear algebra prob-
lems for Heterogeneous Computational Clusters of Multicore
Processors (HCoMs). These strategies are called Heterogeneous
Process Distribution Strategy (HPS) and Heterogeneous Data
Distribution Strategy (HDS). They are not novel and have been
researched thoroughly. However, the advent of multicores neces-
sitates enhancements to them. In this paper, we present these
enhancements. Our study is based on experiments using six ap-
plications to perform Parallel Matrix-matrix Multiplication
(PMM) on an HCoM employing the two distribution strategies.

Keywords- Heterogeneous ScaLAPACK; HeteroMPI; multicore
clusters; matrix-matrix multiplication; heterogenous clusters

I. INTRODUCTION
Parallel platforms employing multicores are becoming

dominant systems in High Performance Computing (HPC).
Almost 90% of the supercomputing systems in the Top500 list
are based on dual- or quad-core architectures [1]. This rapid
widespread utilization of multicore processors is due to sev-
eral factors [2]. Therefore, computers containing multicore
processors will become ubiquitous soon and will be widely
deployed in clusters purposely built to tackle the most chal-
lenging scientific and engineering problems. A cluster built
from such computers (HCoM), will be inherently heterogen-
eous due to the different number of cores/processors, its pro-
cessing capabilities and the multilevel hierarchy of intercon-
nected sets of them. Therefore, the advent of multicores poses
many challenges to writing parallel solvers for dense linear
algebra problems for an HCoM. Addressing these challenges
would entail redesign and rewriting of parallel algorithms to
take into account the increased TLP (Thread Level Parallel-
ism) and the hierarchical nature of communications satisfying
the criteria of fine granularity (as cores are associated with
relatively small local memories) and asynchronicity to hide
the latency of memory accesses. Algorithms hitherto con-
sidered unscalable for being communication-intensive or due

to high granularity have to be revisited. These criteria can be
satisfied when an algorithm can generate a set of independent
tasks having a high ratio of floating point calculations to data
required, that is, all the tasks involved are of Level 3 BLAS.

These solvers must take into account the aforementioned
heterogeneities and provide “scalable” parallelism where
speedups obtained are proportional to the number of cores as
one scales from 4-16-128 and more cores. They must be writ-
ten using hybrid programming models (e.g. MPI [3] plus
OpenMP [4]). These solvers must also be automatically tuned
for an HCoM, which means that they must automate the fol-
lowing complex optimization tasks [5]: the accurate estima-
tion of platform parameters (speeds of processors, latencies
and bandwidths of communication links, etc.); the use of effi-
cient communication models that would reflect the hierarchi-
cal nature of communications and would accurately predict
the time of different types of communications; the determina-
tion of the optimal values of algorithmic parameters such as
data distribution blocking factor and two-dimensional proces-
sor grid arrangement; and, finally, an efficient mapping of the
processes executing the parallel algorithm to the computers.

In this paper, we propose and analyse two strategies of dis-
tribution of computations:

• Heterogeneous Process Distribution Strategy (HPS): In
this strategy, more than one process is executed per
computer. All the processes get the same amount of
data. The number of processes on the computer multi-
plied by the number of threads run per process is equal
to the number of cores in the computer. Given a prob-
lem size, there exist an optimal number of processes to
be executed on a computer and an optimal number of
threads to run per process. This is a different definition
from the traditional HeHo strategy [6] since the number
of processes executed per computer in the HPS strategy
will be always equal to the number of cores. Therefore,
the HeHo condition of proportionality of the number of
processes run per processor to its speed is relaxed.

2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing

1066-6192/10 $26.00 © 2010 IEEE

DOI 10.1109/PDP.2010.52

263

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

• Heterogeneous Data Distribution Strategy (HDS): In
this strategy, one process is executed per computer (the
computer may have one or more processors). The vol-
ume of data allocated to a computer is proportional to
the speed of the computer. The number of threads run
per computer will be equal to the number of cores in the
computer to ensure that all the cores are fully utilized. It
should also be noted the terms computer or process or
processor are used interchangeably using this strategy,
which is why in our modified definition we consider a
computer with one or more processors (multicore or
not) as a single entity, that is, one process is executed
per computer even though the computer may have one
or more processors (multicore or not).

The HPS strategy is a multiprocessing approach that is used
to accelerate legacy parallel linear algebra programs on
HCoMs. It allows the complete reuse of high-quality legacy
parallel linear algebra software such as ScaLAPACK [7] on
HCoMs with no redesign efforts and provides good speedups.
The Heterogeneous ScaLAPACK library [8], currently under
development, uses this strategy and is built on the top of Het-
eroMPI [9] and ScaLAPACK. It provides automatically tuned
parallel linear algebra programs for HCoMs but most import-
antly performs all the aforementioned critical automations of
the complex optimization tasks.

The rest of the document is organized as follows. The next
section briefly outlines six applications used in this study to
perform the Parallel Matrix-matrix Multiplication (PMM).
Sections III to V introduce in more detail three of them, spe-
cifically designed and implemented for this study. Section VI
presents the results of experiments with the applications. Sec-
tion VII presents some conclusions and future work.

II. APPLICATIONS DESCRIPTION

A. Homogeneous ScaLAPACK Application Using HPS
This application calls the PDGEMM routine of the PBLAS

subproject, which implements the parallel outer-product algor-
ithm of two dense matrices on a 2D process grid [7]. This rou-
tine falls in the set of HPS applications in our study.

B. MPI Application Using HDS
The heterogeneous parallel algorithm [10] used to compute

this matrix product is a modification of the ScaLAPACK
outer-product algorithm. This application requires, as input,
the 2D computer grid arrangement to use during the execution
of the PMM. More details will follow in Section III.

C. HeteroMPI Application Using HDS
This application calls the HeteroMPI routines to determine

the optimal values of the algorithmic parameters: the subset of
computers used for computations and their 2D arrangement.
Afterwards, the selected computers that form the optimal 2D
computer grid perform the heterogeneous PMM described in
Section B. More details will be presented in Section IV.

D. MPI Application Using HPS
This application requires two inputs, which are the number

of threads to run per process and the 2D process grid ar-

rangement to use during the execution of the PMM. It uses
homogeneous distribution of computations, that is, each pro-
cess gets the same amount of data. It reuses the code of the
MPI application utilizing the HDS strategy (Section B) for the
particular case of homogeneous data distribution among pro-
cesses.

E. HeteroMPI Application Using HPS
This application reuses the code of the HeteroMPI applica-

tion utilizing the HDS strategy (Section C) with some excep-
tions. It uses homogeneous distribution of computations, that
is, each process gets the same amount of data. The number of
threads per process must be preconfigured. This is due to a
shortcoming in HeteroMPI, which is the feature that would
detect the optimal (process, thread) combination in the HPS
strategy. This application is the application presented in Sec-
tion D instrumented with HeteroMPI.

F. Heterogeneous ScaLAPACK Application Using HPS
This application is written using Heterogeneous ScaLA-

PACK routines and reuses the PBLAS routine PDGEMM.
The number of threads to run per process must be preconfig-
ured. This application can be considered as the one shown in
Section A (ScaLAPACK) instrumented with HeteroMPI.
However, HeteroScaLAPACK provides users with additional
tools to facilitate the interface with HeteroMPI. A summary of
the software is presented in Section V.

III. THE MPI APPLICATION USING HDS
This section presents the PMM application multiplying ma-

trix A and matrix B, C=A×B, where A, B, and C are dense ma-
trices of size m×k, k×n, and m×n matrix elements respectively
on a 2D heterogeneous processor grid of size p×q,

€

Pij ,∀i ∈ 1, p[]∧ j ∈ 1,q[] provided as input. Each matrix ele-
ment is a square block of size b×b. The heterogeneous parallel
algorithm [10] used to compute this matrix product is a modi-
fication of the ScaLAPACK outer-product algorithm. One
process is executed per computer even though the computer
may have one or more processors (multicore or not).

Figure 1. One step of the h eterogeneous PMM on a 2D processor grid of

3×3. First, each b×b block of the pivot column of matrix A (emitting the

curly arrows) is broadcast horizontally, and each b×b block of the pivot row
 of matrix B (emitting the curly arrows) is broadcast vertically. Then,

each b×b block

€

cij of matrix C is updated,

€

cij = cij + aik × bkj .

A B

P11

P21

P31

P12

P22

P32

P13

P23

P33

P11

P21

P31

P12

P22

P32

P13

P23

P33

264

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

Figure 2. The computational kernel (shown here for processor P12 for

example) performs a matrix update of a dense matrix Cb of size mb×nb using
Ab of size mb×1 and Bb of size 1×nb. The matrix elements represent b×b

matrix blocks.

To perform the PMM, matrices A, B, and C are divided into
rectangles such that there is one-to-one mapping between the
rectangles and the computers, and the area of each rectangle is
proportional to the speed of the processor owning it (Fig. 1).
The procedure of data distribution invokes the data partition-
ing algorithm [6], [10], which determines the optimal 2D col-
umn-based partitioning of a dense matrix of size m×n over a
2D heterogeneous processor grid of size p×q. The area is par-
titioned into uneven rectangles so that they are arranged into a
2D grid of size p×q and the area of a rectangle is proportional
to the speed of the processor owning it. The inputs to the pro-
cedure are: the rectangular area size (m×n), the 2D processor
grid (p×q) and the absolute speeds (represented with a single
number) of the processors. The outputs are the heights and the
widths of the rectangles. This procedure is described in [11].

For this application, the core computational kernel per-
forms a matrix update of a matrix Cb of size mb×nb using Ab of
size mb×1 and Bb of size 1×nb as shown in Fig. 2. The size of
the problem is represented by mb and nb. We use a combined
computation unit, which is made up of one addition and one
multiplication to express the volume of computation. Thus,
the total number of computation units (namely, multiplications
of two b×b matrices) performed during the execution of the
benchmark code will be approximately equal to mb×nb. The
absolute speed of the processor exposed by the application
when solving the problem of size (mb,nb) can be calculated as
mb×nb divided by the execution time of the matrix update.

IV. HETEROMPI APPLICATION USING HDS
The application presented in this section is composed of

two parts. First, it calls the HeteroMPI routines to determine
the optimal values of the algorithmic parameters, which are
the computers to be used in the execution of the PMM and
their 2D arrangement. Then, the computers of the optimal 2D
computer grid perform the heterogeneous PMM explained in
Section III. Again, one process is executed per computer even
though the computers may have one or more processors
(multicore or not).

HeteroMPI is an extension of MPI for programming high-
performance computations on heterogeneous computational
clusters (HCCs). The main idea of HeteroMPI is to automate
the process of selection of a group of processes, which would
execute the parallel algorithm faster than any other group.

The first step in this process of automation is the writing of
the performance model of the parallel algorithm, the PMM

algorithm in our case. Performance model is a tool supplied to
the programmer to specify its high-level knowledge of the
main features of the underlying parallel algorithm that impact
the execution performance in order to assist in finding the
most efficient implementation on HCCs. These features are:

• The total number of processes executing the algorithm;
• The total volume of computations to be performed by

each of the processes in the group;
• The total volume of data to be transferred between each

pair of processes in the group;
• The order of execution of the computations and com-

munications by the parallel processes in the group, that
is, how exactly the processes interact.

HeteroMPI provides a dedicated performance model defini-
tion language (PMDL) for writing this performance model.
The model and the PMDL are borrowed from the mpC pro-
gramming language [12], [13]. The PMDL compiler compiles
the performance model written in PMDL to generate a set of
functions, which make up the algorithm-specific part of the
HeteroMPI runtime system. These functions are called by the
mapping algorithms of HeteroMPI runtime system to estimate
the execution time of different configurations of the parallel
algorithm. The HeteroMPI runtime system solves the problem
of selection of the optimal set of processes running on differ-
ent computers using the mapping algorithms explained in [9]
and [13]. HeteroMPI considers the executing heterogeneous
network as a multilevel hierarchy of interconnected sets of
heterogeneous multiprocessors [13]. The mapping algorithms
use an estimation of platform parameters: speed of processors
and communication links. The speed of each processor is
characterized by the execution time of a serial code provided
by the application programmer (benchmark code) and it is
supposed to be representative for the computations. The code
is performed at runtime at points of the application specified
by the application programmer. The communication model is
seen as a hierarchy of homogeneous communication layers
characterized by the latency and bandwidth. Unlike the speed
model of the processors, the communication model is static, a
shortcoming that would be addressed in our future work. Its
parameters are obtained during the initialization of the Het-
eroMPI runtime and are not refreshed later.

The optimal values of the algorithmic parameters that Het-
eroMPI allows to determine are: the data distribution blocking
factor and the 2D processor grid arrangement. The perform-
ance model of PMM and the estimation procedure are ex-
plained in detail in [11].

V. HETEROGENEOUS SCALAPACK APPLICATION USING
HPS

This section presents the Heterogeneous ScaLAPACK ap-
plication, which utilizes the HPS strategy. The high-level
building blocks of Heterogeneous ScaLAPACK package [8]
are HeteroMPI and ScaLAPACK (Fig. 3). The principal rou-
tines in Heterogeneous ScaLAPACK package are the context
creation functions for the ScaLAPACK routines (which in-
clude the PBLAS routines as well). There is a context creation
function for each and every ScaLAPACK routine. It provides

Ab

P12

Bb

 ×
P12

 +=

Cb

P12

265

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Flow of the Heterogeneous ScaLAPACK context creation routine

call. The percentages give the breakup of Heterogeneous ScaLAPACK
development efforts.

a context for the execution of the ScaLAPACK routine but
most importantly, performs the critical work of automating the
difficult optimization tasks.

Context creation routines keep the interface of the corres-
ponding LAPACK routine except the pointers to data matrices
are not passed as arguments. These routines return a handle to
a HeteroMPI group of processes that is subsequently used in
the actual execution of the computational routine. The
Heterogeneous ScaLAPACK context creation and destruction
routines call functions of HeteroMPI runtime system. The
Heterogeneous ScaLAPACK information functions calculate
the total number of floating-point operations performed by
each process and the total number of communications in bytes
between each pair of processes involved in the execution of
the homogeneous ScaLAPACK routine. These routines are
serial and can be called by any process. The block IS-
CALAPACK (‘I’ standing for instrumented) in Fig. 3 repre-
sents the instrumented code of ScaLAPACK, which reuses the
existing code base of ScaLAPACK completely. The perform-
ance model definitions contain the instrumented code compo-
nents. The HeteroMPI compiler compiles this performance
model to generate a set of functions. During the creation of the
context, the mapping algorithms of HeteroMPI runtime sys-
tem call these functions to estimate the execution time of the
ScaLAPACK routine. With this estimation, the context con-
structor routine determines the optimal values of the algorith-
mic parameters such as the 2D process grid arrangement and
efficient mapping of the processes.

The Heterogeneous ScaLAPACK program uses the
multiprocessing HPS strategy, which allows more than one
process involved in its execution to be run on each processor.
The number of processes to run on each processor during the
program startup is determined automatically by the Hetero-
geneous ScaLAPACK command-line interface tools. During
the creation of a HeteroMPI group in the context creation rou-
tine, the mapping of the parallel processes in the group is per-
formed such that the number of processes running on each
processor is as proportional to its speed as possible. In other
words, while distributed evenly across parallel processes, data
and computations are distributed unevenly over processors of

the heterogeneous network, and this way each processor per-
forms the volume of computations as proportional to its speed
as possible. At the same time, the mapping algorithm invoked
tries to arrange the processors along a 2D grid so as to opti-
mally load balance the work of the processors.

VI. EXPERIMENTAL RESULTS
A small local heterogeneous cluster (Rosebud) consisting

of multicore computers, SMPs, and single-processor worksta-
tions is used in the experiments. The specifications of this
cluster are shown in Table I. Nodes R01 and R02 are single-
processor workstations, nodes R03 and R04 are SMPs with
two processors each, nodes R05 and R06 are computers with
four Itanium dual-core processors, and R07 and R08 are com-
puters with two Itanium dual-core processors. All the com-
puters are running Linux OS. R01 to R04 have 32-bit OS
whereas the rest have 64-bit OS. The communication network
is based on 1 Gbit Ethernet. The software used is OpenMPI-
1.2.8, ScaLAPACK-1.8.0, HeteroMPI-1.2.0, Heterogeneous
ScaLAPACK-1.0.6-BETA, Intel mkl 9.0 (which includes a
multithreaded version of BLAS) and Intel icc 9.1.

For all the applications utilizing the HDS strategy, the
number of threads configured to run per node or computer is
the number of cores (number of processors for the SMP
nodes). The heterogeneity of the network due to the heteroge-
neity of the computers is calculated as the ratio of the absolute
speed of the fastest computer to the absolute speed of the
slowest computer. The absolute speed of the computers is
obtained by performing a local DGEMM update of two matri-
ces 2048×99 and 99×2048 where 99 is the optimal blocking
factor. As one can see, R05 and R06 are the fastest computers
and R01 and R02 are the slowest. The heterogeneity in this
case is 15. If we exclude the computers R01 and R02, the
heterogeneity would be 5.

TABLE I. SPECIFICATIONS OF THE EIGHT COMPUTERS IN THE ROSEBUD
CLUSTER

HDS Node
name

Main
memory

(kB)

No. of
procs.

No.
of

cores
No. of

threads
Absolute speed

(Mflops)
R01 1035492 1 - 1 2295
R02 1035688 1 - 1 2295
R03 3635424 2 - 2 6515
R04 3635424 2 - 2 6515
R05 8240240 4 8 8 34600
R06 8240512 4 8 8 34600
R07 8240528 2 4 4 19130
R08 8240672 2 4 4 19130

The number of threads shown in Table I have been ob-
tained by running the sequential matrix-matrix multiplication
(level-3 BLAS routine DGEMM) with different problem sizes
on each node. There are two trends that can be observed in the
execution performance [11]. The first trend concerns problem
sizes before the computer starts paging. For these problem
sizes, the execution performance of the applications reduces
when the number of threads exceeds the number of processors
(in the case of single-processor workstation or SMP) or the
number of cores in the case of a multicore computer. The sec-

266

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

Figure 4. The solver using threads is more efficient than the parallel solver

on a computer performing the same matrix-matrix multiplication.

ond trend relates to the execution performance in the area of
paging. It can be concluded that there is no definite rule to use
for the optimal number of threads except that the number of
threads to run per process must be greater than the number of
processors or the number of cores.

Inside a multicore node, our study [11] shows that it is
more efficient to use a sequential matrix-matrix multiplication
routine executed with the number of threads set equal to the
number of cores than to use a MPI application with the num-
ber of processes equal to the number of cores (each process
running one thread) as shown in Fig. 4. This justifies the fea-
ture of the HDS strategy, which is that a computer must be
considered as a single entity instead of each of its processors
for the distribution of computations. In addition, the solution
space of 2D processor grid arrangements to evaluate will in-
crease enormously if the (processor, thread) combinations
need to be considered as is the case in the original definition
of the strategy. Therefore, by treating a computer as a single
entity, we eliminate this complexity.

One approach investigated in [15] determines the optimal
blocking factor for each computer, which can be a drawback.
This is because a single value of the blocking factor must be
used as input to the routines in the legacy linear algebra pack-
ages (this is a interface requirement). Modifying this approach
to determine the single optimal value to use in the parallel
application is not trivial. As a result of our experiments, we
saw that the optimal values of the blocking factor are in the
range 54<=b<=144. We use the value of 99 in the experi-
ments. This procedure to determine the best value of the
blocking factor (as explained in Section IV) is executed sepa-
rately and before the execution of all the parallel applications.
So ideally this procedure must be executed during the installa-
tion of the software (as is done for the Heterogeneous
ScaLAPACK).

For all the experimental results shown in the tables, the
processes are arranged in the 2D grid in decreasing order of
their speeds along each process row and along each process
column. For example, a 2×4 computer grid arrangement con-
taining all the computers shown in Table I will have the com-
puters arranged as follows: {R05, R06, R07, R08, R04, R03,
R02, R01}. Similarly, a 3×8 process grid arrangement involv-
ing the computers {R05, R06, R07, R08} shown in Table I, the
number of processes run per computer being 8, 8, 4, 4, respec-

TABLE II. MPI-HDS AND HETEROMPI APPLICATION UTILIZING THE
HDS STRATEGY (EXECUTION TIME S IN SECONDS)

MPI-HDS HeteroMPI-HDS Size of
the

matrix
(n)

p×q Exec.
time

Predict.
p×q

Predict.
exec.
time

Group
creation

time

Actual
time

594 1×1 0.03 1×1 0.04 0.1 0.15
1188 1×1 0.12 1×1 0.18 0.4 0.52
2376 1×1 1 1×1 1 1 2
4752 1×1 5 1×1 6 2 7
7128 1×1 18 1×1 19 3 21
9504 1×1 42 1×1 44 4 46

11880 1×1 81 1×1 85 5 86
14256 2×2 133 2×2 131 6 140
16632 2×2 191 2×2 191 8 201
19008 2×2 250 2×2 263 8 260
21384 2×2 350 2×2 347 9 360
23760 2×2 453 2×2 452 11 467
26136 2×2 577 2×2 576 11 593
28512 2×2 756 2×2 757 12 790
30888 3×2 1006 3×2 1010 13 1048
33264 3×2 1203 3×2 1225 15 1460
35640 3×2 2091 3×2 2167 15 2993
38016 3×2 3423 3×2 3552 17 4766
40392 3×2 5575 3×2 5773 18 7156

tively, will have the processes arranged as follows: {R05, R05,
R05, R05, R05, R05, R05, R05, R06, R06, R06, R06, R06, R06,
R06, R06, R07, R07, R07, R07, R08, R08, R08, R08}.

The experimental results of the MPI-HDS application are
shown in the second and third columns in Table II. The sec-
ond column shows the optimal 2D computer grid arrange-
ments. The data distribution used is column-based [6], [10].
The number of threads configured to run per node is shown in
Table I. The execution of the MPI-HDS application consists
of two parts. First, all the computers execute the benchmark
code, whose time of execution is used to estimate their speeds,
and then they execute the column-based data partitioning
algorithm to partition the matrices. Second, they perform the
PMM.

TABLE III. EXECUTION TIMES OF MPI-HDS APPLICATION (IN SECONDS)

MPI-HDS
2×2 3×2 4×2 Size of

matrix
(n) DPA

time
PMM
Time

DPA
time

PMM
Time

DPA
time

PMM
time

28512 11 745 12 852 32 896
30888 10 1006 14 1006 18 1155
33264 11 1607 19 1203 220 1285
35640 13 3251 19 2091 810 2143
38016 15 4863 30 3423 1196 3442
40392 22 8857 29 5575 1365 5673

Table III shows the execution time of the first part (DPA)
and the second part (PMM). The interesting computer ar-
rangement to observe in this table is 4×2 where all the com-
puters of the network are used. It can be seen that for problem
sizes exceeding 30888, times spent in the execution of the first
part (DPA) are large. This is because the slow computers R01

267

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

Figure 5. N=30888. The column-based distribution for the arrangement 3×2
is actually cartesian whereas that of the arrangement 2×3 is non-cartesian. The
number of communications (horizontal+vertical) at each step of the PMM for

the arrangements {2×3, 3×2} is {24,18}. The matrix elements are square
blocks of size 99×99.

and R02 start paging as the problem size exceeds 30888 and
spend large times executing the benchmark code. The optimal
data distribution determined however does not include the
slow computers and as a result the processor arrangement
used in the PMM is 3×2.

It has also been observed that the 2D computer grid ar-
rangements {3×2, 4×2} perform better than {2×3, 2×4}, re-
spectively. The reason why the column-based data distribution
for 3×2 is efficient is because the matrix data distribution is
actually cartesian (each processor has only two neighbours) as
shown in Fig. 5. The column-based matrix data distribution
for 2×3 is not cartesian, which results in more communica-
tions.

We performed further experiments to investigate the two
matrix data distributions {column-based, cartesian}. The best
performing 2D computer arrangements is 3×2 with both the
column-based and the cartesian data distribution. In fact, the
data distribution for the best performing 2D computer ar-
rangement that is {3×2, column-based} is actually cartesian.
The 2D computer grid arrangement {2×3, column-based} per-
forms poorly due to non-cartesian distribution resulting in
large number of communications. The 2D computer grid ar-
rangement {2×3, cartesian} performs poorly due to load im-
balance resulting from non-optimal matrix data distribution. It
is very difficult to achieve the proportionality (volume of data
to the speed of the processors) in the case of cartesian data
distribution.

The experimental results highlight the importance of a tool
that can provide features that can determine the optimal values
of the algorithmic parameters such as the total number of
computers and the 2D computer grid arrangement. HeteroMPI
is one such tool. The experimental results of the HeteroMPI-
HDS application are shown in Table II. The second column
shows the best execution times and the 2D computer grid ar-
rangements from the MPI-HDS application. These are com-
pared with the predictions of HeteroMPI. The results of the
HeteroMPI-HDS application in the third column are organized
as follows. The first sub-column shows the optimal 2D com-
puter grid arrangement predicted by HeteroMPI. The second
sub-column shows the predicted time of execution of the
PMM. The third sub-column shows the time taken by Het-
eroMPI group constructor routine to evaluate all the possible

TABLE IV. SPEEDUP OF MPI-HDS OVER SEQUENTIAL MATRIX-MATRIX
MULTIPLICATION

Size of matrix (n) Speedup
594 to 11880 1

14256 1.04
16632 1.14
19008 2.3
21384 5.4
23760 10

2D computer grid arrangements and to arrive at the best 2D
computer grid arrangement. Last sub-column shows the total
execution time of the HeteroMPI-HDS application. This in-
cludes the time taken to execute the benchmark code and the
time taken to determine the best 2D computer grid arrange-
ment. The predictions of HeteroMPI are spot-on and the pre-
dictions of the execution times are accurate within 10%.

Table IV shows the speedup of the MPI-HDS application
over the sequential matrix-matrix multiplication application
run on R05. The number of threads run in the sequential appli-
cation is equal to the number of cores, which is equal to 8.

Table V shows the best time obtained with the different ap-
plications using the HPS strategy. For the MPI-HPS applica-
tion, there will be an optimal (process, thread) combination
for each problem size. Combination (2×2, 2t) involves 4 pro-
cesses in R05 with each process running 2 threads. Combina-
tion (2×2, 4t) involves one process per computer (R05-R08)
running 4 threads each. As the problem size increases, it can
be seen that the optimal number of threads per process in-
creases from 2 to 4 due to the role played by communications.

For the HeteroMPI-HPS application, the execution time
shown in Table V (col. 3) includes the execution of the
benchmark code, the evaluation of the possible 2D process
grid arrangements and the PMM computation. At the moment,

TABLE V. BEST CONFIGURATION (PROCESSOR ARRANGEMENT, NUMBER
OF THREADS) FOR FOUR HPS APPLICATIONS TO PERFORM PMM. EXECUTION

TIMES IN SEC.

Size of
the

matrix
(n)

MPI-HPS Hetero-
MPI-HPS

ScaLA-
PACK-

HPS

HeteroSca-
LAPACK

4752 7
(2×2, 2 t)

4
(2×2, 2 t)

12
(2×8, 1t)

28
(5×6, 1t)

7128 22
(2×2, 2 t)

26
(2×2, 2 t)

34
(3×8, 1t)

77
(3×9, 1t)

9504 52
(2×2, 2 t)

58
(2×2, 2 t)

64
(3×8, 1t)

80
(2×14, 1t)

14256 149
(2×2*, 4 t)

157
(2×4, 2 t)

163
(3×8, 1t)

246
(4×7, 1t)

16632 221
(2×2*, 4 t)

236
(2×4, 2 t)

245
(3×8, 1t)

380
(2×14, 1t)

23760 545
(2×2*, 4 t)

572
(2×4, 2 t)

610
(3×8, 1t)

789
(4×7, 1t)

30888 1090
(2×2*, 4 t)

1205
(3×4, 2 t)

1290
(3×8, 1t)

1557
(2×14, 1t)

33264 1320
(2×2*, 4 t)

1668
(2×2, 4 t)

1819
(3×8, 1t)

1966
(2×14, 1t)

40392 4355
(2×2*, 4 t)

5537
(2×2, 4 t)

8224
(7×4, 1t)

4851
(4×7, 1t)

177

101

34

3×2 2×3

204

108

64 108 140

265

R06

 47 R03

233

R07

79
R04

R05

R08

 156 156

R06

R08

R04

R05

R07

R03

268

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Speedup of the MPI application utilizing the HDS strategy over

the MPI application utilizing the HPS strategy.

the number of threads must be pre-configured. The prediction
of the 2D process grid arrangement is as correct as in the case
of the HeteroMPI-HDS algorithm. The prediction of the exe-
cution time is not so. One of the reasons could be the inaccu-
racy of the communication model used for the shared-memory
communications between the processes inside a computer.
This issue is currently under investigation.

The application performing the worst is ScaLAPACK with
the configuration where one process is run per core and one
thread is run per process. The 2D process grid arrangements
for the MPI-HPS shown in Table IV are the following (num-
ber of processes in brackets): (2×2): R05 (2), R06 (2); (2×2)*:
R05 (1), R06 (1), R07 (1), R08 (1).

The (process, thread) combinations for the 2D process grid
arrangements for the ScaLAPACK-HPS application shown in
Table V are the following: (2×8): R05 (8,1), R06 (8,1); (3×8):
R05 (8,1), R06 (8,1), R07 (4,1), R08 (4,1); (7×4): R05 (8,1),
R06 (8,1), R07 (4,1), R08 (2,1), R03 (2,1), R04 (2,1).

In the experiments with the Heterogeneous ScaLAPACK
application, all the computers are used in the execution of the
application. The slowest computers R01 and R02 are however
not picked during the execution of the PMM. Given the num-
ber of threads per process is preconfigured as input to the ap-
plication, the Heterogeneous ScaLAPACK runtime would
then determine the optimal number of processes and the opti-
mal 2D process arrangement. In this case, the best execution
times are achieved with only one thread per process.

Fig. 6 shows the speedup of the MPI-HDS application over
the MPI-HPS application calculated as the ratio of the execu-
tion time of MPI-HPS application to the execution time of
MPI-HDS application. The results reveal that the two strat-
egies can compete with each other. For the range of problem
sizes (n≤35640), the MPI applications employing HDS per-
form the best since they fully exploit the increased thread-
level parallelism (TLP) provided by the multicore processors.
However, for large problem sizes, the non-cartesian nature of
the data distribution may lead to excessive communications
that can be very expensive. For such cases, the HPS strategy
has been shown to out-perform the HDS strategy. Fig. 7
shows the effect of oversubscribing the multicore computers
and SMPs (running more processes than cores or processors).
The number of threads run per process on each computer is 1.
Our experiments allow us to conclude that once the number of
processes exceeds the number of cores in the computer, the

(a)

(b)

Figure 7. Execution times of the MPI application utilizing the HPS strategy.
(a). The multicore computers are oversubscribed. (b). The multicore and the

SMP machines are oversubscribed.

execution performance of the application goes down before
the region of paging (n≤40000). The computers can be over-
subscribed in the region of paging. The 2D process grid ar-
rangements shown in the Fig. 7(a) are the following with the
number of processes in brackets: 3×16: R05(16), R06(16),
R07(8), R08(8); 6×8: R05(16), R06(16), R07(8), R08(8);
3×12: R05(12), R06(12), R07(6), R08(6); 6×6: R05(12),
R06(12), R07(6), R08(6); 3×8: R05(8), R06(8), R07(4),
R08(4). The 2D process grid arrangements shown in the Fig.
7(b) are the following with the number of processes in brack-
ets: 13×4: R05(16), R06(16), R07(8), R08(8), R03(2), R04(2);
8×5: R05(12), R06(12), R07(6), R08(6), R03(2), R04(2); 8×7:
R05(16), R06(16), R07(8), R08(8), R03(4), R04(4); 7×4:
R05(8), R06(8), R07(4), R08(4), R04(2), R03(2). The grid
arrangements 3×8 and 7×4 (Fig. 7(a) and (b), respectively) are
just shown for comparison. There still remains a problem of
how many processes to run per computer and which 2D pro-
cess grid arrangement to use. The problem becomes more
complicated when threads are taken into account. This neces-
sitates the importance of a tool, which can determine the op-
timal values of these algorithmic parameters automatically.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented enhancements to two pre-

existing strategies of distribution of computations for HCoMs:
HPS and HDS, to implement parallel solvers for dense linear
algebra problems. We performed experiments using six appli-
cations utilizing the various distribution strategies to perform
the PMM on a local HCoM. The results revealed that the two
strategies can compete with each other. The conclusions to be

269

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

drawn from these results are:
• The HDS strategy is the best strategy to use since it al-

lows to fully exploit the increased thread-level parallel-
ism (TLP) provided by the multicore processors. How-
ever, for large problem sizes, the non-cartesian nature
of the data distribution may lead to excessive communi-
cations that can be very expensive. For such cases, the
HPS strategy has been shown to outperform it.

• HeteroMPI is a valuable tool to implement heterogen-
eous parallel algorithms on HCoMs using the HDS
strategy since it accurately predicts the execution time
of the parallel algorithm, accurately detects the optimal
values of the algorithmic parameters such as the total
number of processors and the 2D processor grid ar-
rangement.

• The software (HeteroMPI, Heterogeneous
ScaLAPACK) must be enhanced to provide accurate
predictions of the optimal (process, thread) combination
in the case of the HPS strategy. Since Heterogeneous
ScaLAPACK is built on the top of HeteroMPI, the fea-
ture only needs to be added to HeteroMPI.

• No package is currently available using HDS strategy.
A package based on this strategy requires great effort
redesigning and reimplementing the linear algebra rou-
tines and writing the associated performance models.
Heterogeneous ScaLAPACK is however completely
implemented except for the eigenvalue solvers. It uses
the legacy ScaLAPACK and its associated performance
models are written. In addition, the HeteroMPI-HPS
strategy followed by Heterogeneous ScaLAPACK have
been shown to be quite competitive to the HDS strategy
in single core processor clusters [16], [17], [18] as well
as multicore processor clusters.

• HeteroMPI has been proven to be a valuable tool in sin-
gle core processor clusters [9] by oversubscribing a fast
processor with a number of processes proportional to its
speed. From the analysis of the results of this paper, this
can be accomplished too in multicore processor clusters
but with one limitation: the total number of processes
per node cannot be larger than the number of cores of
the node, otherwise, the performance falls down drasti-
cally due to resource contention of the concurrent pro-
cesses and loss of some aggregate computational com-
putation power of the heterogeneous cluster. More in-
vestigation needs to be done with incoming growth in
the number of cores per node.

Our future work would involve addition of features to the
software (HeteroMPI, Heterogeneous ScaLAPACK) to deter-
mine the optimal (process, thread) combination in the HPS
strategy. We would also look at improvements to the com-
munication models in the software, which would accurately
predict the time of different types of communications.

ACKNOWLEDGEMENT
We acknowledge the support of the VIDI of the Polytech-

nic University of Valencia, the Generalitat Valenciana and the
Spanish Research Project TIN2008-06570-C04-02. The study

was also in part supported by the Science Foundation Ireland.

REFERENCES
[1] Ranking of supercomputers according to the LINPACK benchmark.

http://www.top500.org.
[2] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy, “The Impact of

Multicore on Computational Science Software,” CTWatch Quarterly,
Volume 3, No. 1, February 2007.

[3] The Message Passing Interface Standard. http://www-
unix.mcs.anl.gov/mpi/.

[4] An API for multi-platform shared-memory parallel programming in
C/C++ and Fortran. http://openmp.org/wp/.

[5] A. Lastovetsky, “Scientific Programming for Heterogeneous Systems -
Bridging the Gap between Algorithms and Applications,” Proceedings
of the 5th International Symposium on Parallel Computing in Electrical
Engineering (PARELEC 2006), Bialystok, Poland, IEEE Computer
Society Press, pp. 3-8, 13-17 Sept 2006.

[6] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution of
Computations Solving Linear Algebra Problems on Networks of
Heterogeneous Computers,” Journal of Parallel and Distributed
Computing, Volume 61, No. 4, pp.520-535, April 2001.

[7] Scalable LAPACK. http://www.netlib.org/scalapack/.
[8] Heterogeneous ScaLAPACK.

http://hcl.ucd.ie/project/HeteroScaLAPACK/.
[9] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a Message-Passing

Library for Heterogeneous Networks of Computers,” Journal of Parallel
and Distributed Computing (JPDC), Volume 66, No. 2, pp.197-220,
Elsevier, 2006. http://hcl.ucd.ie/project/HeteroMPI/.

[10] A. Lastovetsky and R. Reddy, “On Performance Analysis of
Heterogeneous Parallel Algorithms,” In Parallel Computing, Volume
30, No. 11, pp.1195-1216, 2004.

[11] P. Alonso, R. Reddy, and A. Lastovetsky, “Experimental Study of Six
Different Parallel Matrix-Matrix Applications for Heterogeneous
Computational Clusters of Multicore Processors,” Technical Report
UCD-CSI-2009-2, University College Dublin, 2009.

[12] A. Lastovetsky, D. Arapov, A. Kalinov, and I. Ledovskih, “A Parallel
Language and Its Programming System for Heterogeneous Networks,”
Concurrency: Practice and Experience, Volume 12, No. 13, pp.1317-
1343, November 2000.

[13] A. Lastovetsky, “Adaptive Parallel Computing on Heterogeneous
Networks with mpC,” Parallel Computing, Volume 28, No. 10, pp.1369-
1407, October 2002.

[14] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix
Multiplication on Heterogeneous Platforms”, IEEE Transactions on
Parallel and Distributed Systems, Volume 12, No. 10, pp.1033-1051,
2001.

[15] P. Alonso and A. M. Vidal, “Cauchy-like system solution on multicore
platforms,” Workshop on State-of-the-Art in Scientific and Parallel
Computing (PARA 2008), May 13-16, NTNU, Trondheim, Norway.

[16] R. Reddy, A. Lastovetsky, and P. Alonso, “Heterogeneous PBLAS:
Optimization of PBLAS for Heterogeneous Computational Clusters,” In
Proceedings of the 7th International Symposium on Parallel and
Distributed Computing (ISPDC 2008), pp. 73-80, IEEE Computer
Society Press.

[17] R. Reddy, A. Lastovetsky, and P. Alonso, “Scalable Dense
Factorizations for Heterogeneous Computational Clusters,” In
Proceedings of the 7th International Symposium on Parallel and
Distributed Computing (ISPDC 2008), pp. 49-56, IEEE Computer
Society Press.

[18] R. Reddy, A. Lastovetsky, and P. Alonso, “Parallel solvers for dense
linear systems for heterogeneous computational clusters,” In
Proceedings of the 23rd International Parallel and Distributed
Processing Symposium (IPDPS 2009).

270

Authorized licensed use limited to: University College Dublin. Downloaded on April 25,2010 at 09:20:55 UTC from IEEE Xplore. Restrictions apply.

