Design and Implementation of Parallel Algorithms for Modern Heterogeneous Platforms Based on Functional Performance Models

David Clarke

Heterogeneous Computing Laboratory, UCD, Dublin

May 11, 2012

Platform and Application

Generalised Heterogeneous Platform

Data Parallel Application

while(...) {

}

compute_parallel(data, size);
syncronise (data);

Background

Platform and Application

Generalised Heterogeneous Platform

Data Parallel Application

while(...) $\{$

}

compute_parallel(data, size);
syncronise (data);

Background

Platform and Application

Generalised Heterogeneous Platform

Data Parallel Application

while(...) $\{$

compute_parallel(data, size);
syncronise (data);

Background

Traditional load Balancing

Background

- Traditionally, processor performance is defined by a constant number.
- Computational units are partitioned as

$$d_i = N imes rac{s_i}{\sum_{j=1}^p s_j}$$

 In reality, speed is a function of problem size.

Problem Size N

Load Balanced when:

$$t_1(d_1) \approx t_2(d_2) \approx \ldots \approx t_p(d_p)$$
$$\frac{d_1}{s_1(d_1)} \approx \frac{d_2}{s_2(d_2)} \approx \ldots \approx \frac{d_p}{s_p(d_p)}$$
$$d_1 + d_2 + \ldots + d_p = N$$

Developed two algorithms:

• Geometric Partitioning Algorithm

- Convergence guaranteed
- Restriction on shape of speed functions

• Numerical Partitioning Algorithm

- No restriction on shape
- No guarantee of convergence (in practice converges for realistic functions)

Input: FPMs and *N*. Output:
$$d_1, d_2, \ldots, d_p$$
.

Geometric Partitioning Algorithm

- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant.$
- Value of *N* determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

Geometric Partitioning Algorithm

- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant.$
- Value of *N* determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

Numerical Partitioning Algorithm

Optimal partitioning can be formulated as a system of nonlinear equations, F(x) = 0

$$F(x) = \begin{cases} n - \sum_{i=1}^{p} x_i \\ \frac{x_i}{s_i(x_i)} - \frac{x_1}{s_1(x_1)}, & 2 \le i \le p \end{cases}$$
(1)

Powell's Hybrid method used to solve:

$$x_{k+1} = x_k - J(x_k)F(x_k)$$
 (2)

With Jacobian matrix:

$$J(x) = \begin{pmatrix} -1 & -1 & \dots & -1 \\ -\frac{s_1(x_1) - x_1 s_1'(x_1)}{s_1^2(x_1)} & \frac{s_2(x_2) - x_2 s_2'(x_2)}{s_2^2(x_2)} & 0 & 0 \\ \dots & 0 & \dots & 0 \\ -\frac{s_1(x_1) - x_1 s_1'(x_1)}{s_1^2(x_1)} & 0 & 0 & \frac{s_p(x_p) - x_p s_p'(x_p)}{s_p^2(x_p)} \end{pmatrix}$$
(3)

Fitting Continuous Functions to Discreet Data

Functional Performance Model Partitioning

Case study: Matrix Partitioning based on FPMs

Simple Partitioning

2D Partitioning

Two-Dimensional Matrix Partitioning with 1D FPMs

- Height and width combined into one parameter, area $d_i = m_i \times n_i$.
- Square areas are benchmarked $m = n = \sqrt{d}$.
- Partition with 1D FPM algorithm to find area of rectangles (geometric or numerical).
- Use communication volume minimising algorithm* to compute ordering and shape of these rectangles.

* Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. 2001

- Functional performance models are different for each application and each platform.
- Building these models for all conceivable problem sizes is computationally expensive.
- Building full models is not an option for a self adaptive algorithm.
- Present an algorithm that dynamically builds the models at relevant problem sizes

Experimental Results: FPM based Partitioning

Function

David Clarke (HCL/UCD)

Target Hierarchical Heterogeneous Platform

- Heterogeneity between nodes
- Heterogeneity between devices within a node
- Partition matrix between nodes
- Sub-partition between devices within a node
- eg. Grid'5000 Grenoble site.

Hierarchical Partitioning Algorithm

Hierarchical Partitioning Algorithm

• Hierarchy in platform \rightarrow hierarchy in partitioning

- Nested parallelism
- inter-node partitioning algorithm (INPA)
- inter-device partitioning algorithm (IDPA)
- IDPA is nested inside INPA

Experimental Results: Reference full models

Hierarchical Partitioning Algorithm

Experimental Results

90 nodes, 432 CPUs, 12 GPUs from Grid5000 Grenoble site

Two-Dimensional Matrix Partitioning Based on 2D Models

- Numerical solution
- 3-step column based algorithm
- Both algorithms use column based partitioning. Arrangement of processors into a 2D grid is an input.

Numerical 2D partitioning algorithm

Solve as a constrained non-linear minimisation problem

Function to be minimised:

 $\sum_{j=1}^{q} \sum_{i=1}^{p_j} t_{ij}$

with q + 1 constraints:

$$n_1 + n_2 + \ldots + n_q = N$$

 $m_{1j} + m_{2j} + \ldots + m_{p_j} = M$, for $1 \le j \le q$

- Implemented with the NLopt library.
- However, convergence and reliability issues still need to be solved
- Possibly posing the minimisation function and constraints differently will aid convergence.

- Extract 1D model from 2D with P1 P4 n = c for $1 \le c \le N$. Partition to find optimum time, P2 P5 add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

- Extract 1D model from 2D with n = c for $1 \le c \le N$. Partition to find optimum time, add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

- Extract 1D model from 2D with n = c for $1 \le c \le N$. Partition to find optimum time, add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

- Extract 1D model from 2D with n = c for $1 \le c \le N$. Partition to find optimum time, add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

- Extract 1D model from 2D with n = c for $1 \le c \le N$. Partition to find optimum time, add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

- Extract 1D model from 2D with n = c for $1 \le c \le N$. Partition to find optimum time, add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

- Extract 1D model from 2D with n = c for $1 \le c \le N$. Partition to find optimum time, add point $s_{col}(c)$ to model.
- Use 1D partitioning find optimum column widths.
- Find optimum heights for each processor within the columns.

Applications

- Signal Processing Systems group, INESC-ID, Lisbon, Portugal
 - Using FPMs to partition database requests on heterogeneous platform.
 - Extended FPMs to overlap communications, ×4 speedup for FFT.
- Division of Scientific Computing, Uppsala University, Sweden
 - Upcoming collaboration to load balance multiphase flow simulations.

Experimental Platforms

- Grid'5000, 10 sites, 1260 nodes, France
- HCL Cluster, local 16 node experimental cluster.
- SiPS Cluster, 4 node CPU+GPU, Lisbon, Portugal

Software

FuPerMod

- FuPerMod package developed at HCL
- Based on system and mathematical software: C/C++, MPI, Autotools, GNU Scientific Library, Boost C++ libraries, BLAS, CUDA Toolkit
- Contains all presented algorithms.
- Designed for easy integration with existing heterogeneous applications.

Conclusion

Publications

Lastovetsky, A., and R. Reddy, "Distributed Data Partitioning for Heterogeneous Processors Based on Partial Estimation of their Functional Performance Models", HeteroPar'2009, Delft, Netherlands, LNCS, vol. 6043, Springer, pp. 91-101, 2010.

The stand and the stand the stand

- Lastovetsky, A., and R. Reddy, "Two-dimensional Matrix Partitioning for Parallel Computing on Heterogeneous Processors Based on their Functional Performance Models", HeteroPar'2009, Delft, Netherlands, LNCS, vol. 6043, Springer, pp. 112-121, 2010.
- Clarke, D., A. Lastovetsky, and V. Rychkov, "Dynamic Load Balancing of Parallel Computational Iterative Routines on Platforms with Memory Heterogeneity", Europar 2010 / Heteropar'2010, Ischia-Naples, Italy, LNCS 6586, Springer, pp. 41-50, 2011.
- Clarke, D., A. Lastovetsky, and V. Rychkov, "Dynamic Load Balancing of Parallel Computational Iterative Routines on Highly Heterogeneous HPC Platforms", PPL, vol. 21, issue 2: World Scientific, pp. 195-217, 06/2011.
- Rychkov, V., D. Clarke, and A. Lastovetsky, "Using Multidimensional Solvers for Optimal Data Partitioning on Dedicated Heterogeneous HPC Platforms", PaCT-2011, LNCS 6873, Kazan, Russia, Springer, pp. 332-346, 19/09/2011.
- Lastovetsky, A., R. Reddy, V. Rychkov, and D. Clarke, "Design and implementation of self-adaptable parallel algorithms for scientific computing on highly heterogeneous HPC platforms", PARCO (under review).
- Clarke, D., A. Lastovetsky, and V. Rychkov, "Column-Based Matrix Partitioning for Parallel Matrix Multiplication on Heterogeneous Processors Based on Functional Performance Models", HeteroPar'2011, Bordeaux, France, LNCS 7155, Springer, pp. 450-459, 2012.
- Clarke, D., A. Ilic, A. Lastovetsky, L. Sousa, "Hierarchical Partitioning Algorithm for Scientific Computing on Highly Heterogeneous CPU + GPU Clusters" EuroPar'2012 (under review).