Design and Implementation of Parallel Algorithms

for Modern Heterogeneous Platforms
Based on Functional Performance Models

David Clarke

Heterogeneous Computing Laboratory, UCD, Dublin

May 11, 2012

T _9,
l“JE g § -
BUSLIN HCL S f|
= P
Vi B . science foundation ireland
» fonddireacht eolaiochta éireann

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 1/25

atform and Application

Generalised Heterogeneous Data Parallel Application
Platform
i while(...) {
[TT1 compute_parallel(data, size);
] syncronise (data);
P3 P4 }

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2/25

atform and Application

Generalised Heterogeneous Data Parallel Application
Platform
i while(...) {
[TT1 compute_parallel(data, size);
] syncronise (data);
P3 P4 }
I (T[T 111

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2/25

atform and Application

Generalised Heterogeneous Data Parallel Application
Platform
T while(...) {
—

[TT1 compute_parallel(data, size);

syncronise (data);
E=—

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2/25

@ Traditionally, processor
performance is defined
constant number.

@ Computational units are

partitioned as

Matrix Multiplication on Grid5000

by a 60

Speed (GFLOPS)
w
o

20 i
d,‘ =N X = Si 1
) 0 |
. jZI% . . 0 il Al L L
@ In reality, speed is a function of 0 10000 20000 30000 40000 50000
problem size. Problem Size N

David Clarke (HCL/UCD)

Functional Performance Models May 11, 2012

3/25

Load Balanced when:

di+dr+...+d, =N

Developed two algorithms:
@ Geometric Partitioning Algorithm

e Convergence guaranteed
o Restriction on shape of speed functions

@ Numerical Partitioning Algorithm
@ No restriction on shape
o No guarantee of convergence
(in practice converges for realistic functions)

Input: FPMs and N. Output: dy, ds, ..., d,.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 4/25

Functional Performance Model Partmonlng

sometric Partitioning Algorithm
e Points (d;,si(d;)) lie on a line passing through the origin when

Si&) = constant.
@ Value of N determines the slope.
@ Algorithm iteratively bisects solution space to find values d;.

dl +d2+d3+d4=n

s d)

sj(d)

s, 2(d)
Absolute
speed

5(d)

Size of the problem

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 5/25

Functlonal Performance Model Partmonlng

sometric Par ‘|t|on|ng Algori

@ Points (d;, si(d;)) lie on a line passing through the origin when
Si&) = constant.

@ Value of N determines the slope.

@ Algorithm iteratively bisects solution space to find values d;.

dl +d2+d3+d4=n

s(d)

sj(d)

Absolute
speed

Size of the problem

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 5/25

Functional Performance Model Partitioning

Optimal partitioning can be formulated as a system of nonlinear
equations, F(x) =0

n—>"r x
F(x) ={ NN . (1)
565__SML)’ 2sisp

Powell’s Hybrid method used to solve:

Xk+1 = Xk — J(xk)F(xk) (2)
With Jacobian matrix:
—1 —1 —1
s —asi(x) s200)—xsy () 0 0
S2 X SZ X
T(x) = i oL @)
_Sl(xl)_xlsl(xl) 5p (%) =28, (%)
sf(xl)l 0 0 P ps;(xﬁ)p P

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 6/25

Functional Performance Model Partitioning

) Discreet Data

Netlib Blas DGEMM

, . : i : . |
6 true speed function

- piecewise approximation --------
5k Akima spline interpolation e

Speed (GFLOPS)
w

0 g L | L | L | L | L
0 1000 2000 3000 4000 5000

size of problem N

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 7125

Functional Performance Model Partitioning

’ "eudy':”trl‘x Par "”"”'3" on FPMs

Simple Partitioning 2D Partitioning

inw)

nj

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 8/25

Functlonal Performance Model Partltlonlng

wo-Dimensional Matrix Parti |on|ng with 1D FPMs

@ Height and width combined into one parameter, area d; = m; x n;.

@ Square areas are benchmarked m = n = v/d.

@ Partition with 1D FPM algorithm to find area of rectangles
(geometric or numerical).

@ Use communication volume minimising algorithm* to compute
ordering and shape of these rectangles.

Matrix Multiplication Benchmark on Grid5000-Lille
40 T T

" chirloute-3
35 chimint-1 ——— o
chingchint-1 P2 P1 P10 | P11
& 30 chicon-1 T
o
o 25 4
e
G 20 B p15 | P16
g 15 1 P3 P14
& 1 P8
il P13
5 il P5
o . i P7
0 10407 20407 3e+07 4e+07 5e+07 P4 P9 P12
Problem Size - matrix elements P6

* Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. 2001

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 9/25

Functional Performance Model Partitioning

Matrix Multiplication, 64 nodes, Grid5000 Lille site

14000 — : .
Homogeneous /
— 12000 | Constant Minimising Communication ---] |
2 2D-FPM ==m= /
2] e e - i "
> 10000 |- FPM Minimising Communication ; |
E
l_ 1
— 8000 '
o
3 6000 -
[0)
>
% 4000
©
°
= 2000 F
0 ——] | . |
20000 40000 60000 80000 100000 120000
Total Matrix size N
May 11, 2012

David Clarke (HCL/UCD)

Functional Performance Models

10/25

Dynamically Built Models

@ Functional performance models are different for each application
and each platform.

@ Building these models for all conceivable problem sizes is
computationally expensive.

@ Building full models is not an option for a self adaptive algorithm.

@ Present an algorithm that dynamically builds the models at
relevant problem sizes

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 11/25

Dynamically Built Models

Absolute
speed

8(d)

8,(d)

Optimum Distribution

Size of the problem

David Clarke (HCL/UCD)

Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Initial Distribution
5(d)

8,(d)

Absolute
speed

df, di=n/2
Size of the problem

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Predicted Performance
5,(d)
s,(d)
Absolute
speed
—
v
v
v
v
Ve
Size of the problem
David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Absolute
speed

8(d)

8,(d)

Actual Performance

Size of the problem

David Clarke (HCL/U

Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

8(d)

8,(d)

Absolute
speed

Size of the problem

David Clarke (HCL/U Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Models Updated

§(d)
5,(d)
Absolute
speed
s/ (d)
s3(d)
Size of the problem
David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Predicted Performance
§(d)
s,(d) P
s
s
Absolute
speed
p Lo
i d;
Size of the problem

David Clarke (HCL/U

Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Actual Performance
5(d)

8,(d)

Absolute
speed

d} d;

Size of the problem

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Models Updated

8(d)

8,(d)

Absolute
speed

Size of the problem

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

Models Updated

8(d)

8,(d)

Absolute
speed

Size of the problem

David Clarke (HCL/ Functional Performance Models May 11, 2012 12/25

Dynamically Built Models

1st Iteration

18 22 14 7 13
12000 T
3
w
i k] 8000 1
L 06 g
[&
o
E o4 2 4000 1
= 2 i
02 < i
0 —
0 0 2000 4000 6000
1 2 3 4 i 5 6 7 8 size of problem, x
Iterations FPM P1 ---oomoo FPM P3 PO P3 m
FPM P2 -~ FPM P4 ———— P2 v P4 C
David Clarke (HCL/U Functional Performance Models May 11, 2012 13/25

Dynamically Built Models

2nd lIteration

18 22 14 7 13
12000 px= T
3
w
i k] 8000 1
L 06 g
[&
o
E o4 2 4000 1
= 2 i
02 < i
0 —
0 0 2000 4000 6000
1 2 3 4 i 5 6 7 8 size of problem, x
Iterations FPM P1 ---oomoo FPM P3 PO P3 m
FPM P2 -~ FPM P4 ———— P2 v P4 C
David Clarke (HCL/U Functional Performance Models May 11, 2012 13/25

Dynamically Built Models

3rd Iteration

18 22 14 7 13
12000 T
3
w
i k] 8000 1
L 06 g
[&
o
E o4 2 4000 1
= 2 i
02 < i
0 —
0 0 2000 4000 6000
1 2 3 4 i 5 6 7 8 size of problem, x
Iterations FPM P1 ---oomoo FPM P3 PO P3 m
FPM P2 -~ FPM P4 ———— P2 v P4 C
David Clarke (HCL/U Functional Performance Models May 11, 2012 13/25

Dynamically Built Models

4th lteration

18 22 14 7 13
12000 T
. -=
=
w
i k] 8000 1
L 06 g
[&
o
E o4 2 4000 1
= 2 i
02 < i
0 —
0 0 2000 4000 6000
1 2 3 4 i 5 6 7 8 size of problem, x
Iterations FPM P1 ---oomoo FPM P3 PO P3 m
FPM P2 -~ FPM P4 ———— P2 v P4 C
David Clarke (HCL/U Functional Performance Models May 11, 2012 13/25

Dynamically Built Models

5th Iteration

18 22 14 7 13
12000 T
. -
=
w
i k] 8000 1
L 06 g
[&
o
E o4 2 4000 1
= 2 i
02 < i
0 —
0 0 2000 4000 6000
1 2 3 4 i 5 6 7 8 size of problem, x
Iterations FPM P1 ---oomoo FPM P3 PO P3 m
FPM P2 -~ FPM P4 ———— P2 v P4 C
David Clarke (HCL/U Functional Performance Models May 11, 2012 13/25

Dynamically Built Models

1st lteration

12000 ——= LN S T T
> N
_ § 8000 E
@’ %
[} 2]
S 2
= p=} - -1
i 3 4000
(%2}
e}
< .
0 | [
4 5 6 0 2000 4000 6000
Iterations .
size of problem, x
FPM P1 --ooeoee FPM P3 P1 O P3 m
FPM P2 ——— FPMP4 ———— P2 v P4 C
David Clarke (HCL/ Functional Performance Models May 11, 2012)

Dynamically Built Models

2nd lteration

12000 T T
=
@
. § 8000
@’ %
[} w
1S 2
[2 4000
172
e}
<
0 . P g
4 5 6 0 2000 4000
Iterations .
size of problem, x
FPM P -----oo-- FPM P3 Pt O P3 =
FPM P2 -——— FPM P4 —-—- P2 W P4 C

David Clarke (HCL/ Functional Performance Models May 11, 2012)

Dynamically Built Models

3rd Iteration

12000 ——= L6 S B T T
—_ \ - c
=
12}
_ § 8000
@’ %
[} 2]
S 2
= >
i 3 4000
(%2}
e}
<<
0 . P g
4 5 6 0 2000 4000
Iterations .
size of problem, x
FPM P1 --ooeoee FPM P3 P1 O P3 m
FPM P2 ——— FPMP4 ———— P2 v P4 C
David Clarke (HCL/U Functional Performance Models May 11, 2012)

Dynamically Built Models

4th Iteration

12000
=
@
. § 8000
@’ %
[} w
1S 2
[2 4000
172
e}
<
0 . -
4 5 6 2000 4000
Iterations .
size of problem, x
FPM P -----oo-- FPM P3 Pt O P3 =
FPM P2 -——— FPM P4 —-—- P2 W P4 C

David Clarke (HCL/U Functional Performance Models May 11, 2012)

Dynamically Built Models

5th lteration

12000
=
@
. § 8000
@’ %
[} w
1S 2
[2 4000
172
e}
<
0 . -
4 5 6 2000 4000
Iterations .
size of problem, x
FPM P -----oo-- FPM P3 Pt O P3 =
FPM P2 -——— FPM P4 —-—- P2 W P4 C

David Clarke (HCL/U Functional Performance Models May 11, 2012)

Dynamically Built Models

6th lteration

12000
=
@
. § 8000
@’ %
[} w
1S 2
[2 4000
172
e}
<
0 . -
4 5 6 2000 4000
Iterations .
size of problem, x
FPM P -----oo-- FPM P3 Pt O P3 =
FPM P2 -——— FPM P4 —-—- P2 W P4 C

David Clarke (HCL/U Functional Performance Models May 11, 2012)

Hierarchical Partmonlng Algorlthm

. arge Hierarchical Heerogeneous Platform

CPU cores CPU cores CPU cores CPU cores

GPU's
i

CPU cores

|

GPU

@ Heterogeneity between nodes

@ Heterogeneity between devices within a node
@ Partition matrix between nodes

@ Sub-partition between devices within a node
@ eg. Grid’5000 Grenoble site.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 15/25

Hierarchical Partitioning Algorithm

bn i
P.
bmi Ql il
(GPU)
bm;
i P12
(CPU;
W~T—1“ Pi3
i
p; devices

@ Hierarchy in platform — hierarchy in partitioning

o Nested parallelism

@ inter-node partitioning algorithm (INPA)

e inter-device partitioning algorithm (IDPA)

@ IDPA is nested inside INPA

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 16/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

S (Wl) S (dij)

A
w; d; (for fixed m;)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

S (Wl) S (dij)

w; d; (for fixed my)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i
s(w,) s(dy)
A
w; d; (for fixed m;)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

S (Wl) S (dij) \
\

\

w; d; (for fixed my)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i
s(w,) s(dy)
LONA,
et
A
w; d; (for fixed m;)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

S (Wl) S (dij)

LOINA,
Naa'dd

>O O €O

w; d; (for fixed my)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

s(w;) S(dij)

w; d; (for fixed my)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17/25

Hierarchical Partitioning Algorithm

s(w,)

David Clarke (HCL/UCD)

Functional Performance Models

Node Models Device Models for Node i
L 2
s(dy)
A
w; d; (for fixed my)

May 11, 2012 17/25

Hierarchical Partitioning Algorithm

140 T T T T T T T T
adonis 7CPU + 1GPU ———
120 L adonis 1CPU + 1IGPU ——— |
adonis 0CPU + 1IGPU ——
— genepi 8CPU ———
@ 100 genepi 4CPU 7
o genepi 1TCPU ——
T 80 |r edel 8CPU ———
15} edel 4CPU ——
> 60 edel 1ICPU — |
g
» 40 | \ .
[\ \
20 | -

0 1 \N_ 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Problem Size w; (b x b blocks updated)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 18/25

Hierarchical Partitioning Algorithm

FPM Partitioining

5 [Multiple-CPM Partitioing 7
Single-CPM Partitioing
4 L Homogeneous Partitioing

Speed (Tera FLOPS)

0 20 40 60 80 100 120 1:10 160
Matrix size N (x 103)

90 nodes, 432 CPUs, 12 GPUs from Grid5000 Grenoble site

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 19/25

Current Work: Two-Dimensional Partmonlng

artltlonlng —

Two-Dimensional Matrix Partitioning Based on 2D Models

hcl16 (384MB RAM) ———
hci13 (1024MB RAM)

@ Numerical solution

@ 3-step column based
algorithm

Both algorithms use column
based partitioning.
Arrangement of processors
into a 2D grid is an input.

Speed (GFLOPS)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 20/25

Current Work: Two-Dimensional Partitioning

Solve as a constrained non-linear minimisation problem

Function to be minimised:
q iy
j=1 Zai=1"1
with ¢ + 1 constraints:
n+n+...+n,=N
m1j+m2j+‘..+mpj =M, for 1 <j<gq

@ Implemented with the NLopt library.
@ However, convergence and reliability issues still need to be solved

@ Possibly posing the minimisation function and constraints
differently will aid convergence.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 21/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with P1 P4
n=cforl <c¢<N. P7
Partition to find optimum time, P2 P5 P8

add point sqq(c) to model.

P3 P6

© Use 1D partitioning find
optimum column widths.

© Find optimum heights for each
processor within the columns.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with P1 P4
n=cforl <c¢<N. P7
Partition to find optimum time, P2 P5 P8
add point sqq(c) to model.

P3 Be

© Use 1D partitioning find
optimum column widths.

© Find optimum heights for each S

processor within the columns.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with e oy
n—=c for 1 S c S N 3 (1024MB RAM)
Partition to find optimum time,
add point sqq(c) to model. gg

Speed (GFLOPS)

© Use 1D partitioning find
optimum column widths.

© Find optimum heights for each
processor within the columns.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with
n=cforl <c¢<N.
Partition to find optimum time, s
add point sz (c) to model. e

© Use 1D partitioning find
optimum column widths.

© Find optimum heights for each
processor within the columns.

Speed of L]
column

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with
n=cforl <c¢<N.
Partition to find optimum time, s
add point sz (c) to model. e

© Use 1D partitioning find
optimum column widths.

© Find optimum heights for each
processor within the columns.

Speed of
column

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with
n=cforl <c¢<N. P1 P4
Partition to find optimum time, P7
add point sqq(c) to model. P2 P5 P8
© Use 1D partitioning find P3
optimum column widths. P6
© Find optimum heights for each - - -
processor within the columns. 1 2 3

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with
n=cforl <c¢<N. P1 P4
Partition to find optimum time, P7
add point sqq(c) to model. Po P5 P8

m

© Use 1D partitioning find P3 s
optimum column widths. P6

© Find optimum heights for each - - -
processor within the columns. 1 2 3

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22/25

Conclusion

Applications

@ Signal Processing Systems group, INESC-ID, Lisbon, Portugal

e Using FPMs to partition database requests on heterogeneous
platform.
o Extended FPMs to overlap communications, x4 speedup for FFT.

@ Division of Scientific Computing, Uppsala University, Sweden

e Upcoming collaboration to load balance multiphase flow
simulations.

Experimental Platforms

@ Grid’5000, 10 sites, 1260 nodes, France
@ HCL Cluster, local 16 node experimental cluster.
@ SiPS Cluster, 4 node CPU+GPU, Lisbon, Portugal

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 23/25

Conclusion

FuPerMod

@ FuPerMod package developed at HCL

@ Based on system and mathematical software: C/C++, MPI,
Autotools, GNU Scientific Library, Boost C++ libraries, BLAS,
CUDA Toolkit

@ Contains all presented algorithms.

@ Designed for easy integration with existing heterogeneous
applications.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 24 /25

Conclusion

ations

@ Lastovetsky, A., and R. Reddy, “Distributed Data Partitioning for Heterogeneous Processors Based on Partial
Estimation of their Functional Performance Models”, HeteroPar'2009, Delft, Netherlands, LNCS, vol. 6043, Springer,
pp. 91-101, 2010.

o Lastovetsky, A., and R. Reddy, “Two-dimensional Matrix Partitioning for Parallel Computing on Heterogeneous
Processors Based on their Functional Performance Models”, HeteroPar'2009, Delft, Netherlands, LNCS, vol. 6043,
Springer, pp. 112-121, 2010.

@ Clarke, D., A. Lastovetsky, and V. Rychkov, “Dynamic Load Balancing of Parallel Computational Iterative Routines
on Platforms with Memory Heterogeneity”, Europar 2010 / Heteropar'’2010, Ischia-Naples, ltaly, LNCS 6586, Springer,
pp. 41-50, 2011.

@ Clarke, D., A. Lastovetsky, and V. Rychkov, “Dynamic Load Balancing of Parallel Computational lterative Routines
on Highly Heterogeneous HPC Platforms”, PPL, vol. 21, issue 2: World Scientific, pp. 195-217, 06/2011.

@ Rychkov, V., D. Clarke, and A. Lastovetsky, “Using Multidimensional Solvers for Optimal Data Partitioning on
Dedicated Heterogeneous HPC Platforms ”, PaCT-2011, LNCS 6873, Kazan, Russia, Springer, pp. 332-346,
19/09/2011.

o Lastovetsky, A., R. Reddy, V. Rychkov, and D. Clarke, ”Design and implementation of self-adaptable parallel
algorithms for scientific computing on highly heterogeneous HPC platforms”, PARCO (under review).

o Clarke, D., A. Lastovetsky, and V. Rychkov, “Column-Based Matrix Partitioning for Parallel Matrix Multiplication on
Heterogeneous Processors Based on Functional Performance Models”, HeteroPar'2011 , Bordeaux, France, LNCS
7155, Springer, pp. 450-459, 2012.

@ Clarke, D., A. llic, A. Lastovetsky, L. Sousa, “Hierarchical Partitioning Algorithm for Scientific Computing on Highly
Heterogeneous CPU + GPU Clusters” EuroPar2012 (under review).

David Clarke (HCL/U Functional Performance Models May 11, 2012 25/25

	Background
	Functional Performance Model Partitioning
	Dynamically Built Models
	Hierarchical Partitioning Algorithm
	Current Work: Two-Dimensional Partitioning
	Conclusion

