
Design and Implementation of Parallel Algorithms
for Modern Heterogeneous Platforms

Based on Functional Performance Models

David Clarke

Heterogeneous Computing Laboratory, UCD, Dublin

May 11, 2012

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 1 / 25



Background

Platform and Application

Generalised Heterogeneous
Platform

Data Parallel Application

. . .

while(. . . ) {

compute parallel(data, size);

syncronise (data);

}

. . .

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2 / 25



Background

Platform and Application

Generalised Heterogeneous
Platform

Data Parallel Application

. . .

while(. . . ) {

compute parallel(data, size);

syncronise (data);

}

. . .

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2 / 25



Background

Platform and Application

Generalised Heterogeneous
Platform

Data Parallel Application

. . .

while(. . . ) {

compute parallel(data, size);

syncronise (data);

}

. . .

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2 / 25



Background

Traditional load Balancing

Traditionally, processor
performance is defined by a
constant number.
Computational units are
partitioned as
di = N × si∑p

j=1 sj
.

In reality, speed is a function of
problem size.
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Functional Performance Model Partitioning

Load Balanced when:
t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp)

d1
s1(d1)

≈ d2
s2(d2)

≈ . . . ≈ dp
sp(dp)

d1 + d2 + . . .+ dp = N

Developed two algorithms:
Geometric Partitioning Algorithm

Convergence guaranteed
Restriction on shape of speed functions

Numerical Partitioning Algorithm
No restriction on shape
No guarantee of convergence
(in practice converges for realistic functions)

Input: FPMs and N. Output: d1, d2, . . . , dp.
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Functional Performance Model Partitioning

Geometric Partitioning Algorithm
Points

(
di, si(di)

)
lie on a line passing through the origin when

di
si(di)

= constant.
Value of N determines the slope.
Algorithm iteratively bisects solution space to find values di.
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Functional Performance Model Partitioning

Numerical Partitioning Algorithm

Optimal partitioning can be formulated as a system of nonlinear
equations, F(x) = 0

F(x) =
{

n−
∑p

i=1 xi
xi

si(xi)
− x1

s1(x1)
, 2 ≤ i ≤ p (1)

Powell’s Hybrid method used to solve:

xk+1 = xk − J(xk)F(xk) (2)

With Jacobian matrix:

J(x) =


−1 −1 ... −1

− s1(x1)−x1s′1(x1)

s2
1(x1)

s2(x2)−x2s′2(x2)

s2
2(x2)

0 0
... 0 ... 0

− s1(x1)−x1s′1(x1)

s2
1(x1)

0 0
sp(xp)−xps′p(xp)

s2
p(xp)

 (3)
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Functional Performance Model Partitioning

Fitting Continuous Functions to Discreet Data
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Functional Performance Model Partitioning

Case study: Matrix Partitioning based on FPMs

Simple Partitioning 2D Partitioning
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Functional Performance Model Partitioning

Two-Dimensional Matrix Partitioning with 1D FPMs
Height and width combined into one parameter, area di = mi × ni.
Square areas are benchmarked m = n =

√
d.

Partition with 1D FPM algorithm to find area of rectangles
(geometric or numerical).
Use communication volume minimising algorithm* to compute
ordering and shape of these rectangles.
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Functional Performance Model Partitioning
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Dynamically Built Models

Dynamically Built Models

Functional performance models are different for each application
and each platform.
Building these models for all conceivable problem sizes is
computationally expensive.
Building full models is not an option for a self adaptive algorithm.
Present an algorithm that dynamically builds the models at
relevant problem sizes
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Dynamically Built Models
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Dynamically Built Models

Experimental Results: Constant Model
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Dynamically Built Models

Experimental Results: FPM based Partitioning
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Hierarchical Partitioning Algorithm

Target Hierarchical Heterogeneous Platform

Heterogeneity between nodes
Heterogeneity between devices within a node
Partition matrix between nodes
Sub-partition between devices within a node
eg. Grid’5000 Grenoble site.
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Hierarchical Partitioning Algorithm

Hierarchical Partitioning Algorithm

Hierarchy in platform→ hierarchy in partitioning
Nested parallelism
inter-node partitioning algorithm (INPA)
inter-device partitioning algorithm (IDPA)
IDPA is nested inside INPA
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Hierarchical Partitioning Algorithm

Node Models Device Models for Node i
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Hierarchical Partitioning Algorithm

Experimental Results: Reference full models
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Hierarchical Partitioning Algorithm

Experimental Results
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Current Work: Two-Dimensional Partitioning

Current Work: Two-Dimensional Partitioning

Two-Dimensional Matrix Partitioning Based on 2D Models

Numerical solution
3-step column based
algorithm

Both algorithms use column
based partitioning.
Arrangement of processors
into a 2D grid is an input.
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Current Work: Two-Dimensional Partitioning

Numerical 2D partitioning algorithm

Solve as a constrained non-linear minimisation problem

Function to be minimised:∑q
j=1
∑pj

i=1 tij

with q + 1 constraints:
n1 + n2 + . . .+ nq = N
m1j + m2j + . . .+ mpj = M, for 1 ≤ j ≤ q

Implemented with the NLopt library.
However, convergence and reliability issues still need to be solved
Possibly posing the minimisation function and constraints
differently will aid convergence.
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Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.
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Conclusion

Applications
Signal Processing Systems group, INESC-ID, Lisbon, Portugal

Using FPMs to partition database requests on heterogeneous
platform.
Extended FPMs to overlap communications, ×4 speedup for FFT.

Division of Scientific Computing, Uppsala University, Sweden
Upcoming collaboration to load balance multiphase flow
simulations.

Experimental Platforms
Grid’5000, 10 sites, 1260 nodes, France
HCL Cluster, local 16 node experimental cluster.
SiPS Cluster, 4 node CPU+GPU, Lisbon, Portugal
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Conclusion

Software

FuPerMod
FuPerMod package developed at HCL
Based on system and mathematical software: C/C++, MPI,
Autotools, GNU Scientific Library, Boost C++ libraries, BLAS,
CUDA Toolkit
Contains all presented algorithms.
Designed for easy integration with existing heterogeneous
applications.
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Conclusion
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