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atform and Application

Generalised Heterogeneous Data Parallel Application
Platform
i while(...) {
[TT1 compute_parallel(data, size);
] syncronise (data);
P3 P4 }
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@ Traditionally, processor
performance is defined
constant number.

@ Computational units are

partitioned as
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Load Balanced when:

di+dr+...+d, =N

Developed two algorithms:
@ Geometric Partitioning Algorithm

e Convergence guaranteed
o Restriction on shape of speed functions

@ Numerical Partitioning Algorithm
@ No restriction on shape
o No guarantee of convergence
(in practice converges for realistic functions)

Input: FPMs and N.  Output: dy, ds, ..., d,.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 4/25



Functional Performance Model Partmonlng

sometric Partitioning Algorithm
e Points (d;,si(d;)) lie on a line passing through the origin when

Si&) = constant.
@ Value of N determines the slope.
@ Algorithm iteratively bisects solution space to find values d;.

dl +d2+d3+d4=n

s d)

sj( d)

s, 2( d)
Absolute
speed

5(d)

Size of the problem
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Functional Performance Model Partitioning

Optimal partitioning can be formulated as a system of nonlinear
equations, F(x) =0

n—>"r x
F(x) ={ NN . (1)
565__SML)’ 2sisp

Powell’s Hybrid method used to solve:

Xk+1 = Xk — J(xk)F(xk) (2)
With Jacobian matrix:
—1 —1 —1
s —asi(x)  s200)—xsy () 0 0
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Functional Performance Model Partitioning
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Functional Performance Model Partitioning
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Functlonal Performance Model Partltlonlng

wo-Dimensional Matrix Parti |on|ng with 1D FPMs

@ Height and width combined into one parameter, area d; = m; x n;.

@ Square areas are benchmarked m = n = v/d.

@ Partition with 1D FPM algorithm to find area of rectangles
(geometric or numerical).

@ Use communication volume minimising algorithm* to compute
ordering and shape of these rectangles.

Matrix Multiplication Benchmark on Grid5000-Lille
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* Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. 2001
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Functional Performance Model Partitioning

Matrix Multiplication, 64 nodes, Grid5000 Lille site
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Dynamically Built Models

@ Functional performance models are different for each application
and each platform.

@ Building these models for all conceivable problem sizes is
computationally expensive.

@ Building full models is not an option for a self adaptive algorithm.

@ Present an algorithm that dynamically builds the models at
relevant problem sizes
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Dynamically Built Models
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Dynamically Built Models
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Dynamically Built Models
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Dynamically Built Models
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Dynamically Built Models

Models Updated
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Dynamically Built Models
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Dynamically Built Models
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Dynamically Built Models
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Dynamically Built Models

1st Iteration
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Dynamically Built Models
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Dynamically Built Models

3rd Iteration
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Dynamically Built Models

4th lteration
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Dynamically Built Models

5th Iteration
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Dynamically Built Models

1st lteration
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Dynamically Built Models

2nd lteration
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Dynamically Built Models

3rd Iteration
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Dynamically Built Models

4th Iteration

12000
=
@
. § 8000
@’ %
[} w
1S 2
[ 2 4000
172
e}
<
0 . -
4 5 6 2000 4000
Iterations .
size of problem, x
FPM P -----oo-- FPM P3 Pt O P3 =
FPM P2 -——— FPM P4 —-—- P2 W P4 C

David Clarke (HCL/U Functional Performance Models May 11, 2012 )




Dynamically Built Models
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Dynamically Built Models
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Hierarchical Partmonlng Algorlthm

. arge Hierarchical Heerogeneous Platform

CPU cores CPU cores CPU cores CPU cores

GPU's
i

CPU cores

|

GPU

@ Heterogeneity between nodes

@ Heterogeneity between devices within a node
@ Partition matrix between nodes

@ Sub-partition between devices within a node
@ eg. Grid’5000 Grenoble site.
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Hierarchical Partitioning Algorithm

bn i
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@ Hierarchy in platform — hierarchy in partitioning

o Nested parallelism

@ inter-node partitioning algorithm (INPA)

e inter-device partitioning algorithm (IDPA)

@ IDPA is nested inside INPA
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Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

S (Wl) S (dij)

A
w; d; (for fixed m;)
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Hierarchical Partitioning Algorithm

s(w,)
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Hierarchical Partitioning Algorithm
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Hierarchical Partitioning Algorithm

FPM Partitioining

5 [ Multiple-CPM Partitioing 7
Single-CPM Partitioing
4 L Homogeneous Partitioing

Speed (Tera FLOPS)

0 20 40 60 80 100 120 1:10 160
Matrix size N ( x 103)

90 nodes, 432 CPUs, 12 GPUs from Grid5000 Grenoble site
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Current Work: Two-Dimensional Partmonlng

artltlonlng —

Two-Dimensional Matrix Partitioning Based on 2D Models

hcl16 (384MB RAM) ———
hci13 (1024MB RAM)

@ Numerical solution

@ 3-step column based
algorithm

Both algorithms use column
based partitioning.
Arrangement of processors
into a 2D grid is an input.

Speed (GFLOPS)
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Current Work: Two-Dimensional Partitioning

Solve as a constrained non-linear minimisation problem

Function to be minimised:
q iy
j=1 Zai=1"1
with ¢ + 1 constraints:
n+n+...+n,=N
m1j+m2j+‘..+mpj =M, for 1 <j<gq

@ Implemented with the NLopt library.
@ However, convergence and reliability issues still need to be solved

@ Possibly posing the minimisation function and constraints
differently will aid convergence.
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Current Work: Two-Dimensional Partitioning

@ Extract 1D model from 2D with P1 P4
n=cforl <c¢<N. P7
Partition to find optimum time, P2 P5 P8

add point sqq(c) to model.

P3 P6

© Use 1D partitioning find
optimum column widths.

© Find optimum heights for each
processor within the columns.
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Conclusion

Applications

@ Signal Processing Systems group, INESC-ID, Lisbon, Portugal

e Using FPMs to partition database requests on heterogeneous
platform.
o Extended FPMs to overlap communications, x4 speedup for FFT.

@ Division of Scientific Computing, Uppsala University, Sweden

e Upcoming collaboration to load balance multiphase flow
simulations.

Experimental Platforms

@ Grid’5000, 10 sites, 1260 nodes, France
@ HCL Cluster, local 16 node experimental cluster.
@ SiPS Cluster, 4 node CPU+GPU, Lisbon, Portugal
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Conclusion

FuPerMod

@ FuPerMod package developed at HCL

@ Based on system and mathematical software: C/C++, MPI,
Autotools, GNU Scientific Library, Boost C++ libraries, BLAS,
CUDA Toolkit

@ Contains all presented algorithms.

@ Designed for easy integration with existing heterogeneous
applications.
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