
Design and Implementation of Parallel Algorithms
for Modern Heterogeneous Platforms

Based on Functional Performance Models

David Clarke

Heterogeneous Computing Laboratory, UCD, Dublin

May 11, 2012

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 1 / 25

Background

Platform and Application

Generalised Heterogeneous
Platform

Data Parallel Application

. . .

while(. . .) {

compute parallel(data, size);

syncronise (data);

}

. . .

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2 / 25

Background

Platform and Application

Generalised Heterogeneous
Platform

Data Parallel Application

. . .

while(. . .) {

compute parallel(data, size);

syncronise (data);

}

. . .

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2 / 25

Background

Platform and Application

Generalised Heterogeneous
Platform

Data Parallel Application

. . .

while(. . .) {

compute parallel(data, size);

syncronise (data);

}

. . .

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 2 / 25

Background

Traditional load Balancing

Traditionally, processor
performance is defined by a
constant number.
Computational units are
partitioned as
di = N × si∑p

j=1 sj
.

In reality, speed is a function of
problem size.

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000

S
p
e
e
d
 (

G
F

L
O

P
S

)
Problem Size N

Matrix Multiplication on Grid5000

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 3 / 25

Functional Performance Model Partitioning

Load Balanced when:
t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp)

d1
s1(d1)

≈ d2
s2(d2)

≈ . . . ≈ dp
sp(dp)

d1 + d2 + . . .+ dp = N

Developed two algorithms:
Geometric Partitioning Algorithm

Convergence guaranteed
Restriction on shape of speed functions

Numerical Partitioning Algorithm
No restriction on shape
No guarantee of convergence
(in practice converges for realistic functions)

Input: FPMs and N. Output: d1, d2, . . . , dp.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 4 / 25

Functional Performance Model Partitioning

Geometric Partitioning Algorithm
Points

(
di, si(di)

)
lie on a line passing through the origin when

di
si(di)

= constant.
Value of N determines the slope.
Algorithm iteratively bisects solution space to find values di.

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 5 / 25

Functional Performance Model Partitioning

Geometric Partitioning Algorithm
Points

(
di, si(di)

)
lie on a line passing through the origin when

di
si(di)

= constant.
Value of N determines the slope.
Algorithm iteratively bisects solution space to find values di.

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

U

L

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 5 / 25

Functional Performance Model Partitioning

Numerical Partitioning Algorithm

Optimal partitioning can be formulated as a system of nonlinear
equations, F(x) = 0

F(x) =
{

n−
∑p

i=1 xi
xi

si(xi)
− x1

s1(x1)
, 2 ≤ i ≤ p (1)

Powell’s Hybrid method used to solve:

xk+1 = xk − J(xk)F(xk) (2)

With Jacobian matrix:

J(x) =


−1 −1 ... −1

− s1(x1)−x1s′1(x1)

s2
1(x1)

s2(x2)−x2s′2(x2)

s2
2(x2)

0 0
... 0 ... 0

− s1(x1)−x1s′1(x1)

s2
1(x1)

0 0
sp(xp)−xps′p(xp)

s2
p(xp)

 (3)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 6 / 25

Functional Performance Model Partitioning

Fitting Continuous Functions to Discreet Data

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000

S
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem N

Netlib Blas DGEMM

true speed function
piecewise approximation

Akima spline interpolation

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 7 / 25

Functional Performance Model Partitioning

Case study: Matrix Partitioning based on FPMs

Simple Partitioning 2D Partitioning

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 8 / 25

Functional Performance Model Partitioning

Two-Dimensional Matrix Partitioning with 1D FPMs
Height and width combined into one parameter, area di = mi × ni.
Square areas are benchmarked m = n =

√
d.

Partition with 1D FPM algorithm to find area of rectangles
(geometric or numerical).
Use communication volume minimising algorithm* to compute
ordering and shape of these rectangles.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1e+07 2e+07 3e+07 4e+07 5e+07

S
p

e
e
d
 (

G
F

L
O

P
S

)

Problem Size - matrix elements

Matrix Multiplication Benchmark on Grid5000-Lille

chirloute-3
chimint-1

chinqchint-1
chicon-1

* Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. 2001

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 9 / 25

Functional Performance Model Partitioning

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20000 40000 60000 80000 100000 120000

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Total Matrix size N

Matrix Multiplication, 64 nodes, Grid5000 Lille site

Homogeneous
Constant Minimising Communication

2D-FPM
FPM Minimising Communication

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 10 / 25

Dynamically Built Models

Dynamically Built Models

Functional performance models are different for each application
and each platform.
Building these models for all conceivable problem sizes is
computationally expensive.
Building full models is not an option for a self adaptive algorithm.
Present an algorithm that dynamically builds the models at
relevant problem sizes

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 11 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 12 / 25

Dynamically Built Models

Experimental Results: Constant Model

0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

19 17 18 142213 17 13

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

1st Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 13 / 25

Dynamically Built Models

Experimental Results: Constant Model

0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

19 17 18 142213 17 13

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

2nd Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 13 / 25

Dynamically Built Models

Experimental Results: Constant Model

0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

19 17 18 142213 17 13

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

3rd Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 13 / 25

Dynamically Built Models

Experimental Results: Constant Model

0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

19 17 18 142213 17 13

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

4th Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 13 / 25

Dynamically Built Models

Experimental Results: Constant Model

0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

19 17 18 142213 17 13

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

5th Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 13 / 25

Dynamically Built Models

Experimental Results: FPM based Partitioning

0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

1611 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b
s
o
lu

te
 s

p
e
e
d
,
s
(x

)
size of problem, x

1st Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 14 / 25

Dynamically Built Models

Experimental Results: FPM based Partitioning

0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

1611 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b
s
o
lu

te
 s

p
e
e
d
,
s
(x

)
size of problem, x

2nd Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 14 / 25

Dynamically Built Models

Experimental Results: FPM based Partitioning

0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

1611 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b
s
o
lu

te
 s

p
e
e
d
,
s
(x

)
size of problem, x

3rd Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 14 / 25

Dynamically Built Models

Experimental Results: FPM based Partitioning

0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

1611 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b
s
o
lu

te
 s

p
e
e
d
,
s
(x

)
size of problem, x

4th Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 14 / 25

Dynamically Built Models

Experimental Results: FPM based Partitioning

0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

1611 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b
s
o
lu

te
 s

p
e
e
d
,
s
(x

)
size of problem, x

5th Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 14 / 25

Dynamically Built Models

Experimental Results: FPM based Partitioning

0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

1611 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b
s
o
lu

te
 s

p
e
e
d
,
s
(x

)
size of problem, x

6th Iteration

FPM P1
FPM P2

FPM P3
FPM P4

P1
P2

P3
P4

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 14 / 25

Hierarchical Partitioning Algorithm

Target Hierarchical Heterogeneous Platform

Heterogeneity between nodes
Heterogeneity between devices within a node
Partition matrix between nodes
Sub-partition between devices within a node
eg. Grid’5000 Grenoble site.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 15 / 25

Hierarchical Partitioning Algorithm

Hierarchical Partitioning Algorithm

Hierarchy in platform→ hierarchy in partitioning
Nested parallelism
inter-node partitioning algorithm (INPA)
inter-device partitioning algorithm (IDPA)
IDPA is nested inside INPA

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 16 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Node Models Device Models for Node i

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 17 / 25

Hierarchical Partitioning Algorithm

Experimental Results: Reference full models

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

S
p
e
e
d
 (

G
F

L
O

P
S

)

Problem Size wi (b × b blocks updated)

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 18 / 25

Hierarchical Partitioning Algorithm

Experimental Results

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160

S
p
e
e
d
 (

T
e
ra

 F
L
O

P
S

)

Matrix size N (× 10
3
)

FPM Partitioining
Multiple-CPM Partitioing

Single-CPM Partitioing
Homogeneous Partitioing

90 nodes, 432 CPUs, 12 GPUs from Grid5000 Grenoble site

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 19 / 25

Current Work: Two-Dimensional Partitioning

Current Work: Two-Dimensional Partitioning

Two-Dimensional Matrix Partitioning Based on 2D Models

Numerical solution
3-step column based
algorithm

Both algorithms use column
based partitioning.
Arrangement of processors
into a 2D grid is an input.

hcl16 (384MB RAM)
hcl13 (1024MB RAM)

 0

 100

 200

 300

 400

 500

 600

 700

 800

m 0
 100

 200
 300

 400
 500

 600
 700

 800n

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

S
p
e
e
d
 (

G
F

L
O

P
S

)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 20 / 25

Current Work: Two-Dimensional Partitioning

Numerical 2D partitioning algorithm

Solve as a constrained non-linear minimisation problem

Function to be minimised:∑q
j=1
∑pj

i=1 tij

with q + 1 constraints:
n1 + n2 + . . .+ nq = N
m1j + m2j + . . .+ mpj = M, for 1 ≤ j ≤ q

Implemented with the NLopt library.
However, convergence and reliability issues still need to be solved
Possibly posing the minimisation function and constraints
differently will aid convergence.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 21 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

P2

P1

P3

P5

P4

P6

P8

P7

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

c

P2

P1

P3

P5

P4

P6

P8

P7

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

hcl16 (384MB RAM)
hcl13 (1024MB RAM)

 0

 2000

 4000

 6000

 8000

 10000

 12000

m 0
 2000

 4000
 6000

 8000
 10000

 12000n

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

S
p
e
e
d
 (

G
F

L
O

P
S

)

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

s (m, c)
6

s (m, c)
5

s (m, c)
4

m, for n = c

Speed of

processors

in column

c

Speed of

column

s (c)
col2

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

s (m, c)
6

s (m, c)
5

s (m, c)
4

m, for n = c

Speed of

processors

in column

c

Speed of

column

s (c)
col2

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

c
2

c
1

c
3

P2

P1

P3

P5

P4

P6

P8

P7

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Current Work: Two-Dimensional Partitioning

3-step column based algorithm

1 Extract 1D model from 2D with
n = c for 1 ≤ c ≤ N.
Partition to find optimum time,
add point scol(c) to model.

2 Use 1D partitioning find
optimum column widths.

3 Find optimum heights for each
processor within the columns.

c
2

c
1

c
3

m
5

P2

P1

P3

P5

P4

P6

P8

P7

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 22 / 25

Conclusion

Applications
Signal Processing Systems group, INESC-ID, Lisbon, Portugal

Using FPMs to partition database requests on heterogeneous
platform.
Extended FPMs to overlap communications, ×4 speedup for FFT.

Division of Scientific Computing, Uppsala University, Sweden
Upcoming collaboration to load balance multiphase flow
simulations.

Experimental Platforms
Grid’5000, 10 sites, 1260 nodes, France
HCL Cluster, local 16 node experimental cluster.
SiPS Cluster, 4 node CPU+GPU, Lisbon, Portugal

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 23 / 25

Conclusion

Software

FuPerMod
FuPerMod package developed at HCL
Based on system and mathematical software: C/C++, MPI,
Autotools, GNU Scientific Library, Boost C++ libraries, BLAS,
CUDA Toolkit
Contains all presented algorithms.
Designed for easy integration with existing heterogeneous
applications.

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 24 / 25

Conclusion

Publications

Lastovetsky, A., and R. Reddy, “Distributed Data Partitioning for Heterogeneous Processors Based on Partial
Estimation of their Functional Performance Models”, HeteroPar’2009, Delft, Netherlands, LNCS, vol. 6043, Springer,
pp. 91-101, 2010.

Lastovetsky, A., and R. Reddy, “Two-dimensional Matrix Partitioning for Parallel Computing on Heterogeneous
Processors Based on their Functional Performance Models”, HeteroPar’2009, Delft, Netherlands, LNCS, vol. 6043,
Springer, pp. 112-121, 2010.

Clarke, D., A. Lastovetsky, and V. Rychkov, “Dynamic Load Balancing of Parallel Computational Iterative Routines
on Platforms with Memory Heterogeneity”, Europar 2010 / Heteropar’2010, Ischia-Naples, Italy, LNCS 6586, Springer,
pp. 41-50, 2011.

Clarke, D., A. Lastovetsky, and V. Rychkov, “Dynamic Load Balancing of Parallel Computational Iterative Routines
on Highly Heterogeneous HPC Platforms”, PPL, vol. 21, issue 2: World Scientific, pp. 195-217, 06/2011.

Rychkov, V., D. Clarke, and A. Lastovetsky, “Using Multidimensional Solvers for Optimal Data Partitioning on
Dedicated Heterogeneous HPC Platforms ”, PaCT-2011, LNCS 6873, Kazan, Russia, Springer, pp. 332-346,
19/09/2011.

Lastovetsky, A., R. Reddy, V. Rychkov, and D. Clarke, ”Design and implementation of self-adaptable parallel
algorithms for scientific computing on highly heterogeneous HPC platforms”, PARCO (under review).

Clarke, D., A. Lastovetsky, and V. Rychkov, “Column-Based Matrix Partitioning for Parallel Matrix Multiplication on
Heterogeneous Processors Based on Functional Performance Models”, HeteroPar’2011 , Bordeaux, France, LNCS
7155, Springer, pp. 450-459, 2012.

Clarke, D., A. Ilic, A. Lastovetsky, L. Sousa, “Hierarchical Partitioning Algorithm for Scientific Computing on Highly
Heterogeneous CPU + GPU Clusters” EuroPar’2012 (under review).

David Clarke (HCL/UCD) Functional Performance Models May 11, 2012 25 / 25

	Background
	Functional Performance Model Partitioning
	Dynamically Built Models
	Hierarchical Partitioning Algorithm
	Current Work: Two-Dimensional Partitioning
	Conclusion

