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Abstract—Performance and energy are now the most dominant objectives for optimization on modern parallel platforms composed of
multicore CPU nodes. The existing intra-node and inter-node optimization methods employ a large set of decision variables but do not
consider problem size as a decision variable and assume a linear relationship between performance and problem size and between
energy consumption and problem size. We demonstrate using experiments of real-life data-parallel applications on modern multicore
CPUs that these relationships have complex (non-linear and even non-convex) properties and, therefore, that the problem size has
become an important decision variable that can no longer be ignored. This key finding motivates our work in this paper.
In this paper, we first formulate the bi-objective optimization problem for performance and energy (BOPPE) for data-parallel
applications on homogeneous clusters of modern multicore CPUs. It contains only one but heretofore unconsidered decision variable,
the problem size. We then present an efficient and exact global optimization algorithm called ALEPH that solves the BOPPE. It takes
as inputs, discrete functions of performance and dynamic energy consumption against problem size and outputs the globally
Pareto-optimal set of solutions. The solutions are the workload distributions, which achieve inter-node optimization of data-parallel
applications for performance and energy. While existing solvers for BOPPE give only one solution when the problem size and number
of processors are fixed, our algorithm gives a diverse set of globally Pareto-optimal solutions. The algorithm has time complexity of
O(m2 × p2) where m is the number of points in the discrete speed/energy function and p is the number of available processors.
We experimentally study the efficiency and scalability of our algorithm for two data parallel applications, matrix multiplication and fast
Fourier transform, on a modern multicore CPU and homogeneous clusters of such CPUs. Based on our experiments, we show that the
average and maximum sizes of the globally Pareto-optimal sets determined by our algorithm are 15 and 34 and 7 and 20 for the two
applications respectively. Comparing with load-balanced workload distribution solution, the average and maximum percentage
improvements in performance and energy respectively demonstrated for the first application are (13%,97%) and (18%,71%). For the
second application, these improvements are (40%,95%) and (22%,127%). Assuming 5% performance degradation from the optimal is
acceptable, the average and maximum improvements in energy consumption demonstrated for the two applications respectively are
9% and 44% and 8% and 20%.
Using the algorithm and its building blocks, we also present a study of interplay between performance and energy. We demonstrate
how ALEPH can be combined with DVFS-based Multi-Objective Optimization (MOP) methods to give a better set of (globally
Pareto-optimal) solutions.

Index Terms—homogeneous multicore CPU clusters, data partitioning, load balancing, performance, energy, bi-objective optimization,
DVFS
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1 INTRODUCTION

Performance and energy are now the most dominant
objectives for optimization on modern parallel platforms
composed of multicore CPUs.

State-of-the-art methods solving the bi-objective opti-
mization problem for performance and energy (BOPPE) can
be broadly classified as follows:

• System-level: Methods that aim to optimize several
objectives of the system or the environment (for
example: clouds, data centers, etc) where the appli-
cations are executed. The leading objectives are per-
formance, energy consumption, cost, and reliability.
A core characteristic of the methods is the use of
application-agnostic models for predicting the per-
formance of applications and energy consumption of
resources in the system.
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• Application-level: Methods focusing mainly on opti-
mization of applications for performance and energy.
These methods use application-level models for pre-
dicting the performance and energy consumption of
applications.

We present below notable works in the System-level cat-
egory. Mezmaz et al. [1] propose a parallel bi-objective ge-
netic algorithm to maximize the performance and minimize
the energy consumption in cloud computing infrastructures.
Fard et al. [2] present a four-objective case study com-
prising performance, economic cost, energy consumption,
and reliability for optimization of scientific workflows in
heterogeneous computing environments. Beloglazov et al.
[3] propose heuristics that consider twin objectives of energy
efficiency and Quality of Service (QoS) for provisioning data
center resources. Kessaci et al. [4] present a multi-objective
genetic algorithm that minimizes the energy consumption,
CO2 emissions, and maximizes the generated profit of a
cloud computing infrastructure. Durillo et al. [5] propose
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a multi-objective workflow scheduling algorithm that max-
imizes performance and minimizes energy consumption of
applications executing in heterogeneous high-performance
parallel and distributed computing systems.

Application-level methods solving BOPPE can be further
categorized as follows:

• Methods targeting intra-node optimization.
• Methods targeting both intra-node and inter-node

optimizations. To the best of our knowledge, there
are no efforts that specifically target inter-node opti-
mization of applications for performance and energy.
We address this shortcoming in the current work.

Before we summarize the notable efforts in each of the
categories, we would like to clearly define the meaning
of the terms “problem size” and “workload size” used in
our work. These two terms are used synonymously in the
literature. The problem size is defined as a set of one, two
or more parameters characterizing the amount and layout
of data stored and processed during the execution of a
computational task [6], [7]. It also represents the size of a
computational task that is allocated to a processor during
the parallel execution of a data-parallel application. It is
the key decision variable in our work. The workload size
is defined as the size of the workload of the data-parallel
application that is executed using one or more processors. It
is a multiple of one or more computational tasks, whose size
is defined to be the problem size. It is not a decision variable
but an application input. Wherever possible, we use “data-
parallel application workload size” to clearly differentiate it
from the problem size.

The methods for intra-node optimization employ several
decision variables (for example, number of threads, DVFS
etc), which model the intra-node performance and energy of
their applications. Since they employ node-level parameters,
their main target is intra-node optimization of applications
for performance and energy. The methods that target both
intra-node and inter-node optimization use a large set of
intra-node and inter-node decision variables (for example,
number of processors, etc.). Along with decision variables,
they consider several parameters such as cost of floating-
point operations, cost of memory operations, latencies and
bandwidths of the communication links, etc., which impact
the performance and energy consumption of their applica-
tions but which have fixed values in their solution methods.
To reduce the complexity of interplay between performance
and energy arising from combined effects of many decision
variables, they consider the influence individually of only
a subset of them. We summarize below works in these
categories.

Freeh et al. [8] propose an intra-node optimization ap-
proach that analyzes the performance-energy trade-offs of
serial and parallel applications on a cluster of DVFS-capable
AMD nodes. In their study, they consider three intra-node
parameters to characterize the performance and energy of
serial and parallel applications. Ishfaq et al. [9] formu-
late a bi-objective optimization problem for power-aware
scheduling of tasks onto heterogeneous and homogeneous
multicore processor architectures. Their solution method
targets intra-node optimization. They consider intra-node
parameters such as DVFS, computational cycles, and core

architecture type. Subramaniam et al. [10] use multi-variable
regression to study the performance-energy trade-offs of the
high-performance LINPACK (HPL) benchmark. They con-
sider three HPL parameters, one intra-node and two inter-
node, to study the bi-objective optimization problem. Song
et al. [11] propose an iso-energy-efficiency model to study
the performance-energy trade-offs. In their model targeted
for both intra-node and inter-node optimizations, they use
twenty-eight parameters to characterize the performance
and energy of applications. Demmel et al. [12] present an
intra-node and inter-node optimization approach that stud-
ies energy savings at the algorithmic level. In their analysis,
they use performance and energy models containing six and
twelve parameters respectively. Choi et al. [13] present an
energy roofline model at the node level based on the time-
based roofline model [14]. Choi et al. [15] extend the roofline
model by adding an extra intra-node parameter, power caps,
to their execution time model. Both works present an intra-
node optimization approach. Drozdowski et al. [16] propose
a concept called an iso-energy map, which represents points
of equal energy consumption in a multi-dimensional space
of system and application parameters. They study three
analytical models, two intra-node and one inter-node. For
the inter-node model, they consider eight parameters. From
all the possible combinations of these parameters, they
study twenty-eight combinations and their corresponding
iso-energy maps. However, one of the key assumptions
in their model is that the energy consumption is constant
and independent of problem size. Marszakowski et al. [17]
analyze the impact of memory hierarchies on performance-
energy trade-off in parallel computations. They study the
effects of twelve intra-node and inter-node parameters on
performance and energy. In their problem formulations,
they represent performance and energy by two linear func-
tions of problem size, one for in-core computations and the
other for out-of-core computations.

To summarize, there are no application-level methods
that specifically target inter-node optimization of applica-
tions for performance and energy. Existing methods do not
consider problem size as a decision variable. They consider
problem size as an application parameter and assume a
linear relationship between performance and problem size
and between energy consumption and problem size. How-
ever, we demonstrate in our motivation section using ex-
periments of real-life data-parallel applications on modern
multicore CPUs that the relationships between performance
and problem size and between energy and problem size
have complex (non-linear and even non-convex) properties.
Therefore, we believe the problem size has become an
important decision variable that can no longer be ignored.

This key finding motivates our work in this paper. We
first formulate the BOPPE for data-parallel applications
on homogeneous clusters of modern multicore CPUs. It
contains only one but heretofore unconsidered decision
variable, the problem size. We then present an efficient
and exact global optimization algorithm called ALEPH that
solves BOPPE. The inputs to the algorithm are: (a). Data-
parallel application workload size, (b). Number of avail-
able processors, (c). Discrete function (functional model)
of performance against problem size, (d). Discrete func-
tion (functional model) of dynamic energy consumption
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against problem size, and (e) User-specified preferences for
performance and energy to select a subset of the glob-
ally Pareto optimal set. Its output is the globally Pareto-
optimal set of solutions, which are the workload distribu-
tions that achieve inter-node optimization of data-parallel
applications for performance and energy. The algorithm has
time complexity of O(m2 × p2) where m is the number of
points in the discrete speed/energy function and p is the
number of available processors. Its building blocks are the
algorithms, called POPTA and EOPTA (brief overviews in
section 9, supplemental). These are proposed in [18] for
single-objective optimization of data-parallel applications
on homogeneous multicore CPU clusters for performance
and energy respectively. While existing solvers for BOPPE
give only one solution when the problem size and number
of processors are fixed, we show that ALEPH gives a diverse
set of globally Pareto-optimal solutions.

Based on our experiments with two data parallel appli-
cations on a modern multicore CPU and simulations on
clusters of such CPUs, we demonstrate the efficiency of
ALEPH. Using the globally Pareto-optimal front determined
by ALEPH and the paths taken by its fundamental building
blocks, POPTA and EOPTA, we study the interplay between
performance and energy. We also demonstrate how ALEPH
can be combined with DVFS-based MOP methods to give a
better set of (globally Pareto-optimal) solutions.

To summarize, our main contributions in this paper are:

• Illustration of the new challenges introduced to bi-
objective optimization problem for data-parallel ap-
plications on homogeneous multicore CPU clusters
for performance and energy (BOPPE) by the brand
new complexities of resource contention and NUMA
present in modern multicore CPUs. We demonstrate
why problem size has now become an important
decision variable that can not be ignored.

• First application-level bi-objective optimization
study for data-parallel applications on homogeneous
multicore CPU clusters for performance and energy
that is not based on DVFS but based on a single
decision variable, problem size.

• An efficient and exact global optimization algorithm,
ALEPH, for solving BOPPE that specifically targets
inter-node optimization of data-parallel applications
for performance and energy. Unlike existing solvers,
which assume linear relationship between perfor-
mance and problem size and energy and prob-
lem size, ALEPH takes as inputs, discrete functions
of performance and dynamic energy consumption
against problem size. We show that these functions
realistically represent the performance and energy
profiles of data-parallel applications on modern mul-
ticore CPUs. We show that ALEPH gives a diverse set
of globally Pareto-optimal solutions whereas existing
solvers give only one solution when the problem
size and number of processors are fixed. We also
show that ALEPH can be combined with DVFS-based
MOP methods to give a better set of (globally Pareto-
optimal) solutions.

• We demonstrate how the Pareto-optimal front (de-
termined by ALEPH) and paths of optimization al-

gorithms for performance and energy (POPTA and
EOPTA) can be used together to analyze the interplay
between performance and energy.

The rest of the paper is organized as follows. Section
2 presents the challenges posed to solve BOPPE by the
inherent complexities in modern multicore CPUs. Section
3 presents related work on bi-objective optimization prob-
lems for parallel platforms. Section 4 contains theory and
notation of multi-objective optimization and the concept of
optimality. We then formulate the bi-objective optimization
of data-parallel applications on homogeneous clusters of
multicore CPU nodes for performance and energy and ana-
lyze classical methods to solve the problem. We discuss why
the state-of-the-art solvers are inadequate for direct solution
of the bi-objective optimization problem. Section 5 presents
ALEPH, an efficient exact global optimization algorithm
solving BOPPE. Section 6 contains experimental analysis of
the algorithm and study of interplay between performance
and energy using ALEPH and its building blocks, POPTA
and EOPTA. Section 7 concludes the paper.

2 MOTIVATION: PERFORMANCE AND ENERGY
OF DATA-PARALLEL APPLICATIONS ON HOMOGE-
NEOUS CLUSTERS OF MULTICORE CPUS

In this section, we present the dramatic changes observed in
performance and energy profiles of real-life scientific data-
parallel applications executing on parallel platforms with
multicore CPUs compared to parallel platforms composed
of uniprocessors. Using this presentation, we specifically
highlight the challenges posed to solving BOPPE by the
new complexities in modern multicore CPUs. At the same
time, we demonstrate why problem size has now become
an important decision variable that can not be ignored.

In parallel platforms with uniprocessors, the perfor-
mance and energy profiles of real-life scientific data-parallel
applications were smooth and exhibited certain proper-
ties, which essentially rendered the bi-objective optimiza-
tion problem of performance and energy (BOPPE) mono-
objective in the sense that optimizing for performance also
optimized for energy. This meant that users had to use
hardware-level intra-node parameters such as DVFS to
tackle BOPPE where they reported noteworthy improve-
ments in energy consumption while causing minimal degra-
dation of performance.

However, due to new formidable challenges imposed
by the inherent complexities in modern multicore CPUs,
BOPPE has become very difficult to solve. This is because
the cores in a modern multicore CPU are very tightly inte-
grated and arranged in a highly hierarchical fashion. Due to
this tight integration, they contend for various shared on-
chip resources such as Last Level Cache (LLC) and intercon-
nect (For example: Intel’s Quick Path Interconnect, AMD’s
Hyper Transport), thereby causing severe resource con-
tention and non-uniform memory access (NUMA). These
inherent complexities have posed the new challenges to
solve BOPPE.

To elucidate these challenges, we compare the typical
shapes of real-life scientific data-parallel applications on
platforms consisting of uniprocessors and modern multicore
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TABLE 1
Specification of the Intel Haswell workstation used to build the

uniprocessor speed and energy models.

Technical Specifications Intel Haswell i5-4590
Processor Intel(R) Core(TM) i5-4590 3.3 GHz

Microarchitecture Haswell
Memory 8 GB
Socket(s) 1

Core(s) per socket 4
L1d cache, L11 cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 6144 KB
TDP, Base Power 84 W, 22.3 W

Max Turbo Frequency 3.7 GHz

TABLE 2
Specification of the Intel Haswell server used to build the speed and
energy functions for multithreaded OpenBLAS DGEMM and FFTW

applications.

Technical Specifications Intel Haswell Server
Processor Intel E5-2670 v3 @ 2.30GHz

OS CentOS 7
Microarchitecture Haswell

Memory 64 GB
Socket(s) 2

Core(s) per socket 12
NUMA node(s) 2

L1d cache, L11 cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
TDP, Base Power 240 W, 58 W

(a)

(b)

Fig. 1. (a). Speed function of OpenBLAS DGEMM application executed
on a single core on the Intel Haswell workstation. (b). Dynamic energy
consumption of OpenBLAS DGEMM application executed on a single
core on the Intel Haswell workstation.

(a)

(b)

Fig. 2. (a). Speed function of OpenBLAS DGEMM application executed
on a single core on the Intel Haswell server. (b). Dynamic energy
consumption of OpenBLAS DGEMM application executed on a single
core on the Intel Haswell server.

CPUs. For this purpose, we select two widely known and
highly optimized scientific routines, OpenBLAS DGEMM
[19] and FFTW [20].

Consider the profiles of the speed and dynamic energy
consumption functions of the OpenBLAS DGEMM applica-
tion built experimentally by executing it on a single core of
an Intel Haswell workstation (specification shown in Table
1). The application multiplies two square matrices of size
n×n (problem size is equal to n2). In these experiments, the
numactl tool is used to bind the application to one core. The
dynamic energy consumptions are obtained using Watts Up
Pro power meter. We must mention that there are two types
of energy consumptions, dynamic energy and static energy.
We define the static energy consumption as the energy
consumption of the platform without the application execu-
tion. The static energy consumption of the platform during
the application execution is calculated by multiplying the
idle power (static power) of the platform by the execution
time of the application. Dynamic energy consumption is
calculated by subtracting this static energy consumption
from the total energy consumption of the platform during
the application execution measured using the Watts Up
Pro. In this work, we consider only the dynamic energy
consumption due to several reasons, which are explained
in Section 2 of the supplemental. However, we would like
to mention that static power consumption can be easily
incorporated in our problem formulations and algorithms.
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Fig. 1a and 1b respectively show the shapes, whose
properties can be summarized below:

• The functions are smooth.
• The speed function satisfies the following properties:

– Monotonically increasing.
– Concave.
– Any straight line coming through the origin of

the coordinate system intersects the graph of
the function in no more than one point.

• The dynamic energy consumption is a monotonically
increasing convex function of problem size.

Lastovetsky et al. [21], [22], [18] prove that for such shapes,
the solutions determined by the traditional and the state-
of-the-art load-balancing algorithms [23], [7], [6], [24], [25],
simultaneously minimize the execution time and dynamic
energy consumption of computations in the parallel execu-
tion of the application. Fig. 2a and 2b respectively show
the shapes of the speed and dynamic energy consumption
functions of the same application built experimentally by
executing it on a single core of an Intel Haswell server
(specification shown in Table 2). It can be seen that while the
shape of the speed function is the same as before, the shape
of the dynamic energy consumption is linear. This implies
that all workload distributions will result in same dynamic
energy consumption and therefore parallelization has no
effect on the dynamic energy consumption of computations
in the parallel execution of the application.

Therefore, on platforms composed of uniprocessors, one
can see that solutions determined by load-balancing algo-
rithms that minimize the execution time either minimized
the energy consumption or did not have any effect on
it. Owing to this, methods solving BOPPE used energy-
efficiency techniques such as DVFS, where the clock fre-
quency of the processor is dynamically adjusted, to deter-
mine any trade-offs between execution time and energy.
The main objective of these methods was to minimize the
energy consumption but at the same time causing minimal
performance degradation.

Now, on modern homogeneous clusters composed of
multicore CPUs, due to the newly introduced complexities
such as resource contention and NUMA, the performance
and energy profiles of real-life scientific applications exe-
cuting on these platforms are not smooth and may devi-
ate significantly from the shapes observed before. This is
illustrated in Fig. 3 and 4, which respectively show the
speed function and dynamic energy consumption graphs
for multi-threaded OpenBLAS DGEMM and FFTW applica-
tions executed with 24 threads on the Intel Haswell server.
The FFTW application performs a 2D FFT of size n× n (the
problem size being n2).

To make sure the experimental results are reliable, we
follow a detailed methodology, which is described in Section
3 in the supplemental. It contains the following main steps:
1). We make sure the server is fully reserved and dedicated
to our experiments and is exhibiting clean and normal
behavior by monitoring its load continuously for a week. 2).
For each data point in the speed and energy functions of an
application, the sample mean is used, which is calculated
by executing the application repeatedly until the sample

(a)

(b)

Fig. 3. (a). Speed function of FFTW executing 24 threads on the Intel
Haswell server. (b). Function of dynamic energy consumption against
problem size for FFTW executing 24 threads on the Intel Haswell server.

mean lies in the 95% confidence interval and a precision of
0.025 (2.5%) has been achieved. For this purpose, Student’s
t-test is used assuming that the individual observations
are independent and their population follows the normal
distribution. We verify the validity of these assumptions by
plotting the distributions of observations.

Therefore, the variation observed is not noise but is an
inherent trait of applications executing on multicore servers
with resource contention and NUMA. Other interesting
properties about the variations are discussed in [18] and
summarized below:

• They can be quite large. This is evident from the
speed and energy functions shown in Fig. 3a and 3b
respectively. From the speed function plot, one can
observe performance drops of around 70% for many
problem sizes.

• The variations presented in the paper cannot be
explained by the constant and stochastic fluctuations
due to OS activity or a workload executing in a
node in common networks of computers. In such
networks, a node is persistently performing minor
routine computations and communications by being
an integral part of the network. Examples of such
routine applications include e-mail clients, browsers,
text editors, audio applications, etc. As a result, the
node will experience constant and stochastic fluctu-
ations in the workload. This changing transient load
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(a)

(b)

Fig. 4. (a). Speed function of OpenBLAS DGEMM executing 24 threads
on the Intel Haswell server. (b). Function of dynamic energy consump-
tion against problem size for OpenBLAS DGEMM executing 24 threads
on the Intel Haswell server.

will cause a fluctuation in the speed of the node in
the sense that the speed will vary for different runs
of the same workload. One way to represent these
inherent fluctuations in the speed is to use a speed
band rather than a speed function. The width of
the band characterizes the level of fluctuation in the
speed due to changes in load over time [23], [7], [6].
For a node with uniprocessors, the width of the band
has been shown to decrease as the problem size in-
creases. For a node with a very high level of network
integration, typical widths of the speed bands were
observed to be around 40% for small problem sizes
and narrowing down to 3% for large problem sizes.
Therefore, as the problem size increases, the width
of the speed band is observed to decrease. Therefore,
for long running applications, one would observe the
width to become quite narrow (3%). However, this is
not the case for variations in the presented graphs.
The dynamic energy consumption in Fig. 3b and 4b
(for the number of threads equal to 24) show the
widths of the variations increasing as problem size
increases. These widths reach a maximum of 125%
and 70% respectively for large problem sizes. The
speed functions in Fig. 3a and 4a (for the number of
threads equal to 24) demonstrate that the widths are
bounded with the averages around 60% and 17% re-
spectively. This suggests therefore that the variation

is largely due to the newly introduced complexities
and not due to the fluctuations arising from changing
transient load.

Although we use two standard scientific kernels to il-
lustrate the drastic variations in performance and energy
profiles, these variations have been the central research fo-
cus in [21], [22] where the authors study them for a real-life
scientific application, Multidimensional Positive Definite
Advection Transport Algorithm (MPDATA). MPDATA is a
core component of the EULAG (Eulerian/semi-Lagrangian
fluid solver) geophysical model [26], which is an established
computational model developed for simulating thermo-
fluid flows across a wide range of scales and physical
scenarios.

Therefore, these variations are not singular and will
become natural because chip manufacturers are increasingly
favoring and thereby rapidly progressing towards tighter
integration of processor cores, memory, and interconnect in
their products.

It is these variations that have now made the BOPPE
difficult to solve. To demonstrate why this is the case, we
zoom into the energy function of the OpenBLAS DGEMM
application to analyze its properties. The speed functions
also exhibit these properties. Figure 5 shows the energy
function between two arbitrarily chosen points A and B.
Assume, for the sake of simplicity, that we are allowed to
use only this partial energy function in our algorithms.

• One can observe that the energy function is char-
acterized by many local minima (Q1, Q2, ...) and
many local maxima (P1, P2, ...). There is one global
maximum P and one global minimum Q.

• The function (feasible region) is non-linear and non-
convex.

• The function is not differentiable. It lacks first-order
and second-order derivatives. Hence, solvers that
rely on the existence of derivatives for efficient search
cannot be directly used. There are two approaches to
deal with this problem. One is to estimate first-order
derivatives by finite-differences and in the other,
solvers must choose search directions purely based
on functional values. One popular approach is to
use Nelder-Mead algorithm [27], which is however
designed to solve the classical unconstrained opti-
mization problem without derivatives.

We describe in the supplemental (section 6) why state-of-
the-art optimization softwares are not directly amenable to
tackle optimization problems where objective functions (in
this case, execution time and energy) exhibit such complex
properties.

To summarize, the new inherent complexities introduced
in modern multicore CPUs have made the BOPPE difficult
to solve. We also show that problem size has become an
important decision variable.

3 RELATED WORK

In this section, we survey the state-of-the-art solution meth-
ods solving BOPPE.
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Fig. 5. Zoomed energy function of OpenBLAS DGEMM application be-
tween two arbitrarily chosen points A and B. The points are connected
by dashed lines for clarity.

3.1 System-level Methods

In this section, we present system-level solution methods
for solving BOPPE. These are methods that aim to optimize
several objectives of the system or the environment (for ex-
ample: clouds, data centers, etc) where the applications are
executed. We will focus on works that consider performance
and energy consumption as two prominent objectives. All
these methods propose heuristics. Our summary of each
work contains the parameters and decision variables that
are used in it and the relationships between the objectives
and parameters (and decision variables).

Mezmaz et al. [1] propose a parallel bi-objective genetic
algorithm to maximize the performance and minimize the
energy consumption in cloud computing infrastructures.
The parameters used in their method are the computation
cost of a task (w) and the communication costs between two
tasks. The decision variable is the supply voltage (V ) of the
processor. Energy consumption of computations is modeled
as a function of V 2 × w.

Fard et al. [2] present a four-objective case study com-
prising performance, economic cost, energy consumption,
and reliability for optimization of scientific workflows in
heterogeneous computing environments. The parameters
are the computation speeds of the processors and the band-
widths of the communication links connecting a pair of
processors. The decision variable is the task assignment
or mapping. The energy consumption of computations is
modeled as cube-root of clock frequency.

Beloglazov et al. [3] propose heuristics that consider
twin objectives of energy efficiency and Quality of Service
(QoS) for provisioning data center resources. The decision

variables are the number of VMs and clock frequencies. The
energy consumption is modeled as a linear function of CPU
utilization.

Kessaci et al. [4] present a multi-objective genetic algo-
rithm that minimizes the energy consumption, CO2 emis-
sions and maximizes the generated profit of a cloud com-
puting infrastructure. The parameters are the execution time
of an application, the number of processors used in the exe-
cution of an application, and the deadline for completion of
the application. The decision variable is the arrival rate. The
energy consumption is calculated as a product of execution
time and power consumption, which is modeled using the
formula α× f3 + β, where f is the clock frequency.

Durillo et al. [5] propose a multi-objective workflow
scheduling algorithm that maximizes performance and min-
imizes energy consumption of applications executing in
heterogeneous high-performance parallel and distributed
computing systems. A machine is characterized using nine
parameters (from technology(nm) to TDP). They study the
impact of different decision variables: number of tasks,
number of machines, DVFS levels, static energy, and types
of tasks. The execution time and energy consumption are
predicted using neural networks.

Kolodziej et al. [28] propose multi-objective genetic al-
gorithms that aim to maximize performance and energy
consumption of applications executing in green grid clusters
and clouds. The performance is modeled using computation
speed of a processor. The decision variable is the DVFS
level. Energy consumption is modeled using the equation,
γ × V 2 × f × te, where γ is a constant for a processor, V
is the supply voltage, f is the clock frequency, and te is the
estimated completion time.

3.2 Application-level Methods
In this section, we present application-level solution meth-
ods for solving BOPPE for parallel platforms. We focus
exclusively on three aspects of each method: a). Type of op-
timization achieved, b). Parameters and decision variables
used, and c). The relationship of performance and energy
consumption with the parameters and decision variables.

It should be noted the surveyed efforts do not consider
problem size as a decision variable. In our work, we propose
an efficient inter-node optimization method that is based
purely on one decision variable, the problem size.

3.2.1 Intra-node Methods
Freeh et al. [8] is an intra-node optimization method that
analyzes the performance-energy trade-offs of serial and
parallel applications on a cluster of DVFS-capable AMD
nodes. They use three parameters in their study: β, which
compares the application slowdown to the CPU slowdown,
memory pressure, which is determined using hardware per-
formance counters such as memory of operations retired
and L2 cache misses, and slack, which predicts communi-
cation bottlenecks.

Ishfaq et al. [9] formulate a bi-objective optimization
problem of power-aware scheduling of tasks onto heteroge-
neous and homogeneous multicore processor architectures.
The twin objectives in their problem formulation are mini-
mization of energy consumption and the makespan of com-
putationally intensive scientific problems. Their approach
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aims to achieve intra-node optimization by considering
node-level parameters such as DVFS, computational cycles,
and core architecture type in their optimization problem.
They mention a solution that combines a classical game-
theoretic approach and Karush-Kuhn-Tucker (KKT) condi-
tions to simultaneously optimize both the objectives.

Choi et al. [13] present an energy roofline model based
on the time-based roofline model [14]. Choi et al. [15] extend
the roofline model by adding an extra parameter, power caps,
to their execution time model. These two works [13], [15]
present an intra-node optimization approach to study the
performance-energy trade-offs.

Balaprakash et al. [29] is an intra-node optimization
approach that explores trade-offs among power, energy, and
performance using various application-level tuning param-
eters such as number of threads and hardware parameters
such as DVFS.

3.2.2 Intra-node and Inter-node Methods
Subramaniam et al. [10] use multi-variable regression
to study the performance-energy trade-offs of the high-
performance LINPACK (HPL) benchmark. Their model con-
tains four parameters: N , the problem size, NB, the block
size, P,Q, the rows and columns respectively of the process
grid. If the problem size and number of processors are
fixed, their approach gives a single solution whereas our
algorithm gives a diverse set of globally Pareto-optimal
solutions. They study performance-energy tradeoffs using
the following decision variables separately: a). Threads, b).
Number of nodes, and c). DVFS levels.

Song et al. [11] propose an iso-energy-efficiency model
to quantify the improvements in energy consumption of
parallel applications. It is based on lines similar to perfor-
mance iso-efficiency function. The energy improvement (of
parallel over sequential application) is studied using pairs
of decision variables: level of parallelism, clock frequency,
and problem size.

Demmel et al. [12] present an intra-node and inter-node
optimization approach that studies energy savings at the
algorithmic level. They prove that a region of perfect strong
scaling in energy exists for matrix multiplication (classical
and Strassen) and the direct (O(n2)) n-body problem. This
means that for a given problem size n, the energy con-
sumption remains constant as the number of processors p
increases and the runtime decreases proportionally to p. The
performance is modeled as a linear function of parameters
representing costs of computations and communications.
The energy consumption is modeled as a linear function
of parameters representing costs of computations, commu-
nications, and leakage (static power).

Drozdowski et al. [16] propose a concept called an
iso-energy map, which represent points of equal energy
consumption in a multi-dimensional space of system and
application parameters. They use iso-energy maps to study
performance-energy trade-offs. They present iso-energy
maps for three models of parallel computations, Amdahl’s
law, Gustafson’s law, and divisible loads representing data-
parallel computations in distributed systems. For the mod-
els for Amdahl’s law and Gustafson’s law, three intra-node
parameters are used: f , the size of the parallel portion of
the application, m, the number of processors in the system,

and k, which represents the ratio of powers in active and
idle states. They do not consider problem size as a decision
variable. One of the key assumptions in their model is that
the energy consumption is constant and independent of
problem size. This they confirm to be true for the appli-
cations and the platform used in their experiments.

Marszakowski et al. [17] analyze the impact of memory
hierarchies on time-energy trade-off in parallel computa-
tions, which are represented as divisible loads. They rep-
resent execution time and energy by two linear functions
on problem size, one for in-core computations and the other
for out-of-core computations. They use this formalization
in their bi-objective optimization problem of minimizing
time and energy in parallel processing of divisible loads.
Due to large parameter space, they restrict their study of
performance-energy trade-offs where they just have one pa-
rameter, the number of processors (all the other parameters
have fixed values).

The works presented in this section do not consider
problem size as a decision variable. In our work, we con-
sider only one decision variable, the problem size, and
the performance and dynamic energy consumption are
represented by highly non-linear non-convex functions of
problem size. We show using experiments on a modern
multicore CPU that these functions are highly non-linear
and non-convex and cannot be represented by piece-wise
linear functions.

4 BI-OBJECTIVE OPTIMIZATION FOR PERFOR-
MANCE AND ENERGY ON HOMOGENEOUS MULTI-
CORE CLUSTERS: PROBLEM FORMULATION

In this section, we present the theory of multi-objective op-
timization and the concept of optimality. We then formulate
the bi-objective optimization of data-parallel applications
on homogeneous multicore clusters for performance and
energy.

4.1 Multi-Objective Optimization (MOP): Background

A multi-objective optimization (MOP) problem may be de-
fined as follows [30], [31]:

minimize {F(x) = (f1(x), ..., fk(x))}
Subject to x ∈ S

where there are k(≥ 2) objective functions fi : Rp → R.
The objective is to minimize all the objective functions
simultaneously.
F(x) = (f1(x), ..., fk(x))T denotes the vector of ob-

jective functions. The decision (variable) vectors x =
(x1, ..., xp) belong to the (non-empty) feasible region (set)
S , which is a subset of the decision variable space Rp.
We call the image of the feasible region represented by Z
(= f(S)), the feasible objective region. It is a subset of the
objective space Rk. The elements of Z are called objective
(function) vectors or criterion vectors and denoted by F(x)
or z = (z1, ..., zk)T , where zi = fi(x),∀i ∈ [1, k] are
objective (function) values or criterion values.
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If there is no conflict between the objective functions,
then a solution x∗ can be found where every objective
function attains its optimum [31].

∀x ∈ S, fi(x∗) ≤ fi(x), i = 1, ..., k

However, in real-life multi-objective optimization problems,
the objective functions are at least partly conflicting. Because
of this conflicting nature of objective functions, it is not
possible to find a single solution that would be optimal
for all the objectives simultaneously. In multi-objective opti-
mization, there is no natural ordering in the objective space
because it is only partially ordered. Therefore we must treat
the concept of optimality differently from single-objective
optimization problem. The generally used concept is Pareto-
optimality.

Definition 1. A decision vector x∗ ∈ S is Pareto-optimal if
there does not exist another decision vector x ∈ S such that
fi(x) ≤ fi(x

∗),∀i = 1, ..., k and fj(x) < fj(x)∗ for at least
one index j [30].

An objective vector z∗ ∈ Z is Pareto-optimal if there
does not exist another objective vector z ∈ Z such that zi ≤
z∗i ,∀i = 1, ..., k and zj < z∗j for at least one index j.

Definition 2. A decision vector x∗ ∈ S is weakly Pareto-optimal
if there does not exist another decision vector x ∈ S such that
fi(x) < fi(x

∗),∀i = 1, ..., k [30].

An objective vector z∗ ∈ Z is Pareto-optimal if there
does not exist any other vector for which all the component
objective vector values are better.

Definition 3. A decision vector x∗ ∈ S is properly Pareto-
optimal if it is Pareto-optimal and if there is a real number M > 0
such that for each fi and each x∗ ∈ S satisfying fi(x) < fi(x

∗),
there exists at least one fj such that fj(x∗) < fj(x) and
fi(x

∗)−fi(x)
fj(x)−fj(x∗) ≤M [30].

An objective vector z∗ ∈ Z is properly Pareto-optimal if
the decision vector corresponding to it is properly Pareto-
optimal. A solution is properly Pareto-optimal if there is at
least one pair of objectives for which a finite decrement in
one objective is possible only at the expense of some reason-
able increment in the other objective. Essentially speaking,
unbounded trade-offs are not allowed between objectives in
properly Pareto-optimal set of solutions [30].

Mathematically speaking, every Pareto-optimal point is
an equally acceptable solution of the multi-objective opti-
mization problem. Therefore, user preference relations (or
preferences of decision maker) are provided as input to the
solution process to select one or more points from the set of
Pareto-optimal solutions [30].

In Figure 6, a feasible region S ⊂ R3 and its image, a
feasible objective region Z ⊂ R2 , are shown. The thick blue
line in the figure showing the objective space contains all
the Pareto-optimal objective vectors. The vector z∗ is one of
them.

4.2 Bi-Objective Optimization for Performance and En-
ergy on Homogeneous Multicore Clusters (BOPPE):
Problem Formulation
Consider a data-parallel application workload of size n
executed using p available identical processors where the

Fig. 6. An example showing the set S of decision variable vectors, the
set Z of objective vectors, and Pareto-optimal objective vectors.

speed function of a processor executing a problem size x
is represented by s(x) and the dynamic energy consump-
tion of the execution of a problem size x by a processor
is represented by e(x). Then the bi-objective optimization
problem for minimization of execution time (maximization
of performance) and minimization of total dynamic energy
of computations during the execution of the workload can
be formulated as follows:

BOPPE(n, p, s, e, q) :

minimize { q
max
i=1

xi
s(xi)

,

q∑
i=1

e(xi)}

Subject to x1 + x2 + ...+ xq = n

xi ≥ 0 i = 1, ..., q

xi ≤ n i = 1, ..., q

1 ≤ q ≤ p
where p, q, n, xi ∈ Z>0,

s(x), e(x) ∈ R>0

The output of a solution method solving BOPPE is a set
of Pareto-optimal solutions represented by workload distri-
butions. It is important to note that the optimal number of
processors (q) that are selected in a Pareto-optimal solution
satisfies the constraint, 1 ≤ q ≤ p.

In the supplemental, we present several classifications
for methods solving bi-objective optimization problems. We
show the formulations of BOPPE in some of the methods.
We also discuss why the state-of-the-art solvers are inade-
quate for direct solution of BOPPE.

5 ALEPH: EFFICIENT ALGORITHM FOR SOLVING
BOPPE
In this section, we present an efficient algorithm solving
BOPPE called ALEPH, which stands for ALgorithm for
Bi-Objective Optimization for Energy and Performance on
Homogeneous Multicore Clusters. The problem can be de-
scribed as follows: Let p identical processors be used to
execute the data-parallel application workload of size n. Let
s(x) be the speed of execution of the workload of size x by
a processor. Let e(x) be the dynamic energy consumption of
execution of the workload of size x by a processor. Let ∆x
be the minimum granularity of workload so that each pro-
cessor is allocated a multiple of ∆x only. The speed function
of a processor, s(x), and the energy function of a processor,
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e(x), are represented by a discrete set of experimental points
separated by ∆x. The problem is to find the set of globally
Pareto-optimal solutions for performance and energy.

The inputs to the algorithm are data-parallel application
workload size n given as multiple of ∆x, the number of
processors p, the speed function represented by two discrete
sets, X and S respectively containing problem sizes and
speeds, the dynamic energy function represented by two
discrete sets, X and E respectively containing problem sizes
and dynamic energy consumptions, and the user preference,
U , which specifies the tolerance (in fractional values of
optimal) for either performance or energy. The user pref-
erence parameter, U , has two sub-parameters (Obj, δ). If
Obj = TIME, then the output set of globally Pareto-
optimal solutions have execution times that do not exceed
(1 + δ) × topt where topt represents the optimal execution
time. This signifies the case where 100 × δ percent per-
formance degradation is acceptable. If Obj = ENERGY ,
then the output set of globally Pareto-optimal solutions
have dynamic energy consumptions that do not exceed
(1 + δ) × eopt where eopt represents the optimal dynamic
energy consumption. This signifies the case where 100 × δ
percent increase in energy consumption is acceptable.

The outputs from the algorithm are the set of glob-
ally Pareto-optimal solutions for performance and energy,
Ppareto, and the corresponding workload distributions,
Dpareto.

The core of ALEPH contains two invocations to the
algorithm, ALSOO (Algorithm 2). The algorithm ALSOO is
used to determine the optimal workload distribution solv-
ing single objective optimization problem of performance or
energy.

Algorithm 1 Algorithm determining globally Pareto-
optimal solutions for performance and energy of compu-
tations in the parallel execution of workload of size n.
1: procedure ALEPH(n, p,∆x,X ,S, E,U)

Input:
Data-parallel application workload size, n ∈ Z>0

Number of processors, p ∈ Z>0

X = {x1, ..., xm}, x1 < ... < xm, xi ∈ Z>0, ∀i ∈ [1,m]
Speed function represented by two sets (X ,S),
S = {s(x1), ..., s(xm)}, s(xi) ∈ R>0,∀i ∈ [1,m]
Energy function represented by two sets (X , E),
E = {e(x1), ..., e(xm)}, e(xi) ∈ R>0, ∀i ∈ [1,m]
User Preference, U = {Obj, δ}, Obj ∈ {TIME,ENERGY }, δ ∈
R>0

Output:
Set of trade-off solutions optimizing performance and energy,
Dpareto = {(xi1)pi=1, ..., (x

i
|Dpareto|

)pi=1)}, xji ∈ Z>0, ∀i ∈
[1, |Dpareto|],∀j ∈ [1, p]
Ppareto = {(t1, e1), ..., (t|Ppareto|, e|Ppareto|)}, ti, ei ∈ R>0

2: ∀I ∈ [n
p
, |X |], J ∈ [1, p],K ∈ [1, p]

3: memoized[I][J ][K]← (I, 0, 0)
4: (Dpareto,Ppareto)←

ALSOO(TIME,n,p,|X |,X ,S,E ,memoized,1)
5: (Dpareto,Ppareto)←

ALSOO(ENERGY ,n,p,|X |,X ,S,E ,memoized,1)
6: if (U = Φ) then
7: return (Dpareto,Ppareto)
8: end if
9: return SELECTTRADEOFFS(U ,Dpareto,Ppareto)

10: end procedure

Algorithm 2 Algorithm determining optimal distribution of
workload of size n for maximizing performance or minimiz-
ing energy.
1: function ALSOO(ObjType, n, p, F,

X ,S, E,memoized, rLevel,Dpareto,Ppareto)
2: if (p = 1) then return ({n}, { n

S[n]
, E[n]}) end if

3: diopt ←
n
p
, ∀i ∈ [1, p]

4: diopt ← diopt + 1, ∀i ∈ [1, n mod p]
5: if ObjType = TIME then

6: fopt ← max
1≤i≤p

(
diopt

S[diopt]
)

7: else
8: fopt ←

∑p
i=1 E[diopt]

9: end if
10: for L← memoized(n

p
, p, n mod p, 1), F do

11: for r ← 1, p− 1 do
12: nr ← X [L]; nl ← n− r × nr

13: if nl < 0 then break end if
14: if ObjType = TIME then
15: fr ← nr

S[nr ]
16: else
17: fr ← r × E[nr]
18: end if
19: if nl = 0 and fr < fopt then
20: di ← nr, ∀i ∈ [1, r]
21: di ← 0, ∀i ∈ [r + 1, p]
22: f ← fr
23: break
24: end if
25: if memoized( nl

p−r
, p− r, n mod p, 1) > L then

26: fl ← memoized( nl
p−r

, p− r, n mod p, 3)

27: if ObjType = TIME then
28: ftmp ← max(fl, fr)
29: else
30: ftmp ← el + er
31: end if
32: if ftmp < fopt then
33: ∀i ∈ [r + 1, p], xi ←
34: memoized( nl

p−r
, p− r, extra, 2)

35: end if
36: else

((xr+1, ..., xp), ftmp,Dpareto,Ppareto)←
ALSOO(ObjType, nl,p− r,L,
X ,S,E ,memoized,rLevel)

37: end if
38: if (rLevel = 1) then
39: UPDATEPARETO(ObjType,

((nr)ri=1, (xi)
p
i=r+1),ftmp,

Dpareto,Ppareto)
40: end if
41: if ftmp < fopt then
42: diopt ← nr,∀i ∈ [1, r]

43: diopt ← xi, ∀i ∈ [r + 1, p]
44: fopt ← ftmp

45: end if
46: end for
47: end for
48: memoized(n

p
, p, n mod p)← (L, dopt, fopt)

49: return (d, f,Dpareto,Ppareto)
50: end function

The ALSOO algorithms for performance and energy
respectively are variants of the POPTA and EOPTA algo-
rithms, which are presented in detail in [18]. Unlike POPTA,
which examines a subset of points in the functional perfor-
mance model (X ,S), and EOPTA, which examines only the
convex points in the energy model (X , E), ALSOO examines
all the points in the performance and energy models, which
is bounded by O(m) where m is the cardinality of the sets
(X ,S ,E).

We present a summary of the operation of the ALSOO
algorithm. It starts from a balanced workload distribution,
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xi = n
p ,∀i ∈ [1, p]. A key optimization in the algorithm is

the 3D array, memoized, of size O(m × p2), which mem-
orizes the points that have already been visited during the
recursive invocations of ALSOO in the invocation of ALEPH.
Briefly speaking, for the execution of the problem size n us-
ing p processors, the array value memoized(n

p , p, n mod p)
contains the ending index of the range of points examined
during the previous invocation, the optimal workload distri-
bution, and the optimal value of the objective function. The
array entry memoized(n

p , p) is of size p where the index
n mod p represents a problem size (np + n mod p) in the
range [np ,

n
p + p]. This memorization ensures that there are

only O(m × p2) recursive invocations of the core kernel
(Algorithm 2) to solve a problem size of n using p processors
where m is the cardinality of the sets (X ,S ,E).

Line 2 of the procedure, ALSOO, deals with the simple
case of solving the problem size n using one processor. The
execution time to solve the problem is n

S[n] and the en-
ergy consumption is E [n] using the functional performance
models and energy models. Lines 3-9 initialize the optimal
workload distribution, dopt, and the optimal value of the
objective function, fopt. ALSOO always starts with evalua-
tion of the workload distribution given by the traditional
load-balancing algorithm, xi = n

p ,∀i ∈ [1, p].
Lines 10-49 contains the kernel of ALSOO. The points

between B = n
p and F = |X | are sequentially examined

(Line 10). For each point A, there are p − 1 main execution
steps in the nested for loop (Line 11). In a main step, each
of the r processors is allocated the problem size nr to the
right of B. If the remaining problem size nl is less than 0,
that means there is excessive allocation to the right of B
and so we break from the loop. This is because subsequent
allocations to the right of B will always result in negative
remaining problem size to the left of B to be solved using
a recursive invocation of ALSOO. If the remaining problem
size nl is equal to 0, then we save this distribution if (fr <
fopt) (Lines 14-24).

Now to solve the problem size nl to the left of B using
p − r processors, we check if the range of points ([ nl

p−r , L])
have already been examined (Line 25). If yes, then they will
not be re-examined due to the memorization and recursive
invocation of ALSOO is avoided. The memorized optimal
objective function value solving the problem size nl to the
left of B using p − r processors is retrieved in fl. If the
combined objective function value (ftmp) is less than fopt,
then we save the memorized workload distribution and
avoid recursion (32-35).

For a main step, if the objective function value of the
parallel execution (ftmp) is lesser than the previously saved
value, fopt, then we save the improved solution (Lines 41-
45). For each problem size nl solved using p− r processors,
the ending index L, which contains the range of points
already examined, is saved (Line 48). So, if an invocation for
solving this problem size recurs, then recursion is avoided
using the memorized arrays (Lines 32-35). Therefore, this
memorization ensures that the total number of points (in-
cluding those in the recursive invocations) for a point in the
interval [np , |X |] is not more than O(m× p2).

The globally Pareto-optimal set of solutions is updated
using the call, UpdatePareto (Lines 38-40). This call is

invoked only when the recursion level is 1. This level
essentially represents the different workload distributions
for workload of size n using p possible combinations of
number of processors.

We would like to mention that the algorithm ALEPH
can be easily extended for the case where the user can
specify input tolerances (δ1, δ2) for performance and energy
respectively and it would determine the set, which has
solutions where the execution times and dynamic energy
consumptions do not exceed (1+δ1)×topt and (1+δ2)×eopt
respectively. This set will also contain the globally Pareto-
optimal set of solutions.

The proof of ALEPH is given in Section 7 of the sup-
plemental. The complexity of ALEPH is O(m2 × p2) and is
presented in Section 8 of the supplemental.

5.1 Application of ALEPH

We summarize below how a user would apply ALEPH:

• The user takes a data-parallel application that has
been optimized for load-balanced execution on a clus-
ter of identical multicore nodes.

• This application is now treated as a black-box and
executed on one node for a range of problem sizes
to construct its speed and energy functions. When
it is executed to obtain an experimental point of
a function, the optimal values of the application
tunables (such as the number of threads) that have
already been determined are used. The goal here is
not to perform multi-parameter optimization where
the user finds the optimal values of these tunables.
It is assumed that this optimization has already been
done and the optimal values of the tunables have al-
ready been determined before this step. So, essentially,
we consider only one decision variable in our optimization
problem, which is the problem size.

• The speed and energy functions are then input
to ALEPH, which determines the globally Pareto-
optimal set of solutions for execution time and the
energy consumption of computations in the parallel
execution of the application.

6 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we analyze the efficiency and scalability
of ALEPH and study the interplay between performance
and energy using two data-parallel applications on a Intel
multicore CPU server containing 24 physical cores.

6.1 Applications and Platform

Our experimental platform is a Intel Haswell server contain-
ing 24 physical cores. Its specification is shown in Table 2.
The two data-parallel applications are OpenBLAS DGEMM
[19] and FFTW [20], [32], which are executed on the multi-
cores composing the Intel Haswell server. The algorithms
ALEPH and its building blocks, POPTA and EOPTA, are
sequential algorithms, which are executed on just one core
of the server. The experiments are a combination of actual
measurements conducted on the server and simulations
for clusters containing replicas of the server. We would
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like to mention that the results from actual experiments
on clusters would be no different from the results of our
simulations. This is because ALEPH does not take into
account the communication overheads. Since the problems
sizes (xi,∀i ∈ [1, p]) in the workload distributions (Pareto-
optimal solutions) are members of the set X in the input
functions that have been built experimentally, the execution
time and energy consumption from actual measurements
can not differ from simulations.

6.2 Speed and Energy Functions

The speed and the energy functions that are input to ALEPH
are experimentally built only once and only for one node
(in this case, the Intel Haswell server). To make sure the
experimental results are reliable, we automated this build
procedure and we follow an experimental methodology,
which is described in detail in Section 3 in the supplemental.
The inputs to the automation API function are the appli-
cation and application parameters (problem size, number
of threads, etc), range of problem sizes, and granularity. To
obtain a data point for each function, the software executes
the application repeatedly until the sample mean lies in the
95% confidence interval and a precision of 0.025 (2.5%) has
been achieved. For this purpose, Students t-test is used.
In the end, the software returns a set of points, which
represents the function. Figures 3a and 3b respectively show
the speed and dynamic energy consumption functions of
FFTW application. Figures 4a and 4b respectively show
the speed and dynamic energy consumption functions of
OpenBLAS DGEMM application. The total dynamic energy
consumption during the application execution is obtained
using Watts Up Pro power meter.

The cardinality of the discrete sets representing the speed
and dynamic energy functions of OpenBLAS DGEMM ap-
plication is 1440. The granularity (∆x) selected for the
OpenBLAS DGEMM application is 1478656 (representing
DGEMM of a 1216 × 1216 matrix). The cardinality of the
discrete sets representing the speed and dynamic energy
functions of FFTW application is 766. The granularity (∆x)
selected for the FFTW application is 1327104 (representing
2D Discrete Fourier Transform of size 1152× 1152). There is
no specific reason why we picked the particular granulari-
ties for OpenBLAS DGEMM and FFTW. Lesser granularity
would unveil larger fluctuations in the functional models
but would also mean more experimental points thereby
increasing the time to build the functional models as well as
the execution times of ALEPH. As the granularity increases,
the functional models become smooth and will resemble
those for uniprocessors therefore disallowing any oppor-
tunity for optimization. The starting point in the speed
and energy functions contains a problem size that is so
selected as to exceed the L2 cache. The last point in the
discrete set X (representing DGEMM of a 46080 × 46080
matrix) for the OpenBLAS DGEMM application contains a
problem size, which occupies the whole main memory. For
the FFTW application, we restrict the number of points be-
cause we observed that very large problem sizes were taking
erroneously large execution times to complete possibly due
to a software limitation. This was unduly lengthening the
experimental building times of the functional models. The

(a)

(b)

Fig. 7. Globally Pareto-optimal set of solutions with maximum sizes
determined by ALEPH for OpenBLAS DGEMM and FFTW applications.
Each curve shown as nX pY represents results for data-parallel appli-
cation workload size given by n (in multiples of granularity) and number
of available processors, p.

last point contains the problem size representing 2D DFT of
size 32768× 32768.

6.3 Experimental Dataset
For all our experiments, we use a dataset constructed as
follows:

1) Select all the problem sizes from the set X .
2) For each problem size x from Step 1, set n

q equal to
x. Then for each n

q , q is iterated from 2 to 1024.
3) Fill the dataset with workloads of size, n = n

q × q,
solved using p processors in the range, [q, 1024].

6.4 Experimental Analysis of ALEPH
In this section, we study the efficiency and scalability of
ALEPH using four sets of experiments.

In the first set, we determine the minimum, average, and
maximum sizes of the globally Pareto-optimal set of solu-
tions determined by ALEPH. For the OpenBLAS DGEMM,
these are 1, 15, and 34 and for the FFTW application, these
are 1, 7, and 20. For workloads where the minimum size of
globally Pareto-optimal set is 1, the solution minimizes both
execution time and dynamic energy consumption. Figure 7
shows graphs for the combinations, (n, p), where the size of
the globally Pareto-optimal set is maximum.

In the second set of experiments, we compare
the improvements provided by the optimal solu-
tions for performance and energy over those result-
ing from using the homogeneous workload distribution.
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The performance improvement is calculated as follows:
Performance Improvement (%) =

thomo−topt
topt

× 100, where
thomo is the execution time obtained using traditional ho-
mogeneous workload distribution (xi = n

p ,∀i ∈ [1, p]) and
topt is the optimal execution time. The percentage energy
reduction is calculated as follows: Energy reduction (%) =
ehomo−eopt

eopt
× 100, where ehomo is the dynamic energy con-

sumption using traditional homogeneous workload distri-
bution and eopt is the optimal dynamic energy consumption.
Negative values of these percentages represent performance
degradation and increase in energy consumption. The av-
erage percentage improvement in performance and energy
is calculated by averaging the percentages obtained from
solving all the workloads in the dataset. The maximum
percentage improvement is calculated by computing the
maximum of all these percentages.

For the OpenBLAS DGEMM application, the average
and maximum percentage improvements in performance
are found to be 13% and 97% respectively. The average
and maximum percentage reductions in energy are 18% and
71% respectively. For the FFTW application, the average
and maximum performance percentage improvements are
found to be 40% and 95% respectively. The average and
maximum percentage reductions in energy are 22% and
127% respectively.

For the third and fourth sets of experiments, we deter-
mine the performance-energy trade-offs. In the third set,
we determine how much performance can be gained by
considered a 5% increase in energy consumption over the
optimal (U = {ENERGY, .05}) to be acceptable. We then
find the average and maximum improvements in perfor-
mance. In the fourth set, we determine how much energy
savings can be obtained by considering 5% performance
degradation over the optimal (U = {TIME, .05}) to be
acceptable. We then find the average and maximum im-
provements in energy consumption. It should be noted that
this 5% represents how far we go from the time-optimal
or energy-optimal endpoints along the Pareto-optimal front
and should not be confused with the width of band of solu-
tions determined by ALEPH (based on input tolerances for
performance and energy). The performance improvement
is calculated as follows: Performance Improvement (%) =
teopt×1.05−teopt

teopt×1.05
× 100, where teopt and teopt×1.05 represent

the execution time associated with energy-optimal endpoint
and execution time associated with 5% increase in energy
consumption over the optimal. The percentage energy re-
duction is calculated as follows: Energy reduction (%) =
etopt×1.05−etopt

etopt×1.05
×100, where etopt and etopt×1.05 represent the

dynamic energy consumption associated with time-optimal
endpoint and dynamic energy consumption associated with
5% performance degradation compared to the optimal.
Therefore, these set of experiments also help determine the
average and maximum slopes of the Pareto-optimal front
close to the time-optimal and the energy-optimal solutions
(or the endpoints of the front).

The average and maximum improvements in perfor-
mance for the OpenBLAS DGEMM application (consider-
ing 5% increase in energy consumption) are 41% and 94%
respectively. The average and maximum improvements in
energy consumption (considering 5% performance degra-

dation) are 9% and 44% respectively. The average and
maximum improvements in performance for the FFTW ap-
plication (considering 5% increase in energy consumption)
are 19% and 73% respectively. The average and maximum
improvements in energy consumption (considering 5% per-
formance degradation) are 8% and 20% respectively. From
the results, we can conclude that there exist decent trade-offs
between performance and energy. One can also conclude
that the Pareto-optimal front, on the average, has steeper
slope closer to the time-optimal solution but starts flattening
out immediately as we proceed towards the energy-optimal
solution. This can be observed for the Pareto-optimal fronts
shown in Figures 7 and 8.

For all the experimental runs, ALEPH demonstrated
average quadratic polynomial complexity of O(p2). Its exe-
cution times ranged from few seconds to few minutes. Our
conclusions are valid for homogeneous clusters containing
arbitrary number of such processors suggesting large posi-
tive implications for extreme-scale parallel platforms.

6.5 Interplay Between Performance and Energy Using
ALEPH, POPTA, and EOPTA

In this section, we study the interplay between performance
and energy using ALEPH and its building blocks, POPTA,
and EOPTA. POPTA solves the performance optimization
problem by examining a subset of points in the functional
performance model (X ,S). It gives only one solution (work-
load distribution), which results in maximum performance.
EOPTA solves the energy optimization problem by exam-
ining only the convex points in the energy model (X , E).
It gives only one solution (workload distribution), which
results in minimum dynamic energy consumption. ALEPH,
however, examines all the points in the performance and
energy models to determine the globally Pareto-optimal
front of solutions.

First, we determine the improvements in performance
obtained when using workload distribution minimizing dy-
namic energy consumption as well as the improvements in
energy obtained when using workload distribution maxi-
mizing performance.

We observed that optimizing for performance alone can
lead to good reduction in dynamic energy consumption. For
OpenBLAS DGEMM, the average and maximum percentage
reductions in energy were 12% and 68% respectively. For
FFTW, the average and maximum percentage reductions in
energy were 23% and 55% respectively.

We observed that optimizing for energy alone can cause
major performance degradation. For OpenBLAS DGEMM,
the average and maximum performance degradations were
95% and 100%. For FFTW, the average and maximum per-
formance degradations were close to 100% and 100%.

Figure 8 illustrates the interplay for select combinations
of (n, p). Each graph has the following plots: a). The glob-
ally Pareto-optimal set of solutions determined by ALEPH
(points in the green plot). b). The path taken by POPTA
towards the optimal solution for execution time (points in
the blue plot), and c). The path taken by EOPTA towards the
optimal solution for dynamic energy consumption (points in
the red plot).



IEEE TRANSACTIONS ON COMPUTERS, MARCH 2017 14

Fig. 8. Graphs for OpenBLAS DGEMM and FFTW applications for different workloads (size given by n in multiples of granularity) and number of
available processors, p. Globally pareto-optimal set of solutions determined by ALEPH is shown by green points. Paths of POPTA and EOPTA are
connected by blue and red points respectively. All the algorithms start from the homogeneous load-balanced distribution.

We define the path of an optimization algorithm
as the sequence of points, which are ordered by non-
increasing/non-decreasing values of the objective function
if the function is minimized/maximized and which termi-
nates in a point that represents the optimal value of the
objective function. For example, the path of POPTA starts
from the load-balanced distribution point and contains only
the points with non-increasing values of execution time,
with the last point representing the time-optimal solution.
Similarly, the path of EOPTA starts from the load-balanced
distribution point and contains only the points with non-
increasing values of dynamic energy consumption, with the
last point containing the energy-optimal solution. During
the course of their execution, POPTA and EOPTA may veer
off their paths (but will return to them soon) and evaluate
points, which do not lead to decrease in execution time
or dynamic energy consumption, but these points are not
considered in their paths by definition.

Apart from better illustration of the interplay between

performance and energy, the combinations, (n, p), are cho-
sen to demonstrate the diversity in the paths taken by
POPTA and EOPTA. The starting point for all the three algo-
rithms is the balanced workload distribution, xi = n

p ,∀i ∈
[1, p]. It should be noted that this distribution is the end
point (solution) of the existing solvers. For a problem size n
and number of processors p, each point in a plot represents
the execution time and dynamic energy consumption of a
workload distribution (or a partitioning of a workload).

We can conclude the following from the graphs: 1). The
paths for POPTA show why optimizing for performance
leads to reduction in energy consumption. For both the
applications, it can be seen that the dynamic energy of
the load-balanced distribution lies outside (and well above)
the interval bounded by the projections of the endpoints
of the Pareto-optimal front on the y-axis (dynamic energy
axis). It can also be seen, that for OpenBLAS DGEMM,
the execution time of the load-balanced distribution is very
close to projection of the time-optimal endpoint than the
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projection of the energy-optimal endpoint on the x-axis (ex-
ecution time axis). Therefore, since POPTA descends from
the load-balanced distribution towards the time-optimal
endpoint of the Pareto-optimal front, minor improvements
in performance result in major reduction in dynamic energy
consumption.

2). The paths for EOPTA demonstrate why optimizing
for energy can lead to significant performance degradation.
For the OpenBLAS DGEMM application, it can be seen
that the execution time of the load-balanced distribution
is very close to projection of the time-optimal endpoint
of the Pareto-optimal front on the x-axis than the energy-
optimal endpoint. Therefore, since EOPTA moves from the
load-balanced distribution towards the energy-optimal end-
point of the Pareto-optimal front, minor improvements in
dynamic energy consumption result in major performance
degradation. For the FFTW application, for almost all the
experiments, the paths for EOPTA show the same behavior
as observed for the OpenBLAS DGEMM application. How-
ever, we show two but rare examples ((n = 5000, p = 9),
(n = 5000, p = 36)) where the load-balanced distribution
lies outside the intervals bounded by the projections of the
endpoints of the Pareto-optimal front on the x-axis and
the y-axis. Also, the execution time of the load-balanced
distribution is very close to projection of the energy-optimal
endpoint of the Pareto-optimal front on the x-axis than the
time-optimal endpoint. In these cases, major improvements
in dynamic energy consumption result in minor perfor-
mance improvements.

3). For almost all the cases, the path for POPTA moves
from the load-balanced distribution to touch the Pareto-
optimal front at the time-optimal endpoint. However, there
are few cases (first graph for OpenBLAS DGEMM where
n = 800, p = 4) where POPTA terminates at a time-optimal
solution, which is not the time-optimal endpoint on the
Pareto-optimal front but just above it. That is, the time-
optimal solution determined by POPTA has larger energy
consumption (but same execution time) compared to the
time-optimal solution determined by ALEPH.

4). Unlike POPTA, the path for EOPTA terminates in the
energy-optimal point on the Pareto-optimal front for all the
cases.

5). For a significant number of cases, the path for EOPTA
moves from the load-balanced distribution to meet the
Pareto-optimal front and then moves along it towards the
energy-optimal solution. However, we have not observed
this behavior for POPTA.

Our objective in presenting this study of interplay be-
tween performance and energy is to propose use of the
globally Pareto-optimal set determined by ALEPH and the
paths taken by POPTA and EOPTA as a guide to decide
which objective (performance or energy) to optimize. The
guidelines are as follows:

1). If the dynamic energy of the load-balanced distribu-
tion lies outside the interval bounded by the projections of
the endpoints of the Pareto-optimal front on the y-axis, then
optimizing for performance will also result in reduction in
dynamic energy consumption. It should be noted that the
endpoints of the Pareto-optimal front can be determined
using POPTA and EOPTA. If the execution time of the load-
balanced distribution is very close to projection of the time-

optimal endpoint on the x-axis than the energy-optimal
endpoint, then minor improvements in performance will
result in major reduction in dynamic energy consumption.

2). If the load-balanced distribution lies outside both the
intervals bounded by the projections of the endpoints of
the Pareto-optimal front on the x-axis and y-axis, then opti-
mizing for energy will also result in performance improve-
ment. However, if the execution time of the load-balanced
distribution is very close to projection of the energy-optimal
endpoint on the x-axis than the time-optimal endpoint, then
major improvements in dynamic energy consumption will
only result in minor performance improvements. Similarly,
if the dynamic energy of the load-balanced distribution is
very close to projection of the time-optimal endpoint on
the y-axis than the energy-optimal endpoint, then major
improvements in execution time will only result in minor
improvements in dynamic energy consumption.

3). If the load-balanced distribution lies inside both the
intervals bounded by the projections of the endpoints of the
Pareto-optimal front on the x-axis and y-axis, then minimiz-
ing one objective will definitely result in degradation of the
other objective.

From the experiments, we observed that the practical
time complexity of ALEPH is large compared to that of
POPTA and EOPTA. This cost is few minutes for large values
of p (thousands). This may not be acceptable, especially
when it comes to using it for determining optimal work-
load distributions (with given accuracy) in self-adaptable
applications. However, it should be noted that ALEPH and
its building blocks are sequential algorithms, which execute
on just one core of the Intel Haswell server. One approach to
reduce its time complexity is to parallelize it. Along with de-
veloping parallel versions of ALEPH and its building blocks,
we propose to pursue in our future work development of
faster algorithms along the following lines of research.

1). If the goal is to maximize energy savings while en-
suring performance degradation (with respect to optimal) is
within specified tolerance, then there are two approaches to
achieve it. If the starting point is close to the projection of the
time-optimal endpoint on the x-axis than the energy-optimal
endpoint, optimize for performance by using POPTA. From
the time-optimal solution, start optimizing for energy by
using EOPTA and stop once the tolerance is exceeded. If the
starting point is close to the projection of the energy-optimal
endpoint on the x-axis than the time-optimal endpoint,
start optimizing for energy by using EOPTA. Once EOPTA
meets the straight line joining the time-optimal and energy-
optimal endpoints (determined by POPTA and EOPTA),
start optimizing for performance by using POPTA until the
tolerance is satisfied. Which approach to select depends on
how fast either of the algorithms reach the Pareto-optimal
front, which depends on the starting point and the slope of
the front. One can develop similar algorithms if the goal is to
maximize performance while ensuring energy consumption
does not exceed specified fraction of the optimal energy
consumption.

2). ALEPH determines the globally Pareto-optimal front
of exact solutions. However, as we said before, its practical
time complexity in the order of minutes for large values
of n and p may not be acceptable for its use in self-
adaptable applications, which require use of data parti-
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tioning algorithms that can determine optimal workload
distributions (with given accuracy) at low runtime cost.
Therefore, one approach is to find approximate solutions
quickly at runtime that are closer to the Pareto-optimal front
(within certain distance specified by the user) by design-
ing approximation algorithms, which intelligently combine
POPTA and EOPTA. The initial slope of the Pareto-optimal
front can be approximated by a straight line joining the
time-optimal and energy-optimal solutions determined by
POPTA and EOPTA respectively. From the experiments on
trade-offs, we observe that the slope is steeper immediately
closer to the time-optimal endpoint but is quite flat as we
progress towards the energy-optimal endpoint. Therefore,
we find an approximate solution closer to the midpoint of
the front using the initial straight-line approximation for the
front. Then, all the points lying on the line connecting this
midpoint approximation to the energy-optimal endpoint
will lie close to the globally Pareto-optimal front. We then
recursively apply this procedure for the region between the
time-optimal endpoint and the estimated midpoint approx-
imation. To summarize, we would consider in our future
work design and implementation of algorithms on these
lines that determine approximate solutions (or front) that
are ideal for use in self-adaptable applications.

6.6 ALEPH and DVFS-based MOP Methods
In this section, we demonstrate how ALEPH can be com-
bined with MOP methods [8], [9], [10], [29], that use DVFS
as one of the key decision variables. For this purpose, we use
the same experimental platform, the Intel Haswell server
containing 24 physical cores (48 logical cores) (Table 2),
and the same two data-parallel applications (OpenBLAS
DGEMM [19] and FFTW [20], [32]). Each core can be set
to one of the twelve supported DVFS frequencies: {1.2
GHz, 1.4 GHz,..., 2.3 GHz}. This gives us 1248 frequency
combinations. To keep the analysis tractable, we study only
twelve combinations where we set all the cores to a same fre-
quency from the supported DVFS set. Other details related
to employing DVFS in our server are provided in Section 10,
Supplemental.

We keep all the application-level parameters (Workload
size = n, Number of processors = p, Number of threads = t) fixed
while we study the impact of two decision variables, DVFS
and problem size. MOP methods that employ DVFS as the
primary decision variable fix the problem size parameter
and use the workload distribution given by the traditional
load-balancing algorithm, xi = n

p ,∀i ∈ [1, p]. To determine
a load-balanced solution for a frequency combination, the
frequencies of all the cores are set and the execution time
and dynamic energy consumption corresponding to the
load-balanced workload distribution are determined.

Each Pareto-optimal point (load-balanced solution) de-
termined by the DVFS-based MOP methods can be used as
the starting point for ALEPH, which then finds a better set of
(globally Pareto-optimal) solutions. To be more precise, for
each Pareto-optimal load-balanced solution, the frequency
combination is determined, the frequencies of all the cores
are set, the speed and energy functions are constructed
using the automated experimental methodology (Section 3,
Supplemental), and ALEPH is executed to determine the
better set of (globally Pareto-optimal) solutions.

Fig. 9. (a). Load-balanced solutions for OpenBLAS DGEMM application
determined by MOP methods using DVFS as the key decision vari-
able. The data labels for the points are the DVFS frequencies. The
optimal load-balanced solution maximizing performance and minimizing
dynamic energy consumption corresponds to the frequency 2.30GHz.
(b). Pareto-optimal front determined by ALEPH for the DVFS frequency
2.30GHz. The load-balanced solution is shown by the red rhombus
symbol.

Figure 9(a) shows the load-balanced solutions deter-
mined by DVFS-based MOP methods for the OpenBLAS
DGEMM application executed using the inputs, (n =
3392, p = 36, t = 24). The optimal load-balanced solution
maximizing performance and minimizing dynamic energy
consumption corresponds to the frequency 2.30GHz. Using
this solution as a starting point and for the corresponding
frequency, ALEPH determines the Pareto-optimal front as
shown in Figure 9(b). One can see that ALEPH gives a better
set of solutions. There are altogether 53 solutions in the
set. The solution with the best performance gives 25% and
6% improvements respectively in performance and dynamic
energy compared to the load balanced solution.

Figure 10(a) shows the load-balanced solutions deter-
mined by DVFS-based MOP methods for the Intel MKL
FFT application executed using the inputs, (n = 3960, p =
36, t = 24). The optimal load-balanced solution maximizing
performance and minimizing dynamic energy consumption
corresponds to the frequency 2.30GHz. Using this solution
as a starting point and for the corresponding frequency,
ALEPH determines the Pareto-optimal front as shown in
Figure 10(b). One can see that ALEPH gives a better set of
solutions. There are 5 solutions in the set. The solution with
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Fig. 10. (a). Load-balanced solutions for Intel MKL FFT application
determined by MOP methods using DVFS as the key decision vari-
able. The optimal load-balanced solution maximizing performance and
minimizing dynamic energy consumption corresponds to the frequency
2.30GHz. (b). Pareto-optimal front determined by ALEPH for the DVFS
frequency 2.30GHz. The load-balanced solution is shown by the red
rhombus symbol.

the best performance gives 200% and 265% improvements
respectively in performance and dynamic energy compared
to the load balanced solution.

To conclude, we show how ALEPH can be combined
with DVFS-based MOP methods to determine a better set
of (globally Pareto-optimal) solutions.

Due to time constraints, we could not construct a full
three-dimensional bi-objective optimization picture for the
three dimensions (Execution time, Dynamic energy, DVFS)
and also the combined Pareto-optimal front using both
the decision variables, DVFS and problem size. We would
consider it in our future work. We will also study in-depth
the bi-objective optimization problem with more decision
variables apart from DVFS and problem size such as Number
of processors and Number of threads.

7 CONCLUSION

Performance and energy are now the most dominant objec-
tives for optimization on modern parallel platforms com-
posed of multicore CPU nodes. State-of-the-art application-
level methods solving the bi-objective optimization problem
for performance and energy (BOPPE) chiefly focused on
either intra-node optimization or both intra-node and inter-
node optimizations. These methods employed a large set of
intra-node and inter-node decision variables, which include
number of threads, number of processors, DVFS, etc. They
analyzed the impact of each decision variable individually

on both performance and energy. However, they did not
consider problem size as a decision variable. When the prob-
lem size was considered as a parameter instead of a decision
variable, they also assumed a linear relationship between
performance and problem size and between energy and
problem size. We demonstrated using experiments of real-
life data-parallel applications on modern multicore CPUs
that the relationships demonstrated between performance
and problem size and between energy and problem size
have complex (non-linear and even non-convex) properties.
Therefore, we believe that problem size has become an
important decision variable that can no longer be ignored.

Motivated by this important finding, we formulated
the BOPPE for data-parallel applications on homogeneous
clusters of modern multicore CPUs, which is based on
only one but heretofore unconsidered decision variable,
the problem size. We then presented an efficient and exact
global optimization algorithm called ALEPH that solved the
BOPPE. It takes as inputs, discrete functions of performance
and dynamic energy consumption against problem size, and
outputs the globally Pareto-optimal set of solutions. These
solutions are the workload distributions, which achieve
inter-node optimization of data-parallel applications for per-
formance and energy. While existing solvers give a single
solution for performance and energy when problem size
and the number of processors are fixed, ALEPH gives a
diverse set of globally Pareto-optimal solutions. We proved
the complexity of the algorithm to beO(m2×p2) wherem is
the number of points in the discrete speed/energy function
and p is the number of available processors.

We studied the interplay between performance and en-
ergy of two data-parallel applications using the Pareto-
optimal front (determined by ALEPH) and paths of opti-
mization algorithms for performance and energy (POPTA
and EOPTA). We showed that, for the two applications, op-
timizing for performance alone led to significant reduction
in energy. However, optimizing for energy alone caused
major degradation in performance. We also demonstrated
the efficiency of ALEPH.

Based on our study of interplay, we proposed collective
use of the Pareto-optimal front and paths of POPTA and
EOPTA as optimization guide for design of optimization
algorithms for performance and energy.

We demonstrated how ALEPH can be combined with
DVFS-based MOP methods to give a better set of (globally
Pareto-optimal) solutions.

The software implementations of the algorithms pre-
sented in this paper can be found at [33].

In our future work, we would find and study applica-
tions and platforms where optimization of energy would
lead to improvements in performance. We would also focus
on bi-objective optimization problems for performance and
energy on heterogeneous parallel platforms.
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