
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 1

A Novel Data-Partitioning Algorithm for
Performance Optimization of Data-Parallel

Applications on Heterogeneous HPC Platforms
Hamidreza Khaleghzadeh, Ravi Reddy, and Alexey Lastovetsky, Member, IEEE

Abstract—Modern HPC platforms have become highly heterogeneous owing to tight integration of multicore CPUs and accelerators
(such as Graphics Processing Units, Intel Xeon Phis, or Field-Programmable Gate Arrays) empowering them to maximize the dominant
objectives of performance and energy efficiency. Due to this inherent characteristic, processing elements contend for shared on-chip
resources such as Last Level Cache (LLC), interconnect, etc. and shared nodal resources such as DRAM, PCI-E links, etc. This has
resulted in severe resource contention and Non-Uniform Memory Access (NUMA) that have posed serious challenges to model and
algorithm developers. Moreover, the accelerators feature limited main memory compared to the multicore CPU host and are connected
to it via limited bandwidth PCI-E links thereby requiring support for efficient out-of-card execution.
To summarize, the complexities (resource contention, NUMA, accelerator-specific limitations, etc.) have introduced new challenges to
optimization of data-parallel applications on these platforms for performance. Due to these complexities, the performance profiles of
data-parallel applications executing on these platforms are not smooth and deviate significantly from the shapes that allowed
state-of-the-art load-balancing algorithms to find optimal solutions.
In this paper, we formulate the problem of optimization of data-parallel applications on modern heterogeneous HPC platforms for
performance. We then propose a new model-based data partitioning algorithm, which minimizes the execution time of computations in
the parallel execution of the application. This algorithm takes as input a set of p discrete speed functions corresponding to p available
heterogeneous processors. It does not make any assumptions about the shapes of these functions. We prove the correctness of the
algorithm and its complexity of O(m3 × p3), where m is the cardinality of the input discrete speed functions.
We experimentally demonstrate the optimality and efficiency of our algorithm using two data-parallel applications, matrix multiplication
and fast Fourier transform, on a heterogeneous cluster of nodes where each node contains an Intel multicore Haswell CPU, an Nvidia
K40c GPU, and an Intel Xeon Phi co-processor.

Index Terms—heterogeneous HPC platforms, data-parallel applications, data partitioning, load balancing, multicore CPU, GPU, Intel
Xeon Phi, performance optimization

F

1 INTRODUCTION

Modern HPC platforms have become highly heteroge-
neous owing to tight integration of multicore CPUs and
accelerators (such as GPUs, Intel Xeon Phis, or FPGAs)
to maximize the dominant objectives of performance and
energy efficiency. The current Top500 list [1] includes sixty
systems with Intel/AMD multi-core CPUs and Nvidia GPU
accelerators, and twenty one systems with Intel Xeon Phi
accelerators. Furthermore, there are three homogeneous
clusters with hybrid nodes consisting of Intel Xeon Phi and
Nvidia Kepler accelerators.

The inherent characteristic of tight integration, however,
has resulted in processing elements contending for shared
on-chip resources such as Last Level Cache (LLC), inter-
connect, etc. and shared nodal resources such as DRAM,
PCI-E links, etc. This has caused severe resource con-
tention and Non-uniform Memory Access (NUMA) that
pose serious challenges to model and algorithm developers.
Moreover, the accelerators feature limited main memory
compared to the multicore CPU host and are connected to

• H. Khaleghzadeh, R. Reddy and A. Lastovetsky are with the School of
Computer Science, University College Dublin, Belfield, Dublin 4, Ireland.
E-mail: hamidreza.khaleghzadeh@ucdconnect.ie,
ravi.manumachu@ucd.ie, alexey.lastovetsky@ucd.ie

it via limited bandwidth PCI-E links thereby necessitating
support for efficient out-of-card execution. To summarize,
the newly introduced complexities (resource contention,
NUMA, accelerator-specific limitations, etc.) have created
new challenges to optimization of data-parallel applications
on these platforms for performance.

Before we present use cases that elucidate the challenges
especially for clusters of heterogeneous processors, we
briefly study the evolution of performance models and data
partitioning algorithms that have attempted to realistically
capture the real-life behaviour of applications executing on
these platforms for performance maximization.

The simplest models used positive constant numbers
and different notions such as normalized processor speed,
normalized cycle time, task computation time, average exe-
cution time, etc., to characterize the speed of an application
[2], [3], [4]. The common aspect of these models is that
the performance of a processor is assumed to have no
dependence on the size of the workload. We call them the
constant performance models (CPMs).

The most advanced load balancing algorithms use func-
tional performance models (FPMs), which are application-
specific. The FPMs represent the speed of a processor by
continuous function of problem size but satisfying some
assumptions on its shape [5],[6]. The assumptions require

0000–0000/00/$00.00 c© 2018 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 2

them to be smooth enough in order to guarantee that opti-
mal solutions minimizing the computation time are always
load balanced. The FPMs capture accurately the real-life
behaviour of applications executing on nodes consisting of
uniprocessors (single-core CPUs).

However, modern HPC platforms have complex nodal
architectures with highly hierarchical arrangement and tight
integration of processors where resource contention and
NUMA are inherent. On such platforms, the performance
profiles of real-life scientific applications are not smooth
and may deviate significantly from the shapes that allowed
traditional and state-of-the-art load balancing algorithms to
find optimal solutions.

Lastovetsky et al. [7] study the drastic deviations in
the performance profiles for a real-life scientific applica-
tion, Multidimensional Positive Definite Advection Trans-
port Algorithm (MPDATA), in a Xeon Phi co-processor. MP-
DATA is a core component of the EULAG (Eulerian/semi-
Lagrangian fluid solver) geophysical model [8], which is
an established computational model developed for sim-
ulating thermo-fluid flows across a wide range of scales
and physical scenarios. The authors propose an optimiza-
tion technique reusing an advanced performance model
of computation (FPM) but using novel load distribution
to minimize the computation time of the application. Las-
tovetsky et al. [9] illustrate in depth these variations in
performance and energy profiles of two widely known and
highly optimized scientific routines, OpenBLAS DGEMM
[10] and FFTW [11], on a modern multicore Intel Haswell
CPU platform. They explain the limitations of the FPM-
based load balancing algorithms proposed in [12], [13], [14],
[15], [16], [17], [18], [19], [20]. They propose novel model-
based methods and algorithms for minimization of time and
energy of computations for the most general performance
and energy profiles of data parallel applications executing
on homogeneous multicore clusters. Unlike load balancing
algorithms, optimal solutions found by these algorithms
may not load-balance an application.

The new model-based methods proposed in [7], [9],
however, can not be used for optimization of data-parallel
applications on HPC platforms with hybrid nodes for maxi-
mization of performance since they are designed for homo-
geneous clusters, i.e., cluster of identical processors.

We now present two motivational use cases that eluci-
date the additional challenges that arise in HPC platforms
with hybrid nodes.

The hybrid node, HCLServer, that we use for the exper-
iments, is a multi-accelerator NUMA platform. It contains
an Intel Haswell multicore CPU consisting of 24 physical
cores with 64 GB main memory, whose specification is
shown in the Table 1. In addition to the multicore CPU,
the node integrates two accelerators, Nvidia K40c GPU and
Intel Xeon Phi 3120P, whose specifications are shown in
Tables 2 and 3 respectively. Each accelerator is connected
to a dedicated host core via a separate PCI-E link.

In each use case, we study the performance profiles of
a data-parallel application executing in the hybrid node
and modelled by three abstract processors. A processing
unit made of one or a group of CPU cores executing one
(generally speaking, multi-threaded) computational kernel
of the data parallel application is modelled by an abstract

TABLE 1
Specification of the Intel Haswell multicore CPU.

Technical Specifications Intel Haswell E5-2670V3
Thread(s) per core 2
No. of cores per socket 12
Socket(s) 2
NUMA node(s) 2
CPU MHz 1200.402
L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 30720 KB
NUMA node0 CPU(s) 0-11,24-35
NUMA node1 CPU(s) 12-23,36-47
Processor base frequency 2.30 GHz
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec
TDP 240 W
Idle Power 61 W

TABLE 2
Specification of the Nvidia K40c GPU.

Technical Specifications Nvidia K40c
No. of processor cores 2880
Base clock 745 MHz
Boost clock(s) 810 MHz, 875 MHz
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec
Memory I/O 384-bit GDDR5
Memory clock 3.0 GHz
TDP 235 W
Idle Power 16 W
Idle Power (Persistence mode) 68 W

TABLE 3
Specification of the Intel Xeon Phi 3120P.

Technical Specifications Intel Xeon Phi 3120P
No. of processor cores 57
Base frequency 1.10 GHz
Total main memory 6 GB GDDR5
L2 cache size 28.5 MB
Memory bandwidth 240 GB/sec
Memory clock 3.0 GHz
TDP 300 W
Idle Power 91 W

processor [21]. To build the performance models of the
abstract processors, the performance of the processing units
representing these processors must be measured accurately.
To ensure this, the processing units are grouped by shared
system resources. Each group becomes an abstract proces-
sor. The performance of processing units in a group is
measured when all the processing units in the group are
executing a workload simultaneously, thereby taking into
account the influence of resource contention. We represent
a performance model by a discrete function of speed versus
the problem size.

The first abstract processor contains 22 CPU cores exe-
cuting the multi-threaded CPU kernel. The second abstract
processor comprises the Nvidia K40c GPU along with its
dedicated host CPU core executing the GPU kernel. And
finally, the third abstract processor consists of Intel Xeon
Phi 3120P co-processor along with its dedicated host CPU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 3

core executing the Xeon Phi kernel. The dedicated host
CPU core is responsible for sending data from host to
accelerator, kernel invocations on the accelerator and then
copying results back from accelerator to host. Therefore, the
pair consisting of an accelerator and its dedicated host core
executing one accelerator kernel is modelled by an abstract
processor. The kernel executing on the accelerator uses all
the cores of the accelerator. The execution time of a kernel
in the GPU and Xeon Phi abstract processors includes the
times of data transfer between the accelerators and their
host cores.

Since the abstract processors contain CPU cores that
share main memory, they cannot be considered indepen-
dent. Therefore, the performance of these abstract proces-
sors must be measured simultaneously. That is, the data
points for a problem size in their performance models are
experimentally built simultaneously. We explain how to
do this in our experimental methodology presented in the
supplemental. It should be noted that while performance
models are built where the data points for the same problem
size are obtained simultaneously, during the actual exe-
cution of the data-parallel application using the workload
distribution determined by our data partitioning algorithm,
the problem sizes executed by the abstract processors can
be different. This is because different processors can be
allocated different problem sizes by our heterogeneous data
partitioning algorithm. However, the speeds of execution
of these problem sizes simultaneously would not differ
significantly from those present in the performance models;
the marginal differences do not imply significantly different
execution times. We confirm this to be the case through
exhaustive experimentation; synopsis of this is presented in
the supplemental.

In our first use case, we study the performance profile
of a matrix multiplication application. The application exe-
cutes a highly optimized native kernel for CPU and highly
optimized out-of-card kernels for the accelerators. The out-
of-card kernels allow the GPU and Xeon Phi abstract proces-
sors to execute tasks of arbitrary size, not just the ones that
fully fit in the accelerator memories [22]. For the multicore
CPU, Intel MKL DGEMM is used. For GPU, ZZGEMMOOC
out-of-card package [23] is used that reuses CUBLAS for
in-card DGEMM calls. For Xeon Phi, XeonPhiOOC out-of-
card package [24] is used that reuses MKL BLAS for in-
card DGEMM calls. The Intel MKL and CUDA versions
used are 2017.0.2 and 7.5 respectively. Since the number
of threads per core in Intel Haswell is equal to 2, the Intel
MKL DGEMM kernel for the multicore CPU uses 44 threads
executing on 22 out of 24 physical cores.

Figure 1 shows DGEMM speed functions of CPU, GPU
and Xeon Phi abstract processors along with their zoomed
functions between two data points 37122 and 62722. One
can observe significant fluctuations in the performance pro-
file, which we call variations. The variation is related to the
difference of speed between two subsequent local minima
(s1) and maxima (s2) and is defined below:

variation(%) =
|s1 − s2|

min(s1, s2)
× 100 (1)

To make sure that our experimental results are reliable
and it is not noise that is the underlying cause behind these

variations, the experiments for each data point in speed
functions are repeated until sample means of all the three
kernels executing on the abstract processors simultaneously
fall in the interval with the confidence level, 95 percent. The
statistical methodology is explained in detail in the supple-
mental. Briefly, the methodology contains following main
steps: 1) We make sure the platform is fully reserved and
dedicated to our experiments and exhibits clean behaviour
by monitoring its load continuously for a week. 2) For each
data point in the speed functions of an application, the
sample mean is used, which is calculated by executing the
application repeatedly until the sample mean lies in the 95%
confidence interval and a precision of 0.025 (2.5%) has been
achieved. For this purpose, Student’s t-test is used assuming
that the individual observations are independent and their
population follows the normal distribution. We verify the
validity of these assumptions by checking the density plots
of the observations.

From the figure, we can observe the following:

• Xeon Phi speed function is almost smooth between
642 to 137602. However, the variations increase for
larger problem sizes (138242 and beyond) where
DGEMM out-of-card computations are invoked. Un-
like Xeon Phi, the variations decrease for CPU and
GPU as problem size increases. The maximum vari-
ations for CPU, GPU and Xeon Phi are 700%, 50%
and 150%, respectively. The maximum variations
for Xeon Phi occur for problem sizes in the range
[128002, 192002].

• The shapes violate the assumptions of FPMs. There-
fore, load balancing data partitioning algorithms
based on FPMs may not return optimal solutions.

• The new model-based methods proposed in [7], [9]
can not be used since they consider all the available
processors to be identical and therefore take a single
speed function as an input.

In our second use case, we study the performance pro-
files of a 2D discrete Fourier transform (DFT) application
and modelled by the same three abstract processors. For the
multicore CPU and Xeon Phi, Intel MKL FFT is used. For
the Nvidia GPU, CUFFT is used. Unlike the matrix multi-
plication application, all computations for FFT are in-core
(or in-card for the accelerators). Figure 2 shows the speed
functions of abstract processors along with their zoomed
functions between two data points 54562 and 61762. The
Intel MKL FFT kernel for the multicore CPU uses 44 threads
executing on 22 out of 24 physical cores.

From the figure, we can observe that Xeon Phi is
markedly slower than CPU and GPU. It is because the
execution time of communications between Xeon Phi and
host CPU dominates the execution time of computations
performed by Xeon Phi. However, GPU uses optimized
data transfers by deploying two data engines (for transfers
from CPU host to GPU and from GPU to CPU host) and
does not suffer from this problem. The maximum variations
for CPU, GPU, and Xeon Phi are almost 350%, 560% and
200%, respectively. The maximum variations for Xeon Phi
occur for problem sizes in the range of [162, 8002]. It can be
seen again that the shapes violate the assumptions on shape
of FPMs. Therefore, load balancing data partitioning algo-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 4

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

Fig. 1. Speed functions of heterogeneous DGEMM application for the
multicore CPU, GPU, and Xeon Phi in the HCLServer. Also shown is
the zoomed speed function between two points 37122 and 62722.

rithms based on FPMs may not return optimal solutions.
Also the new model-based methods proposed in [7], [9] can
not be used for this case.

In the supplemental, we present one more use case
demonstrating the variations in the performance profiles
for a matrix-vector multiplication application executing the
highly optimized multi-threaded Intel MKL DGEMV rou-
tine in a homogeneous cluster of six nodes where each node
contains two Intel Xeon Phi accelerators.

Thus, the three presented use cases illustrate the dra-
matic variations observed in performance profiles of highly
optimized scientific applications executing on heteroge-
neous HPC platforms. These variations are not singular
and will become common because chip manufacturers are
increasingly featuring tighter integration of processor cores,
memory, and interconnect in their products. It is these
variations that have now made the optimization problem
for performance on such platforms difficult to solve. More-
over, the state-of-the-art load balancing algorithms based on
FPMs and the novel model-based methods proposed in [7],
[9] are not equipped to deal with such cases where different
processors exhibit different shapes of speed functions.

In this paper, we propose a new model-based data
partitioning algorithm, which minimizes parallel execution
time for the most general shapes of performance profiles
for data parallel applications executing on heterogeneous
clusters of hybrid nodes. First, we formulate the problem of
optimization of data-parallel applications on such platforms
for performance. We then present the data-partitioning algo-
rithm called HPOPTA with complexity O(m3×p3) where m
is the number of data points in the speed functions and p is

2 2 2 2 2

2 2 2 2 2 2 2 2

Fig. 2. Speed functions of heterogeneous 2D DFT application for the
multicore CPU, GPU, and Xeon Phi in the HCLServer. Also shown is
the zoomed speed function between two points 54562 and 61762.

the number of available processors. Optimal solutions found
by HPOPTA may not be balanced in terms of execution time.

It should be mentioned that HPOPTA is a 1D data-
partitioning algorithm. However, HPOPTA can be directly
applied to 2D or 3D problems where the dimensionality
can be reduced to 1D. Consider two examples. Our first
example is the execution of MPDATA on Intel multicore
CPUs and Intel Xeon Phis [7]. The input data structure
to MPDATA is a dense 3D object with dimensions (m,n,l)
and size m × n × l. The dimension l is fixed in real-life
simulations. From our experiments, we observed that the
speed of MPDATA varies very little with n for constant m.
Therefore, HPOPTA can be applied directly to performance
optimization of MPDATA where the parameter m is parti-
tioned between the processors. In our second example, we
consider the application of HPOPTA for optimization of 2D
DFT for performance. A sequential 2D DFT is computed
using row-column or the separable method based on 1D
FFTs. Briefly, the row-column method consists of 1D FFTs
on rows followed by transpose matrix and then 1D FFTs on
rows followed by restoration using transpose matrix. The
1D FFT computation is optimized using direct application of
HPOPTA. In our future work, we will develop extensions to
HPOPTA for optimization of 2D applications (for example,
matrix multiplication) for performance.

To summarize, our main contributions in this paper are:

• Studying the behaviour of data parallel applications
on modern heterogeneous clusters of hybrid nodes,
and the challenges introduced to model and algo-
rithm design because of resource contention and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 5

NUMA for their performance optimization.
• Efficient algorithm HPOPTA for optimization of

data-parallel applications on heterogeneous HPC
platforms for performance.

• Experimental validation of HPOPTA on a hybrid
heterogeneous server integrating a multicore CPU,
a GPU and a Xeon Phi.

• Simulations demonstrating the efficiency of HPOPTA
for large-scale parallel platforms.

• A hierarchical two-level workload distribution algo-
rithm using HPOPTA on a cluster of identical hybrid
nodes.

The rest of the paper is organized as follows. Section 2
surveys load-balancing techniques and novel model-based
algorithms, which minimize the execution time of paral-
lel applications. Section 3 formulates the problem of per-
formance optimization for clusters of heterogeneous pro-
cessors. In Section 4, a data partitioning algorithm called
HPOPTA is presented to solve the performance optimization
problem. Section 5 contains the formal description of the
proposed algorithm. Section 6 presents experimental analy-
sis of the algorithm. Finally, section 7 concludes the paper.

2 RELATED WORK

In this section, we overview state-of-the-art load-balancing
algorithms since they have been a dominant class of algo-
rithms for performance optimization on parallel platforms.
We then discuss the latest research works that look at the
dramatic variations in performance caused by the inherent
complexities of resource contention and NUMA in homoge-
neous multicore clusters.

There are several classifications of load-balancing algo-
rithms: static or dynamic, non-centralized or centralized, task
queue or predicting-the-future. One can find edifying descrip-
tions of these classifications in [14], [21], [7].

Static algorithms, such as those based on data partition-
ing [25], [26], [27], [6], [28], use a priori information about the
parallel application and platform. These algorithms are also
known as predicting-the-future because they rely on accurate
performance models as input to predict the future execution
of the application. They are particularly useful for appli-
cations where data locality is important because they do
not require data redistribution. However, these algorithms
may be unsuitable for non-dedicated platforms, where load
changes with time.

Dynamic algorithms, such as task scheduling and work
stealing [29], [30], [31], [32], [33] balance the load by moving
fine-grained tasks between processors during the execution.
They do not require a priori information about execution
but may incur large communication overhead due to data
migration. They can use static partitioning for the initial
step due to its provably near-optimal communication cost,
bounded tiny load imbalance, and lesser scheduling over-
head. Dynamic load balancers based on graph partitioners
are proposed by [34], [35] for adaptive scientific computa-
tions where two objectives, interprocessor communication
and data migration costs, are considered.

In non-centralised algorithms [36], [37], load is mi-
grated locally between neighbouring processors, while in
centralised ones [38], [39], [40], load is distributed based

on global load information. Non-centralised algorithms are
slower to converge. At the same time, centralised algorithms
typically have higher overhead. The centralised algorithms
can be further subdivided into two groups: task queue [39]
and predicting-the-future [38], [40].

Over the years, load balancing algorithms developed
for performance optimization on parallel platforms have
attempted to take into consideration the real-life behaviour
of applications executing on these platforms. This can be
discerned from the evolution of performance models for
computation used in these algorithms. The simplest models
used positive constant numbers and different notions such
as normalized processor speed, normalized cycle time, task
computation time, average execution time, etc. to charac-
terize the speed of an application [41] [2], [3], [4] [42] [43]
[44]. A singular feature of these efforts is that the perfor-
mance of a processor is assumed to have no dependence
on the size of the workload. The most advanced load
balancing algorithms use functional performance models
(FPMs), which are application-specific and represent the
speed of a processor by continuous function of problem
size but satisfying some assumptions on its shape [5],[45][6].
These FPMs capture accurately the real-life behaviour of
applications executing on nodes consisting of uniprocessors
(single-core CPUs).

Performance profiles of modern HPC systems involve
lots of variations and violate the conditions assumed by the
proposed FPM-based algorithms proposed in [12], [13], [14],
[15], [16], [17], [18], [19], [20]. To deal with this challenge,
novel model-based algorithms have been proposed which
are able to find optimal workload distribution on state-of-
art homogeneous systems. The proposed approaches make
no assumptions about the shapes of performance profiles.

Lastovetsky et al. [7] propose an optimization tech-
nique reusing an advanced performance model of compu-
tation (FPM) by using novel load distribution to minimize
the computation time. First, they experimentally build the
speed function of the application using a wide range of
problem sizes separated by minimum granularity. They
then use this function and its connected visual picture to
distribute computations unevenly between homogeneous
groups of cores of the Xeon Phi co-processor, therefore load
imbalancing the application, to achieve performance opti-
mization. This is the first work where the load-imbalancing
technique is applied to partition the workload minimizing
the computation time of its parallel execution. However, no
general partitioning algorithm is proposed in this work.
Lastovetsky et al. [9] propose such general model-based
methods and algorithms for minimization of not only the
time but also the energy of computations for the most
general performance and energy profiles of data parallel
applications executing on homogeneous multicore clusters.
They formulate the performance and energy optimization
problems and present efficient algorithms of complexity
O(m2 × p2) solving these problems where m is the car-
dinality of the discrete sets representing the speed/energy
functions and p is the number of available processors. The
memory complexity of the algorithms is O(n × p2). Unlike
load balancing algorithms, optimal solutions found by these
algorithms may not load-balance an application.

Apart from [7], [9] that have explored in-depth the deter-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 6

ministic and reproducible performance variations for bound
applications, Zhang et al. [46] also report significant non-
deterministic variations for applications that are not bound
to the cores of the executing multicore platform. Their ap-
proach is to try to reduce the non-deterministic variations by
using different execution patterns. In our work, we use the
deterministic variations in order to find the optimal parallel
configuration of a data-parallel application that minimizes
the computation time of its parallel execution.

3 FORMULATION OF PERFORMANCE OPTIMIZA-
TION PROBLEM

Consider a workload of size n executed using p heteroge-
neous processors, whose speed functions are represented by
S = {s0(x), ..., sp−1(x)} where si(x), i ∈ {0, 1, · · · , p − 1},
is a discrete speed function of cardinality m of processor
Pi. The speed si(x) for a problem size x for processor i
is calculated as x

ti(x)
, where ti(x) is the time of execution

of the problem size. Without loss of generality, we assume
x ∈ {1, 2, · · · ,m}. The performance optimization problem
can be then formulated as follows:

Performance Optimization Problem, HPOPT(n, p, m,
S, Dopt, topt): The problem is to find a partitioning,
Dopt = {x0, ..., xp−1}, of the workload of size n using p
available heterogeneous processors so as to minimize the
computation time of parallel execution of the workload.
The parameters (n, p, m, S) are the inputs to the problem.
The outputs are Dopt, which is the workload distribution,
and topt, which is the optimal execution time. This problem
can be formulated as an integer nonlinear programming
problem (INLP) as follows:

topt = min
D

p−1
max
i=0

xi
si(xi)

Subject to x0 + x1 + ...+ xp−1 = n

0 ≤ xi ≤ m, i = 0, · · · , p− 1

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and
si(x) ∈ R>0

(2)

It should be noted that the execution time ti(x) for a
problem size x for processor i is calculated as x

si(x)
, where

si(x) is the speed of execution of the problem size.
The objective function in the formulated optimization

problem is a function of workload distribution D, D =
{x0, ..., xp−1}, of a given workload n between the p proces-
sors. For each given D, it returns the time of its parallel ex-
ecution, which is calculated as the time taken by the longest
running processor to execute its workload. Any distribution
that minimizes this function is considered optimal as its
execution time of workload n by the p processors cannot
be improved.

4 HPOPTA: ALGORITHM SOLVING HPOPT
In this section, we present our algorithm, HPOPTA
(Heterogeneous Performance OPTimization Algorithm),
that solves HPOPT.

First, we informally describe the algorithm using an
example. The input to the algorithm are discrete time func-
tions, which are derived from discrete speed functions.

Fig. 3. Speed functions of a sample application executing on an as-
sumed parallel machine which consists of 4 processors.

Fig. 4. The equivalent time functions for the sample speed functions in
Fig. 3.

In the example, consider four heterogeneous processors
(p = 4), which are available for execution of a workload of
size n = 16. Figures 3 and 4 respectively show the sample
speed functions, S = {s0(x), · · · , s3(x)}, and the equivalent
time functions, T = {t0(x), · · · , t3(x)}, of the processors
(m = n = 16 in our example for simplicity). It should
be noted that these time functions are samples, which are
representative of real-life data-parallel applications.

Figure 5 shows the discrete time functions, stored as
arrays in non-decreasing order of execution times.

To find the optimal workload distribution, a straightfor-
ward approach would be to examine all combinations and
select a workload distribution with the minimum compu-
tation time of parallel execution of the workload. Figure
6 shows the tree, which is constructed by such a naive
algorithm and contains all the combinations. Due to the lack
of space, we only show the tree partially.

The solution tree is constructed from the root, which is
the only node at level L0 of the tree. The value 16, which
labels the root node, represents the whole workload size to
be distributed between 4 processors {P0, P1, P2, P3}. Then,
17 workload sizes, including a zero workload size along
with all workload sizes existing in the time function (t0(x)),
are assigned to the processor P0 one by one. Although
the workload sizes can be given to the processor in any
order, we assign them in a non-decreasing order of their
execution time by the processor. As shown in Figure 6, prob-
lem sizes {0, 8, 3, 12, 9, 15, 10, 14, 1, 16, 13, 4, 2, 7, 5, 6, 11},

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 7

Fig. 5. Example: The sample time functions, shown in Figure 4, which
are stored in array data structures. Each array is sorted in non-
decreasing of execution times.

which have been sorted in non-decreasing order of execu-
tion times, are assigned to P0 one-by-one at level L0. There-
fore, the root node is expanded into 17 children. The value,
which labels an internal node at level L1 (the root’s child),
represents the remaining workload size to be distributed
between processors {P1, P2, P3}.

In its turn, each internal node at level L1 becomes a root
of a sub-tree, which is a solution tree for distribution of the
remaining workload between three processors {P1, P2, P3}.
Each edge connecting the root and its child is labelled by
the workload size assigned to P0 and its execution time.
For example, the blue edge in Figure 6 is labelled by (8, 1),
which indicates that a workload of size 8 is given to P0 and
it takes 1 time unit to execute this workload by P0. The child
node connected by this edge is labelled by 8, which is the
remaining workload (= 16 − 8) to be distributed between
processors {P1, P2, P3}.

In Figure 6, the leaf node at level L1 labelled by 0
represents a solution leaf. In general, any leaf node labelled
by 0 represents one of the possible solutions, and the execu-
tion time of the corresponding solution is calculated as the
maximum of the execution times labelling the edges in the
path connecting the root and the solution leaf. For example,
the execution time of the solution represented by the leaf
labelled by red 0, which is connected to the root by two
edges {(8, 1), (8, 1)}, will be equal to max{1, 1} = 1. The
execution time of the solution represented by the solution
leaf at level L1 will be equal to 10 as it is connected to the
root by just one edge (16, 10).

The leaf node at level L2 labelled by � is a no-solution
leaf. The path connecting this node to the root consists
of two edges {(8, 1), (9, 1)} . The corresponding workload
distribution results in no-solution because the sum of the
workloads assigned to P0 and P1 will be equal to 17
(= 8 + 9), which would exceed the total workload of 16.

In this example, each internal node in the solution tree
has either 17 children (or m + 1 in general case) or just one
child. The child is always a leaf. There are two types of
leaves: solution leaves, labelled by 0, and no-solution leaves,
labelled by �. Each internal node at level Li, labelled by
positive number w, becomes a root of a solution tree for

distribution of the workload of size w between processors
{Pi, · · · , Pp−1} and is therefore constructed recursively.

Finally, a distribution minimizing the parallel execution
time will be returned as the optimal solution. In this exam-
ple, the workload distribution (8, 8, 0, 0), represented by the
red solution leaf and resulting in the execution time of 1, will
be returned as optimal.

It is apparent that the complexity of the presented
straightforward algorithm is exponential.

We propose an efficient recursive sequential algorithm,
HPOPTA, of polynomial complexity. HPOPTA employs a
number of optimizations to avoid examining all the possible
solutions and therefore does not explore all the paths in the
tree.

The first step is to sort the discrete time functions, stored
as arrays, in non-decreasing order of execution time as
shown in Figure 5. We then determine the load-equal dis-
tribution and its parallel execution time, which is stored in
variable τ called the time threshold. The load-equal distribu-
tion is the distribution where each processor is allocated the
same workload of np (assuming n is divisible by p). HPOPTA
will not examine solutions with execution times greater than
or equal to the time threshold. In the example, τ will be
initialized by 12 (max3i=0 ti(

16
4) = max{12, 6, 4, 4} = 12).

Therefore, only data points with execution times less than 12
will be considered and form the reduced search space. These
data points are shown in gray cells in Figure 7. During the
execution of HPOPTA, the time threshold τ will be updated
every time a faster solution is found representing thus the
execution time of the currently fastest solution.

HPOPTA then starts examining the solutions in the tree
in the left-to-right depth-first order as shown in Figure 8.
First, processors P0 and P1 are allocated zero workload
each, making the workload to be distributed between pro-
cessors P2 and P3 equal to 16. However, this workload
exceeds the maximum workload, 15, that can be distributed
between these two processors and executed in parallel in
less than τ = 12 time units. This maximum workload is
associated with level L2 of the solution tree and called the
size threshold of this level, σ2. In general, size threshold σi
depends on the time threshold, τ , and is defined as the max-
imum workload that can be executed in parallel by proces-
sors Pi, · · · , Pp−1 faster than in τ time units. The vector of
size thresholds σ = (σ0, σ1, σ2, σ3) can be determined using
the time arrays and the current time threshold as follows.
The maximum workloads, the execution time of which are
less than τ = 12 in the time arrays for processors P0, P1,
P2, and P3, will be 16, 9, 7 and 8 respectively. Therefore, the
size threshold of the last level (L3) will be σ3 = 8. The size
threshold of level L2 will be 15 (= 7+σ3 = 7+8). Similarly,
the size thresholds σ1 and σ0 for levels L1 and L0 will be 24
(= 9+σ2 = 9+15) and 40 (= 16+σ1 = 16+24) respectively.
Thus, in Figure 8, the node labelled by 16 in L2 cannot lead
to solutions, which would be faster than the currently best
(load-equal) solution with parallel execution time τ = 12,
and therefore this node will not be expanded. So, the red
subtree in Figure 8 is cut and not explored. We call this key
optimization operation Cut.

In general, as the algorithm progresses the vector of size
thresholds, σ, changes every time the time threshold, τ ,
decreases. To illustrate how σ changes, we show its value

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 8

16

...0
t=10

...8

...�0
t=1

Optimal
Solution

8

...7

0
t=7

7,7

8

0
t=9

8,9

0,
0 1,1 ...

0,0 8,1 9,3

...

16

...7

�...7

0
t=7

7,7

0,
0 ...

11,19

8

...5

0
t=4

5,3

1

0
t=6

1,6

7

0
t=7

7,7

8

0
t=9

8,9

0,0
1,

1

7,1 3,4

...

16

5

0
t=19

5,3

...15

0
t=15

15,15

16

0
t=20

16,20

0,0

1,
1 ...

11,19

0,0

8,
1

9,3
...

0,0 8,1 ... 16/10
...

Fig. 6. Applying naive approach to examine all combinations and select a workload distribution with the minimum computation time of parallel
execution of the workload

Fig. 7. Example: Applying load-equal time threshold and removing some
data points from the search space.

before and after each discussed step of the algorithm. As
the Cut operation does not change τ , it also will not change
σ, as illustrated in Figure 8,

Following the left-to-right depth-first order, next node to
examine will be node 8 at level L2 as shown in Figure 9.
Proceeding from this node, the algorithm will generate and
process solutions (leaves in the tree labelled by 0) in the left-
to-right order. For each generated solution, the following
operations will be performed:

• The time threshold τ is updated.
• If τ decreases, the data points in the time functions,

whose time is equal to or greater than the updated
time threshold, are removed from the search space,
and the vector σ of size thresholds is updated.

• The solution is saved.
• Backtracking to an ancestor node of the solution is

performed. We will explain in detail later how this
ancestor node is chosen.

As an example, consider the solution with distribution

σbefore = {40, 24, 15, 8}
16

16

16 �

10
�

11
�

14
�

12
�

13
�

9
�

15
�

16
�

0,0

1,1 7,1 3,
4 4,4 2,7 5,8

6,9

0,0

0,0

σafter = {40, 24, 15, 8}

Fig. 8. Example: Applying size threshold which results in cutting some
subtrees, which do not give any solution, from the search tree.

{(0, 0), (8, 1), (3, 4), (5, 3)} and execution time 4 (see Figure
9). The time threshold, τ , is updated to 4. Based on the new
time threshold, the number of data points to be examined
in the time functions is reduced. This is illustrated in the
Figure 10, where one can see that fewer data points need
to be examined compared to Figure 7. The vector of size
thresholds, σ, is updated to {37, 22, 13, 6}. The solution
is saved, which includes memorization of the information
pertaining to all the levels except for the first and the last.
Thus, the information that is memorized is level-specific.
For L1, the saved information includes the problem size
assigned to P1, which is 8, the index of current element
in the corresponding time function, which we call the last
examined index and which is equal to 0, and the parallel
execution time of the solution for processors {P1, P2, P3},
which is 4. The same is done for L2. The saved information
includes the problem size assigned to P2, which is 3, the
index of current element in the corresponding time function,
which is equal to 2, and the parallel execution time of the
solution for processors {P2, P3}, which is equal to 4. We call

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 9

σbefore = {40, 24, 15, 8}
16

16

8

...
t ≥ 4

6

0
t=7

6,2

4

0
t=4

4,4

5

0
t=4

5,3

1

0
t=6

1,6

7

0
t=7

7,7

8

0
t=9

8,9

0,0

1,1 7,1 3,
4 4,4 2,7

...

...

0,0 8,1

0,0

σafter = {37, 22, 13, 6}

Fig. 9. Example: Backtracking to the ancestor of the node with maximum
execution time, and cutting branches which do not result in any solution
better than the solution have found so far.

this key operation, Save.
Having said that, backtracking to an ancestor node is one

of the operations performed after each generated solution.
Now, we describe how the ancestor node is chosen for
the backtracking. From the leaf pertaining to the current
solution, we traverse up the tree to the node with the
maximum execution time. The parent of this node will be
the backtracking target. For example, again consider the
solution with distribution {(0, 0), (8, 1), (3, 4), (5, 3)} and
execution time 4 in Figure 9. For this solution, the node
with the maximum execution time will be at level L2 (the
node labelled by 8). Therefore, the algorithm will backtrack
to its parent, node 16 at level L1, as indicated by a blue
arc in Figure 9. Performing this backtracking effectively
means that the algorithm will not generate and process the
remaining solution leaves descending from the node 8 at
level L2 which are highlighted in red in Figure 9.

The reason for this is that the children of node 8 are
examined in a non-decreasing order of times taken by
processor P2 to execute its workload in the corresponding
solutions. Therefore, no edge coming out of node 8 after the
edge (3,4) can have a label with the execution time less than
4. This makes further expansion of node 8 meaningless as no
solution resulting from this expansion will have execution
time less than 4, which is necessary to improve the currently
best solution. Therefore, we backtrack to its ancestor, node
16 at level L1. We will call this key operation Backtrack. After
backtracking to node 16, the solution saved for workload
size 8 at level L2 becomes final because the corresponding
distribution of workload of size 8 between processors P2

and P3 is the optimal one.
After backtracking to node 16 at level L1, next node to

examine will be node 7 at level L2. The expansion of this
node results in two children as shown in Figure 11. Giving
zero workload to P2 results in the workload of size 7 at
level L3, which exceeds the size threshold σ3 = 6 and
therefore results in no-solution. The second child yields a
solution, which has the parallel execution time of 3. The

Fig. 10. Example: Applying the updated time threshold and removing
more data points from the search space.

σbefore = {37, 22, 13, 6}
16

16

...7

...6

0
t=3

6,2

7
�

0,0 1,
1 ...

8

5

0
t=4

5,3

1

0
t=6

1,6

7

0
t=7

7,7

8

0
t=9

8,9

0,0

1,
1 7,1 3,4

...

0,0
8,1 9,3

...

0,0

σafter = {33, 21, 13, 6}

Fig. 11. Example: Keeping on applying HPOPTA on the search space.

algorithm updates the time threshold, τ , making it 3. As
the time threshold decreased, the vector of size thresholds
is updated to {33, 21, 13, 6}. The solution then is saved. For
L1, the memorized information includes the problem size
assigned to P1, which is 9, the last examined index which
is equal to 1, and the parallel execution time of the solution
for processors {P1, P2, P3}, which is 3. For L2, the saved
information includes the problem size assigned to P2, which
is 1, the index of current element in the corresponding time
function, which is equal to 0, and the parallel execution time
of the solution for processors {P2, P3}, which is equal to 2.
After this, HPOPTA backtracks to the root.

HPOPTA proceeds in this manner from the root until
it comes to node 8 at level L1 as illustrated in Figure 12.
Here, as the optimal distribution of the workload of size 8
between processors P2 and P3 has been already found and
saved, the best solution coming out of node 8 at level L2

will be just retrieved from the memory. We call this key
operation, ReadMemory. Since the parallel execution time of
the retrieved solution is equal to 4, which is greater than
the current time threshold τ = 2, this solution is ignored.
The algorithm then moves to the next child, which results
in the solution {(8, 1), (8, 1), (0, 0), (0, 0)} with the parallel

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 10

σbefore = {33, 21, 13, 6}
16

8

0
t=1

8
�

ReadMemory

0,0
8,1

...

0,0
8,1

σafter = {0, 0, 0, 0}

Fig. 12. Example: Finding the optimal solution and using Mem to find
solutions.

execution time of 1. For this solution, the time threshold,
τ , is updated to 1. The corresponding reduction of the
search space results in the situation when no more data
points in the time functions are left for further examination.
Therefore, the algorithm terminates.

The optimal execution time is given by the last value
of the time threshold. The optimal workload distribution is
given by the workload distribution associated with this time
threshold. So, there are four key operations in the algorithm,
which are a) Cut, b) Save, c) Backtrack, and d) ReadMemory.

In the next section, we give a pseudocode of our algo-
rithm, which uses these key operations as the fundamental
building blocks.

5 FORMAL DESCRIPTION OF HPOPTA
In this section, we describe the pseudocode of HPOPTA,
which is shown in Algorithm 1. The inputs to HPOPTA
are: the workload size, n, the number of heterogeneous
processors, p, and a array of p time functions, T =
{T0, T1, · · · , Tp−1}. Ti represents the time function of pro-
cessor Pi and consists of m pairs (xij , tij), j ∈ [0,m),
where xij is the j-th workload size in the time function
and tij is its execution time by processor Pi. The outputs
are the optimal workload distribution, Dopt, and the opti-
mal parallel execution time, topt. It should be noted that
the number of processors selected by the algorithm in the
optimal workload distribution may be less than p.

The algorithm first sorts each time function in non-
decreasing order of time (Line 2). It then determines the
load-equal distribution. The array, Dopt, and the time
threshold, τ , are initialized to the load-equal distribution
and its corresponding execution time respectively (Lines 3-
5). Then the vector of size thresholds, σ, is determined using
the function SizeThresholdCalc (Line 6).

In line 7, the memorization data structure, matrix Mem,
consisting of (p− 2)× (n+1) elements, is initialized. It will
save the found solutions for processors P1, · · · , Pp−2. Then,
HPOPTA invokes the recursive routine, HPOPTA Kernel, to
find the optimal workload distribution.

Function GETTIME(T, x) (called in Line 5) returns the
execution time of workload size x in time function T . It
return 0 when x equals to 0. It should be mentioned that
pseudocodes of all functions used in Algorithms 1 and 2
and the structure ofMem are explained in the supplemental
which is available online.

Algorithm 1 Algorithm Finding Optimal Workload Distri-
bution of Size n for Maximizing Performance
1: function HPOPTA(n, p, T,Dopt, topt)

INPUT:
Workload size, n ∈ Z>0

Number of processors, p ∈ Z>0

Time functions, T = {T0, ..., Tp−1},
Ti = {(xij , tij) | i ∈ [0, p), j ∈ [0,m), xij ∈ Z>0, tij ∈ R>0}.
OUTPUT:
Optimal workload distribution, Dopt = {dopt[0], ..., dopt[p− 1]},
dopt[i] ∈ {

⋃m−1
j=0 xij ∪ {0}}, i ∈ [0, p).

Parallel execution time, topt ∈ R>0

2: T ← Sort↑(T)
3: dopt[i]← n

p , ∀i ∈ [0, p− 1]

4: dopt[i]← dopt[i] + 1, ∀i ∈ [0, n%p)
5: τ ←maxp−1

i=0 GETTIME(Ti, dopt[i])
6: σ← SIZETHRESHOLDCALC(p, T, τ)
7: Mem[i][j]← 〈0, 0, 0〉, ∀i ∈ [1, · · · , p− 2], j ∈ [0, · · · , n]
8: HPOPTA KERNEL(n, p, 0, T, τ, σ,NULL,Dcur,Mem,Dopt)
9: topt ← τ

10: return (Dopt, topt)
11: end function

5.1 Recursive Algorithm HPOPTA Kernel

The recursive function, HPOPTA Kernel (Algorithm 2), in-
vokes the core operations, Cut, Save, ReadMemory and Back-
track. The level of the tree that is processed in this function
is given by c. So, the first invocation of HPOPTA Kernel
deals with L0, the next recursive invocation deals with L1

and so on. It is important to note that Dopt holds the best
distribution found so far. The array Dcur is used to store
workloads currently assigned to processors Pi(i ∈ [0, p−1]).

Function Cut (given in the supplemental) compares
workload size (n) with the corresponding size threshold (σc)
to decide whether to expand the node or cut the subtree at
level c (Lines 2-4).

Lines 5-11 process the solutions found in the last level
Lp−1. When a solution, Dcur , is found, the routine Process-
Solution() is invoked to perform the following operations :

• If Dcur is faster than the current best solution, Dopt,
the time threshold τ will be reduced to the time of
Dcur and Dopt will be updated by Dcur .

• When τ decreases, the vector of size thresholds, σ, is
correspondingly updated.

• Dcur is memorized by invoking the operation Save.
• Using Dcur , the index of the level, bk, with the

maximal execution time is found. If there are more
than one level with this time, the level, which is
closer to the root, is chosen.

Line 12 sets idx to −1. Variable idx, ranging from −1 to
m − 1, is used to store indexes of data points in the sorted
time functions. If idx equals to −1, the workload size xi idx
is set to the zero workload size (Lines 28-30), else xi idx is
the idx-th workload size in the time function Ti.

Before expanding a node at a given level c to generate
distributions of the workload of size n associated with
this node, the function ReadMemory is called to check if
any solution distributing workload n between processors
{Pc, · · · , Pp−1}, is currently saved in Mem and retrieve it if
this is the case (Lines 13-27). The function also updates idx
(Line 14) to determine the point from where the examination
of data points should be resumed.

A memory cell in Mem saves either optimal or inter-
mediate solution. The memory cell containing the optimal

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 11

distribution is labelled Finalized. The intermediate solution
is a solution which may not be optimal. The variable status
determines the type of the retrieved solution. If no solu-
tion has been saved for the node or the parallel execution
time of the retrieved solution is equal to or greater than
τ (given by the status, NOT SOLUTION), we return from
HPOPTA Kernel. If the saved solution in the Mem is the
optimal one (given by the status, SOLUTION), the retrieved
solution is used and we return from HPOPTA Kernel. How-
ever, if the retrieved solution is not Finalized (given by the
status, SOLUTION RESUME), the function ProcessSolution
is invoked to process this solution (Line 21). Then the
function Backtrack is invoked (Line 23) to determine whether
the routine backtracks or resumes the process from the data
point (xc idx, GETTIME(Ti, xc idx)) where idx has been set
by the function ReadMemory. If none of the above cases takes
place, the routine resumes from data point idx (Line 31).

The while loop (Lines 31-47) scans the time function Tc
from left to right examining the data points with execution
times less than the time threshold, τ . In each iteration,
the data point idx is extracted from the time function Tc.
Its workload size xc idx is stored in array Dcur (Line 32).
If this workload size (xc idx) is equal to n, we found a
solution. In this case, the solution is processed using Pro-
cessSolution() (Lines 33-35). Otherwise, if xc idx is less than
n, HPOPTA Kernel is re-invoked to solve HPOPT for the
remaining workload n − xc idx at the next level Lc+1. If
xc idx greater than n, HetW Kernel drops this data point and
moves to the next one.

After data point xc idx is examined, the function Back-
track is called to decide whether the algorithm backtracks or
continues the examination at level Lc (Line 40).

Lines 43-46 check if the algorithm reaches the end of the
time function Tc. If this is the case, the while loop (Line 31-47)
terminates and the corresponding memory cell is finalized
(Line 48). Otherwise, idx is incremented moving to the next
data point in the time function Tc.

5.2 Theoretical Analysis of HPOPTA

Proposition 5.1. The algorithm HPOPTA always returns a
distribution of the workload of size n between p heterogeneous
processors that minimizes its parallel execution time.

Proposition 5.2. The time complexity of HPOPTA is O(m3 ×
p3). The total memory used by the algorithm is O(p× (m+ n)).

The proofs of the propositions can be found in the
supplemental file which is available online.

6 EXPERIMENTAL ANALYSIS OF HPOPTA

In this section, we experimentally examine our proposed
algorithm, HPOPTA. We also present speedup compared to
solutions returned by load-balancing algorithms based on
functional performance model and constant performance
model. Two sets of experiments are conducted. The first
set is carried out on a real heterogeneous server, while the
second is performed on simulated clusters of heterogeneous
nodes. Finally, we analyse a hierarchical two-level workload
distribution algorithm that uses HPOPTA and POPTA [9].

Algorithm 2 Algorithm of Recursive Kernel Invoked by
Algorithm 1
1: function HPOPTA KERNEL(n, p, c, T, τ, σ, bk,Dcur,Mem,Dopt)

2: if CUT(n, σc) then
3: return
4: end if
5: if c = p− 1 then
6: if GETTIME(Tc, n) < τ then
7: dcur[c]← n
8: PROCESSSOLUTION(p, T, τ, σ, bk,Dcur,Mem,−1, Dopt)
9: end if

10: return
11: end if
12: idx←−1
13: if c > 0 ∧ c ≤ p− 2 then
14: status← READMEMORY(n, p, c, τ, T,Dcur,Mem, idx)
15: if status = NOT SOLUTION then
16: return
17: else if status = SOLUTION then
18: PROCESSSOLUTION(p, T, τ, σ, bk,Dcur,Mem, c,Dopt)
19: return
20: else if status = SOLUTION RESUME then
21: PROCESSSOLUTION(p, T, τ, σ, bk,Dcur,Mem, c,Dopt)
22: tt← GETTIME(Tc, xc idx)
23: if BACKTRACK(n, c, bk, idx, tt, τ,Mem, TRUE) then
24: return
25: end if
26: end if
27: end if
28: if idx = −1 then
29: xc idx ← 0
30: end if
31: while GETTIME(Tc, xc idx) < τ do
32: dcur[c]← xc idx

33: if xc idx = n then
34: dcur[i]← 0, ∀i ∈ [c+ 1, · · · , p− 1]
35: PROCESSSOLUTION(p, T, τ, σ, bk,Dcur,Mem,−1, Dopt)
36: else if n > xc idx then
37: HPOPTA KERNEL(n− xc idx, p, c+ 1, T, τ, σ, bk,Dcur)
38: end if
39: tt← GETTIME(Tc, xc idx)
40: if BACKTRACK(n, c, bk, idx, tt, τ,Mem,FALSE) then
41: return
42: end if
43: if idx+ 1 = m then
44: break
45: end if
46: idx← idx+ 1
47: end while
48: MAKEFINAL(Mem[c][n])
49: end function

6.1 Experimental Platform and Applications

We perform our experiments on HCLServer containing an
Intel Haswell multicore CPU, Nvidia K40c GPU, and Intel
Xeon Phi 3120P, whose specifications are given in Tables 1,
2 and 3 respectively.

We experiment with two widely known scientific data-
parallel applications, Matrix Multiplication and 2D discrete
Fourier Transform, configured for execution on HCLServer
as explained in Section 1. Each application consists of three
computational kernels running in parallel on three abstract
processors of the HCLServer.

We would like to mention that the incorporation of the
cost of communications is out of the scope of this paper.

6.2 Data Partitioning on Hybrid Server

In this section, we examine our proposed algorithm on
HCLServer. For each application, the input to HPOPTA are
three time functions representing the performance profiles
of the CPU, GPU, and Xeon Phi abstract processors respec-
tively.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 12

As explained in Section 1, the time functions of an
application are built simultaneously on all abstract pro-
cessors to take into account resource contention. It should
be mentioned that there is no specific reason for choosing
particular problem sizes in our time functions. HPOPTA
can deal with any time function represented by a discrete
set of data points. However, if the consecutive problem
sizes are separated by a large step size, the shape of the
speed functions becomes smoother thereby disallowing any
opportunity for optimization.

We compare the speedup of HPOPTA over load-
balancing algorithms based on functional performance
model (FPM) [45] [5] [6] and constant performance model.
Just for comparison purposes, we will call the load-
balancing algorithms based on FPM, smooth-FPM algo-
rithms. The percentage speedup of HPOPTA against smooth-
FPM algorithm is calculated as follows: SpeedupFPM (%) =
tsmooth−FPM−tHPOPTA

tHPOPTA
× 100, where tsmooth−FPM and

tHPOPTA respectively are the execution times of solutions
found by executing HPOPTA using smoothed and actual
time functions. tsmooth−FPM is estimated as follows. First,
the workload distribution for a given workload size is
found by executing HPOPTA using smoothed time functions
as input. Then, the execution time for this distribution is
calculated using the original, not smoothed, time functions.
Thus, the smoothed time functions are used for finding the
FPM workload distribution, and its execution time is then
found using the real time functions.

The percentage speedup of HPOPTA against load-
balancing algorithm based on constant performance
model is calculated as follows: Speedupcpm(%) =
tCPM−tHPOPTA

tHPOPTA
× 100, where tCPM and tHPOPTA respec-

tively are the execution times of solutions found by execut-
ing the CPM-based load-balancing algorithm and HPOPTA
using actual time functions. The constant performance
model (CPM) uses relative speeds of processors, which are
constant floating-point numbers. We use three CPMs for
comparison and these are determined from three different
data points in speed functions of the processors.

We now summarize the experimental results on
HCLServer using two data parallel applications Matrix Mul-
tiplication and FFT.

6.2.1 Matrix Multiplication
Heterogeneous matrix multiplication application uses three
kernels to perform computation on CPUs, GPUs and Xeon
Phis which has been explained in detail in Section 1. It is
a data parallel application enabling in-card and out-of-card
matrix multiplication on CPU, GPU and Xeon Phi. In our
experiments, the Intel MKL and CUDA versions used are
2017.0.2 and 7.5 respectively.

For a problem size n2 in the speed function, the speed
is calculated as 2×n3

t where t is execution time taken to
multiply two n×n square matrices. For GPU and Intel Xeon
Phi, the execution time includes the transfer of matrices
from the host to the device and the results from the device
to the host. Figure 13 shows the speed functions for the
three processors. Each speed function of DGEMM (and its
equivalent time function) is represented by a discrete set
of cardinality (m) equal to 700 data points with problem
sizes x = {642, 1282, · · · , 448002}. Out-of-card DGEMM

2 2 2 2 2 2 2 2 2

Fig. 13. Original and smoothed speed functions of Heterogeneous
Matrix Multiplication on our server. MKL DGEMM is invoked for CPU
and Xeon Phi. For GPU, CUBLAS is used. The original functions are
smoothed using polynomial trend line in LibreOffice Calc.

2 2 2 2 2 2 2

Fig. 14. Speed functions of heterogeneous matrix multiplication for
whole HCLServer. The application is executed for each workload size
n using two different workload distributions HPOPTA and FPM.

invocations are performed on GPU and Xeon Phi when
workload size exceeds the size of main memory on the
accelerators.

To obtain smooth speed function from the actual speed
function, we smooth the actual speed function using poly-
nomial trend line in LibreOffice Calc and construct its
equivalent time function. Figures 13 shows the original and
smoothed speed functions of DGEMM.

To determine the percentage improvements given by
HPOPTA, we create an experimental data set for DGEMM
whose data points ranges from (p3 × 64× 100)2 to (p× 64×
700)2 with step size of 642. Since there are three abstract
processors in the HCLServer, p is equal to 3 in this experi-
ment. Figure 14 shows the speed of heterogeneous DGEMM
on HCLServer when executed using HPOPTA in comparison
with FPM workload distribution. HPOPTA gives the mini-
mum, average, and maximum percentage of improvement
of 0, 14, 261 percent respectively in comparison with FPM.
Since tsmooth−FPM equals tHPOPTA for some workloads,
we have observed zero percentage of improvement for
them. The maximum improvement belongs to the work-
load size 67842 where the problem sizes for CPU, GPU
and Xeon Phi found using original functions (HPOPTA)
are {1856, 4928, 0} and using the smooth functions are
{576, 4736, 1472}.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 13

2 2 2 2 2

Fig. 15. Original and smoothed speed functions of Heterogeneous FFT
on our server. MKL FFT is invoked for CPU and Xeon Phi. For GPU,
CUFFT is used. The original functions are smoothed using polynomial
trend line in LibreOffice Calc.

For CPM, we use the relative speeds of the processors
based on execution of one problem size. We select three
different problem sizes from the speed functions for this
purpose. One at the beginning, one in the middle, and
one in the end. These are 4736, 28672 and 44800 and
therefore there are three constant relative performance mod-
els, {0.34, 0.59, 0.07}, {0.27, 0.55, 0.18}, {0.27, 0.49, 0.24}
where the first element in each set is relative speed of
CPU, the second is relative speed of GPU, and the last
one represents the relative speed of Xeon Phi. The average
percentage improvements are respectively 122, 106, and 82
percent.

Since the number of data points in speed functions
are limited, there are workload sizes whose CPM work-
load distributions contain problem sizes, which exceed the
largest problem size in the speed functions. That is, for these
workload sizes, CPM-based load balancing algorithm does
not find any solution. Therefore, we ignored these workload
sizes to calculate maximum and average of Speedupcpm.

6.2.2 FFT

Heterogeneous FFT application uses three kernels to per-
form computation on CPUs, GPUs, and Xeon Phis which
has been explained in detail in Section 1. It is a data parallel
application enabling in-card fast Fourier transform on the
three abstract processors in HCLServer. In our experiments,
the Intel MKL and CUDA versions used are 2017.0.2 and 7.5
respectively.

For a problem size n2 in the speed function, the speed
is calculated as n2×log2 n

2

t where t is execution time taken
to compute 2D DFT of size n2. The FFT speed functions are
shown in the Figure 15. The discrete set for the FFT speed
functions has the cardinality 1090 and contains problem
sizes, {162, 322, · · · , 240002}. It does not include problem
sizes, which cannot be factored into primes less than or
equal to 127. For these problem sizes, CUFFT for GPU
gives failures. Unlike DGEMM, all the FFT invocations are
performed in-card.

Figures 15 shows the original and smoothed speed
functions of FFT. We again apply polynomial trend line in
LibreOffice Calc on actual speed function of FFT to obtain
its smooth function.

2 2 2 2 2 2 2 2

Fig. 16. Speed functions of heterogeneous FFT for whole HCLServer.
The application is executed for each workload size n using two different
workload distributions HPOPTA and FPM.

To analyse FFT, the experimental data set includes data
points ranging from (p3 × 16 × 100)2 to (p × 16 × 1500)2

with step size of 162 (p = 3 for HCLServer). Figure 16
compares the speed of heterogeneous FFT when executed
using HPOPTA with the speed when the workload is dis-
tributed using FPM. HPOPTA gives the minimum, average,
and maximum percentage of improvements of 0, 40, and
502 percent respectively in comparison with FPM. The max-
imum improvement happens for the workload size, 19202.
The problem sizes given to CPU, GPU and Xeon Phi using
original functions (HPOPTA) are {464, 1456, 0} and using
the smooth functions are {656, 1168, 96}.

Like DGEMM, to compare CPM-based load balancing
algorithm with HPOPTA, we use the relative speeds based
on three different problem sizes, 4320, 13824, and 24000,
from the speed functions. These points result in three CPMs,
{0.18, 0.78, 0.04}, {0.69, 0.26, 0.05}, {0.60, 0.35, 0.05}. The
average percentage improvements are 301, 164, and 129
percent respectively.

Since the number of data points in speed functions are
limited, there are workload sizes whose CPM workload
distributions contain problem sizes, which exceed the the
largest problem size in the speed functions. In addition to
out-of-range problem sizes, there is no speed for problem
sizes, which cannot be factored into primes less than or
equal to 127. This is due to failure of CUFFT calls for
these problem sizes. That is, for these workload sizes, CPM-
based load balancing algorithm does not find any solution.
Therefore, we ignored these workload sizes to calculate the
maximum and average of Speedupcpm.

6.2.3 Discussion

We observed a tight correlation between the average vari-
ations in speed functions and the average performance
improvements. To study this correlation further, we create
speed bands for DGEMM and FFT speed functions as men-
tioned in [47]. By looking at DGEMM speed functions in
Figures 13 and 15, it can be observed that there are maxi-
mum differences of 29% and 150% approximately between
lower and upper bands in DGEMM and FFT speed func-
tions. These differences confirm the achieved improvements
where the average SpeedupFPM of FFT is about four times
greater than that of DGEMM.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 14

We also observed that sometimes the number of pro-
cessors in the optimal solutions determined by HPOPTA is
less than p. For instance, the optimal solution for FFT for
matrix size 1200 × 1200 uses just one abstract processor,
GPU, meanwhile for matrix size 19632× 19632 the optimal
distribution only uses CPU and GPU.

6.3 Using HPOPTA for Data partitioning on Clusters of
Heterogeneous Nodes

In the supplemental (Section 5), we describe how HPOPTA
can be used to optimally distribute workload between pro-
cessors in a cluster of heterogeneous nodes. We present a hi-
erarchical two-level workload distribution approach based
on HPOPTA and POPTA [9], which not only reduces the
computational complexity but also allows parallel compu-
tation for finding optimal workload distribution.

7 CONCLUSION

Modern high performance computing platforms have be-
come highly heterogeneous due to tight integration of multi-
core CPU processors and accelerators. This tight integration
causes contention on shared resources such as Last Level
Cache (LLC), DRAM, PCI-E links, etc. Due to this serious
contention and NUMA, the performance profiles of data-
parallel applications executing on these heterogeneous plat-
forms are not smooth and deviate greatly from the shapes
that supposed by state-of-the-art load-balancing algorithms
to find optimal solutions.

In this paper, we formulate the problem of finding
optimal distribution on heterogeneous clusters of hybrid
nodes and propose a novel model-based data partitioning
algorithm to minimize the execution time for general per-
formance profiles of data-parallel applications executing on
clusters of heterogeneous nodes. The inputs to the algorithm
are p discrete time functions, which represent the perfor-
mance profiles of p processors existing in the heterogeneous
cluster. The time complexity of the proposed algorithm is
O(m3 × p3) where m and p respectively represent the max-
imum cardinality of input time function and the number
of heterogeneous processors. We study the optimality of
solutions found by the proposed algorithm using two well-
known data-parallel applications, matrix multiplication and
two-dimensional discrete fast Fourier transform. According
to the experimental results, the proposed algorithm demon-
strates considerable improvements in average and maxi-
mum performance for the two applications in comparison
with state-of-art load-balancing algorithms.

The software implementation for HPOPTA is available at
[48].

In our future work, we aim to design and implement
parallel versions of the algorithms to reduce the theoretical
complexity. We would also consider cost of communica-
tions.

ACKNOWLEDGEMENTS

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland
(SFI) under Grant Number 14/IA/2474.

REFERENCES

[1] Top500, “Top500,” 2017. [Online]. Available: https://www.top500.
org/lists/2017/11/

[2] M. Cierniak, M. J. Zaki, and W. Li, “Compile-time scheduling
algorithms for a heterogeneous network of workstations,” The
Computer Journal, vol. 40, no. 6, pp. 356–372, 1997.

[3] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix mul-
tiplication on heterogeneous platforms,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 12, no. 10, pp. 1033–1051, 2001.

[4] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of
computations solving linear algebra problems on networks of
heterogeneous computers,” J. Parallel Distrib. Comput., vol. 61,
no. 4, Apr. 2001.

[5] A. L. Lastovetsky and R. Reddy, “Data partitioning with a realistic
performance model of networks of heterogeneous computers,”
in Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International. IEEE, 2004, p. 104.

[6] A. Lastovetsky and R. Reddy, “Data partitioning with a functional
performance model of heterogeneous processors,” International
Journal of High Performance Computing Applications, vol. 21, no. 1,
pp. 76–90, 2007.

[7] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based
optimization of EULAG kernel on Intel Xeon Phi through load
imbalancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 3, pp. 787–797, 2017.

[8] P. K. Smolarkiewicz and W. W. Grabowski, “The multidimensional
positive definite advection transport algorithm: Nonoscillatory
option,” J. Comput. Phys., vol. 86, no. 2, Feb. 1990.

[9] A. Lastovetsky and R. Reddy, “New model-based methods and
algorithms for performance and energy optimization of data
parallel applications on homogeneous multicore clusters,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp.
1119–1133, 2017.

[10] OpenBLAS, “OpenBLAS: An optimized BLAS library,” 2016.
[Online]. Available: http://www.openblas.net/

[11] FFTW, “FFTW: A fast, free c FFT library,” 2016. [Online].
Available: http://www.fftw.org/

[12] A. Lastovetsky and R. Reddy, “Data distribution for dense fac-
torization on computers with memory heterogeneity,” Parallel
Computing, vol. 33, no. 12, Dec. 2007.

[13] A. Ilić, F. Pratas, P. Trancoso, and L. Sousa, “High-performance
computing on heterogeneous systems: Database queries on CPU
and GPU,” High Performance Scientific Computing with Special Em-
phasis on Current Capabilities and Future Perspectives, pp. 202–222,
2010.

[14] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balanc-
ing of parallel computational iterative routines on highly hetero-
geneous HPC platforms,” Parallel Processing Letters, vol. 21, no. 02,
pp. 195–217, 2011.

[15] D. Clarke, A. L. Lastovetsky, and V. Rychkov, “Column-based
matrix partitioning for parallel matrix multiplication on hetero-
geneous processors based on functional performance models,” in
Euro-Par 2011: Parallel Processing Workshops, ser. Lecture Notes in
Computer Science, vol. 7155. Springer-Verlag, 2012.

[16] X. Liu, Z. Zhong, and K. Xu, “A hybrid solution method for CFD
applications on GPU-accelerated hybrid HPC platforms,” Future
Generation Computer Systems, vol. 56, pp. 759–765, 2016.

[17] M. Radmanović, D. Gajić, and R. Stanković, “Efficient computation
of galois field expressions on hybrid CPU-GPU platforms.” Journal
of Multiple-Valued Logic & Soft Computing, vol. 26, 2016.

[18] A. Ilic and L. Sousa, “Simultaneous multi-level divisible load
balancing for heterogeneous desktop systems,” in Parallel and
Distributed Processing with Applications (ISPA), 2012 IEEE 10th In-
ternational Symposium on. IEEE, 2012, pp. 683–690.

[19] J. Colaço, A. Matoga, A. Ilic, N. Roma, P. Tomás, and R. Chaves,
“Transparent application acceleration by intelligent scheduling of
shared library calls on heterogeneous systems,” in Parallel Process-
ing and Applied Mathematics. Springer, 2013, pp. 693–703.

[20] V. Cardellini, A. Fanfarillo, and S. Filippone, “Heterogeneous
sparse matrix computations on hybrid GPU/CPU platforms.” in
PARCO, 2013, pp. 203–212.

[21] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on
multicore and multi-GPU platforms using functional performance
models,” Computers, IEEE Transactions on, vol. 64, no. 9, pp. 2506–
2518, 2015.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, XXXX 2018 15

[22] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-
of-core implementation for accelerator kernels on heterogeneous
clouds,” The Journal of Supercomputing, vol. 74, no. 2, pp. 551–568,
2018.

[23] H. Khaleghzadeh, , R. Reddy, Z. Zhong, and A. Lastovetsky,
“ZZGEMMOOC: Out-of-core package for out-of-core dgemm
on GPU,” 2017. [Online]. Available: https://git.ucd.ie/hcl/
zzgemmooc.git

[24] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky,
“XeonPhiOOC: Out-of-core package for out-of-core dgemm
on Xeon Phi,” 2017. [Online]. Available: https://git.ucd.ie/
manumachu/xeonphiooc.git

[25] A. T. Chronopoulos, D. Grosu, A. M. Wissink, M. Benche, and
J. Liu, “An efficient 3d grid based scheduling for heterogeneous
systems,” Journal of Parallel and Distributed Computing, vol. 63,
no. 9, pp. 827 – 837, 2003, special Section on the Best Papers
from the 2002 International Parallel and Distributed Processing
Symposium.

[26] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, “An efficient,
model-based CPU-GPU heterogeneous FFT library,” in Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on. IEEE, 2008, pp. 1–10.

[27] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu, “Adaptive
optimization for petascale heterogeneous CPU/GPU computing,”
in Cluster Computing (CLUSTER), 2010 IEEE International Confer-
ence on. IEEE, 2010, pp. 19–28.

[28] H. Khaleghzadeh, H. Deldari, R. Reddy, and A. Lastovetsky,
“Hierarchical multicore thread mapping via estimation of remote
communication,” The Journal of Supercomputing, pp. 1–20, 2017.

[29] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:
a programming model for heterogeneous multi-core systems,” in
ACM SIGOPS operating systems review, vol. 42, no. 2. ACM, 2008,
pp. 287–296.

[30] G. Quintana-Ortı́, F. D. Igual, E. S. Quintana-Ortı́, and R. A. van de
Geijn, “Solving dense linear systems on platforms with multiple
hardware accelerators,” SIGPLAN Not., vol. 44, no. 4, pp. 121–130,
Feb. 2009.

[31] C. Augonnet, S. Thibault, and R. Namyst, “Automatic Calibration
of Performance Models on Heterogeneous Multicore Architec-
tures,” in 3rd Workshop on Highly Parallel Processing on a Chip (HPPC
2009), Aug. 2009.

[32] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix
computations on heterogeneous multi-core and multi-gpu sys-
tems,” in Proceedings of the 26th ACM international conference on
Supercomputing. ACM, 2012, pp. 365–376.

[33] K. Kyriakopoulos, A. T. Chronopoulos, and L. Ni, “An optimal
scheduling scheme for tiling in distributed systems,” in Cluster
Computing, 2007 IEEE International Conference on. IEEE, 2007, pp.
267–274.

[34] K. Schloegel, G. Karypis, and V. Kumar, “A unified algorithm for
load-balancing adaptive scientific simulations,” in Supercomputing,
ACM/IEEE 2000 Conference, Nov 2000, pp. 59–59.

[35] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Hea-
phy, and L. A. Riesen, “Hypergraph-based dynamic load balanc-
ing for adaptive scientific computations,” in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International. IEEE,
2007, pp. 1–11.

[36] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,” J. Parallel Distrib. Comput., vol. 7, no. 2, pp. 279–
301, Oct. 1989.

[37] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Dynamic load
balancing and efficient load estimators for asynchronous iterative
algorithms,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 16, no. 4, pp. 289–299, 2005.

[38] A. Legrand, H. Renard, Y. Robert, and F. Vivien, “Mapping and
load-balancing iterative computations,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 15, no. 6, Jun. 2004.

[39] R. L. Cariño and I. Banicescu, “Dynamic load balancing with
adaptive factoring methods in scientific applications,” The Journal
of Supercomputing, vol. 44, no. 1, pp. 41–63, 2008.

[40] J. A. Martı́nez, E. M. Garzón, A. Plaza, and I. Garcı́a, “Automatic
tuning of iterative computation on heterogeneous multiprocessors
with ADITHE,” J. Supercomput., vol. 58, no. 2, Nov. 2011.

[41] A. Lastovetsky and R. Reddy, “A novel algorithm of optimal
matrix partitioning for parallel dense factorization on heteroge-
neous processors,” in International Conference on Parallel Computing
Technologies. Springer, 2007, pp. 261–275.

[42] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert,
“A proposal for a heterogeneous cluster scalapack (dense linear
solvers),” IEEE Transactions on Computers, vol. 50, no. 10, pp. 1052–
1070, 2001.

[43] M. Fatica, “Accelerating linpack with cuda on heterogenous clus-
ters,” in Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units. ACM, 2009, pp. 46–51.

[44] R. Wyrzykowski, L. Szustak, K. Rojek, and A. Tomas, “Towards
efficient decomposition and parallelization of mpdata on hybrid
cpu-gpu cluster,” in International Conference on Large-Scale Scientific
Computing. Springer, 2013, pp. 457–464.

[45] A. Lastovetsky and R. Reddy, “Data partitioning for multipro-
cessors with memory heterogeneity and memory constraints,”
Scientific Programming, vol. 13, no. 2, pp. 93–112, 2005.

[46] W. Zhang, X. Ji, B. Song, S. Yu, H. Chen, T. Li, P. C. Yew, and
W. Zhao, “Varcatcher: A framework for tackling performance
variability of parallel workloads on multi-core,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1215–1228,
April 2017.

[47] A. Lastovetsky, R. Reddy, and R. Higgins, “Building the functional
performance model of a processor,” in Proceedings of the 2006 ACM
symposium on Applied computing. ACM, 2006, pp. 746–753.

[48] H. Khaleghzadeh, R. Reddy, and A. Lastovetsky, “HPOPTA:
Heterogeneous model-based data partitioning algorithm for
optimization of data-parallel applications for performance,” 2017.
[Online]. Available: https://git.ucd.ie/hkhaleghzadeh/hpopt.git

Hamidreza Khaleghzadeh is a PhD researcher
at Heterogeneous Computing Laboratory at the
School of Computer Science, University College
Dublin. He got his BSc and MSc degrees in
Computer Engineering (software) in 2007 and
2011, respectively. He ranked as a 2nd posi-
tion holder in his MS program. His main re-
search interests include performance and en-
ergy consumption optimization in massively het-
erogeneous systems, high performance hetero-
geneous systems, energy efficiency, and paral-

lel/distributed computing.

Ravi Reddy Manumachu received a B.Tech
degree from I.I.T, Madras in 1997 and a PhD
degree from the School of Computer Science,
University College Dublin in 2005. His main re-
search interests include high performance het-
erogeneous computing, high performance linear
algebra, parallel computational fluid dynamics
and finite element analysis.

Alexey Lastovetsky received a PhD degree
from the Moscow Aviation Institute in 1986, and
a Doctor of Science degree from the Russian
Academy of Sciences in 1997. His main re-
search interests include algorithms, models, and
programming tools for high performance hetero-
geneous computing. He has published over a
hundred technical papers in refereed journals,
edited books, and international conferences. He
authored the monographs Parallel computing on
heterogeneous networks (Wiley, 2003) and High

performance heterogeneous computing (Wiley, 2009).

