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Abstract—Fast Fourier transform (FFT) is a key routine
employed in application domains such as molecular dynamics,
computational fluid dynamics, signal processing, image pro-
cessing, and condition monitoring systems. Its performance on
latest multicore platforms is therefore of paramount concern
to the high performance computing community. The inherent
complexities however in these platforms such as severe resource
contention and non-uniform memory access (NUMA) pose
formidable challenges.

We study in this work the performance profiles of multi-
threaded 2D fast Fourier transforms provided in three highly
optimized packages, FFTW-2.1.5, FFTW-3.3.7, and Intel MKL
FFT on a modern Intel Haswell multicore processor consisting
of thirty-six cores. First, we show that all the three routines
demonstrate drastic performance variations and therefore their
average performances are considerably lower than their peak
performances. The ratio of average to peak performance for
the 2D FFT routines from the three packages are 40%,
30%, and 24%. We demonstrate that the average and peak
performance of FFTW-2.1.5, last updated in 1999, is better than
FFTW-3.3.7 suggesting that extensive machine optimization
using architecture-specific techniques can be harmful in the
long run since hardware platforms undergo drastic changes.
We also show that while the average performance of Intel
MKL FFT is better than FFTW-3.3.7, it is outperformed
by FFTW-3.3.7 for many problem sizes. Also the width of
the performance variations for Intel MKL FFT are severe
compared to FFTW-3.3.7. Based on our study, we conclude
that improving the average performance of FFT by removal
of performance variations on modern multicore processors
constitutes a tremendous research challenge.

We propose three possible solution approaches to remove
the performance variations and suggest future directions.

Keywords-fast Fourier transform, multicore, data partition-
ing, load balancing, performance optimization, code tuning

I. INTRODUCTION

Fast Fourier transform (FFT) is a key routine employed in
application domains such as molecular dynamics, computa-
tional fluid dynamics, signal processing, image processing,
and condition monitoring systems [1]–[5]. It is so funda-
mental that hardware vendors provide libraries containing
1D, 2D, and 3D FFT routines highly optimized for their
processors. For example, highly optimized FFT routines for
Intel processors are provided in the Intel Math Kernel library

(Intel MKL) [6], for Nvidia CUDA GPUs in cuFFT [7], and
for AMD processors in clFFT [8].

The theoretical computational complexity and arithmetic
intensity of 2D FFT lies between those for highly memory-
bound and highly compute-bound applications. Its computa-
tional complexity of O(N2× log2N) for a 2D FFT of com-
plex input and output lies between those for highly memory-
bound applications (O(N2) for matrix-vector multiplication
MxV of a dense matrix N ×N ) and highly compute-bound
applications (O(N3) for matrix-matrix multiplication MxM
of two dense N ×N matrices). Its arithmetic intensity (IA)
(IA = #flops

#memory accesses = O(log2N)) lies between those
for highly memory-bound applications (IA for MxV is 1)
and highly compute-bound applications (IA for MxM is
N ). Several code tuning techniques (multithreading, Fused
Multiply-Add (FMA), SIMD acceleration using specialized
instruction sets such as SSE2, AltiVec, etc) have been used
to optimize it for different processor architectures.

The performance of FFT, therefore, on modern multicore
platforms is of paramount concern to the high performance
computing community. To address the twin concerns of
increasing performance and high energy efficiency, modern
multicore platforms today feature tight integration of cores
contending for shared on-chip resources such as Last Level
Cache (LLC) and interconnect (For example: Intels Quick
Path Interconnect [9]), leading to severe resource contention
and non-uniform memory access (NUMA). These inherent
complexities however pose significant challenges to FFT
achieving good performance on these platforms.

To elucidate the challenges, we use three multithreaded
FFT applications for comparison written using the packages
FFTW-2.1.5, FFTW-3.3.7, and Intel MKL FFT. The pack-
ages, FFTW-2.1.5 and FFTW-3.3.7, are open-source and
are reported to offer FFT routines that perform better than
other publicly available FFT software. The FFTW interface
is so popular that hardware vendor libraries ( [6], [7])
offer optimized implementations of the interface for their
processors.

The FFTW-3.3.7 package is installed with multithreading,
SSE/SSE2, AVX2, and FMA (fused multiply-add) optimiza-
tions enabled. For Intel MKL FFT, we do not use any



Technical Specifications Intel Haswell Server
Processor Intel Xeon CPU E5-2699 v3 @ 2.30GHz

OS CentOS 7.1.1503
Microarchitecture Haswell

Memory 256 GB
Core(s) per socket 18

Socket(s) 2
NUMA node(s) 2

L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 46080 KB

NUMA node0 CPU(s) 0-17,36-53
NUMA node1 CPU(s) 18-35,54-71

Table I: Specification of the Intel Haswell server used to
construct the performance profiles.

special environment variables. The version of MKL used
is 2017.0.4.

The performance profiles for the applications are obtained
on a modern Intel Haswell multicore server consisting of 2
sockets of 18 physical cores each (specification shown in
Table I). All the FFT applications compute a 2D-DFT of
complex signal matrix of size N × N using 36 threads.
We do not use any special environment affinity variables
during the execution of the application. The total number of
problem sizes N × N experimented is around 1000 with
N ranging from 128 to 64000 with a step size of 64,
{128, 192, ..., 64000}. The speed of execution of a 2D-DFT
of complex signal matrix of size N ×N is calculated using
the formula: 5.0∗N2∗log2(N)

t , where t is the time of execution
of the 2D-DFT.

We experiment with three planner flags,
{FFTW ESTIMATE, FFTW MEASURE,
FFTW PATIENT}. The performance profiles are shown
for only one planner flag, FFTW ESTIMATE. We
have performed experiments with two other planner
flags, {FFTW MEASURE, FFTW PATIENT}. Table II
summarizes for FFTW-3.3.7 the execution times for a
subset of exprimented problem sizes. The execution times
for these flags however are prohibitively larger compared
to FFTW ESTIMATE and severe variations are present.
The long execution times are due to the lengthy times to
create the plans because FFTW MEASURE tries to find
an optimized plan by computing several FFTs whereas
FFTW PATIENT considers a wider range of algorithms to
find a more optimal plan.

We will be referring frequently to width of performance
variations in a performance profile. It is related to the
difference of speed between two subsequent local minima
(s1) and maxima (s2) and is defined below:

variation(%) =
|s1 − s2|

min(s1, s2)
× 100 (1)

To make sure the experimental results are reliable, we

N FFTW ESTIMATE FFTW MEASURE FFTW PATIENT
20160 3 31 5015
20480 16 41 2549
20672 6.5 3004 8228
21120 3.6 31 2746
21440 4 32 1367
21632 14.5 2937 9754

Table II: Execution times in seconds for FFTW-3.3.7 on the
Intel Haswell multicore server for three different planner
flags.

follow a strict statistical methodology, which we describe in
detail in the section to follow. Briefly, for each data point
in the performance profile, the automation software executes
the FFT application repeatedly until the sample mean lies in
the 95% confidence interval and a precision of 0.025 (2.5%)
has been achieved. For this purpose, Student’s t-test is used
assuming that the individual observations are independent
and their population follows the normal distribution. We
verify the validity of these assumptions using Pearson’s chi-
squared test. The speed/performance values shown in the
graphical plots throughout this work are the sample means
obtained using Student’s t-test.

Figure 1a, 1b show the performance profiles of FFTW
2.1.5 versus FFTW 3.3.7. Following are the key observa-
tions:

• We can see that the width of performance variations in
FFTW-3.3.7 is greater than that for FFTW-2.1.5.

• The peak performance of FFTW-3.3.7 is 16989
MFLOPs (N = 8000) whereas that for FFTW-2.1.5
is 17841 MFLOPs (N = 2816).

• The average speeds of FFTW-2.1.5 and FFTW-3.3.7
are 7033 MFLOPs and 5065 MFLOPs. FFTW-2.1.5 is
better than FFTW-3.3.7 by around 38% (on an average).
There are 529 problem sizes (out of 1000) where the
performance of FFTW-2.1.5 is better than FFTW-3.3.7.

Figures 2a, 2b present the performance comparisons be-
tween FFTW-2.1.5 and Intel MKL FFT. The most important
observations are as follows:

• The peak performance of FFTW-2.1.5 is 17841
MFLOPs (N = 2816) whereas that for Intel MKL FFT
is 39424 MFLOPs (N = 1792).

• The average performance of Intel MKL FFT is around
9572 MFLOPs versus 7033 MFLOPs for FFTW-2.1.5.
So, on an average, Intel MKL FFT is 36% better
than FFTW-2.1.5. Despite Intel MKL FFT demonstrat-
ing better average performance than FFTW-2.1.5, its
width of variations is greater than that for FFTW-
2.1.5. One can see that the variations of Intel MKL
FFT fill the picture. This is the reason why Intel
MKL FFT demonstrates comparatively poorer average
performance despite its high peak performance.

• There are 162 problem sizes (out of 1000) where
FFTW-2.1.5 is better than Intel MKL FFT.
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Figure 1: (a). Performance profiles of 2D-FFT computing 2D-DFT of size N ×N using FFTW-2.1.5 and FFTW-3.3.7. The
2D-FFT applications are executed using 36 threads on a Intel multicore server consisting of two sockets of 18 cores each.
(b). The average speeds of FFTW-2.1.5 vs FFTW-3.3.7.

Figures 3a, 3b present the performance comparisons be-
tween FFTW-3.3.7 and Intel MKL FFT. The crucial obser-
vations are as follows:

• The peak performance of FFTW-3.3.7 is 16989
MFLOPs (N = 8000) whereas that for Intel MKL FFT
is 39424 MFLOPs (N = 1792).

• The average performance of FFTW-3.3.7 is 5065
MFLOPs and Intel MKL FFT is 9572 MFLOPs, 89%
faster. There are 199 problem sizes (out of 1000) where
FFTW-3.3.7 outperforms Intel MKL FFT.

• The width of variations for Intel MKL FFT is notice-
ably greater than that for FFTW-3.3.7.

Based on these comparisons, we make the following
important conclusions:

• Extensive nodal optimization of FFT using highly
architecture-specific techniques can be harmful in the
long run since hardware platforms undergo drastic
changes. An exemplar is FFTW-2.1.5 versus FFTW-
3.3.7. FFTW-2.1.5, last updated in 1999, outperforms
FFTW-3.3.7, which undergoes constant revisions in
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Figure 2: (a). Performance profiles of 2D-FFT computing 2D-DFT of size N ×N using FFTW-2.1.5 and Intel MKL FFT.
The 2D-FFT applications are executed using 36 threads on a Intel multicore server consisting of two sockets of 18 cores
each.. (b). The average speeds of FFTW-2.1.5 and Intel MKL FFT.
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Figure 3: (a). Performance profiles of 2D-FFT computing 2D-DFT of size N ×N using FFTW-3.3.7 and Intel MKL FFT.
The 2D-FFT applications are executed using 36 threads on a Intel multicore server consisting of two sockets of 18 cores
each. (b). The average speeds of FFTW-3.3.7 and Intel MKL FFT.



terms of code optimizations.
• An open source package may perform better than

highly optimized vendor package since it employs
portable optimizations. A good example is FFTW-3.3.7
versus Intel MKL FFT. Intel MKL FFT is highly
optimized for some specific problem sizes but exhibits
poor performance for the rest. This can be seen from the
width of its performance variations. Though the average
performance of FFTW-3.3.7 is lesser than Intel MKL
FFT, it outperforms Intel MKL FFT for many problem
sizes and its variations are lesser.

We believe that these performance variations will be-
come typical because chip manufacturers are increasingly
favouring and thereby rapidly progressing towards tighter
integration of processor cores, memory, and interconnect in
their products.

There are three solution approaches that can be employed
for the optimization of 2D-DFT computation by removal of
performance variations. These approaches can be applied,
in general, for optimization of data-parallel applications on
modern multicore processors for performance.

• Optimization through source code analysis and tuning:
This approach requires source code modification. It
lacks portability if architecture-specific optimizations
are used. It has other disadvantages, the most crucial
being the disproportion between the time spent tuning
the code and the continued long-term portable perfor-
mance improvements.

• Optimization using solutions to larger problem sizes
with better performance: This is a portable approach.
There has to be a performance model, which given
workload size N to solve will output the problem
size Nl(> N) that is to be used for padding. While
programmatically extending 1D arrays logically is easy,
it is not the case for 2D arrays such as matrices and
multidimensional arrays.

• Optimization using model-based parallel computing: In
the current era of multicores where processors have
abundant number of cores, one can partition the work-
load between identical multithreaded routines (abstract
processors) and execute them in parallel. This is a
portable approach.

We will describe these approaches in detail in the following
section.

The rest of the paper is structured as follows. Section
2 presents the experimental methodology to build the per-
formance profiles. Section 3 contains the three possible
solution approaches we propose to remove the performance
variations. Section 4 contains the related work. Section 5
concludes the paper.

II. EXPERIMENTAL METHODOLOGY TO BUILD THE
PERFORMANCE PROFILES

We followed the methodology described below to make
sure the experimental results are reliable:

• The server is fully reserved and dedicated to these
experiments during their execution. We also made cer-
tain that there are no drastic fluctuations in the load
due to abnormal events in the server by monitoring
its load continuously for a week using the tool sar.
Insignificant variation in the load was observed during
this monitoring period suggesting normal and clean
behaviour of the server.

• When an application is executed, it is bound to the
physical cores using the numactl tool.

• To obtain a data point in the performance profile,
the application is repeatedly executed until the sample
mean lies in the 95% confidence interval and a precision
of 0.025 (2.5%) has been achieved. For this purpose,
Student’s t-test is used assuming that the individual ob-
servations are independent and their population follows
the normal distribution. We verify the validity of these
assumptions using Pearson’s chi-squared test. When
we mention a single number such as floating-point
performance (in MFLOPs or GFLOPs), it is assumed
that we are referring to the sample mean determined
using the Student’s t-test.
The function MeanUsingT test, shown in Algorithm
1, describes how the sample mean for a data point
is determined. For each data point, the function is
invoked, which repeatedly executes the application app
until one of the following three conditions is satisfied:

1) The maximum number of repetitions (maxReps)
have been exceeded (Line 3).

2) The sample mean falls in the confidence interval
(or the precision of measurement eps has been
achieved) (Lines 13-15).

3) The elapsed time of the repetitions of applica-
tion execution has exceeded the maximum time
allowed (maxT in seconds) (Lines 16-18).

So, for each data point, the function MeanUsingT test
is invoked and the sample mean mean is returned at
the end of invocation. The function Measure measures
the execution time using gettimeofday function.

• In our experiments, we set the minimum and maximum
number of repetitions, minReps and maxReps, to
10 and 100000. The values of maxT , cl, and eps
are set to 3600, 0.95, and 0.025. If the precision
of measurement is not achieved before the maximum
number of repeats have been completed, we increase the
number of repetitions and also the maximum elapsed
time allowed. Therefore, we make sure that statistical
confidence is achieved for all the data points that we
use in our performance profiles.



Algorithm 1 Function determining the sample mean using
Student’s t-test.

1: procedure MEANUSINGTTEST(
app,minReps,maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run,
maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made,
repsOut ∈ Z>0

The confidence level achieved, clOut ∈ R>0

The accuracy achieved, epsOut ∈ R>0

The elapsed time, etimeOut ∈ R>0

The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← MEASURE(TIME)
5: EXECUTE(app)
6: et← MEASURE(TIME)
7: reps← reps+ 1
8: etime← etime+ et− st
9: ObjArray[reps]← et− st

10: sum← sum+ObjArray[reps]
11: if reps > minReps then
12: clOut ← fabs(gsl cdf tdist Pinv(cl, reps−

1))
× gsl stats sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum
22: etimeOut← etime; mean← sum

reps
23: end procedure

III. PERFORMANCE OPTIMIZATION OF FAST FOURIER
TRANSFORM ON MULTICORE PROCESSORS: SOLUTION

APPROACHES

In this section, we describe three solution approaches for
the optimization of 2D FFT by removal of performance
variations. These approaches can be applied, in general, for
optimization of data-parallel applications on modern multi-
core processors for performance. We discuss the advantages
and disadvantages of each approach.

Optimization through source code analysis and tuning:
This is typically the first approach adopted to improve the
performance of an application. The roofline model [10]
is used to visually depict the trend of performance gains
accrued from code tuning towards the theoretical peak
performance of a multicore processor. Using this model,
the high optimized scientific applications such as Intel
Math Kernel Library (Intel MKL) (BLAS, FFT) consistently
demonstrate the superior performance of their codes (such
as BLAS) for new platforms.

It has following disadvantages:
• If the code is highly tuned to a specific vendor ar-

chitecture, its portability to other vendor architectures
suffers. It is also debatable (as we show in this paper
for FFTW-2.1.5 and FFTW-3.3.7) if the performance
improvements carry forward to different generations
of the same architecture. Therefore, it lacks portable
performance.

• Most high quality codes are proprietary and therefore
their sources are not available for inspection and tuning.
For example: BLAS, FFT packages that are part of Intel
MKL library.

• It will require source code modification. Since the
highly optimized packages such as FFTW are written
with many man-years of effort for different generations
of hardware, any source code change may entail exten-
sive testing to ensure old functionality is not broken.
Therefore, it is a time consuming process.

Optimization using solutions to larger problem sizes
with better performance: Supposing we are solving a
problem where the size of the matrix is N . In this approach,
the solution to a larger problem size (Nl > N ), which has
better execution time than N , is used as solution for N . The
common approach is the pad the input matrix to increase
its problem size from N to Nl and zero the contents of
the extra padded areas. It is also a technique that is widely
used in different flavours (restructuring arrays, aggregation)
to minimize cache conflict misses [11], [12], [13], [14].
It requires no source code modification of the optimized
package.

While it is a portable approach, it also has some disad-
vantages.

• There has to be a performance model, which given N
will provide the problem size Nl that is to be used



for padding. In this work, the performance profiles
(functional performance models (FPMs)) provide this
information.

• While programmatically extending 1D arrays logically
is easy, it is not the case for 2D arrays such as
matrices and multidimensional arrays. One inexpensive
technique is to locally copy the input signal matrix of
size N to a work matrix of size Nl, compute 2D FFT
of the work matrix and copy the relevant content back
to the signal matrix, which is returned to the user. One
drawback is the extra memory used for the work matrix.

Optimization using model-based parallel computing:
Finally, we propose the third approach, which employs
parallel computing. In the current era of multicores where
processors have abundant number of cores, one can parti-
tion the workload between identical multithreaded routines
(abstract processors) and execute them in parallel. This
method can be an effective nodal optimization technique
especially when it employs realistic performance models of
computation and efficient data partitioning algorithms that
use the models as input.

Its advantages are:

• It is portable when the performance models of compu-
tation used in the data partitioning algorithms do not
use architecture-specific parameters.

• It requires no source code modification of the optimized
package.

• Less time-consuming programming effort is involved,
which is to distribute the workload between identical
multithreaded routines (abstract processors) and exe-
cute them in parallel.

To distribute the data between the identical multithreaded
routines (abstract processors), one can start with homo-
geneous distribution. But to squeeze out the maximum
performance, realistic and accurate performance models
and efficient data partitioning algorithms are necessary.
The model must not be based on parameters, which are
architecture-specific (For example: performance monitoring
events (PMCs)). This would compromise the portability of
this approach.

Lastovetsky et al. [15] employ this technique to im-
prove the performance of a scientific application, Multidi-
mensional Positive Definite Advection Transport Algorithm
(MPDATA), on a Xeon Phi co-processor. Lastovetsky et
al. [16], Reddy et al. [17], and Khaleghzadeh et al. [18]
are theoretical works that present novel data partitioning
algorithms employing this technique for minimization of
time and energy of computations for the most general
performance and energy profiles of data-parallel applications
executing on homogeneous and heterogeneous multicore
clusters.

IV. RELATED WORK

We classify our survey of related literature into following
categories: a). FFT libraries, b). Parallel FFT solutions for
homogeneous and heterogeneous platforms, and c). FFT
solutions for GPUs.

A. FFT Libraries

The Fastest Fourier Transform in the West (FFTW) [19] is
a software library for computing discrete Fourier transforms
(DFTs). It provides routines utilizing threads for parallel
one- and multi-dimensional transforms of both real and
complex data, and multi-dimensional transforms of real and
complex data for parallel machines supporting MPI.

Pekurovsky et al. [20] present a library P3DFFT, which
computes fast Fourier transforms (FFTs) in three dimensions
by using two-dimensional domain decomposition. Li et al.
[21] provide a library offering three-dimensional distributed
FFTs using MPI. OpenFFT [22] is an open source paral-
lel package for computing multi-dimensional Fast Fourier
Transforms (3-D and 4-D FFTs) of both real and complex
numbers of arbitrary input size.

The Intel Math Kernel library (Intel MKL) [6] provides an
interface for computing a discrete Fourier transform in one,
two, or three dimensions with support for mixed radices.
It provides DFT routines for single-processor or shared-
memory systems, and for distributed-memory architectures.

Akin et al. [23] present FFTs that are optimized for
DRAM by deriving algorithms using custom data layouts
and that use efficient memory access patterns

B. Parallel FFT solutions for homogeneous and heteroge-
neous platforms

Averbuch et al. [24] present a parallel version of the
CooleyTukey FFT algorithm for MIMD multiprocessors and
demonstrate efficiency of 90% on a message-passing IBM
SP2 computer.

Chen et al. [25] analyze the optimization challenges and
opportunities of both 1D and 2D FFT including problem
decomposition, load balancing, work distribution, and data-
reuse together with the exploiting of the C64 architecture
features on the IBM Cyclops-64 chip architecture.

Ayala et al. [26] propose a parallel FFT implementation
based on 2D domain decomposition and they demonstrate
scalability of their solution on extreme scale computers.
Almeide et al. [27] consider parallelization of the bidi-
mensional FFT-2D on heterogeneous system using master-
slaves approaches. Dmitruk et al. [28] use a 1D domain de-
composition algorithm for performance improvement of 3D
real FFT. They present techniques for reducing the cost of
communications in the communication-intensive transpose
operation of their algorithm.

Jung et al. [29] introduce two schemes based on the volu-
metric decomposition for the optimization of hybrid (MPI +
OpenMP) parallelization schemes of 3D FFT. In one scheme



1d Alltoall, they apply five 1D all-to-all communications
among fewer processors and in another, two 1D all-to-all
communication and one 2D communication (2d Alltoall).
They state that both schemes show good performance and
scalability in 3D FFT calculations.

Song and Hollingsworth [30] present a scalable
method for parallel 3D FFT that exploits computation-
communication overlap. Their method employs non-
blocking MPI collectives to the 2D decomposition method
for parallel 3D FFT. Also, they auto-tune 3D FFT for
optimization in system environments.

Steinbach et al. [31] present an open-source FFT bench-
mark suite that allows users to determine the best FFT
routine from state-of-theart FFT implementations on a wide
variety of hardware.

C. FFT Solutions for GPUs

We review research works that have proposed optimized
FFT implementations for GPU platforms. Chen et al. [32]
present optimized FFT implementations for GPU clusters.
Gu et al. [33] propose out-of-card implementations for
1D, 2D, and 3D FFTs on GPUs. Wu et al. [34] present
optimized multi-dimensional FFT implementations on CPU-
GPU heterogeneous platforms where the input signal matrix
is too large to fit in the GPU global memory. Naik et al. [35]
demonstrate good performance improvement of FFT on their
heterogeneous cluster compared to a homogeneous cluster.

V. CONCLUSION

Fast Fourier transform (FFT) is such a key routine em-
ployed in application domains such as molecular dynam-
ics, computational fluid dynamics, signal processing, image
processing, and condition monitoring systems that hardware
vendors now provide optimized libraries for its computation
for their processors. Its performance on latest multicore
platforms is therefore of paramount concern to the high
performance computing community. The inherent complex-
ities however in these platforms such as severe resource
contention and non-uniform memory access (NUMA) pose
formidable challenges.

We demonstrated the challenges, which are the perfor-
mance variations in the profiles of applications, by studying
three highly optimized multithreaded 2D FFT packages,
FFTW-2.1.5, FFTW-3.3.7, and Intel MKL FFT on a modern
Intel Haswell multicore processor consisting of thirty-six
cores.

In summary, we showed that for the routines from the
three packages, their average performances can be lower
than their peak performances. The ratio of average to peak
performance for the FFTW-2.1.5 is 40%, for the FFTW-
3.3.7 is 30% and 24% for the Intel MKL FFT. We showed
that FFTW-2.1.5 outperforms FFTW-3.3.7) by around 38%
if considering average performance. Despite Intel MKL
FFT being the fastest package for many problem sizes,

its variations in the performance profile are severe and it
performs poorly for many problem sizes compared to the
other two packages. Therefore, we conclude that improving
the average performance of the FFT routines by removal of
variations is the main research challenge. We then proposed
three possible solution approaches to address this challenge,
discussed their advantages and disadvantages.

The benchmark codes used to build the performance
profiles can be found at [36].

In our future work, we will study optimization of 2D
and 3D FFT routines for performance on modern multicore
platforms using model-based parallel computing methods
presented in [16].
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