
Hierarchical Optimization of MPI Reduce
Algorithms

Khalid Hasanov(B) and Alexey Lastovetsky

University College Dublin, Belfield, Dublin 4, Ireland
khalid.hasanov@ucdconnect.ie, Alexey.Lastovetsky@ucd.ie

Abstract. Optimization of MPI collective communication operations
has been an active research topic since the advent of MPI in 1990s.
Many general and architecture-specific collective algorithms have been
proposed and implemented in the state-of-the-art MPI implementations.
Hierarchical topology-oblivious transformation of existing communica-
tion algorithms has been recently proposed as a new promising approach
to optimization of MPI collective communication algorithms and MPI-
based applications. This approach has been successfully applied to the
most popular parallel matrix multiplication algorithm, SUMMA, and
the state-of-the-art MPI broadcast algorithms, demonstrating significant
multi-fold performance gains, especially for large-scale HPC systems. In
this paper, we apply this approach to optimization of the MPI reduce
operation. Theoretical analysis and experimental results on a cluster of
Grid’5000 platform are presented.

Keywords: MPI · Reduce · Grid’5000 · Communication · Hierarchy

1 Introduction

Reduce is important and commonly used collective operation in the Message
Passing Interface (MPI) [1]. A five-year profiling study [2] demonstrates that
MPI reduction operations are the most used collective operations. In the reduce
operation each node i owns a vector xi of n elements. After completion of the
operation all the vectors are reduced element-wise to a single n-element vector
which is owned by a specified root process.

Optimization of MPI collective operations has been an active research topic
since the advent of MPI in 1990s. Many general and architecture-specific col-
lective algorithms have been proposed and implemented in the state-of-the-art
MPI implementations. Hierarchical topology-oblivious transformation of exist-
ing communication algorithms has been recently proposed as a new promising
approach to optimization of MPI collective communication algorithms and MPI-
based applications [3,5]. This approach has been successfully applied to the most
popular parallel matrix multiplication algorithm, SUMMA [4], and the state-of-
the-art MPI broadcast algorithms, demonstrating significant multi-fold perfor-
mance gains, especially on large-scale HPC systems. In this paper, we apply this
approach to optimization of the MPI reduce operation.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 21–34, 2015.
DOI: 10.1007/978-3-319-21909-7 3

22 K. Hasanov and A. Lastovetsky

1.1 Contributions

We propose a hierarchical optimization of legacy MPI reduce algorithms without
redesigning them. The approach is simple and general, allowing for application
of the proposed optimization to any existing reduce algorithm. As by design the
original algorithm is a particular case of its hierarchically transformed counter-
part, the performance of the algorithm will either improve or stay the same in
the worst case scenario. Theoretical study of the hierarchical transformation of
six reduce algorithms, which are implemented in Open MPI [7], is presented.
The theoretical results have been experimentally validated on a widely used
Grid’5000 [8] infrastructure.

1.2 Outline

The rest of the paper is structured as follows. Section 2 discusses related work.
The hierarchical optimization of MPI reduce algorithms is introduced in Sect. 3.
The experimental results are presented in Sect. 4. Finally, Sect. 5 concludes the
presented work and discusses future directions.

2 Related Work

In the early 1990s, the CCL library [9] implemented collective reduce opera-
tion as an inverse broadcast operation. Later collective algorithms for wide-area
clusters were proposed [10], and automatic tuning for a given system by con-
ducting a series of experiments on the system was discussed [11]. Design and
high-performance implementation of collective communication operations and
commonly used algorithms, such as minimum-spanning tree reduce algorithm,
are discussed in [12]. Five reduction algorithms optimized for different message
sizes and number of processes are proposed in [13]. Implementations of MPI
collectives, including reduce, in MPICH [15] are discussed in [16]. Algorithms
for MPI broadcast, reduce and scatter, where the communication happens con-
currently over two binary trees, are presented in [14]. Cheetah framework [17]
implements MPI reduction operations in a hierarchical way on multicore sys-
tems, which supports multiple communication mechanisms. Unlike that work,
our optimization is topology-oblivious, and MPI reduce optimizations in this
work do not design new algorithms from scratch, employing the existing reduce
algorithms underneath. Therefore, our hierarchical design can be built on top of
the algorithms from the Cheetah framework as well. This work focuses on reduce
algorithms implemented in Open MPI such as flat, linear/chain, pipeline, binary,
binomial and in-order binary tree algorithms.

We extend our previous studies on parallel matrix multiplication [3] and
topology-oblivious optimization of MPI broadcast algorithms on large-scale dis-
tributed memory platforms [5,6] to MPI reduce algorithms.

Hierarchical Optimization of MPI Reduce Algorithms 23

2.1 MPI Reduce Algorithms

We assume that the time to send a message of size m between any two MPI
processes is modeled with Hockney model [18] as α+m×β, where α is the latency
per message and β is the reciprocal bandwidth per byte. It is also assumed
that the computation cost per byte in the reduction operation is γ on any MPI
process. Unless otherwise noted, in the rest of the paper we will call MPI process
just process.

– Flat tree reduce algorithm.
In this algorithm, the root process sequentially receives and reduces a message
of size m from all the processes participating in the reduce operation in p − 1
steps:

(p − 1) × (α + m×β + m×γ) . (1)

In a segmented flat tree algorithm, a message of size m is split into X segments,
in which case the number of steps is X×(p − 1). Thus, the total execution
time will be as follows:

X× (p − 1) ×
(
α +

m

X
×β +

m

X
×γ

)
. (2)

– Linear tree reduce algorithm.
Unlike the flat tree, here each process receives or sends at most one message.
Theoretically, its cost is the same as the flat tree algorithm:

(p − 1) × (α + m×β + m×γ) . (3)

– Pipeline reduce algorithm.
It is assumed that a message of size m is split into X segments and in one
step of the algorithm a segment of size m

X is reduced between p processes.
If we assume a logically reverse ordered linear array, in the first step of the
algorithm the first segment of the message is sent to the next process in the
array. Next, while the second process sends the first segment to the third
process, the first process sends the second segment to the second process, and
the algorithm continues in this way. The first segment takes p − 1 and the
remaining segments take X − 1 steps to reach the end of the array. If we also
consider the computation cost in each step, then overall execution time of the
algorithm will be as follows:

(p + X − 2) ×
(
α +

m

X
×β +

m

X
×γ

)
. (4)

– Binary tree reduce algorithms.
If we take a full and complete binary tree of height h, its number of nodes
will be 2h+1 − 1. In the reduce operation, a node at the hight h will receive
two messages from its children at the height h + 1. In addition, if we segment
a message of size m into X segments, the overall run time will be as follows:

2 (log2 (p + 1) + X − 2) ×
(
α +

m

X
×β +

m

X
×γ

)
. (5)

24 K. Hasanov and A. Lastovetsky

Open MPI uses the in-order binary tree algorithm for non-commutative oper-
ations. It works similarly to the binary tree algorithm but enforces order in
the operations.

– Binomial tree reduce algorithm.
The binomial tree algorithm takes log2(p) steps and the message communi-
cated at each step is m. If the message is divided into X segments, then
the number of steps and the message communicated at each step will be
X× log2(p) and m

X respectively. Therefore, the overall run time will be as
follows:

log2 (p) × (α + m×β + m×γ) . (6)

– Rabenseifner’s reduce algorithm.
The Rabenseifner’s algorithm [13] is designed for large message sizes. The algo-
rithm consists of reduce-scatter and gather phases. It has been implemented
in MPICH [16] and used for message sizes greater than 2 KB. The reduce-
scatter phase is implemented with recursive-halving, and the gather phase is
implemented with binomial tree. Therefore, the run time of the algorithm is
the sum of these two phases:

2 log2 (p) ×α + 2
p − 1

p
×m×β +

p − 1
p

×m×γ. (7)

The algorithm can be further optimized by recursive vector halving, recursive
distance doubling, recursive distance halving, binary blocks, and ring algorithms
for non-power-of-two number of processes. An interested reader can consult [13]
for more detailed discussion of those algorithms.

3 Hierarchical Optimization of MPI Reduce Algorithms

This section introduces a topology-oblivious optimization of MPI reduce algo-
rithms. The idea is inspired by our previous study on the optimization of the
communication cost of parallel matrix multiplication [3] and MPI broadcast [5]
on large-scale distributed memory platforms.

The proposed optimization technique is based on the arrangement of the
p processes participating in the reduce into logical groups. For simplicity, it
is assumed that the number of groups divides the number of MPI processes
and can change between one and p. Let G be the number of groups. Then
there will be p

G MPI processes per group. Figure 1 shows an arrangement of 8
processes in the original MPI reduce operation, and Fig. 2 shows the arrangement
in a hierarchical reduce operation with 2 groups of 4 processes. The hierarchical
optimization has two phases: in the first phase, a group leader is selected for
each group and the leaders start reduce operation inside their own group in
parallel (in this example between 4 processes). In the next phase, the reduce
is performed between the group leaders (in this example between 2 processes).
The grouping can be done by taking the topology into account as well. However,
in this work the grouping is topology-oblivious and the first process in each

Hierarchical Optimization of MPI Reduce Algorithms 25

group is selected as the group leader. In general, different algorithms can be
used for reduce operations between group leaders and within each group. This
work focuses on the case where the same algorithm is employed at both levels of
hierarchy. Algorithm 1 shows the pseudocode of the hierarchically transformed
MPI reduce operation. Line 4 calculates the root for the reduce between the
groups. Then line 5 creates a sub-communicator of G processes between the
groups, and line 6 creates a sub-communicator of p

G processes inside the groups.
Our implementation uses the MPI Comm split MPI routine to create new sub-
communicators.

P0 P1 P2 P3 P4 P5 P6 P7

MPI Op

P0

Fig. 1. Logical arrangement of processes in MPI reduce.

P0 P1 P2 P3

MPI Op

P0

P4 P5 P6 P7

MPI Op

P4

MPI Op

P0

Fig. 2. Logical arrangement of processes in hierarchical MPI reduce.

3.1 Hierarchical Transformation of Flat Tree Reduce Algorithm

After the hierarchical transformation, there will be two steps of the reduce opera-
tion: inside the groups and between the groups. The reduce operations inside the
groups happen between p

G processes in parallel. Then, the operation continues
between G groups. The cost of the reduce operations inside groups and between
groups will be (G − 1)×(α + m×β + m×γ) and (p

G − 1)×(α + m×β + m×γ)
respectively. Thus, the overall run time can be seen as a function of G:

F (G) =
(
G +

p

G
− 2

)
× (α + m×β + m×γ) (8)

The derivative of the function is (1 − p
G2)×(α + m×β + m×γ), it can be shown

that p =
√

G is the minimum point of the function in the interval (1, p). Then
the optimal value of the function will be as follows:

F (
√

p) = (2
√

p − 2) × (α + m×β + m×γ) (9)

26 K. Hasanov and A. Lastovetsky

Algorithm 1. Hierarchical optimization of MPI reduce operation.
Data: p - Number of processes
Data: G - Number of groups
Data: sendbuf - Send buffer
Data: recvbuf - Receive buffer
Data: count - Number of entries in send buffer (integer)
Data: datatype - Data type of elements in send buffer
Data: op - MPI reduce operation handle
Data: root - Rank of reduce root
Data: comm - MPI communicator handle
Result: The root process has the reduced message
begin

1 MPI Comm comm outer /* communicator between the groups */

2 MPI Comm comm inner /* communicator inside the groups */

3 int root outer /* root of reduce between the groups */

4 root outer = Calculate Root Outer(G, p, root, comm)

5 comm outer = Create Comm Between Groups(G, p, root outer, comm)

6 comm inner = Create Comm Inside Groups(G, p, root, comm)

7 MPI Reduce(sendbuf, recvbuf, count, datatype, op, root, comm inner)
8 MPI Reduce(sendbuf, recvbuf, count, datatype, op, root outer, comm outer)

3.2 Hierarchical Transformation of Pipeline Reduce Algorithm

If we sum the costs of reduce inside and between groups with pipeline algorithm,
the overall run time will be as follows:

F (G) =
(
2X + G +

p

G
− 4

)
×

(
α +

m

X
×β +

m

X
×γ

)
(10)

In the same way, it can be easily shown that the optimal value of the cost function
is as follows:

F (
√

p) = (2X + 2
√

p − 4) ×
(
α +

m

X
×β +

m

X
×γ

)
(11)

3.3 Hierarchical Transformation of Binary Reduce Algorithm

For simplicity, we will take p + 1≈p in the formula 5. Then the cost of the
reduce operations between the groups and inside the groups will be as follows
respectively: 2 log2(G)×(α+m×β +mγ) and 2 log2(

p
G)×(α+m×β +mγ). If we

add these two terms, the overall cost of the hierarchical transformation of the
binary tree algorithm will be equal to the cost of the original algorithm.

3.4 Hierarchical Transformation of Binomial Reduce Algorithm

Similarly to the binary reduce algorithm, the cost function of the binomial tree
will not change after hierarchical transformation.

Hierarchical Optimization of MPI Reduce Algorithms 27

3.5 Hierarchical Transformation of Rabenseifner’s Reduce
Algorithm

By applying the formula 7 between the groups with G processes and inside the
groups with p

G processes, we can find the run time of hierarchical transformation
of Rabenseifner’s algorithm. Unlike the previous algorithms, now the theoretical
cost increases in comparison to the original Rabenseifner’s algorithm. Therefore,
theoretically the hierarchical reduce implementation should use the number of
groups equals to one, in which case the hierarchical algorithm retreats to the
original algorithm.

2 log2(p)×α + 2m×β×
(

2 − G

p
− 1

G

)
+ mγ

(
2 − G

p
− 1

G

)
(12)

3.6 Possible Overheads in the Hierarchical Design

Our implementation of the hierarchical reduce operation uses MPI Comm split
operation to create groups of processes. The obvious questions would be to which
extent the split operation can affect the scalability of the hierarchical algorithms.
Recent research works show different approaches to improve the scalability of
MPI communicator creation operations in terms of run time and memory foot-
print. The research in [20] introduces a new MPI Comm split algorithm, which
scales well to millions of cores. The memory usage of the algorithm is O(pg) and
the time is O(g log2(p) + log22(p) + p

g log2(g)), where p is the number of MPI
processes, g is the number of processes in the group that perform sorting. More
recent research work in [21] improves the previous algorithm with two variants.
The first one, which uses a bitonic sort, needs O(log2(p)) memory and O(log22(p))
time. The second one is a hash-based algorithm and requires O(1) memory and
O(log2(p)) time. Having these algorithms, we can utilize MPI Comm split oper-
ation in our hierarchical design with negligible overhead of creating MPI sub-
communicators. There will not be any overhead at all for large messages as the
split operation does not depend on the message size.

4 Experiments

The experiments were carried out on the Grid’5000 infrastructure in France.
The platform consists of 24 clusters distributed over 9 sites in France and one
in Luxembourg which includes 1006 nodes, 8014 cores. Almost all the sites are
interconnected by 10 Gb/s high-speed network. We used the Graphene cluster
from Nancy site of the infrastructure as our main testbed. The cluster is equipped
with 144 nodes and each node has a disk of 320 GB storage, 16 GB of memory
and 4-cores of CPU Intel Xeon X3440. The nodes in the Graphene cluster inter-
connected via 20 Gb/s Infiniband and Gigabyte Ethernet. More comprehensive
information about the platform can be found on the Grid’5000 web site (http://
www.grid5000.fr).

http://www.grid5000.fr
http://www.grid5000.fr

28 K. Hasanov and A. Lastovetsky

The experiments have been done with Open MPI 1.4.5, which provides a few
reduce implementations. Among those implementations there are several reduce
algorithms such as linear, chain, pipeline, binary, binomial, and in-order binary
algorithms and platform/architecture specific algorithms, some of which are
reduce algorithms for Infiniband networks, and the Cheetah framework for mul-
ticore architectures. In this work, we do not consider the platform specific reduce
implementations. We used the same approach as described in MPIBlib [19] to
benchmark our experiments. During the experiments, the mentioned reduce algo-
rithms were selected by using Open MPI MCA (Modular Component Architec-
ture) coll tuned use dynamic rules and coll tuned reduce algorithm parameters.
MPI MAX operation has been used in the experiments. We have used Graphene
cluster with two experimental settings, one process per core and one process
per node with the Infiniband-20G network. A power-of-two number of processes
have been used in the experiments.

4.1 Experiments: One Process per Core

The nodes in the Graphene cluster are organized into four groups and connected
to four switches. The switches in turn are connected to the main Nancy router.
We have used 10 patterns of process to core mappings, but we will show exper-
imental results only with one such mappings where the processes are grouped
by their rank in increasing order. The measurements with different groupings
showed similar performance.

The theoretical and experimental results showed that the hierarchical app-
roach mainly improves the algorithms which assume flat arrangements of the
processes, such as linear, chain and pipeline. On the other hand the native Open
MPI reduce operation selects different algorithms depending on the message size,
the count and the number of processes sent to the MPI Reduce function. This
means the hierarchical transformation can improve the native reduce operation
as well. The algorithms used in the Open MPI decision function are linear, chain,
binomial, binary/in-order binary and pipeline reduce algorithms which can be
used with different sizes of segmented messages.

Figure 3 shows experiments with default Open MPI reduce operation with a
message of size 16 KB where the best performance is achieved when the group
size is 1 or p, in which case the hierarchical reduce obviously turns into the origi-
nal non-hierarchical reduce. Here for different numbers of groups the Open MPI
decision function selected different reduce algorithms. Namely, if the number of
groups is 8 or 64 then Open MPI selects the binary tree reduce algorithm between
the groups and inside the groups respectively. In all other cases the binomial tree
reduce algorithm is used. Figure 4 shows similar measurements with a message of
size 16 MB where one can see a huge performance improvement up to 30 times.
This improvement does not come solely from the hierarchical optimization itself,
but also because of the number of groups in the hierarchical reduce resulted in
Open MPI decision function to select the pipeline reduce algorithm with differ-
ent segment sizes for each groups. The selection of the algorithms for different
number of groups is described in Table 1.

Hierarchical Optimization of MPI Reduce Algorithms 29

20 22 24 26 28 210
0

1

2

3

·10−3

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 3. Hierarchical native
reduce. m =16 KB and p = 512.

20 22 24 26 28 210
0

2

4

6

8

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 4. Hierarchical native
reduce. m =16 MB and p = 512.

Table 1. Open MPI algorithm selection in HReduce. m =16 MB, p = 512.

Groups Inside groups Between groups

1 - Pipeline 32 KB

2 Pipeline 32 KB Pipeline 64 KB

4 Pipeline 32 KB Pipeline 64 KB

8 Pipeline 32 KB Pipeline 64 KB

16 Pipeline 64 KB Pipeline 64 KB

32 Pipeline 64 KB Pipeline 64 KB

64 Pipeline 64 KB Pipeline 32 KB

128 Pipeline 64 KB Pipeline 32 KB

256 Pipeline 64 KB Pipeline 32 KB

As mentioned in Sect. 3.6, it is expected that the overhead from the
MPI Comm split operation should affect only reduce operations with smaller
message sizes. Figure 5 validates this with experimental results. The hierarchical
reduce operation of 1 KB message with the underlying native reduce achieved
its best performance when the number of groups was one as the overhead from
the split operation itself was higher than the reduce.

It is interesting to study the pipeline algorithm with different seg-
ment sizes as it is used for large message sizes in Open MPI. Figure 6
presents experiments with the hierarchical pipeline reduce with a message
size of 16 KB with 1 KB segmentation. We selected the segment sizes using
coll tuned reduce algorithm segmentsize parameter provided by MCA. Figures 7
and 8 shows the performance of the pipeline algorithm with segment sizes of
32 KB and 64 KB respectively. In the first case, we see a 26.5 times improve-
ment, while with the 64 KB the improvement is 18.5 times.

Figure 9 demonstrates speedup of the hierarchical transformation of native
Open MPI reduce operation, linear, chain, pipeline, binary, binomial, and
in-order binary reduce algorithms with message sizes starting from 16 KB up to

30 K. Hasanov and A. Lastovetsky

16 MB. Except binary, binomial and in-order binary reduce algorithms, there is
a significant performance improvement. In the figure, NT is native Open MPI
reduce operation, LN is linear, CH is chain, PL is pipeline with 32 KB seg-
mentation, BR is binary, BL is binomial, and IBR denotes in-order binary tree
reduce algorithm. We would like to highlight one important point that Fig. 9
does not compare the performance of different Open MPI reduce algorithms, it
rather shows the speedup of their hierarchical transformations. Each of these
algorithms can be better than the others in some specific settings depending
on the message size, number of processes, underlying network and so on. At
the same time, the hierarchical transformation of these algorithms will either
improve their performance or be equally fast.

20 22 24 26 28
0

1

2

3

4

5
·10−4

Number of groups

T
im

e(
Se

c)

MPI Comm split HReduce
Reduce

Fig. 5. Time spent on
MPI Comm split and hierar-
chical native reduce. m = 1 KB,
p = 512.

20 22 24 26 28
0

5 · 10−2

0.1

0.15

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 6. Hierarchical pipeline
reduce. m = 16 KB, segment
1 KB and p = 512.

20 22 24 26 28
0

2

4

6

8

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 7. Hierarchical pipeline
reduce. m = 16 MB, segment
32 KB and p = 512.

20 22 24 26 28
0

1

2

3

4

5

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 8. Hierarchical pipeline
reduce. m = 16 MB, segment
64 KB and p = 512.

Hierarchical Optimization of MPI Reduce Algorithms 31

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9

11
13
15
17
19
21
23
25
27

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

Fig. 9. Speedup on 256 (left) and 512 (right) cores, one process per core.

4.2 Experiments: One Process per Node

The experiments with one process per node showed a similar trend to that of
with the one process per core setting. The performance of linear, chain, pipeline
and native Open MPI reduce operations can be improved by the hierarchical
approach. Figures 10 and 11 show experiments on 128 nodes with message sizes
of 16 KB and 16 MB accordingly. In the first setting, the Open MPI decision func-
tion uses the binary tree algorithm when the number of processes is 8 between
or inside groups, in all other cases the binomial tree is used.

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2
·10−3

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 10. Hierarchical native
reduce. m = 16 KB and p = 128.

20 21 22 23 24 25 26 27
0

1

2

3

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 11. Hierarchical native
reduce. m = 16 MB and p = 128.

The pipeline algorithm has similar performance improvement to that of with
512 processes, Fig. 12 shows experiments with a message of size 16 MB segmented
by 32 KB and 64 KB sizes. The labels on the x axis has the same meaning as in
the previous section.

Figure 13 presents speedup of the hierarchical transformations of all the
reduce algorihms from Open MPI “TUNED” component with message sizes

32 K. Hasanov and A. Lastovetsky

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2

2.5

Number of groups

T
im

e(
Se

c)

HReduce Reduce

20 21 22 23 24 25 26 27
0

0.5

1

1.5

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 12. Hierarchical pipeline reduce. m = 16 MB, segment 32 KB (left) and 64 KB
(right). p = 128.

from 16 KB up to 16 MB on 64 (left) and 128 (right) nodes. Again, the reduce
algorithms wich has “flat” design and Open MPI default reduce operation have
multi-fold performance improvement.

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1

3

5

7

9

11

13

15

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1

3

5

7

9

11

13

15

17

19

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

Fig. 13. Speedup on 64(left) and 128(right) cores. 1 process per node.

5 Conclusion

Despite there has been a lot of research in MPI collective communications, this
work shows that their performance is far from optimal and there is some room
for improvement. Indeed, our simple hierarchical optimization, which trans-
forms existing MPI reduce algorithms into two-level hierarchy, gives significant
improvement on small and medium scale platforms. We believe that the idea can
be incorporated into Open MPI decision function to improve the performance
of reduce algorithms even further. It can also be used as a standalone software
on top of MPI based applications.

Hierarchical Optimization of MPI Reduce Algorithms 33

The key feature of the optimization is that it can never be worse than any
other optimized reduce operation. In the worst case, the algorithm can use one
group and fall back to the native reduce operation.

As the future work, we plan to investigate if using different reduce algorithms
in each phase and different number of processes per group can improve the
performance. We would also like to generalize our optimization to other MPI
collective operations.

Acknowledgments. This work has emanated from research conducted with the finan-
cial support of IRCSET (Irish Research Council for Science, Engineering and Technol-
ogy) and IBM, grant number EPSPG/2011/188, and Science Foundation Ireland, grant
number 08/IN.1/I2054.

The experiments presented in this publication were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

References

1. Message passing interface forum. http://www.mpi-forum.org/
2. Rabenseifner, R.: Automatic MPI counter proling of all users: first results on a

CRAY T3E 900–512. Proceedings of the Message Passing Interface Developers
and Users Conference 1999(MPIDC99), 77–85 (1999)

3. Hasanov, K., Quintin, J.N., Lastovetsky, A.: Hierarchical approach to optimiza-
tion of parallel matrix multiplication on large-scale platforms. J. Supercomput-
ing., 24p. March 2014 (Springer). doi:10.1007/s11227-014-1133-x

4. van de Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience 9(4), 255–274 (1997)

5. Hasanov, K., Quintin, J.-N., Lastovetsky, A.: High-level topology-oblivious opti-
mization of mpi broadcast algorithms on extreme-scale platforms. In: Lopes, L.,
Žilinskas, J., Costan, A., Cascella, R.G., Kecskemeti, G., Jeannot, E., Cannataro,
M., Ricci, L., Benkner, S., Petit, S., Scarano, V., Gracia, J., Hunold, S., Scott,
S.L., Lankes, S., Lengauer, C., Carretero, J., Breitbart, J., Alexander, M. (eds.)
Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 412–424. Springer, Heidelberg (2014)

6. Hasanov, K., Quintin, J.N., Lastovetsky, A.: Topology-oblivious optimization
of MPI broadcast algorithms on extreme-scale platforms. Simulation Modelling
Practice and Theory. 10p. April 2015. doi:10.1016/j.simpat.2015.03.005

7. Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., et al.: Open MPI:
goals, concept, and design of a next generation MPI implementation. In: Proceed-
ings of the 11th European PVM/MPI Users Group Meeting (2004)

8. Grid’5000. http://www.grid5000.fr
9. Bala, V., Bruck, J., Cypher, R., Elustondo, P., Ho, C.-T., Ho, C.-T., Kipnis,

S., Snir, M.: CCL: a portable and tunable collective communication library for
scalable parallel computers. IEEE TPDS 6(2), 154–164 (1995)

10. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe
MPIs collective communication operations for clustered wide area systems. In:
Proceedings of PPoPP99, 34(8): 131–140 (1999)

https://www.grid5000.fr
http://www.mpi-forum.org/
http://dx.doi.org/10.1007/s11227-014-1133-x
http://dx.doi.org/10.1016/j.simpat.2015.03.005
http://www.grid5000.fr

34 K. Hasanov and A. Lastovetsky

11. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective commu-
nications. In: Proceedings of ACM/IEEE Conference on Supercomputing (2000)

12. Chan, E.W., Heimlich, M.F., Purkayastha, A., Van de Geijn, R.A.: On optimizing
collective communication. In: Proceedings of IEEE International Conference on
Cluster Computing (2004)

13. Rabenseifner, R.: Optimization of collective reduction operations. In: Proceddings
of International Conference on Computational Science, June 2004

14. Sanders, P., Speck, J., Tráff, J.L.: Two-tree algorithms for full bandwidth broad-
cast. Reduct. Scan. Parallel Comput. 35(12), 581–594 (2009)

15. MPICH-A Portable Implementation of MPI. http://www.mpich.org/
16. Thakur, R., Gropp, W.D.: Improving the performance of collective operations in

MPICH. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003.
LNCS, vol. 2840, pp. 257–267. Springer, Heidelberg (2003)

17. Venkata, M.G., Shamis, P., Sampath, R., Graham, R.L.l, Ladd, J.S.: Optimizing
blocking and nonblocking reduction operations for multicore systems: hierarchical
design and implementation. In: Proceedings of IEEE Cluster, pp. 1–8 (2013)

18. Hockney, R.W.: The communication challenge for MPP: intel paragon and Meiko
CS-2. Parallel Comput. 20(3), 389–398 (1994)

19. Lastovetsky, A., Rychkov, V., O’Flynn, M.: MPIBlib: benchmarking MPI com-
munications for parallel computing on homogeneous and heterogeneous clusters.
In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS,
vol. 5205, pp. 227–238. Springer, Heidelberg (2008)

20. Sack, P., Gropp, W.: A scalable MPI comm split algorithm for exascale comput-
ing. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010.
LNCS, vol. 6305, pp. 1–10. Springer, Heidelberg (2010)

21. Moody, A., Ahn, D.H., de Supinski, B.R.: Exascale algorithms for generalized
MPI comm split. In: Proceedings of the 18th European MPI Users’ Group con-
ference on Recent advances in the message passing interface (EuroMPI 2011)
(2011)

http://www.mpich.org/

	Hierarchical Optimization of MPI Reduce Algorithms
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related Work
	2.1 MPI Reduce Algorithms

	3 Hierarchical Optimization of MPI Reduce Algorithms
	3.1 Hierarchical Transformation of Flat Tree Reduce Algorithm
	3.2 Hierarchical Transformation of Pipeline Reduce Algorithm
	3.3 Hierarchical Transformation of Binary Reduce Algorithm
	3.4 Hierarchical Transformation of Binomial Reduce Algorithm
	3.5 Hierarchical Transformation of Rabenseifner's Reduce Algorithm
	3.6 Possible Overheads in the Hierarchical Design

	4 Experiments
	4.1 Experiments: One Process per Core
	4.2 Experiments: One Process per Node

	5 Conclusion
	References

