
FuPerMod: a Framework for Optimal Data
Partitioning for Parallel Scientific Applications
on Dedicated Heterogeneous HPC Platforms

David Clarke, Ziming Zhong, Vladimir Rychkov, and Alexey Lastovetsky

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland,

{david.clarke, ziming.zhong}@ucdconnect.ie
{vladimir.rychkov, alexey.lastovetsky}@ucd.ie

http://hcl.ucd.ie

Abstract. Optimisation of data-parallel scientific applications for mod-
ern HPC platforms is challenging in terms of efficient use of heteroge-
neous hardware and software. It requires partitioning the computations
in proportion to the speeds of computing devices. Implementation of data
partitioning algorithms based on computation performance models is not
trivial. It requires accurate and efficient benchmarking of devices, which
may share the same resources but execute different codes, appropriate
interpolation methods to predict performance, and mathematical meth-
ods to solve the data partitioning problem. In this paper, we present a
software framework that addresses these issues and automates the main
steps of data partitioning. We demonstrate how it can be used to optimise
data-parallel applications for modern heterogeneous HPC platforms.

Keywords: heterogeneous computing, data partitioning, computation
performance models, hybrid platforms

1 Introduction

Many scientific applications implement data-parallel algorithms, originally de-
signed for homogeneous HPC platforms. The applications range from linear al-
gebra routines to computer simulations, such as computational fluid dynamics.
They are characterised by divisible computational workload, which is directly
proportional to the size of data and dependent on data locality. In order to ex-
ecute data-parallel scientific applications on a highly heterogeneous HPC plat-
forms efficiently, computational workload has to be distributed between com-
puting devices in proportion to their speeds. Our target architecture is a ded-
icated highly heterogeneous HPC platform, which has a stable performance in
time, a complex hierarchy of heterogeneous computing devices, and a heteroge-
neous software stack. We consider this platform as a hierarchical heterogeneous
distributed-memory system, and therefore, apply data partitioning, a method
of load balancing widely used for distributed-memory supercomputers. Data

partitioning algorithms use performance models of computing devices and com-
putation kernels to distribute workload. In this work, we address the problem of
implementation of data partitioning algorithms in data-parallel applications for
dedicated heterogeneous platforms.

Data partitioning algorithms based on computation performance models re-
quire accurate and efficient performance measurement, implementation of in-
terpolation methods for realistic performance prediction, and formalisation and
solution of the data partitioning problem. For static data partitioning, the op-
timality of the load distribution is critical, while for dynamic data partitioning,
the cost-efficiency is equally important. In the first case, the use of exhaustive
benchmarks to build very detailed computation performance models in advance
is justified. In the second case, only short measurements can be performed, whose
inaccuracy has to be compensated by advanced interpolation methods. On mod-
ern multicore and hardware-accelerated platforms, special performance measure-
ment techniques and computation performance models are required to take into
account resource contention. Despite the active research in the area of data par-
titioning, there is no software available that would address these challenges. In
this paper, we present such a software framework.

Our software framework is designed to help in construction of computation
performance models for any data-parallel application with given accuracy and
cost-effectiveness. There are two types of models supported: constant and func-
tional. The models can be built either in advance to be used in static data
partitioning, or at runtime during dynamic load balancing. The framework pro-
vides a range of general-purpose data partitioning algorithms based on com-
putation performance models. The choice of the algorithms is determined by
users’ applications. In this paper, we demonstrate how they can be used for
optimal execution of the parallel matrix multiplication and the Jacobi method.
The framework supports a wide range of dedicated heterogeneous platforms con-
sisting of uniprocessors, multicores, hardware accelerators. The framework is ex-
tensible. New measurement techniques for new types of hardware can be added.
Other computation performance models and data partitioning algorithms can
be included.

The rest of this paper is organised as follows. In Section 2, we overview
existing data partitioning software. In Section 3, we discuss the main challenges
in optimisation of data-parallel applications for heterogeneous platforms, and
formulate the features of a framework for data partitioning based on computation
performance models. In Section 4, we present the new software framework and
describe the use cases, namely, optimisation of heterogeneous parallel matrix
multiplication and dynamic load balancing of the Jacobi method.

2 Existing Data Partitioning Software

Matrices and meshes are the most common objects of parallel scientific ap-
plications. Since they can be represented as graphs, most data partitioning
software implement graph partitioning algorithms. Algorithms implemented in

ParMetis [9], SCOTCH [4], JOSTLE [16] reduce the number of edges between
the target subdomains, and hence, minimise the total communication cost of the
application. They take into account heterogeneity of the platform by specifying

– weights of the target subdomains, which represent the relative speeds of
processors [9], or

– a weighted graph of the platform, which contains information about the
speeds of processors and the bandwidths of links [4], [16].

Algorithms implemented in Zoltan [3], PaGrid [1] minimise the execution time
of the application using some cost function. The cost function depends on both
the graph and the parameters of the heterogeneous platform defined by:

– a description of the hierarchy of processors [3], or
– a weighted graph of the platform, with the speeds of processors and the

latencies/bandwidths of links [1].

To distribute computations between the processors, all these graph partition-
ing libraries use simplistic computation performance models, where the speeds
of processors are given by constants (weights). Despite the fact that the result
of data partitioning is very sensitive to the weights, the libraries do not provide
any methods to find the values that balance the load for given data-parallel ap-
plication on heterogeneous platform. Application programmers are responsible
for building the computation performance models and distributing the load.

Traditionally, the constants characterising the performance of the processors
are found as their relative speeds demonstrated during the execution of a se-
rial benchmark code solving locally the core computational task of some given
size. This approach is not always accurate and may result in non-optimal par-
titioning on modern highly heterogeneous platforms as it was demonstrated in
[6]. Existing data partitioning software, which is based on this approach, do not
take into account memory hierarchy, hierarchy of computing devices, software
heterogeneity, optimisations and out-of-core techniques used in software.

For modern heterogeneous platforms, more realistic computation performance
models have been proposed along with more elaborate general-purpose model-
based data partitioning algorithms to find the optimal load distribution ratios,
which can be used as weights in graph partitioning. However, integration of
these algorithms into data-parallel applications is not trivial. In the following
section, we discuss the main challenges of software implementation of heteroge-
neous data-parallel applications and define the features of a framework for data
partitioning based on computation performance models.

3 Optimisation of Data-Parallel Applications for
Heterogeneous Platforms

In this section, we analyse the main challenges application programmers face
while optimising data-parallel applications for modern heterogeneous HPC ar-
chitectures. Given a data-parallel scientific application, originally designed for

distributed-memory platforms and implemented with help of MPI, how to exe-
cute it efficiently on a heterogeneous platform? The total volume of communi-
cations is minimised at the application level (for example, by multilevel graph
partitioning in mesh applications [9], or by arrangement of matrix blocks in
matrix applications [2]). In the computationally intensive part, the application
calls a library of routines, for which the hardware-optimised implementations
are available (for example, multi-threaded and GPU solvers). Therefore, in or-
der to execute this application efficiently on the heterogeneous platform, we do
not design new hybrid kernels that employ multiple computing devices simulta-
neously. Instead, we use existing high performance kernels for these devices and
distribute the application data unevenly between them, based on the a priori
information about their performance.

A general-purpose data partitioning algorithms based on computation per-
formance models proceeds as follows. As input, it requires performance models,
which can be constructed either in advance or at run-time. The models approxi-
mate the speed of the application on each of the computing devices, and in their
turn require empirical information about the real performance. This informa-
tion can be obtained from the benchmarks that assess the performance of the
application on the devices. Therefore, the main challenges the application pro-
grammer faces are accurate and efficient performance measurement, construc-
tion of computation performance models and implementation of model-based
data partitioning algorithms.

Accurate and cost-effective methods of performance measurement are para-
mount for data partitioning to work in real-life heterogeneous environments.
The use of wrong estimates can fully destroy the resulting performance of the
application. Performance can be found by benchmarking a computation kernel,
a serial code performing much less computations but still representative for the
entire application [10]. For example, computationally intensive applications of-
ten perform the same core computation multiple times in a loop. The benchmark
made of one such core computation can be representative of the performance of
the whole application and can be used as a kernel. Timing the computation
kernel on heterogeneous devices may be non-trivial, and therefore, its au-
tomation would facilitate development of data-parallel applications, especially
on the platforms where special techniques are required for accurate performance
measurements, such as multicore and hardware-accelerated platforms.

For example, on multicore platforms, parallel processes interfere with each
other through shared memory so that the speed of individual cores cannot be
measured independently. In this case, the performance of cores in a group can be
measured, when all cores are executing the benchmarks in parallel [18]. Interac-
tions between CPUs and GPUs include data transfers between the host and GPU
memory over PCI Express, launching of GPU kernels, and some other opera-
tions. Performance measurement techniques for heterogeneous GPU-accelerated
systems were studied in [13]. It was concluded that the synchronous approach,
when the host CPU core observes the beginning and the end of an operation, is
valid for measurement of routines implemented in synchronous libraries, such as

CUBLAS. This technique covers all interactions between devices and does not
require any special measurement mechanisms. The performance of out-of-core
routines can also be measured from the host CPU core. Incorporation of these
performance measurement techniques into the data-parallel application
add extra complexity; they have to be implemented as routine procedures.

The results of performance measurements are used in computation perfor-
mance models, which implement different interpolation methods to predict the
execution time and speed. On this prediction, heterogeneous data partitioning
algorithms will be based. A number of models and algorithms have been pro-
posed. Their choice depends on the data-parallel application and the heteroge-
neous platform. The software framework for data partitioning has to provide a
collection of such models and algorithms. We briefly summarise the applicabil-
ity of recent work related to data partitioning on heterogeneous multicore and
multi-GPU platforms.

When the problems fit the main memory of the processors/devices and the
processors/devices execute the same codes for these problems, the absolute
speeds do not vary. In this case, data partitioning algorithms based on con-
stant performance model (CPM) can be used. In [8], constants representing
the sustained performance of the application on CPU/GPU were used to par-
tition data. The constants were found a priori. In [17], a similar constant per-
formance model was proposed, but it was built adaptively, using the history of
performance measurements. CPM-based algorithms are cost efficient and do not
introduce much complexity into heterogeneous applications. The fundamental
assumption of these algorithms is that the absolute speed of processors/devices
does not depend on the size of a computational task. However, it becomes less
accurate when the partitioning of the problem results in some tasks fitting into
different levels of memory hierarchy (i), or when processors/devices switch be-
tween different codes to solve the same computational problem (ii).

For the cases (i)-(ii), more elaborate computation performance models and
data-partitioning algorithms have been proposed. In [12], the execution time of
CPU/GPU was approximated by linear functions of problem size, and an empir-
ical approach to estimate the application-specific linear performance models
was proposed. A more elaborate analytical predictive model was proposed in [14].
It is also application-specific, however, not only the values of parameters, but
also their number and the predictive formulas are defined individually for each
application, based on thorough performance analysis of the main steps of the
application. In [14], it was admitted that linear models might not fit the ac-
tual performance in the case of resource contention (iii), and therefore, they
were replaced by analytical piecewise model. This model can achieve high
accuracy but there is no generic way to build it for an arbitrary application and
hardware. Nevertheless, analytical models and model-based data partitioning al-
gorithms can be implemented once per class of applications and can be included
into a framework for data partitioning.

For an arbitrary data-parallel application to be executed for a wide range of
problem sizes on a platform with highly heterogeneous hardware/software and

resource contention, we proposed the functional performance model (FPM),
where the speed is represented by a function of problem size that is built em-
pirically and integrates performance characteristics of both the architecture and
the application [10]. Under the functional performance model, the speed of each
processor is represented by a continuous function of the problem size. The speed
is defined as the number of computation units processed per second. Such a per-
formance model is application and hardware specific. In particular, this means
that the computation unit can be defined differently for different applications.
The important requirement is that the computation unit does not have to vary
during the execution of the application. This model can be estimated in the
same way for any data-parallel application and applicable in situations (i)-(ii).
It approximates the execution time and speed using piecewise linear or Akima
spline interpolation [15]. Originally, the functional performance model was de-
signed for uniprocessor machines: it provided optimal data partitioning [7] and
efficient dynamic load balancing [6] on heterogeneous networks of uniprocessors.
Later, this approach was extended to multicore [18] and hybrid CPU/GPU [19]
platforms. Taking into account resource contention, situation (iii), we introduced
a speed of multiple cores, when multiple cores simultaneously execute the same
computation kernel, and a combined speed of a GPU and a dedicated host CPU,
when the GPU executes a computation kernel and the CPU provides memory
management. Integration of all these features into a data-parallel application is
challenging and requires appropriate software implementation.

Elaborate computation performance models provide more accurate predic-
tion but complicate data partitioning algorithms. In contrast to the traditional
data partitioning algorithms, which distribute computations in proportion to
constant speeds, the algorithms based on functional models require solving a
system of equations whose solution yields the balance. If the speeds are defined
by predictive formulas, the solution of the load balancing problem can be found
analytically [12], [14]. Otherwise, if the speeds are interpolated from empirical
data, like in [10], the solution can be found geometrically [10] or numerically [15].
Implementation of model-based data partitioning from scratch within a hetero-
geneous data-parallel application is challenging due to complexity of data
partitioning algorithms. Therefore, routines implementing these algorithms
forms a key functionality of a framework facilitating development of applications
for heterogeneous platforms.

In this paper, we present the software framework that addresses the above
challenges. On several examples, we illustrate how to adapt data-parallel MPI
applications to hybrid heterogeneous platforms, using this framework.

4 New Framework for Model-Based Data Partitioning

In this section, we give a high-level outline of the new framework for model-
based data partitioning FuPerMod, available through the open-source license
from http://hcl.ucd.ie/project/fupermod. The framework provides
the programming interface for:

– accurate and cost-effective performance measurement,
– construction of computation performance models implementing different meth-

ods of interpolation of time and speed,
– invocation of model-based data partitioning algorithms for static and dy-

namic load balancing.

This functionality can be incorporated into a data-parallel applications as fol-
lows. First, the application programmer has to provide the serial code for the
computation kernel of their application and define its computation unit by using
the API provided. This code will be used for computation performance mea-
surements, which can be carried out either within the application or separately,
in order to obtain the a priori performance information. Then, the programmer
chooses the appropriate computation performance model and data partitioning
algorithm, and incorporates them into the application. Upon execution of the
data-parallel application on the heterogeneous platform, the models of proces-
sors/devices will be constructed and the data partitioning algorithm will yield
the optimal distribution of workload for a given problem size. Finally, the pro-
grammer is responsible to distribute the application data accordingly to the
optimal distribution, which will be given in computation units.

4.1 Computation Performance Measurement

The programming interface for computation performance measurement consists
of a data structure encapsulating the computation kernel, fupermod kernel, the
benchmark function, fupermod benchmark, and a data structure storing the re-
sult of the measurement, fupermod point.

The serial code of the computation kernel has to be provided together with
the functions to allocate and deallocate the data for a problem size given in
computation units. In these functions, the application programmer defines the
computation unit and reproduces the memory requirements of the application.
To enable conversion of speed from units/sec to FLOPS, the programmer has
to specify the complexity of the computation unit. As a whole, fupermod kernel
has the following interface:

struct fupermod_kernel {
double (*complexity)(int d, void* params);
int (*initialize)(int d, void* params);
int (*execute)(pthread_mutex_t* mutex, void* params);
int (*finalize)(void* params);

};

– complexity is a pointer to the function that returns the complexity of com-
puting d units;

– initialize/finalize allocate and deallocate memory for the problem of d com-
putation units (create and destroy the execution context for the kernel);

– execute executes the computation kernel in a separate thread;
– params stores the execution context of the kernel;

– mutex protects some resources, when kernel is terminated during a long run.

Let us consider how to define the computation kernel for a typical data-parallel
application, such as matrix multiplication.

In this application, square matrices A, B and C are partitioned over a 2D
arrangement of heterogeneous processors so that the area of each rectangle is
proportional to the speed of the processor that handles the rectangle. This speed
is given by the speed function of the processor for the assigned problem size. Fig-
ure 1(a) shows one iteration of matrix multiplication, with the blocking factor b
parameter, adjusting the granularity of communications and computations [5].
At each iteration of the main loop, pivot column of matrix A and pivot row
of matrix B are broadcasted horizontally and vertically, and then matrix C is
updated in parallel by the GEMM routine of the Basic Linear Algebra Subpro-
grams (BLAS). In this application, we use the matrix partitioning algorithm [2]
that arranges the submatrices to be as square as possible, minimising the total
volume of communications and balancing the computations on the heterogeneous
processors.

(a) (b)

Fig. 1. Heterogeneous parallel column-based matrix multiplication (a) and its compu-
tational kernel (b)

We assume that the total execution time of the application can be approx-
imated by multiplying the execution time of a single run of the computational
kernel by the number of iterations of the application. Therefore, the speed of the
application can be estimated more efficiently by measuring just one run of the
kernel. For this application, the computation kernel on the processor i will be an
update of a b× b block of the submatrix Ci with the parts of pivot column A(b)

and pivot row B(b): Ci+ = A(b) ×B(b) (Fig. 1(b)). The block update represents
one computation unit of the application. The processor i is to process mi × ni

such computation units, which is equal to the area of the submatrix if measured
in blocks. For nearly-square submatrices, which is the case in this application,
one parameter, area, can be used as a problem size. Therefore, in the initialize
function, for the problem size di, we can allocate

√
di ×

√
di blocks for the sub-

matrix Ci and
√
di blocks for the parts of pivot column and row. The execute

function for this kernel will call the GEMM routine once with these matrices
as input. Having the same memory access pattern as the whole application, the

kernel will be executed at nearly the same speed as the whole application. The
complexity function returns the number of arithmetic operations performed by
the kernel: 2× di × b× b.

Performance measurement of this kernel on heterogeneous devices that share
resources and use different programming models is challenging. In our previous
work, we proposed the measurement techniques for a multicore node [18] or GPU-
accelerated node [19], which are now implemented in the FuPerMod framework.
They provide reproducible results within some accuracy and can be summarised
as follows. Automatic rearranging of the processes provided by operating system
may result in performance degradation, therefore, we bind processes to cores
to ensure a stable performance. Then, we synchronise the processes that share
resources (on a node or a socket), in order to minimise the idle computational
cycles, aiming at the highest floating point rate for the application. Synchronisa-
tion also ensures that the resources will be shared between the maximum number
of processes, generating the highest memory traffic. To ensure the reliability of
the measurement, experiments are repeated multiple times until the results are
statistically correct.

GPU depends on a host process, which handles data transfer between the host
and device and launches kernels on the device. A CPU core is usually dedicated to
deal with the GPU, and can undertake partial computations simultaneously with
the GPU. Therefore, we measure the combined performance of the dedicated core
and GPU, including the overhead incurred by data transfer between them. Due
to limited GPU memory, the execution time of GPU kernels can be measured
only within some range of problem sizes, unless out-of-core implementations,
which address this limitation, are available.

To measure the performance of a computation kernel on heterogeneous pro-
cessors/devices, FuPerMod provides a function fupermod benchmark, which has
the following interface:

int fupermod_benchmark(
fupermod_kernel* kernel, int d,
fupermod_precision precision,
MPI_Comm comm_sync,
fupermod_point* point

);

struct fupermod_point {
int d;
double t;
int reps;
double ci;

};

This function initialises the kernel for the problem size d and executes it mul-
tiple times accordingly to the precision argument, which defines the number of
repetitions and statistical parameters. The kernel can be executed in multiple
processes. MPI communicator comm sync is used to synchronise the processes
running on a multi-CPU/GPU node. The function returns a point, which con-
tains the results of the measurement: the problem size in computation units, d ;
the measured execution time, t ; the number of repetitions the measurement has
actually taken, reps; and the confidence interval of the measurement, ci. Arrays
of these experimental points are then used to model the performance of CPU

core(s), or the bundled performance of a GPU and its dedicated CPU core, or
the total performance of a multi-CPU/GPU node.

4.2 Computation Performance Models

The key abstraction of the programming interface for computation performance
modeling is fupermod model, which has the following interface:

struct fupermod_model {
int count;
fupermod_point* points;
double (*t)(fupermod_model* model, double x);
int (*update)(fupermod_model* model, fupermod_point point);

};

It encapsulates experimental points obtained from measurements, which are
given by the count and points data fields, and the approximation of the time func-
tion, t. update specifies how the approximation changes after adding a new ex-
perimental point. The speed in FLOPS is evaluated using the approximated time
and the complexity of the computation kernel: s(x) = complexity(x)/time(x),
where x is a problem size given in computation units. These approximations are
used in the model-based data partitioning algorithms to predict the computation
performance and distribute the workload proportionally.

Currently, FuPerMod implements the following performance models:

– CPM (requires only one experimental point);
– FPM based on the piecewise linear interpolation of the time function;
– FPM based on the Akima spline interpolation of the time function.

The first FPM is based on some assumptions on the shape of the speed func-
tion [10]. In addition to the piecewise linear interpolation, it coarsens the real
performance data in order to satisfy those assumptions, as shown in Fig. 2(a).
The FPM based on the Akima spline interpolation removes these restrictions
[15], and therefore, represents the speed of the processor with more accurate con-
tinuous functions (Fig. 2(b)). The fupermod model data structure can be used
to implement other computation performance models, for example, application-
specific analytical models, such as [14].

4.3 Static Data Partitioning

Computation performance models of processors/devices are used as input for
model-based data partitioning algorithms. The FuPerMod framework currently
provides the following algorithms:

– basic algorithm based on CPMs;
– geometrical algorithm based on the piecewise-linear FPMs;
– numerical algorithm based on the Akima-spline FPMs.

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000

S
p
e
e
d
 (

G
F

L
O

P
S

)

size of problem

Netlib Blas Speed Function

true speed function
piecewise approximation

(a)

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000

S
p
e
e
d
 (

G
F

L
O

P
S

)

size of problem

Netlib Blas Speed Function

true speed function
Akima spline interpolation

(b)

Fig. 2. Speed functions of the matrix multiplication kernel based on the Netlib BLAS
GEMM: (a) piecewise linear interpolation, (b) Akima spline interpolation

The CPM-based algorithm divides the data in proportion to the constant speeds.
This is the fastest but least accurate data partitioning algorithm. It is appropri-
ate for the cases when it has been observed that the speeds do not vary much.
The geometrical algorithm implements iterative bisection of the speed functions
with lines passing through the origin of the coordinate system [10]. Convergence
of this algorithm is ensured by putting restrictions on the shape of the speed
functions, which is implemented in the piecewise-linear FPMs. The numerical
algorithm applies multidimensional solvers to numerical solution of the system
of non-linear equations that formalise the problem of optimal data partition-
ing [15]. It can be applied to smooth speed functions of any shape. As input,
the algorithm takes the Akima-spline FPMs, since this approximation provides
continuous derivative.

Data partitioning algorithms have the following interface:

typedef int (*fupermod_partition)(
int size, fupermod_model** models, fupermod_dist* dist);

where size is the number of the processors/devices, models is an array of the
models corresponding to the processors/devices, and dist is the distribution of
data. The distribution is an input/output argument and has the following struc-
ture:

struct fupermod_dist {
int D;
int size;
fupermod_part* parts;

};

struct fupermod_part {
int d;
double t;

};

where D is the total problem size to partition (in computation units); size is
the number of processors/devices; parts is the array specifying the workload d
that will be assigned to the processors/devices, and the approximated process-

ing time t of the workload. After execution of the data partitioning algorithm,
the application programmer distributes the workload in accordance with the dist
argument. A sample code demonstrating how to use the programming interface
for data partitioning will be provided below, within a more practical example of
dynamic load balancing.

The cost of experimentally building a full computation performance model,
i.e. a functional model for the full range of problem sizes, may be very high,
which limits the applicability of the above partitioning algorithms to situations
where the construction of the models and their use in the application can be
separated. For example, if we develop an application that will be executed on
the same platform multiple times, we can build the full models once and then use
these models multiple times during the repeated execution of the application. In
this case, the time of construction of the models can become very small compared
to the accumulated performance gains during the multiple executions of the op-
timized application. Building full functional performance models is not suitable
for an application that is run a small number of times on a platform. In this
case, computations should be optimally distributed between processors without
a priori information about execution characteristics of the application running
on the platform. In the following section, we describe the programming interface
for dynamic data partitioning and load balancing, which can be used to design
applications that automatically adapt at runtime to any set of heterogeneous
processors.

4.4 Dynamic Data Partitioning and Load Balancing

FuPerMod provides the efficient data partitioning algorithms that do not require
performance models as input. Instead, they approximate the speeds around the
relevant problem sizes, for which performance measurements are made during
the execution of the algorithms. These algorithms do not construct complete
performance models, but rather partially estimate them, sufficiently for optimal
distribution of computations. They balance the load not perfectly, with a given
accuracy. The low execution cost of these algorithms makes them suitable for
employment in self-adaptable applications. Currently, FuPerMod provides two
such algorithms, designed for dynamic data partitioning [11] and dynamic load
balancing [6].

The dynamic algorithms perform data partitioning iteratively, using the par-
tial estimates instead of the full computation performance models. At each iter-
ation, the solution of the data partitioning problem gives new relevant problem
sizes. The performance is measured for these problem sizes, and the partial es-
timates are refined. In the case of dynamic data partitioning, the measurements
are made by benchmarking the representative computation kernel of the applica-
tion. In the case of dynamic load balancing, the real execution of one iteration of
the application is timed. Figure 3 shows a few steps of dynamic data partitioning
for piecewise linear FPMs and geometrical data partitioning algorithm.

The programming interface for the dynamic algorithms consists of a data
structure fupermod dynamic, specifying the context of their execution, and two

(a) (b)

Fig. 3. Construction of the partial FPMs based on piecewise linear interpolation, using
the geometrical data partitioning algorithm

functions fupermod partition iterate and fupermod balance iterate, implementing
one step of dynamic partitioning and load balancing respectively:

struct fupermod_dynamic {
fupermod_partition partition;
int size;
fupermod_model** models;
fupermod_dist* dist;

}
int fupermod_partition_iterate(fupermod_dynamic*, MPI_Comm comm,
fupermod_precision precision, fupermod_benchmark* benchmark,
double eps);

int fupermod_balance_iterate(fupermod_dynamic*, MPI_Comm comm,
struct timespec start);

The context includes the pointer to a data partitioning algorithm, partition,
current partial estimates, models, and near-optimal data partition, dist. Both
function invoke the data partitioning algorithm once, using the current estimates,
and store the result in dist. The dynamic data partitioning function performs
the benchmark, with the statistical parameters precision, while the dynamic load
balancing function uses the start time of the current iteration of the application
to time. Then both function update the partial estimates. The dynamic data
partitioning also requires the accuracy, error, as a termination criterion.

In conclusion, we demonstrate how to use this API for optimisation of another
data-parallel application, which implements the Jacobi method. This application
distributes the matrix and vectors by rows between the processors and iteratively
solves the system of equations. In the source code below, the partial FPMs based
on piecewise linear interpolation are constructed at runtime during the iterations
of the Jacobi method. At each iteration, the load balancing function invokes the
geometrical data partitioning algorithm. The system of equations is redistributed
accordingly to the newly obtained data distribution. Figure 4 demonstrates that
after several iterations of the application, the load is balanced.

MPI_Comm_size(comm, &size);
// FPMs based on piecewise linear interpolation
fupermod_model** models = malloc(sizeof(fupermod_model*) * size);
for (i = 0; i < size; i++)
models[i] = fupermod_model_piecewise_alloc();

// context for dynamic load balancing
fupermod_dynamic balancer = { fupermod_partition_geometric,
size, models, fupermod_dist_alloc(D, size) };

// current distribution, initially even
fupermod_dist* dist = fupermod_dist_alloc(D, size);
// Jacobi data: dist->parts[i].d rows of matrix and vectors
double *A, *b, *x; // allocation, initialisation
// main loop
double error = DBL_MAX;
while (error > eps) {
// redistribution of Jacobi data accordingly to balancer.dist
jacobi_redistribute(comm, dist, A, b, x, balancer.dist);
// store the current distribution
fupermod_dist_copy(dist, balancer.dist);
struct timeval start;
gettimeofday(&start, NULL);
// Jacobi iteration
jacobi_iterate(comm, dist, A, b, x, &error);
// load balancing with the (dist->parts[i].d, now-start) point
fupermod_balance_iterate(&balancer, comm, start);

}

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

16 11 9

Fig. 4. Dynamic load balancing of Jacobi method with geometrical data partitioning

In this paper, we presented a framework for general-purpose data partitioning
based on computation performance models. This framework provides a range
of algorithms and models for optimisation of different data-parallel scientific
applications on modern heterogeneous platforms.

Acknowledgment. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/IN.1/I2054. Experiments were carried out on Grid’5000 developed under the
INRIA ALADDIN development action with support from CNRS, RENATER

and several Universities as well as other funding bodies (see https://www.
grid5000.fr).

References

1. Aubanel, E., Wu, X.: Incorporating latency in heterogeneous graph partitioning.
In: IPDPS 2007. pp. 1–8 (2007)

2. Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix multiplication on het-
erogeneous platforms. IEEE Trans. Parallel Distrib. Syst. 12(10), 1033–1051 (2001)

3. Catalyurek, U., Boman, E., Devine, K., et al.: Hypergraph-based dynamic load
balancing for adaptive scientific computations. In: IPDPS 2007. pp. 1 –11 (2007)

4. Chevalier, C., Pellegrini, F.: PT-Scotch: A tool for efficient parallel graph ordering.
Parallel Computing 34(68), 318 – 331 (2008)

5. Choi, J.: A new parallel matrix multiplication algorithm on distributed-memory
concurrent computers. In: HPC Asia ’97. pp. 224 –229 (1997)

6. Clarke, D., Lastovetsky, A., Rychkov, V.: Dynamic load balancing of parallel com-
putational iterative routines on highly heterogeneous HPC platforms. Parallel Pro-
cessing Letters 21, 195–217 (2011)

7. Clarke, D., Lastovetsky, A., Rychkov, V.: Column-based matrix partitioning for
parallel matrix multiplication on heterogeneous processors based on functional
performance models. In: HeteroPar’2011. pp. 450–459 (2012)

8. Fatica, M.: Accelerating Linpack with CUDA on heterogenous clusters. In:
GPGPU-2. pp. 46–51. ACM (2009)

9. Karypis, G., Schloegel, K.: ParMETIS: Parallel Graph Partitioning and Sparse
Matrix Ordering Library. Version 4.0 (2013), http://glaros.dtc.umn.edu/
gkhome/fetch/sw/parmetis/manual.pdf

10. Lastovetsky, A., Reddy, R.: Data partitioning with a functional performance model
of heterogeneous processors. Int J High Perform C 21, 76–90 (2007)

11. Lastovetsky, A., Reddy, R.: Distributed data partitioning for heterogeneous pro-
cessors based on partial estimation of their functional performance models. In:
Euro-Par 2009, LNCS, vol. 6043, pp. 91–101. Springer (2010)

12. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO-42. pp. 45–55 (2009)

13. Malony, A.D., Biersdorff, S., Shende, S., et al.: Parallel performance measurement
of heterogeneous parallel systems with GPUs. In: ICPP ’11. pp. 176–185 (2011)

14. Ogata, Y., Endo, T., Maruyama, N., Matsuoka, S.: An efficient, model-based CPU-
GPU heterogeneous FFT library. In: IPDPS 2008. pp. 1 –10 (2008)

15. Rychkov, V., Clarke, D., Lastovetsky, A.: Using multidimensional solvers for opti-
mal data partitioning on dedicated heterogeneous HPC platforms. In: PaCT-2011,
LNCS, vol. 6873, pp. 332–346. Springer (2011)

16. Walshaw, C., Cross, M.: Multilevel mesh partitioning for heterogeneous communi-
cation networks. Future Generation Comput. Syst. 17(5), 601–623 (2001)

17. Yang, C., Wang, F., Du, Y., et al.: Adaptive optimization for petascale heteroge-
neous CPU/GPU computing. In: Cluster’10. pp. 19–28 (2010)

18. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on heterogeneous mul-
ticore platforms. In: Cluster 2011. pp. 580–584 (2011)

19. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on heterogeneous multi-
core and multi-GPU systems using functional performance models of data-parallel
applications. In: Cluster 2012. pp. 191–199 (2012)

