
Optimizations to enhance sustainability of MPI
applications

Jesus Carretero, Javier
Garcia-Blas, David E.

Singh, Florin Isaila
University Carlos III of Madrid,

Spain
Alexey Lastovetsky

University College Dublin

Thomas Fahringer, Radu
Prodan

University of Innsbruck,
Austria

Christi Symeonidou
ICS, FORTH, Greece

George Bosilca
University of Tennessee, USA

Horacio Perez-Sanchez,
Jose M. Cecilia

Universidad Católica de
Murcia

ABSTRACT
Ultrascale computing systems are likely to reach speeds of
two or three orders of magnitude greater than today’s com-
puting systems. However, to achieve this level of perfor-
mance, we need to design and implement more sustain-
able solutions for ultra-scale computing systems, at both the
hardware and software levels, while understanding sustain-
ability in a holistic manner in order to address challenges in
economy-of-scale, agile elastic scalability, heterogeneity, pro-
grammability, fault resilience, energy efficiency, and storage.
Some solutions could be integrated into MPI, but others
should be devised as higher level concepts, less general, but
adapted to applicative domains, possibly as programming
patterns or libraries. In this paper, we layout some propos-
als to extend MPI to cover major relevant domains in a move
towards sustainability, including: MPI programming opti-
mizations and programming models, resilience, data man-
agement, and their usage for applications.

Categories and Subject Descriptors
D.1.3 [Software]: [Concurrent Programming parallel pro-
gramming]; C.1.4 [Computer Systems Organization]:
[Parallel distributed architectures]

Keywords
Sustainability, Parallel architectures, MPI, Optimizations

1. INTRODUCTION
The interest of governments, industry, and researchers

in very large scale computing systems has significantly in-
creased in recent years, and steady growth of computing
infrastructures is expected to continue in data centers and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMPI/ASIA ’14, September 9-12 2014, Kyoto, Japan
Copyright 2014 ACM 978-1-4503-2875-3/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642769.2642797.

supercomputers due to the ever-increasing data and process-
ing requirements of various domain applications, which are
constantly pushing the computational limits of current com-
puting resources. However, it seems that we have reached
a point where system growth can no longer be addressed in
an incremental way, due to the huge challenges lying ahead.
In particular scalability, energy barrier, data management,
programmability, and reliability all pose serious threats to
tomorrow’s cyberinfrastructure.

The idea of an Ultrascale Computing Systems (UCS),
envisioned as a large-scale complex system joining parallel
and distributed computing systems that cooperate to pro-
vide solutions to the users might be one solution to these
growing problems at scale. As all the above models rely on
distributed memory systems, the Message-Passing Interface
(MPI) remains a promising paradigm to develop and de-
ploy parallel applications, and it is already proven at larger
scale—with machines running 100K processes. However, can
we be sure that MPI will be sustainable in Ultrascale sys-
tems? If we understand sustainability as the probability that
today’s MPI functionality will be useful, available, and im-
proved in the future, the answer is “yes.” MPI behaves as a
portability layer between the application developer and the
hardware resources, hiding most architectural details from
application developers. The independence from the comput-
ing platform has allowed new versions of MPI to include fea-
tures that, when carefully combined with other libraries and
integrated into dynamic high-level programming paradigms,
permit the development of adaptable applications and novel
programming paradigms, molding themselves to the scale of
the underlying execution platform.

However, we will need to design and implement more sus-
tainable solutions for Ultrascale computing systems, under-
standing sustainability in a holistic manner to address chal-
lenges like economy-of-scale, agile elastic scalability, hetero-
geneity, programmability, fault resilience, energy efficiency,
and scalable storage. Some of those solutions could be inte-
grated and provided by MPI, but others should be devised
as higher level concepts, less general, but adapted to ap-
plicative domains, possibly as programming patterns or li-
braries. In this paper, we layout some proposals to extend
MPI to cover major relevant domains in a move towards
sustainability, including: MPI programming optimizations
and programming models, resilience, data management, and

145

their usage for applications.
The remainder of this paper is organized as follows. Sec-

tion 2 covers communication optimizations, while Section 3
addresses the area of resilience. Section 4 talks about storage
and I/O techniques, Section 5 deals with energy constraints,
and Section 6 presents some application and algorithm op-
timizations. Finally, we conclude in Section 7.

2. ENHANCING MPI RUNTIME AND PRO-
GRAMMING MODELS

As the scale and complexity of systems increases, it is
becoming more important to provide MPI users with opti-
mizations and programming models to hide this complexity,
while providing a mechanism to expose part of this infor-
mation for application developers seeking knowledge of low-
level functions. One possible way to achieve automatic ap-
plication optimization is to provide a layered API and allow
a compiler tool to convert between MPI and this layered
API, as necessary. Another potential approach would in-
volve more efficiently integrating new programming models
(e.g., OpenMP or PGAS) for cooperatively sharing not only
a common high-level goal—such as a view of the applica-
tion’s time-to-completion—but all resources of the targeted
platform. In this section, we focus on some optimizations
shown to enhance MPI’s scalability and performance. These
optimizations provide minimum APIs to transparently en-
hance portability and sustainability of application software,
thus minimizing the adaptation effort.

2.1 Distributed Region-based memory Alloca-
tion and Synchronization

Even though the existing distributed global address mem-
ory models, such as PGAS, support global pointers, their
potential efficiency is hindered by the expensive and unnec-
essary messages generated by global memory accesses. In
order to transfer their data among nodes, they must either
marshal and un-marshal their data during the communica-
tion, or be represented in a non-intuitive manner.
DRASync [3] is a region-based allocator that implements

a global address space abstraction for MPI programs with
pointer-based data structures. Regions are a collection of
contiguous memory spaces used for storing data. They of-
fer great locality since similar data can be placed together
and can be easily transmitted in bulk. DRASync offers an
API for creating, deleting, and transferring such regions. It
enables MPI processes to operate on a region’s data by ac-
quiring the containing region and releasing it at the end of
computation for other processes to acquire. Each region
is combined with ownership semantics, allowing the pro-
cess that created it, or one that acquired it, to have ex-
clusive write permissions to its data. DRASync, however,
does not restrain other MPI processes, that are not own-
ers, from acquiring read-only copies of the region. Thus,
acquire/release operations are akin to reader-writer locks
and enable DRASync to provide an intuitive synchroniza-
tion tool that simplifies the design of MPI applications.
DRASync has been evaluated over the Myrmics [10] al-

locator using two application-level benchmarks, the Barnes-
Hut N-body simulation and the Delaunay triangulation with
variant datasets. The encouraging outcome highlighted the
fact that DRASync produces comparable performance re-
sults while providing a more intuitive synchronization ab-

straction for programmers.

2.2 Optimization of MPI collectives
Algorithms for MPI collective communication operations

typically translate the collective communication pattern as a
combination of point-to-point operations in an overlay topol-
ogy, mostly a tree-like structure. The traditional targets for
such an algorithmic deployment are homogeneous platforms
with identical processors and communication layers. When
applied to heterogeneous platforms, these implementations
may be far from optimal, mainly due to the uneven commu-
nication capabilities of the different links in the underlying
network. In [4], we proposed to use heterogeneous commu-
nication performance models and their prediction to find
more efficient, almost optimal, communication trees for col-
lective algorithms on heterogeneous networks. The models
take into account the heterogeneous capabilities of the un-
derlying network of computers when constructing communi-
cation trees. Model predictions are used during the dynamic
construction of communication trees either by changing the
mapping of the application processes or changing the tree
structure altogether. Experiments on Grid5000 using 39
nodes geographically distributed over 5 clusters stretched
over 2 sites, demonstrate that the proposed model-based
algorithms clearly outperform their non-model-based coun-
terparts on heterogeneous networks (see Fig. 1).

2.3 MPI communications with adaptive com-
pression

Adaptive-CoMPI [5] is an MPI extension which performs
the adaptive message compression of MPI-based applica-
tions to reduce communication volume, and thus time, and
enhances application performance. It is implemented as a
library connected through the Abstract Device Interface of
MPICH so that it can be used with any MPI-based applica-
tion in a transparent manner, as the user does not need to
modify the source code.

Adaptive-CoMPI includes two different compression strate-
gies. The first one, called Runtime Adaptive Strategy ana-
lyzes the performance of the communication network and
the efficiency of different compression algorithms before the
application execution. Based on this information, during the
application execution, it decides if it is worth it to compress
a message or not, and if so, it chooses the most appropri-
ate compression algorithm. This feature allows the Runtime
Adaptive Strategy to offer adaptive compression capabilities
without any previous knowledge of the application charac-
teristics. The second approach, called Guided Strategy, pro-
vides an application-tailored solution based on the prior ap-
plication analysis using the application profiling. With this
approach the MPI application is executed first and all the
messages are stored in a log file. Upon completion, the best
compression algorithm is determined for each message and it
is registered in a decision rules file. When the application is
executed again with the same input parameters, Adaptive-
CoMPI extracts the information from the decision rules file
and applies the most appropriate compression technique for
each message.

Adaptive-CoMPI has been evaluated using real applica-
tions (BIPS3D, PSRG, and STEM), as well as using the
NAS benchmarks. Figure 2 shows the speedup achieved for
each strategy compared to the execution of the application
without compression. Note that the Guided Strategy finds

146

0

0.5

1

1.5

2

2.5

0 40 80 120 160 200

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (kb)

Scatterv

bad-mapping binomial
model-based binomial

ff

0

0.5

1

1.5

2

2.5

0 40 80 120 160 200

Message size (kb)

Gatherv

bad-mapping binomial
model-based binomial

ff

traff
model-based traff

Figure 1: Scatterv and Gatherv operations on geographically distributed clusters from Grid5000.

Figure 2: Speedup of Adaptive-CoMPI by using 16
processors.

the best compression technique (including no compressing)
for each message, providing the optimal compression rate
for each independent message. We can observe that the
Runtime Adaptive Strategy obtains a performance similar
to the guided one which means that, globally speaking, it is
able to efficiently compress the messages with no previous
knowledge of the application.

3. RESILIENCE
Should the number of components in supercomputers con-

tinue to increase, the mean time between failures is expected
to decrease to a handful of hours. As a result, deploying
fault tolerant strategies within HPC software would result
in a massive improvement in application runtime and effi-
cient resource usage compared to currently deployed tech-
niques used to alleviate the consequence of failures (that is,
resubmission of failed jobs, and simplistic periodic check-
pointing to disk). However, checkpoint/restart is unable, in
its current state, to cope with very adversarial future failure
patterns. This presents a clear need for improving check-
pointing strategies by 1) permitting optimized checkpoint
storage that does not rely on centralized I/O; and 2) per-
mitting independent restart of failed processes without roll-
back of the same processes [2]. Algorithm based fault toler-
ant techniques can even forgo checkpointing completely by

employing a tailored, scalable protective strategy to main-
tain sufficient redundancy to restore lost data pieces due
to failures. On another front, there are many applications,
like domain decomposition, naturally fault tolerant applica-
tions, and master-worker, in which the partial loss of the
dataset is not a catastrophic event that commands inter-
rupting progress toward the solution. All of these recovery
patterns hit one of the historic roadblocks that have hin-
dered the deployment of fault tolerant software: the lack of
proper support from the popular MPI communication stack,
which thereby limits recovery options to full-job restart upon
failure.

Resiliency should refer not only to the ability of the MPI
application to be restarted after a failure, but also to the
ability to survive failures and to recover to a consistent state
from which the execution can be resumed. In recent devel-
opments, the MPI Forum has proposed an extension of the
MPI standard that permits restoring the capability of MPI
to communicate after failures strike [1]. One of the most
strenuous challenges is to ensure that no MPI operation
stalls from the consequences of failures, as fault tolerance
is impossible if the application cannot regain full control of
the execution. In the proposed standard, an error is returned
when a failure prevents a communication from completing.
However, it indicates only the local status of the operation,
and does not permit deducing if the associated failure has
impacted MPI operations at other ranks. This design choice
avoids expensive consensus synchronizations from obtruding
into MPI routines, but leaves open the danger of some pro-
cesses proceeding unaware of the failure. The new is a low
level layer, basically the most basic portability layer, that
can be used to build higher level concepts, less general, but
adapted to specific applicative domains. Thus, one possible
solution is to put the resolution of such situations under the
control of the application programmer, by providing supple-
mentary interfaces that reconstruct a consistent global view
of the application state (typical case for applications with
collective communications). Aside from applications, these
new interfaces can be used by high-level abstractions, such
as transactional fault tolerance, uncoordinated checkpoint-
restart, and programming languages, to support advanced
fault tolerance models that are thereby portable between
MPI implementations.

147

4. DATA AND INPUT/OUTPUT
Data storage and management is a major concern for

Ultrascale systems, as the increased scale of the systems
and the data demand from the applications leads to ma-
jor I/O overheads that are actually hampering the perfor-
mance of the applications themselves. MPI has proposed
asynchronous I/O operations to allow overlapping I/O and
computation, but this feature does not reduce the latency of
the system, which is inherent in the length of the I/O path.
To this end, there is a major trend towards increasing data
locality to avoid data movements—a data-centric paradigm.
In this sense, AHPIOS (Ad-Hoc Parallel I/O system for

MPI applications)[8] proposes a scalable parallel I/O sys-
tem completely implemented in the Message Passing Inter-
face (MPI). AHPIOS allows MPI applications to dynami-
cally manage and scale distributed partitions in a convenient
way. The configuration of both the MPI-IO and the storage
management system is unified and allows for a tight integra-
tion of the optimizations of all layers. AHPIOS partitions
are elastic as they conveniently scale up and down with the
number of resources. The AHPIOS proposes two collective
I/O strategies, which leverage a two-tiered cooperative cache
in order to exploit the spatial locality of data-intensive par-
allel applications. The file access latency is hidden from the
applications through an asynchronous data staging strategy.
The two-tiered cooperative cache scales with both the num-
ber of processors and storage resources. The first coopera-
tive cache tier runs along with the application processes and
hence scales with the number of application processes. The
second cooperative cache tier runs at the I/O servers and,
therefore, scales with the number of global storage devices.
Given an MPI application accessing files through the MPI-

IO interface and a set of distributed storage resources, AH-
PIOS constructs a distributed partition on demand, which
can be accessed transparently and efficiently. Files stored in
one AHPIOS partition are transparently striped over storage
resources, each partition being managed by a set of storage
servers running together as an independent MPI applica-
tion. Access to an AHPIOS partition is performed through
an MPI-IO interface, allowing it to scale up and down on
demand during run-time.
The performance and scalability of AHPIOS for an MPI

application that write and read in parallel, disjoint, contigu-
ous regions of a file, stored over an AHPIOS system for dif-
ferent numbers of AHPIOS servers, has been demonstrated
on a Blue-Gene supercomputer. Figure 3 shows the aggre-
gate I/O throughput for n MPI processes writing and read-
ing to/from an AHPIOS partition with n AHPIOS servers.
The figure shows two scenarios: AHPIOS servers run on
the same nodes as the MPI processes; MPI processes and
AHPIOS servers run on disjoint sets of nodes. The figure
represents the throughput to the AHPIOS servers. We can
see that the file access performance scales well with the par-
tition size, independently of the location of AHPIOS servers.

5. ENERGY
Energy became a major concern for the sustainability of

future computer architectures. Providing MPI applications
of malleable capabilities is a possible technique to enhanc-
ing energy efficiency of applications, as shown in this sec-
tion. FLEX-MPI [9] is an MPI extension which provides
performance-aware dynamic reconfiguration capabilities to

Figure 3: AHPIOS. BTIO class C measurements.
ROMIO two-phase I/O over PVFS2, Lustre, AH-
PIOS and the two AHPIOS-based solutions: server-
directed I/O and client-directed I/O.

MPI applications. FLEX-MPI uses the PAPI library to sur-
vey the number of FLOP and execution times of each MPI
process, and of the MPI interface, to collect the MPI com-
munication data (data type, size of the data transferred,
and time spent). Based on this collected data, it decides to
spawn or remove processes in order to achieve a user-defined
performance objective. In case the number of processes
changes, Flex-MPI also includes functionalities for perform-
ing the data redistribution, thereby guaranteeing appropri-
ate load balance among the processes.

There are two different objectives: cost and energy effi-
ciency. The cost objective consists of reaching a given level
of application performance (in FLOP/s) at the smallest cost.
In the case of the energy efficiency objective, we aim to
obtain the smallest energy cost under a given performance
constraint. For reaching these objectives, we employ a com-
putational prediction model that takes into account both
the application and platform characteristics. In the case
of energy saving, the goal is to free as many nodes as possi-
ble, dynamically at run-time, while maintaining a predefined
performance goal.

The results are encouraging, as was demonstrated by ex-
ecuting a Jacobi method to solve a linear equation system
with 20,000 variables and a performance improvement objec-
tive of 35%, using a heterogeneous platform with four classes
of nodes (C8, C6, C7 and C1), each one with different energy
cost. For this application, with an energy efficiency goal,
Flex-MPI schedules more dynamic processes on the nodes
which have more computing power but a better PUE ratio,
achieving an average of 14 computational nodes—compared
to the almost 30 nodes used in the static standard sched-
ule. In this method, the overall operational energy cost is
minimized. This result demonstrates that malleability at
runtime would be a good option for achieving energy effi-
ciency in MPI systems.

6. APPLICATIONS AND ALGORITHMS OP-
TIMIZATIONS

As a library, MPI lacks knowledge about the expected
behavior of the whole application, the so called“global-view
programming model,” which prevents certain optimizations
that would be possible otherwise. In this section, we show
some optimizations that are effective at the global level, and
are thus proposed for the application level.

148

6.1 Hierarchical SUMMA

Figure 4: Communication time of SUMMA, block-
cyclic SUMMA and HSUMMA on BG/P. p =16K,
n = 65,536.

MPI collectives are very important building blocks for
many scientific applications. In particular, MPI broadcast is
used in many parallel linear algebra kernels such as matrix
multiplication, LU factorization, and so on. The state-of-
the-art broadcast algorithms used in the most popular MPI
implementations were designed in mid 1990s with relatively
small parallel systems in mind. Since then, the number of
cores in high-end HPC systems has increased by three or-
ders of magnitude and is going to further increase as the
systems approach Ultrascale. While some platform-specific
algorithms were proposed later on, they do not address the
issue of scale, as they try to optimize the traditional general-
purpose algorithms for different specific network architec-
tures and topologies. The first attempt to address the issue
of scale is made in [7], where the authors challenge the tra-
ditional “flat” design of collective communication patterns
in the context SUMMA, the state-of-the-art parallel matrix
multiplication algorithm. They transform SUMMA by intro-
ducing a two-level virtual hierarchy into the two-dimensional
arrangement of processors. They theoretically prove that
the transformed Hierarchical SUMMA (HSUMMA) can sig-
nificantly outperform SUMMA on large-scale platforms. Their
experiments on 16K cores have demonstrated almost a 6x
improvement in communication cost, which translated into
more than 2-fold speedup of HSUMMA over SUMMA (see
Fig. 4). Moreover, the optimization technique developed is
not architecture or topology specific. While the authors aim
to minimize the total communication cost of this applica-
tion rather than the cost of the individual broadcasts, it has
become evident that, despite being developed in the context
of a particular application, the resulting technique is not
application-bound, ensuring sustainability.

6.2 Application-level optimization of MPI ap-
plications with Compiler Support

Programming in MPI requires the programmer to write
code from the point-of-view of a single processor/thread, an
approach known as fragmented programming. One limit-
ing factor for optimizing MPI is the fact that it is a pure
library approach and thus only effective during the execu-

tion of the application. A lot of effort is put into improving
the performance of individual functions offered by MPI im-
plementations in order to speed up the execution of MPI
applications. These optimizations cannot be performed at
the application level because the structure of the underlying
program cannot be analyzed or changed by the MPI library
in any way. On the other hand, normal compilers have no
knowledge about the semantics of MPI function calls either,
and thus have to treat them like black boxes—just like all
library calls. A compiler which is aware of the semantics of
MPI function semantics could (at least to some extent) ana-
lyze the behavior of a program along with its communication
pattern, in order to optimize both.

We intend to optimize MPI applications by integrating
MPI support in the Insieme compiler project [6]. The In-
sieme compiler framework enables the analysis of a given
parallel application and applies source-to-source transforma-
tions to improve the overall performance. The output code
of the compiler is intended to run within the Insieme run-
time system, which provides basic communication primitives
optimized for performance. The combination of a compiler
and runtime system enables us to transform the program at
compile time and also pass information about the program
structure to the runtime system for further optimizations
during program execution.

Optimizing message passing programs using specialized
compilers has already been done long before MPI even ex-
isted. Moving communication calls within the code and re-
placing blocking with non-blocking communication can im-
prove the communication/computation overlap and thus re-
duce the program execution time. Our approach should go
one step further than previous MPI-aware compilers by an-
alyzing high level patterns to find further optimization po-
tential. An example illustrating such a pattern is depicted
in the following code:

{
MPI_Bcast(A, count, MPI_INT, 0, MPI_COMM_WORLD);
for (int i = 0; i < count; i++) {

// process A
}
MPI_Bcast(B, count, MPI_INT, 0, MPI_COMM_WORLD);
// process B similarly

}

An MPI-aware compiler could change the second call from
MPI Bcast to MPI Ibcast, and thus send B asynchronously
while the application is processing the data transmitted dur-
ing the first broadcast, A. Additionally, our compiler can de-
tect that, under some constraints, it would be beneficial to
combine both broadcast operations into a single operation
to reduce the communication overhead for small messages.
Similarly, for larger messages it might decide to break down
the message transfers into smaller chunks which will then
be processed individually, creating a pipelined broadcast at
the application level, as shown below. Transformations like
these require program analysis in a compiler and simply can-
not be done with a pure library approach.

{
for (offset = 0; offset < count; offset += tile_size) {

MPI_Bcast(&A[offset], tile_size, MPI_INT, 0,
MPI_COMM_WORLD);

for (i = offset; i < offset + tile_size; i++) {
// process tile of A

}
}
//process remainder of A and do the same for B

}

6.3 Hybrid MPI-OpenMP Implementations

149

A hybrid programming solution might be implemented us-
ing OpenMP and MPI. Such approaches become more im-
portant on modern multi-core parallel systems, decreasing
unnecessary communications between processes running on
the same node, as well as, decreasing the memory consump-
tion, and improving the load balance. With this implemen-
tation, both levels of parallelism, distributed and shared-
memory, can be exploited. On one hand, the block-level
parallelism is matched by the parallelism between nodes in
the cluster (the data is distributed by using MPI). On the
other hand, threads cooperate in parallel to perform the cal-
culations within each node in a vectorized fashion. Once the
data has been distributed using MPI, the calculation of the
energy is performed on each node with OpenMP, using its
own memory and executing as many threads as the number
of cores per node. Moreover, the communication and com-
putation can be overlapped by asynchronous send/receive
instructions. These hybrid solutions are adequate when the
kernels are computationally intensive and massively parallel
in nature, and thus they are well suited to be accelerated on
parallel architectures. A natural evolution can also be made
with many-core systems located on each node.
One application example is the discovery of new drugs us-

ing Virtual Screening (VS) methods, where the calculation
of the non-bonded interactions plays an important role, rep-
resenting up to 80% of the total execution time. MPI can be
used to move molecule related data between nodes, instead
of sending all the information to each core. The communi-
cation is reduced by a ratio of number of cores per node,
with respect to the MPI implementation. This hybrid dis-
tributed memory system exhibits good scalability with the
number of processors, which is explained by the low number
of communications required by our simulations in the hy-
brid MPI-OpenMP implementation. The hybrid optimized
version reaches up to a 229x speed-up factor, versus its se-
quential counterpart [11].

7. CONCLUSIONS
The MPI design and its different implementations have

proven to be a critical piece of the roadmap to faster and
more scalable parallel applications. Based on it’s past suc-
cesses, MPI will probably remain a major paradigm for pro-
gramming distributed memory systems. However, in order
to maintain a consistent degree of performance and porta-
bility, the revolutionary changes we witness at the hardware
level must be mirrored at the software level. Thus, the MPI
standard must be in a continuous state of re-examination
and re-factoring, to better bridge high-level software con-
structs with the low-level hardware capability. As software
researchers, we need to highlight and explore innovative and
even potentially disruptive concepts and match them to al-
ternative, faster, and more scalable algorithms.
In this paper, we have called attention to some MPI-level

optimizations that are amenable to providing sustainable
support to parallel applications. Hybrid programming mod-
els allow developers to use MPI as the upper level distri-
bution mechanism, thus reducing the volume of communi-
cation and the memory needed. Adaptive compression al-
lows developers to reduce MPI communications and storage
overhead, while AHPIOS is aimed at increasing data local-
ity and reducing I/O latency. Most of the proposals made
are transparent to applications or can be made transpar-

ent through compiler support. Many more optimizations
are possible for applications that rely on MPI to evolve bet-
ter programming models, resilience, data management, and
energy efficiency mechanisms to reduce overhead, while cre-
ating evolving applications. Some of these mechanisms, like
RMA, non-blocking, and neighborhood collectives, are in-
troduced in the new MPI 3.0 standard, but the road to Ul-
trascale is still unpaved.

Acknowledgments
This work has been partially funded by EU under the COST
programme Action IC1305.

8. REFERENCES
[1] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca,

and J. Dongarra. An evaluation of user-level failure
mitigation support in mpi. DOI
10.1007/s00607-013-0331-3:1–14, May 2013.

[2] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, and
J. Dongarra. Assessing the impact of abft and checkpoint
composite strategies. In 16th Workshop on Advances in
Parallel and Distributed Computational Models, IPDPS
2014, Phoenix, AZ, May 2014.

[3] A. B. C. Symeonidou, P. Pratikakis and D. Nikolopoulos.
Drasync: Distributed region-based memory allocation and
synchronization. In Proceedings of the 20th European MPI

UsersâĂŹ Group Meeting. EuroMPI âĂŹ13, page

49âĂŞ54. ACM, 2013.
[4] K. Dichev, V. Rychkov, and A. Lastovetsky. Two

algorithms of irregular scatter/gather operations for
heterogeneous platforms. In Recent Advances in the
Message Passing Interface, pages 289–293. Springer Berlin
Heidelberg, 2010.

[5] R. Filgueira, J. Carretero, D. E. Singh, A. Calderon, and

A. NuÃśez. Dynamic-compi: Dynamic optimization
techniques for mpi parallel applications. The Journal of
Supercomputing, 59(1):361–391, April 2012.

[6] J. D. S. P. P. G. T. F. H. M. H. Jordan, P. Thoman. A
multi-objective auto-tuning framework for parallel codes. In
Proc. of the Intl. Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2012).
IEEE Computer Society Press, 2012.

[7] K. Hasanov, J.-N. Quintin, and A. Lastovetsky.
Hierarchical approach to optimization of parallel matrix
multiplication on large-scale platforms. The Journal of
Supercomputing, pages 1–24, 2014.

[8] F. Isaila, F. J. Garcia Blas, J. Carretero, W.-K. Liao, and
A. Choudhary. A Scalable Message Passing Interface
Implementation of an Ad-Hoc Parallel I/O System. Int. J.
High Perform. Comput. Appl., 24(2):164–184, May 2010.

[9] G. Martin, M.-C. Marinescu, D. E. Singh, and J. Carretero.
FLEX-MPI: an MPI extension for supporting dynamic load
balancing on heterogeneous non-dedicated systems. In
International European Conference on Parallel and
Distributed Computing, EuroPar, 2013.

[10] D. N. M. S. T. G. S. Lyberis, P. Pratikakis and
B. de Supinski. The myrmics memory allocator:
hierarchical,message-passing allocation for global address
spaces. In Proceedings of the International Symposium on
Memory Management. 2012.

[11] Q. Zhang, J. Wang, G. D. Guerrero, J. M. Cecilia, J. M.
Garćıa, Y. Li, H. Pérez-Sánchez, and T. Hou. Accelerated
Conformational Entropy Calculations Using Graphic
Processing Units. Journal of chemical information and
modeling, 53(8):2057–2064, Aug. 2013.

150

