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Abstract

This thesis presents static code analysis approach to gathering information about
remote tasks to be executed by applications using GridRPC API for collective
mapping.

Collective mapping of tasks to servers has significant performance benefits
over mapping individual tasks independently. However, it requires information
about remote tasks an application is going to execute to be available before the
application starts executing these remote tasks.

This thesis presents static code analysis approach, which allows collecting es-
sential part of this information by analysing code during compilation. The appli-
cation is modified automatically by preprocessor to utilise collected information
and build optimal task-to-server mapping during runtime.

Advantages of static code analysis over other approaches to collective map-
ping are outlined, and experimental results using real world application are pre-
sented.
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Chapter 1

Introduction

Performance of computers keeps growing exponentially since the early years of
computing. However, a single computer is still not powerful enough to solve prob-
lems dictated by modern science and technology. Advances in modern network-
ing and computing architecture allow interconnecting multiple general-purpose
processing units (CPUs) and special-purpose processing units (like GPUs, for ex-
ample) efficiently to work in parallel to solve complex tasks. As a result, parallel
computing became a very important topic in this time.

1.1 Clouds and Grids
Cloud infrastructure working on computational clusters consisting of thousands
of nodes is able to process online transactions simultaneously for millions of
customers of web search, social networks, remote file storage, video and audio
streaming and many other services. Most of clusters serving cloud services are
centralised (controlled by single commercial companies), dedicated to the service
they provide and optimised for processing a steady stream of short transactions,
mostly through HTTP interface.

Scientific computations usually have a different nature. Each computation can
be split into separate tasks which can be computed in parallel, but these tasks are
themselves very different than short online transactions. These tasks can require
various computational resources, and some of them can take a long time to com-
plete even on modern hardware. For example, the fastest known square matrix
multiplication algorithm has complexity of O(n2.3728639) for matrices of n × n
size, so it can require quite a lot of computational resources for sufficiently large
values of n. Also, scientific institutions usually have no financial resources to
build huge clusters dedicated to scientific computations which can be matched by
number of nodes to leaders of commercial cloud services. On the other hand, in-
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2 CHAPTER 1. INTRODUCTION

stead of competing like commercial entities do, scientific institutions have good
cooperation, so they can share their resources to build infrastructure for parallel
computations.

As a result, natural model for scientific computation is quite different: a grid
rather than a cloud. Grid is a very popular form of distributed computing, which
is designed for non-interactive workloads with large number of tasks run in par-
allel to achieve a common goal as part of a parallel algorithm. Unlike clusters
dedicated to clouds, grids are usually built using heterogeneous approach. They
consist of nodes having different computational power or even different proces-
sor architecture, and these nodes are interconnected by networks having various
bandwidth. Also, grids are often spread between different geographical locations,
so some of grid parts are interconnected via public Internet rather than dedicated
local area network [48].

1.2 A popular programming model: RPC
There are different ways to write parallel algorithms for grids [36]. There are spe-
cialised languages and compilers, libraries for existing programming languages,
web services.

One of the popular programming models used for parallel computing is RPC
(remote procedure call) [5]. This programming model is implemented as library
API for existing programming languages. To run a remote task, a client performs
local function (procedure) or method call.

A remote task name can be either specified (directly or indirectly) as an ar-
gument of this function, or derived from function or method name. In the later
case mapping between functions or methods and remote procedure names has to
be somehow established. There are two common approaches for that.

Using dynamic binding.
Interpreted programming languages allow to create objects or functions dy-
namically. Client library can request server about available remote proce-
dures and create all necessary functions or an object with respective meth-
ods using this information, making newly created functions or object avail-
able to the client program.

Also, popular interpreted programming languages have a feature to inter-
cept a call for unknown object’s method (the one which was not explicitly
defined or inherited) and preform some action instead of throwing an error
or exception. This action has information about name of the method which
was attempted to be called, so it can use this name as a remote procedure
name.
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Using IDL (interface definition language).
External language to define interface to remote service can be used to gen-
erate stub functions for the client side, each of which perform remote pro-
cedure call using respective remote procedure name and pass its arguments
to remote server (probably converting them to external representation).

Also, IDL can be used to generate server-side skeleton functions or methods
which can be used as placeholders to help programmer to write server-side
part by filling in these placeholders with actual code preforming actual re-
mote computations.

A server to run the task on can also be specified as a function argument, or
assigned automatically. Also, server name or other server location data can be
stored in a handle which is passed as a function argument or in an object which is
used to invoke a method.

Usually remote procedure’s arguments are specified by using function’s or
method’s arguments. Alternatively, argument list can be formed dynamically in-
side some data structure which is passed as an argument. Remote procedure’s
result can be stored in function’s or method’s return value or output arguments.

Running remote task is performed with these steps:

1. converting input arguments from internal representation to external server-
specific one and sending them to the remote server;

2. remote task execution;

3. receiving results from the remote server, converting them back to client’s
internal representation.

There are many different RPC protocols and their implementations. Some
of popular general-purpose RPC protocols which are used for invoking remote
services (not just grid computing) are listed below.

ONC RPC (Sun RPC) [38]
Initially implemented for SunOS and Solaris operating systems designed
by Sun Microsystems, ONC (Open Network Computing) RPC became de
facto standard in Unix and Unix-like operating systems, and its support is
included in standard C libraries supplied with them. Popular services like
NFS [40] and NIS [42] are implemented on top of ONC RPC. ONC RPC
has a standard API for C programming language. Remote service is iden-
tified by unique program number and version number. Remote procedure
is identified by procedure number which is unique inside remote service.
There is high-level and low-level API for ONC RPC. The high-level API
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uses stub functions generated by rpcgen program from IDL. These func-
tions are convenient wrappers for remote procedures, passing their argu-
ments and converting them to external data representation (XDR). The low-
level API uses callrpc() function. In this case programmer is respon-
sible for specifying remote program, version and procedure number as well
as pointers to input and output conversion functions. Server name should be
specified explicitly in either case, as first argument of callrpc() function
or stub functions generated by rpcgen.

XML-RPC[35]
XML-RPC is a simple standard way to encode function calls with their ar-
guments as well as call results as XML documents. Usually remote proce-
dure calls using XML-RPC are preformed using HTTP requests, and results
are returned in HTTP response body, but there are implementations using
different communication transports (like XMPP). There is no standard API
for XML-RPC, but there are popular libraries for different programming
languages, each with its own API.

SOAP [25]
SOAP is a standard protocol for web services. Like XML-RPC, it uses
XML for encoding remote calls and their results, but it uses more com-
plex and structured XML with namespaces, relying on XML Infoset for its
message format. There is XML-based IDL for SOAP called WSDL, which
can define not just data types and remote methods with their arguments, but
also URLs of web services which serve these remote methods. There is
no standard API for XML-RPC, but there are popular libraries for different
programming languages each with its own API, some of them using stub
functions generated from WSDL.

JSON-RPC [18]
JSON-RPC is another standard way to encode function calls with their ar-
guments as well as call results in JSON format. Usually remote procedure
calls using JSON-RPC are preformed using HTTP requests, and results are
returned in HTTP response body. but other transports can be used, like plain
TCP connection. As with XML-RPC, there is no standard API for JSON-
RPC, but there are popular libraries for different programming languages
each with its own API.

Java RMI [21]
Java RMI (Remote Method Invocation) is a Java-specific object-oriented
RPC for invoking methods of remote Java classes. It supports sending seri-
alised Java classed and distributed garbage collection. Also, it can perform
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RPC over IIOP for interoperability with CORBA. Java RMI has a standard
API for Java programming language. It doesn’t need IDL to generate stub
methods because Java is interpreted language, so it can generate objects
with needed methods dynamically.

CORBA (GIOP)
General Inter-ORB Protocol (GIOP) is a family of protocols used for CORBA [24].
It has several variants which use different transports for communication, for
example:

IIOP: TCP connection;

SSLIOP: TCP connection encrypted with SSL;

HTIOP: HTTP request-response.

CORBA (Common Object Request Broker Architecture) is distributed ob-
ject model allowing unified access to objects and their methods no matter
whether an object’s implementation resides in program’s own address space
of on a remote server. Objects are managed by Object Request Brokers
(ORBs), which provide object references to the client program. Access to
objects managed by the ORB located in program’s address space are pro-
vided to the client program directly. Requests to methods of objects man-
aged by other ORBs are send by local ORB to remote ORB using RPC pro-
vided by variants of GIOP. There are standard APIs for many programming
languages which use IDL to generate client-side stub functions or methods.

D-Bus [37]
Although not designed for distributed computing, D-Bus is a notable ex-
ample of object-oriented RPC designed for communication between pro-
grams inside an operating system. It uses Unix-domain sockets, an inter-
process communication mechanism used in Unix-like operating systems, as
its transport. D-Bus protocol uses simple binary encoding for data transfer.
All objects have unique pathnames. Set of functions and their signatures
provided by an object is determined by interface name and XML-based IDL
associated with it. There is a low-level API for C and C++ programming
languages provided by libdbus and libdbus-c++ libraries. Also, there is
more high-level API provided by Qt toolkit which provides several ways
to call remote methods, either by specifying object, interface and method
names explicitly or by using stub methods generated by qdbusxml2cpp
IDL compiler.

RPC is a simple and straightforward programming model, which makes it
quite popular in many areas of distributed computing, not just grid computing.
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Registry

Client Service

handle
lookup

call

result

register

Figure 1.1: The GridRPC model

1.3 GridRPC: RPC for grids
Unlike general-purpose RPC protocols and APIs listed above, there is an RPC
API specially designed for grid computing: GridRPC. Promoted by Open Grid
Forum, GridRPC [45] is a popular API for running remote tasks in a grid. The
underlying communication protocol is out of scope of GridRPC specification, so
different implementations use different protocols.

GridRPC is a kind of RPC interface specially designed for scientific compu-
tations using client-server model. Its API specifies functions for a client program
to start remote tasks on servers in a grid and wait for completion of these tasks.

The basic structure of GridRPC architecture is shown on Figure 1.1. It consists
of 3 parts.

Service
Provides tasks for remote execution. Servers in a grid can provide multiple
services, and a remote task can be available on multiple servers.

Registry
A central authority keeping information about remote tasks available and
servers which provide these tasks as services. There is only one registry in
a grid, but it can be distributed between several nodes.

Client
A program which implements parallel algorithm and requests services from
the grid to run remote tasks for this algorithm.

When a server in a grid starts up, it registers all its services with the grid’s
registry.

A client performs the following steps to run remote task.
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• Initialising GridRPC client library with grpc initialize() function.
This function must be called before calling any other GridRPC API func-
tions.

• Initialising function handle with grpc function handle init() or
grpc function handle default() function. These functions have
pointer to object of opaque grpc function handle t type as their first
argument and remote task name as the last argument. These functions per-
form lookup step by sending remote task name to the grid’s registry and us-
ing reply to initialise function handle with information about the task, its ar-
guments and the server assigned to the task. The grpc function handle init()
function has an additional argument specifying the name of the server to as-
sign to the task. The grpc function handle default() function
requests grid’s registry to assign a server to the task automatically.

• The remote task is started by calling grpc call() or grpc call async()
function. The grpc call() function starts a remote task synchronously,
waiting for remote task’s completion. The grpc call async() func-
tion starts a remote task asynchronously, not waiting for its completion.
The first argument of both functions is pointer to initialised function han-
dle. The grpc call async() function has also argument pointing to an
object of opaque grpc sessionid t type which stores session ID which
can be used to identify a running remote task. All remaining arguments of
both functions specify remote task’s arguments.

• The client can wait for completion of remote tasks which were started asyn-
chronously by using grpc wait() function. Session ID of the remote
task is passed as argument to this function.

Listing 1.1 at page 8 shows example program running a remote task asyn-
chronously using GridRPC. 1

GridRPC has three distinctive features among other RPC APIs.

• It’s allowed to not specify server name to run a remote task on. This is
achieved by using grpc function handle default() function to
initialise a function handle. In this case, server is assigned automatically.

• IDL is not used to generate client-side stub functions. Instead, task name is
specified when initialising function handle, and pointer to this function han-
dle is used as an argument for grpc call() or grpc call async()

1This is a complete GridRPC program with proper error handling. We will omit error handling
in further examples for brevity.
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1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e <g rpc . h>
4
5 i n t main ( ) {
6 g r p c f u n c t i o n h a n d l e t h a n d l e ;
7 g r p c s e s s i o n i d t s e s s i d ;
8 g r p c e r r o r t s t a t u s ;
9 i n t * ivec , * r e t v a l ;

10 i n t i , n = 1 0 ;
11
12 i v e c = ( i n t *) ma l lo c ( n * s i z e o f ( i n t ) ) ;
13 r e t v a l = ( i n t *) ma l lo c ( n * s i z e o f ( i n t ) ) ;
14
15 f o r ( i = 0 ; i < n ; i ++) i v e c [ i ] = 1 0 ;
16
17 i f ( g r p c i n i t i a l i z e (NULL) != GRPC NO ERROR) {
18 g r p c p e r r o r ( ” g r p c i n i t i a l i z e ” ) ;
19 e x i t ( 1 ) ;
20 }
21
22 s t a t u s = g r p c f u n c t i o n h a n d l e d e f a u l t (& hand le ,
23 ” r e t u r n i n t v e c t o r ” ) ;
24 i f ( s t a t u s != GRPC NO ERROR) {
25 f p r i n t f ( s t d e r r , ” E r r o r c r e a t i n g f u n c t i o n h a n d l e \n ” ) ;
26 e x i t ( 1 ) ;
27 }
28
29 s t a t u s = g r p c c a l l a s y n c (& hand le , &s e s s i d , i vec , n , r e t v a l ) ;
30 i f ( s t a t u s != GRPC NO ERROR) {
31 g r p c p e r r o r ( ” g r p c c a l l a s y n c ” ) ;
32 e x i t ( 1 ) ;
33 }
34
35 s t a t u s = g r p c w a i t ( s e s s i d ) ;
36 i f ( s t a t u s != GRPC NO ERROR) {
37 g r p c p e r r o r ( ” g r p c w a i t ” ) ;
38 e x i t ( 1 ) ;
39 }
40
41 g r p c f i n a l i z e ( ) ;
42 re turn 0 ;
43 }

Listing 1.1: GridRPC program example.
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or any other function that starts a remote task. All information about argu-
ment types and their directions (in, out or inout) is retrieved from the server
which is assigned to run the task. However, IDL may be used for server-side
programming for generating services which provide remote tasks.

• Although no stub functions are used on client side, the API is still high-
level. Arguments for remote tasks are passed naturally as arguments for
functions starting remote tasks. However, for better flexibility a way to build
argument list is also provided, as well as grpc call arg stack() and
grpc call arg stack async() functions which use prepared argu-
ment list to pass to the remote task.

GridRPC has several advantages:

Standard API.
The same program can be recompiled with different GridRPC implementa-
tions without changing source code.

High level.
GridRPC allows to run remote tasks on a grid by specifying task names.
All input arguments can be specified natural way as function arguments to
GridRPC calls.

Flexible.
There are different variants of GridRPC call functions allowing either to
pass arguments as regular function arguments or to create argument list in
advance. GridRPC calls can be synchronous (making a program to wait
for task completion), or asynchronous (allowing a program to start multiple
tasks in parallel and then wait for completion of selected tasks). Server
to run a task on can be either specified explicitly or omitted to allow grid
middleware to select a server for the task.

Easy to program.
GridRPC API is very simple. There are very few functions to remember,
and they are very easy to use. Unlike other RPC implementations, GridRPC
needs no client-side IDL (interface definition language) to define argument
types: argument types are provided by servers at runtime.

Easy to convert existing applications.
Just taking a linear program and replacing some function calls with GridRPC
calls makes the program ready for grid computing.
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1.4 GridRPC implementations
Due to its advantages, GridRPC was implemented shortly after it was standardised
by several grid middleware projects. As a result, now there are several popular
GridRPC implementations.

GridSolve [49]
NetSolve [15] project was started in 1994 to provide a simple and con-
venient way to organise distributed computational resources provided by
loosely connected servers, which can be dispersed between different geo-
graphical locations. Its architecture consists of two kinds of servers: com-
putational and communication ones. Computational server is a server pro-
viding computational resources: tasks which can be activated remotely.
Communication servers constitute a distributed NetSolve agent, which have
function similar to GridRPC registry: providing information about servers
and tasks available on these servers. Also, NetSolve provides client libraries
for C and FORTRAN with its own simple API, as well as interactive com-
mand line interface and interface for MATLAB.

After GridRPC programming model and API was standardised, a new ver-
sion of NetSolve called GridSolve was released in 2003, providing full im-
plementation of GridRPC. For historical reasons, GridRPC registry is called
agent in GridSolve.

Ninf-G [46]
Ninf [44] project was also started in 1994 with the same goals as NetSolve.
Its architecture also consists of servers providing tasks to be run remotely
and metaserver which provides information about servers and tasks avail-
able on them. There can be multiple Metaservers providing distributed reg-
istry. Hence, basic architecture of Ninf is similar to one provided by Net-
Solve and GridRPC architecture which was standardised later. However,
it has different client API and different approach to managing servers and
installing tasks on them. Ninf API is available for C, FORTRAN, Java and
Lisp programming languages.

Ninf-G is a new version of Ninf implemented on top of the Globus toolkit [22],
providing GridRPC API and programming model.

DIET [13]
DIET (Distributed Interactive Engineering Toolkit) project was started in
2002. It has hierarchical architecture. This architecture has the following
components (bottom to top).



1.5. GRIDRPC LIMITATIONS 11

CRD
On the bottom of hierarchy there is Computational Resources Daemon
(CRD), which represents computational resource.

SeD
There is Server Daemon (SeD) which manages several CRDs. SeD is
responsible for a server and has information about tasks available on
the server and its status.

LA
Local Agent (LA) aggregates information from multiple SeDs, but
doesn’t make scheduling decisions.

MA
Master Agent (MA) is on top of hierarchy. It further aggregates infor-
mation collected by multiple LAs. Also, it serves requests for compu-
tations from clients and assigns servers for these tasks. There can be
multiple MAs for redundancy, providing distributed registry.

Originally DIET was using CORBA for invoking remote tasks [14], but later
it was extended to implement GridRPC interface.

1.5 GridRPC limitations
GridRPC provides a powerful but simple and convenient API. However, GridRPC
has some limitations due to its simplicity.

• A server is assigned to run each task independently because grid has no
information about which tasks a program is going to run in advance. This
leads to non-optimal assignment of servers to tasks (task-to-server map-
ping). It’s possible to specify servers for each task explicitly in a program,
but this approach requires prior knowledge of grid structure and list of its
servers and makes the program fail if grid structure has changed or the pro-
gram is run on a different grid.

• As most other RPC implementations, GridRPC has strict client-server ar-
chitecture. This means that all input arguments are passed only from client
to server, and all output arguments (results) are passed only from server to
client. This leads to non-optimal communication: if the second task uses re-
sults of the first task, these results are first sent from the server running the
first task to the client and then send from the client to the server running the
second task, even if these servers are connected with high-speed network
(or both tasks run on the same server).
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1.6 Beyond GridRPC: collective mapping
A solution to individual task-to-server mapping provided by GridRPC (and re-
sulting non-optimal server assignment and communication) is collective mapping:
assigning servers to all tasks collectively. This allows not only to allocate com-
putational resources more optimally, but also utilise direct server-to-server com-
munication and take communication into account to optimise computation and
communication time together.

However, collective mapping needs information about tasks to be run by a
program, their sequence and data dependencies between them to be available in
advance, prior to running parallel algorithm implemented by the program. There
are different approaches to collect this information: runtime discovery and ADL.
However, these approaches have their limitations: runtime discovery puts strict
restrictions on application code, ADL requires a separate algorithm definition.

1.7 Contributions
This thesis presents a new approach to collecting information needed for collective
mapping by using static code analysis to extract algorithm workflow from the
source code of the program implementing this algorithm.

Algorithm workflow is extracted by a program and is stored in a tree structure.
Then this structure is used to preprocess source files and insert additional data
definitions containing extracted information and code which uses these data to
build proper application performance model, assign servers to tasks collectively
and arrange server-to-server communication.

This approach has advantages over runtime discovery and ADL approaches:
less restrictions on source code, no need to supply a separate algorithm definition.

1.8 Structure
The following chapters are structured as following.

Limitations of individual mapping and advantages of collective mapping are
outlined in chapter 2.

Existing approaches to optimise grid performance without using collective
mapping, as well as approaches to collective mapping are discussed in chapter 3.

A new approach to building application performance model by applying static
code analysis to a program is introduced in chapter 4. Changes needed to appli-
cation build process to use this approach, how source code is analysed and what
information is extracted, which data and code is inserted during preprocessing
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and how this code works is described in details in this chapter. This is the main
contribution of this thesis.

Applying static code analysis approach to real-world application is described
in chapter 5.

Conclusions are presented in chapter 6.
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Chapter 2

Motivation

Regular GridRPC implementations use individual task-to-server mapping. Each
server assignment to remote task is performed individually because grid has no
prior information about which tasks a program is going to run later.

2.1 GridRPC program example
Listing 2.1 at page 16 gives an example of parallel algorithm inside GridRPC
program. 1 The algorithm does the following.

1. Function handles are initialised at lines 15 to 21. The grpc function handle default ()
function handle initialisation variant is used, which allows to specify just
task name, omitting server name to allow grid middleware to assign a suit-
able server to each task.

2. The parallel algorithm is inside the block beginning at line 23.

3. First, two instances of T1_cond task are started at lines 24 and 26.

4. Then the program waits for completion of both tasks at line 28.

5. After that, two tasks are run synchronously one after another: T2_cond at
line 29 and P1_cond at line 30.

6. The p output argument of P1_cond task is used in condition at line 31.

1This is not a complete program, just a function implementing parallel algorithm. We assume
that arguments of type double * point to already allocated memory sufficient to hold vectors of
double-precision floating point numbers used in this algorithm.

15
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1 # i n c l u d e <g rpc . h>
2
3 void run ( unsigned i n t s i z e , unsigned i n t count ,
4 double *a0 , double *b0 , double *c0 ,
5 double *a1 , double *b1 , double *c1 ,
6 double *d )
7 {
8 g r p c f u n c t i o n h a n d l e t t 1 0 , t 1 1 ;
9 g r p c f u n c t i o n h a n d l e t t 2 0 , t 2 1 ;

10 g r p c f u n c t i o n h a n d l e t t 3 0 , t 3 1 ;
11 g r p c f u n c t i o n h a n d l e t p1 ;
12 g r p c s e s s i o n i d t s id0 , s i d 1 ;
13 i n t p ;
14 / * F u n c t i o n h a n d l e s i n i t i a l i s a t i o n . * /
15 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 0 , ” T1 cond ” ) ;
16 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 1 , ” T1 cond ” ) ;
17 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 0 , ” T2 cond ” ) ;
18 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 1 , ” T2 cond ” ) ;
19 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 0 , ” T3 cond ” ) ;
20 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 1 , ” T3 cond ” ) ;
21 g r p c f u n c t i o n h a n d l e d e f a u l t (&p1 , ” P1 cond ” ) ;
22 / * P a r a l l e l a l g o r i t h m . * /
23 {
24 g r p c c a l l a s y n c (& t 1 0 , &s id0 , a0 , b0 , c0 ,
25 s i z e , c o u n t ) ;
26 g r p c c a l l a s y n c (& t 1 1 , &s id1 , a1 , b1 , c1 ,
27 s i z e , c o u n t * 2 ) ;
28 g r p c w a i t a l l ( ) ;
29 g r p c c a l l (& t 2 0 , c0 , c1 , d , s i z e , c o u n t ) ;
30 g r p c c a l l (&p1 , d , s i z e , count , ( double ) 0 . 5 , &p ) ;
31 i f ( p ) {
32 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , a0 ,
33 s i z e , c o u n t ) ;
34 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , a1 ,
35 s i z e , c o u n t * 2 ) ;
36 g r p c w a i t a l l ( ) ;
37 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
38 } e l s e {
39 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , b0 ,
40 s i z e , c o u n t ) ;
41 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , b1 ,
42 s i z e , c o u n t * 2 ) ;
43 g r p c w a i t a l l ( ) ;
44 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
45 }
46 }
47 }

Listing 2.1: GridRPC program. Error handling omitted for brevity.
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7. If p is non-zero, two instances of T3_cond task are started at lines 32 and
34, then the program waits for both running tasks at line 36, then T2_cond
task is run synchronously using results from previous tasks at line 37.

8. Otherwise, if p is zero, two instances of T3_cond task are started at lines
39 and 41 with different arguments, then the program waits for both running
tasks at line 43, then T2_cond task is run synchronously using results from
previous tasks at line 44.

2.2 First problem: non-optimal task-to-server map-
ping

The first problem with individual mapping is non-optimal allocation of computa-
tional resources to tasks.

Let’s assume that computational complexity of T1_cond task has linear de-
pendency on numerical value of its last argument. This means that the second
instance of this task started at line 26 will take twice longer than the first instance
of this task started at line 24 to complete on the same hardware.

Let’s assume that we have just two servers in the grid: S1 and S2, and S1 is
twice faster than S2.

When our program starts the first instance of T1_cond task, grid middle-
ware has no way to find out which tasks will be started after that, so it’s logical
to assume that the fastest server S1 will be assigned to this task. Then the sec-
ond instance of T1_cond is started, which requires twice more computational
resources than the first one. However, grid middleware has no other choice as to
assign server S2 to this task. As a result, we have faster server S1 handling less
complex task and slower server S2 handling more complex task, so the first task
will complete 4 times faster than the second one. If we somehow knew that more
complex task is coming after the first one, it would be possible to assign S2 to
the first simple task, and then faster S1 to the second more complex task, allow-
ing both tasks to finish approximately at the same time, making this part of the
algorithm to run twice faster than with individual mapping.

2.3 Second problem: non-optimal communication
The second problem with individual mapping is non-optimal communication.

In the same example, let’s assume that d argument of T2_cond task at line 29
is output argument, and it’s also an input argument for P1_cond task at line 30.
When T2_cond task is run, there is no information that d argument will be used
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after that by P1_cond task, so this argument will be sent from the server running
T2_cond task to the client and then the client will send it to the server running
P1_cond later. If this information was available, it would be possible to arrange
sending d argument from server running T2_cond directly to server running
P1_cond, bypassing the client (or avoid sending completely if both tasks run on
the same server).

This would allow significantly improving communication time because servers
in a grid are usually connected by high-speed local area network, whereas client
is usually connected to the grid through public Internet using much slower ISP
subscriber link.

Also, sending large amounts of data directly from server to server bypassing
client can have impact on client performance by preventing paging in case these
data are large enough to not fit in client’s RAM. Client is usually a regular desk-
top or laptop PC, whereas server has much more powerful hardware and greater
amount of RAM.

2.4 Third problem: lack of communication paral-
lelism

The third problem with individual mapping also results from its strict client-server
model.

Before a task is started on a remote server, input arguments are sent from the
client to the server sequentially, and output arguments are returned to the client
sequentially as well after task’s completion. Even if it was possible to send and
receive arguments in parallel, it would bring no improvement, or even make things
worse: client-to-server link is usually just a single slow ISP subscriber line which
constitutes a bottleneck in data flow and can be saturated easily with big amounts
of data. There is no point to send arguments in parallel if they traverse the same
narrow data link anyway.

Also, starting remote tasks individually without prior knowledge about further
tasks to be started precludes overlapping inbound and outbound data transmission:
receiving output arguments from the previous task simultaneously with sending
input arguments to the next task.

Another important source of communication parallelism is server-to-server
communication, which can be performed simultaneously between different servers
and between some server and client as well. Unfortunately, individual map-
ping precludes direct server-to-server communication at all, so this opportunity
is missed completely.
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2.5 Solution: collective mapping
Collective mapping solves these problems by using application performance model
built prior to running parallel algorithm. The information containing in this model
is sufficient for assigning servers to tasks more optimal way to optimise compu-
tation and communication time, as well as arranging direct server-to-server com-
munication.
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Chapter 3

Related research

In chapter 2 we explain limitations of individual mapping and necessity of collec-
tive mapping to overcome these limitations. This chapter presents more detailed
discussion of collective mapping and existing approaches to implement it.

3.1 Approaches to grid optimisation before collec-
tive mapping

Even before GridRPC was standardised, there were attempts to optimise grid mid-
dleware to overcome limitations of individual mapping.

3.1.1 Task farming
Task farming [16] support was added to NetSolve in 1999. There is a large class of
algorithms which can be split into multiple independent parallel tasks which can
be started simultaneously and no intermediate results are needed before all tasks
have been completed. The idea behind task farming is to start all these tasks with
a single RPC request. This allows to assign servers to all these tasks collectively,
achieving optimal task-to-server mapping.

Task farming was implemented in NetSolve in client library as farm() func-
tion, which puts all tasks to be run in a queue and preforms scheduling of pending
tasks.

However, this is approach has the following limitations.

• Only simple parallel algorithms can take advantage of this approach. An
algorithm should have all tasks that can be run in parallel, with no data
dependencies, no need for intermediate results, and no conditional task ex-
ecution.

21
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• The farm() function is a single atomic blocking call, so the client can’t
perform additional computations or start other tasks until farmed tasks has
been completed.

• There are no data dependencies between farmed tasks, so there is no im-
provement in communication which is still strictly client-server without any
parallelism.

3.1.2 Task sequencing
Task sequencing [3] support was added to NetSolve in 2000. It allows to run
sequence of tasks where each subsequent task requires results from the previous
task. As with task farming, it’s implemented as a single RPC call which runs all
tasks in the sequence on a single server, preserving task results for use by subse-
quent tasks. This way more optimal communication is achieved (no intermediate
results sent at all, just stored on the server).

Distributed task sequencing was proposed as an extension to GridRPC and
implemented in Ninf-G [47] in 2006. Unlike task sequencing in NetSolve, dis-
tributed task sequencing allows to run tasks on different servers.

Both task sequencing approaches have the following limitations.

• Only sequential algorithms can utilise this feature. No conditional task ex-
ecution allowed, no access to intermediate results.

• Task sequencing is preformed by a single atomic blocking call, so the client
can’t perform additional computations or start other tasks until tasks se-
quence has been completed.

• Only communication is optimised this way, not computation.

3.1.3 Distributed storage infrastructure
Distributed storage infrastructure [4] (DSI) was introduced in NetSolve in 2002. It
allows clients to store data objects on remote storage (called storage depot) using
IBP [41] (Internet Backplane Protocol). These data objects can be used instead of
client-local data as arguments of remote tasks.

Although it’s less optimal than direct server-to-server communication, storage
depot can be located in the same local area network as servers in the grid, so
repeated retrieval of large data arrays from storage depot to grid servers can still
be much faster than repeated upload of the same data arrays from the client.

Although DSI brings some improvement to communication speed, this ap-
proach has the following limitations.
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• Communication is still far from optimal. For example, if task B uses re-
sults from task A, instead of sending these results directly from the server
running task A to the server running task B (or completely eliminating com-
munication if both tasks run on the same server), results are first uploaded
to storage depot and then downloaded from it.

• Task-to-server mapping is still performed individually for each task. This
means that opportunity for better allocation of computational resources is
missed.

• Storing data with DSI should be arranged manually. This means that instead
of passing local arguments to RPC calls, program should be modified to first
create objects in storage depot and then use references to these objects as
RPC arguments. This leads to more complex code and increases possibility
of software bugs as a result.

3.1.4 Arranging server-to-server communication manually
Direct server-to-server communication [20] was introduced into NetSolve in 2004.
This feature (called Data Persistence and Redistribution) allows to arrange direct
server-to-server communication by explicitly specifying which input and output
arguments of running tasks should be used as input arguments of a new task to be
started.

The following steps should be added to the program to use this feature.

1. An array of ObjectLocation structures is filled in with the following
information for each argument to be sent directly from servers running other
tasks to the server which is about to run the new task:

• request ID (the same as session ID in GridRPC API) of the running
task;

• object (non-scalar argument) number;

• argument direction (input or output).

This array is called redistribution.

2. The filled in redistribution is passed (along with task name and other ar-
guments) to the special netslnbdist() function which starts specified
task using redistribution provided. As a result, arguments specified in the
redistribution are sent to this task from other servers, not from the client.
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Data Three Manager [19] was introduced into DIET in 2005. This is another
approach for manually arranging direct server-to-server communication, adapted
to DIET’s hierarchical architecture.

A non-intrusive and incremental approach to enabling direct communications
[32], [31] was introduced into NetSolve in 2006. Later it was called NI-Connect [50].
This approach combines convenience of DSI (using handles as arguments) with
efficiency benefits of data persistence and redistribution. An interesting aspect
of this approach is that it doesn’t require modifications to NetSolve. Instead of
that, just a wrapper client library and a special service managing server-to-server
communication should be installed in NetSolve. However, this approach still uses
individual mapping to run tasks.

Approaches for arranging server-to-server communication manually listed above
have the following limitations.

• Task-to-server mapping is still performed individually for each task. This
means that opportunity for better allocation of Computational resources is
missed.

• Specifying data redistribution required manual program modification, which
requires additional labour and can lead to difficult to detect bugs due to hu-
man error, especially when algorithm has been changed, but redistribution
was not kept in sync with these changes.

• Because of individual task-to-server mapping, server to run a task is un-
known before the client preforms RPC call to run this task. This means
that if task B uses results of task A, server running task A can’t start send-
ing results to server which is going to run task B in advance, before client
requests start of task B. This communication can be started only after the
client performs RPC call to run task B, making this task to wait for task A
results’ transfer completion.

3.2 Advantages of collective mapping
As the name implies, collective mapping is the way to map task to servers collec-
tively, taking the whole parallel algorithm into account.

Collective mapping has the following advantages over individual mapping.

Better computation time can be achieving by finding more optimal task-to-server
mapping.

Better communication time can be achieved by taking communication time into
account when finding optimal task-to-server mapping.
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Direct server-to-server communication can be arranged to send data from one
server to another in advance if there are tasks using results from other tasks.

Avoiding unnecessary communication can be achieved in case when data al-
ready available on the server from the previous task. Also, returning output
arguments to the client can be omitted if these arguments are used by other
tasks, but not the client program.

Communication parallelism is a direct result of server-to-server communica-
tion, which can be performed in parallel between different servers as well
as with client-server communication.

3.3 Information needed for collective mapping
As it was mentioned in chapter 2, in order for collective mapping to work, a prior
knowledge about remote tasks to be run during parallel algorithm and their argu-
ments is needed. This prior knowledge should contain the following information.

Computational complexity of remote tasks
Computational complexity of remote tasks run by the program in some units
of computation (like flops). This is necessary to estimate task completion
time on each server evaluated for running this task, provided that we know
speed of each server.

Size of input and output arguments of remote tasks
This information allows to determine amount of data sent from client to
servers running tasks, from these servers back to client, and between servers,
so communication time can be taken into account, provided that we know
throughput of communication channels between client and servers as well
as between servers.

Order of remote tasks execution
The order in which the program starts remote tasks and waits for their com-
pletion. This information is necessary to find out which tasks are running in
parallel and in which order.

Data dependencies between tasks
Arguments produced by one task as output arguments and then consumed
by another task as input argument is data dependency between these tasks.
Data dependencies constitute a direct acyclic graph (DAG) with tasks as
nodes and set of arguments with amount of data transferred as vertices (ar-
rows). This information is necessary to arrange server-to-server communi-
cation.
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Once all necessary information is somehow collected, it can be used to find
optimal task-to-server mapping which takes into account computation and com-
munication times and allows to arrange direct server-to-server communication.

Finding this optimal mapping is NP-complete task, but there are several heuris-
tics available [12], which can be used to produce sub-optimal mapping, which is
still good enough to be practical.

Approaches to collective mapping have different implementations, but the
most important difference is how they collect information listed above.

3.4 Runtime discovery
An approach called runtime discovery was originally implemented in NetSolve
resulting in SmartNetSolve [7]. Later it was adapted to a new generation of Net-
Solve called GridSolve, which implemented GridRPC API, resulting in Smart-
GridSolve [6], [8]. Extension to GridRPC provided by SmartGridSolve is called
SmartGridRPC [9], [10].

High-level design of SmartGridRPC model and the way it uses application per-
formance model to map tasks to heterogeneous servers was inspired by mpC [29],
[2] and HeteroMPI [30].

3.4.1 Basic Functionality
Listing 3.1 at page 27 gives an example of parallel algorithm using SmartGridRPC
API.

The main difference with GridRPC algorithm is blocks marked with grpc_map()
directive at lines 23, 33 and 42. These blocks mark parts of algorithm for collec-
tive mapping.

The reason why the whole algorithm is not marked for collective mapping and
split into three parts instead is that runtime discovery doesn’t work correctly with
branching and other control flow which depends on results of computation. We’ll
discuss this in subsection 3.4.3 below.

The grpc_map() directive is not a C language extension, it’s a preprocessor
macro which is expanded into a while loop. The loop condition is an internal
function (not a part of public API) which implements finite state machine which
stores its state in internal global variables and controls loop execution making
the loop body to be executed twice and performing different actiond dependent
on which loop pass in precedes. The behaviour of GridRPC calls is different
dependent on which loop pass is in progress.

The loop FSM controlled by loop condition function works the following way.
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1 # i n c l u d e <g rpc . h>
2
3 void run ( unsigned i n t s i z e , unsigned i n t count ,
4 double *a0 , double *b0 , double *c0 ,
5 double *a1 , double *b1 , double *c1 ,
6 double *d )
7 {
8 g r p c f u n c t i o n h a n d l e t t 1 0 , t 1 1 ;
9 g r p c f u n c t i o n h a n d l e t t 2 0 , t 2 1 ;

10 g r p c f u n c t i o n h a n d l e t t 3 0 , t 3 1 ;
11 g r p c f u n c t i o n h a n d l e t p1 ;
12 g r p c s e s s i o n i d t s id0 , s i d 1 ;
13 i n t p ;
14 / * F u n c t i o n h a n d l e s i n i t i a l i s a t i o n . * /
15 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 0 , ” T1 cond ” ) ;
16 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 1 , ” T1 cond ” ) ;
17 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 0 , ” T2 cond ” ) ;
18 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 1 , ” T2 cond ” ) ;
19 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 0 , ” T3 cond ” ) ;
20 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 1 , ” T3 cond ” ) ;
21 g r p c f u n c t i o n h a n d l e d e f a u l t (&p1 , ” P1 cond ” ) ;
22 / * P a r a l l e l a l g o r i t h m . * /
23 grpc map ( ” ex map ” ) {
24 g r p c c a l l a s y n c (& t 1 0 , &s id0 , a0 , b0 , c0 ,
25 s i z e , c o u n t ) ;
26 g r p c c a l l a s y n c (& t 1 1 , &s id1 , a1 , b1 , c1 ,
27 s i z e , c o u n t * 2 ) ;
28 g r p c w a i t a l l ( ) ;
29 g r p c c a l l (& t 2 0 , c0 , c1 , d , s i z e , c o u n t ) ;
30 g r p c c a l l (&p1 , d , s i z e , count , ( double ) 0 . 5 , &p ) ;
31 }
32 i f ( p ) {
33 grpc map ( ” ex map ” ) {
34 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , a0 ,
35 s i z e , c o u n t ) ;
36 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , a1 ,
37 s i z e , c o u n t * 2 ) ;
38 g r p c w a i t a l l ( ) ;
39 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
40 }
41 } e l s e {
42 grpc map ( ” ex map ” ) {
43 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , b0 ,
44 s i z e , c o u n t ) ;
45 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , b1 ,
46 s i z e , c o u n t * 2 ) ;
47 g r p c w a i t a l l ( ) ;
48 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
49 }
50 }
51 }

Listing 3.1: SmartGridRPC program. Error handling omitted for brevity.
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Preparation
The first invocation of loop condition function just stores information about
loop pass internally and returns non-zero value to allow the first loop pass.

Discovery phase
The first loop pass is called discovery phase. GridRPC calls are being
recorded in this phase, but they don’t start actual tasks on remote servers.
Information about function handles (which include task names) and call ar-
guments is stored for further use in collective mapping.

Mapping
The second invocation of loop condition function uses information collected
during discovery phase to perform collective mapping. It stores results of
collective mapping internally and returns non-zero value again to allow the
second loop pass.

Execution phase
The second loop pass is called execution phase. GridRPC calls start re-
mote tasks during this phase, using servers assigned to tasks as a result of
collective mapping.

Exit from loop
The third invocation of loop condition function returns zero value, making
control flow exit the loop.

3.4.2 Fault Tolerance
There is fault tolerance implemented in SmartGridSolve and it has two modes.

Simple mode requires special extended versions of GridRPC calls to be used. In
this mode, failed GridRPC call is retried again on another server, and indi-
vidual mapping is used to assign a new server to failed task. Also, server-
to-server communication is not used because choosing a new server for a
failed task disrupts pre-arranged server-to-server communication plan. This
causes reduced performance improvement compared to individual mapping
because more optimal communication and communication parallelism op-
portunity is missed in this case.

Advanced mode utilises another loop pass in case of remote task failure. If a
remote task has failed during execution phase, the FSM switched to error
mode. GridRPC calls don’t start any new remote tasks in this mode, they
are just being ignored. When loop is done, loop condition function is called
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again. It performs another collective mapping, with a server where task
failed excluded from a list of servers considered as candidates to run tasks.
Then the loop condition function returns non-zero value to make the loop
run once again, starting the algorithm from its beginning, with revised task-
to-server mapping.

3.4.3 Limitations
Runtime discovery is a simple approach requiring minimal modifications to source
code of GridRPC application. However, it has a significant limitation: source code
inside grpc_map() block should be written very carefully to either make this
code idempotent (having side effects to have exactly the same effect if code is run
multiple times as if code is run only once) or not allow side effects at all.

This restriction on code is a result of the fact that the grpc_map() block
is run at least twice: in discovery phase and in execution phase. There is a
workaround in SmartGridRPC API for code with side effects: a grpc_local()
directive. The statement (usually a block) following this directive is executed only
during execution phase and is completely skipped during discovery phase.

However, it’s not guaranteed that the code inside grpc_local() block will
be executed only once. It can happen that a remote task failure happens after
some grpc_local() blocks has been already run. In this case FSM enters
error mode if advanced fault tolerance mode is used, all remaining GridRPC calls
and grpc_local() blocks are ignored, but the loop is restarted after that in
execution mode again. The only grpc_local() blocks which are guaranteed
to not be run multiple times are the ones which follow the last GridRPC call in
grpc_map() block.

Another restriction on code for runtime discovery is that the data flow in the
code should be exactly the same during discovery an execution phases. This
means that this data flow must be pre-determined and not depend on remote task
results or any other data which can be different during discovery and execution
phases.

Listing 3.2 at page 30 gives an example of parallel algorithm using Smart-
GridRPC API with data flow which is not pre-determined. There is if statement
at line 31. Which branch of if statement is run depends on value of p variable
which is assigned as a result of remote task run at line 30. However, remote tasks
are not run during discovery phase, p variable is not assigned value during the
first loop pass, so the if statement’s is selected for execution based on undefined
value. The branch executed during execution phase based on actual result of re-
mote task may be different, and runtime discovery results used for task-to-server
mapping and (more importantly) server-to-server communication may be wrong.

Failure to make the code inside grpc_map() block idempotent (except code



30 CHAPTER 3. RELATED RESEARCH

1 # i n c l u d e <g rpc . h>
2
3 void run ( unsigned i n t s i z e , unsigned i n t count ,
4 double *a0 , double *b0 , double *c0 ,
5 double *a1 , double *b1 , double *c1 ,
6 double *d )
7 {
8 g r p c f u n c t i o n h a n d l e t t 1 0 , t 1 1 ;
9 g r p c f u n c t i o n h a n d l e t t 2 0 , t 2 1 ;

10 g r p c f u n c t i o n h a n d l e t t 3 0 , t 3 1 ;
11 g r p c f u n c t i o n h a n d l e t p1 ;
12 g r p c s e s s i o n i d t s id0 , s i d 1 ;
13 i n t p ;
14 / * F u n c t i o n h a n d l e s i n i t i a l i s a t i o n . * /
15 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 0 , ” T1 cond ” ) ;
16 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 1 , ” T1 cond ” ) ;
17 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 0 , ” T2 cond ” ) ;
18 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 1 , ” T2 cond ” ) ;
19 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 0 , ” T3 cond ” ) ;
20 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 1 , ” T3 cond ” ) ;
21 g r p c f u n c t i o n h a n d l e d e f a u l t (&p1 , ” P1 cond ” ) ;
22 / * P a r a l l e l a l g o r i t h m . * /
23 grpc map ( ” ex map ” ) {
24 g r p c c a l l a s y n c (& t 1 0 , &s id0 , a0 , b0 , c0 ,
25 s i z e , c o u n t ) ;
26 g r p c c a l l a s y n c (& t 1 1 , &s id1 , a1 , b1 , c1 ,
27 s i z e , c o u n t * 2 ) ;
28 g r p c w a i t a l l ( ) ;
29 g r p c c a l l (& t 2 0 , c0 , c1 , d , s i z e , c o u n t ) ;
30 g r p c c a l l (&p1 , d , s i z e , count , ( double ) 0 . 5 , &p ) ;
31 i f ( p ) {
32 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , a0 ,
33 s i z e , c o u n t ) ;
34 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , a1 ,
35 s i z e , c o u n t * 2 ) ;
36 g r p c w a i t a l l ( ) ;
37 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
38 } e l s e {
39 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , b0 ,
40 s i z e , c o u n t ) ;
41 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , b1 ,
42 s i z e , c o u n t * 2 ) ;
43 g r p c w a i t a l l ( ) ;
44 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
45 }
46 }
47 }

Listing 3.2: SmartGridRPC program with undetermined data flow. Error handling
omitted for brevity.
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in grpc_local() blocks following the last GridRPC call) and data flow pre-
determined can lead to wrong results which are hard to find and debug, or even
errors which are hidden during normal algorithm execution and have effect only
when fault tolerance is triggered.

3.5 ADL
Another approach to collective mapping is the use of ADL [27], the Algorithm
Definition Language.

3.5.1 Basic Functionality
ADL implementation uses an extension to GridRPC API similar to SmartGridRPC.
The block of code for collective mapping is also specified using a grpc_map()
directive, but the code inside this block will be run only once.

Listing 3.3 at page 32 shows the same algorithm as in Listing 3.2 at page 30,
but modified for use with ADL.

The grpc map() directive has slightly different syntax with additional argu-
ments besides heuristic name:

• ADL constant specifies that ADL is used;

• cndalg is a name of a variable storing internal ADL representation gener-
ated from ADL definition;

• format string similar to the one used by printf function from the standard
C library; needed because of variable number of remaining arguments;

• actual values of runtime parameters passed as ADL definition’s arguments.

The task dependency graph and application’s performance model are specified
separately, using ADL.

Listing 3.4 at page 33 gives an example of an ADL specification for the algo-
rithm in Listing 3.3. The module definition specifies the name of ADL module
(used as a name of generated variable name in grpc map() directive) and defi-
nition’s runtime parameters’ types and names. The component section specifies
the remote tasks required for the algorithm. The OBJ section specifies non-scalar
objects used in the algorithm. The algorithm section describes the workflow
of the algorithm, the order of remote task execution and what arguments are in-
volved in this execution. The specification in this example has 5 parameters. The
complexity of tasks and the workflow of the algorithm are dependent on the actual
values of these parameters, which are specified at runtime. For example, the size
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1 # i n c l u d e <g rpc . h>
2
3 void run ( unsigned i n t s i z e , unsigned i n t count ,
4 double *a0 , double *b0 , double *c0 ,
5 double *a1 , double *b1 , double *c1 ,
6 double *d )
7 {
8 g r p c f u n c t i o n h a n d l e t t 1 0 , t 1 1 ;
9 g r p c f u n c t i o n h a n d l e t t 2 0 , t 2 1 ;

10 g r p c f u n c t i o n h a n d l e t t 3 0 , t 3 1 ;
11 g r p c f u n c t i o n h a n d l e t p1 ;
12 g r p c s e s s i o n i d t s id0 , s i d 1 ;
13 i n t p ;
14 / * F u n c t i o n h a n d l e s i n i t i a l i s a t i o n . * /
15 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 0 , ” T1 cond ” ) ;
16 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 1 , ” T1 cond ” ) ;
17 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 0 , ” T2 cond ” ) ;
18 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 1 , ” T2 cond ” ) ;
19 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 0 , ” T3 cond ” ) ;
20 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 1 , ” T3 cond ” ) ;
21 g r p c f u n c t i o n h a n d l e d e f a u l t (&p1 , ” P1 cond ” ) ;
22 / * P a r a l l e l a l g o r i t h m . * /
23 grpc map ( ” ex map ” , ADL, cnda lg , ”%d,%d,%d,%d ” , s i z e , count , 1 , 1 ) {
24 g r p c c a l l a s y n c (& t 1 0 , &s id0 , a0 , b0 , c0 ,
25 s i z e , c o u n t ) ;
26 g r p c c a l l a s y n c (& t 1 1 , &s id1 , a1 , b1 , c1 ,
27 s i z e , c o u n t * 2 ) ;
28 g r p c w a i t a l l ( ) ;
29 g r p c c a l l (& t 2 0 , c0 , c1 , d , s i z e , c o u n t ) ;
30 g r p c c a l l (&p1 , d , s i z e , count , ( double ) 0 . 5 , &p ) ;
31 i f ( p ) {
32 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , a0 ,
33 s i z e , c o u n t ) ;
34 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , a1 ,
35 s i z e , c o u n t * 2 ) ;
36 g r p c w a i t a l l ( ) ;
37 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
38 } e l s e {
39 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , b0 ,
40 s i z e , c o u n t ) ;
41 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , b1 ,
42 s i z e , c o u n t * 2 ) ;
43 g r p c w a i t a l l ( ) ;
44 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
45 }
46 }
47 }

Listing 3.3: SmartGridRPC program for ADL. Error handling omitted for brevity.
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1 module c n d a l g ( i n t s i z e , i n t count , i n t c n d t r u e , i n t c n d f a l s e )
2 {
3 component :
4 ta sk ” t g t e s t c o n d . i d l ” T1 cond , T2 cond , T3 cond , P1 cond ;
5
6 OBJ :
7 DOUBLE( s i z e ) a0 , a1 , b0 , b1 , c0 , c1 , d ;
8 INTEGER p ;
9

10 a lgor i thm :
11 p a r a l l e l {
12 T1 cond : ( a0 , b0 , @size , @count)−>(c0 ) ;
13 T1 cond : ( a1 , b1 , @size , @count)−>(c1 ) ;
14 }
15 T2 cond : ( c0 , c1 , @size , @count)−>(d ) ;
16 P1 cond : ( d , @size , @count , 0.5)−>(p ) ;
17 p a r a l l e l {
18 i f ( c n d t r u e )
19 p a r a l l e l {
20 T3 cond : ( c0 , a0 , @size , @count)−>(c0 ) ;
21 T3 cond : ( c1 , a1 , @size , @count)−>(c1 ) ;
22 T2 cond : ( c0 , c1 , @size , @count)−>(d ) ;
23 }
24 i f ( c n d f a l s e )
25 p a r a l l e l {
26 T3 cond : ( c0 , b0 , @size , @count)−>(c0 ) ;
27 T3 cond : ( c1 , b1 , @size , @count)−>(c1 ) ;
28 T2 cond : ( c0 , c1 , @size , @count)−>(d ) ;
29 }
30 }
31 }

Listing 3.4: ADL specification.
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of vectors depends on size parameter. Parameters cndtrue and cndfalse
specify the likelihood of actual execution of each branch of the conditional state-
ment in the algorithm. If both of those parameters have nonzero value at runtime,
both branches are mapped as if they are executed in parallel.

The advantage of this approach over runtime discovery is the absence of re-
strictions on the code of the grpc_map() block. This means that it allows col-
lective mapping of iterative algorithms with loops having the number of iterations
dependent on remote task results, and conditional algorithms with branching de-
pendent on remote task results. Hence, the algorithm in Listing 3.3. works cor-
rectly when using ADL specification in Listing 3.4.

3.5.2 Limitations
The main limitation of this approach is that it requires a programmer to describe
the mapping scenario of the algorithm using ADL in addition to the program itself.
This means that significant additional efforts are needed to enable more efficient
mapping and to keep the program and its ADL description in sync. If the program
and ADL diverged somehow, the mapping will be non-optimal, and there is no
way to check for this problem automatically.

3.6 Workflow submission
Another radical approach to collective mapping is using some kind of algorithm
definition language similar to ADL as the only representation of parallel algo-
rithm.

3.6.1 MADAG

A special MA (Master Agent) called MADAG [1] which allows clients to submit
workflows for whole algorithms was introduced into DIET in 2006. The workflow
contains task dependency DAG in form of XML document. This entire workflow
is submitted to to MADAG using DIET-specific API (not GridRPC). Upon work-
flow submission, MADAG schedules the algorithm, performing collective task-to-
server mapping. Then the whole algorithm is run on servers assigned by MADAG

and the results returned to the client.
Listing 3.5 at page 35 gives an example of workflow in MADAG language. This

example computes (2(n + 1) + 2(n + 1))2 where n = 56. The meaning of XML
elements is following.

• Tasks are specified by node elements.
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1 <dag>
2 <node i d =” n1 ” p a t h =” succ ”>
3 <a r g name=” i n ” t y p e =” DIET INT ” v a l u e =” 56 ” />
4 <o u t name=” ou t1 ” t y p e =” DIET INT ” />
5 <o u t name=” ou t2 ” t y p e =” DIET INT ” />
6 < / node>
7 <node i d =” n2 ” p a t h =” do ub l e ”>
8 < i n name=” i n ” t y p e =” DIET INT ” source =” n1# ou t1 ” />
9 <o u t name=” o u t ” t y p e =” DIET INT ” />

10 < / node>
11 <node i d =” n3 ” p a t h =” do ub l e ”>
12 < i n name=” i n ” t y p e =” DIET INT ” source =” n1# ou t2 ” />
13 <o u t name=” o u t ” t y p e =” DIET INT ” />
14 < / node>
15 <node i d =” n4 ” p a t h =”sum”>
16 < i n name=” i n 4 ” t y p e =” DIET INT ” source =” n2# o u t ” />
17 < i n name=” i n 5 ” t y p e =” DIET INT ” source =” n3# o u t ” />
18 <o u t name=” o u t ” t y p e =” DIET INT ” />
19 < / node>
20 <node i d =” n5 ” p a t h =” s q u a r e ”>
21 < i n name=” i n ” t y p e =” DIET INT ” source =” n4# o u t ” />
22 <o u t name=” o u t ” t y p e =”DIET DOUBLE” />
23 < / node>
24 < / dag>

Listing 3.5: MADAG workflow language example.
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• Dependencies between tasks are specified by source attributes of in ele-
ments.

The parallel algorithm consists of the following steps.

1. n+ 1 is calculated by the task in node n1.

2. Result from n1 node are doubled in parallel twice by tasks in n2 and n3
nodes.

3. Results from n2 and n3 nodes are added together by task in n4 node.

4. Result from n4 node is squared by n5 node.

Input parameter n (argument named in of n1 node) is written in the algorithm
definition itself. There is no way to define parameters for algorithm, all input data
are listed in XML file itself.

3.6.2 Gwendia
In 2010 Gwendia [39] functional language support was introduced into DIET, and
MADAG was extended to support it. This language is also XML-based, but unlike
MADAG workflow language, it has support for conditions and loops, as well as
input parameters, which are stored in a a separate XML file and can be passed to
the workflow.

Listing 3.5 at page 35 gives an example of workflow in Gwendia language.
This example also computes (2(n + 1) + 2(n + 1))2, but n can be a vector of
integer numbers, and it’s not specified inside workflow definition itself. Instead it
should be specified in a separate data file. The steps of the algorithm are the same
as in MADAG example above, but the syntax is different.

• Input and output parameters of the whole algorithm are specified by source
and sink elements inside interface element.

• Tasks are specified by processor elements inside processors ele-
ment.

• Dependencies between input and output parameters of tasks and algorithm
are specified by link elements inside links element.
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1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <workflow name=” f u n c s c a l a r ”>
3
4 < i n t e r f a c e>
5 <source name=” w f i n p u t ” t y p e =” DIET INT ” />
6 <s ink name=” w f o u t p u t ” t y p e =”DIET DOUBLE” />
7 < / i n t e r f a c e>
8
9 <p r o c e s s o r s>

10 <p r o c e s s o r name=” n1 ”>
11 <o u t name=” ou t1 ” t y p e =” DIET INT ” />
12 <o u t name=” ou t2 ” t y p e =” DIET INT ” />
13 <d i e t p a t h =” succ ” />
14 < / p r o c e s s o r>
15
16 <p r o c e s s o r name=” n2 ”>
17 <i n name=” i n ” t y p e =” DIET INT ” />
18 <o u t name=” o u t ” t y p e =” DIET INT ” />
19 <d i e t p a t h =” dou b l e ” />
20 < / p r o c e s s o r>
21
22 <p r o c e s s o r name=” n3 ”>
23 <i n name=” i n ” t y p e =” DIET INT ” />
24 <o u t name=” o u t ” t y p e =” DIET INT ” />
25 <d i e t p a t h =” dou b l e ” />
26 < / p r o c e s s o r>
27
28 <p r o c e s s o r name=” n4 ”>
29 <i n name=” i n 1 ” t y p e =” DIET INT ” />
30 <i n name=” i n 2 ” t y p e =” DIET INT ” />
31 <o u t name=” o u t ” t y p e =” DIET INT ” />
32 <d i e t p a t h =”sum” />
33 < i t e r a t i o n s t r a t e g y>
34 <d o t>
35 <p o r t name=” i n 1 ” />
36 <p o r t name=” i n 2 ” />
37 < / d o t>
38 < / i t e r a t i o n s t r a t e g y>
39 < / p r o c e s s o r>
40
41 <p r o c e s s o r name=” n5 ”>
42 <i n name=” i n ” t y p e =” DIET INT ” />
43 <o u t name=” o u t ” t y p e =”DIET DOUBLE” />
44 <d i e t p a t h =” s q u a r e ” />
45 < / p r o c e s s o r>
46
47 < / p r o c e s s o r s>
48
49 <l i n k s>
50 <l i n k from=” w f i n p u t ” t o =” n 1 : i n ” />
51 <l i n k from=” n 1 : o u t 1 ” t o =” n 2 : i n ” />
52 <l i n k from=” n 1 : o u t 2 ” t o =” n 3 : i n ” />
53 <l i n k from=” n 2 : o u t ” t o =” n 4 : i n 1 ” />
54 <l i n k from=” n 3 : o u t ” t o =” n 4 : i n 2 ” />
55 <l i n k from=” n 4 : o u t ” t o =” n 5 : i n ” />
56 <l i n k from=” n 5 : o u t ” t o =” w f o u t p u t ” />
57 < / l i n k s>
58
59 < / workflow>

Listing 3.6: Gwendia workflow language example.
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3.6.3 Limitations
The approaches of submitting the whole workflow for remote execution listed
above have the following limitations.

• The algorithm is submitted as a single entity to the agent and is executed
entirely remotely. Intermediate results are not available to the client, client
can’t perform its own computations while the algorithm is running remotely.

• DIET API is used, so algorithm can’t be ported to other GridRPC imple-
mentations.

• The algorithm for collective mapping is written using a special XML-based
language, not a normal general-purpose programming language. There are
tools for writing XML more conveniently, but this doesn’t solve the prob-
lem of converting existing algorithms written on regular programming lan-
guages for grid computing.



Chapter 4

New approach to collective
mapping: static code analysis

4.1 Overview
We propose a new approach to collective mapping that utilises static code anal-
ysis to collect information about application performance model. The proposed
approach is an attempt to combine advantages of both pure SmartGridSolve and
ADL-enabled SmartGridSolve, while avoiding their disadvantages [23].

This is achieved by using static code analysis to extract as much information
as possible from the application code itself in order to build the task dependency
graph before the execution of the application, without a separate run-time discov-
ery phase. Like the ADL-based approach, this approach does not incur restric-
tions on code side effects imposed by pure SmartGridSolve and allows loops and
branches in the algorithm. On the other hand, it does not require an additional
specification of the algorithm in ADL and eliminates the problem of of keeping
the algorithm specification in sync with the application code.

The proposed approach is implemented as a modified version of SmartGrid-
Solve, providing SmartGridRPC API with minor extensions. It provides compat-
ibility with GridRPC and SmartGridRPC and accepts any GridRPC source code
with or without SmartGridRPC extensions: grpc_map() and grpc_local()
blocks. An additional extension for SmartGridRPC is grpc_map_static()
directive which marks block of code for static code analysis. A different directive
for static code analysis allows to combine this approach with runtime discovery
approach in different blocks of the same program.

Listing 4.1 at page 40 gives an example of parallel algorithm modified for
static code analysis approach. The only difference with Listing 3.2 at page 30 is
using grpc_map_static() directive instead of grpc_map(). There is no

39
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1 # i n c l u d e <g rpc . h>
2
3 void run ( unsigned i n t s i z e , unsigned i n t count ,
4 double *a0 , double *b0 , double *c0 ,
5 double *a1 , double *b1 , double *c1 ,
6 double *d )
7 {
8 g r p c f u n c t i o n h a n d l e t t 1 0 , t 1 1 ;
9 g r p c f u n c t i o n h a n d l e t t 2 0 , t 2 1 ;

10 g r p c f u n c t i o n h a n d l e t t 3 0 , t 3 1 ;
11 g r p c f u n c t i o n h a n d l e t p1 ;
12 g r p c s e s s i o n i d t s id0 , s i d 1 ;
13 i n t p ;
14 / * F u n c t i o n h a n d l e s i n i t i a l i s a t i o n . * /
15 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 0 , ” T1 cond ” ) ;
16 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 1 1 , ” T1 cond ” ) ;
17 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 0 , ” T2 cond ” ) ;
18 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 2 1 , ” T2 cond ” ) ;
19 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 0 , ” T3 cond ” ) ;
20 g r p c f u n c t i o n h a n d l e d e f a u l t (& t 3 1 , ” T3 cond ” ) ;
21 g r p c f u n c t i o n h a n d l e d e f a u l t (&p1 , ” P1 cond ” ) ;
22 / * P a r a l l e l a l g o r i t h m . * /
23 g r p c m a p s t a t i c ( ” ex map ” ) {
24 g r p c c a l l a s y n c (& t 1 0 , &s id0 , a0 , b0 , c0 ,
25 s i z e , c o u n t ) ;
26 g r p c c a l l a s y n c (& t 1 1 , &s id1 , a1 , b1 , c1 ,
27 s i z e , c o u n t * 2 ) ;
28 g r p c w a i t a l l ( ) ;
29 g r p c c a l l (& t 2 0 , c0 , c1 , d , s i z e , c o u n t ) ;
30 g r p c c a l l (&p1 , d , s i z e , count , ( double ) 0 . 5 , &p ) ;
31 i f ( p ) {
32 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , a0 ,
33 s i z e , c o u n t ) ;
34 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , a1 ,
35 s i z e , c o u n t * 2 ) ;
36 g r p c w a i t a l l ( ) ;
37 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
38 } e l s e {
39 g r p c c a l l a s y n c (& t 3 0 , &s id0 , c0 , b0 ,
40 s i z e , c o u n t ) ;
41 g r p c c a l l a s y n c (& t 3 1 , &s id1 , c1 , b1 ,
42 s i z e , c o u n t * 2 ) ;
43 g r p c w a i t a l l ( ) ;
44 g r p c c a l l (& t 2 1 , c0 , c1 , d , s i z e , c o u n t ) ;
45 }
46 }
47 }

Listing 4.1: SmartGridRPC program for static code analysis. Error handling omit-
ted for brevity.
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need to supplement this code with additional algorithm specification, like the one
presented in Listing 3.4.

Static analysis is applied to the source code before its compilation to extract as
much information as possible about the algorithm. The extracted information is
functionally equivalent to ADL specification, but uses different format internally.

After information is extracted, the code is pre-processed and modified to add
the following stages before the algorithm is run:

• building application performance model;

• building extended dependency graph;

• using mapping heuristics.

These stages use the information collected during the static code analysis for
making the optimal decision on task-to-server mapping and server-to-server com-
munication.

Static code analysis and the runtime stages are described in details below in
section 4.3 and section 4.5 respectively.

4.2 Runtime parameters
Runtime parameters are expressions algorithm workflow is dependent on. There
is no need to specify runtime parameters for the algorithm explicitly, as in ADL
approach described in section 3.5. The following expressions that affect appli-
cation performance model and task dependency graph are detected automatically
and become implicit runtime parameters.

Scalar arguments of GridRPC calls
Values of these arguments may affect non-scalar argument sizes and com-
putational complexity of remote tasks.

Expressions determining number of loop iterations
These are expressions from for loop or grpc likely() directive in the
beginning of loop body. Knowing (or estimating) number of loop iterations
is necessary to build proper algorithm workflow.

Values of these parameters may be unknown at compile time, so algorithm defi-
nition extracted from the source code during static code analysis is not sufficient
to build application performance model. That’s why building application perfor-
mance model along with task dependency graph is deferred until runtime using
code injected by preprocessor.
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file1.c

file2.c

file1.o

file2.o

prog

gcc or clang ld
Compiling Linking

Figure 4.1: Regular application build process

For example, size and count arguments of run() function are automati-
cally detected as runtime parameters for algorithm in Listing 4.1 at page 40. They
affect size of non-scalar objects and computational complexity of remote tasks.

4.3 Analysing and preprocessing code
The static code analyser and preprocessor is implemented using Clang [34], a
compiler for C family languages (C, C++, Objective C). Clang is written as a
modular C++ library. The part of this library which parses source code and builds
AST (abstract syntax tree) is used for static code analysis. Clang is a part of
LLVM [33], a toolkit for building compilers.

4.3.1 Application build process
To explain how application build process has to be changed to adopt static code
analysis, let’s consider an application called prog which is built from two source
modules written in C programming language: file1.c and file2.c.

A regular application build process is shown on Figure 4.1. This process is
pretty simple and consists of two steps.

Compiling
All source modules are compiled into object code.

Linking
All resulting object modules are linked into the program.

Listing 4.2 at page 43 shows a Makefile for GNU make to build the prog
program using this process.



4.3. ANALYSING AND PREPROCESSING CODE 43

1 CC = gcc
2 CFLAGS = −DGS SMART GRIDSOLVE=1
3 LIBS = − l g r i d s o l v e −l g s s m a r t m a p p e r −lm
4
5 SOURCES = f i l e 1 . c f i l e 2 . c
6 OBJS = $ (SOURCES : . c = . o )
7
8 a l l : p rog
9

10 %.o : %.c
11 $ (CC) $ (CFLAGS) −c $ * . c
12
13 prog : $ ( OBJS )
14 $ (CC) $ ( OBJS ) −o prog

Listing 4.2: Makefile for building regular application. Uses GNU make exten-
sions.

file2.c

file1.c file1.ast

file2.ast

prog.xml

file1.grpc.c

file2.grpc.c

file1.grpc.o

file2.grpc.o

prog

clang -emit-ast calltree gcc, clang ld
Parsing Analysing Preprocessing Compiling Linking

Figure 4.2: Application build process for static code analysis
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1 CC = gcc
2 CFLAGS = −DGS SMART GRIDSOLVE=1
3 LIBS = − l g r i d s o l v e −l g s s m a r t m a p p e r −lm
4 PARSE = c l a n g −emit−a s t
5 COMBINE = c a l l t r e e −−p r i n t− t r e e
6
7 SOURCES = f i l e 1 . c f i l e 2 . c
8 ASTS = $ (SOURCES : . c = . a s t )
9 PROCESSED SRCS = $ (SOURCES : . c = . g rpc . c )

10 OBJS = $ ( PROCESSED SRCS : . c = . o )
11
12 a l l : p rog
13
14 %. a s t : %.c
15 $ (PARSE) $ (CFLAGS) $ * . c
16
17 $ ( PROCESSED SRCS ) prog . xml : $ (ASTS)
18 $ (COMBINE) $ (ASTS) > prog . xml
19
20 %.o : %.c
21 $ (CC) $ (CFLAGS) −c $ * . c
22
23 prog : $ ( OBJS )
24 $ (CC) $ ( OBJS ) −o prog

Listing 4.3: Makefile for building application with static code analysis. Uses GNU
make extensions.
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Build process modified for use with static code analysis is shown on Fig-
ure 4.2. This process is more complex and contains additional steps.

Parsing
Source files are parsed by Clang using -emit-ast option. The resulting
ASTs (abstract syntax trees) are saved in Clang-specific binary format.

Analysing
ASTs are analysed together by analyser program. The result is a tree-based
internal representation, which can also be saved as XML.

Preprocessing
Files containing blocks marked for collective mapping using grpc_map_static()
directive and GridRPC calls are being preprocessed. The information gath-
ered during the previous step is used to generate source files modified to
contain this information and code to preform collective mapping at runtime.

Compiling
The modified source modules are compiled into object code.

Linking
The resulting object modules are linked into the program.

Listing 4.3 at page 44 shows a Makefile for GNU make to build the prog
program using this process. Note that each generated source file (with .grpc.c
suffix) depends on all AST files (with .ast suffix) because whole program needs
to be analysed before generating preprocessed source files.

The reason for separate parsing step is to allow using different compilation
flags with each source module. Compilation flags can affect code semantics and
how AST is built. For example, different source modules can have different C
language dialects or require different C preprocessor macros defined in command
line.

Although analysing and preprocessing are logically separate steps, they are
performed by a single program called calltree.

4.3.2 Information gathered during static code analysis
AST files generated during parsing step are analysed together during analysing
step. This is necessary because program data flow can span multiple source mod-
ules via function calls. The result of this analysis is a tree of objects that can be
dumped as XML.

The analysis is done as following.
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• For each AST file its internal AST representation is loaded and stored.

• All function declarations are found and stored, indexed by function name.

• The main() function is found and AST analysis is started recursively from
its body.

• All function calls except calls related to GridRPC are analysed recursively.
Function declaration is looked up by function name. If the declaration is
found, mapping between function argument names and expressions repre-
senting arguments this function was called with is stored, and function body
is analysed recursively. Otherwise, we assume that this is a function from
an external library, so it doesn’t contain GridRPC-related calls.

• Blocks of code marked for collective mapping with grpc_map_static()
directive are found. Then these code blocks are analysed recursively to find
all loops, if statements and GridRPC calls.

• GridRPC function handle initialisation calls are analysed both inside and
outside grpc_map_static() blocks because function handle can be
initialised outside this block and then used by GridRPC calls inside it.
Analysing function handles initialisation functions is necessary because they
contain task name, whereas GridRPC calls use handle instead of task name
to specify the task to run remotely. Hence, it’s important to correlate GridRPC
calls with calls used to initialise function handles used in these calls. For
each GridRPC function handle initialisation call, task name indexed by han-
dle’s expanded expression tree is stored. This mapping is used to retrieve
task name by handle expression for GridRPC calls. More detailed descrip-
tion of expanded expressions is below in subsection 4.3.3.

• Non-scalar arguments of GridRPC calls are correlated and assigned unique
numerical IDs, so the arguments pointing to the same arrays have the same
IDs. This is done by storing argument IDs indexed by argument’s expanded
expression tree. For each argument its ID is looked up. If not found, a new
ID is assigned and stored.

• All GridRPC calls are assigned numerical IDs called call IDs. These IDs
are stored for each asynchronous GridRPC call indexed by session ID ar-
gument’s expanded expression tree. This mapping is used for correlating
GridRPC wait calls with their corresponding asynchronous GridRPC calls.
GridRPC calls located in the same place of the program but called from
different places have different call IDs.
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• All GridRPC calls are assigned numerical IDs called call site IDs. Unlike
call ID, call site ID identifies a place in the program where GridRPC is
located, no matter where it’s called from. Call site IDs are stored for each
place where GridRPC call is located, indexed by file location. This mapping
is used for inserting calls to grpc map embed call() function which
uses call site ID as its first argument. This is discussed in more details
below in subsection 4.3.4.

A tree structure is formed as a result of this analysis. Listing 4.4 at page 48
shows this structure for the program in Listing 4.1 in XML format. 1

The tree consists of the following elements.

function
This is the root element.

grpc map static
Block marked for collective mapping. Contains information about its loca-
tion in source code, its heuristic name and its body tree.

grpc handle init
GridRPC function handle initialisation. Contains information about its lo-
cation in source code, its task name and expanded handle expression tree.

grpc call
GridRPC call. Contains information about its location in source code, task
name, call ID, expanded expression trees for function handle and session
ID (for asynchronous calls), expression trees for all arguments along with
argument IDs for non-scalar arguments.

loop
Loop of any kind: while, for or do. Contains information about ex-
panded expression trees for loop condition expression (if any), loop initial-
isation and increment expressions (in case of for loop), and expanded ex-
pression representing number of loop iterations (if known at compile time).
Also contains its body tree.

if
Conditional statement (if). Contains trees for its then and else branches.

1This is not a complete tree. Attributes and elements containing code location, expression
trees for function handles, session IDs and arguments and other information non-essential for this
example are omitted for brevity.
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1 <f u n c t i o n name=” main ”>
2 <body>
3 <g r p c h a n d l e i n i t t a skname =” T1 cond ” /> <g r p c h a n d l e i n i t t a skname =” T1 cond ” />
4 <g r p c h a n d l e i n i t t a skname =” T2 cond ” /> <g r p c h a n d l e i n i t t a skname =” T2 cond ” />
5 <g r p c h a n d l e i n i t t a skname =” T3 cond ” /> <g r p c h a n d l e i n i t t a skname =” T3 cond ” />
6 <g r p c h a n d l e i n i t t a skname =” P1 cond ” />
7 <g r p c m a p s t a t i c f u n c t i o n =” run ” h e u r i s t i c =”&quo t ; ex map&quo t ; ”>
8 <g r p c c a l l c a l l i d =” 0 ” c a l l s i t e =” 0 ” taskname =” T1 cond ” b l o c k i n g =” f a l s e ”>
9 <arg i d =” 0 ” /> <arg i d =” 1 ” /> <arg i d =” 2 ” />

10 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
11 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
12 < / g r p c c a l l>
13 <g r p c c a l l c a l l i d =” 1 ” c a l l s i t e =” 1 ” taskname =” T1 cond ” b l o c k i n g =” f a l s e ”>
14 <arg i d =” 3 ” /> <arg i d =” 4 ” /> <arg i d =” 5 ” />
15 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
16 <arg v a l u e =” c o u n t *2 ” t y p e =” u n s i g n e d i n t ” />
17 < / g r p c c a l l>
18 <g r p c w a i t a l l />
19 <g r p c c a l l c a l l i d =” 2 ” c a l l s i t e =” 2 ” taskname =” T2 cond ” b l o c k i n g =” t r u e ”>
20 <arg i d =” 2 ” /> <arg i d =” 5 ” /> <arg i d =” 6 ” />
21 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
22 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
23 < / g r p c c a l l>
24 <g r p c c a l l c a l l i d =” 3 ” c a l l s i t e =” 3 ” taskname =” P1 cond ” b l o c k i n g =” t r u e ”>
25 <arg i d =” 6 ” />
26 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
27 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
28 <arg v a l u e =” ( d ou b l e ) 0 . 5 ” t y p e =” dou b l e ” />
29 <arg v a l u e =” p ” t y p e =” i n t ” />
30 < / g r p c c a l l>
31 < i f>
32 <then>
33 <g r p c c a l l c a l l s i t e =” 4 ” taskname =” T3 cond ” b l o c k i n g =” f a l s e ”>
34 <arg i d =” 2 ” /> <arg i d =” 0 ” />
35 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
36 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
37 < / g r p c c a l l>
38 <g r p c c a l l c a l l i d =” 5 ” c a l l s i t e =” 5 ” taskname =” T3 cond ” b l o c k i n g =” f a l s e ”>
39 <arg i d =” 5 ” /> <arg i d =” 3 ” />
40 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
41 <arg v a l u e =” c o u n t *2 ” t y p e =” u n s i g n e d i n t ” />
42 < / g r p c c a l l>
43 <g r p c w a i t a l l />
44 <g r p c c a l l c a l l i d =” 6 ” c a l l s i t e =” 6 ” taskname =” T2 cond ” b l o c k i n g =” t r u e ”>
45 <arg i d =” 2 ” /> <arg i d =” 5 ” /> <arg i d =” 6 ” />
46 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
47 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
48 < / g r p c c a l l>
49 < / then>
50 <e l s e>
51 <g r p c c a l l c a l l i d =” 7 ” c a l l s i t e =” 7 ” taskname =” T3 cond ” b l o c k i n g =” f a l s e ”>
52 <arg i d =” 2 ” /> <arg i d =” 1 ” />
53 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
54 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
55 < / g r p c c a l l>
56 <g r p c c a l l c a l l i d =” 8 ” c a l l s i t e =” 8 ” taskname =” T3 cond ” b l o c k i n g =” f a l s e ”>
57 <arg i d =” 5 ” /> <arg i d =” 4 ” />
58 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
59 <arg v a l u e =” c o u n t *2 ” t y p e =” u n s i g n e d i n t ” />
60 < / g r p c c a l l>
61 <g r p c w a i t a l l />
62 <g r p c c a l l c a l l i d =” 9 ” c a l l s i t e =” 9 ” taskname =” T2 cond ” b l o c k i n g =” t r u e ”>
63 <arg i d =” 2 ” /> <arg i d =” 5 ” /> <arg i d =” 6 ” />
64 <arg v a l u e =” s i z e ” t y p e =” u n s i g n e d i n t ” />
65 <arg v a l u e =” c o u n t ” t y p e =” u n s i g n e d i n t ” />
66 < / g r p c c a l l>
67 < / e l s e>
68 < / i f>
69 < / g r p c m a p s t a t i c>
70 < / body>
71 < / f u n c t i o n>

Listing 4.4: Example of algorithm tree structore. Many XML elements and at-
tributes are omitted for brevity.
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4.3.3 Expanded expressions
An expanded expression is built from expression by replacing variables with their
initialisation expressions and replacing function arguments by expressions this
function was called with as arguments. This process continues recursively either
until there is nothing to replace or until some specified level is reached: either top
level (main() function) or level of grpc_map_static() block.

For example, GridRPC call argument is (x * 3), but its expanded represen-
tation is (10 + 1) * 3 in the following code.

1 void foo ( g r p c f u n c t i o n h a n d l e t *h , i n t x )
2 {
3 g r p c c a l l ( h , x * 3 ) ;
4 }
5
6 i n t main ( )
7 {
8 g r p c f u n c t i o n h a n d l e t h ;
9 g r p c f u n c t i o n h a n d l e d e f a u l t (&h , ” t a s k 1 ” ) ;

10 g r p c m a p s t a t i c ( ” ex map ” ) {
11 i n t a = 1 0 ;
12 foo (&h , a + 1 ) ;
13 }
14 }

The expansion in this example is done by replacing x argument with actual argu-
ment expression a + 1 and then replacing a variable with its initialisation value
10.

Expanded expressions can exist in tree form and in textual representation. Tree
form is used when building algorithm tree structure. Listing 4.4 at page 48 has
expression trees omitted for brevity, but arg element at line 16 actually looks like
following.

1 <arg v a l u e =” c o u n t *2 ” t y p e =” u n s i g n e d i n t ”>
2 <B i n a r y O p e r a t o r k ind =” * ” t y p e =” u n s i g n e d i n t ”>
3 <DeclRefExpr name=” t e s t c o u n t ” t y p e =” u n s i g n e d i n t ”
4 k ind =” Var ” c o n t e x t =” 43762856 ” />
5 < I m p l i c i t C a s t E x p r k ind =” I n t e g r a l C a s t ”
6 t y p e =” u n s i g n e d i n t ”>
7 < I n t e g e r L i t e r a l t y p e =” i n t ”>2< / I n t e g e r L i t e r a l>
8 < / I m p l i c i t C a s t E x p r>
9 < / B i n a r y O p e r a t o r>

10 < / arg>
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The value attribute contains textual representation of argument’s expression ex-
panded until grpc map static() block. This expression is used as runtime
parameter of the algorithm. Runtime parameters are described in section 4.2. Ex-
pression representing this parameter’s value at the scope of grpc map static()
block is inserted during preprocessing step as runtime parameter’s value as de-
scribed below in subsection 4.3.4.

The tree inside arg element is tree representation of argument’s expression
expanded until main() function. The DeclRefExpr element of the tree rep-
resents a variable called testcount in main() function’s scope. This reveals
that this variable is passed as run() function’s count argument. The context
attribute is a unique ID of the scope where the variable is declared. Address of
variable’s primary declaration context is used for this ID. Using context ID al-
lows to differentiate between variables with the same name declared in different
contexts.

By storing values indexed by expanded expression tree, the following items
are being correlated to point to the same value:

• GridRPC calls with GridRPC function handle initialisations to find task
named for GridRPC calls;

• session IDs in asynchronous GridRPC calls with corresponding GridRPC
wait calls;

• non-scalar GridRPC call arguments to find data dependencies between tasks
later.

4.3.4 Preprocessing source files by inserting data definitions
and code

After AST trees are analysed and analysis tree is built, files containing grpc map static()
directive and GridRPC calls are preprocessed. Information collected during static
code analysis and code to use this information is inserted into new source files
built from the original ones.

Listing 4.5 at page 51 shows parts of the code inserted by preprocessor after
processing source module listed in Listing 4.1 at page 40.

The following information is inserted into grpc map static() block as
static data definitions.

Argument descriptions for each task
Argument ID for non-scalar arguments and runtime argument ID for scalar
arguments. Examples of these descriptions are shown at lines 3 and 10.
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1 g r p c m a p s t a t i c ( ” ex map ” ) {
2 / * −−− STATIC INITIALISATION −−− * /
3 s t a t i c g r p c t a s k a r g g r p c t a s k 0 a r g s [ ] = {
4 {GRPC TASK ARG ID , 0} ,
5 {GRPC TASK ARG ID , 1} ,
6 {GRPC TASK ARG ID , 2} ,
7 {GRPC TASK ARG RUNTIME , 0} ,
8 {GRPC TASK ARG RUNTIME , 1} ,
9 } ;

10 s t a t i c g r p c t a s k a r g g r p c t a s k 1 a r g s [ ] = {
11 {GRPC TASK ARG ID , 3} ,
12 {GRPC TASK ARG ID , 4} ,
13 {GRPC TASK ARG ID , 5} ,
14 {GRPC TASK ARG RUNTIME , 0} ,
15 {GRPC TASK ARG RUNTIME , 2} ,
16 } ;
17 . . .
18 s t a t i c g r p c t a s k d e s c r g r p c t a s k s [ ] = {
19 {” T1 cond ” , g r p c t a s k 0 a r g s , 5 , 0} ,
20 {” T1 cond ” , g r p c t a s k 1 a r g s , 5 , 1} ,
21 . . .
22 } ;
23 . . .
24 s t a t i c g r p c t a s k e v e n t g r p c t a s k e v e n t s 1 [ ] = {
25 {GRPC TASK START , & g r p c t a s k s [ 4 ]} ,
26 {GRPC TASK START , & g r p c t a s k s [ 5 ]} ,
27 {GRPC TASK WAIT , & g r p c t a s k s [ 4 ]} ,
28 {GRPC TASK WAIT , & g r p c t a s k s [ 5 ]} ,
29 {GRPC TASK START , & g r p c t a s k s [ 6 ]} ,
30 {GRPC TASK WAIT , & g r p c t a s k s [ 6 ]} ,
31 } ;
32 . . .
33 s t a t i c g r p c t a s k p a r g r p c t a s k p a r 0 [ ] = {
34 { g r p c t a s k e v e n t s 1 , 6} ,
35 { g r p c t a s k e v e n t s 2 , 6} ,
36 } ;
37 . . .
38 s t a t i c g r p c t a s k e v e n t g r p c t a s k e v e n t s 0 [ ] = {
39 {GRPC TASK START , & g r p c t a s k s [ 0 ]} ,
40 {GRPC TASK START , & g r p c t a s k s [ 1 ]} ,
41 {GRPC TASK WAIT , & g r p c t a s k s [ 0 ]} ,
42 {GRPC TASK WAIT , & g r p c t a s k s [ 1 ]} ,
43 {GRPC TASK START , & g r p c t a s k s [ 2 ]} ,
44 {GRPC TASK WAIT , & g r p c t a s k s [ 2 ]} ,
45 {GRPC TASK START , & g r p c t a s k s [ 3 ]} ,
46 {GRPC TASK WAIT , & g r p c t a s k s [ 3 ]} ,
47 {GRPC TASK PARALLEL , g r p c t a s k p a r 0 } ,
48 } ;
49 / * −−− RUNTIME INITIALISATION −−− * /
50 g r p c m a p r u n t i m e a r g g r p c m a p r u n t i m e a r g s [ 6 ] ;
51 g r p c m a p r u n t i m e a r g s [ 0 ] . t y p e = GRPC MAP RUNTIME ARG INT ;
52 g r p c m a p r u n t i m e a r g s [ 0 ] . v a l u e . i = s i z e ;
53 . . .
54 g r p c m a p b u i l d a p p p m ( ” greedy map ” ,
55 g r p c t a s k s , 10 ,
56 g r p c t a s k e v e n t s 0 , 10 ,
57 g r p c m a p r u n t i m e a r g s , 6 ) ;
58 / * −−− USER CODE −−− * /
59 g r p c m a p e m b e d c a l l (& t 1 0 , 0 ) ;
60 g r p c c a l l a s y n c (& t 1 0 , &s id0 , a0 , b0 , c0 ,
61 s i z e , c o u n t ) ;
62 . . .
63 }

Listing 4.5: Code inserted by preprocessor. Only part of the code is shown.
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Task descriptions
Task name, arguments and call site ID for each task. Example of task de-
scription array is shown at line 18.

Task events
Array of events describing program data flow. This array constitutes event
block. There can be several task event arrays for different event blocks.
The reason for multiple event blocks is described below. Examples of these
event blocks are shown at lines 24 and 38.

Data flow in the algorithm is described by task events. Task events have differ-
ent types and all of them reference data specific to their type. There are following
task event types.

START
Starting remote task. References task description for task to be started.

WAIT
Waiting for remote task completion. References task description for task to
be waited for.

PARALLEL
Branching inside if statement, which is treated as parallel code execution.
References array or two structures which in turn reference event blocks for
then and else branches.

LOOP
Repeating events inside a loop. References a structure which references in
turn event block for loop body and contains index of runtime parameter for
number of loop iterations.

The following runtime initialisation is inserted after static data definitions into
grpc map static() block.

• Assignment of actual values to runtime parameters. Example is shown at
line 50.

• grpc map build app pm() function call with the following arguments:

– heuristic name;

– task descriptions array;

– task events array for the main event block;

– runtime parameters array.
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Example is shown at line 54.

The grpc map build app pm() function builds application performance
model and task dependency graph and stores them in static data structure. Then it
uses specified heuristic to find task-to-server mapping and also stores it in static
data structure.

Also, calls of grpc map embed call() functions are inserted before each
GridRPC call. The grpc map embed call() function uses call site ID passed
as its second argument and uses is as an index to find suitable server for the remote
task and embed it into GridRPC function handle. Also it arranges server-to-server
communication and stores relevant information into function handle. Example is
shown at line 59.

4.4 Extended client library
Running code adapted to use static code analysis approach requires extended API
provided by modified SmartGridSolve client library. The following extensions are
used.

grpc map build app pm() function
This function is inserted by preprocessor into the beginning of code in
grpc map static() block. See description of this function above in
subsection 4.3.4.

grpc map embed call() function
This function is inserted by preprocessor before each GridRPC call in grpc map static()
block. See description of this function above in subsection 4.3.4.

grpc map static() directive
This directive marks block of code containing algorithm for collective map-
ping as described in section 4.1. This is a macro expects one parameter
called name and expands into the following code.

i f ( g r p c m a p s t a t i c i n i t ( ( name ) ) )

The grpc map static init() function is declared as static and it does
nothing besides returning 1 constant.

Hence, preceding code block with grpc map static() directive changes
nothing from compiler’s point of view. It’s just needed to make static code
analyser detect this meaningless if statement as block of code for collec-
tive mapping.
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grpc likely() directive
This directive is actually just a static function that accepts any arguments,
returns void and does nothing.

The only purpose of this function is making static code analyser detect ex-
pression passed as its argument as likely number of loop iterations if call to
this function is placed at the beginning of a loop.

Modifications to SmartGridSolve client library to implement extended API
described above are very limited and non-intrusive. Only new functions and data
type definitions were added, but no existing functions and data structures (either
internal or publicly visible) were changed.

However, extended API functions use private SmartGridSolve functions, data
structures and RPC calls to retrieve information needed for collective mapping,
build application performance model and embed task-to-server mapping and in-
formation needed to arrange server-to-server communication info GridRPC func-
tion handles.

4.5 Running application
The grpc map build app pm() function uses the following information to
build application performance model and task dependency graph:

• information collected during static code analysis: descriptions of tasks, task
arguments and task events;

• actual values of runtime parameters;

• GridRPC remote task call signatures collected from remote servers to deter-
mine which arguments are input, output or input-output.

4.5.1 Building application performance model
The original task events list contains static data which is generated by preproces-
sor as a result of static code analysis and compiled in as static data definitions
inside the body of grpc map static() block. Each START and WAIT event
point to static task description which contain information discovered during static
code analysis. However, this static data is not sufficient for building application
performance model and task dependency graph for the following reasons.

• There is additional information which is discovered at runtime:

runtime parameters values: depend on expressions calculated at runtime;
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argument sizes: depend on runtime parameters and task signatures re-
trieved from servers;

argument direction (in, out, inout): depend on task signatures retrieved
from servers.

• Task descriptions inside a LOOP event block correspond to more than one
remote task invocation. It’s impossible to expand a loop into its body re-
peated several times during static code analysis and preprocessing because
number of loop iterations can depend on runtime parameter which is known
at runtime only.

The first thing grpc map build app pm() function does after initialising
its internal data structures, is expanding task events list. The LOOP events are
replaced with their event blocks repeated number of times which is already known
and represented by loop’s runtime parameter’s value. Also, instead of pointing
to static task descriptions, expanded event list points to task nodes, which are
generated at runtime and contain the following information.

• Pointer to static task description this task node corresponds to.

• Pointer to problem description retrieved from server. This description con-
tains additional information about the task:

– arguments direction;

– expressions to compute non-scalar argument sizes based on scalar ar-
gument values;

– expression to compute task complexity based in scalar argument val-
ues.

• Task’s computational complexity.

• Subset of servers this task is available on (from a global set of servers avail-
able in the grid).

• Lists of task dependencies. This list is empty on this stage; it will be used
at the next stage described in subsection 4.5.2.

This expanded event list is essentially application performance model.
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4.5.2 Building task dependency DAG
Task dependency graph is a DAG (direct acyclic graph) with tasks as nodes and
data dependencies between tasks as vertices. Task nodes built in the previous step
described in subsection 4.5.1 are used as nodes in this DAG.

Task B is dependent on task A if the following conditions are met.

• Task B is guaranteed to start when A is finished. This condition is met when
WAIT event for A comes before START event for B.

• There is a non-scalar output (or input-output) argument of task A and a non-
scalar input (or input-output) argument of task B with the same argument
ID. The same argument ID means that both arguments point to the same
data, so output from task A is used as input for task B.

There are as many arrows from A task’s node to B task’s node as there are ar-
guments passed from A to B. Each dependency makes its argument eligible for
server-to-server communication.

Task dependency graph generated by grpc map build app pm() func-
tion for example application on Listing 4.1 at page 40 is shown on Figure 4.3.
Each arrow’s label contains three numbers: argument ID, output argument num-
ber (counted from 0), input argument number (counted from 0). For example, the
arrow between leftmost T1 cond and leftmost T2 cond has the label: 5: 2→ 1,
which means that argument ID is 5, data comes from T1 cond task as output
argument number 2 and is passed to T2 cond task as input argument number 1.

The purpose for task dependency DAG is arranging server-to-server commu-
nication.

Please note that task dependency DAG on Figure 4.3 contains nodes for tasks
in both branches of if statement, despite that only one branch will be executed
in the algorithm. This is because it’s unknown in advance which branch will
be executed, so both branches are treated as being executed in parallel. Hence,
the resulting DAG covers the actual task dependency DAG which is unknown in
advance, containing superset of its nodes.

4.5.3 Applying heuristic
The next thing grpc map build app pm() function does is finding task-to-
server mapping using heuristic with a name which is specified as an argument for
grpc map static() block.

The task of finding optimal server-to-server mapping is NP-complete. There
are several heuristics available to find mapping which is good enough [12]. It is
programmer’s responsibility to choose the heuristic which produces best results
in acceptable time.
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Figure 4.3: Task dependency graph generated for example application
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There is also heuristic called ex map available, which implements exhaustive
search. This heuristic has complexity of st, where s is number of servers and t is
number of tasks. It can be used when number of servers and tasks is very low.

4.5.4 Server-to-server communication
The grpc map embed call() function calls inserted by preprocessor before
all GridRPC calls write data into function handle to arrange server-to-server com-
munication.

For better efficiency, SmartGridSolve uses push communication. This means
that server-to-server communication is initiated by a server that produced results
when a task running on this server has been completed, rather than by a server
expecting input arguments for a task that is about to be started. Hence, server
running a task should have information where to send its output arguments after
the task has been completed. There are already fields in function handle used for
SmartGridRPC for storing a list of servers to send output to as well as file names
it expects to find input arguments in. Values in these fields are sent in string fields
of RPC request which starts a task.

When a server receives RPC request to start a task, it waits for files where it
expects to find input arguments to appear in its filesystem. Only after all files con-
taining input arguments have appeared, the task is started. Upon task completion,
output argument sending is initiated.

A file name for input and output arguments is based on argument ID. This
way it’s guaranteed that name of a file task expects to find its input argument is
the same as name of file where this argument is sent from another task.

It’s not a problem if an input argument can come from either one or another
server dependent on which branch of if statement has been executed. The server
waits for a file where the input argument is expected to appear in filesystem, and
the file name will be the same, no matter which server it came from and which task
has produced this file as its output, because file name is dependent on argument
ID.

Also, it’s not a problem if tasks in both branches if if statement depend on
the same output argument. The server running the task producing this output
argument will send it to servers assigned to tasks in both branches just in case,
because it’s unknown in advance which branch will be executed.

4.6 Restrictions on code to be analysed statically
Although static code analyser can cover many regular cases, it’s far from perfect
and can be confused if code is too complex. This section lists known cases when
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code can’t be fully analysed and its workflow can’t be extracted correctly.

Local and non-local jumps
Although control flow used in normal structured programming (loops, con-
ditional statements, function calls) is recognised, all other ways to jump
in code is not taken into account. Exceptions, goto statements, non-local
jumps with setjmp() and longjmp() functions are not considered when
extracting algorithm workflow. These methods to exit scope are usually
used for handling exceptional situations, so using them instead of normal
control flow statements is not a good practice anyway.

Other control flow statements
The return, break and continue statements are not recognised as
well when extracting algorithm workflow. It’s not recommended to have
these statements inside grpc map static() block. If a loop is exited
with break, it’s recommended to rewrite it to use more complex loop con-
dition. If there are GridRPC calls after break or continue statements
inside a loop which are dependent on some condidion, it’s recommended to
eliminate these statements by placing remaining part of the loop inside if
statement. Otherwise, extracted workflow may be incorrect.

Runtime parameters unknown at the beginning of algorithm
Workflow can be dependent on runtime parameters. As it was described
in section 4.2, these parameters are detected automatically and can affect
number of loop iterations as well as sizes of input and output arguments of
GridRPC calls. The problem is, value of these parameters has to be known
at the point when grpc map build app pm() function inserted in the
beginning of grpc map static() block performs collective mapping.
All runtime parameter expressions are expanded as described in subsec-
tion 4.3.3. If this conversion is impossible, algorithm workflow can’t be
extracted. This means that all runtime parameter values should be known at
the beginning of code in grpc map static() block. There is still com-
mon case when number of loop iterations is not known in advance because
loop completion depends on remote computation results. In this case pro-
grammer should estimate number of iterations and use grpc likely()
directive in the loop beginning to specify this estimated number.

Using different variables to access the same data object
Sometimes static analyser can fail to recognise that different expressions
point to the same non-scalar data object (vector or matrix). Expressions are
expanded as described in subsection 4.3.3, and arguments are not recog-
nised as pointing to the same data if expanded expressions are different.



60 CHAPTER 4. STATIC CODE ANALYSIS

Failing to recognise that two argument expressions point to the same data
can lead to data dependency not recognised, and server-to-server communi-
cation not arranged.

Local modifications to data objects
More serious problems can happen when wrong data dependency is de-
tected. This can happen if data object is locally modified between GridRPC
calls when next call uses results from previous call. Server-to-server com-
munication is arranged in this case, and the next task will receive unmod-
ified result from previous task. Also, server-to-server communication can
preclude sending result to the client, so local modifications will be made on
completely bogus data (garbage remaining in data object) in this case. This
can lead to incorrect algorithm execution. It’s recommended to write algo-
rithm the way that all data are prepared before starting parallel algorithm in
grpc map static() block and not modified in the middle.

GridRPC calls in libraries
All code sufficient for extracting workflow should be available for static
code analysis. All functions that have no definition with body available for
static code analysis are considered to belong to libraries which contain no
GridRPC calls. If there are still functions with code not available for static
code analysis that perform GridRPC calls, these calls are not included in
collective mapping. As a result, individual mapping is used for these calls.

Using function pointers to call GridRPC API
Static code analyser can detect only direct GridRPC API calls. Any indi-
rection in calling these functions, like using function pointers, will confuse
static code analyser. GridRPC API should be used directly, without any
kind of indirection.



Chapter 5

Use case: HydroPad

Listing 4.1 at page 40 is a simplified version of the application that was used
for testing static code analyser, code generated by preprocessor and library code
added to SmartGridSolve during software development. The full version of this
application is a full program containing correct error handling. Also, a modifica-
tion of this program with loops was used to test static code analyser and prepro-
cessor when loop unrolling support was introduced in its code. The remote tasks
used during this testing are not very useful for real scientific computations: they
just add or multiply vectors of size specified by size argument number of times
specified by count argument.

In order to prove that static code analysis approach presented in this thesis
is actually a viable and useful solution, it has to be applied to a real scientific
application. To fulfil this role, HydroPad [43], a real life astrophysics application
was selected, which simulates the evolution of galaxy clusters in the Universe.

HydroPad was already modified to use GridRPC and SmartGridRPC API [26],
and it was extensively with SmartGridSolve [8]. As a result, HydroPad became a
natural choice for applying static code analysis approach.

5.1 HydroPad overview
HydroPad is an astrophysics application that simulates development and evolution
of the Universe. The simulation assumes that all matter in the Universe consists
of two types: baryonic matter and dark matter. Baryonic matter is what all ob-
servable objects are made of. Dark matter is a matter which is not observable
by regular means, but can be detected only via its gravitational force. The most
prevalent theory is that most of gravitational mass in the Universe consists of dark
matter.

Dark matter behaviour is computed using Particle-Mesh N-Body algorithm [28].
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It simulates large number of collision-less particles in gravitation field, which is
calculated using density grid. Particles are moved between grid cells according to
gravitational force in cells where they are located.

Baryonic matter behaviour is computed using hydrodynamic algorithm called
Piecewise-Parabolic-Method [17], a higher order method for solving partial dif-
ferential equations.

Densities of baryonic and dark matters after each time step are used to calcu-
late gravity force field using the Fast-Fourier-Transform (FFT) method to solve
the Poisson equation.

HydroPad adapted to GridRPC uses the following remote tasks.

initgrav
Initialise the shape function.

usegrafic
Use the program grafic to initialise the dark matter.

densitydm
Calculate the density of the dark matter.

densitydmtsc
Calculate the density of the dark matter.

initbm
Initialise baryonic components.

initvel
Initialise velocity components.

fields
Calculate the gravitational component.

barmatter
Calculate the baryonic matter component.

darkmatter
Calculate the dark matter component.

darkmattertsc
Calculate the dark matter component.

Note that densitydm and darkmatter tasks have variants densitydmtsc
and darkmattertsc, which preform the same calculations with triangulated
shape clouds algorithm. A variant to use is selected by command line argument
(TSC variant is used by default).
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Figure 5.1: HydroPad application workflow
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HydroPad algorithm works as following. First, baryonic matter and dark mat-
ter simulations are initialised in parallel. Then, the main loop is started, which
contains the following steps.

• Gravitational field is calculated with fields task.

• On the first iteration, velocity components are initialised with initvel
task.

• Baryonic and dark matter behaviour is simulated in parallel with barmatter
and darkmatter tasks.

Number of main loop iterations is specified by command line argument. Hy-
droPad algorithm workflow is shown on Figure 5.1.

5.2 Modifications to HydroPad
HydroPad package adapted to SmartGridRPC uses GNU autotools for its build.
Its generated Makefile has several build targets:

hydropad seq: sequential program without using remote tasks,

hydropad gs: parallel program using regular GridRPC,

hydropad smart: parallel program using SmartGridRPC.

To adapt HydroPad to static code analysis approach a new build target was
added: hydropad static by copying hydropad smart target and its sources
with following modifications.

Adapting to new interface.
Directive starting block of code for collective mapping was changed from
grpc map() to grpc map static(). Also, grpc local() direc-
tives were removed because they are not needed anymore.

Making first loop iteration a special case.
First loop iteration is special because it contains a call to initvel task.
Originally it’s done inside if statement which checks for iteration num-
ber. Unfortunately, this approach confuses static code analyser because it
doesn’t recognise that initvel task is run only on the first iteration, so
it adds unnecessary task dependencies involving initvel task for every
loop iteration.

This problem was solved by making first iteration a special case and moving
it outside of the loop.
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Removing a choice between dark matter simulation algorithms.
There is a command line option selecting which of two variants of dark
matter simulation algorithms to select. Originally, algorithm to use was
selected by if statement in every loop iteration, checking the value of the
flag set by this option. Unfortunately, this approach confuses static code
analyser because it doesn’t recognise that the same branch is always selected
in every loop iteration. As a result, both tasks are considered for execution,
adding unnecessary task dependencies involving them.

The problem was solved by hardcoding the algorithm to use.

Using initialisation instead of assignment for runtime parameter
There is ga variable which is recognised as a runtime parameter. Unfortu-
nately, static code analyser doesn’t recognise variable assignments properly,
so it was unable to expand the expression representing this runtime param-
eter.

The problem was solved by changing the code to initialise this variable in
its declaration instead of assigning it later in the middle of code.

Without two last changes, HydroPad algorithm workflow was incorrect, as
shown on Figure 5.2, leading to many unnecessary task dependencies.

After changes listed above were made, HydroPad started working correctly
with static code analysis approach.

Task dependency graph of HydroPad algorithm with 3 iterations is shown on
Figure 5.3.

Essential part of HydroPad source code adapted for SmartGridRPC is listed in
Appendix C. The same code modified for static code analysis approach is listed
in Appendix D.

5.3 Experimental results
This section presents experimental results confirming performance improvements
of HydroPad application when using collective mapping compared to plain GridRPC.
These experiments were made earlier and are presented in this thesis: [6]. They
compare performance of GridRPC and SmartGridRPC versions of HydroPad.

The main advantage of static code analysis approach is not improved perfor-
mance compared to other approaches to collective mapping, but rather improved
programmability achieved by less restrictions on code compared to runtime dis-
covery approach and more convenient programming model compared to ADL and
workflow submission approaches, while keeping the same performance.
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Application performance model built from application workflow extracted from
HydroPad using static code analysis approach is exactly the same as he one built
as a result of runtime discovery used by SmartGridRPC. Hence, resulting task-to-
server mapping and server-to-server communication is exactly the same.

5.3.1 Hardware configuration
The experimental grid used in the experiments consists of two heterogeneous
servers, S1 and S2, with 498 and 531 MFlops performance respectively and hav-
ing 1 GB of memory each. Both servers are interconnected by 1 Gbit/s link.

Four client setups were used in experiments. These setups are described in the
following table.

Setup name Network connection Amount of memory
C1-1 1 Gbit/s 1 GB
C1-256 1 Gbit/s 256 MB
C100-1 100 Mbit/s 1 GB
C100-156 100 Mbit/s 256 MB

5.3.2 Experimental data
Experiments were conducted with different initial parameters resulting in different
memory usage. These experiments are listed in the following table.

Problem ID Np Ng Data size
P1 1203 603 73 MB
P2 1403 803 142 MB
P3 1603 803 176 MB
P4 1403 1003 242 MB
P5 1603 1003 270 MB
P6 1803 1003 313 MB
P7 2003 1003 340 MB
P8 2203 1203 552 MB
P9 2403 1203 624 MB

5.3.3 Experimental results
Results of experiments for different client setups are listed in the following tables.

It’s clearly visible that algorithm performance is always better when collective
mapping is used. Also, algorithm performance with collective mapping depends
less on client configuration because most of the data objects are stored on servers
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and are sent between servers directly, without involving the client in this commu-
nication.

C100-256. This client setup has slow network connection and small amount of
memory. Paging starts on the client for P7, P8 and P9 problems without server-
to-server communication.

Problem ID Time step Time step
(GridSolve) (SmartGridSolve)

P1 20.26s 7.31s
P2 38.75s 15.06s
P3 48.65s 16.36s
P4 60.48s 28.06s
P5 66.43s 27.54s
P6 76.76s 27.78s
P7 93.74s 30.81s
P8 150.03s 48.04s
P9 183.45s 60.74s
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C1-1. This client setup has fast network connection and amount of memory
large enough to accommodate data for any problem.

Problem ID Time step Time step
(GridSolve) (SmartGridSolve)

P1 9.40s 7.09s
P2 18.38s 15.27s
P3 20.82s 16.17s
P4 30.81s 29.02s
P5 32.00s 28.99s
P6 36.81s 29.88s
P7 37.22s 30.88s
P8 67.04s 50.05s
P9 112.05s 53.35s
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C100-1. This client setup has slow network connection and amount of memory
large enough to accommodate data for any problem.

Problem ID Time step Time step
(GridSolve) (SmartGridSolve)

P1 19.97s 7.24s
P2 38.73s 15.17s
P3 48.20s 16.24s
P4 61.59s 29.42s
P5 66.26s 28.91s
P6 78.16s 29.73s
P7 93.20s 31.25s
P8 140.53s 50.20s
P9 174.14s 53.02s
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C1-256. This client setup has fast network connection and small amount of
memory. Paging starts on the client for P7, P8 and P9 problems without server-
to-server communication.

Problem ID Time step Time step
(GridSolve) (SmartGridSolve)

P1 8.6s 7.0s
P2 18.4s 14.4s
P3 20.1s 15.8s
P4 31.3s 27.5s
P5 33.7s 28.1s
P6 42.3s 28.8s
P7 63.1s 30.0s
P8 109.3s 46.6s
P9 144.3s 55.1s
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Conclusions

In this thesis, a new approach to collecting information needed for collective task-
to-server mapping is presented. This approach allows to improve convenience of
writing or porting GridRPC applications to take advantage of collective mapping,
which in turn allows server-to-server communication.

Regular GridRPC programming model is discussed in section 1.3. It uses
individual mapping and strict client-server communication. The best solution to
individual mapping is collective mapping. Collective mapping allows to map tasks
to servers more optimal way leading to improved computational performance.
Also, collective mapping allows to arrange direct server-to-server communication,
that leads to improved communication performance and allows communication
parallelism. Collective mapping and its advantages is discussed in section 3.2.

Direct server-to-server communication arranged as a result of collective map-
ping is push communication that is more efficient than one allowed by approaches
not involving collective mapping: all task-to-server mapping is known in advance,
so sending results of tasks to servers where they are expected by future tasks can
be started immediately after tasks produced these results, not waiting for tasks ex-
pecting these results to be started by the client. Approaches to grid optimisation
other than collective mapping are discussed in section 3.1.

Collective mapping requires information about algorithm workflow to be avail-
able right before the first remote task of the algorithm has been started. Existing
approaches are discussed in chapter 3. However, these approaches have their own
limitations.

Runtime discovery approach discussed in section 3.4) puts very strict restric-
tions to algorithm code which are difficult to meet and violations of them
are very difficult to detect and lead to incorrect algorithm behaviour.

ADL approach discussed in section 3.5 requires a separate language describing
algorithm workflow to be written and kept in sync with the actual program
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implementing this algorithm.

Workflow submission approach discussed in section 3.6 requires the whole al-
gorithm to be written in a specialised workflow description language.

Static code analysis approach presented in this thesis works by extracting algo-
rithm workflow from the code of program implementing the algorithm. It doesn’t
require writing a separate workflow description manually and places much milder
restrictions on code than runtime discovery approach. Also, some of these re-
strictions can be lifted gradually when static code analyser improves and becomes
more sophisticated during the course of its future development. Results of this
work were published here: [23], [11].

It’s impossible to extract correct workflow from all all possible algorithms.
However, workflow extracting heuristic used by static code analyser presented in
this thesis is good enough to be applied to very wide range of real world appli-
cations. For example it was successfully applied to HydroPad, an astrophysics
application that simulates development and evolution of the Universe. This was
done with minimal modifications to HydroPad. Some of these modifications can
be made unnecessary by further development of static code analyser. Applying
static code analysis approach to HydroPad is discussed in chapter 5.

6.1 Future work
Static code analyser and preprocessor presented in this thesis produces good re-
sults and works with wide range of cases. However it’s far from ideal and can be
improved in several ways.

6.1.1 Improving static code analyser to cover more cases
Most important direction for further development is improving static code anal-
yser’s workflow extraction heuristic to cover more cases.

The following improvements can be made in this area through incremental
development.

Analysing assignments.
Currently expression expansion support (discussed in subsection 4.3.3) is
currently quite rudimentary. It takes passing function arguments and vari-
able initialisations into account, but not variable assignments. By taking as-
signments into account, more accurate expression expansion can be achieved,
so more cases can be covered this way.
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For example, analysing assignments can reveal cases of aliasing, when two
variables point to the same data, allowing better detection of task dependen-
cies.

Also, analysing assignments can reveal access to non-scalar data, revealing
cases of object modifications which should preclude task dependency and
resulting server-to-server communication.

This feature will make the fourth change to HydroPad discussed in sec-
tion 5.2 unnecessary.

Detecting values unchanged inside algorithm
Currently runtime parameters (discussed in section 4.2) are detected only
for values which must be runtime parameters, like GridRPC call scalar ar-
guments and expressions specifying number of loop iterations. However,
there are cases when expressions can have different meaning for algorithm
workflow dependent on whether their value is predetermined before algo-
rithm start or is calculated and assigned somewhere inside the algorithm.

One of such cases can be condition of if statement. If this condition ex-
pression is predetermined before algorithm start, it can be treated as a run-
time parameter, and a branch of if statement to be executed is already
known at the point of collective mapping. This means that code in another
branch should not be considered for collective mapping at all, making task
dependency DAG more simple and adequate to the real algorithm execution.

Implementing assignment analysing support discussed above will help in
implementing this feature.

This feature will make the third change to HydroPad discussed in section 5.2
unnecessary.

Detecting variables dependent on loop iteration.
Some variables act as counters in a loop. Loop control variable in for
statement is a simple case, but there can be other variables which are in-
cremented and decremented in a loop. Improving heuristic to detect these
variables can also produce more accurate expression expansion, allowing to
cover more cases.

For example this feature will allow to cover a case when multiple GridRPC
function handles are initialised in a loop, function handles are stored in an
array indexed by loop variable, and later multiple tasks are started also in a
loop using handles stored in the same array, also indexed by loop variable.

Combined with more intelligent if statement condition handling, this fea-
ture will make the second change to HydroPad discussed in section 5.2 un-
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necessary.

6.1.2 Introducing fault tolerance support
Implementing fault tolerance is an important area of further improvement. Fault
tolerance is easy to implement in case of individual mapping: the failed task can
be restarted on another server with the same arguments. However, it becomes a
problem in case of collective mapping, when server-to-server communication is
used. A failed remote task can lead to its arguments computed by other tasks to
be lost. In this case, it’s not enough to restart the only task that has failed; other
tasks it depends on have to be restarted as well.

Runtime discovery implemented in SmartGridSolve uses the simple approach:
the whole algorithm is restarted from the beginning in case of a remote task fail-
ure, as described in subsection 3.4.2. This approach results in stricter constraints
on code allowed for group mapping than expected, as it was described in sub-
section 3.4.3. Using the same approach will impose the same constraints and
defeat benefits of single-pass algorithm execution allowed by static code analysis
approach.

Instead of rolling back the algorithm to the beginning, which can be difficult
or impossible considering side effects, another approach can be used.

The log of completed GridRPC calls is stored by the client along with their
arguments which come from the client itself (without server-to-server communi-
cation). If a remote task has failed, all tasks from the whole dependency graph
containing the failed task along with tasks it depends on are restarted. This will
make all lost results to be recalculated, allowing the failed task to be restarted with
the same arguments.

Also, improvements can be made on the server side by reducing likelihood of
lost results due to task failures. For example, a server can store results of com-
pleted tasks little bit longer until all tasks dependent on these results are completed
and their respective results are stored. Other forms of redundant result storage can
be used as well.

6.1.3 Improving portability
Static code analyser makes no assumptions on when kind of grid middleware is
used. However, the code generated by preprocessor contain calls to extended
API to perform task-to-server mapping and arrange server-to-server communica-
tion. This extended API has been implemented inside extended client library from
SmartGridSolve.

Extensions to SmartGridSolve client library are described in section 4.4. They
only add new functions, but do not modify other existing library functions or data
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structures used by them. However, extended functions use internal representation
of data structures used by SmartGridSolve to arrange server-to-server communica-
tion and private RPC calls to retrieve information needed for collective mapping.

By isolating these private calls and private data access into a module, writing
support for other GridRPC middleware and client libraries can be made more
simple.

6.1.4 Extending analyser to support more programming lan-
guages

The current implementation uses Clang compiler suite’s AST building facilities
to analyse programs written in C programming language. It’s relatively easy to
extend it to support C++ and Objective C, but it requires writing a different parser
to support other programming languages outside of C family.

Static code analyser can be further generalised and extended by making pro-
gramming language support modular. This will allow to use existing language
parsers or write new ones for creating language modules.

Another interesting approach would be to extract algorithm workflow from
LLVM IR, an intermediate code representation

Another interesting approach would be to use LLVM IR (internal represen-
tation) for code analysis to extract algorithm workflow. This representation is a
kind of SSA (static single assignment) form, an internal language-independent
algorithm representation used by LLVM compiler construction toolkit.

Although this approach is more complex than analysing AST, it has several
advantages.

• Independence of the programming language. Any language having com-
piler implemented using LLVM can be used for collective mapping of GridRPC
calls.

• It’s much easier to analyse flow control and find assignments of variables.
Hence, it’s much easier to find dependencies between GridRPC calls in
more general way.
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Appendix A

Extended API reference

The following directives are provided as extension of public SmartGridRPC API
to be used for static code analysis approach for collective mapping.

These directives do nothing at runtime. Their sole purpose is to pass informa-
tion to static code analyser when it extracts algorithm workflow during compile
time.

Extended API is not limited to these directives. There are two functions calls
to which are inserted into files modified by calltree program and data struc-
tures used by these functions, but these functions and data structures are not con-
sidered to be part of public interface.

A.1 grpc map static()

A.1.1 Synopsis

g r p c m a p s t a t i c ( char *name ) { / * STATEMENT . . . * / }

A.1.2 Description
The grpc map static() directive marks a block following it for collective
mapping.

Algorithm workflow is extracted by calltree program from this block, and
additional static data definitions and code are inserted into modified source file.

A.2 grpc likely()

A.2.1 Synopsis

79
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void g r p c l i k e l y ( . . . ) ;

A.2.2 Description
When placed as the first statement in a loop, this function instructs static code
analyser to treat expression passed as its first argument as estimate of number of
loop iterations.



Appendix B

Static code analyser and
preprocessor reference

The static code analysis engine is the calltree program. It extracts algorithm
workflow from the program and inserts extracted information into modified files.

B.1 Synopsis
calltree [OPTION]... [FILE]...

B.2 Options
--help

Produce help message and exit.

--print-tree
Output call tree extracted from input files in XML format.

--loop-count=arg
Set assumed number of loop iterations. Default is 4. This number is used
if static code analyser is unable to detect number of loop iterations, and
grpc likely() directive is not used to specify estimated number.

B.3 Description
The calltree program performs static code analysis and inserts information
from extracted algorithm workflow as well as code to utilise this information into

81
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modified source files. This code builds application performance model, performs
collective task-to-server mapping and arranges server-to-server communication at
runtime.

The calltree program performs its function in two steps.

1. Algorithm workflow is extracted from AST files specified as command line
arguments and a tree structure is produced. This structure is printed to stan-
dard output if --print-tree option is present in command line.

AST files must be produced from source files in C programming language
by running clang with -emit-ast option on every source file of the
program.

2. This tree structure is used and modified source files are produced. File
names are taken from location information stored in AST files. Modified
file names are produced by replacing .c suffix with .grpc.c suffix.

Modified files should be compiled instead of original source files to produce
the final program.

It’s important to pass AST files for all source modules of the program as com-
mand line arguments.

Modified files are produces only for those source modules that contain grpc map static()
block and GridRPC calls.



Appendix C

HydroPad source code for runtime
discovery

This appendix contains 3 source code modules from HydroPad adapted for Smart-
GridRPC. These modules are essential for understanding how HydroPad works.

Source modules providing support functions as well as code for remote tasks
performing computations are not included.

Source code was modified to fit better in listings by removing non-essential
spaces, empty strings, comments and commented out code.

GridRPC API functions are not called directly in this code. Instead, the fol-
lowing support functions are called, which in turn call functions from GridRPC
API.

blockcall()
Initialises function handle with remote task name provided by the first ar-
gument and then starts blocking task using this handle.

nonblockcall()
Initialises function handle with remote task name provided by the first ar-
gument and then starts non-blocking task using this handle. Session ID is
saved into a field of data structure pointed to by the second argument.

waitnonblock()
Waits for completion of the task. Session ID is retrieved from a field of data
structure pointed to by its argument.

83
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C.1 Source code for main() function
This module contains main program. It parses command line arguments, ini-
tialises data structures and then runs the parallel algorithm.

Listing C.1: HydroPad source code: main smart.c
1 / *
2 C o p y r i g h t (C) 2005 Miche le G u i d o l i n <m i c h e l e . gu ido l in@ucd . i e>
3
4 T h i s f i l e i s f r e e s o f t w a r e ; as a s p e c i a l e x c e p t i o n t h e a u t h o r g i v e s
5 u n l i m i t e d p e r m i s s i o n t o copy and / or d i s t r i b u t e i t , w i t h or w i t h o u t
6 m o d i f i c a t i o n s , as long as t h i s n o t i c e i s p r e s e r v e d .
7
8 T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , b u t
9 WITHOUT ANY WARRANTY, t o t h e e x t e n t p e r m i t t e d by law ; w i t h o u t even t h e

10 i m p l i e d w a r r an t y o f MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .
11 * /
12
13 # i n c l u d e <s t d i o . h>
14 # i n c l u d e < s t d l i b . h>
15 # i n c l u d e < s t r i n g . h>
16
17 # i n c l u d e ” g l o b a l . h ”
18 # i n c l u d e ” i n i t . h ”
19 # i n c l u d e ” g rpc . h ”
20 # i n c l u d e ” g s s m a r t c l i b . h ”
21
22 i n t main ( i n t argc , char * a rgv [ ] )
23 {
24 i n t c y c l e s i n d e x , nmap index , l e n g t h ;
25 i n t n s t e p o l d ;
26
27 / * Cr ea t e g l o b a l da ta * /
28 g l o b a l gb ;
29
30 / * P r o c e s s argument s * /
31 a rgumen t s (&gb , a rgc , a rgv ) ;
32
33 / * S e t d e f a u l t * /
34 gb . g rpc = 1 ;
35 gb . s m a r t = 1 ;
36
37 / * Read i n p u t p a r a m e t e r s * /
38 l e n g t h = s t r l e n ( gb . i f i l e ) ;
39 i n d a t a (&gb . np ,&gb . nx ,&gb . ny ,&gb . nz ,&gb . box ,&gb . hnow ,
40 &gb . omega dm , &gb . omega bm ,&gb . omega v ,&gb . tempnow ,
41 &gb . h f r a c ,&gb . s p e c t i d x ,&gb . s igma 8 , gb . r s e e d ,
42 gb . i f i l e ,& l e n g t h ) ;
43
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44 / * I n i t i a l i z e g l o b a l s c a l a r v a r i a b l e * /
45 i n i t s c a l a r (&gb ) ;
46
47 / * A l l o c a memory * /
48 a l l o c a g b (&gb ) ;
49
50 / * I n i t i a l i z e g r i d r p c * /
51 i f ( gb . g rpc )
52 i n i t g r p c (&gb ) ;
53
54 p r i n t f ( ” ********************* T o t a l s t e p s %d *********************\n\n ” ,
55 gb . nmap*gb . c y c l e s ) ;
56
57 {
58 / * I n i t i a l i z e t i m e v a l u e * /
59 ETINIT ( gb . e t t o t a l ) ;
60 ETINIT ( gb . e t i n i t ) ;
61 ETINIT ( gb . e t i n i t v e l ) ;
62 ETINIT ( gb . e t g r a f i c ) ;
63 ETINIT ( gb . e t i n i t b m ) ;
64 ETINIT ( gb . e t g r a v s h a p e ) ;
65 ETINIT ( gb . etbm ) ;
66 ETINIT ( gb . e t s h s a v e ) ;
67 ETINIT ( gb . e t l x l y l z ) ;
68 ETINIT ( gb . e t e x s p e e d ) ;
69 ETINIT ( gb . etdm ) ;
70 ETINIT ( gb . e tnbody ) ;
71 ETINIT ( gb . e t d e n s i t y d m ) ;
72 ETINIT ( gb . e t g r a v ) ;
73 ETINIT ( gb . e t g r a v p o t ) ;
74 ETINIT ( gb . e t g r a v f o r c e ) ;
75 ETINIT ( gb . e t g r a v h a l f ) ;
76 ETINIT ( gb . e t e v o l v e ) ;
77
78 / * S t a r t t i m i n g t h e t o t a l ammount * /
79 ETSTART( gb . e t t o t a l ) ;
80
81 grpc map ( ” ” )
82 {
83 ETSTART( gb . e t i n i t ) ;
84
85 / * I n i t i a l i z e dark and b a r y o n i c m a t t e r * /
86 i n i t i a l i z e d m b m n o n b l k (&gb ) ;
87
88 ETSTOP( gb . e t i n i t ) ;
89
90 / * I n i t i a l i z e t i m e p a r a m e t e r s * /
91 g r p c l o c a l ( )
92 {
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93 i n i t t i m e (&gb ) ;
94 }
95
96 / * MAIN LOOP * /
97
98 {
99 gb . n s t e p s =0;

100 c y c l e s i n d e x =gb . c y c l e s ;
101
102 f o r ( ; c y c l e s i n d e x >0;−− c y c l e s i n d e x ) / * Number o f c y c l e s * /
103 {
104 g r p c l i k e l y ( gb . c y c l e s −1);
105 e v o l v e m a i n l o o p (&gb ) ;
106 }
107 }
108 }
109
110 ETSTOP( gb . e t t o t a l ) ;
111
112 }
113
114 p r i n t f ( ”\n RUN ON : ” ) ;
115 i f ( gb . g rpc )
116 {
117 i f ( gb . s m a r t )
118 p r i n t f ( ” Smar tSo lve . \ n ” ) ;
119 e l s e
120 p r i n t f ( ” G r i d S o l v e . \ n ” ) ;
121 }
122 e l s e
123 {
124 p r i n t f ( ” l o c a l compute r . \ n ” ) ;
125 }
126
127 p r i n t f ( ” TOTAL EXEC TIME : %f s \n\n ” ,ETAVG( gb . e t t o t a l ) ) ;
128 f r e e g b (&gb ) ;
129 c l o s e g r p c (&gb ) ;
130 re turn 0 ;
131 }
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C.2 Source code for algorithm initialisation
This module contains code performing initialisation step of the parallel algorithm.

Listing C.2: HydroPad source code: initialize smart.c
1 / *
2 C o p y r i g h t (C) 2005 Miche le G u i d o l i n <m i c h e l e . gu ido l in@ucd . i e>
3
4 T h i s f i l e i s f r e e s o f t w a r e ; as a s p e c i a l e x c e p t i o n t h e a u t h o r g i v e s
5 u n l i m i t e d p e r m i s s i o n t o copy and / or d i s t r i b u t e i t , w i t h or w i t h o u t
6 m o d i f i c a t i o n s , as long as t h i s n o t i c e i s p r e s e r v e d .
7
8 T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , b u t
9 WITHOUT ANY WARRANTY, t o t h e e x t e n t p e r m i t t e d by law ; w i t h o u t even t h e

10 i m p l i e d w a r r an t y o f MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .
11 * /
12
13 # i n c l u d e ” g l o b a l . h ”
14 # i n c l u d e ” b a r y o n i c . h ”
15 # i n c l u d e ” i n i t . h ”
16 # i n c l u d e ” da rk . h ”
17 # i n c l u d e ” b a r y o n i c . h ”
18 # i n c l u d e ” g rav . h ”
19
20 # i n c l u d e < s t d l i b . h>
21 # i n c l u d e <s t d i o . h>
22 # i n c l u d e ” g s s m a r t c l i b . h ”
23
24
25 void i n i t i a l i z e d m b m n o n b l k ( g l o b a l *gb )
26 {
27
28 / *
29 Cause I ’m u s i n g Smar tSo lve , t h e h an d l e i n t a s k v a r can no t be d e s t r u c t .
30 So t a s k v a r i s a l l o c a t e d and n o t f r e e d .
31 * /
32 t a s k v a r * t i n i t g r a v ;
33
34 t i n i t g r a v =( t a s k v a r * ) c a l l o c ( 1 , s i z e o f ( t a s k v a r ) ) ;
35 t i n i t g r a v −>h a n d l e =
36 ( g r p c f u n c t i o n h a n d l e t * ) c a l l o c ( 1 , s i z e o f ( g r p c f u n c t i o n h a n d l e t ) ) ;
37
38 / * I n i t grav * /
39 ETSTART( gb−>e t g r a v s h a p e ) ;
40 n o n b l o c k c a l l ( ” i n i t g r a v ” , t i n i t g r a v ,
41 gb−>gshape ,&gb−>nx ,&gb−>ny ,&gb−>nz ) ;
42
43 / * I n i t i a l i z e dark m a t t e r * /
44 ETSTART( gb−>e t g r a f i c ) ;
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45 b l o c k c a l l ( ” u s e g r a f i c ” ,
46 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
47 &gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>np ,&gb−>t0h0 ,&gb−>a t ,&gb−>v f a c t ,
48 &gb−>omega dm ,&gb−>omega bm ,&gb−>omega v ,&gb−>hnow ,
49 &gb−>s p e c t i d x ,&gb−>s igma 8 , gb−>r s e e d ) ;
50 ETSTOP( gb−>e t g r a f i c ) ;
51
52 / * I n i t i a l i z e dark m a t t e r d e n s i t y * /
53 ETSTART( gb−>e t d e n s i t y d m ) ;
54 i f ( gb−> t s c )
55 {
56 b l o c k c a l l ( ” d e n s i t y d m t s c ” ,
57 gb−>rhodm , gb−>x1 , gb−>x2 , gb−>x3 ,
58 &gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,&gb−>amass ) ;
59 }
60 e l s e
61 {
62 b l o c k c a l l ( ” dens i t ydm ” ,
63 gb−>rhodm , gb−>x1 , gb−>x2 , gb−>x3 ,
64 &gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,&gb−>amass ) ;
65 }
66 ETSTOP( gb−>e t d e n s i t y d m ) ;
67
68 ETSTART( gb−>e t i n i t b m ) ;
69 b l o c k c a l l ( ” i n i t b m ” ,
70 gb−>rhodm , gb−>rhobm , gb−>p ,
71 &gb−>nx ,&gb−>ny ,&gb−>nz ,
72 &gb−>a t ,&gb−>p f a c t ,&gb−>omega dm ,&gb−>omega bm ) ;
73 ETSTOP( gb−>e t i n i t b m ) ;
74
75 g r p c l o c a l ( ) {
76 w a i t n o n b l o c k ( t i n i t g r a v ) ;
77 }
78 ETSTOP( gb−>e t g r a v s h a p e ) ;
79 }
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C.3 Source code for simulation step
This module contains code performing a single simulation step of the parallel
algorithm.

Listing C.3: HydroPad source code: evolve smart.c
1 / *
2 C o p y r i g h t (C) 2005 Miche le G u i d o l i n <m i c h e l e . gu ido l in@ucd . i e>
3
4 T h i s f i l e i s f r e e s o f t w a r e ; as a s p e c i a l e x c e p t i o n t h e a u t h o r g i v e s
5 u n l i m i t e d p e r m i s s i o n t o copy and / or d i s t r i b u t e i t , w i t h or w i t h o u t
6 m o d i f i c a t i o n s , as long as t h i s n o t i c e i s p r e s e r v e d .
7
8 T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , b u t
9 WITHOUT ANY WARRANTY, t o t h e e x t e n t p e r m i t t e d by law ; w i t h o u t even t h e

10 i m p l i e d w a r r an t y o f MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .
11 * /
12
13 # i n c l u d e <s t d i o . h>
14
15 # i n c l u d e ” g l o b a l . h ”
16 # i n c l u d e ” i n i t . h ”
17 # i n c l u d e ” da rk . h ”
18 # i n c l u d e ” b a r y o n i c . h ”
19 # i n c l u d e ” g rav . h ”
20 # i n c l u d e ” g s s m a r t c l i b . h ”
21
22 void e v o l v e m a i n l o o p ( g l o b a l *gb )
23 {
24 p r i n t f ( ” *******************\n E v o l u t i o n s t e p %d\n *******************\n\n ” ,
25 gb−>n s t e p s ) ;
26 / * Sys tem e v o l u t i o n * /
27 g r p c l o c a l ( )
28 {
29 t i m e i n f o (&gb−>a t ,&gb−>atnew ,
30 &gb−>da t ,&gb−>datnew ,
31 &gb−>a th ,&gb−>da th ,
32 &gb−>t ,&gb−>t o l d ,
33 &gb−>dt ,&gb−>d t o l d ,
34 &gb−>t0h0 ,&gb−>hnow,&gb−>n s t e p s ) ;
35 }
36 e v o l v e n o n b l k ( gb ) ;
37 gb−>n s t e p s ++; / * I n c r e a s e t h e e v o l v e s t e p * /
38 }
39
40 void e v o l v e n o n b l k ( g l o b a l *gb )
41 {
42 double ga ;
43
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44 / *
45 Cause I ’m u s i n g Smar tSo lve , t h e h an d l e i n t a s k v a r can no t be d e s t r u c t .
46 So t a s k v a r i s a l l o c a t e d and n o t f r e e d .
47 * /
48 t a s k v a r * t b a r m a t t e r ;
49
50 t b a r m a t t e r =( t a s k v a r * ) c a l l o c ( 1 , s i z e o f ( t a s k v a r ) ) ;
51 t b a r m a t t e r−>h a n d l e =
52 ( g r p c f u n c t i o n h a n d l e t * ) c a l l o c ( 1 , s i z e o f ( g r p c f u n c t i o n h a n d l e t ) ) ;
53
54 a s s e r t ( gb ) ;
55
56 ETSTART( gb−>e t e v o l v e ) ;
57 g r p c l o c a l ( )
58 {
59 ga = gb−>g c o n s t / gb−>a t ;
60 }
61
62 / * C a l c u l a t e g r a v i t a t i o n a l component * /
63 ETSTART( gb−>e t g r a v ) ;
64 b l o c k c a l l ( ” f i e l d s ” ,
65 gb−>phi , gb−>p h i o l d , gb−>rhodm , gb−>rhobm ,
66 gb−>gshape , gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
67 &gb−>nx ,&gb−>ny ,&gb−>nz ,&ga ,&gb−>dt ,&gb−>d t o l d ,&gb−>n s t e p s ) ;
68 ETSTOP( gb−>e t g r a v ) ;
69
70 / * At t h e f i r s t s t e p i n i t i a l i z e t h e b a r y o n i c m a t t e r v e l o c i t y f i e l d * /
71 i f ( gb−>n s t e p s ==0)
72 {
73 ETSTART( gb−>e t i n i t v e l ) ;
74 b l o c k c a l l ( ” i n i t v e l ” ,
75 gb−>phi , gb−>vx , gb−>vy , gb−>vz ,&gb−>nx ,&gb−>ny ,&gb−>nz ,
76 &gb−>omega dm ,&gb−>omega bm ,&gb−>omega v ,&gb−>a t ,&gb−>d a t ) ;
77 ETSTOP( gb−>e t i n i t v e l ) ;
78 }
79
80 / * C a l c u l a t e b a r y o n i c m a t t e r component * /
81 ETSTART( gb−>etbm ) ;
82 n o n b l o c k c a l l ( ” b a r m a t t e r ” , t b a r m a t t e r ,
83 gb−>nes , gb−>phi , gb−>p h i o l d , gb−>p , gb−>rhobm ,
84 gb−>vx , gb−>vy , gb−>vz ,&gb−>nx ,&gb−>ny ,&gb−>nz ,
85 &gb−>a t ,&gb−>da t ,&gb−>a th ,
86 &gb−>da th ,&gb−>dt ,&gb−>d t o l d ,&gb−>gamma,&gb−>e t a1 ,&gb−>e t a2 ,
87 &gb−>dmax ,&gb−>norm ,&gb−>n s t e p s , ( i n t *) gb−>l f l o w ,&gb−>bmvelmax ) ;
88
89 / * C a l c u l a t e dark m a t t e r component * /
90 ETSTART( gb−>etdm ) ;
91 i f ( gb−> t s c )
92 {
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93 b l o c k c a l l ( ” d a r k m a t t e r t s c ” ,
94 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
95 gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
96 gb−>rhodm ,&gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,
97 &gb−>a t ,&gb−>da t ,&gb−>a th ,&gb−>da th ,&gb−>dt ,&gb−>amass ,
98 &gb−>dmvelmax ) ;
99 }

100 e l s e
101 {
102 b l o c k c a l l ( ” d a r k m a t t e r ” ,
103 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
104 gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
105 gb−>rhodm ,&gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,
106 &gb−>a t ,&gb−>da t ,&gb−>a th ,&gb−>da th ,&gb−>dt ,&gb−>amass ,
107 &gb−>dmvelmax ) ;
108 }
109 ETSTOP( gb−>etdm ) ;
110
111 g r p c l o c a l ( )
112 {
113 w a i t n o n b l o c k ( t b a r m a t t e r ) ;
114 }
115
116 ETSTOP( gb−>etbm ) ;
117 ETSTOP( gb−>e t e v o l v e ) ;
118
119 g r p c l o c a l ( )
120 {
121 / * P r i n t e x e c u t i o n t i m e * /
122 p r i n t e t ( gb ) ;
123
124 / * C a l c u l a t e new t i m e s t e p * /
125 t i m e s t e p (&gb−>dmvelmax ,&gb−>bmvelmax ,&gb−>a t ,&gb−>atnew ,
126 &gb−>da t ,&gb−>datnew ,&gb−>a th ,&gb−>da th ,
127 &gb−>t ,&gb−>t o l d ,&gb−>dt ,&gb−>d t o l d ,&gb−>omega dm ,
128 &gb−>omega bm ,&gb−>omega v ,&gb−>t0h0 ,&gb−>norm ) ;
129
130 gb−>bmvelmax =0;
131 gb−>dmvelmax =0;
132 }
133 }
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Appendix D

HydroPad source code for static
code analysis

This appendix contains 3 source code modules from HydroPad adapted for ex-
tended SmartGridRPC API used in static code analysis approach to collective
mapping. These modules are essential for understanding how HydroPad works
and changes that were made to adapt the code to static code analysis.

Source modules providing support functions as well as code for remote tasks
performing computations are not included.

Source code was modified to fit better in listings by removing non-essential
spaces, empty strings, comments and commented out code.

GridRPC API functions are not called directly in this code. Instead, the fol-
lowing support functions are called, which in turn call functions from GridRPC
API.

blockcall()
Initialises function handle with remote task name provided by the first ar-
gument and then starts blocking task using this handle.

nonblockcall()
Initialises function handle with remote task name provided by the first ar-
gument and then starts non-blocking task using this handle. Session ID is
saved into a field of data structure pointed to by the second argument.

waitnonblock()
Waits for completion of the task. Session ID is retrieved from a field of data
structure pointed to by its argument.

93
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D.1 Source code for main() function
This module contains main program. It parses command line arguments, ini-
tialises data structures and then runs the parallel algorithm.

There are the following differences with the similar module for SmartGridRPC.

• Using grpc map static() directive instead of grpc map().

• The first simulation step is treated as a special case and called outside of the
main loop because initvel remote task is called only during this step.
Number of loop iterations is decremented by one because of this special
iteration moved outside of the loop.

Listing D.1: HydroPad source code: main static.c
1 / *
2 C o p y r i g h t (C) 2005 Miche le G u i d o l i n <m i c h e l e . gu ido l in@ucd . i e>
3
4 T h i s f i l e i s f r e e s o f t w a r e ; as a s p e c i a l e x c e p t i o n t h e a u t h o r g i v e s
5 u n l i m i t e d p e r m i s s i o n t o copy and / or d i s t r i b u t e i t , w i t h or w i t h o u t
6 m o d i f i c a t i o n s , as long as t h i s n o t i c e i s p r e s e r v e d .
7
8 T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , b u t
9 WITHOUT ANY WARRANTY, t o t h e e x t e n t p e r m i t t e d by law ; w i t h o u t even t h e

10 i m p l i e d w a r r an t y o f MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .
11 * /
12
13 # i n c l u d e <s t d i o . h>
14 # i n c l u d e < s t d l i b . h>
15 # i n c l u d e < s t r i n g . h>
16
17 # i n c l u d e ” g l o b a l . h ”
18 # i n c l u d e ” i n i t . h ”
19 # i n c l u d e ” g rpc . h ”
20 # i n c l u d e ” g s s m a r t c l i b . h ”
21
22 i n t main ( i n t argc , char * a rgv [ ] )
23 {
24 i n t c y c l e s i n d e x , nmap index , l e n g t h ;
25 i n t n s t e p o l d ;
26
27 / * Cr ea t e g l o b a l da ta * /
28 g l o b a l gb ;
29
30 / * P r o c e s s argument s * /
31 a rgumen t s (&gb , a rgc , a rgv ) ;
32
33 / * S e t d e f a u l t * /
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34 gb . g rpc = 1 ;
35 gb . s m a r t = 1 ;
36
37 / * Read i n p u t p a r a m e t e r s * /
38 l e n g t h = s t r l e n ( gb . i f i l e ) ;
39 i n d a t a (&gb . np ,&gb . nx ,&gb . ny ,&gb . nz ,&gb . box ,&gb . hnow ,
40 &gb . omega dm , &gb . omega bm ,&gb . omega v ,&gb . tempnow ,
41 &gb . h f r a c ,&gb . s p e c t i d x ,&gb . s igma 8 , gb . r s e e d ,
42 gb . i f i l e ,& l e n g t h ) ;
43
44 / * I n i t i a l i z e g l o b a l s c a l a r v a r i a b l e * /
45 i n i t s c a l a r (&gb ) ;
46
47 / * A l l o c a memory * /
48 a l l o c a g b (&gb ) ;
49
50 / * I n i t i a l i z e g r i d r p c * /
51 i f ( gb . g rpc )
52 i n i t g r p c (&gb ) ;
53
54 p r i n t f ( ” ********************* T o t a l s t e p s %d *********************\n\n ” ,
55 gb . nmap*gb . c y c l e s ) ;
56
57 {
58 / * I n i t i a l i z e t i m e v a l u e * /
59 ETINIT ( gb . e t t o t a l ) ;
60 ETINIT ( gb . e t i n i t ) ;
61 ETINIT ( gb . e t i n i t v e l ) ;
62 ETINIT ( gb . e t g r a f i c ) ;
63 ETINIT ( gb . e t i n i t b m ) ;
64 ETINIT ( gb . e t g r a v s h a p e ) ;
65 ETINIT ( gb . etbm ) ;
66 ETINIT ( gb . e t s h s a v e ) ;
67 ETINIT ( gb . e t l x l y l z ) ;
68 ETINIT ( gb . e t e x s p e e d ) ;
69 ETINIT ( gb . etdm ) ;
70 ETINIT ( gb . e tnbody ) ;
71 ETINIT ( gb . e t d e n s i t y d m ) ;
72 ETINIT ( gb . e t g r a v ) ;
73 ETINIT ( gb . e t g r a v p o t ) ;
74 ETINIT ( gb . e t g r a v f o r c e ) ;
75 ETINIT ( gb . e t g r a v h a l f ) ;
76 ETINIT ( gb . e t e v o l v e ) ;
77
78 / * S t a r t t i m i n g t h e t o t a l ammount * /
79 ETSTART( gb . e t t o t a l ) ;
80
81 g r p c m a p s t a t i c ( ” greedy map ” )
82 {
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83 ETSTART( gb . e t i n i t ) ;
84
85 / * I n i t i a l i z e dark and b a r y o n i c m a t t e r * /
86 i n i t i a l i z e d m b m n o n b l k (&gb ) ;
87
88 ETSTOP( gb . e t i n i t ) ;
89
90 / * I n i t i a l i z e t i m e p a r a m e t e r s * /
91 g r p c l o c a l ( )
92 {
93 i n i t t i m e (&gb ) ;
94 }
95
96 / * MAIN LOOP * /
97
98 {
99 gb . n s t e p s =0;

100 c y c l e s i n d e x =gb . c y c l e s −1;
101
102 e v o l v e m a i n l o o p 0 (&gb ) ;
103 f o r ( ; c y c l e s i n d e x >0;−− c y c l e s i n d e x ) / * Number o f c y c l e s * /
104 {
105 g r p c l i k e l y ( gb . c y c l e s −1);
106 e v o l v e m a i n l o o p (&gb ) ;
107 }
108 }
109 }
110
111 ETSTOP( gb . e t t o t a l ) ;
112
113 }
114
115 p r i n t f ( ”\n RUN ON : ” ) ;
116 i f ( gb . g rpc )
117 {
118 i f ( gb . s m a r t )
119 p r i n t f ( ” Smar tSo lve . \ n ” ) ;
120 e l s e
121 p r i n t f ( ” G r i d S o l v e . \ n ” ) ;
122 }
123 e l s e
124 {
125 p r i n t f ( ” l o c a l compute r . \ n ” ) ;
126 }
127
128 p r i n t f ( ” TOTAL EXEC TIME : %f s \n\n ” ,ETAVG( gb . e t t o t a l ) ) ;
129 f r e e g b (&gb ) ;
130 c l o s e g r p c (&gb ) ;
131 re turn 0 ;
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132 }
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D.2 Source code for algorithm initialisation
This module contains code performing initialisation step of the parallel algorithm.

The only difference with the similar module for SmartGridRPC is hardcoded
use of densitydm remote task variant (using another variant is commented out
by #if 0 preprocessor directive).

Listing D.2: HydroPad source code: initialize static.c
1 / *
2 C o p y r i g h t (C) 2005 Miche le G u i d o l i n <m i c h e l e . gu ido l in@ucd . i e>
3
4 T h i s f i l e i s f r e e s o f t w a r e ; as a s p e c i a l e x c e p t i o n t h e a u t h o r g i v e s
5 u n l i m i t e d p e r m i s s i o n t o copy and / or d i s t r i b u t e i t , w i t h or w i t h o u t
6 m o d i f i c a t i o n s , as long as t h i s n o t i c e i s p r e s e r v e d .
7
8 T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , b u t
9 WITHOUT ANY WARRANTY, t o t h e e x t e n t p e r m i t t e d by law ; w i t h o u t even t h e

10 i m p l i e d w a r r an t y o f MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .
11 * /
12
13 # i n c l u d e ” g l o b a l . h ”
14 # i n c l u d e ” b a r y o n i c . h ”
15 # i n c l u d e ” i n i t . h ”
16 # i n c l u d e ” da rk . h ”
17 # i n c l u d e ” b a r y o n i c . h ”
18 # i n c l u d e ” g rav . h ”
19
20 # i n c l u d e < s t d l i b . h>
21 # i n c l u d e <s t d i o . h>
22 # i n c l u d e ” g s s m a r t c l i b . h ”
23
24
25 void i n i t i a l i z e d m b m n o n b l k ( g l o b a l *gb )
26 {
27
28 / *
29 Cause I ’m u s i n g Smar tSo lve , t h e h an d l e i n t a s k v a r can no t be d e s t r u c t .
30 So t a s k v a r i s a l l o c a t e d and n o t f r e e d .
31 * /
32 t a s k v a r * t i n i t g r a v ;
33
34 t i n i t g r a v =( t a s k v a r * ) c a l l o c ( 1 , s i z e o f ( t a s k v a r ) ) ;
35 t i n i t g r a v −>h a n d l e =
36 ( g r p c f u n c t i o n h a n d l e t * ) c a l l o c ( 1 , s i z e o f ( g r p c f u n c t i o n h a n d l e t ) ) ;
37
38 / * I n i t grav * /
39 ETSTART( gb−>e t g r a v s h a p e ) ;
40 n o n b l o c k c a l l ( ” i n i t g r a v ” , t i n i t g r a v ,
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41 gb−>gshape ,&gb−>nx ,&gb−>ny ,&gb−>nz ) ;
42
43 / * I n i t i a l i z e dark m a t t e r * /
44 ETSTART( gb−>e t g r a f i c ) ;
45 b l o c k c a l l ( ” u s e g r a f i c ” ,
46 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
47 &gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>np ,&gb−>t0h0 ,&gb−>a t ,&gb−>v f a c t ,
48 &gb−>omega dm ,&gb−>omega bm ,&gb−>omega v ,&gb−>hnow ,
49 &gb−>s p e c t i d x ,&gb−>s igma 8 , gb−>r s e e d ) ;
50 ETSTOP( gb−>e t g r a f i c ) ;
51
52 / * I n i t i a l i z e dark m a t t e r d e n s i t y * /
53 ETSTART( gb−>e t d e n s i t y d m ) ;
54 # i f 0
55 i f ( gb−> t s c )
56 {
57 b l o c k c a l l ( ” d e n s i t y d m t s c ” ,
58 gb−>rhodm , gb−>x1 , gb−>x2 , gb−>x3 ,
59 &gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,&gb−>amass ) ;
60 }
61 e l s e
62 # e n d i f
63 {
64 b l o c k c a l l ( ” dens i t ydm ” ,
65 gb−>rhodm , gb−>x1 , gb−>x2 , gb−>x3 ,
66 &gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,&gb−>amass ) ;
67 }
68 ETSTOP( gb−>e t d e n s i t y d m ) ;
69
70 ETSTART( gb−>e t i n i t b m ) ;
71 b l o c k c a l l ( ” i n i t b m ” ,
72 gb−>rhodm , gb−>rhobm , gb−>p ,
73 &gb−>nx ,&gb−>ny ,&gb−>nz ,
74 &gb−>a t ,&gb−>p f a c t ,&gb−>omega dm ,&gb−>omega bm ) ;
75 ETSTOP( gb−>e t i n i t b m ) ;
76
77 g r p c l o c a l ( ) {
78 w a i t n o n b l o c k ( t i n i t g r a v ) ;
79 }
80 ETSTOP( gb−>e t g r a v s h a p e ) ;
81 }
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D.3 Source code for simulation step
This module contains code performing a single simulation step of the parallel
algorithm.

There are the following differences with the similar module for SmartGridRPC.

• The first simulation step made a special case because initvel remote task
is called only during this step.

• Using darkmatter remote task variant is hardcoded (using another vari-
ant is commented out by #if 0 preprocessor directive).

• A variable called ga that is runtime parameter of the algorithm is initialised
in its declaration, not assigned later in code because static code analyser
doesn’t recognise assignments properly yet.

Listing D.3: HydroPad source code: evolve static.c
1 / *
2 C o p y r i g h t (C) 2005 Miche le G u i d o l i n <m i c h e l e . gu ido l in@ucd . i e>
3
4 T h i s f i l e i s f r e e s o f t w a r e ; as a s p e c i a l e x c e p t i o n t h e a u t h o r g i v e s
5 u n l i m i t e d p e r m i s s i o n t o copy and / or d i s t r i b u t e i t , w i t h or w i t h o u t
6 m o d i f i c a t i o n s , as long as t h i s n o t i c e i s p r e s e r v e d .
7
8 T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , b u t
9 WITHOUT ANY WARRANTY, t o t h e e x t e n t p e r m i t t e d by law ; w i t h o u t even t h e

10 i m p l i e d w a r r an t y o f MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE .
11 * /
12
13 # i n c l u d e <s t d i o . h>
14
15 # i n c l u d e ” g l o b a l . h ”
16 # i n c l u d e ” i n i t . h ”
17 # i n c l u d e ” da rk . h ”
18 # i n c l u d e ” b a r y o n i c . h ”
19 # i n c l u d e ” g rav . h ”
20 # i n c l u d e ” g s s m a r t c l i b . h ”
21
22 void e v o l v e m a i n l o o p 0 ( g l o b a l *gb )
23 {
24 p r i n t f ( ” *******************\n E v o l u t i o n s t e p %d\n *******************\n\n ” ,
25 gb−>n s t e p s ) ;
26 / * Sys tem e v o l u t i o n * /
27 t i m e i n f o (&gb−>a t ,&gb−>atnew ,
28 &gb−>da t ,&gb−>datnew ,
29 &gb−>a th ,&gb−>da th ,
30 &gb−>t ,&gb−>t o l d ,
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31 &gb−>dt ,&gb−>d t o l d ,
32 &gb−>t0h0 ,&gb−>hnow,&gb−>n s t e p s ) ;
33
34 e v o l v e n o n b l k 0 ( gb ) ;
35 gb−>n s t e p s ++; / * I n c r e a s e t h e e v o l v e s t e p * /
36 }
37
38 void e v o l v e m a i n l o o p ( g l o b a l *gb )
39 {
40 p r i n t f ( ” *******************\n E v o l u t i o n s t e p %d\n *******************\n\n ” ,
41 gb−>n s t e p s ) ;
42 / * Sys tem e v o l u t i o n * /
43 t i m e i n f o (&gb−>a t ,&gb−>atnew ,
44 &gb−>da t ,&gb−>datnew ,
45 &gb−>a th ,&gb−>da th ,
46 &gb−>t ,&gb−>t o l d ,
47 &gb−>dt ,&gb−>d t o l d ,
48 &gb−>t0h0 ,&gb−>hnow,&gb−>n s t e p s ) ;
49 e v o l v e n o n b l k ( gb ) ;
50 gb−>n s t e p s ++; / * I n c r e a s e t h e e v o l v e s t e p * /
51 }
52
53 void e v o l v e n o n b l k 0 ( g l o b a l *gb )
54 {
55 double ga = gb−>g c o n s t / gb−>a t ;
56
57 / *
58 Cause I ’m u s i n g Smar tSo lve , t h e h an d l e i n t a s k v a r can no t be d e s t r u c t .
59 So t a s k v a r i s a l l o c a t e d and n o t f r e e d .
60 * /
61 t a s k v a r * t b a r m a t t e r ;
62
63 t b a r m a t t e r =( t a s k v a r * ) c a l l o c ( 1 , s i z e o f ( t a s k v a r ) ) ;
64 t b a r m a t t e r−>h a n d l e =
65 ( g r p c f u n c t i o n h a n d l e t * ) c a l l o c ( 1 , s i z e o f ( g r p c f u n c t i o n h a n d l e t ) ) ;
66
67 a s s e r t ( gb ) ;
68
69 ETSTART( gb−>e t e v o l v e ) ;
70
71 / * C a l c u l a t e g r a v i t a t i o n a l component * /
72 ETSTART( gb−>e t g r a v ) ;
73 b l o c k c a l l ( ” f i e l d s ” ,
74 gb−>phi , gb−>p h i o l d , gb−>rhodm , gb−>rhobm ,
75 gb−>gshape , gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
76 &gb−>nx ,&gb−>ny ,&gb−>nz ,&ga ,&gb−>dt ,&gb−>d t o l d ,&gb−>n s t e p s ) ;
77 ETSTOP( gb−>e t g r a v ) ;
78
79 / * At t h e f i r s t s t e p i n i t i a l i z e t h e b a r y o n i c m a t t e r v e l o c i t y f i e l d * /
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80 a s s e r t ( gb−>n s t e p s = = 0 ) ;
81 {
82 ETSTART( gb−>e t i n i t v e l ) ;
83 b l o c k c a l l ( ” i n i t v e l ” ,
84 gb−>phi , gb−>vx , gb−>vy , gb−>vz ,&gb−>nx ,&gb−>ny ,&gb−>nz ,
85 &gb−>omega dm ,&gb−>omega bm ,&gb−>omega v ,&gb−>a t ,&gb−>d a t ) ;
86 ETSTOP( gb−>e t i n i t v e l ) ;
87 }
88
89 / * C a l c u l a t e b a r y o n i c m a t t e r component * /
90 ETSTART( gb−>etbm ) ;
91 n o n b l o c k c a l l ( ” b a r m a t t e r ” , t b a r m a t t e r ,
92 gb−>nes , gb−>phi , gb−>p h i o l d , gb−>p , gb−>rhobm ,
93 gb−>vx , gb−>vy , gb−>vz ,&gb−>nx ,&gb−>ny ,&gb−>nz ,
94 &gb−>a t ,&gb−>da t ,&gb−>a th ,
95 &gb−>da th ,&gb−>dt ,&gb−>d t o l d ,&gb−>gamma,&gb−>e t a1 ,&gb−>e t a2 ,
96 &gb−>dmax ,&gb−>norm ,&gb−>n s t e p s , ( i n t *) gb−>l f l o w ,&gb−>bmvelmax ) ;
97
98 / * C a l c u l a t e dark m a t t e r component * /
99 ETSTART( gb−>etdm ) ;

100 # i f 0
101 i f ( gb−> t s c )
102 {
103 b l o c k c a l l ( ” d a r k m a t t e r t s c ” ,
104 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
105 gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
106 gb−>rhodm ,&gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,
107 &gb−>a t ,&gb−>da t ,&gb−>a th ,&gb−>da th ,&gb−>dt ,&gb−>amass ,
108 &gb−>dmvelmax ) ;
109 }
110 e l s e
111 # e n d i f
112 {
113 b l o c k c a l l ( ” d a r k m a t t e r ” ,
114 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
115 gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
116 gb−>rhodm ,&gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,
117 &gb−>a t ,&gb−>da t ,&gb−>a th ,&gb−>da th ,&gb−>dt ,&gb−>amass ,
118 &gb−>dmvelmax ) ;
119 }
120 ETSTOP( gb−>etdm ) ;
121
122 w a i t n o n b l o c k ( t b a r m a t t e r ) ;
123 ETSTOP( gb−>etbm ) ;
124 ETSTOP( gb−>e t e v o l v e ) ;
125
126 / * P r i n t e x e c u t i o n t i m e * /
127 p r i n t e t ( gb ) ;
128
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129 / * C a l c u l a t e new t i m e s t e p * /
130 t i m e s t e p (&gb−>dmvelmax ,&gb−>bmvelmax ,&gb−>a t ,&gb−>atnew ,
131 &gb−>da t ,&gb−>datnew ,&gb−>a th ,&gb−>da th ,
132 &gb−>t ,&gb−>t o l d ,&gb−>dt ,&gb−>d t o l d ,&gb−>omega dm ,
133 &gb−>omega bm ,&gb−>omega v ,&gb−>t0h0 ,&gb−>norm ) ;
134
135 gb−>bmvelmax =0;
136 gb−>dmvelmax =0;
137 }
138
139 void e v o l v e n o n b l k ( g l o b a l *gb )
140 {
141 double ga = gb−>g c o n s t / gb−>a t ;
142
143 / *
144 Cause I ’m u s i n g Smar tSo lve , t h e h an d l e i n t a s k v a r can no t be d e s t r u c t .
145 So t a s k v a r i s a l l o c a t e d and n o t f r e e d .
146 * /
147 t a s k v a r * t b a r m a t t e r ;
148
149 t b a r m a t t e r =( t a s k v a r * ) c a l l o c ( 1 , s i z e o f ( t a s k v a r ) ) ;
150 t b a r m a t t e r−>h a n d l e =
151 ( g r p c f u n c t i o n h a n d l e t * ) c a l l o c ( 1 , s i z e o f ( g r p c f u n c t i o n h a n d l e t ) ) ;
152
153 a s s e r t ( gb ) ;
154
155 ETSTART( gb−>e t e v o l v e ) ;
156
157 / * C a l c u l a t e g r a v i t a t i o n a l component * /
158 ETSTART( gb−>e t g r a v ) ;
159 b l o c k c a l l ( ” f i e l d s ” ,
160 gb−>phi , gb−>p h i o l d , gb−>rhodm , gb−>rhobm ,
161 gb−>gshape , gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
162 &gb−>nx ,&gb−>ny ,&gb−>nz ,&ga ,&gb−>dt ,&gb−>d t o l d ,&gb−>n s t e p s ) ;
163
164 ETSTOP( gb−>e t g r a v ) ;
165
166 a s s e r t ( gb−>n s t e p s ! = 0 ) ;
167
168 / * C a l c u l a t e b a r y o n i c m a t t e r component * /
169 ETSTART( gb−>etbm ) ;
170 n o n b l o c k c a l l ( ” b a r m a t t e r ” , t b a r m a t t e r ,
171 gb−>nes , gb−>phi , gb−>p h i o l d , gb−>p , gb−>rhobm ,
172 gb−>vx , gb−>vy , gb−>vz ,&gb−>nx ,&gb−>ny ,&gb−>nz ,
173 &gb−>a t ,&gb−>da t ,&gb−>a th ,
174 &gb−>da th ,&gb−>dt ,&gb−>d t o l d ,&gb−>gamma,&gb−>e t a1 ,&gb−>e t a2 ,
175 &gb−>dmax ,&gb−>norm ,&gb−>n s t e p s , ( i n t *) gb−>l f l o w ,&gb−>bmvelmax ) ;
176
177 / * C a l c u l a t e dark m a t t e r component * /
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178 ETSTART( gb−>etdm ) ;
179
180 # i f 0
181 i f ( gb−> t s c )
182 {
183 b l o c k c a l l ( ” d a r k m a t t e r t s c ” ,
184 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
185 gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
186 gb−>rhodm ,&gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,
187 &gb−>a t ,&gb−>da t ,&gb−>a th ,&gb−>da th ,&gb−>dt ,&gb−>amass ,
188 &gb−>dmvelmax ) ;
189 }
190 e l s e
191 # e n d i f
192 {
193 b l o c k c a l l ( ” d a r k m a t t e r ” ,
194 gb−>x1 , gb−>x2 , gb−>x3 , gb−>v1 , gb−>v2 , gb−>v3 ,
195 gb−>gx , gb−>gy , gb−>gz , gb−>gxold , gb−>gyold , gb−>gzold ,
196 gb−>rhodm ,&gb−>nx ,&gb−>ny ,&gb−>nz ,&gb−>nparmax ,
197 &gb−>a t ,&gb−>da t ,&gb−>a th ,&gb−>da th ,&gb−>dt ,&gb−>amass ,
198 &gb−>dmvelmax ) ;
199 }
200 ETSTOP( gb−>etdm ) ;
201
202 w a i t n o n b l o c k ( t b a r m a t t e r ) ;
203 ETSTOP( gb−>etbm ) ;
204 ETSTOP( gb−>e t e v o l v e ) ;
205
206 / * P r i n t e x e c u t i o n t i m e * /
207 p r i n t e t ( gb ) ;
208
209 / * C a l c u l a t e new t i m e s t e p * /
210 t i m e s t e p (&gb−>dmvelmax ,&gb−>bmvelmax ,&gb−>a t ,&gb−>atnew ,
211 &gb−>da t ,&gb−>datnew ,&gb−>a th ,&gb−>da th ,
212 &gb−>t ,&gb−>t o l d ,&gb−>dt ,&gb−>d t o l d ,&gb−>omega dm ,
213 &gb−>omega bm ,&gb−>omega v ,&gb−>t0h0 ,&gb−>norm ) ;
214
215 gb−>bmvelmax =0;
216 gb−>dmvelmax =0;
217 }
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