
“nesus-book”
2019/9/24
page 1

Chapter 2

PROGRAMMING MODELS AND RUNTIMES
Georges Da Costa1 and Alexey L. Lastovetsky2 and Jorge G.

Barbosa3 and Juan C. Díaz-Martín4 and Juan L.
García-Zapata5 and Matthias Janetschek6 and Emmanuel
Jeannot7 and João Leitão8 and Ravi Reddy Manumachu9

and Radu Prodan10 and Juan A. Rico-Gallego11 and Peter
Van Roy12 and Ali Shoker13 and Albert van der Linde14

Keywords: Performance Modelling, Energy Modelling, Heterogeneous Platforms,
Optimization Techniques, Cloud Computing; Edge Computing; Process Placement;
Graph Partition; Sustainability; Energy awareness; Availability; Scalability.

Several millions of execution flows will be executed in Ultrascale Computing
Systems (UCS), and the task for the programmer to understand their coherency and
for the runtime to coordinate them is unfathomable. Moreover, in link with USC
large scale and their impact on reliability the current static point of view is not more
sufficient. A runtime cannot consider to restart an application because of the failure
of a single node as statically several nodes will fail every days. Classical management
of these failures by the programmers using checkpoint-restart are also too limited due
to the overhead at such scale.

1University of Toulouse, France
2University College Dublin, Ireland
3Faculdade de Engenharia da Universidade do Porto, Portugal
4University of Extremadura, School of Technology, Spain
5University of Extremadura, School of Technology, Spain
6Institute of Computer Science, University of Innsbruck, Austria
7INRIA Bourdeaux Sud-Ouest, LaBRI, Université de Bourdeaux, France
8Universidade Nova de Lisboa, Portugal
9University College Dublin, Ireland
10Institute of Information Technology, University of Klagenfurt, Austria
11University of Extremadura, School of Technology, Spain
12Université Catholique de Louvain, Belgium
13HASLab, INESC TEC & University of Minho, Portugal
14Universidade Nova de Lisboa, Portugal

“nesus-book”
2019/9/24
page 2

2 Ultrascale Computing Systems

Emerging programming models that facilitate the task of scaling and extract-
ing performance on continuous evolving platforms, while providing resilience and
fault tolerant mechanisms to tackle the increasing probability of failures throughout
the whole software stack, are needed to achieve scale handling (optimal usage of
resources, faults), improve programmability, adaptation to rapidly changing under-
lying computing architecture, data-centric programming models, resilience, energy
efficiency.

One key element on the ultrascale front is the necessity of new sustainable
programming and execution models in the context of rapid underlying computing
architecture changing. There is a need to explore synergies among emerging program-
ming models and runtimes from HPC, distributed systems and big data management
communities. To improve the programmability of future systems, the main changing
factor will be the substantially higher levels of concurrency, asynchrony, failures and
heterogeneous architectures.

UCS need new sustainable programming and execution models, suitable in the
context of rapidly changing underlying computing architecture, as described in [1].
Advances are to be expected at three levels: Innovative programming models with
higher level abstraction of the hardware; breakthrough for more efficient runtimes at
large scale; cooperation between the programming models and runtime levels.

Furthermore all the programming ecosystem must evolve. A large number
of scientific applications are built on the message passing paradigm which needs
a global point of view during the programming phase and usually require global
synchronization during execution. But even at lower granularity, classical libraries
must evolve. As an example, a large number of scientists use the linear algebra
BLAS libraries for their optimized behavior on current supercomputers. Improving
the performance of this library on UCS would prove largely beneficial.

This chapter explores programming models and runtimes required to facilitate the
task of scaling and extracting performance on continuously evolving platforms, while
providing resilience and fault-tolerant mechanisms to tackle the increasing probability
of failures throughout the whole software stack. However, currently no programming
solution exists that satisfies all these requirements. Therefore, new programming
models and languages are required towards this direction. The whole point of view on
application will have to change. As we will show, the current wall between runtime
and application models leads to most of these problem. Programmers will need new
tools but also new way to assess their programs. Also, data will be a key concept
around which failure-tolerant high number of micro-threads will be generated using
high-level information by adaptive runtime. One complex element comes from the
difficulty to test these approaches as UCS systems are not yet available. Most of the
following explorations are extrapolated to UCS scale but only actually proven an
currently existing infrastructure.

The complexity of UCS computing architecture integrating in a hierarchical
heterogeneous way multicore CPUs and various accelerators makes many tradi-
tional approaches to the development of performance and energy efficient applica-
tions ineffective. New sustainable approaches based on accurate and sustainable
application-level performance and energy models have a great potential to improve

“nesus-book”
2019/9/24
page 3

Programming Models and Runtimes 3

the performance and energy efficiency of applications and create a solid basis for the
emerging USC programming tools and runtimes. Section 2.1 of this chapter covers
this topic by describing accurate models of the hardware and software usable during
the design phase, but also means or reasoning on these models. With these tools, it
becomes possible to adapt and tune finely applications during the design phase to run
efficiently on large scale heterogeneous platforms.

Optimizing UCS usage is difficult due to the large number of possible use-cases.
In particular ones such as Scientific workflow, it becomes possible to use a dedicated
abstraction. As scientific workflow scheduling for UCS is a major challenge, the
impact of proposing a particular abstraction along-with dedicated runtime harnessing
the particularities of this abstraction leads to a high improvement of the efficiency of
using a UCS. The approaches to solve this challenge are covered in section 2.2. In
this section, both the Abstract part (linked with the design and programming of the
workflow) and the Concrete part (linked with its actual scheduling and execution) are
described. This specific high-level abstraction shows that link between programming
models and runtime helps to simplify the task of programmers to harness the power
of the underlying large scale heterogeneous systems.

With the emergence of UCS, a new computing revolution is coming: Edge com-
puting. Instead of harnessing computing power directly from large scale datacenters,
new proposal comes from the possibility to interconnect and coordinate large num-
ber of distributed computing nodes. Due to the explosion of IoT applications the
aggregated Edge computing power is increasing extremely fast. These two systems
(Edge and UCS) share the difficulty to manage large number of distributed execution
flows in a dynamic and heterogeneous environment. These similarities is explored in
Section 2.3 where key elements of programming models and runtime for large scale
Edge computing are explored.

Due to the scale of UCS, even classical management operation of the platform
becomes complex. As an example, section 2.5 shows how a simple operation such as
graph partitioning becomes complex at large scale. This operation is central in the
management of a platform as it is needed to minimize communication between nodes
when used for placing the tasks. In this section several challenges are addressed such
as the scale but also the heterogeneity of tasks, computing nodes and networking
infrastructure.

This chapter concludes with a description of the main global challenges linked
to programming models, runtimes and the link between these two as described in
NESUS roadmap[2].

2.1 Using Performance and Energy Models for Ultrascale
Computing Applications

Ultrascale systems, including high performance computing, distributed computing
and big data management platforms, will demand a huge investment of heterogeneous

“nesus-book”
2019/9/24
page 54

54

Tool-driven: Several tools will be needed to use efficiently UCS. Some tools can be
provided by software, but also abstract models and new programming paradigms
helping programmers to better use the available resources are helpful. Due
to the scale of the systems, one key element will be resource-efficient models
for automatic recovery from minute-to-minute failures. As security is often
forgotten by programmers, software-defined security models will be needed
on large scale distributed infrastructure to simplify its usage. One way to
increase security and privacy will be to create new secure Privacy-Preserving data
management algorithms such as machine learning. To address code sustainability
and adaptation evolution on code production is needed such as source-to-source
translators and MDE (Model Driven Engineering) in order to adapt to the
underlying hardware.

In order to support some of those challenges, several breaktroughs are expected
in order to reach proper support for programmers and users in the Ultrascale context
as described in the NESUS research roadmap[2]:

Improve the programmability of complex systems Due to the size of these sys-
tems, it is no more possible for the programmer to have a precised and detailed
global view of the state of its application. Thus he needs to have support from
programming frameworks to simplify this view;

Break the wall between runtime and programming frameworks Exascale sytems
are so complex that runtime need high level information from the programmers
and the programmer need some information on the runtime to understand how
to harness its power;

Enabling behavioral sensitive runtime. Runtime cannot run application as black
boxes anymore as large scale systems are composed of a large number of
interconnected elements. Network profile must be known to reduce impact on
neighboor applications for example.

References

[1] Da Costa G, Fahringer T, Gallego JAR, et al. Exascale machines require
new programming paradigms and runtimes. Supercomputing frontiers and
innovations. 2015;2(2):6–27.

[2] Sousa L, Kropf P, Kuonene P, et al. A Roadmap for Research in Sustainable
Ultrascale Systems. University Carlos III of Madrid; 2017. 0. Available from:
https://www.irit.fr/~Georges.Da-Costa/NESUS-research_roadmap.pdf.

[3] Fortune S, Wyllie J. Parallelism in Random Access Machines. In: Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing.
STOC ’78. New York, NY, USA: ACM; 1978. p. 114–118. Available from:
http://doi.acm.org/10.1145/800133.804339.

[4] Valiant LG. A Bridging Model for Parallel Computation. Commun ACM.
1990 Aug;33(8):103–111. Available from: http://doi.acm.org/10.1145/79173.
79181.

https://www.irit.fr/~Georges.Da-Costa/NESUS-research_roadmap.pdf
http://doi.acm.org/10.1145/800133.804339
http://doi.acm.org/10.1145/79173.79181
http://doi.acm.org/10.1145/79173.79181

“nesus-book”
2019/9/24
page 55

REFERENCES 55

[5] Culler D, Karp R, Patterson D, et al. LogP: towards a realistic model
of parallel computation. In: Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming. PPOPP ’93.
New York, NY, USA: ACM; 1993. p. 1–12.

[6] Gautier T, Besseron X, Pigeon L. KAAPI: A Thread Scheduling Runtime
System for Data Flow Computations on Cluster of Multi-processors. In:
Proceedings of the 2007 International Workshop on Parallel Symbolic Com-
putation. PASCO ’07. ACM; 2007. p. 15–23.

[7] Augonnet C, Thibault S, Namyst R, et al. StarPU: A Unified Platform
for Task Scheduling on Heterogeneous Multicore Architectures. Concurr
Comput : Pract Exper. 2011 Feb;23(2):187–198.

[8] Bosilca G, Bouteiller A, Danalis A, et al. DAGuE: A Generic Distributed
DAG Engine for High Performance Computing. In: 2011 IEEE IPDPSW;
2011. p. 1151–1158.

[9] Bui TN, Jones C. A heuristic for reducing fill-in in sparse matrix factorization.
In: Proceedings of the 6th SIAM Conference on Parallel Processing for
Scientific Computing. SIAM; 1993. .

[10] Hendrickson B, Leland R. A Multilevel Algorithm for Partitioning Graphs.
In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing.
Supercomputing ’95. ACM; 1995. Available from: http://doi.acm.org/10.
1145/224170.224228.

[11] Catalyurek U, Aykanat C. Decomposing Irregularly Sparse Matrices for
Parallel Matrix-Vector Multiplication. In: Proceedings of the Third Interna-
tional Workshop on Parallel Algorithms for Irregularly Structured Problems.
IRREGULAR ’96. Springer-Verlag; 1996. p. 75–86.

[12] Hendrickson B, Kolda TG. Partitioning Rectangular and Structurally Unsym-
metric Sparse Matrices for Parallel Processing. SIAM Journal on Scientific
Computing. 2000;21(6):2048–2072.

[13] Cierniak M, Zaki MJ, Li W. Compile-time scheduling algorithms for a het-
erogeneous network of workstations. The Computer Journal. 1997;40(6):356–
372.

[14] Beaumont O, Boudet V, Rastello F, et al. Matrix multiplication on heteroge-
neous platforms. Parallel and Distributed Systems, IEEE Transactions on.
2001;12(10):1033–1051.

[15] Kalinov A, Lastovetsky A. Heterogeneous Distribution of Computations
Solving Linear Algebra Problems on Networks of Heterogeneous Computers.
Journal of Parallel and Distributed Computing. 2001;61:520–535.

[16] Lastovetsky AL, Reddy R. Data partitioning with a realistic performance
model of networks of heterogeneous computers. In: Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International. IEEE; 2004.
p. 104.

[17] Lastovetsky A, Twamley J. Towards a realistic performance model for
networks of heterogeneous computers. In: High Performance Computational
Science and Engineering. Springer; 2005. p. 39–57.

http://doi.acm.org/10.1145/224170.224228
http://doi.acm.org/10.1145/224170.224228

“nesus-book”
2019/9/24
page 56

56

[18] Lastovetsky A, Reddy R. Data partitioning with a functional performance
model of heterogeneous processors. International Journal of High Perfor-
mance Computing Applications. 2007;21(1):76–90.

[19] Lastovetsky A, Reddy R. Data Distribution for Dense Factorization on Com-
puters with Memory Heterogeneity. Parallel Computing. 2007 Dec;33(12).

[20] Lastovetsky A, Szustak L, Wyrzykowski R. Model-based optimization of EU-
LAG kernel on Intel Xeon Phi through load imbalancing. IEEE Transactions
on Parallel and Distributed Systems. 2017;28(3):787–797.

[21] Lastovetsky A, Reddy R. New Model-Based Methods and Algorithms
for Performance and Energy Optimization of Data Parallel Applications
on Homogeneous Multicore Clusters. IEEE Transactions on Parallel and
Distributed Systems. 2017;28(4):1119–1133.

[22] Alexandrov A, Ionescu MF, Schauser KE, et al. LogGP: incorporating long
messages into the LogP model - one step closer towards a realistic model for
parallel computation. In: Proc. of the seventh annual ACM symposium on
Parallel algorithms and architectures. SPAA ’95. NY, USA; 1995. p. 95–105.

[23] Kielmann T, Bal HE, Verstoep K. Fast Measurement of LogP Parameters
for Message Passing Platforms. In: Proceedings of the 15 IPDPS 2000
Workshops on Parallel and Distributed Processing. IPDPS ’00. London, UK,
UK: Springer-Verlag; 2000. p. 1176–1183.

[24] Bosque JL, Perez LP. HLogGP: a new parallel computational model for
heterogeneous clusters. In: Cluster Computing and the Grid, 2004. CCGrid
2004. IEEE International Symposium on; 2004. p. 403–410.

[25] Lastovetsky A, Mkwawa IH, O’Flynn M. An accurate communication model
of a heterogeneous cluster based on a switch-enabled Ethernet network. In:
Parallel and Distributed Systems, 2006. ICPADS 2006. 12th International
Conference on. vol. 2; 2006. p. 6 pp.–.

[26] Cameron KW, Ge R, Sun XH. logm P and log3 P: Accurate Analytical Models
of Point-to-Point Communication in Distributed Systems. Computers IEEE
Transactions on. 2007;56(3):314–327.

[27] Rico-Gallego JA, Díaz-Martín JC, Lastovetsky AL. Extending τ–Lop to
model concurrent MPI communications in multicore clusters. Future Gener-
ation Computer Systems. 2016;61:66 – 82.

[28] Rico-Gallego JA, Lastovetsky AL, Díaz-Martín JC. Model-Based Estimation
of the Communication Cost of Hybrid Data-Parallel Applications on Hetero-
geneous Clusters. IEEE Transactions on Parallel and Distributed Systems.
2017 Nov;28(11):3215–3228.

[29] Clarke D, Zhong Z, Rychkov V, et al. FuPerMod: a software tool for the
optimization of data-parallel applications on heterogeneous platforms. The
Journal of Supercomputing. 2014;69:61– 69.

[30] Beaumont O, Boudet V, Rastello F, et al. Matrix Multiplication on Heteroge-
neous Platforms. IEEE Trans Parallel Distrib Syst. 2001 Oct;12(10):1033–
1051. Available from: http://dx.doi.org/10.1109/71.963416.

[31] Malik T, Rychkov V, Lastovetsky A. Network-aware optimization of com-
munications for parallel matrix multiplication on hierarchical HPC plat-

http://dx.doi.org/10.1109/71.963416

“nesus-book”
2019/9/24
page 57

REFERENCES 57

forms. Concurrency and Computation: Practice and Experience. 2016
03/2016;28:802–821.

[32] Bellosa F. The benefits of event: driven energy accounting in power-sensitive
systems. In: Proceedings of the 9th workshop on ACM SIGOPS European
workshop: beyond the PC: new challenges for the operating system. ACM;
2000. .

[33] Isci C, Martonosi M. Runtime power monitoring in high-end processors:
Methodology and empirical data. In: 36th annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society; 2003. p. 93.

[34] Economou D, Rivoire S, Kozyrakis C, et al. Full-system power analysis
and modeling for server environments. In: In Proceedings of Workshop on
Modeling, Benchmarking, and Simulation; 2006. p. 70–77.

[35] Basmadjian R, Ali N, Niedermeier F, et al. A methodology to predict
the power consumption of servers in data centres. In: 2nd International
Conference on Energy-Efficient Computing and Networking. ACM; 2011. .

[36] Bircher WL, John LK. Complete System Power Estimation Using Processor
Performance Events. IEEE Transactions on Computers. 2012 Apr;61(4):563–
577.

[37] Hong H Sunpyand Kim. An Integrated GPU Power and Performance Model.
SIGARCH Comput Archit News. 2010 Jun;38(3):280–289.

[38] Song S, Su C, Rountree B, et al. A Simplified and Accurate Model of Power-
Performance Efficiency on Emergent GPU Architectures. In: 27th IEEE
International Parallel & Distributed Processing Symposium (IPDPS). IEEE
Computer Society; 2013. p. 673–686.

[39] CUPTI. CUDA Profiling Tools Interface; 2018. Available from: https:
//developer.nvidia.com/cuda-profiling-tools-interface.

[40] Wang H, Cao Y. Predicting power consumption of GPUs with fuzzy wavelet
neural networks. Parallel Computing. 2015 May;44:18–36.

[41] Top500. Top 500. The List - November 2017; 2018. Available from: https:
//www.top500.org/lists/2017/11/.

[42] Shao YS, Brooks D. Energy Characterization and Instruction-level Energy
Model of Intel’s Xeon Phi Processor. In: Proceedings of the 2013 Inter-
national Symposium on Low Power Electronics and Design. ISLPED ’13.
IEEE Press; 2013. .

[43] Ou J, Prasanna VK. Rapid energy estimation of computations on FPGA based
soft processors. In: SOC Conference, 2004. Proceedings. IEEE International;
2004. .

[44] Wang X, Ziavras SG, Hu J. System-Level Energy Modeling for Heteroge-
neous Reconfigurable Chip Multiprocessors. In: 2006 International Confer-
ence on Computer Design; 2006. .

[45] Al-Khatib Z, Abdi S. Operand-Value-Based Modeling of Dynamic Energy
Consumption of Soft Processors in FPGA. In: International Symposium on
Applied Reconfigurable Computing. Springer; 2015. p. 65–76.

https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/cuda-profiling-tools-interface
https://www.top500.org/lists/2017/11/
https://www.top500.org/lists/2017/11/

“nesus-book”
2019/9/24
page 58

58

[46] Lively C, Wu X, Taylor V, et al. Power-aware predictive models of hybrid
(MPI/OpenMP) scientific applications on multicore systems. Computer
Science-Research and Development. 2012;27(4):245–253.

[47] PAPI. Performance Application Programming Interface 5.6.0; 2018. Avail-
able from: http://icl.cs.utk.edu/papi/.

[48] Bosilca G, Ltaief H, Dongarra J. Power profiling of Cholesky and QR
factorizations on distributed memory systems. Computer Science-Research
and Development. 2014;29(2):139–147.

[49] Witkowski M, Oleksiak A, Piontek T, et al. Practical Power Consumption
Estimation for Real Life HPC Applications. Future Gener Comput Syst.
2013 Jan;29(1).

[50] Jarus M, Oleksiak A, Piontek T, et al. Runtime power usage estimation of
HPC servers for various classes of real-life applications. Future Generation
Computer Systems. 2014;36.

[51] Lastovetsky A, Manumachu RR. New Model-Based Methods and Algorithms
for Performance and Energy Optimization of Data Parallel Applications
on Homogeneous Multicore Clusters. IEEE Transactions on Parallel and
Distributed Systems. 2017;28(4):1119–1133.

[52] McCullough JC, Agarwal Y, Chandrashekar J, et al. Evaluating the Ef-
fectiveness of Model-based Power Characterization. In: Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference.
USENIXATC’11. USENIX Association; 2011. .

[53] Hackenberg D, Ilsche T, Schöne R, et al. Power measurement techniques on
standard compute nodes: A quantitative comparison. In: Performance analy-
sis of systems and software (ISPASS), 2013 IEEE international symposium
on. IEEE; 2013. p. 194–204.

[54] Rotem E, Naveh A, Ananthakrishnan A, et al. Power-Management Architec-
ture of the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro.
2012 March;32(2):20–27.

[55] O’Brien K, Pietri I, Reddy R, et al. A Survey of Power and Energy Predic-
tive Models in HPC Systems and Applications. ACM Computing Surveys.
2017;50(3). Available from: http://doi.org/10.1145/3078811.

[56] Shahid A, Fahad M, Reddy R, et al. Additivity: A Selection Criterion for Per-
formance Events for Reliable Energy Predictive Modeling. Supercomputing
Frontiers and Innovations. 2017;4(4).

[57] Treibig J, Hager G, Wellein G. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In: Parallel Processing Workshops
(ICPPW), 2010 39th International Conference on. IEEE; 2010. p. 207–216.

[58] Mobius C, Dargie W, Schill A. Power Consumption Estimation Models for
Processors, Virtual Machines, and Servers. IEEE Transactions on Parallel
and Distributed Systems. 2014;25(6).

[59] Inacio EC, Dantas MAR. A Survey into Performance and Energy Efficiency
in HPC, Cloud and Big Data Environments. Int J Netw Virtual Organ. 2014
Mar;14(4).

http://icl.cs.utk.edu/papi/
http://doi.org/10.1145/3078811

“nesus-book”
2019/9/24
page 59

REFERENCES 59

[60] Tan L, Kothapalli S, Chen L, et al. A survey of power and energy efficient
techniques for high performance numerical linear algebra operations. Parallel
Computing. 2014 Dec;40.

[61] Dayarathna M, Wen Y, Fan R. Data Center Energy Consumption Modeling:
A Survey. IEEE Communications Surveys & Tutorials. 2016;18(1):732–794.

[62] Mezmaz M, Melab N, Kessaci Y, et al. A parallel bi-objective hybrid meta-
heuristic for energy-aware scheduling for cloud computing systems. Journal
of Parallel and Distributed Computing. 2011;71(11):1497 – 1508.

[63] Fard HM, Prodan R, Barrionuevo JJD, et al. A Multi-objective Approach
for Workflow Scheduling in Heterogeneous Environments. In: Proceedings
of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (Ccgrid 2012). CCGRID ’12. IEEE Computer Society;
2012. p. 300–309.

[64] Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation
heuristics for efficient management of data centers for Cloud computing. Fu-
ture Generation Computer Systems. 2012;28(5):755 – 768. Special Section:
Energy efficiency in large-scale distributed systems.

[65] Kessaci Y, Melab N, Talbi EG. A Pareto-based Metaheuristic for Scheduling
HPC Applications on a Geographically Distributed Cloud Federation. Cluster
Computing. 2013 Sep;16(3):451–468.

[66] Durillo JJ, Nae V, Prodan R. Multi-objective energy-efficient workflow
scheduling using list-based heuristics. Future Generation Computer Systems.
2014;36:221 – 236.

[67] Freeh VW, Lowenthal DK, Pan F, et al. Analyzing the Energy-Time Trade-
Off in High-Performance Computing Applications. IEEE Trans Parallel
Distrib Syst. 2007 Jun;18(6).

[68] Ahmad I, Ranka S, Khan SU. Using game theory for scheduling tasks on
multi-core processors for simultaneous optimization of performance and
energy. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on; 2008. p. 1–6.

[69] Balaprakash P, Tiwari A, Wild SM. In: Jarvis AS, Wright AS, Hammond
DS, editors. Multi Objective Optimization of HPC Kernels for Performance,
Power, and Energy. Springer International Publishing; 2014. p. 239–260.

[70] Drozdowski M, Marszalkowski JM, Marszalkowski J. Energy trade-offs
analysis using equal-energy maps. Future Generation Computer Systems.
2014;36:311–321.

[71] Marszalkowski JM, Drozdowski M, Marszalkowski J. Time and Energy
Performance of Parallel Systems with Hierarchical Memory. Journal of Grid
Computing. 2016;14(1):153–170.

[72] Reddy R, Lastovetsky A. Bi-Objective Optimization of Data-Parallel Appli-
cations on Homogeneous Multicore Clusters for Performance and Energy.
IEEE Transactions on Computers. 2018;64(2):160–177.

[73] Juve G, Chervenak A, Deelman E, et al. Characterizing and profiling scien-
tific workflows. Future Generation Computer Systems. 2013;29(3):682–692.

“nesus-book”
2019/9/24
page 60

60

[74] Fahringer T, Prodan R, Duan R, et al. ASKALON: A Development and Grid
Computing Environment for Scientific Workflows. In: Taylor IJ, Deelman
E, Gannon DB, et al., editors. Workflows for e-Science. Springer; 2007. p.
450–471.

[75] Altintas I, Berkley C, Jaeger E, et al. Kepler: an extensible system for design
and execution of scientific workflows. In: Proceedings. 16th International
Conference on Scientific and Statistical Database Management, 2004.; 2004.
p. 423–424.

[76] Tristan Glatard DLXP Johan Montagnat. Flexible and Efficient Work-
flow Deployment of Data-Intensive Applications On Grids With MOTEUR.
The International Journal of High Performance Computing Applications.
2008;22(3):347–360.

[77] Taylor I, Shields M, Wang I, et al. Triana Applications within Grid Com-
puting and Peer to Peer Environments. Journal of Grid Computing. 2003
Jun;1(2):199–217.

[78] Kacsuk P. P–GRADE portal family for grid infrastructures. Concurrency
and Computation: Practice and Experience. 2011;23(3):235–245.

[79] Deelman E, Vahi K, Juve G, et al. Pegasus, a workflow management system
for science automation. Future Generation Computer Systems. 2015;46:17–
35.

[80] Janetschek M, Prodan R, Benedict S. A Workflow Runtime Environment
for Manycore Parallel Architectures. Future Generation Computer Systems.
2017;75:330–347.

[81] Durillo JJ, Prodan R, Barbosa JG. Pareto tradeoff scheduling of workflows
on federated commercial clouds. Simulation Modelling Practice and Theory.
2015;58:95–111.

[82] Arabnejad H, Barbosa JG. Budget constrained scheduling strategies for on-
line workflow applications. In: International Conference on Computational
Science and Its Applications. Springer; 2014. p. 532–545.

[83] Ullman JD. NP-complete scheduling problems. Journal of Computer and
System sciences. 1975;10(3):384–393.

[84] Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel
and Distributed Systems. 2002 3;13(3):260–274.

[85] Wieczorek M, Hoheisel A, Prodan R. Towards a General Model of the Multi-
Criteria Workflow Scheduling on the Grid. Future Generations Computer
Systems. 2009;25(3):237–256.

[86] Maheswaran M, Ali S, Siegel HJ, et al. Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. Journal of parallel
and distributed computing. 1999;59(2):107–131.

[87] Arabnejad H, Barbosa JG. List scheduling algorithm for heterogeneous
systems by an optimistic cost table. IEEE Transactions on Parallel and
Distributed Systems. 2014;25(3):682–694.

[88] Bittencourt LF, Sakellariou R, Madeira ER. Dag scheduling using a looka-
head variant of the heterogeneous earliest finish time algorithm. In: Parallel,

“nesus-book”
2019/9/24
page 61

REFERENCES 61

Distributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on. IEEE; 2010. p. 27–34.

[89] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commu-
nications of the ACM. 2010;53(4):50–58.

[90] Leitão J, Pereira J, Rodrigues L. Epidemic Broadcast Trees. In: Proceedings
of SRDS.2007; 2007. p. 301–310.

[91] Leitão J, Pereira J, Rodrigues L. HyParView: A Membership Protocol for
Reliable Gossip-Based Broadcast. In: Dependable Systems and Networks,
2007. DSN ’07. 37th Annual IEEE/IFIP International Conference on; 2007.
p. 419–429.

[92] Shapiro M, Preguiça N, Baquero C, et al. Conflict-free replicated data types.
INRIA; 2011. RR-7687.

[93] Almeida PS, Shoker A, Baquero C. Efficient state-based crdts by delta-
mutation. In: International Conference on Networked Systems. Springer;
2015. p. 62–76.

[94] Carlos Baquero PSA, Shoker A. Making Operation-Based CRDTs Operation-
Based. In: Distributed Applications and Interoperable Systems - 14th IFIP
WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th In-
ternational Federated Conference on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings; 2014. p.
126–140. Available from: http://dx.doi.org/10.1007/978-3-662-43352-2_11.

[95] Bonomi F, Milito R, Zhu J, et al. Fog Computing and Its
Role in the Internet of Things. Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. 2012;p. 13–
16. Available from: http://doi.acm.org/10.1145/2342509.2342513$\
delimiter"026E30F$npapers2://publication/doi/10.1145/2342509.2342513.

[96] Yi S, Li C, Li Q. A Survey of Fog Computing: Concepts, Applications
and Issues. In: Proceedings of the 2015 Workshop on Mobile Big Data.
Mobidata ’15. New York, NY, USA: ACM; 2015. p. 37–42. Available from:
http://doi.acm.org/10.1145/2757384.2757397.

[97] Verbelen T, Simoens P, De Turck F, et al. Cloudlets: Bringing the cloud to
the mobile user. In: Proceedings of the third ACM workshop on Mobile
cloud computing and services. ACM; 2012. p. 29–36.

[98] Fernando N, Loke SW, Rahayu W. Mobile cloud computing: A survey.
Future generation computer systems. 2013;29(1):84–106.

[99] Hu YC, Patel M, Sabella D, et al. Mobile edge computing—A key technology
towards 5G. ETSI white paper. 2015;11(11):1–16.

[100] Cisco. Cisco IOx Data Sheet; 2016. Available from: http:
//www.cisco.com/c/en/us/products/collateral/cloud-systems-management/
iox/datasheet-c78-736767.html.

[101] Dell. Dell Edge Gateway 5000; 2016. Available from: http://www.dell.com/
us/business/p/dell-edge-gateway-5000/pd?oc=xctoi5000us.

[102] Milojicic DS, Kalogeraki V, Lukose R, et al. Peer-to-peer computing. 2002;.

http://dx.doi.org/10.1007/978-3-662-43352-2_11
http://doi.acm.org/10.1145/2342509.2342513$\delimiter "026E30F $npapers2://publication/doi/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513$\delimiter "026E30F $npapers2://publication/doi/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2757384.2757397
http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/iox/datasheet-c78-736767.html
http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/iox/datasheet-c78-736767.html
http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/iox/datasheet-c78-736767.html
http://www.dell.com/us/business/p/dell-edge-gateway-5000/pd?oc=xctoi5000us
http://www.dell.com/us/business/p/dell-edge-gateway-5000/pd?oc=xctoi5000us

“nesus-book”
2019/9/24
page 62

62

[103] Jelasity M, Montresor A, Babaoglu O. Gossip-based aggregation in large
dynamic networks. ACM Transactions on Computer Systems (TOCS).
2005;23(3):219–252.

[104] Akyildiz IF, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:
a survey. Computer networks. 2002;38(4):393–422.

[105] Gilbert S, Lynch N. Brewer’s Conjecture and the Feasibility of Consis-
tent, Available, Partition-tolerant Web Services. SIGACT News. 2002
Jun;33(2):51–59.

[106] Meiklejohn C, Van Roy P. Lasp: A Language for Distributed, Coordination-
Free Programming. In: Proceedings of the 17th International Symposium
on Principles and Practice of Declarative Programming (PPDP 2015). ACM;
2015. p. 184–195.

[107] Carvalho N, Pereira J, Oliveira R, et al. Emergent Structure in Unstruc-
tured Epidemic Multicast. In: Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07).
Edinburgh, Scotland, UK; 2007. p. 481 – 490.

[108] Balegas V, Serra D, Duarte S, et al. Extending Eventually Consistent Cloud
Databases for Enforcing Numeric Invariants. In: Proceedings of SRDS 2015.
Montréal, Canada: IEEE Computer Society; 2015. p. 31–36. Available from:
http://lip6.fr/Marc.Shapiro/papers/numeric-invariants-SRDS-2015.pdf.

[109] Najafzadeh M, Shapiro M, Balegas V, et al. Improving the scalability of
geo-replication with reservations. In: ACM SIGCOMM - Distributed Cloud
Computing (DCC). Dresden, Germany; 2013. Available from: http://lip6.fr/
Marc.Shapiro//papers/escrow-DCC-2013.pdf.

[110] Gotsman A, Yang H, Ferreira C, et al. ’Cause I’M Strong Enough: Reasoning
About Consistency Choices in Distributed Systems. In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. New York, NY, USA: ACM; 2016. p. 371–384.
Available from: http://doi.acm.org/10.1145/2837614.2837625.

[111] Akkoorath DD, Tomsic A, Bravo M, et al. Cure: Strong Semantics Meets
High Availability and Low Latency. INRIA; 2016. RR-8858.

[112] van der Linde A, Fouto P, Leitão J, et al. Legion: Enriching Internet Services
with Peer-to-Peer Interactions. In: Proceedings of the 26th International Con-
ference on World Wide Web. Republic and Canton of Geneva, Switzerland:
International World Wide Web Conferences Steering Committee; 2017. p.
283–292. Available from: https://doi.org/10.1145/3038912.3052673.

[113] Lasp: The Missing part of Erlang distribution;. Accessed: 2018-04-27.
http://www.lasp-lang.org.

[114] Meiklejohn C, Enes V, Yoo J, et al. Practical Evaluation of the Lasp Pro-
gramming Model at Large Scale. In: Proceedings of the 19th International
Symposium on Principles and Practice of Declarative Programming (PPDP
2017). ACM; 2017. p. 109–114.

[115] Bichot CE, Siarry P. Graph partitioning. John Wiley & Sons; 2013.

http://lip6.fr/Marc.Shapiro/papers/numeric-invariants-SRDS-2015.pdf
http://lip6.fr/Marc.Shapiro//papers/escrow-DCC-2013.pdf
http://lip6.fr/Marc.Shapiro//papers/escrow-DCC-2013.pdf
http://doi.acm.org/10.1145/2837614.2837625
https://doi.org/10.1145/3038912.3052673
http://www.lasp-lang.org

“nesus-book”
2019/9/24
page 63

REFERENCES 63

[116] Shewchuk JR. Allow Me to Introduce Spectral and Isoperimetric Graph
Partitioning; 2016. Available from: http://www.cs.berkeley.edu/~jrs/papers/
partnotes.pdf.

[117] Bellman R. Introduction to matrix analysis. vol. 960. SIAM;.
[118] Chung FR. Laplacians of graphs and Cheeger’s inequalities. Combinatorics,

Paul Erdos is Eighty. 1996;2(157-172):13–2.
[119] Spielman DA, Teng SH. Spectral partitioning works: Planar graphs and finite

element meshes. Linear Algebra and its Applications. 2007;421(2):284–305.
[120] Gantmakher FR. The theory of matrices. vol. 131. American Mathematical

Soc.; 1998.
[121] Berman A, Plemmons RJ. Nonnegative matrices. vol. 9. SIAM; 1979.
[122] Fiedler M. Algebraic connectivity of graphs. Czechoslovak mathematical

journal. 1973;23(2):298–305.
[123] Mohar B. Isoperimetric numbers of graphs. Journal of Combinatorial Theory,

Series B. 1989;47(3):274–291.
[124] Van Driessche R, Roose D. An improved spectral bisection algorithm and its

application to dynamic load balancing. Parallel computing. 1995;21(1):29–
48.

[125] Hendrickson B, Leland R. An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM Journal on Scientific Computing.
1995;16(2):452–469.

[126] Lancaster P, Tismenetsky M. The theory of matrices: with applications.
Elsevier; 1985.

[127] Chevalier C, Pellegrini F. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel computing. 2008;34(6):318–331.

[128] Anderson E, Bai Z, Bischof C, et al. LAPACK Users’ Guide (Software,
Environments and Tools) 3rd Edition;.

[129] Bergamaschi L, Bozzo E. Computing the smallest eigenpairs of the graph
Laplacian. SeMA Journal. 2018;75(1):1–16.

[130] Soper AJ, Walshaw C, Cross M. A combined evolutionary search and
multilevel optimisation approach to graph-partitioning. Journal of Global
Optimization. 2004;29(2):225–241.

[131] Zheng A, Labrinidis A, Pisciuneri PH, et al. PARAGON: Parallel
Architecture-Aware Graph Partition Refinement Algorithm. In: EDBT;
2016. p. 365–376.

[132] Fiduccia CM, Mattheyses RM. A linear-time heuristic for improving network
partitions. In: Papers on Twenty-five years of electronic design automation.
ACM; 1988. p. 241–247.

http://www.cs.berkeley.edu/~jrs/papers/partnotes.pdf
http://www.cs.berkeley.edu/~jrs/papers/partnotes.pdf

	PROGRAMMING MODELS AND RUNTIMES
	Using Performance and Energy Models for Ultrascale Computing Applications

