
Data Partitioning on Heterogeneous Multicore and
Multi-GPU systems Using Functional Performance

Models of Data-Parallel Applictions

Ziming Zhong Vladimir Rychkov Alexey Lastovetsky

Heterogeneous Computing Laboratory
University College Dublin, Ireland

Cluster 2012

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 1 / 22

Model-based Data Partitioning

Motivation

Hybrid GPU-accelerated parallel computers

Higher power efficiency, performance/price ratio, etc.
Successfully applied to bioinformatics, astrophysics, molecular
dynamics, computational fluid dynamics, etc.

Hybrid Clusters Hybrid Multicore & Multi-GPU System

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 2 / 22

Model-based Data Partitioning

Motivation

Hybrid Multicores+GPUs presents challenges

Parallel programming is hard
Load balancing problem

Heterogeneity: processor, memory, etc.
Hierarchical levels of parallelism: node, socket, core, etc.

and others

Hybrid Clusters Hybrid Multicore & Multi-GPU System

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 2 / 22

Model-based Data Partitioning

Leveraging Hybrid Multicores/GPUs System

In this work, we target:

Data parallel application

Divisible computational workload
Workload proportional to data size
Dependent on data locality

Dedicated hybrid system

Reuse of optimized software stack

Our approach:

Heterogeneous distributed-memory system

Performance modeling of hybrid system

Model-based data partitioning to balance load Processing Flow

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 3 / 22

Model-based Data Partitioning

Data Partitioning on Heterogeneous Platform:

(1) (2) (3)

1 Workload is divisible and proportional to data size

2 Workload is partitioned in proportion to processor speed

3 Workload is distributed in proportion to processor speed

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 4 / 22

Model-based Data Partitioning

Data partitioning relies on accurate performance models
Traditionally, performance is defined by a single constant number

- Constant Performance Model (CPM)
- Computed from clock speed or by performing a benchmark
- Computational units are partitioned as di = N × (si/

∑p
j=1 sj)

- Simplistic, algorithms may fail to converge to a balanced solution[1]

Functional Performance Model
(FPM)[2]:

Represent speed as a
function of problem size

Realistic

Application centric

Hardware specific 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1e+07 2e+07 3e+07 4e+07 5e+07

S
p

e
e

d
 (

G
F

L
O

P
S

)

Problem Size - matrix elements

Matrix Multiplication Benchmark on Grid5000-Lille

chirloute-3
chimint-1

chinqchint-1
chicon-1

[1] D. Clarke et al: Dynamic Load Balancing of Parallel Iterative Routines on Heterogeneous HPC Platforms, 2010

[2] A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.
Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 5 / 22

Model-based Data Partitioning

Partitioning with functional performance models*

Load is balanced when:

t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp){
ti (di) = di/si (di),

d1 + d2 + . . . + dp = N

Size of the problem

Absolute

speed

s (d)
1

s (d)
2

s (d)
4

s (d)
3

d1 + d2 + d3 + d4 = n

d1 d2 d3 d4

All processors complete work within the same time

Solution lies on a line passing through the origin when di/si (di) = constant

However, only designed for heterogeneous uniprocessor cluster

* A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 6 / 22

Data Partitioning on Hybrid System

Outline

1 Model-based Data Partitioning

2 Data Partitioning on Hybrid System

3 Experiment Results

4 Conclusions and Future Work

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 7 / 22

Data Partitioning on Hybrid System

Performance Modeling of Hybrid System

Multicore/GPUs are modeled independently

Separate memory, programming models
Represented by speed functions (FPM)
Benchmarking with computational kernels

Performance model of multicore:

Approximate the speed of multiple cores
e.g. all cores in a processor except the
ones dedicated to GPUs

Performance model of GPU:

Approximate combined speed of a GPU
and it’s dedicated core Processing Flow

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 8 / 22

Data Partitioning on Hybrid System

Performance Measurement of Hybrid System

Generic measurement techniques

Process binding - avoid process migration
Synchronization - ensure resources are shared between cores
Repeating measurement- ensure statistically reliable results

However, how to measure the processor performance accurately on a
hybrid system?

Hybrid Multicore & Multi-GPU System

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 9 / 22

Data Partitioning on Hybrid System

Performance Measurement of Hybrid System

Performance measurement of multiple cores:

Programming model:
one process (thread)
per core to achieve
high performance

Cores interfere with
each other due to
resource contention

Performance are
evaluated in group

All cores in the group
executing the same
amount of workload in
parallel

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 10 / 22

Data Partitioning on Hybrid System

Performance Measurement of Hybrid System

Performance measurement of GPU:

One core dedicated to
the GPU, other cores
being idle

Kernel computation
time and data transfer
time are both included

Additional issue: Host
NUMA affects PCIe
transfer throughput in
Dual-IOH system

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 10 / 22

Data Partitioning on Hybrid System

Application: Matrix Multiplication on Heterogeneous Platform*

Matrices partitioned unevenly to achieve load balancing

Processors arranged so that communication is minimized

Computational kernel: panel-panel update
Reuse vendor-optimized GEMM routine
Computation is proportional to the area of submatrix Ci

The same memory access pattern as the whole application

* Beaumont,O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001.

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 11 / 22

Data Partitioning on Hybrid System

Development of Computational Kernel

Multicore CPU:

Use GEMM routine from ACML library
Multiple processes running sequential routine
Alternative: Single process running threaded routine

GPU accelerator:

Use GEMM routine from CUBLAS library
Develop out-of-core kernel to overcome memory limitation
Overlap data transfers and kernel execution to hide latency

Out-of-core Kernel, Overlap of Data Transfers and Kernel Execution:
- allocated 5 buffers in device memory: A0, A1, B0, C0, C1

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 12 / 22

Data Partitioning on Hybrid System

Experimental Setup

Hybrid Multicore and Multi-GPU Node

CPU (AMD) GPUs (NVIDIA)

Architecture Opteron 8439SE GF GTX680 Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4 × 6 cores 1536 cores 128 cores
Memory Size 4 × 16 GB 2048 MB 1536 MB
Memory Bandwidth 192.3 GB/s 76.8 GB/s

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 13 / 22

Data Partitioning on Hybrid System

Building Functional Performance Models (FPMs)

sc(x): approximate the speed of multiple cores when executing CPU kernel
on c cores simultaneously, with problem size x/c one each core

g(x): approximate the combined speed of a GPU and it’s dedicated core

Functional Performance Models of multicore CPU:

Platform: consist of four
6-core sockets

Modeling performance of
cores in each socket

s5(x), 5 cores running CPU
kernel, 1 core being idle

s6(x), all 6 cores running
CPU kernel 0

 20

 40

 60

 80

 100

 120

 0 300 600 900 1200

S
p

e
e

d
 (

G
F

lo
p

s
)

Matrix blocks (b x b)

5 cores
6 cores

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 14 / 22

Data Partitioning on Hybrid System

Building Functional Performance Models (FPMs)

sc(x): approximate the speed of multiple cores when executing CPU kernel
on c cores simultaneously, with problem size x/c one each core

g(x): approximate the combined speed of a GPU and it’s dedicated core

Functional Performance Model of GPU:

version 1: naive
implementation

version 2: accumulate
intermediate result,
out-of-core overcome
memory limitation

version 3: overlap data
transfers and kernel
execution time 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

S
p

e
e

d
 (

G
F

lo
p

s
)

Matrix blocks (b x b)

memory limit
version 1
version 2
version 3

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 14 / 22

Data Partitioning on Hybrid System

Impact of Resource Contention to Performance Modeling

CPU and GPU kernel benchmarking simultaneously in a socket

FPM of multiple cores s5(x) are barely affected

FPM of GPU g(x) gets 85% accuracy (speed drops by 7 - 15%)

s5(x), speed of multiple cores

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200

S
p
e
e
d
 (

G
F

lo
p
s
)

Matrix blocks (b x b)

CPU-only
cores:GPU = 1:5

cores:GPU = 1:10

g(x), speed of a GPU

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

S
p
e
e
d
 (

G
F

lo
p
s
)

Matrix blocks (b x b)

GPU-only
cores:GPU = 1:5

cores:GPU = 1:10

Note: the above two figures have different scales, 1:10

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 15 / 22

Experiment Results

Outline

1 Model-based Data Partitioning

2 Data Partitioning on Hybrid System

3 Experiment Results

4 Conclusions and Future Work

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 16 / 22

Experiment Results

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40 × 40 99.5 74.2 26.6
50 × 50 195.4 162.7 77.8
60 × 60 300.1 316.8 114.4
70 × 70 491.6 554.8 226.1

Column 1: block size is 640 × 640
Column 2: 24 CPU cores, homogeneous data partitioning
Column 3: 1 CPU core + 1 GPU
Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 17 / 22

Experiment Results

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40 × 40 99.5 74.2 26.6
50 × 50 195.4 162.7 77.8
60 × 60 300.1 316.8 114.4
70 × 70 491.6 554.8 226.1

Column 1: block size is 640 × 640
Column 2: 24 CPU cores, homogeneous data partitioning
Column 3: 1 CPU core + 1 GPU
Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 17 / 22

Experiment Results

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40 × 40 99.5 74.2 26.6
50 × 50 195.4 162.7 77.8
60 × 60 300.1 316.8 114.4
70 × 70 491.6 554.8 226.1

Column 1: block size is 640 × 640
Column 2: 24 CPU cores, homogeneous data partitioning
Column 3: 1 CPU core + 1 GPU
Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 17 / 22

Experiment Results

Execution time of the application under different configurations

Matrix size (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40 × 40 99.5 74.2 26.6
50 × 50 195.4 162.7 77.8
60 × 60 300.1 316.8 114.4
70 × 70 491.6 554.8 226.1

Column 1: block size is 640 × 640
Column 2: 24 CPU cores, homogeneous data partitioning
Column 3: 1 CPU core + 1 GPU
Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 17 / 22

Experiment Results

Computation time of each process

 0
 20
 40
 60
 80

 100
 120
 140

 0 2 4 6 8 10 12 14 16 18 20 22 24C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Process rank

CPM-based partitioning

Tesla C870

Geforce GTX 680

 0
 20
 40
 60
 80

 100
 120
 140

 0 2 4 6 8 10 12 14 16 18 20 22 24C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

Process rank

FPM-based partitioning

Matrix size 60 × 60, Computation time reduced by 40%
Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 18 / 22

Experiment Results

Execution time of the application under different partitioning algorithms

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Matrix size n

Homogeneous Partitioning
CPM-based Partitioning
FPM-based Partitioning

Execution time reduced by 23% and 45% respectively
Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 19 / 22

Conclusions and Future Work

Conclusions and Future Work

Conclusions

Defined and built functional performance models (FPMs) of hybrid
multicore and multi-GPU system, considering it as a distributed
memory system
Adapted FPM-based data partitioning to hybrid system, achieved load
balancing and delivered good performance

Future Work

Apply the approach to hybrid cluster
Partitioning with respect to interconnect speed

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 20 / 22

Conclusions and Future Work

Thank You!

Science Foundation University College Heterogeneous Computing China Scholarship
Ireland Dublin Laboratory Council

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 21 / 22

Conclusions and Future Work

Partitioning with functional performance models

Want all devices to compute assigned workload di within same time.

Points
(
di , si (di)

)
lie on a line passing through the origin when

di
si (di)

= constant.

Total problem size determines the slope.

Algorithm iteratively bisects solution space to find values di .

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

d + d + d + d = n
1 2 3 4

d1 d2 d3 d4

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 22 / 22

Conclusions and Future Work

Partitioning with functional performance models

Want all devices to compute assigned workload di within same time.

Points
(
di , si (di)

)
lie on a line passing through the origin when

di
si (di)

= constant.

Total problem size determines the slope.

Algorithm iteratively bisects solution space to find values di .

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

L

U

d + d + d + d < n
U1 U2 U3 U4

d + d + d + d > n
L1 L2 L3 L4

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 22 / 22

Conclusions and Future Work

Partitioning with functional performance models

Want all devices to compute assigned workload di within same time.

Points
(
di , si (di)

)
lie on a line passing through the origin when

di
si (di)

= constant.

Total problem size determines the slope.

Algorithm iteratively bisects solution space to find values di .

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

L

U

< n or > n

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 22 / 22

Conclusions and Future Work

Partitioning with functional performance models

Want all devices to compute assigned workload di within same time.

Points
(
di , si (di)

)
lie on a line passing through the origin when

di
si (di)

= constant.

Total problem size determines the slope.

Algorithm iteratively bisects solution space to find values di .

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

U

L

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 22 / 22

Conclusions and Future Work

Partitioning with functional performance models

Want all devices to compute assigned workload di within same time.

Points
(
di , si (di)

)
lie on a line passing through the origin when

di
si (di)

= constant.

Total problem size determines the slope.

Algorithm iteratively bisects solution space to find values di .

s (d)
1

s (d)
2

s (d)
4

s (d)
3

Size of the problem

Absolute

speed

d1 d2 d3 d4

L

U

Ziming Zhong (HCL/UCD) Data Partitioning on Heterogeneous Multicore/GPUs Systems Cluster 2012 22 / 22

	Model-based Data Partitioning
	Data Partitioning on Hybrid System
	Experiment Results
	Conclusions and Future Work

