

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applications

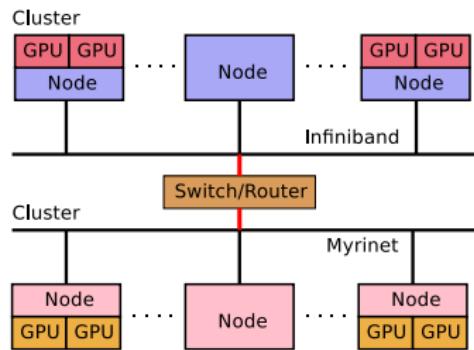
Ziming Zhong Vladimir Rychkov Alexey Lastovetsky

Heterogeneous Computing Laboratory
University College Dublin, Ireland

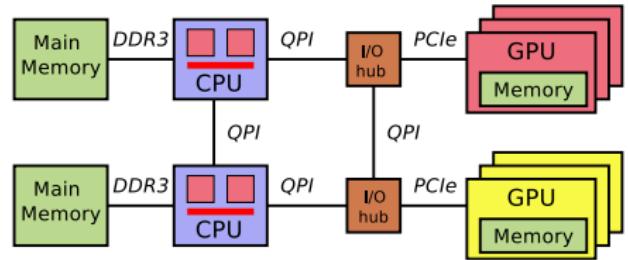
Cluster 2012

Motivation

- Hybrid GPU-accelerated parallel computers
 - Higher power efficiency, performance/price ratio, etc.
 - Successfully applied to bioinformatics, astrophysics, molecular dynamics, computational fluid dynamics, etc.



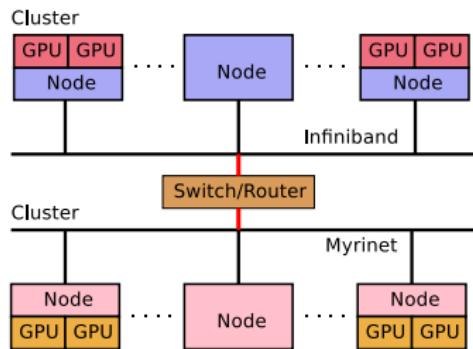
Hybrid Clusters



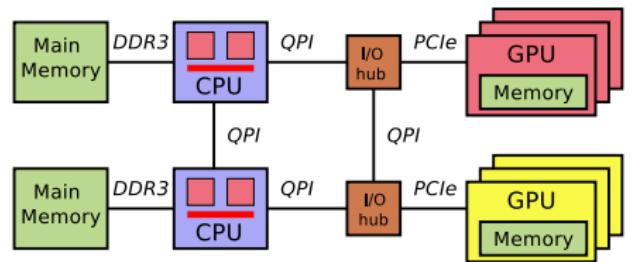
Hybrid Multicore & Multi-GPU System

Motivation

- Hybrid Multicores+GPUs presents challenges
 - Parallel programming is hard
 - Load balancing problem
 - Heterogeneity: processor, memory, etc.
 - Hierarchical levels of parallelism: node, socket, core, etc.
 - and others



Hybrid Clusters



Hybrid Multicore & Multi-GPU System

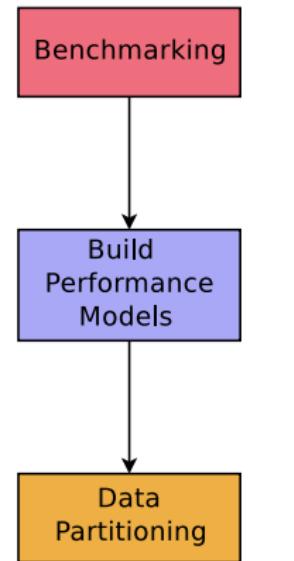
Leveraging Hybrid Multicores/GPUs System

In this work, we target:

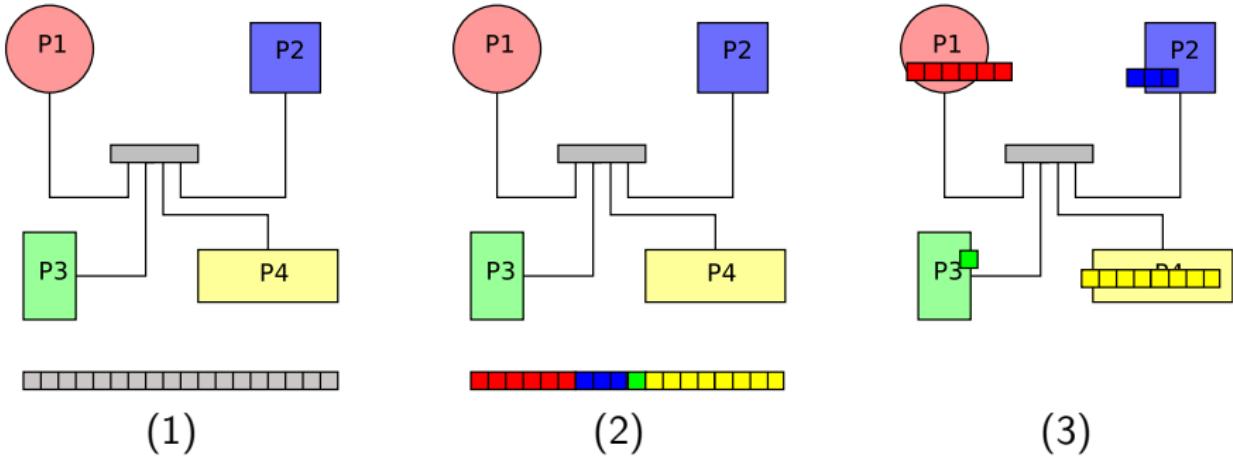
- Data parallel application
 - Divisible computational workload
 - Workload proportional to data size
 - Dependent on data locality
- Dedicated hybrid system
- Reuse of optimized software stack

Our approach:

- Heterogeneous distributed-memory system
- Performance modeling of hybrid system
- Model-based data partitioning to balance load



Data Partitioning on Heterogeneous Platform:



- ① Workload is divisible and proportional to data size
- ② Workload is partitioned in proportion to processor speed
- ③ Workload is distributed in proportion to processor speed

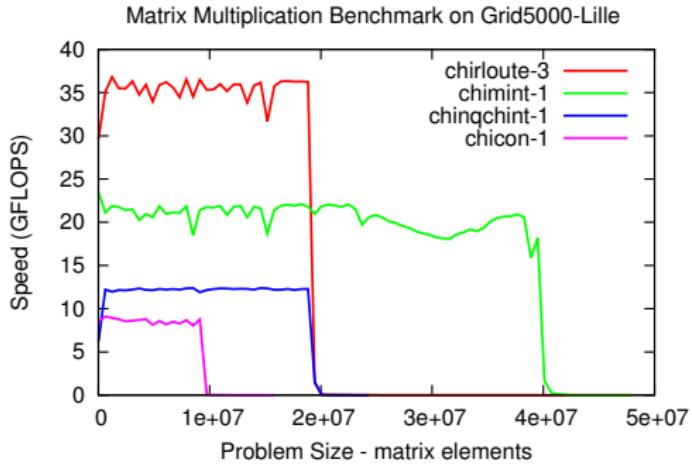
Data partitioning relies on accurate performance models

Traditionally, performance is defined by a single constant number

- Constant Performance Model (**CPM**)
- Computed from clock speed or by performing a benchmark
- Computational units are partitioned as $d_i = N \times (s_i / \sum_{j=1}^p s_j)$
- Simplistic, algorithms may fail to converge to a balanced solution[1]

Functional Performance Model (**FPM**)[2]:

- Represent speed as a function of problem size
- Realistic
- Application centric
- Hardware specific



[1] D. Clarke et al: Dynamic Load Balancing of Parallel Iterative Routines on Heterogeneous HPC Platforms, 2010

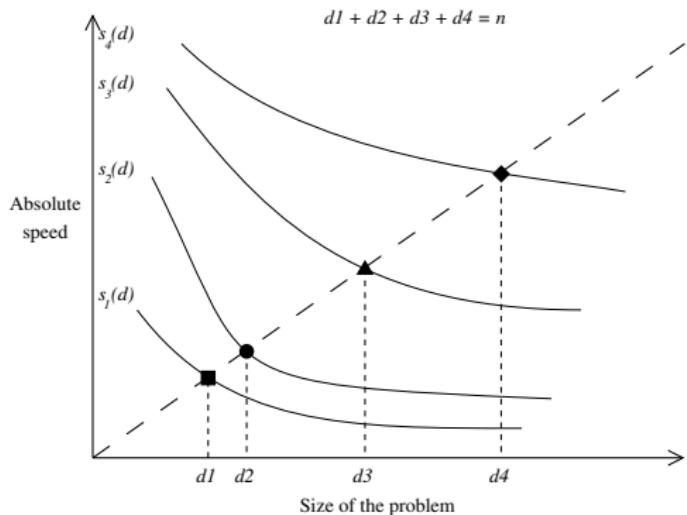
[2] A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

Partitioning with functional performance models*

Load is balanced when:

$$t_1(d_1) \approx t_2(d_2) \approx \dots \approx t_p(d_p)$$

$$\begin{cases} t_i(d_i) = d_i/s_i(d_i), \\ d_1 + d_2 + \dots + d_p = N \end{cases}$$



- All processors complete work within the same time
- Solution lies on a line passing through the origin when $d_i/s_i(d_i) = \text{constant}$
- However, only designed for **heterogeneous uniprocessor cluster**

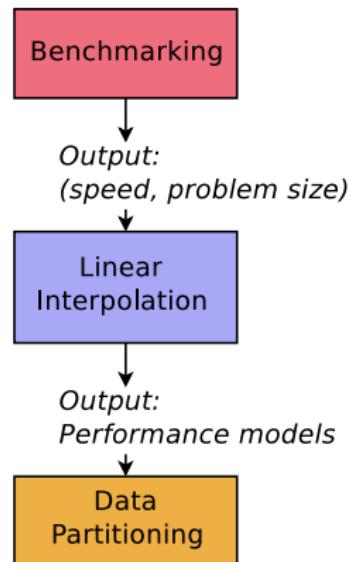
* A. Lastovetsky et al: Data partitioning with a functional performance model of heterogeneous processors, 2007.

Outline

- 1 Model-based Data Partitioning
- 2 Data Partitioning on Hybrid System
- 3 Experiment Results
- 4 Conclusions and Future Work

Performance Modeling of Hybrid System

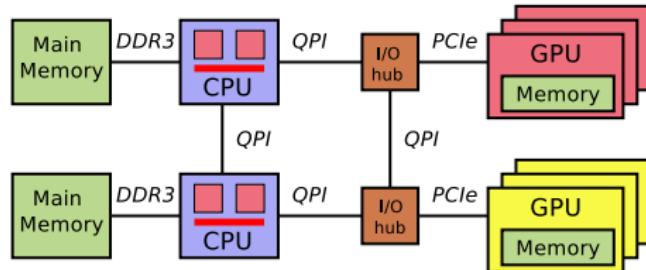
- Multicore/GPUs are modeled independently
 - Separate memory, programming models
 - Represented by speed functions (FPM)
 - Benchmarking with computational kernels
- Performance model of multicore:
 - Approximate the speed of multiple cores
 - e.g. all cores in a processor except the ones dedicated to GPUs
- Performance model of GPU:
 - Approximate combined speed of a GPU and its dedicated core



Processing Flow

Performance Measurement of Hybrid System

- Generic measurement techniques
 - Process binding - avoid process migration
 - Synchronization - ensure resources are shared between cores
 - Repeating measurement- ensure statistically reliable results
- However, how to measure the processor performance accurately on a hybrid system?

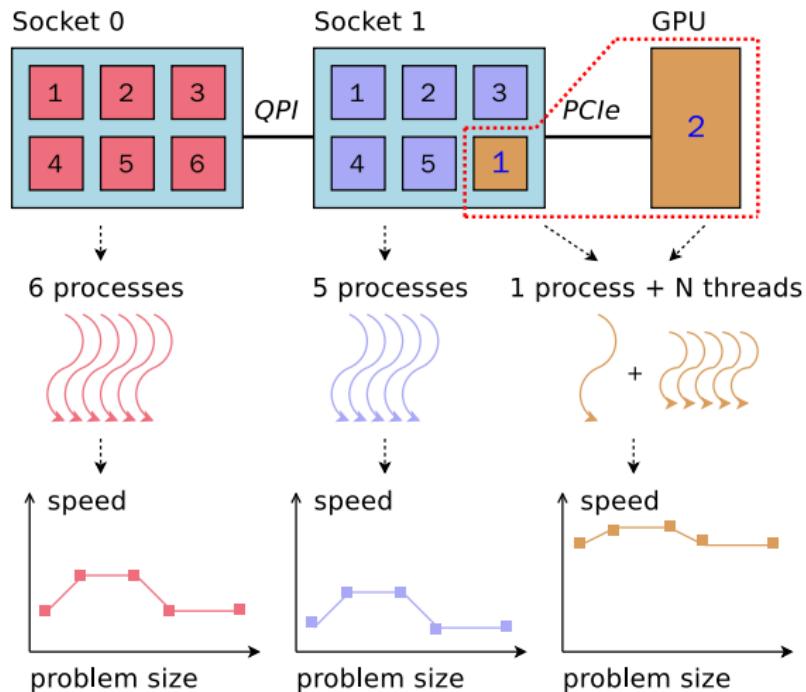


Hybrid Multicore & Multi-GPU System

Performance Measurement of Hybrid System

Performance measurement of multiple cores:

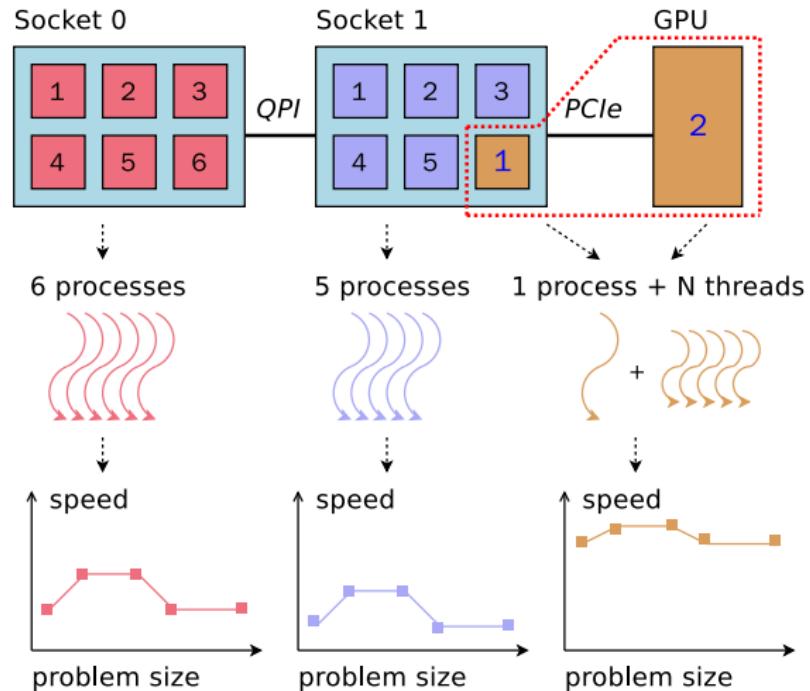
- Programming model: one process (thread) per core to achieve high performance
- Cores interfere with each other due to resource contention
- Performance are evaluated in group
- All cores in the group executing the same amount of workload in parallel



Performance Measurement of Hybrid System

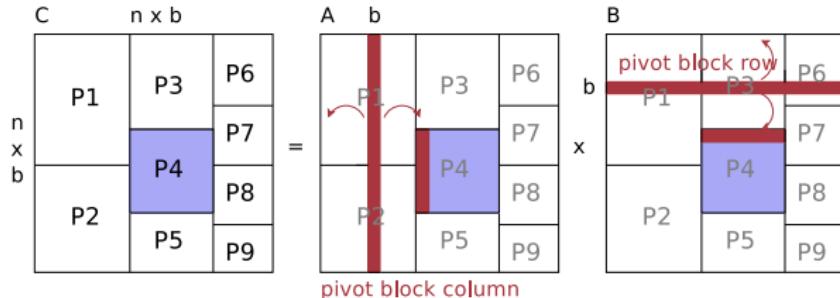
Performance measurement of GPU:

- One core dedicated to the GPU, other cores being idle
- Kernel computation time and data transfer time are both included
- Additional issue: Host NUMA affects PCIe transfer throughput in Dual-IOH system



Application: Matrix Multiplication on Heterogeneous Platform*

- Matrices partitioned unevenly to achieve load balancing
- Processors arranged so that communication is minimized



- Computational kernel: panel-panel update
 - Reuse vendor-optimized GEMM routine
 - Computation is proportional to the area of submatrix C_i
 - The same memory access pattern as the whole application

$$C_i = A_{(b)} \times B_{(b)}$$

where C_i is a submatrix of C of size $m_i \times b$, $A_{(b)}$ is a submatrix of A of size $n_i \times b$, and $B_{(b)}$ is a submatrix of B of size $b \times b$.

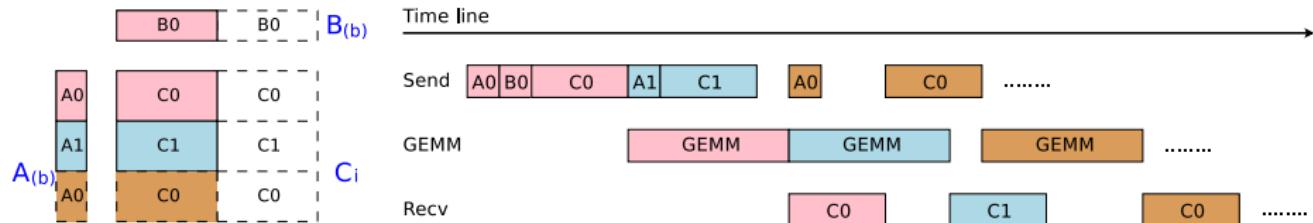
* Beaumont, O. et al: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 2001.

Development of Computational Kernel

- Multicore CPU:
 - Use GEMM routine from ACML library
 - Multiple processes running sequential routine
 - Alternative: Single process running threaded routine
- GPU accelerator:
 - Use GEMM routine from CUBLAS library
 - Develop out-of-core kernel to overcome memory limitation
 - Overlap data transfers and kernel execution to hide latency

Out-of-core Kernel, Overlap of Data Transfers and Kernel Execution:

- allocated 5 buffers in device memory: A0, A1, B0, C0, C1



Experimental Setup

Hybrid Multicore and Multi-GPU Node

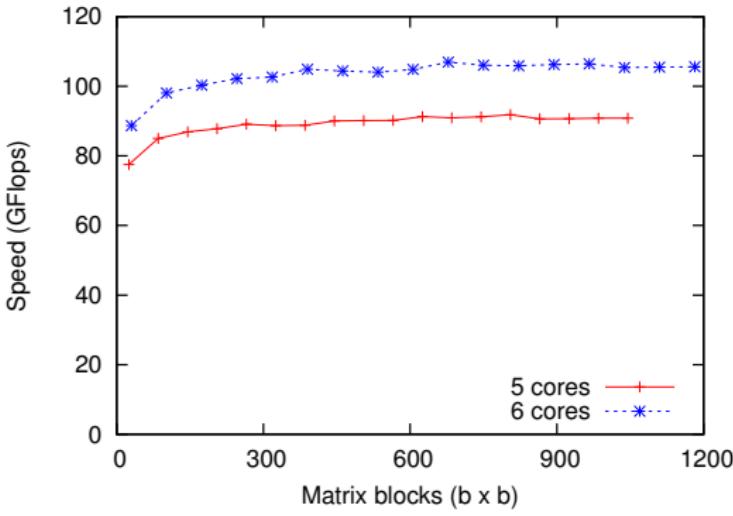
	CPU (AMD)	GPUs (NVIDIA)	
Architecture	Opteron 8439SE	GF GTX680	Tesla C870
Core Clock	2.8 GHz	1006 MHz	600 MHz
Number of Cores	4 × 6 cores	1536 cores	128 cores
Memory Size	4 × 16 GB	2048 MB	1536 MB
Memory Bandwidth		192.3 GB/s	76.8 GB/s

Building Functional Performance Models (FPMs)

- $s_c(x)$: approximate the speed of multiple cores when executing CPU kernel on c cores simultaneously, with problem size x/c one each core
- $g(x)$: approximate the combined speed of a GPU and its dedicated core

Functional Performance Models of multicore CPU:

- Platform: consist of four 6-core sockets
- Modeling performance of cores in each socket
- $s_5(x)$, 5 cores running CPU kernel, 1 core being idle
- $s_6(x)$, all 6 cores running CPU kernel

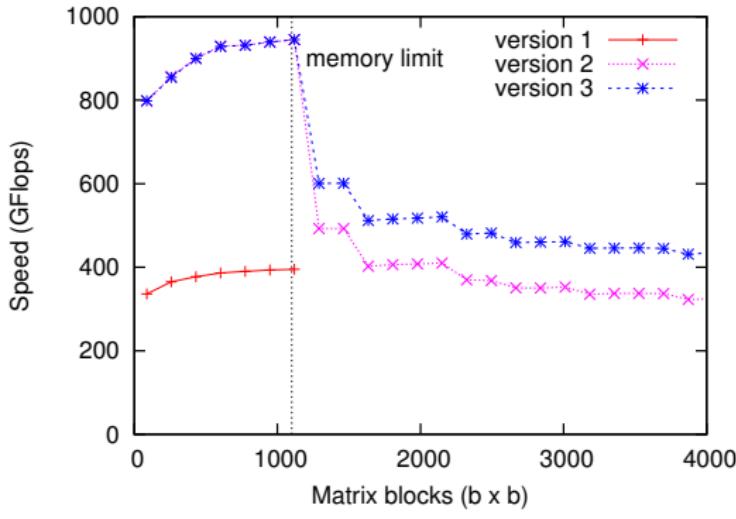


Building Functional Performance Models (FPMs)

- $s_c(x)$: approximate the speed of multiple cores when executing CPU kernel on c cores simultaneously, with problem size x/c one each core
- $g(x)$: approximate the combined speed of a GPU and its dedicated core

Functional Performance Model of GPU:

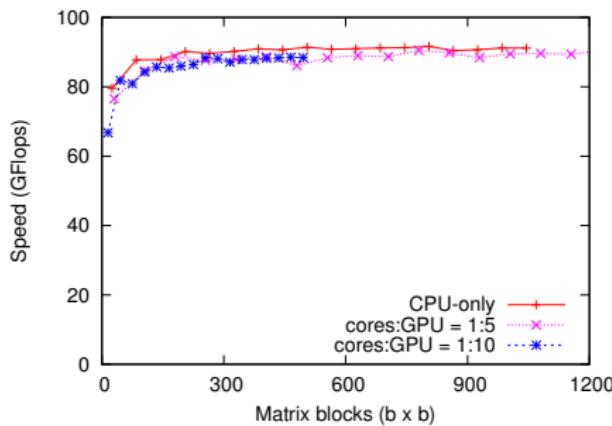
- **version 1**: naive implementation
- **version 2**: accumulate intermediate result, out-of-core overcome memory limitation
- **version 3**: overlap data transfers and kernel execution time



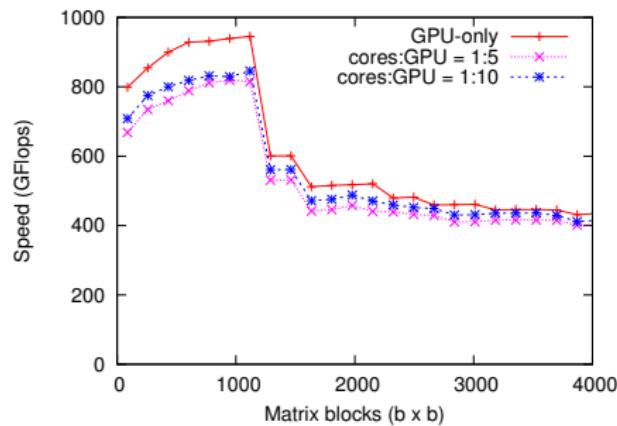
Impact of Resource Contention to Performance Modeling

- CPU and GPU kernel benchmarking simultaneously in a socket
- FPM of multiple cores $s_5(x)$ are barely affected
- FPM of GPU $g(x)$ gets 85% accuracy (speed drops by 7 - 15%)

$s_5(x)$, speed of multiple cores



$g(x)$, speed of a GPU



Note: the above two figures have different scales, 1:10

Outline

- 1 Model-based Data Partitioning
- 2 Data Partitioning on Hybrid System
- 3 Experiment Results
- 4 Conclusions and Future Work

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40×40	99.5	74.2	26.6
50×50	195.4	162.7	77.8
60×60	300.1	316.8	114.4
70×70	491.6	554.8	226.1

Column 1: block size is 640×640

Column 2: 24 CPU cores, homogeneous data partitioning

Column 3: 1 CPU core + 1 GPU

Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40×40	99.5	74.2	26.6
50×50	195.4	162.7	77.8
60×60	300.1	316.8	114.4
70×70	491.6	554.8	226.1

Column 1: block size is 640×640

Column 2: 24 CPU cores, homogeneous data partitioning

Column 3: 1 CPU core + 1 GPU

Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40×40	99.5	74.2	26.6
50×50	195.4	162.7	77.8
60×60	300.1	316.8	114.4
70×70	491.6	554.8	226.1

Column 1: block size is 640×640

Column 2: 24 CPU cores, homogeneous data partitioning

Column 3: 1 CPU core + 1 GPU

Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Execution time of the application under different configurations

Matrix size (blks)	CPUs (sec)	GTX680 (sec)	Hybrid-FPM (sec)
40×40	99.5	74.2	26.6
50×50	195.4	162.7	77.8
60×60	300.1	316.8	114.4
70×70	491.6	554.8	226.1

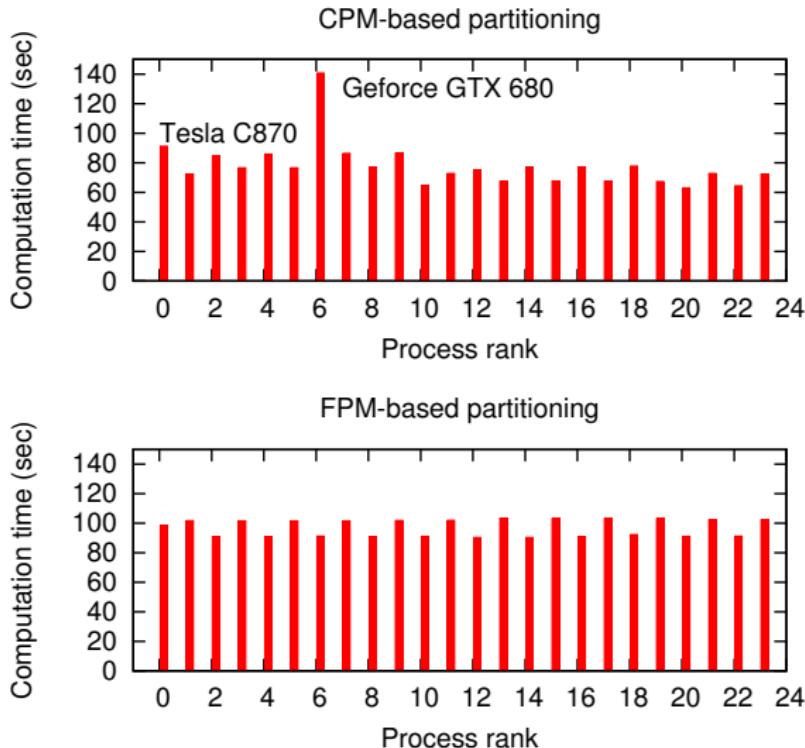
Column 1: block size is 640×640

Column 2: 24 CPU cores, homogeneous data partitioning

Column 3: 1 CPU core + 1 GPU

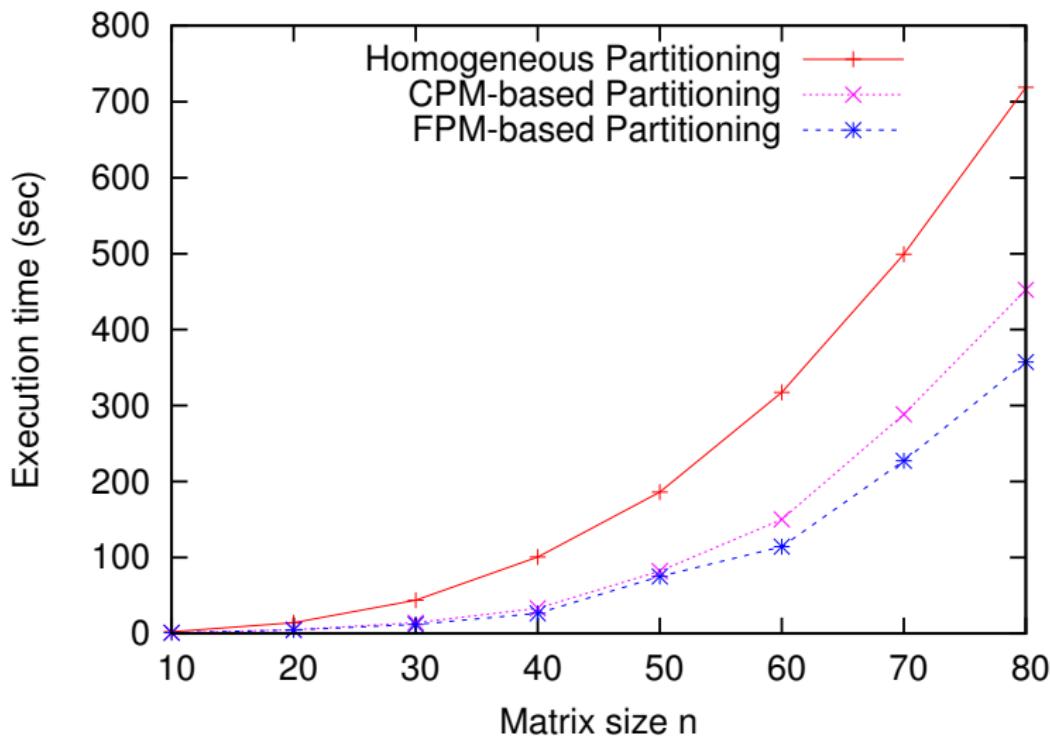
Column 4: 24 CPU cores + 2 GPUs, FPM-based data partitioning

Computation time of each process



Matrix size 60×60 , Computation time reduced by 40%

Execution time of the application under different partitioning algorithms



Execution time reduced by 23% and 45% respectively

Conclusions and Future Work

- Conclusions

- Defined and built functional performance models (FPMs) of hybrid multicore and multi-GPU system, considering it as a distributed memory system
- Adapted FPM-based data partitioning to hybrid system, achieved load balancing and delivered good performance

- Future Work

- Apply the approach to hybrid cluster
- Partitioning with respect to interconnect speed

Thank You!

Science Foundation
Ireland

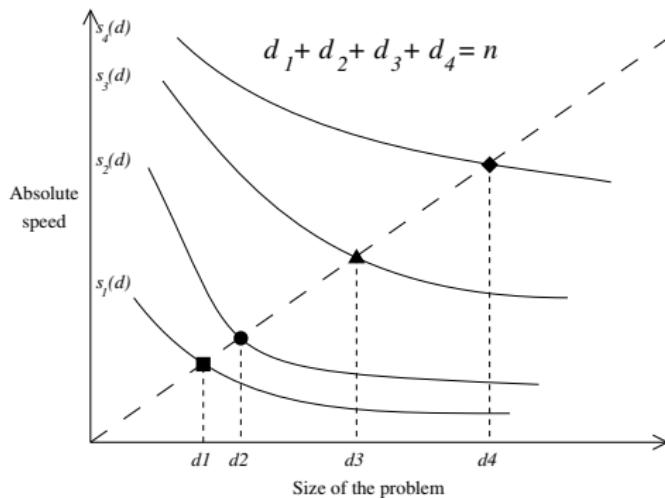
University College
Dublin

Heterogeneous Computing
Laboratory

China Scholarship
Council

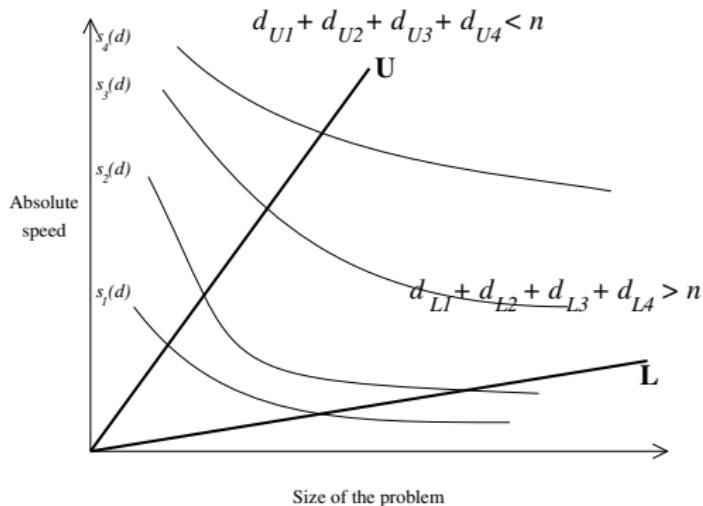
Partitioning with functional performance models

- Want all devices to compute assigned workload d_i within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = \text{constant}$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values d_i .



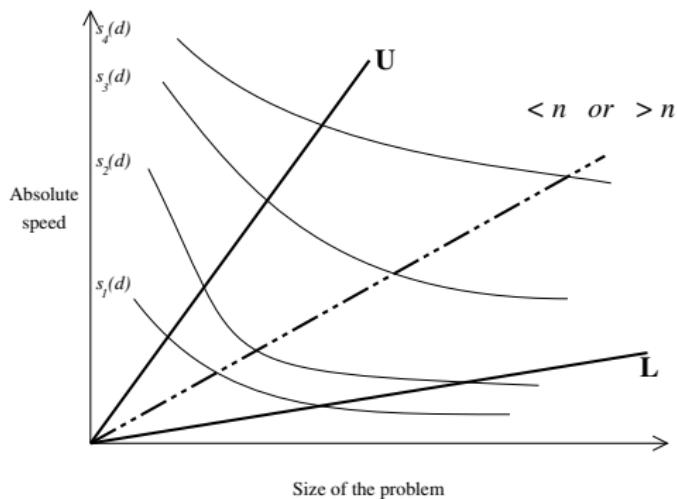
Partitioning with functional performance models

- Want all devices to compute assigned workload d_i within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = \text{constant}$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values d_i .



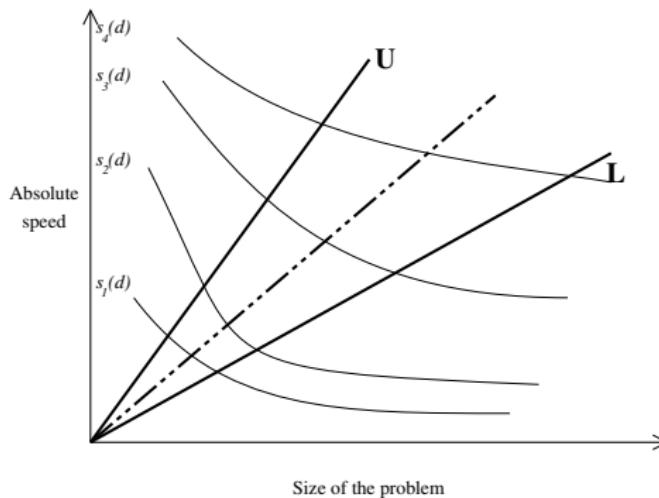
Partitioning with functional performance models

- Want all devices to compute assigned workload d_i within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = \text{constant}$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values d_i .



Partitioning with functional performance models

- Want all devices to compute assigned workload d_i within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = \text{constant}$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values d_i .



Partitioning with functional performance models

- Want all devices to compute assigned workload d_i within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = \text{constant}$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values d_i .

