
Institute for System Programming,
Russian Academy of Sciences

Moscow, 1999

mpC programming environment

User’s Guide

version 2.0.3

mpC programming environment. User’s Guide Page -3

1. Definition of terms ..5

2. Outline of the mpC programming environment...5

3. Supported systems ...6

4. mpC compiler...7
4.1 Options ...7
4.2 Pragmas..8

5. How to start up..8

6. Virtual parallel machine..10

6.1 Virtual parallel machine description file ..10

7. Environmental variables ...11

7.1 WHICHMPI ...11
7.2 MPIDIR..11
7.3 MPCHOME ...11
7.4 MPCLOAD ..11
7.5 MPCTOPO...12

8. How to run mpC applications ...12

8.1 mpccreate ...13
8.2 mpcopen ...13
8.3 mpcbcast ..13
8.4 mpcload..14
8.5 mpcrun ...14
8.6 mpctouch..14
8.7 mpcclose ..15
8.8 mpcclean ..15
8.9 mpcmach ..15
8.10 mpcdel..15

9. Debugging mpC applications recommendations ..15

10. Examples of mpC sessions..17

10.1 Simplest example ...17
10.2 Complicated example...19

Page -4 mpC programming environment. User’s Guide

mpC programming environment. User’s Guide Page 1-5

Definition of terms

1. Definition of terms

 The following terms are used in this document:

• Computing space (a language term) - a set of typed virtual processors of different perfor-
mances connected with links of different bandwidths;

• Distributed memory machine (an implementation term) - any computing system running
MPI (for example, cluster of workstations, heterogeneous network of workstations and/or
PCs, a specialized parallel computer, or everything taken together);

• Virtual parallel machine (an implementation term) - a set of processes representing virtual
processors of the computing space and running over distributed memory machine.

• Host workstation (an implementation term) - any workstation or PC that may be used as a
working place of the user. It is intended that the user may start running mpC applications
only from host workstations.

2. Outline of the mpC programming environment

 Currently, the mpC programming environment includes a compiler, a run-time support sys-
tem (RTS), a library, and a command-line user interface. All these components are written in
ANSI C.

 The compiler translates an mpC program into a ANSI C program with calls to functions of
RTS. The compilation unit is a source mpC file. The compiler uses optionally either the
SPMD model of target code, when all processes constituting a target message-passing pro-
gram run the identical code, or a quasi-SPMD model, when it translates the source mpC file
into 2 distinct target files: the first for the virtual host-processor and the second for the rest of
virtual processors.

 RTS manages the computing space and provides any necessary communications. RTS
encapsulates a particular communication package (currently, a small subset of MPI). It
ensures platform-independence of the rest of compiler components.

 The library consists of a number of functions which provide low-level efficient facilities as
well as support debugging mpC programs.

 The user interface consists of a number of programs supporting the creation of a virtual par-
allel machine and monitoring the execution of mpC applications on the machine. While creat-
ing the machine, its topology is detected by a topology detector and saved in a file used by
RTS. The topology detector executes a special benchmark to detect performances of worksta-
tions constituting the target distributed memory machines, the number of processors in each of
these workstations, as well as bandwidths of links connecting the workstations (optionally).

Page 3-6 mpC programming environment. User’s Guide

 All processes constituting the target program are divided into 2 groups - the special process
named dispatcher playing the role of the computing space manager, and general processes
named nodes playing the role of virtual processors of the computing space. The dispatcher
works as a server accepting requests from virtual processors. The dispatcher does not belong
to the computing space.

 In the target program, every network or subnetwork of the source mpC program is repre-
sented by a set of nodes called region. So, at any time of the target program running, any node
is either free or hired in one or several regions. Hiring nodes in created regions and dismissing
them is the responsibility of the dispatcher. The only exception is the pre-hired host-node rep-
resenting the mpC pre-defined virtual host-processor. Thus, just after initialization, the com-
puting space is represented by the host and a set of temporarily free (unemployed) nodes.

 If a region represents a network, creation of the region involves the parent node, the dis-
patcher and all free nodes. The parent node sends creation request containing the necessary
information about the network topology to the dispatcher. Based on this information and the
information about the topology of the virtual parallel machine, the dispatcher selects the most
appropriate set of free nodes. After that, it sends to every free node a message saying whether
the node is hired in the created region or not. Deallocation of network region involves all its
members as well as the set of free nodes and the dispatcher.

 If the region represents a subnetwork, its creation involves only members of the enclosing
region. Deallocation of subnetwork region involves only its members.

 The dispatcher keeps a queue of creation requests that cannot be satisfied immediately but
can be served in the future. It implements some strategy of serving the requests aimed at min-
imization of the probability of occurring a deadlock. The dispatcher detects such a situation
when the sum of the number of free nodes and the number of such hired nodes that could be
released is less than the minimum number of free nodes required by a request in the queue. In
this case, it terminates the program abnormally.

3. Supported systems

 We tried to write all the components of the mpC programming environment in such a way to
avoid any problem with its installation on any Unix system having C compiler supporting
ANSI C. We have checked it for the following platforms:

- Sun workstations running Solaris 2.3/2.4/2.5 or SunOS 4.1.3 with gcc versions 2.6.3,
2.7.0, 2.7.2 and SPARCworks Professional C 3.01;
- HP9000 workstations running HP-UX 9.07 with gcc version 2.7.2 and c89;
- PC running Lunix 4.0 with gcc version 2.7.2.
- DEC Alpha running OSF1 V3.2.

mpC programming environment. User’s Guide Page 4-7

mpC compiler

 We tried to write the mpC compiler in such a way to avoid any problem with compilation of
generated code on any Unix system having C compiler supporting ANSI C. We have checked
it for the platforms listed above.

 We tried to write RTS in such a way to ensure its correct work for any implementation of
MPI supporting full MPI 1.1 standard as an underlying comunication platform. We have
checked it for LAM MPI versions 5.2, 6.0, 6.1 (for the platforms listed above) and for MPICH
version 1.0.13 (for Sun workstations running Solaris and HP9000 workstations running HP-
UX 9.07).

 The current version of the command-line user interface is written in such a way to work cor-
rectly for two implementations of MPI - LAM and MPICH. We have checked it for LAM ver-
sions 5.2, 6.0, 6.1 (for the platforms listed above) and for MPICH version 1.0.13 (for Sun
workstations running Solaris and HP9000 workstations running HP-UX 9.07).

4. mpC compiler

 To call the mpC compiler one should type:

 mpcc [options] filename

mpcc processes an input file through one or more of tree stages: preprocessing, analysis, and
generating one or two C files. For preprocessing we use a standard preprocessor and recom-
mend to use GNU cpp. Only one input file may be processed at once. The suffix ‘.mpc’ is
used for mpC source files, and the suffix ‘.c’ is used for processed mpC files. mpcc puts out-
put C files into the current directory.

4.1 Options.

 All options must be separated. For example, ‘-hetmacro’ is quite different from ‘-het -
macro’. All options different from described bellow are considered as options of the prepro-
cessor.

 -E

Stop after the preprocessing stage; do not run the compiler proper. The output is prepro-
cessed source code, which is sent to standard output.

-analyse

Compiler provides parsing and semantical analysis. C files will not be generated.

-kmode

Pragmas

Page 5-8 mpC programming environment. User’s Guide

Selects one of four parser modes. mode may be SHORT, ANSI, LONG, and ALL. By
default the SHORT mode is used. This mode allows to use only the short form of mpC
keywords. The ANSI mode allows to use only ANSI C keywords. The LONG mode
allows to use only the full form of mpC keywords. The ALL mode allows to use both
forms of mpC keywords. For example,’net’ and ‘mpc_net’ are identifiers in the ANSI
mode and mpC keywords in the ALL mode. ‘net’ is an identifier in the LONG mode and
an mpC keyword in the SHORT mode. Finally, ‘mpc_net’ is an identifier in the SHORT
mode and an mpC keyword in the LONG mode. Presence of these modes supports the
compatibility with previously written C code.

-macro

Forbids to use some macros in generated C files. The macros contain parameterized code
standing for long pieces of code. Code with macros is shorter but may be less undestand-
able.

-out

Directs output of mpcc to standard output instead of C file.

-het

Makes compiler produce two output C files. By default, for source mpC file ‘name.mpc’
mpcc produces one output C file ‘name.c’. If -het is typed, then mpcc will produce two
output files: ‘name_host.c’ containing code for the virtual host-processor and
‘name_node.c’ containing code for the rest of virtual processors. This option allows to iso-
late code with input/output operations to a single processor.

4.2 Pragmas.

 A #pragma directive of the form

#pragma keywords mode:

is supported by mpcc. This pragma has the same affect on mpC keywords as option -k
described above and allows one to use the same header files in C and mpC sources.

5. How to start up

 By now, we dealt with local networks of workstations running UNIX (including PCs run-
ning LINUX) as a DMM. Any workstation that may be used as a working place of the user is
called a host workstation. It is intended that the user may start running mpC applications only
from host workstations.

mpC programming environment. User’s Guide Page 5-9

How to start up

 To start working with the mpC environment, the user must have it installed on each of work-
stations constituting his DMM (see Installation Guide).

 Then the user should become an authorized user with the same name on each of worksta-
tions constituting the DMM.

 Then the user should make sure that on each of these workstations in his home directory file
‘.rhosts’ exists and contains names of all workstations constituting the DMM.

 Then on each of these workstations the user should modify corresponding files (for example,
‘.cshrc’ if he uses C shell) in his home directory to determine environmental variables
WHICHMPI, MPIDIR, MPCHOME, MPCTOPO, and MPCLOAD of his shell.

Notes. Sometimes one needs modify different files for local and remote invocation of shell.
For example, for PC running Linux 4.0 the user should modify files ‘.bashrc’ and
‘bash_profile’ if he uses Bourne shell.

 There are a small number of restrictions dependent on the used value of WHICHMPI:

• When using LAM, it may be needed to determine environmental variable TROLLIUSH-
OME setting it to the same value as MPIDIR.

• When using MPICH, environmental variable MPCHOME must be set to the same value on
all workstations constituting the DMM. To ensure it, the user may need to use the Unix ln
command to make necessary hard or soft links.

• When using MPICH, environmental variable MPCLOAD must be set to the same value on
all workstations constituting the DMM. To ensure it, the user may need to use the Unix ln
command to make necessary hard or soft links.

• When using MPICH, the user should make sure that he has write access to directory
$MPIDIR/bin/machines (equally, $MPIDIR/util/machines) on each of host workstations.

 Then on each workstation the user should create his own directories $MPCTOPO, $MPC-
TOPO/log, and $MPCLOAD. No two workstations or users can share these directories. The
user should make sure that he has write access to these directories.

 Then on each workstation the user should modify corresponding files in his home directory
to add directories $MPIDIR/bin, $MPIDIR/lib, $MPCHOME/bin, $MPCHOME/lib and
$MPCLOAD to his PATH. To avoid name conflicts, make directory $MPCLOAD first in the
search path.

 In addition, the user should add directories $MPIDIR/lib and $MPCHOME/lib to his ld path
(by changing LD_LIBRARY_PATH for Solaris, LPATH for HP-UX and so on).

Virtual parallel machine description file

Page 6-10 mpC programming environment. User’s Guide

6. Virtual parallel machine

 The next step is the description of the virtual parallel machine (VPM) which will execute
mpC applications. The description is provided by a manually-written VPM description file
which should be placed to the $MPCTOPO directory. The name of this file is just considered
as a name of the described VPM.

6.1 Virtual parallel machine description file.

 A VPM description file consists of lines of two kinds. Lines starting with symbol ‘#’ are
treated as comments. All other lines should be of the following format:

<name> <number_of_processes>

where <name> is the name of the corresponding workstation as it appears in the system ‘/
etc/hosts’ file, and <number_of_processes> is the number of processes to run on
the workstation. The host workstation must go first in the file. The virtual host-processor will
be mapped to a process running on this workstation.

 For example, the following file describes VPM which runs on DMM consisting of three
workstations (alpha, beta, and gamma), five processes running on each workstation, and
the host workstation is alpha:

three workstation each running 5 processes
alpha 5
beta 5
gamma 5

 The following example describes VPM with the same total number of the processes, but
running on the single workstation alpha. It may be useful for debugging mpC applications:

simple topology for debugging
alpha 15

 The actual total number of running processes is greater then the number specified in the
description file. A process for the dispatcher is added automatically and runs on the host
workstation. The virtual host-processor is always placed on the host workstation.

mpC programming environment. User’s Guide Page 7-11

Environmental variables

7. Environmental variables

7.1 WHICHMPI.

 Currently, $WHICHMPI should be

• LAM, if you use a LAM implementation of MPI;
• MPICH_P4, if you use a MPICH implementation of MPI configured with the ch_p4 com-

munications device;
• MPICH, if you use a MPICH implementation of MPI configured with any valid communi-

cations device not having to be ch_p4.

 WHICHMPI should be set to the proper value on host workstations.

7.2 MPIDIR.

 $MPIDIR is a directory where MPI has been installed. MPIDIR should be set to the proper
value on each workstation of DMM.

7.3 MPCHOME.

 $MPCHOME is a directory where the mpC programming environment has been installed.
MPCHOME should be set to the proper value on each workstation of DMM.

 Subdirectory $MPCHOME/bin holds all executables and scripts of the mpC programming
environment.

 Subdirectory $MPCHOME/h holds all specific mpC header files as well as header ‘mpc.h’
containing declarations of the mpC library and embedded functions.

 Subdirectory $MPCHOME/lib holds RTS object files ‘mpcrts.o’ and ‘mpctopo.o’.

 With WHICHMPI set to MPICH, the user should ensure MPCHOME to have the same
value on all workstations of the DMM. If mpC has been installed in different directories on
different workstations, you can use the Unix ln command to make necessary hard or soft links
and ensure the property.

7.4 MPCLOAD.

 $MPCLOAD is a directory for C files, object files, libraries and executables related to user’s
applications. MPCLOAD should be set to a proper value on each workstation of DMM. No
two workstations or users can share the directory. The user should have write access to the
directory.

MPCTOPO

Page 8-12 mpC programming environment. User’s Guide

 With WHICHMPI set MPICH, the user should ensure MPCLOAD to have the same value
on all workstations of the DMM. In particular, you can use the Unix ln command to make
necessary hard or soft links and ensure the property.

7.5 MPCTOPO.

 $MPCTOPO is a directory for VPM description files as well as all topological files produced
by the mpC programming environment. MPCTOPO should be set to a proper value on each
workstation of DMM. The mpC programming environment saves a file specifying the current
VPM in subdirectory $MPCTOPO/log. No two workstations or users can share these directo-
ries. The user should have write access to these directories.

8. How to run mpC applications

 To run an mpC application on a described virtual parallel machine, the user should proceed
the following steps:

1. create the necessary VPM by the mpccreate command. Immediately after that, the VPM is
opened;

2. if the necessary VPM has been created earlier, open it by the mpcopen command instead
of its creation;

3. put all `.c' and `.o' user's files, necessary to produce executable file, into the $MPCLOAD
directory on the host workstation;

4. broadcast all the files, necessary to produce executable, from the $MPCLOAD directory on
the host workstation to $MPCLOAD directories on other workstations constituting the
DMM by the mpcbcast command;

5. create an executable file on each of workstations constituting the DMM by the mpcload
command;

6. run the executables by the mpcrun command.

 Additionally,

mpctouch displays status of the VPM and all its processes.

mpcclean cleans VPM.

mpcclose ends the work with the current VPM.

mpcmach prints name of the current VPM.

mpC programming environment. User’s Guide Page 8-13

How to run mpC applications

 For simple examples of the session of the work with the mpC programming environment see
section 10.

8.1 mpccreate.

mpccreate name

where name is the name of the VPM to create. The command uses the $MPCTOPO/name
description file. The command creates VPM, i.e. produces all necessary files for it.

 In particular, the mpccreate command creates the $MPCTOPO/name.topo file, containing a
description of the topology of the created VPM and used by RTS in run time. Currently, the
file consists of pairs of lines of the form:

<name_of_workstation>
s<number_of_processors> p<performance> n<number_of_processes>

where <name_of_workstation> is the name of the corresponding workstation as it
appears in the $MPCTOPO/name description file, <number_of_processors> is the
number of physical processors in the workstation, <performance> is an integer number
characterizing the performance of each of these physical processors and
<number_of_processes> is the number of processes running on the workstation. We
recommend to check out the file after creation of the VPM, since the detected topological
characteristics can be rough enough if the background workload of the corresponding DMM
was essential and uneven during the work of the mpccreate command.

 Once created, the VPM is accessible to be opened by mpcopen. Note that mpccreate is
expensive and executes a lot of computations and communications, so it may take a few min-
utes to create new VPM.

8.2 mpcopen.

mpcopen name

where name is the name of the VPM to open. The VPM must be created earlier. After open-
ing, the VPM is accessible for mpcbcast, mpcload, mpcrun, mpcclean, mpctouch, mpcm-
ach, and mpcclose.

8.3 mpcbcast.

mpcbcast [file1 file2 ...]

mpcload

Page 8-14 mpC programming environment. User’s Guide

 The command broadcasts files listed from directory $MPCLOAD on user's workstation to
directory $MPCLOAD on the rest of workstations constituting DMM. Only file names with-
out paths must be typed.

8.4 mpcload.

mpcload [-het] -o target [file1.c file2.c ...] [file01.o
file02.o ...] [file11.a file12.a ...]
[options_to_all_nodes] [-host] [options_to_host_only]

 The mpcload command produces executable target from in directory $MPCLOAD on
each of workstations constituting the DMM. Do not use a path in target.

 The command produces the executable from .c , .o and .a files. The name of each of
these files either uses no path or uses the full path. The first case means that the file is searched
in directory $MPCLOAD.

 Option -het must be used if workstations participating in the VPM are not binary compat-
ible. The user may use the option even if all the workstations are binary compatible.

 Option -host separates options necessary to all nodes and options necessary only for the
virtual host-processor. In addition, if this option appears then:

• target for the virtual host-processor is produced from fully-named files and shortly-
named files, whose names are produced from names of shortly-named.c , .o and .a files
as they are typed in the command line by addition _host to the end of name;

• target for other nodes is produced from fully-named files and shortly-named files,
whose names are produced from names of shortly-named .c , .o and .a files as the are
typed in the command line by addition _node to the end of name.

Options_to_all_nodes and options_to_host_only are may be any proper C
compiler options. Note, that if option -c is used, and hence target is an .o file, then option
-host can not be used.

8.5 mpcrun.

mpcrun target [-- params]

 The command runs mpC application target on the current VPM and passes parameters
params to this application. Do not use a path in target.

8.6 mpctouch.

mpctouch [-p]

mpC programming environment. User’s Guide Page 9-15

Debugging mpC applications recommendations

 The command checks status of the current VPM and displays it. The VPM may be ready or
busy. If option -p is typed then the status of all nodes is displayed. Currently, the command
makes sense only for LAM implementation.

8.7 mpcclose.

mpcclose

 Closes the current VPM.

8.8 mpcclean.

mpcclean

 The command cleans the current VPM and makes it ready to run new mpC application. The
command should be used in case of abnormal termination of the previous command or mpC
application. Currently, the command makes sense only for LAM implementation.

8.9 mpcmach.

mpcmach

 Prints the name of the current VPM.

8.10 mpcdel.

mpcdel name

where name is the name of a VPM. The command deletes the VPM (that is, deletes all system
files related to the VPM).

9. Debugging mpC applications recommendations

 Debugging an mpC application isn't yet an easy task, but it is much simpler than debugging
an arbitrary MPI application, because of absence of nondeterminism.

mpcdel

Page 9-16 mpC programming environment. User’s Guide

 There are at least three levels of debugging.

At the top level we suggest to include in mpC code calls to MPC_Global_barrier() and
MPC_Barrier() to split program execution into small debuggable portions. It may be helpful
to use the MPC_Printf() function to output node coordinates, and values of variables. But
there are no guarantee you to see all MPC_Printf messages, because some errors make mes-
sage-passing subsystem failed. It is also possible to use ‘printf’, but part of output done on
remote computers will be lost. However, we strongly recommend to start debugging using a
single workstation as DMM. All error messages include either position in the mpC source file
or ‘0,0’, if the error takes place in the dispatcher process.

The middle level includes including printf's and barriers in C code generated by mpcc. It is a
bit more sophisticated than previous approach, because the user needs to understand the logic
of the generated C code and RTS kernel calls. If the user sets environmental variable MPC-
TRACEMAPFILE to an absolute name of file, then in the corresponding file he will obtain a
table, where each pair of lines contains info about network allocation. Sign “+” stands for pre-
viously allocated process, sign “-” stands for currently unemployed one, and “p” - for the par-
ent node of the network. In the second line user can see node ranks in the created network.

See the following example:

Three networks were created. The first network contains only one node. It is the host. The sec-
ond network contains nodes 0 (host) and 3, and its parent is the host. The third network is sim-
ilar to the first one, but at the moment, when it was created, node 3 was already used.

At the low level of debugging, the user may turn kernel tracing on and use MPI utilities such
as ‘state’ and ‘mpitask’ (LAM 6.0). To turn tracing on, the user needs to close the current vir-
tual parallel machine, then set the MPC_DEBUG environmental variable to 1 or 2 and reopen
the machine.

To debug an application, which hangs without error messages, first call ‘mpitask’ to find pro-
cesses which do not respond. In many cases they “die” due a simply “C error”, such as an
uninitialized variable, dividing by zero and so on. The trace is useful for finding the point in
the code where the disaster occurs. When all processes are alive, ‘mpitask’ shows operations,
where the processes are blocked.

0 1 2 3 4 5 6 7 8 9 10 11
p - - - - - - - - - - -
0 - - - - - - - - - - -
p - - - - - - - - - - -
0 - - 1 - - - - - - - -
p - - + - - - - - - - -
0 - - + - - - - - - - -

mpC programming environment. User’s Guide Page 10-17

Examples of mpC sessions

10. Examples of mpC sessions

10.1 Simplest example.

 Let file sum_vec.mpc contain the following mpC code

#include <stdio.h>
nettype Star(n) {coord I=n;};
#def ine M 4 /*number of the processors*/
#def ine N 3 /*dimension of the vectors on the each processor*/
#def ine NM N*M /*dimension of the source vectors*/
void [*]main() {
 int [host]x[NM], [host]y[NM], [host]z[NM], [host]i;
 void [*]parsum(),[*]parsum1();
 ([host]printf)(“<host input vectors>\n”);
 for(i=0;i<NM;i++) {
 x[i]=i;
 y[i]=-i;
 }
 ([host]printf)(“x=”);
 for(i=0;i<NM;i++)([host]printf)(“ %d”,x[i]);
 ([host]printf)(“\ny=”);
 for(i=0;i<NM;i++)([host]printf)(“ %d”,y[i]);
 ([host]printf)(“\n”);
 parsum((void*)x, (void*)y, (void*)z);
 ([host]printf)(“<host result vector>\n z=”);
 for(i=0;i<NM;i++)([host]printf)(“ %d”,z[i]);
 ([host]printf)(“\n”);
}
void [*]parsum(int [host]x[M][N], int [host]y[M][N],
 int [host]z[M][N])
{
 net Star(M) Sn;
 int [Sn]dx[N], [Sn]dy[N], [Sn]dz[N];
 int [Sn] i,[host]j,[host]l;
 dx[]=x[];
 dy[]=y[];
 dz[]=dx[]+dy[];
 z[]=dz[];
}

The program sums up two vectors on M virtual processors using function parsum . The func-
tion creates a network with M virtual processors, scatters portions of source vectors, calculates

Simplest example

Page 10-18 mpC programming environment. User’s Guide

sum, and gathers results to the host. In addition, let us suppose that the user works on a work-
station named beta . Let the user want to execute the application on this single workstation as
DMM, and the corresponding VPM has not been created yet. Therefore the user should create
the VPM. To do it, he creates description file beta5 in $MPCTOPO directory containing the
following 2 lines:

my own workstation only
beta 5

Then the user creates the VPM with name beta5 by typing:

mpccreate beta5

On the console of beta something like

mpccreate: net def inition /home/mpc/topo/beta5.def is created.
mpccreate: scheme /home/mpc/topo/beta5.ts is created.

LAM 6.0 - Ohio Supercomputer Center

mpccreate: wait for creation 'beta5'
mpccreate: parallel machine 'beta5' is created.

will appear. Note that immediately after creation, VPM is opened. Then the user compiles his
mpC file:

mpcc sum_vec.mpc

and copies output file sum_vec.c to the $MPCLOAD directory:

cp sum_vec.c $MPCLOAD

Because the user wants to execute the application on his workstation only, he can pass the step
of broadcasting sum_vec.c . Then he makes executable sum_vec :

mpcload -o sum_vec sum_vec.c

Finally, the user runs the application:

mpcrun sum_vec

On the console of beta something like:

<host input vectors>
x= 0 1 2 3 4 5 6 7 8 9 10 11
y= 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11
<host result vector>

mpC programming environment. User’s Guide Page 10-19

Examples of mpC sessions

 z= 0 0 0 0 0 0 0 0 0 0 0 0

will appear. If user wants to check status of beta5, he may type

mpctouch

On the console of beta something like

mpctouch: Ready!

will appear.

10.2 Complicated example.

Let the virtual parallel machine to run the application gal-buf.mpc has been already
opened. To produce two target C files - the first for the virtual host processor executing code
that includes calls to Xlib displaying data in the graphical form, and the second for the rest of
virtual processors not involved in graphical representing data, one can type:

mpcc -I/usr/openwin/include -het gal-buf.mpc

Note. Use the absolute application name if gal-buf.mpc is not in the current directory. Use
directory other then /usr/openwin/include if necessary (that is, use the directory
where X Windows system holds its include files on the host workstation).

The above command will produce files gal-buf_host.c and gal-buf_node.c in the cur-
rent directory. To make these files accessible to the mpC programming environment, one
should copy them into the $MPCLOAD directory:

cp gal-buf_host.c gal-buf_node.c $MPCLOAD

To broadcast these files from the host workstation to all workstations constituting the distrib-
uted memory machine, one should type:

mpcbcast gal-buf_host.c gal-buf_node.c

To produce executable gal-buf on each workstation of the distributed memory machine,
one can type:

mpcload -het -o gal-buf gal-buf.c -lm -host \
-L/usr/openwin/lib -lX

Note. Use a directory other then /usr/openwin/lib if necessary (that is, use the direc-
tory where X Windows system holds its libraries on the host workstation). Use an option other

Complicated example

Page 10-20 mpC programming environment. User’s Guide

then -lX if necessary (that is, use the proper name for the X library; it may be -lX11 or
something else).

Finally, to run the application, one can type:

mpcrun gal-buf -- input_file

where file input_file contains input data for the application.

Note. Use the absolute name of the input file if it is placed in a directory other then the direc-
tory which was a current directory when you open your virtual parallel machine.

